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Tapping into wastewater for nutrient recovery is largely missing from water policy and circular economy (CE)
conversations, and in particular, its incorporation of machine learning (ML). Past nutrient roadmap studies have
either ignored or largely unaccounted for advancements in Al and ML for CE wastewater treatment plants
(WWTP). This nutrient roadmap paper provides technology and ML evaluation guidance, data collection prac-
tices to prime the industry for smarter treatment processes, financial opportunities and assessments, social

acceptance drivers, and guidance on navigating the current environmental and regulatory landscape for the
implementation of ML CE WWTPs. Finally, further policy improvements are needed surrounding CE WWTPs to
incentivise local production and recycling of critical nutrients (i.e. phosphorus) which would support the crea-
tion of new economic growth opportunities, meet environmental targets while securing and stabilising food

supply chains.

1. Introduction

Numerous technologies have been introduced over the years to
address the issue of nutrient scarcity and circularity, but nutrient re-
covery has not reached full commercialisation. The European Union
(EU) lately recognised the importance phosphorous plays across the bloc
with the introduction of the Critical Raw Materials Act [1] — designating
phosphorous alongside phosphate rock as critical materials for the se-
curity and stability of its member states. In Australia, phosphorous was
not listed in the proposed $23 bn Future Made in Australia framework as
a critical mineral [2], instead prioritising net-zero commodities and
other critical metals for a low-carbon future. To date, water utility
companies across Australia exclude nutrient recovery practices across
their treatment operations — instead, opting to remove nutrients instead
of recovering it. Australia’s Environmental Protection Agency (EPA),
provides several guidelines on drinking water qualities and recovery
exemption orders, however, none of these listed is specific to that of
wastewater and source-separated urine [3]. On the other hand, Australia
does reuse sewage sludge as biosolids, where in 2019, approximately
70 % of the recovered biosolids are reused in agriculture, 24 % for
landscaping and the remaining 6 % is disposed of [4]. The report
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mentions preserving water qualities and food supply chains, but the
missing link with wastewater is noticeable.

A driving force for nutrient circularity is the finite reserves of
phosphorus, stabilisation of food and fertiliser prices, and the prevention
of eutrophication across river ecosystems [5-7]. The Australian Circular
Economy Framework which was announced on November 2024,
recently listed nutrient capture and reuse as a key metric for the sus-
tained recycling of organics through composting and anaerobic diges-
tion, and further investments into artificial intelligence (AI) and
automation to support circularity [8]. However, missing from this report
is the recovery of nutrients from municipal wastewater passageways.
Given that globally, wastewater constitutes about 16.6 billion kg of ni-
trogen, 3 billion kg of phosphorus, and 6.3 billion kg of potassium, and
could offset 13.4 % of global fertiliser consumption and power 158
million households with energy [9]. This research area remains under-
studied and underrepresented across policy conversations.

Other roadmap papers such as The Nutrient Roadmap [10] explores
regulations, technologies, wastewater influent characteristics, case
studies, operator training and education, financing, planning, stake-
holder engagements, process modelling, resources recoverable, and risk
management. Previous studies have provided a more generalised
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approach to the framework of WWTP nutrient CE which included
stakeholders and different levels of society [11] and extensions of this
with ML highlighting the need for more data collection and enablement
of the technology in WWTPs [12]. Meanwhile, a recent strategic road-
map paper published for Australia has a large focus on urine-based
fertilisers and source-separation systems involving live workshop par-
ticipants covering socio-cultural, environmental and health, economic
and technological drivers and barriers [13]. Moreover, the application
of ML for nutrient recovery is an emerging discipline of study with the
aim of using predictive analytics to optimise processes and maximise
resource recovery [14-16] and for enhancing transparency [17], how-
ever, several factors such as the lack of data capture and sharing, and
sensor points makes ML implementation across WWTPs difficult.

1.1. Understanding nutrient loading trends and characteristics

To an operator, it is important to become familiar with wastewater
characteristics. The standard chemical composition of wastewater in-
fluents of interest covers flow rates, pH, total suspended solids (TSS),
total dissolved solids (TDS), biological oxygen demand (BOD), chemical
oxygen demand (COD), total nitrogen (TN), total phosphorous (TP),
ammonia, nitrates, nitrites and metallic elements. These chemical traits
can be found in Table 1 below. Alongside these treatment plants and
wastewater resource recovery facilities (WRRF), treatment guidelines
are present throughout the country to regulate the discharge concen-
trations of these nutrients into the environment alongside any toxins and
metal contaminants. Sydney Water models influent concentrations over
several years with Generalised Additive Models (GAM) [18], and has
collected extensive data on wastewater TP and TN loadings, but little
beyond this.

Environmental protection licences (EPL) apply limits to the influent
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nutrient loads for wastewater treatment plants with for example, West
Camden WWTP has an EPL limit of 6 kg/day of TP, for the West Camden
WWTP the TN EPL limit was 252 kg/day [18]. Sydney Water’s model-
ling processes follow Fourier sine and cosine transformations with pe-
riods factored into the prediction model, and then streamlined with a
prediction interval of 95 % (Fig. 1). The influent nutrient loads vary
from year to year, and predictions with best-fit models are required to
make accurate data assessments. Geometric means of the nutrient loads
were compared between different periods when upgrades were made to
the WWTPs with TN, dissolved inorganic nitrogen (DIN) and TP being
key interest variables. An EPL sets nutrient loading discharge limits on a
case-by-case basis given that different nutrient discharge limits have
varying impacts on the environment, however, if the nutrient recovery
technology has an extremely high removal rate (for example, 100 %)
across all inorganic and organic nutrients, the issues of meeting EPLs are
reduced. Compared to biological nutrient removal methods, nutrient
recovery prevents nutrients from being discharged into the environment
or removed by bacteria and disposed of. These nutrients can be recov-
ered through biological, electrochemical, chemical, thermal and mem-
brane means, and repurposed into useful resources such as fertilisers,
water and energy.

There is also immense potential for the data seen in Table 1 for
example, to effectively recover valuable resources and to drive process
optimisations. Training Al and ML models requires inputs such as the
concentration of phosphorus, nitrogen, TSS, TDS and so on, to effec-
tively estimate the treatment or recovery processes that is most efficient
and optimal. Recent research has explored the use of ML with micro-
algae [15,24], hydrochar and biochar production [25-27], struvite
precipitation [28,29], membrane [30] for either resource recovery or
removal. The data that is collected is fed into ML models to predict and
anticipate nutrient loadings with tailored processes. For example,

Table 1
Influent wastewater characteristics across WWTPs in Australia and its guidelines.
References [19] [19] [20] [21] [22] [22] [22] [23]
Flow Rate - - 90 - 59.6
(ML/d) (max)
Plant Water Reclamation Luggage Point Canberra Bolivar N/A (treatment N/A (treatment N/A (treatment Selfs
and Management Water Reclamation =~ WWTP WWTP SA guide for domestic guide for domestic guide for domestic Point
Schemes Plant low strength) light trade waste) high trade waste) STP
Location Sydney Sydney Canberra South N/A N/A N/A Hobart
Australia
pH 7.5 7.36 - 6.44 - - -
TSS (mg/L) 200 262 796 980 < 250 220-350 > 300 280
TDS (mg/L) 350 - - 944 - - -
BOD (mg/L) 200 258 414 35 < 200 200-350 > 300 300
COD (mg/L) 470 583 91 < 500 500-700 > 800 684
TN (mg/L) 40 - 9.72 < 45 40-65 50-90 57
Ammonia 30 36.5 37.2 < 40 35-50 40-80 33
(mg/L)
Nitrates (mg/  0.05 - <1 <1 <1
L)
Nitrites (mg/ 0.27 - <1 <1 <1
L)
TP (mg/L) 7 10.57 12.1 0.07 8-12 8-12 8-12 9
Aluminium 0.13 0.5 0.97 -
(mg/L)
Calcium (mg/ 99 45 45.1 -
L)
Chlorine - -
(mg/L)
Fluoride - -
(mg/L)
Magnesium 18 46 30 -
(mg/L)
Potassium 86 31 44.2 -
(mg/L)
Sodium (mg/ 368 394 244 -
L)
Sulphides 6.8 72 -
(mg/L)
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Final Model >95% Confidence

Total Nutrient Load (kg/day)

Improvements made. E.g., nutrient
recovery applied.
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Nutrient Limit Load (kg/day)

Final Model >95% Prediction Interval

1 >95% Confidence Interval

Final Model >95% Prediction Interval

Fig. 1. Nutrient loading models and prediction mapping is done based on historical nutrient loading trends. These include phosphorus and nitrogen nutrient loadings

within wastewater.

predicting the concentration of phosphorus and nitrogen loads and
altering pH, temperature, magnesium additions and ammonia stripping
air flow rates to maximise nutrient recovery economics. Insufficiently,
studies across ML for nutrient recovery on WWTPs is largely
under-implemented.

Population is factored into nutrient load analysis. However, nutrient
loadings differed even from growths in population levels, and buffers
were placed on the volatile nutrient loads that varied over the course of
the years across TP, Chlorophyll-a, TN, DIN, dissolved oxygen, pH,
ammonia, oxidised nitrogen and turbidity. Nutrient leakage from land
and agricultural farmlands is factored in the environmental analysis, and
proximity to major agricultural activity areas can help improve the
distribution and engagement of farmers with nutrient CE WWTPs [31].
It is important to consider what is affecting the variations in nutrient
loadings and factor that in data collection and ML model trainings. An
estimation model based off the nutrient loadings of the past would lead
to upper and lower limits along confidence interval levels of > 95 %.
Prediction and model confidence intervals were set based on these
nutrient loadings, fit according to reasonably high R? values. Nutrient
recovery technology effectiveness can be assessed according to the
steepness in the curve for the nutrients after implementations have been
made along WWTPs at the influent and the effluent monitoring posi-
tions. The loadings would be constantly monitored should nutrient
levels pick up and breach legal loading limits.

2. Setting the foundations for a nutrient circular economy
wastewater treatment plant within Australia with machine
learning

Wastewater disciplines can be separated between municipal and
industrial wastewater streams. Municipal wastewater streams are
heavily concentrated with nutrients at the influent, and come from
households. This type of wastewater undergoes a combination of bio-
logical and membrane filtration processes to reduce nutrient loads down
to an acceptable level to which eutrophication can be prevented. In this
linear wastewater economy, none of the nutrients and the useful re-
sources that accompany it are recovered. For example, phosphorous,
nitrogen and methane are either emitted or disposed of into the envi-
ronment. Throughout Australia, the dominant form of nutrient recovery
is conventional activated sludge methods and other biological nutrient
removal technologies. Nutrient recovery methods are largely unused
throughout the WWTP landscape. To prime for ML CE WWTPs,

appropriate data collection methods are required, social changes to
operator attitudes and management via education and trainings, and
commercialisation planning are critical to this success.

2.1. Data collection and monitoring

Data collection on influent nutrient loadings and the quality of the
water effluent is important towards training ML and AI models for smart
nutrient recovery WWTPs. This could include employing the use of data
buoys, loggers, flowmeters, pH and chemical analysers at locations of
interest. Not only do these sensors serve to monitor the environmental
protection these recovery systems have, but to assess the circular effi-
ciency of nutrient CE WWTPs in a digitised approach that gives policy
makers and utility operators a 360-degree view of their operations from
waste collection to nutrient redistribution across society. Sampling fre-
quencies differ depending on the severity of the pollutant, with some
done monthly and others every 6 days [32]. As specified by various
wastewater reports, data accuracy is also important, and this is depen-
dent on the measurement sensor instrument that is used for collecting
water data characteristics which can either be automatic or manual.

2.2. Complying to environmental regulations

Within Australia, environmental regulations are stringent for main-
taining low levels of nutrient leakage into waterways. These are regu-
lated by the Environmental Protection Agency (EPA) and can differ by
states and licenses are issued out. In New South Wales (NSW), the EPA
regulates nutrient load limits by sample rates. For example, for phos-
phorous limits, these vary depending on the WWTP site with an EPL
requiring plants to take regular samples. A sample of 1 mg/L of phos-
phorous concentrations for example, EPL 1725 Castle Hill WWTP has a
TN limit of 25 mg/L for 90 % of the samples collected [33], while Picton
WWTP EPL 10555 has a TN limit of 15 mg/L per 90 % of samples
collected [34]. Therefore, there is no universally defined limit to which
nutrients should be set to, as this is dependent on the environment’s
sensitivity towards eutrophication [35]. While the EPA encourages the
recovery of nutrients [36], there is no national framework to support the
transition to nutrient CE for WWTPs. Permission exemptions and orders
can be applied to state EPAs; however, no state EPA has defined nutrient
recovery and reporting guidelines for wastewater [3,37,38], rather,
resource recovery applications do require individual assessments by the
EPA. This presents a policy gap to which nutrient recovery performances



A. Soo et al.

and standards are left up to the operators which can lead to non-uniform
recovered products. The exception here is on the large-scale reuse of
sewage-sludge biosolids which has been in operation in Australia for
over 25 years since the guidelines [39], but given the low
nutrient-density of biosolids and the constant emergence of new con-
taminants [40], biosolids are not commercially viable. NQMS has clas-
sified a list of macro and micronutrients including boron, calcium,
chloride, iron, sodium, sulphur and magnesium beyond potassium, ni-
trogen and phosphorous (Table 2).

2.3. Driving social change, trainings, and acceptance

2.3.1. Knowledge dissemination

Disseminating knowledge on the impacts of nutrient recovery is
important, as this is under-implemented throughout the wastewater
sector. Currently throughout Australia, not many wastewater recovery
technologies are known to members of the workforce, given the
emerging status of many of these technologies. For example, in Austria,
some authorities require smaller WWTP operators to obtain training to
manage and maintain their facilities to improve operating reliability
[44]. Knowledge transfer among WWTP operators is low in some utility
organisations [45] due to an ageing workforce being a contributor.
However, in the case of training and education for a nutrient CE WWTP,
this problem becomes more of an upskilling one, rather than a knowl-
edge retention challenge. On the contrary, there are upskilling chal-
lenges for WWTP operators to manage ML systems for effective nutrient
recoveries with smart CE WWTPs [46]. The knowledge of circularity
among operators should also be assessed as was the case during
Covid-19 on taking samples of the virus from wastewater [47]. When
factoring in ML, it becomes even more challenging for WWTP operators
to collect necessary data to train predictive models [48]. Therefore, data
collection, monitoring, a general understanding of ML parameters and
working with process engineers with ML models are crucial for
advancing nutrient CE WWTPs.

2.3.2. Incentivising community best practices

Widespread community participation and support are crucial for the
success of CE WWTP. This involves providing a compelling value
proposition for households — particularly in high density neighbour-
hoods - to dispose of waste in a manner that is compatible with CE
WWTP practices for efficient waste collections. This includes household
residential schemes participating in reverse logistics programs which are
financially remunerated in the form of strata cost offsets from the re-
covery of phosphorous and nitrogen treated onsite through, for example,
source-separated urine within apartments. These can be driven by
harmonised standards for waste disposal, safety regulations and trade
facilitations across different jurisdictions and construction codes [49] to
drive public trust and participation. For example, the introduction of the
European Union Critical Raw Materials Act [1] which aims to retain the
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circulation of critical minerals across the bloc. There is therefore, an
intersectional focus between local communities and resilient circular
supply chains that are aligned with CE regulations. However, policies
encouraging financial remuneration for those participating in
source-separation urine and wastewater nutrient recovery schemes are
levers that can be pulled to stimulate desirable consumer behaviours to
recycle their waste into profitable fertilisers, while minimising nutrient
loadings on WWTPs by combining it with the use of ML. A challenge
here is the lack of reliable ML data to train the models on, requiring
changes in community behaviours to accept decentralised waste
collection methods that can expand the number of connected, data
collection sources via connected devices and geographical information
systems data sources [46]. Urban designs currently lack the incorpora-
tion of source-separation toilets and urinals within residential apart-
ments and public spaces. The behaviours of the communities themselves
can be studied through assessments of nutrient ML topics that are being
discussed on social media [50,51], with strategies tailored by geogra-
phies to increase nutrient CE acceptance and discourse.

2.4. Finance and funding for new CE WWTP projects

2.4.1. Identifying sources of revenue

Nutrients are a valuable source of revenue for WWTPs, and prices are
mainly determined by supply and demand for these nutrients, and the
operating cost of the WWTP. Several underlying technologies can be
used to recover nutrients, for example, struvite precipitation and
ammonia stripping processes, and their products may be regulated. In
the EU for example, the Fertilizing Products Regulation provides a list of
recycled nutrients from wastewater that can be resold onto the market as
“precipitated” phosphates and derivatives [52], however, one of the key
challenges of this is competitive pricing and lack of regulations in other
markets where nutrient circularity is not a critical policy issue [53].
Other valuable sources of revenue that can be recovered and sold
transcend beyond nutrients and can cover resales of treated wastewater,
biogas and other materials. The sale of nutrients and other valuable
resources can help offset the operating costs of the nutrient CE WWTP.
Nutrient trading schemes, reverse auctions, grant funding and subsidies
were proposed by the OECD as a way to facilitate an economic system
that encourages CE [54]. A nutrient CE trading scheme allows nutrient
credits to be offset against linear economy WWTPs as the entire sector
transitions to a CE one. For example, CE WWTP in Sydney with a higher
phosphorous recovery rate can offset lower nutrient removal efficiencies
for a WWTP in Melbourne through the sale of nutrient reduction credits
to help meet water quality standards. In a reverse auction, nutrient
suppliers can bid to outcompete on price compared to synthetic fertil-
isers. Given that economically, suppliers are motivated to supply more
of a good that is profitable and at a higher price, the profit margins for
organic nutrients then need to be higher than synthetic fertilisers. ML
can improve the price stability, resource efficiency allocations and

Table 2

90 % percentile limit of pollutants allowable for Sydney Water issued EPL [32-34,41,42,43] across different WWTPs.
WWTP Sampling Frequency Castle Hill Picton Penrith Rouse Hill St Mary’s Cronulla
Aluminium Monthly ug/L 400 270 340 383
Cadmium ug/L 0.2 0.2
BOD Every 6 days mg/L 10 10 15 5 20
Ceriodaphnia dubia immobilisation (EC50) Monthly % effluent by volume
Copper Monthly ug/L 11 9 7 500
Diazinon Monthly ug/L 0.1 2
Faecal coliforms
Hydrogen sulphide Monthly ug/L 60 60 70
Iron Monthly ug/L 1100 350 52
Nitrogen (ammonia) Every 6 days mg/L 1.4 1 5 1.4 0.75 52
Total Nitrogen Every 6 days mg/L 25 10 15 15 1.5
Total phosphorous Every 6 days mg/L 1 0.4 0.4 0.4 0.1
TSS Every 6 days mg/L 10 15 10 8 15
Zinc Monthly ug/L 37 180 39 100
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sustainable urban development of CE products on marketplaces and
raise the financial efficacy for its resale [55], and capturing investments
into digitised CE solutions from businesses can safeguard growth due to
elevated supply chain resiliencies and improved economic output and
trade [56].

2.4.2. Identifying sources of cost reductions

Resources recovered can be fed back into the CE WWTP to reduce
operating costs. This can be done through energy, water and the
diversion of biosolids away from landfills (i.e. reduction in waste man-
agement costs) [57]. Therefore, there are landfilling and treatment cost
savings from identifying and monetising nutrient, water and energy
resources that come with CE. Namely, energy recoveries in the form of
biogases for plant heating purposes can save on-grid power bills, or
using renewable energy. Diverting waste away from landfills offers
treatment savings, and the conversion of these waste into useful prod-
ucts offers alternative revenue streams beyond water treatment. Plant
operators should see CE as a cost reduction strategy on top of revenue
operating opportunities from nutrient resales. ML-driven acceptance of
CE programs can yield benefits such as reduced expenses, better time
savings and optimisation of human resources [58-60], providing
resounding business cases for cost competitive environments, however,
not many examples exist within current nutrient CE WWTPs at larger
scales where the main focus is on environmental outcomes such as the
DARROW project [61].

2.4.3. Understanding the costs of circular supply chains

Undoubtedly, one of the largest cost contributors for nutrient CE
operations will come from recovering, processing, logistics and distri-
bution. When transporting urine for nutrient recoveries, volume
reduction methods and shipment of high value nutrient products are
proposed [62] to cut costs down per unit of nutrient moved. These de-
liveries have two components behind them — being the transportation of
nutrients from the waste collection source to the treatment plant, and
from the treatment plant to those who need it [63]. For centralised
WWTPs, it is mainly recovery, processing and distribution. For waste
that can be treated onsite through decentralised WWTPs, such products
can theoretically be transported direct to consumers and farmers pro-
vided they meet safety standards. Route optimisations to suppliers or
fertiliser manufacturers, nutrient volume compression, increasing the
value and quality of fertilisers in a price competitive fertiliser market,
are all factors that need to be considered — which can be driven by ML
optimisation for green supply chains which can factor in energy con-
sumption, economic growth and recovered product outputs in ML pre-
dictions and business decisions [64]. The market value of phosphorous
for example is volatile, and processing costs need to adjust buffers to
ensure that organic fertilisers are profitable, AI/ML however can stabi-
lise these fluctuations by improving efficient resource matching between
buyers and sellers [55], help design effective CE supply chains [65,66],
and improve recovery efficiencies [67]. Transportation costs should be
measured relatively against the price of phosphorous, and factor in
environmental repercussions from GHG emissions depending on the
mode of transportation that is used [68]. It is also unknown whether
agreements between individual companies towards many different re-
cyclers is the most cost-effective option compared to tailored individual
agreements between waste centres and recyclers [69]. What is known, is
that the state of Al in nutrient CE supply chains shows promising
cost-reduction and operational streamlining potential.

2.4.4. Securing financing and investing opportunities for nutrient recovery

Green financing depends on the level of country-level financial
support for CE activities. The formality of investing practices, taxations,
government soft loans and grant funding, supporting regulations are all
drivers for favourable investment conditions into CE that also factor in
the financial integrity of the institutions that facilitate these investments
[70]. Self-financing and alternative financing (venture capital,
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crowdfunding and capital market investing) were proposed as some of
the most effective methods of raising funding for CE projects, given the
unconventional risks that traditional financial institutions such as banks
may not necessarily have a formalised approach to assess and provide
loans on [71], however, it has been argued that public financing sits
between the higher self-financing and lower debt financing of CE busi-
ness models [72] in the order of importance, but challenges remain
which include ambiguous legal and CE definitions that fail to align
financing for CE projects [73]. Several CE state organisations and
not-for-profits aim to provide financing opportunities and act as
knowledge hubs.

2.4.5. Assessing financial viability of a nutrient recovery project

The financial viability of the nutrient recovery project should
consider the inflows and outflows of finance. Moreover, the net present
value of the project should always be factored into every nutrient re-
covery commercial project, the use of the formula is shown below [74]:
', OPEX

PVsc = CAPEX + .
; 1+

'. R
PVy = P
K ;(1 +i)

T
NPV = Z w— CAPEX
= (1+9)

Where PV is the present value of the gross cost, PVy is the present
value of the revenue to be made from the project, NPV is the net present
value of the project, CAPEX is capital expenditure for the plant, OPEX; is
the operating expenditure of the plant for the year, R, is the revenue for
the year, T is the lifetime of the plant, and i is the discount rate for the
project. The plant operating lifetime can be 20 years and a discount rate
of 5% [74]. A positive NPV shows that the project is economically
feasible, a negative means it is not. Increases in the cost to recover fer-
tiliser nutrients make it more economically feasible [74]. In Mayor et al.
[74], the contributions of each nutrient were factored in the as a per-
centage of the overall gross cost, whether it be the capital contribution
or by nutrient recovery process. The inclusion of ML systems into the
nutrient CE WWTP NPV process can improve feasibility predictions,
costings and calculations for recovery processes [75,76]. Al-assisted
nutrient costing predictions can aid planning efforts that can raise the
success of nutrient CE WWTP projects, this however, is not widely
practiced across industry.

ML has opportunities to estimate the economic benefits of a given CE
system and estimate payback periods by providing probabilistic models
and results on the success of the NPV [75]. This application can help aid
commercial planning stages for upscaling emerging nutrient recovery
technologies in the wake of GHG emissions reductions and improving
WWTP CE [75,77]. However, most of these studies have a focus on
payback periods via energy reuse and resell, for example, biogas and
other biofuels, or for reducing costs such as predictive maintenance and
corrosion control [78]. Al-assisted technology selection tools for
resource recovery can yield significantly positive results through
membrane selections and improved payback periods [60]. An example is
the application of ML frameworks and designs respectively yielded
4.7-8X and 5.6-83.5X lower costs than non-ML comparisons via ge-
ometry optimisations [79], financial modelling for integrated renewable
energy costing [80], and reduce testing time and costs for new nutrient
recovery technologies [81]. ML applications within WWTPs have proven
to accelerate the commercialisation and costing procedures for planners
and operators in the academic field, given the emerging nature of ML in
WWTPs, its maturity is still in its newfound stages (Table 3).
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Table 3
Cases where ML was used to assist in payback period forecasting.
Application ML Payback Source
period (yrs)
Waste heat storage and reuse for WWTPs ANN 4.8 [82]
Waste heat reuse in multi-effect DT <2 [83]
desalination plant
Modelling algae-bacteria granular sludge XGB 7.45 (best) [84]
integrated with down-flow hanging and RF 12.81
sponge on COD removal for effluent (negative
quality. NPV)
Modelling biogas recovery (excluding MLP ~3.5 [85]
biofertilisers recovery). and SVR

3. Environmental and safety performance of nutrient CE WWTPs
3.1. Environmental greenhouse gas emissions

CE can be a lower cost alternative method to reducing carbon
emissions [89] that can help wastewater operators achieve
carbon-neutrality. Microalgae and constructed wetlands for example,
are used as effective biological pretreatment methods for nutrient and
contamination removal [90,91], and they can behave as carbon neutral
processes for bioproduct production [92]. Currently, from 2025 on-
wards, Australia will mandate the disclosure of scope 1, 2 and 3 carbon
emissions from large entities which will begin phasing down reporting
requirements to smaller companies [93]. This is inclusive of power and
water utility companies. Therefore, CE operations with their low [94]
and even carbon negative footprints [95,96] will prove to be invaluable
for driving a sustainable nutrient economy. Scope 3 emissions —
considered to be both upstream and downstream emissions along the
supply chain that an organisation is directly and indirectly responsible
for [97] — will play a large part in determining the product carbon
footprints of the purchasing of fertilisers, particularly in the Purchased
Goods and Services category of the emissions. Where studies have shown
organic fertilisers have a lower emission intensity compared to chemical
alternatives [98]. Combined with ML and Al, carbon emission trails can
be simulated which can effectively lead to Al-driven decarbonisation of
CE supply chains [64,99,100] that can be monitored using blockchain
[101]. The carbon footprint from using ML/AI systems should also be a
consideration in the environmental footprint of smart nutrient CE
WWTPs [102]. Therefore, opportunities from decarbonising nutrient CE
WWTP supply chains are a sustainability direction that can make
nutrient CE less carbon intensive.

3.2. Process safety of recovered nutrients and resources

Several nutrient recovery products such as biochar, hydrochar, bio-
solids, source-separated urine, and sewage sludge may contain harmful
contaminants such as heavy metal traces, active pharmaceutical in-
gredients (API) and pathogens. The recovery rates of technologies can be
very high but this does not necessarily lead to a safer product. For
instance, the presence of trace metals in hydrochar such as chromium,
cadmium, lead, bismuth and many others [103]. These require selective
extraction of P from heavy metal trace contaminants either through
acidic or alkaline solutions, and preferably through a sequential process
[104,105]. For dealing with APIs, membrane processes have been
applied to remove these contaminants, but small residual traces still
remain given the challenges of removing water-soluble compounds, and
membranes were prone to organic fouling and scaling [106,107].
Further treatments such as oxidation and adsorption mechanisms should
be adopted [106,108,109]. Despite treatment from AD, APIs and metal
traces continue to remain in the sludge. Reverse osmosis and forward
osmosis have shown to be highly promising in removing APIs, but given
the concentration of the filtered compounds, biological approaches to-
wards removing APIs are limited due to its bactericidal properties [110].
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3.3. Wastewater reuse regulations frameworks and direction

Water effluent regulations dictate the nutrient loading discharge
limits that are allowed. The US EPA governs the use of sewage biosolid
products across several classes with Class A being the highest. More
specifically, EPA 40 CFR Part 503 governs the use of and disposal of
sewage including that of land application [111], however, this regula-
tion does not factor in a range of resource recovery technologies for
WWTPs [112]. In Australia, the EPA determines biosolid reapplication
guidelines, with the latest draft dating back to 1991 citing that biosolid
reuse should adhere to the AS4454-1999: Composts, soil conditioners
and mulches standard [39]. The guidelines from the EPA’s Environmental
Guidelines: Solid Waste Landfills, in fact, encourage the safe reuse of
biosolids from WWTPs. There are fines and penalties applicable to the
improper reuse of waste according to the Australian Resource Recovery
Framework of up to $2 million for corporations and $500,000 for in-
dividuals under Section 286 A of the Protection of the Environment
Operations Act [113]. Orders are submitted to supply resources that are
recovered from a waste source with the EPA, and suppliers of the
nutrient biosolid must comply to these orders. With regards to struvite
precipitation, such an order would apply to facilities with dedicated
source-separated urine diversion infrastructure in place.

The following standards, guidelines and legislations governing the
use of biosolids are summarised as follows applicable within Australia
(Table 4):

Recent publications for Australian CE frameworks to recover nutri-
ents appear highly focused on food and organic waste as opposed to
wastewater systems [8,86,88]. However, in 2023, the Department of
Industry, Science and Resources recently designated phosphorus as a
strategic material [114], but recent CE national frameworks have
ignored the recovery of this element from wastewater sources, for
example, that of source-separated urine systems and wastewater struvite
recovery. Meanwhile, the EU has an entire nutrient recovery from
wastewater platform to evaluate and invite technology submissions and
progress updates for commercialisation [115], such as that of the Eu-
ropean Sustainable Phosphorus Platform (ESPP) and competitive green
awards [116-118]. Australia’s primary nutrient recovery is in the form

Table 4
Comparison between EU and Australia CE regulatory and policy progress. Taken
from [1,8,86-88].

Country coverage AU EU

Australia’s Circular
Economy Framework
2024; National Waste
Policy Action Plan 2024

CE Framework Circular economy action plan
2020; Bioeconomy strategy

2020; Bioeconomy action plan

Nutrient CE None Critical Raw Materials Act
regulation 2023
Phosphorus No Yes

designated a
critical element?

Minimum No Yes, strategic raw material
recoverable target
for P?

Material System No Yes

Analysis of P

Nutrient recovery a Yes (proposed

metric framework)

Nutrient CE No Yes
technology
platform

Wastewater a focal No Yes
point of recovery

Promote track and Yes Yes
trace of recycled
resources

Framework to track No Yes
and trace nutrients
recovered
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of biosolids, but this only fills 4 % of the total P-demand with the ma-
jority of the nutrients lost in the effluent [119], sludge liquor and
dewatering stages of wastewater treatment, with the nutrient ultimately
lost into the oceans [120]. While the tracking and tracing of recycled
content applies in other areas of waste management, a similar system
should be applied for nutrients recovered to ensure transparency, ac-
curate material flow analysis and tracking of phosphorus flows across
the economy. However, cited challenges in Australia include the lack of
source-separation infrastructure, scalability of emerging technologies,
product quality consistencies in a fragmented regulatory environment,
and stakeholder drivers [13]. While regulations can provide consistency
in practices and standards, its interaction with technologies and stake-
holders should remain supportive.

3.4. Water recycling and classifications

Across Australia, there are several classes of recycled water quality
grades and their permissible applications, these are Class A, B and C
[121]. Class A is recycled water that can be used for toilet flushing,
cleaning and garden watering; Class B for irrigating sports fields and
industrial washdown procedures that is regulated against human
exposure; finally, Class C is water that can be used to water crops. These
three categories of water reuse classifications each have contamination
guidelines. Water reuse forms a part of the nutrient CE because of its
importance in growing crops; therefore, nutrients and irrigation water
are mutually complementary towards sustainable agricultural practices.
During drought periods, water stress levels are elevated and several
desalination and water recycling programs were reactivated in response
[122]. Recycled water for irrigation has other benefits such as being
cheaper and comes with many government incentives [123]. When
framing nutrient CE frameworks and guidelines, water reuse should be
factored in as a large part of the regulations to promote circularity
[124]. Irrigation is the world’s leading source of water consumption,
and in 2021-22, irrigation accounted for 74 % of Australia’s water
consumption [125]. Sydney Water recently launched the Purified
Recycled Water Discovery Centre to help treat Quakers Hill WWTP to
drinkable standards [126] which will set a precedent to supplement
existing drinking water supplies with purified recycled water. There are
options to use Al and ML to improve the quality of drinking water
through parameters such as chemical dosages, microbes, pH and
turbidity [127,128] and determining whether it is drinkable or not
[129], however, there are still a lack of regulations for Al-optimisation
on drinking water quality for public consumption [127], or commer-
cial applications predicting the quality of fertiliser products made from
recovered nutrients - for example, any presence of pharmaceuticals and
trace metals.

4. Decision making tools for selecting resource recovery
technologies for wastewater

Several wastewater recovery technologies can be outlined for
implementation throughout Australia. These include membrane, bio-
logical, electrochemical, chemical and thermal approaches to recovering
nutrients, water, energy and materials technologies [130,131].
Currently, there are no live nutrient recovery WWTPs in Australia.
Several large nutrient recovery plants are already in operation in other
parts of the world. These include the Clover Bar Nutrient Recovery Fa-
cility in Canada [132] which produces about 1000 bags of Crystal
Green® nutrient product using the Evoqua Ostara Pearl® fluidised bed
reactor technology that is processed by a fertiliser recovery company
and sold directly to farmers. The technology uses struvite precipitation
of wastewater by capturing the influent and then treating it by recov-
ering phosphorous, before discharging the nutrient-stripped solution to
the plant’s effluent.

For co-recovery of other resources, other technologies should be
examined as well. These include thermal technologies to recover biogas
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[133] and biochar [134], membrane technologies to volume reduce
source-separated urine and recover water [135], or combined with
constructed wetlands for removal of harmful chemicals and production
of biomass for food supplements and lipid proteins [136]. Technology
selection of nutrient recovery should be assessed along several desired
metrics covering cost of capital, economic return on investments, carbon
footprint, suitability with waste, community acceptance, and other risks
to the environment. These can be distilled across economic, environ-
mental, social and technical sustainability dimensions and performance
indicators [137]. Energy, water and food security were other dimensions
referred to in other studies [138]. These included accessibility, afford-
ability, applicability, acceptability, utilisation, stability, safety and
adaptability. The recovery percentages and efficiencies, economic
returns, noise levels, odour, land requirements, affordability, accept-
ability and flexibility of application are expanded metrics that CE
technology evaluators can weigh into [137]. Al can assist in the devel-
opment of CE policies and technology implementations that can reduce
GHG emissions, improve commercial viability, simulate sustainability
scenarios to help achieve policy outcomes [139].

Other decision support tools (DST) have been proposed to evaluate
the most effective nutrient or resource recovery technology to use for a
given wastewater treatment plant (Table 5). The new energy and re-
sources from urban sanitation (NEREUS) developed for public and pri-
vate use in the Interreg 2 Seas area [137,140], helps evaluate the
election of CE technologies. This DST uses a train approach to evaluate
the best technology setup to recover the greatest number of resources,
covering TP, TN, water and energy. Policy makers and environmental-
ists can assess the recovery potential of wastewater resources that can
address current resource demand through substance flow analysis. The
technology readiness level (TRL) of the technologies can be scored and
weighted during this planning process, and can be adapted from UK
Water Industry Research [141] and CREW [142]. Fuzzy weighting
methods and more complex approaches to selecting nutrient recovery
technologies were explored [138]. This is done by firstly assigning
weights to decision making nodes based on a scale of very unimportant
or very important for each of the technologies available. There are other
DSTs used including ELECTRE, PROMETHEE, MADM AHP TOPSIS,
WMOMINLP NEREUS, MCDM seen in Table 5. Evaluation approaches
for resource recovery WWTP technologies would examine preliminary,
primary, secondary and tertiary processes throughout the treatment
plant’s operations [143]. Respectively, treatment stages cover coarse,
settleable suspended solids, suspended solids and soluble biological
oxygen demand, and useful resources [143]. It is during the secondary
and tertiary treatment stages that are the most promising for resource
recovery, and therefore, plant designers and operators would begin by
assessing every stage of the treatment system to determine where re-
covery technologies are best applied while evaluating the economic,
social and environmental costs and benefits.

4.1. Technology readiness indexes for the selected resource recovery
technologies

When selecting the appropriate nutrient recovery technologies, its
maturity and place in the wastewater treatment chain is an important
consideration. Li et al. [150] explores the barriers of implementing
nutrient recovery technologies through Parasuraman’s [151] method-
ology to assess its technological readiness levels (TRL) for commercial-
isation throughout the wastewater sector. These readiness levels can be
summarised in the below Table 6. TRLs alone do not paint the entire
picture for economic feasibility, as one report found that the struvite
recovery costs were higher in Australia compared to the standard
worldwide price [152] (at US$613/Tonne compared to the standard
price of mono-ammonium phosphate standard price of US$320/Tonne).
Furthermore, treatment sizes, electricity costs, feed-in tariffs, waste
disposal costs, trace metals and concentration of valuable nutrients are
all other factors affecting economic feasibility for the nutrient recovery
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Table 5
Various DSTs used to recover resources from wastewater treatment plants.
Decision Making Indicator Decision support tools References
Global warming potential (kg) Multiple-attribute decision- [144,145]
making (MADM) with analytical
hierarchy process (AHP) and
similarity to ideal solutions
(TOPSIS)
Net present value ($) MADM + AHP + TOPSIS [144,145]
Eutrophication potential (kg) MADM + AHP + TOPSIS [144,145]
Land requirement (mz) MADM + AHP + TOPSIS [144]
Manpower number of personnel MADM + AHP + TOPSIS [144]
System robustness (reliability, MADM + AHP + TOPSIS [144]
durability, flexibility)
Sustainability (acceptability, MADM + AHP + TOPSIS; [144]

participation, replicability,
social promotion of the
behaviour)

Water security (Access, safety
and affordability)

Energy security (Availability,
accessibility, affordability,
acceptability, applicability and
adaptability)

Food security (availability,
access, utilisation, stability)
Resource weighted scoring (heat,

biopolymers, ammonia,
struvite, biosolids, biochar,
hydrogen, grit, biomethane,
biogas, syngas, and oil waste)

Target parameters (removal
percentages, recovery
percentages, net present value,

WMOMINLP NEREUS;

Entropy and linear multi-criteria [138]
decision making (MCDM)
Entropy and linear MCDM [138]

Entropy and linear MCDM [138]

Substance flow analysis and [146]
material flow analysis, multi-

criteria analysis (MCA) with TRL

scores.

NEREUS (MCDM using [137]
weighted multi-objective mixed
integer non-linear programming

logarithmic reduction in (WMOMINLP))
nutrient loadings, minimum
and maximum loadings)

Technical features (footprint, NEREUS (MCDM using [137]
lifetime operation, noise WMOMINLP)
emissions, odour emissions,
flexibility)

Economical features (capital cost NEREUS (MCDM using [137]
and operational cost) WMOMINLP)

Social acceptability NEREUS (MCDM using [137]

WMOMINLP)

Global warming potential, EASETECH LCA [147]
acidification, eutrophication,
toxicity, resource depletion,
and particulate matter.

Social, technological, economic, MCDM [148]
environmental, political, legal,
ethical, demographic
(STEEPLED) and TRL

Equality Index, net present value, =~ MCDM + TOPSIS [149]

greenhouse gas emissions, and
accumulation of effluent
quality violations.

technology [153,154]. Procedural frameworks such as that seen in Fig. 2
are some examples of an evaluation methodology to determine whether
the new CE WWTP technology can generate positive environmental,
economic and social benefits while considering the TRL maturity of
these technologies. Seen in Table 7, thermochemical processes tend to
have much higher TRLs in the 9 range, meanwhile, biomass valorisation
processes have a TRL range of 4-5 [155]. It is worth noting that some
thermal technologies emit higher carbon footprints. TRLs serve to pro-
vide the plant designer a gauge on the individual technology’s readiness
when operated standalone, however, it does not paint its readiness level
at the plant system level [156]. Comparing the technology exploration
endeavours between the EU and that of Australia (Table 7), struvite
precipitation and ammonia stripping technologies are the most mature
and readily implementable systems for wastewater nutrient recovery.
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Table 6
TRL table based on Parasuraman’s [151], adapted by Li et al. [150] with TRL
guidelines from Rybicka et al. [157].

TRL  State of Development TRL Guide

1 Basic principle observed and reported Low, lab scale

2 Technology concept/application Low to medium, lab scale
formulated

3 Analytical and experimental critical Medium, lab scale

function/Characteristic proof - of - concept

4 Component and/or breadboard validation Medium, lab scale entering
in lab pilot scale

5 Component and/or breadboard validation High, lab to pilot scale
in relevant environment

6 System/subsystem model or prototype
demonstration in relevant environment

High, pilot scale

7 System prototype demonstration in relevant ~ High, growth
environment implementation phase at
plants

8 Actual system completed and qualified
through demonstration

9 Actual system proven through successful
mission operations

High, maturing
implementation at plants
High, fully mature at plants

4.2. Modelling and simulating processes factoring in impacts

Once the appropriate technologies have been selected, these are
simulated through LCA software. ReCIPe and other LCA databases are
used to simulate the environmental and recovery performances of a
given design system. Numerous factors are considered when construct-
ing an LCA ecosystem for the design of nutrient recovery WWTPs. Data
collection is also critical to the operation, particularly when recovery
plants are powered with ML and simulated with digital twins to optimise
and drive-up recovery of valuable resources [183].

The use of DSTs to select the right technologies can follow the pro-
cess of identifying the properties of the influent, contaminations,
required treatment levels, unit processes and stages such as membrane
filtration and sedimentation tanks, and availability of resources for
operation [143]. While the article was more focused on treatment
technologies, it can be adapted to cover concentration of valuable nu-
trients during the influent characteristics phase and nutrient recovery
technologies to be incorporated during unit operation and process
declarations [143].

4.3. Productivity, demand, and supply of recovered resources

Nutrient CE WWTP proximity to relevant stakeholders such as fer-
tiliser manufacturers and farmers, the market price of the nutrients
recovered and resold, acceptance of the operation and products, tech-
nologies, are considerations for the viability of the nutrient CE WWTP
[31]. An NPV of a wide range of nutrient recovery technologies may be
necessary including all of the resources from biogas, energy, nutrients
and water that are recovered [183], with a wide array of technologies
ranging from biological, chemical, physical, physicochemical, and
hybrid recovery processes [143]. Lower TRLs are much more prone to
negative NPVs stemming from the low economy of scale, poorer re-
liabilities and higher capital costs as a result of the
custom-manufactured prototypes during pilot stages. These types of
recovery technologies are unproven on the commercial market and
require extensive government and sector funding, particularly when
coupled with mature systems in cogeneration and hybrid setups. Com-
bined with ML, nutrient CE products can be matched more efficiently
between buyers and suppliers on a marketplace [55] where these in-
teractions can be measured [184]. ML can improve productivity of CE
WWTP recovery performances, distribution, augment the social welfare
of society under a growing economy [185], improves the flexibility of
sustainable supply chains [186], and enhances supply chain trans-
parency and decision making speeds [187].

The greatest resource recovery potential could be within energy,
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| Chemical | L Membae |
Technology TRL Technology TRL Technology TRL Technology TRL
Ammonia stripping (liquor) 9 Microalgae cultivation 6-7 Microbial fuel cells 5-6 Hybrid forward osmosis with electrochemical <3
Struvite precipitation (liquor) | 9 Anerobic MBR 9 Microbial electrolysis | 4-5 Hybrid forward osmosis with reverse osmosis 5-7

Electrodialysis 4-5 Forward osmosis <7

Ton exchange

v
T ‘ Effluent return
[ Preliminary | [ Primary

Sedimentation and
sludge removal.

Sifting and screening of
large objects.

Treatment of secondary

wastewater.

BNR aeration processes.

Effluent return |

|
Clarifiers

Effluent return 5 s
| Tertiary methods for water
: recycling
Sewage sludge from dewatering. leLyChna
- Technology TRL
Sewage Sludge liquor
Constructed wetlands 9
UV/Ozone treatment 9
Blo}oglcal Chlorination 9
Technology TRL Technology TRL Technology TRL Reverse osmosis 9
Microalgae-sewage 6-7 Hydrothermal carbonization 1-3 Ammonia stripping (liquor) 9 Memt filtration 9
co-digestion Hydrothermal liquefaction 2-4 Struvite precipitation (liquor) | 9 Flocculation 9
Anerobic digestion 9 — Pyrolysis 1-4 Coagulation 9
Composting 9 Pyrolysis (biofuels) 7-9
Biosolids 9 Evaporation (urine) 9
Pyrolysis (hydrogen) 3.5-42
S

Fig. 2. Selection and evaluation opportunities for a nutrient CE WWTP project with a range of emerging and mature resource recovery technologies. Academic TRLs
taken for struvite precipitation and composting [150]; incineration and landfilling [157]; biochar and pyrolysis [169]; hydrothermal liquefaction [170]; pyrolysis
(hydrogen) [171]; microbial fuel cells [172]; microbial electrolysis [173,174]; hydrothermal carbonisation (based on lab scale) [175]; constructed wetlands (hybrid
with microbial electrolytic carbon capture) [176]; microalgae [177]; struvite precipitation and ammonia stripping [178]; electrodialysis [179]; forward osmosis
[180,181], hybrid forward osmosis and electrochemical [180]; and hybrid forward osmosis and reverse osmosis [182].

where according to a study, up to 7 % of Scotland’s heat energy use
could be met through energy CE WWTP, with an economic value of
£ 200 M/year, 5800 GWh/y, and numerous economic, emissions and
energy savings [142]. Market value of nutrients can be seen in the below
table taken from the World Bank. The assessment of the feasibility for
the plant’s capacity to recover and distribute enough resources should
begin by quantifying the total resources available within the influent,
the savings to offset operating costs, and production potential of bio-
gases and other recoverable energies [142]. It appears that the highest
potential for wastewater resource recovery is within heat pumps and AD
biogas generation. However, despite the lower economic returns on
inorganic nutrients that could provide Scotland 5 % of the total fertiliser
supply, price fluctuations and the concentration of nutrients in influents
can also contribute to lower returns. Seen in Fig. 3, biosolids are an
established method of recovering nutrients for farmland application,
and the market value for recovering biogas and other forms of energy
from wastewater is high, with the TRL maturity being average. Nutrient
recovery of P and N directly still lags significantly when recovering from
municipal wastewater, however, it does not consider recoveries from
source-separated urine.

4.4. Stakeholder feedback on nutrient recovery technologies

Satisfaction levels throughout the community and farmers should be
actively monitored in response to the implemented recovery technolo-
gies [188-190], and in particular, understanding barriers to adoption
[191]. However, with newer recovery technologies, surveys and
trust-building are important in the successful, community participation
in circular economy programs. For example, under the $25 million
Sydney Water’s Purified Recycled Water initiative, 64 % of their sur-
veyed customers were open to the idea of drinking recycled water that

has been treated to safe, drinkable standards [126]. To date, no wide-
spread survey can be stated similarly for an Australian water utility
company on the reuse of nutrients recovered from sewage and urine for
human consumption. It is important to survey, understand the concerns,
and develop solutions and informational campaigns to demystify and
clarify the safety and importance of nutrient recovery on standards of
living and food security.

5. Combining machine learning models with nutrient recovery
technologies

5.1. Adapting to machine learning for accelerated nutrient CE WWTP

Once the best technologies have been selected, inputs, processes and
outputs are established to help train the machine learning model to best
predict and optimise the wastewater resource recovery plant (WWRF).
Nutrient loadings (such as the inputs parameters seen in Table 8), other
characteristics of the wastewater influent which affect recovery per-
formances, environmental and plant operating conditions, and across
different model types such as gradient boosting, support vector machine,
neural networks, deep learning, k-nearest neighbour (KNN) and random
forest [192]. For biogas, the likely input variables include total sus-
pended solids, volatile suspended solids, hydraulic retention time,
organic loading rates, pH, and volatile fatty acids to determine its yield
[192]. Microalgae-derived biofuels can derive predictions according to
RGB values, light intensity, COs, air flow rate, C/N ratios, lipids, pH and
cultivation time. To date, no machine learning has been applied for
source-separated urine nutrient recoveries.

There are other applications of ML for non-resource recovery appli-
cations such as plant maintenance, odour and corrosion control [78],
membrane fouling [205], environmental monitoring [16,17],
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Table 7
List of phosphorous recovery technologies on the EU platform and author determined TRLs as a gauge on progress.

D 19 00§ Y

Whatresourceisbeingrecovered?
StruvitePrecipitation(Ostara, Struvia, NuReSys, etc.
AnaerobicDigestion + MagneticSeparation(Vivimag)
ThermalHydrolysis(Lystek)
ContinuouslonExchange(PHOSPHIX)
MechanicalVapourCompression(Varcor)
IonExchange(LayneRT™)
SewageSludgelncineration(Ash2Phos)
Thermochemical(AshDec — MetsoOutotec)
Aluminium/IronCoagulation(Kemira)

AcidDigestion + Nanofiltration(Rubiphos)
AshChemicalLeaching(Metawater)

Pyrolysis + ChemicalLeaching(Charlene — ReCord)
Solubilisation + P — precipitation(QuickWash)
Coagulation, SolventExtractionthenP — precipitationRavita
SewageSludgeAsh + SolventExtraction(SusPhos)
SludgeHydrolysis, LeachingandAbsorption(TerraNova)

Technological 9 4-5 8-9 3 8 6 6-8 6 6-7 4 9 5-7 6 5-6 6 8-9
Readiness
Level (1-9)

Phosphorous X X X X X X X X X X X X X X X
Nitrogen X
Potassium X X
Ammonia X
Water X X
Biogas
Biofuel X
Electricity
List of nutrient recovery technologies experimented or commercially available within Australia and perceived TRLs according to published status.

Aquatec  Membrane Evoqua  Multiform  NuReSys PhosPAQ Hydroflux ~ REMONDIS  C. vulgaris Urine Alkali Electrodialysis  Fertiliser ~ Urine Urine solar

Maxcon electrodialysis Ostara Fluidized Struvite Struvite Epco TetraPhos —  Photobioreactor MBR — metal energy recovery drawn forward evaporation

Struvite Pearl - Bed Crystalliser Crystalliser ~AirPrex Incineration Sydney  sludge from urine forward 0smosis

Crystal  Struvite Crystalliser Central  centrate osmosis — and
Green Reactor Park urine distillation
Mall

TRL (1-9) 9 6-7 9 9 9 9 9 8-9 4-5 6-7 4 4 4 4 4
Phosphorous X X X X X X X X X X X X X
Nitrogen X X X X X X X X X X
Potassium X X X
Ammonia X X X X X X X
Water X
Biogas
Biomass X
Electricity X
Reference [158] [159] [160] [160] [160] [160] [161] [162] [163] [62] [164] [165] [166] [167] [168]

@ | AshAcidLeaching, SolubilisationandlonExchange(Tetraphos)

£4Z101 (520T) £TE M2UADIL], 49IDA) PUD UONDUNDSIT



A. Soo et al. Desalination and Water Treatment 323 (2025) 101273
High
Hydrogen from
treated water
L
% AD solid waste
>
ko)
L
Il
]
g
=
= ) Heat Pumps
& PHA
=
-9
PLA
AD for H2 and Methane
) AD for Methane
Ca
Fe Cellulose ) Biosolids
[ N
Low Mg K P High
Fig. 3. The market potential of several resources that can be recovered from wastewater. Modified from Dionisi et al. [142].
Table 8
Predictive modelling input parameters and output prediction objectives across the wastewater resource recovery spectrum.
Resource Data Source Inputs Outputs for prediction Source
Biogas Anaerobic digestors, benchmark Total suspended solids, volatile suspended solids, hydraulic retention time, ~ Volatile fatty acid yield and [193-196]
simulations and organic loading rates, pH, volatile fatty acids, substrate biodegradation production
rate, COD loading, temperature, average flow rate, suspended solid
content, effluent (pH, H, mole fraction, CH4 mole fraction and CO, mole
fraction), fermentation time, food waste concentration, TSS, and CH4 and
CO,, percentage in content.
Nutrients Vermicomposting Nutrient influent concentrations (TN and TP), pH, electrical conductivity, = Nutrient recovery of P and N [197]
C/N ratio, NH4/NOs,
Biofuel Photobioreactor Temperature, light intensity, radius and total area, pH, dissolved oxygen, = Biomass output [198-200]
nitrates, time after harvest, and initial biomass.
Electricity Microbial fuel cell Time, substrate concentration, particle size, COD removal efficiencies, Power production [201-203]
cylinder materials and radius, electrode distances, load resistance, cathode
size, membrane porosity, flow rates.
Bioplastics Mixed microbial communities with Time dependent data with bacteria, PHA accumulation, external substrate, Polyhydroxyalkanoates (PHA) [204]

mechanistic models and collected

polydispersity index, molecular weight and other molecular parameters.

concentrations

datasets

wastewater treatment control [206,207], forecasting quarter qualities
and effluent discharges [14,208], energy modelling [209], and other
treatment processes [210]. ML models used for nutrient recoveries may
not synchronise well with predicting plant maintenance outcomes,
therefore, multiple ML models may be necessary for the prediction of
plant maintenance, membrane and electrode replacements, environ-
mental impacts while coinciding with resource recovery process opti-
misations and control responses.

5.2. Selecting the best machine learning model

ML models - depending on the application - would ideally have high
accuracies, lower processing times, and can factor in outlier data well
during predictions. Feature selection and their correlations between the
input and output prediction accuracies is one of the more crucial steps in
the implementation of effective ML for CE WWTP [211]. The coefficient
of determination R?, root mean square error (RMSE), mean absolute
error (MAE) and mean absolute percentage error (MAPE) are considered
during the ML evaluation process. These formulas are given below:

11
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Where i is the number of observations, n is the total number of re-
cords, aj is the calculated or predicted output, p; is the actual observed
result, and u, is the mean of the actual values. An R? closer to 1 indicates
an ML model that has a higher accuracy or where the variation matches
as closely to the provided inputs. An R? closer to 0 indicates lower
correlation with the inputs. The use of the coefficient of determination is
simply done to measure how well an ML model best fits to predicting
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outputs. R2 only measures the fit of an ML model, RMSE measures the
standard deviation of the ML model’s prediction values from the actual
values, that is, the deviation between the prediction and actual errors.
The two are commonly used to explain the best fit and errors between
different tested ML models. MAE is the measure of the averages in errors
between predicted and actual values for regression ML models, the
lower the better.

There are error estimation testing methods that use resubstitution,
hold-out, k-interval, cross-validation, bootstrap and leave-one-out
[212]. In many WWTP ML models, k-intervals and bootstrapping are
commonly used. Earlier models did not factor in false positives, true
positives and so on during the evaluation [212]. There are other deep
learning models such as recurring neural networks (RNN), long-short
term memory (LSTM), convoluted neural networks (CNN), gated
recurrent unit (GRU), deep belief network (DBN), deep reinforcement
learning (DRL) and generative adversarial network (GAN) [213]. Deep
learning requires large sets of data and this can slow down the pro-
cessing time. Moreover, the quality of the data used to train the ML
model is critical [213] and they can either be supervised and unsuper-
vised. Supervised forms of learning are the most commonly used for
WWTP ML. Large datasets consequently raises the computational costs
of the model. Another challenge is that every WWTP is unique in the
recovery processes and the environment it is situated in. This necessi-
tates the need to develop new ML models for every plant, however, it is
possible to transfer trained models to another WWTP [214]. Models can
be subject to overfitting (overtrained on narrow variations of data) and
underfitting (unable to factor in outliers). Generalisations are performed
with ML models factoring in unseen data disturbances such as changes in
operating conditions, influent nutrient loads exceeding the EPL,
contamination within wastewater and different weather conditions
[213].

5.3. Application of models to controls and processes

The challenges that lie within smart CE WWTPs are the lack of sen-
sors to collect and monitor data that is relayed to train the ML model
used to optimise controls [213]. The lack of high-quality data is another
issue, and transfer learning aims to address this, for example, the
transfer of river data for water quality predictions [215]. However, this
study also found that poorly located measurement instruments could
induce further noise into the ML system and may not be suited to transfer
learning into other WWTPs. Transfer learning is used with LSTM, and
can be used to reduce the RSME of an ML model even with insufficient or
unstable, complex datasets [216-218]. These models can be expanded
beyond nutrients including energy [219]. Additionally, sensors are
expensive, have limited measuring ranges and require constant main-
tenance [220]. The EU is currently funding and supporting the DARROW
project to provide data-driven solutions to reduce energy consumption,
promote resource circularity and lower GHG emissions [61]. The goal of
the project is to use Al to increase phosphorus recovery by 50 %, ni-
trogen by 5 %, reduce energy consumption by 20 % and GHG emissions
by 20 % [61], and it is estimated to be completed by February 2026. It is
one of the forefront pilot plant projects for the Tilburg WWTP — one of
the largest WWTPs in the Netherlands to optimise secondary treatment,
biogas recovery and anaerobic digestion with Al tools. Interested data
points include flow rates pH levels, temperature, chemical concentra-
tions, gas and water quality, pump power and efficiency and meteoro-
logical data.

5.4. Simulating with digital twins as best practice

Melbourne Water corporation in 2023 began piloting the use of
digital twins, ML and predictive analytics to better manage the quality of
recycled water with accuracies reaching approximately 75 % [221]. The
use of such technologies can provide greater data transparency and
access to companies and stakeholders, who can then use this data to
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drive technical innovations and new business models for nutrient
circularity. The recent launch of the Digital Twin Victoria program in
2024, helps to provide more accurate geospatial mapping of the data,
streamlining utility data for improved project partner collaborations,
open data, automating construction approval workflows, disaster and
environmental response improvements and asset management. Data
availability is a challenge for those wishing to innovate and improve
wastewater treatment programs and plants to shift the entire industry
towards nutrient circularity.

WaterNSW has developed a real-time insights platform since 2020
which provides a birds-eye view of the entire region’s water quality
[222]. The use of application programming interfaces (APIs) gives de-
velopers opportunities to connect into the water network and collect
unadulterated data without verification at different intervals ranging
from every 15 min to hourly ratings for site located, sensor collections.
This presents challenges for ML models which must distinguish between
outlier data that was collected and normalised sets. Primarily, influent
nutrient data is measured on BOD, phosphorous, ammonia, nitrogen, TP
and TN, and data accuracy becomes important given nutrient loads vary
periodically. Digital Twin simulations enable greater planning and
digital inclusivity for sustainability technology partners to innovate and
provide niche CE services to enhance the environmental performance of
CE WWTPs.

5.5. Digital standardisation and efforts for water and wastewater in
Australia

The Australian Government is making continued efforts to stream-
line data collection and availability processes for the public. However,
these efforts largely exclude resource circularity. For example, the sec-
ond independent review of the Environment Protection and Biodiversity
Conservation Act 1999 (EPBC Act) [223] from 2018/19, largely ex-
cludes nutrient circularity with a key focus on water efficiency instead,
the paper does however propose for better monitoring and data collec-
tion tools [224]. The Digital Restart Fund is currently piloting data
collection from smart meters across 250 households to improve better
water efficiencies. The recent revamp of the Water Quality Australia
website to meet the Digital Service Standard, is one effort of making
water data more accessible [225]. Environment Online by the Western
Australian government offers tools to access water quality databases to
assess operators for their licenses [226,227]. The standardisation of
water project management and proposal processes can help those
wishing to submit development and retrofitting of CE WWTP facilities
for nutrient recoveries. There are several wastewater resource recovery
projects with the primary goal of recovering water, including the
Resilient Rivers Water Infrastructure Program with the goal of recov-
ering 450 GL of water [228], and the Goondiwindi Hydrogen Project in
Queensland using recycled wastewater as the feedstock for the electro-
lytic process [229].

5.6. Incorporating a risk management framework

The EPA outlines a set of guidelines to the proper classification of
risks and mitigation actions to the ongoing operation of a plant
[230-232]. This framework can be modified to accommodate the
nutrient CE WWTP proposals for the plant retrofitter or builder as out-
lined in the table below. According to the documents, licensees looking
to improve (i.e., retrofit their WWTPs) would need to submit an appli-
cation to the EPA with attachments detailing their proposed costs,
completion date, details of the milestones to be reported and environ-
mental improvements as a result. The licensee can also incur penalties
for noncompliance affecting their environmental management scores,
for example, formal warnings and clean-up notices. Licensees of nutrient
CE WWTPs would ideally have ISO14001 environmental management
systems to comply to maintenance procedures, but other risk guidelines
such as AS/NZS ISO 31000:2009, AS/NZS 4360:2004 and HB 203:2012
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[231]. NSW EPA prescribes a list of scores below on the level of regu-
latory compliance a proposer is assessed on and Table 9 shows the risks
arising from operating resource recovery CE from wastewater that
should be factored in.

In Australia, nutrient recovery projects at large scales are not
commercially accepted, and require EPA permits and work approvals.
Australian BioFert for example, submitted approved grant applications
with the EPA to recover poultry organic waste and to establish a nutrient
recovery facility following risk assessments [243]. Australia’s current
policy focus is on recycled water, nor does the country’s EPA certify the
use of potable drinking water from treated wastewater [244]. The reg-
ulations do permit the use of nutrient-rich effluent wastewater that has
been treated for farming purposes. On the other hand, the Australian
Meat Processor Association has produced a report detailing its design for
recovering biogas, phosphorus, nitrogen and CO recovery for red meat
wastewater [245], but has not submitted this to the EPA.

5.7. Selecting ML models for training

Depending on the application of the nutrient recovery model, certain
ML models will excel one over the other. Dansawad et al. [246] classifies
four ML models for the treatment of wastewater, being boosting, clas-
sification, regression and clustering algorithms. These models can be
combined together, or ensembled, to improve the accuracy of the sys-
tem. Throughout Australia, WWTPs operate using aerated, conventional
activated sludge (CAS) and biological nutrient removal systems prevail
the national treatment landscape [247], even more so compared to
membrane bioreactors. New WWTPs being constructed in Australia are
expected to use ion exchange, activated carbon and oxidation processes
[248]. Consequently, the selection of ML models will be impacted. For
this to work, rigorous and large amounts of datasets are required to
produce reliable predictions and process optimisations. In this scenario,
ML optimisations can be applied once current new generation WWTPs
are built, following data collection, preparation and training of various
ML models for accuracy performance and enhancements [249]. For ANN
approaches, larger datasets require longer processing times and
computational power [213]. Another red tape cited were approvals from
public authorities to certify the reliability of this data which can be used
for ML purposes, who act in the best interests of the public, and to make
this data publicly available [213]. State water authorities throughout
Australia are already disclosing geospatial data for commercial purposes
[250,2511, however, other state utilities require payment for requesting
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such data [252]. The emergence of smart metering allows households to
view their water consumption data remotely [253]. The biggest chal-
lenge in implementing and selecting the best ML for WWRF Australia, is
the installation of smart sensors throughout Australian WWTPs, and
decentralising this data for public access. Sydney Water has WWTP data
spanning back to the early 1990s [18], but the performance of this
nutrient management is weakly connected to the processing inputs of
the plants spanning decades — a correlation between other characteris-
tics within wastewater, weather and environment, and the plant’s
operating data.

5.8. Evaluating the performance of ML for nutrient CE WWTP
compliance

Accuracy, performance, power consumption and server reliability
uptimes are other considerations that ML CE WWTP operators in
Australia will need to include. Currently, no standard has been devel-
oped within Australia for the acceptance of ML accuracies and robust-
ness for wastewater that can be used to help implement and approve
studies on a larger scale. such as those seen in Table 10 and following
Fig. 4. Data collection frequencies and the quality of such data will be
critical to the effectiveness of an ML CE WWTP [249]. This data is
collected, cleaned and structured to work with specific ML models. In
WWTPs, most likely, time-based data is used as the input. For example,
influent nutrient loads throughout the day, month or year. This data is
converted from time to batch series, and then split between training, test
and validation data. The plant designer can choose to train the ML model
by firstly listing the different processes that happen throughout the
nutrient CE WWTP [14]. Table 10 shows the advantages and disad-
vantages from each ML model being applied. ANN for example, due to
improper data preparation, is prone to underfitting and overfitting even
if fewer datapoints can be used. XGB exemplifies a great degree of
generalisation with missing data. Other challenges for these ML models
include the lack of intense kinetic modelling predictions and limited
availability on different nutrient types for a given similar recovery set of
technologies. Conclusively, the selection of the best ML model requires
experimentation by plant operators as different configurations can alter
the prediction accuracies and the ML model compatible.

Finally, the cost of servers and additional components integrated into
ML processes becomes a factor that must be balanced against economic
gains. All of the smart nutrient, ML. CE WWTPs, server cloud costs can
vary from hundreds to thousands of dollars a year. Given that the cost of

Table 9
Resource recovery risks based on the EPA framework.
Resource Emissions risk Pollution controls Highest risk activity or component Proposed
recovery solution sources
technology and assessed
risks
Source separated N,O emissions; ammonia emissions, Water dilution, prevention of stale and fresh Growth in bacteria, trace metals in urine, [233,234]
urine struvite allyl methyl disulfide, methyl propyl  urine from mixing, maintaining low temperature  active pharmaceutical ingredients,
precipitation disulfide, and menthol, hydrogen of urine, elimination of odour causing corrosion failure of critical equipment, pipe
sulphide. compounds, eliminating turbulence in sewage, leakage and cross contaminations.
air-dilution, odour adsorption or incineration,
chemical elimination, preventing corrosion and
ensuring complete coverage and sealing against
odour leakages.
Anaerobic Methane, ammonia, nutrient Process controls such as temperature and pH, Pathogen contamination, heavy metal [235-238]
digestion with leakage, micropollutants, biocides, feedstocks, pathogen inactivation, storage time, traces, manganese toxicity on soil,
soil application and other harmful chemicals. risk management methodologies such as flammable biogas.
quantitative microbial risk assessment and
probabilistic models, and proper sealing of
biogas.
Sewage sludge ash Toxic fumes, volatile organic Heat/biological/chemical treatment of sewage Fire hazard, cross-contamination, heavy [239-242]

incineration
processes

compounds, biogas leakage, soil
contamination, nutrient leaching.

sludge, suitable land types for application,
testing of groundwater and soil for

metal traces, chemical poisoning,
combustion.

contamination, gas cleaning or scrubbers, and

thermal disposal.
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Table 10
Machine learning methods for recovering resources from wastewater.
Data Collection ML Model Method Dataset Accuracies Input output correlations Source
Source
Effluent RF and DNN Collection More than Analysed using Strong relationship between TSS and PO4, for ~ [14]
frequency ranges 105,861 samples Variable effluent predictions. Influent temperature
from 10 min for a robust Importance affects both TSS and PO4..
intervals model, with 34 Measure and Partial
variables. Dependence Plot on
RF and DNN model.
Effluent ANN and SVM 1-day interval data 8 input variables  Sensitivity analysis ANN superior for T-N effluent concentration [249]
collection of of month, on the 8 input predictions.
effluent, non- volumetric variables, and R2, NSE, relative efficiency criteria were used
linear time series. inflow rate, pH, ranked across ANN across training and validation data for R,
Over 1- months. temperature, and SVM. R%, NSE NSE and relative efficiency criteria.
COD, suspended and relative
solids, T-N efficiency used
inflow. across training and
validation data.
Sewage sludge KNN, SVR, LR, Top 10 feature 2 years’ worth of  Taylor diagram to Top 5 features were volumes of water, TN, TP, [254]
output DT, kernelridge  selection using water quality map out the BOD and COD across all correlation analysis.
regression, Spearman, and sludge data. correlation
XGBoost, Pearson, DT 584 training and coefficients.
FCNN, RF. feature 147 test data. XGBoost followed
contribution and Using water by RF were the most
maximum quality, rainfall accurate tested.
information and temperature RMSE, MAE, MAPE,
coefficient. and volume. and R2 values were
Ranked using 2.1169, 1.7032,
XGBoost. 0.0415, and 0.8218
for XGBoost
respectively.
Influent weather Bayesian, Feature selection Input data Performance Self-organising fuzzy inference system and [255]
data covering linear, RF, to identify collected in 15- enhancing through feed-forward control were used to optimise
rain, dry and XGBoost, ANN predictors minute intervals bootstrapping and treatment process.
storm. were tested. targeting ammonia  over two-week bagging. XGBoost
and TN removal in ~ period. and RF models
effluent. superior.
TAN Feed forward TAN value every 2350 datapoints ANN was the most 75 % and 25 % training and test data [30]
measurements ANN, RF, SVM 20 s. Experiment were collected. 8  accurate boasting respectively. Permutation used to inspect
in full scale and Gaussian ran for 45 min to batches, 6 R? of 0.99, and input contributions to output.
anaerobic Progression 75 min at a time. training and 2 RMSE of 19.87 mg/
digester for Regression test data. Inputs L.
membrane (GPR) were pH, pH
contactors derivative and
pH intervals.
Target being
TAN.
Struvite recovery RF and GBR Pearson 504 pieces of RF model achieved 80:20 training and test data, 5-fold cross [29]
models were correlation data. R?of 0.86-0.94 and  validation.
tested. between inputs RMSE of
and target outputs 5.48-10.17, and
(TN and TP was the best
recovery). performing one.
Relative errors for P
and N recoveries
were respectively
0.18-4.67 % and
0.12-7.32 %.
Effluent Three ML RF, SVM and MLP Santa Catarina R? of 0.72 for MLP, Pearson analysis on input output variables to [256]
models were models were built, Brewery AMBEV or the feedforward understand the correlation, and a feature
assessed, feature and WWTP with ANN. importance analysis. TN, NH, and TKN had
including RF, permutation collected 2.2 times more influence on the prediction of
multilayer importance were wastewater data TNoy than COD + BOD + TSS.
perceptron used to understand  over 752 days.
(MLP), and input output
SVM. relationships.
Three scenarios
considering
seasonal,
chemical, and
daily data.
Wastewater experiments with ML, with R%, RMSE and MAP errors in the recovery of N and P for mature technologies.
Process Selection R? RMSE Input Output Advantages Disadvantages
(nutrients) reason

14
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Table 10 (continued)
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Data Collection ML Model Method Dataset Accuracies Input output correlations Source

Source

Struvite recovery Model 504 data  086-0.94 5.48-10.17 Stir speed, pH, Mg: Optimise conditions Increase Did not consider P
(N, P and points for P, N:P, temperature, for struvite recovery. production yield source due to lack of
ammonia) (RF) synthetic and time, initial P of struvite. data.

[29] wastewater concentration.
KH>POy4,
MgCly, and
NH,CL.

Struvite recovery 100 datasets 0.9683 (PO3") and Mg?* concentration Optimise struvite Can factor in For RF, more trees
(N, P and from 85 0.9483 (NH3) for PO3~ recovery, production. many missing meant longer
ammonia) scientific reaction data, good training times. High
(XGB) [28] documents. temperature for generalisation, numbers of inputs

Missing data struvite robustness and made it prone to
imputations. precipitation, and can obtain feature  overfitting.
Linear POj~ and Mg** importance with
regression. concentrations for feature data.

NHj recovery.

Ammonia 75:25 training 0.99 (TAN) < 19.87 mg/L PH, pH increments Low-cost predictions, ML model trained Partial least square
stripping (ANN)  to test data. (TAN) and the pH pH cheap input to using real-time method
[30] ANN captures derivative. measure, and avoids data. Only one underestimated

non-linear maintenance and hidden layer was (concentrations
predictions. training of staff. needed to develop  higher than 600 mg
Maintain pH levels an effective NH;-N/L) or
optimally for effective model. overestimated
TAN recovery. (concentrations
lower than 300 mg
NH;-N/L) results.

Electrochemical 582 datasets. 0.98 (P) 33.51 (P) Current density, pH, Prediction of P- XGB did not suffer ~ Limited information
P-recovery Wastewater inter-electrode recovery to optimise from overfitting. on different types of
(XGB) [257] contained Ca®*, distance, processes and assist P in the ML model.

Mg?*, Na*, K*, electrolysis time commercialisation.
PO%, and NHj and initial

phosphorus

concentration.

Hydrothermal 194 data points. > 0.9 (P) 4.66 (P) Temperature, Prediction of P content Good accuracies Does not extensively
liquefaction Can predict P- residence time, and in hydrochar. in predictions. factor in kinetic
sewage sludge content with solid content most models for P
for hydrochar P-  complex important inputs for conversion at higher
recovery (GBR) sewage sludge P-recovery. temperatures.

[26] compositions.

Microalgae 72 data points. 0.98 (Biomass) 0.056 (Biomass) PH, retention time Prediction of biomass High accuracy, Varying the Train
nutrient Used for and COD were most  yields, provides low error. ratio by more than
recovery (ANN) experimental influential inputs. foundations for further =~ Required fewer 20 % led to severe
[258] ML validation. ML. data points. underfitting.

*Note: Bold font indicates ML model used for the study.
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a sensor is more than $US10,000 [261], there are conditions within a
nutrient CE WWTP which can corrode and force costly frequent re-
placements of sensors and other measuring equipment [262]. The ben-
efits of using these sensors can outweigh the costs if it leads to significant
labour savings. Furthermore, the fluctuating cost of electricity makes it
more difficult to factor in operating costs [263]. The use of five servers
for example with a storage capacity over 1000 GB per server, and over a
span of 2 weeks can cost 7504 CAD (1900 CAD cost saving divided by
25.32 % achieved cost savings) [263]. Therefore, the higher the
computation requirements and power needed, the greater the server
costs. These should be factored into the technoeconomic assessment and
planning stages for nutrient CE WWTPs. The application of ML in the
study [263], however, also explores the power savings of using ML to
predict surge prices and to offload data storage to minimise computa-
tional requirements (for example, a smart ML. CE WWTP can offload data
during periods of low wastewater loadings or high-power prices).
Despite the high-power consumption of ML servers, these studies have
shown that cost savings can still be achieved when applied correctly.

6. Discussion

This roadmap paper examines the steps and research needed to
implement a broader, nutrient CE ecosystem across Australia’s WWTP
that can be graphically summarised for future reference in Fig. 5. The
first major evaluation is the readiness of technologies and its compati-
bility to existing WWTPs, and the extensiveness to which retrofitting and
upgrades are required. The EU has already undertaken major strides in
evaluating and implementing pilot and commercialisation funding for
such plants to recover critical raw materials as a part of its Circular
Economy Action Plan and its Critical Raw Materials Act. Presently,
Australia’s environmental regulatory and legislative landscape is frag-
mented at the state level, with water guidelines lacking the essence and
nuances for nutrient recoveries. There are, however, initiatives to
recover water to make the country more drought resistant.

From an ML CE WWTP lens, there are several key points to be made
for a nutrient roadmap combining smart systems to optimise and
enhance recovery performances and advance high participation rates in
wastewater CE. One is the supply chain shocks that have raised the price
of phosphorous and food prices, and decreased the standard of living
among consumers. In fact, global food prices have risen by 78.6 % in
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2021 year-on-year during the pandemic [264]. Australian consumers
were not immune to these price shocks, however ironically, an increase
in fertiliser prices from disrupted supply chains could make recycling
nutrients more profitable [265]. Beyond food, there is also growing
demand for phosphorus in the industrial and automotives sector [266],
and so, it becomes essential to map out the industries demanding this
critical element beyond agriculture as well. Thirdly, investments in Al
have increased considerably since the pandemic, and have shown
through research that they are effective tools at mitigating supply chain
shocks and stabilising prices; however, this topic remains absent across
Australian wastewater guidelines, policies and standards. Given recy-
cling systems can be manually intensive, combining ML, automation and
resource recovery optimisation with retrofitted or new plants are key
sustainability areas that are under-implemented at the state and federal
level. Prioritising nutrient removal in favour of water recovery has
consequences on securing low-carbon and sustainable fertilisers. While
increasing water supply in a drought-prone country may expand irri-
gation capacities, this has so far, come at the cost of nutrient wastage,
increased risks of eutrophication, and forgoing alternative, organic,
low-carbon fertilisers.

What is missing from the water framework of Australia is nutrient
circularity to support the agribusiness sector for a country where 72 % of
agricultural production was exported in 2019-20 [267]. The focus on
preventing eutrophication by removal, rather than recovery methods to
supplement water supplies, will make Australia’s food and phosphorus
supply chains more vulnerable to global geopolitical volatility [5]. The
lack of economic understanding, high reliance on finite sources of mined
phosphate rock, concentration on nutrient removal technologies at the
expense of recovery ones, poor investments and lack of training data in
Al and ML across utilities in general, and fragmented water guidelines
and frameworks are hindrances towards shifting Australia to smarter, CE
WWTPs.

7. Conclusions

This roadmap paper specific to Australia highlights and outlines the
stages and procedures to transition conventional WWTPs into WWRFs.
Technologies, policies, financials, infrastructural, social, regulatory, ML
modelling methods and performances were all methodically evaluated
through data collection, implementation, regulatory standardisation,
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Fig. 5. Roadmap encompassing operational and policy objectives on covering the gap in the current national Australian CE framework.
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economic and ML modelling, and social inclusion lenses. Some signifi-
cant barriers to Australia’s transition to ML CE WWTP are the lack of
initiatives at the EPA and state water authorities’ level, low financial
investments and appetite for nutrient CE WWTPs (especially retrofitting
and greenfield developments), high reliance on legacy centralised
WWTPs for biological nutrient removal technologies, fragmented
approval procedures, and lack of consumer awareness. The application
of ML for CE WWTPs is still an emerging area of study, and are pre-
dominated by studies focusing more on nutrient removal outcomes.

Disseminating and implementing mature nutrient recovery technol-
ogies becomes the next major challenge based on readiness levels, given
the EU has an open access platform showcasing the current progress and
investments made into nutrient recovery from WWTPs. In Australia, the
selection of these technologies happens on a case-by-case basis
depending on the volume of nutrients in the WWTP influent which re-
quires approval by the EPA following an environmental impact analysis.
These technologies will have to replace removal processes in WWTPs,
and the issue of plant retrofitting can be prohibitively costly in an
environment where nutrient CE economics is poorly understood. Unlike
the EU where phosphorus is deemed as a critical raw material, the recent
Made in Australia National Interest Framework fails to consider this
element important. The paper underscores the regulatory and policy
challenges in advancing nutrient ML CE WWTPs throughout Australia,
and provides a series of considerations on how to overcome and arrive to
a smarter, nutrient CE.
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