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Abstract
Due to the precision and efficiency that collaborative robots (cobots)
offer, they are becoming increasingly vital to advanced manufac-
turing, particularly for dynamic and complex tasks that depend
on human intelligence, such as decision making. To support cobot
adoption, this paper presents a novel method for analyzing human
decision-making and task complexity using video observation. Mov-
ing beyond conventional video analysis, the proposed approach
combines thematic analysis with computer vision-based motion
recognition to reveal behavioral patterns and decision-making pro-
cesses. Through the application in a real-world manufacturing gas-
ket room task, we demonstrate how the integration of interpretive
coding and computational motion data can uncover insights into
task structure, decision points, and potential cobot intervention
zones. This method contributes a practical tool for aligning cobot
functions with human needs in complex settings. It demonstrated
how generative intelligence can augment human-centered research,
and inform the design of future collaborative system that aligned
with planetary sustainability.

CCS Concepts
• Human centered computing→ Human-computer interac-
tion; • Human centered computing → Interaction design ; •
Computing methodologies→ Artificial intelligence.
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1 Introduction
As robots become increasingly accessible and affordable, research
in the HCI community has expanded to include the growing field of
human-robot interaction (HRI)[2, 20, 22, 23, 39]. Within HRI, a key
area of focus is human-robot collaboration (HRC), where humans
and robots work together in shared spaces to accomplish common
tasks, with the human operator typically serving as the primary
end user[6]. Collaborative robots, or cobots, are a category of robots
specifically designed to support such collaborative systems[11, 31].
In manufacturing contexts, the effective design of cobots to interact
seamlessly with operators is essential for enabling and supporting
cobot-enabled tasks.

To design a meaningful human-centered HRC system in a real
manufacturing setting, it is crucial to first understand the task
itself [24, 25] and the human factors that shape its execution, in-
cluding task complexity, physical workload, cognitive demands,
and decision-making processes[18, 37]. Observation is one of the
most widely used qualitative methods for understanding an ex-
isting workflow and human factors in real-world contexts [4, 10].
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Figure 1: Current Manual Task (left) and Designed HRC Task
(right)

Among observational tools, video recording offers non-intrusive,
reviewable access to task performance [8]. Thematic annotation,
a widely used approach in video analysis, allows researchers to
identify behavioral patterns and decision points that shape task
flow and complexity [5, 15, 17].

While thematic analysis provides rich interpretive insights, it
is often time-consuming and limits the volume of video data that
researchers can analyze in depth within a reasonable timeframe is
onerous. Moreover, manual analysis increases the risk of overlook-
ing subtle patterns in physical motion that could be important for
understanding complex tasks. In parallel, computer vision technolo-
gies have advanced significantly, allowing for automated detection
of motion trajectories and body pose directly from video [29, 30].
These technologies offer a practical way to track physical aspects
of work, but they often lack the contextual sensitivity needed to
explain the reason why particular behaviors occur. To address these
limitations, this study integrates thematic annotation with com-
puter vision-based motion analysis to address the research question:
How can we understand complex work tasks to inform the design of a
human-robot collaboration system in manufacturing?

This integrated approach is applied to a manufacturing task to
uncover task workflow, patterns of human behavior, identify deci-
sion points, and inform future design of cobot systems for different
contexts in the real world. It aims to demonstrate how generative
intelligence such as computer vision can augment human-centered
research, supporting the design of future collaborative system that
are adaptive, efficient, aligned with goals of planetary sustainability.

2 Background and Related Work
Video-based observation offers a direct and minimally intrusive
approach for understanding task workflows, human behavior, and
decision making in manufacturing environments. This section re-
views the relevant literature across three key domains that inform
the proposed approach: observation through video recording as a
foundation for studying human work in context, thematic annota-
tion as a qualitative method for interpreting behavior from video,
and computer vision-based approaches for extracting structured
motion data. Together, these areas form the basis for developing a
combined method capable of revealing patterns in human activity
and supporting the design of HRC systems.

2.1 HRI and HRC Methods in HCI Literature
Recent research in human-robot interaction (HRI) and human-robot
collaboration (HRC) has employed a range of methods, including
experimental studies, video-based observation, interviews, and co-
design workshops. Xu et al. [38] conducted laboratory experiments
to examine whether engaging in caregiving behaviors toward a
robot fosters stronger human-robot bonding, exploring both emo-
tional and instrumental forms of care. Schneiders et al. [33] ex-
plored how entrainment affect human-robot collaboration through
understanding human-human collaboration, where the research
combined motion tracking, video recordings, and semi-structured
interviews to capture both quantitative and qualitative insights.
Hsu et al. [19] investigated robot facilitating reminiscence, using
an experimental user study followed by co-design workshops to
address instances where the robot responded inappropriately, and
thematically analyzing the results of both studies. Together, these
examples illustrate the diversity of methodological approaches in
HCI, more specifically HRI/HRC research, and highlight the value of
combining subjective and objective methods to capture complexity
of human-robot interactions.

2.2 Thematic Analysis
Thematic analysis is one of the most popular qualitative methods
for interpreting video or observational data to understand human
behavior across diverse environments. It involves systematically
identifying and analyzing patterns, or “themes,” within qualitative
data to gain insights [5] . For example, Fletcher and Gbadamosi
[15] used thematic analysis to explore consumer decision-making
in social media live streams. This approach has also informed the
human-centered design of intensive care unit (ICU) spaces [12],
helping designers gain insights into user experiences and needs. In
medical robotics. Vermeulen et al. [36] applied thematic analysis
to investigate human performance during robot-assisted surgeries,
illuminating the dynamics between operators, clinicians and robotic
systems. Within qualitative research, thematic analysis has proven
highly effective in enabling researchers to gain in-depth, context-
focused insights.

2.3 Computer Vision-based Approaches
Computer Vision (CV) is a field that employs algorithmic models
to extract meaningful information from image and video data. In
recent years, CV techniques have been increasingly applied across
various domains to automatically analyze and interpret visual con-
tent. Within ergonomic research, for example, computer vision
offers a promising approach for assessing human physical work-
load by enabling biomechanical pose estimation [13]. For example,
CV-based video analysis has been used for biomechanical analysis
of lifting tasks [8], ergonomic risk assessment [9], and the detec-
tion of risk factors associated with musculoskeletal disorders [26].
These CV-based approaches demonstrate the efficiency and accu-
racy of objective approach for interpreting real-world phenomena
directly from pixel data. These areas form the basis for developing
a combined method capable of revealing patterns in human activ-
ity and supporting the design of HRC systems. Such an approach
integrates the depth of qualitative analysis with the scalability and
precision of advanced techniques, enabling a more comprehensive
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understanding of complex task environments. This dual perspective
not only facilitates the identification of behavioral trends but also
informs system design decisions that are grounded in both user
needs and observable evidence.

3 Research Design: Case Study In a Gasket
Room

To address the research question: How can we understand com-
plex work tasks to inform the design of a human-robot collabora-
tion system in manufacturing? , We employ a single case study
[14]approach to this research. As part of a larger PhD research
project within an industry focused research center, the Australian
Cobotics Centre in Australia, this research has been developed in
close collaboration with an industry partner providing access to the
manufacturing facility as the case study. This section outlines the
step-by-step process of the observational methods used and their
application in a manufacturing gasket room to collect and analyze
video data, with the aim of understanding task complexity and hu-
man decision-making relevant to cobot adoption. The gasket room
task involves producing Formed-In-Place (FIP) gaskets[34, 35] using
a semi-automated dispensing machine. Alongside the machine’s
operation, the task includes several manual steps, physically de-
manding, cognitively demanding operations, and real-time decision-
making by human workers. This task presents clear opportunities
for cobot integration, particularly in assisting with physically repet-
itive or ergonomically challenging elements, making it a strong
candidate for exploring how cobots might be introduced into an
existing workflow. Observation is a widely used method for under-
standing humans behavior and context from their perspectives [4],
particularly in real-world environments such as manufacturing. To
further minimize observer influence and maintain data richness,
video recording was widely used. Video enables researchers to ob-
serve remotely and repeatedly, without intruding on the task space
or altering worker behavior. It also can strengthen the credibility
of the study by reducing observer bias and enabling the applica-
tion of more systematic methods to support reliability [7]. Video
recording represents one of the most effective methods for captur-
ing and analyzing behavior in observational studies. In this study,
a non-participant observation approach [10] was adopted to avoid
disrupting the natural workflow of the task. This type of observa-
tion allows researchers to remain external to the activity while still
capturing authentic human behavior. This case study was approved
by the University Human Research Ethics Committee at Queens-
land University of Technology (Project ID 5545). All participants
provided informed consent.

3.1 Data Collection
3.1.1 Video Recording. The tasks that we observed are carried out
in a real manufacturing environment. Video data was collected
using two cameras positioned at different locations within the
workspace to minimize blind spots and reduce the likelihood of
missing important actions. In the gasket room case study, two 360-
degree cameras (GoProMax) were positioned at distinct locations to
provide comprehensive visual coverage of worker activity. Record-
ings were conducted on three separate workdays, each spaced one
week apart, to capture variation in task flow and behavior. Each

Figure 2: Camera setting in the gasket room

recording session lasted from 10:30 a.m. to 2:30 p.m., covering a
complete work cycle as much as possible. Researchers were present
solely to monitor the recording equipment and to replace camera
batteries as needed, typically once per session to ensure minimal
intrusion or interference with the tasks being performed.

3.1.2 Video Processing and Data Preparation. To prepare for data
analysis, all video footage needs to be segmented into short clips.
The recorded videos of gasket room were automatically segmented
by the camera due to a file size limitation of 4GB, resulting in in-
dividual video segments of approximately eight minutes each. As
a result, no manual segmentation was required. Following data
collection, the footage was edited using GoPro Quik software and
exported in 1080p MP4 format for analysis. The editing process in-
volved adjusting the lens angle to ensure that both the operators and
task-relevant activities remained consistently visible throughout
each segment. These adjustments were applied uniformly across all
recordings to maintain visual consistency and data quality for both
thematic annotation and computer vision-based motion analysis.
After the editing process, researchers reviewed all video recordings
and selected footage from one camera as the primary source for
analysis, with the second camera serving as a supplementary view.
To minimize perspective bias, the designated primary camera var-
ied across the three recording days. Video from the primary camera
was analyzed in full, while the supplementary footage was reviewed
alongside it to ensure that no relevant actions or behaviors were
missed. In instances where a task-relevant event was captured only
by the supplementary camera, that segment was included in the
analysis to maintain completeness and accuracy.

3.2 Data Analysis
3.2.1 Hybrid Thematic Analysis. The thematic analysis followed a
hybrid coding strategy, combining both deductive (pre-defined) and
inductive (emergent) coding to capture the structure and complexity
of human behavior during the task. The process was conducted in
the following steps:

1. Development of Pre-Defined Codes. Based on prior knowledge,
task documentation, and the study’s research questions, an initial
set of codes and code groups was created. These included categories
related to the standard manufacturing process steps, physical and
cognitive workload, decision-making types, and types of human-
system interaction.
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Figure 3: Code Groups

To guide the coding process, three questions were established:
Q1: What are the breakdown steps involved in the gasket room

task?
Q2: Which steps present obvious physical demand and cognitive

demand?
Q3: Among the cognitively demanding steps, which involve

decision-making processes and factors trigger these processes?
A codebook was developed to support consistent annotation,

with clear definitions and illustrative examples for each code.

2. Initial Video Coding and Emergent Code Identification. As video
annotation progressed, the researchers remained open to new pat-
terns or behaviors not captured by the initial codebook. Emergent
codes, such as unexpected errors, task interruptions, and informal
troubleshooting, were developed inductively during this phase. To
ensure reliability, two researchers independently annotated selected
video segments. Discrepancies were resolved through collaborative
discussion and iterative refinement of the code definitions. A hy-
brid coding strategy was employed to capture both anticipated and
emergent aspects of operator behavior. Deductive coding groups
were derived from task documentation and domain expertise and
included categories such as FIP Gasket Standard Process, Interac-
tion, Demand, and Decision Making. One of the core closed code
groups was based on the Standard Process of Formed-In-Place (FIP)
gasketing, as defined by industry documentation and workplace
procedures [3]. This process was broken down into six sequential
stages:

(1) Surface Preparation - cleaning and preparing the surface
area for gasket application;

(2) Material Preparation - loading and verifying the gasket ma-
terial and equipment readiness;

(3) Programming and Calibration - setting up the machine pa-
rameters and calibrating the dispenser;

(4) Dispensing Process - executing the gasket application using
the dispensing equipment;

(5) Curing and Solidification - allowing the applied material to
cure and solidify as per process requirements;

(6) Inspection and Quality Control - visually inspecting the
gasket and verifying adherence to quality standards.

The interaction group, demand group and decisionmaking group
are defined based on preliminary observations. Interaction includes
human-machine(computer) interaction, human-object interaction
and human-human interaction. Demand includes physical and cog-
nitive demands and depends on the effort they are devised to high
physical demand, low physical demand, high cognitive demand and
low cognitive demand. Decision making includes judgment, trou-
bleshooting and problem solving. These coding groups provided
a structured lens for interpreting task execution and behavioral
roles. In parallel, inductive coding was used to capture unexpected
observations directly from the video data. Emergent codes included
specific Task Activities within standard steps, as well as Errors,
Interruptions, and nuanced Operator Behaviors not originally ac-
counted for. This hybrid approach ensured the analysis remained
both grounded in formal task structure and responsive to context-
specific dynamics observed in the real-world setting.

3. Codebook Refinement. The codebook was iteratively updated
to include both the closed and open codes. Definitions were clarified
and examples added to support consistency across coders.

4. Reliability and Consensus Building. To enhance coding reli-
ability, two researchers independently annotated selected video
segments. Discrepancies were discussed and resolved collabora-
tively, leading to further refinement of the code definitions.

5. Theme Development. After all coding was complete, codes
were grouped into higher-level themes through comparison, pattern
identification, and alignment with the study’s research questions.
Both inductive and deductive codes contributed to final thematic
categories, which reflected broader cognitive, behavioral, and pro-
cedural insights from the data. Annotation was performed using
Atlas.ti [1], with the main camera footage serving as the primary
source for coding. When relevant behaviors were only visible in
the supplementary camera, those sequences were incorporated into
the coding process. The resulting thematic annotations served as
an interpretive layer that complemented the motion data extracted
through computer vision, detailed in Step 4.

3.2.2 Computer Vision-based Video Analysis. After thematic anno-
tation, some patterns may remain unobserved by the researchers.
To address this, a computer vision-based method was used to de-
tect additional patterns and ensure more comprehensive results.
This method Realtime Collaborative Action Tracking (ReCAT) [28]
combines MediaPipe [16], DeepSORT [32] and YOLO11 [21] to
identify the most frequently repeated and physically demanding
tasks, as well as to track operators’ movement trajectories within
the workspace. Our earlier version, which used only MediaPipe,
performed well for detecting and tracking a single person in real
time. However, in real-world scenarios, especially in collaborative
environments, it is necessary to account for multiple individuals.
Therefore, the current version of ReCAT combines YOLO11, which
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Figure 4: ReCATWorkflow

is effective for detecting multiple people, with MediaPipe, which
provides highly accurate human pose estimation. Our new version
of ReCAT detects people in each video frame using YOLO11, then
assigns a unique ID to each detected person and tracks them across
frames with DeepSORT. Finally, it estimates the pose of each person
using MediaPipe as depicted in Figure 4.

1. People Detection. We employed the YOLO11-pose model, a
state-of-the-art, real-time object detector, to identify and localize all
human subjects in each video frame. YOLO11 was selected for its
high detection accuracy and real-time inference capability, ensuring

Figure 5: COCO format 18 key points, adapted from [27] (left),
and MediaPipe’s 33 key points landmarks [16] (right).

robust person detection even under challenging conditions such as
partial occlusions and varying lighting.

2. Multi-People Tracking (Persistent Identity). To maintain consis-
tent identities of individuals across frames, we integrated a Deep-
SORT tracker. DeepSORT combines bounding box motion predic-
tion (via Kalman filtering) and deep appearance features, providing
robust multi-person tracking with persistent unique IDs, even in
crowded scenes or when temporary occlusions occur. Each de-
tected person’s bounding box and confidence score from YOLO
were passed to DeepSORT, which outputs a track ID for every
person in each frame.

3. Human Pose Estimation. Because YOLO Pose uses the COCO
format, which defines 18 human body landmarks, we applied Me-
diaPipe Pose, which provides 33 anatomical landmark coordinates
per person per frame, capturing key body joints and segments in
greater detail (Figure 5).

4. Physical Activity Recognition and Workload Metrics. We de-
signed custom algorithms to recognize key physical activities and
estimate workload metrics, including:

• Walking Distance: For each person, we computed the cu-
mulative Euclidean distance of a central body point (nose
or hip center) across consecutive frames, normalized by an
estimated pixels-per-meter scaling derived from bounding
box height and assumed real-world person height.

• Squat and Bend Detection: Squats were detected by monitor-
ing the vertical displacement of the hip landmarks relative
to a personalized standing baseline, using state machines to
track up/down transitions and filter out noise. Bends were
similarly detected using the average vertical position of the
shoulder landmarks.

• Event Counting and Depth Measurement: For each tracked
identity, the number of squats and bends, as well as the depth
of each squat, were recorded over time.

• Result Visualization: The analysis pipeline overlays bound-
ing boxes, landmark skeletons, person IDs, and live activity
statistics directly on video frames for qualitative validation.

5. Data Output and Analysis. All extracted metrics (walking dis-
tance, squat and bend counts, event timings) were logged per frame
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Figure 6: Code groups of Thematic Analysis

and per person, and exported as a structured CSV for further statis-
tical analysis. Processed annotated videos were saved for qualitative
review. A key benefit of the computer vision-based approach is its
high level of automation. However, automation does not mean the
system cannot be customized. ReCAT can be adapted to suit spe-
cific needs. In this study, ReCAT is used to detect operators in the
workspace and calculate their workload based on pose estimation
and movement trajectories within the workspace. These analyses
provide insights into the actual physical demands of specific tasks
and reveal how operators move through the workspace. The code
and supplementary materials are available at our GitHub repository:
https://github.com/yuanliu233/ReCAT.

4 Preliminary Results
4.1 Results of Thematic Analysis
In the standard process group, all six procedures are observed in the
videos. As these are consistent with common industrial standards,
no modifications were necessary for this group in the Codebook
Refinement step. Based on the analysis of the video recordings, the
task activities were identified as follows:

• transferring the panel,
• positioning the panel,
• cleaning the panel,
• operating the dispensing machine,
• operating the computer,
• measuring panel dimensions,
• pressing the shuttle table button,
• pressing the dispensing machine button,
• moving the trolley or pallet truck,
• transferring pallet stack,
• placing and positioning pallet stack,
• transferring foams,
• positioning foams,
• checking quality,
• fixing errors.

It is difficult to accurately assess the level of cognitive effort ex-
erted by operators based solely on video observation. Therefore,
any activity requiring cognitive engagement was categorized as

Figure 7: Themes from Thematic Analysis

having cognitive demand. Examples include operating machines or
computers, measuring, placing, positioning, checking quality, and
fixing errors. Activities were classified as high physical demand
if operators were required to move heavy loads, such as trolleys,
pallet trucks, panels, or pallet stacks, or if they performed repetitive
body movements within a short period (e.g., cleaning). Activities
were classified as low physical demand if operators only made mi-
nor adjustments to heavy objects (e.g., positioning panels or pallet
stack) or moved lightweight objects (e.g., transferring or position-
ing foams). Decision making was identified when operators exer-
cised judgment and performed troubleshooting or problem-solving
in response to errors. Examples of judgment include positioning
objects for alignment and checking quality, while errors may in-
volve obstacles or equipment failures. Interactions were categorized
as human-object interaction, human-machine/computer interac-
tion, and human-human interaction. These were all considered
physical interactions, as they were identified through video obser-
vation. Human-object interaction was observed when operators
handled objects such as panels, foam, trolleys, or other equipment.
Human-machine/computer interaction was identified when opera-
tors operated machines or computers. Human-human interaction
occurred when two or more operators worked together to handle
the same item. Errors were observed when something disrupted
the workflow. In this study, obstacles and failures were classified
as errors.

From the codes, the following themes were identified: Physically
Intensive Manipulation, Complex Manipulation, Decision-Driven
Activities, and Simple Task Execution. Physically Intensive Manip-
ulation refers to tasks primarily involving high physical demands
and human-object interactions, such as transferring heavy panels
or materials. Complex Manipulation involves tasks that combine
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Figure 8: Output Video Clips from ReCAT

significant physical effort and cognitive demands during human-
object interactions. Examples include tasks requiring careful clean-
ing, positioning, or precise adjustments to objects. Decision-Driven
Activities represent tasks requiring significant cognitive engage-
ment, including troubleshooting, measuring, positioning, and qual-
ity checking. Simple Task Execution describes tasks characterized
by minimal cognitive and physical effort, typically straightforward
actions such as pressing a button to operate machinery when all
preparations are complete (Figure 7).

4.2 Results of ReCAT Analysis
To supplement the thematic analysis, we employed ReCAT to visu-
ally understand the movement of the operators in the gasket room.
Both operators were successfully detected and assigned unique
IDs throughout the ReCAT analysis. The system accurately iden-
tified key actions, including walking, squatting, and bending, for
each operator. Using these detected actions, we calculated the esti-
mated energy expenditure for each individual (Table 1). The results
demonstrated that the computer vision approach provided effective
physical workload estimations, validating the effectiveness of the
method for ergonomic assessment.

These capabilities provide objective, granular data about when
and where physical effort is concentrated within a task. When
combined with thematic analysis, such data can reveal which task
steps impose high physical demands or repetitive strain, offering
clear targets for robotic assistance. In this way, the approach di-
rectly addresses our research question by helping to understand
the structure, demands, and challenges of complex work tasks.

5 Discussion
The contributions of this work are threefold: (1) it introduces a
video-based analytic framework for understanding human decision-
making in task execution, (2) it introduces a computer vision tool
based on OpenCV, MediaPipe and YOLO to track motion and pose
data, (3) it demonstrates the application of this method in a real-
world manufacturing case study, and (4) it generates actionable
insights for designing human-robot collaboration by identifying
decision-intensive moments and repetitive physical actions suitable
for automation. Together, these contributions practically address
the needs for identifying behavioral patterns and informing collab-
orative robot adoption in complex task environment.

This study demonstrates the value of combining thematic analy-
sis with computer vision-based video analysis for understanding
tasks and human behavior in real-world settings. Through com-
puter vision, we were able to detect and uniquely identify operators
and automatically recognize their physical actions, enabling an
objective assessment of physical workload. In parallel, thematic
analysis provided deeper insights into the context and subjective
experiences behind these activities. Thematic analysis allowed us to
identify connections among code groups, both predefined and those
that emerged during the analysis. This approach offered insights
into real-world task breakdowns, workload distribution, decision-
making processes, interactions among humans, machines, and ob-
jects, as well as the types of errors that trigger troubleshooting
and problem-solving. Such qualitative insights are essential for
understanding task complexity and human decision making in fu-
ture studies. Using ReCAT, our computer vision-based tool, we
efficiently and objectively captured human physical activities such
as walking, squatting, and bending by analyzing joint movement
and angles. This enabled direct estimation of energy expenditure
and, consequently, physical workload offering a level of objectiv-
ity not possible through thematic analysis alone. This integrated
approach connects in-depth insights into human behavior with scal-
able, automated analysis. It not only provides insights derived from
subjective analysis but also capture patterns objectively, thereby
bridging the gap between the observer’s perspective and actual task
execution.

6 Conclusion
While the initial results are promising, several limitations must
be acknowledged. First, the current case study was based on a
specific manufacturing task scenario, which may limit the gen-
eralizability of the combined method. The accuracy of computer
vision-based action recognition can be affected by factors such as
video resolution, occlusions, and individual variations in move-
ment. Additionally, thematic analysis relies on subjective coding
and interpretation, which can introduce researcher bias and require
significant time investment. Finally, while the integrated approach
offers complementary perspectives, the process of systematically
combining findings remains a challenge and is still in the early
stages. Future work will focus on expanding the application of this
combined method to larger and more diverse datasets. Incorporat-
ing human perspectives through interviews and other qualitative
approaches will help to validate the method and strengthen the
reliability of the results. Efforts will also be made to enhance the
accuracy of the computer vision algorithms. Additionally, we aim
to develop systematic approaches for integrating subjective and
objective findings. Ultimately, ongoing refinement of this approach
will contribute to the design of human-robot collaborative systems
for the real world. In this study, we presented an integrated method
that combines thematic analysis and computer vision-based video
analysis, ReCAT, to better understand human tasks and decision
making in real-world environments. By leveraging the strengths of
both qualitative and quantitative methods, we were able to capture
not only the objective measurement of physical workload through
automated action recognition and energy estimation, but also the
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Table 1: 60-Seconds Physical Workload Estimation from ReCAT

ID Walk (m) Squats Bends Work Walk (J) Work Squat (J) Work Bend (J) Total Work (J) Calories (kcal)
1 1.668 1 0 233.46 161.36 0.00 394.82 0.094
2 30.693 0 1 4297.01 0.00 172.22 4469.23 1.068

contextual and subjective aspects of task complexity and decision-
making. This dual perspective provides a more comprehensive
understanding of human work and lays the groundwork for design-
ing more effective human-centered collaborative systems. Moving
forward, refining this combined methodology and applying it to
broader contexts holds promise for advancing both research and
practice in human-robot collaboration and ergonomic assessment.
Besides, this method offers qualitative researchers the opportunity
to gather richer and more comprehensive data, while also serving
as an effective preliminary approach for contextual and user un-
derstanding in the design process. Its utility extends beyond the
design of human-robot collaboration to diverse domains of human-
centered research. Our research aligns with the OzCHI 2025 theme
of Generative Intelligence, Planetary Futures by integrating a robust
qualitative method, thematic analysis, with an intelligent computer
vision approach our ReCAT tool, to create a more comprehensive,
flexible, and adaptable method for future human-centered research.
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