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Abstract: Bringing together the Internet of Things (IoT), LLMs, and Federated Learning
(FL) offers exciting possibilities, creating a synergy to build smarter, privacy-preserving
distributed systems. This review explores the merging of these technologies, particularly
within edge computing environments. We examine current architectures and practical
methods enabling this fusion, such as efficient low-rank adaptation (LoRA) for fine-tuning
large models and memory-efficient Split Federated Learning (SFL) for collaborative edge
training. However, this integration faces significant hurdles: the resource limitations of IoT
devices, unreliable network communication, data heterogeneity, diverse security threats,
fairness considerations, and regulatory demands. While other surveys cover pairwise com-
binations, this review distinctively analyzes the three-way synergy, highlighting how IoT,
LLMs, and FL working in concert unlock capabilities unattainable otherwise. Our analysis
compares various strategies proposed to tackle these issues (e.g., federated vs. centralized,
SFL vs. standard FL, DP vs. cryptographic privacy), outlining their practical trade-offs.
We showcase real-world progress and potential applications in domains like Industrial
IoT and smart cities, considering both opportunities and limitations. Finally, this review
identifies critical open questions and promising future research paths, including ultra-
lightweight models, robust algorithms for heterogeneity, machine unlearning, standardized
benchmarks, novel FL paradigms, and next-generation security. Addressing these areas is
essential for responsibly harnessing this powerful technological blend.

Keywords: Internet of Things (IoT); Large Language Model (LLM); Federated Learning
(FL); privacy-preserving techniques (PETs); edge computing; Parameter-Efficient Fine-
Tuning (PEFT); Split Federated Learning (SFL); data heterogeneity; network security;
distributed systems

1. Introduction

Internet of Things (IoT) and Artificial Intelligence (Al) are reshaping the way we
live. IoT is penetrating every aspect of our modern society. It features the explosion of
interconnected devices generating vast amounts of real-world data, driving significant and
innovative insights to improve our lives. Simultaneously, emerging LLMs like the GPT se-
ries have shown a remarkable ability to understand and process complex information [1,2].
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The power of Large Language Models (LLMs) arises from a vast amount of training data,
while IoT systems are excellent means to provide such data. Combining the two fields is a
natural move. This, however, incurs significant challenges. A core question is how we can
leverage the intelligence of resource-hungry LLMs to make sense of the massive, diverse,
and often sensitive data streams produced by countless IoT devices, especially when the
data is mostly heterogeneous, multimodality, high-dimensional, sparse, and needs to be
processed quickly and, in many cases, locally [3-5]. This is further elaborated on below.

Sending huge volumes of IoT data to a central cloud for Al analysis is often not prac-
tical [6]. It can be too slow for applications needing real-time responses (like industrial
control or autonomous systems), consumes too much bandwidth, and raises significant
privacy concerns [7]. Many critical IoT applications simply demand intelligence closer to
the data source [3]. On the other hand, while LLMs possess the analytical power needed
for complex IoT tasks, they face their own hurdles: they require massive datasets for
training, and accessing the rich, real-world, but often private, data held on distributed
IoT devices is difficult [8]. Moreover, deploying these powerful models effectively within
the constraints of real-world distributed systems like IoT remains a significant challenge,
considering limited hardware resources and power supply, data access, and privacy. This is
precisely where Federated Learning (FL) enters the picture [9]. FL revolutionizes traditional
approaches by enabling collaborative model training across decentralized data sources,
eliminating the need for raw data centralization. This creates a compelling opportunity:
using FL to train powerful LLMs on diverse, distributed [oT data while preserving user
privacy and data locality [10,11]. This combination promises smarter, more responsive,
and privacy-respecting systems, potentially leading to more efficient factories, safer au-
tonomous vehicles, or more personalized healthcare, all leveraging local data securely.
However, integrating these three sophisticated technologies (IoT, LLMs, FL) creates unique
complexities and challenges related to efficiency, security, fairness, and scalability [12].
Given the significance of the integration and the increasing attention it has gained recently,
this review aims to provide a timely overview of the state of the art in synergizing IoT,
LLMs, and FL, particularly for edge environments, hoping to highlight current capabili-
ties, identify key challenges, and inspire future research directions that enable intelligent,
privacy-preserving, and resource-efficient edge intelligence systems. Specifically, we will
explore the architectures, methods, inherent challenges, and promising solutions, highlight-
ing why this three-way integration is crucial for building the next generation of intelligent,
distributed systems.

The burgeoning interest in deploying advanced AI models like LLMs within dis-
tributed environments like IoT, often facilitated by techniques such as FL and edge com-
puting, has spurred a number of valuable survey papers. While these reviews provide
essential insights, they typically focus on specific sub-domains or pairwise interactions.
Some representative survey works are reviewed below. Table 1 summarizes their primary
focus and key differentiating aspects alongside our current work.

*  Quetal. [13] focus on how mobile edge intelligence (MEI) infrastructure can support
the deployment (caching, delivery, training, inference) of LLMs, emphasizing resource
efficiency in mobile networks. Their core contribution lies in detailing MEI mecha-
nisms specifically tailored for LLMs, especially in caching and delivery, within 6G.

e Adametal. [14] provide a comprehensive overview of FL applied to the broad domain
of IoT, covering FL fundamentals, diverse IoT applications (healthcare, smart cities,
autonomous driving), architectures (CFL, HFL, DFL), a detailed FL-IoT taxonomy,
and challenges like heterogeneity and resource constraints. LLMs are treated as an
emerging FL trend within the IoT ecosystem.
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¢  Friha et al. [15] examine the integration of LLMs as a core component of edge intelli-

gence (EI), detailing architectures, optimization strategies (e.g., compression, caching),

applications (driving, software engineering, healthcare, etc.), and offering an extensive

analysis of the security and trustworthiness aspects specific to deploying LLMs at

the edge.

e Cheng et al.

[10] specifically target the intersection of FL and LLMs, provid-

ing an exhaustive review of motivations, methodologies (pre-training, fine-tuning,

Parameter-Efficient Fine-Tuning (PEFT), backpropagation-free), privacy (DP, HE,

SMPC), and robustness (Byzantine, poisoning, prompt attacks) within the “Federated

LLM” paradigm, largely independent of the specific application domain (like IoT) or

deployment infrastructure (like MEI).

Table 1. Comparison with related surveys.

Survey Primary Focus Key Strengths Distinction from Our Work
Deen dive into ed Focuses on infrastructure
cep cive Ihto ecge resource for LLMs; less depth on FL
Quetal optimization (compute, comms, specifics, security/trust, or the
[13] ' MEI supporting LLMs storage); mobile network (6G); uPr)1i e s, ner th IoT +’ LLM
detailed edge caching/delivery que synergy ot
for LLMs + FL. Less emphasis on IoT
' data characteristics.
Comprehensive FL principles I(;T arl::lp llcitlor;d;nilﬁn;aI;LMi
Adam et al. I in IoT context; detailed IoT are o1y One emerging aspect,
FL for IoT applications o . less depth on LLM specifics or
[14] application case studies; broad .
FL taxonomy for IoT the challenges arising from the
' three-way synergy.
Deep analy51s of security and Focuses on LLM as EI compo-
. trustworthiness for LLM-based
Friha et al. . . ) ) nent; less depth on FL methods
LLM:s integrated into EI EL covers architectures, opti- - ..
[15] mization. autonomy. applica- specifically for training LLMs
tions broé dly Y- app on distributed IoT data.
Exhaustive review of FL Focuses narrowly on FL+LLM
Chene et al methods for LLMs (PEFT, interaction; less emphasis on
[10] & " Federated LLMs (FL + LLM) init, etc.); deep dive into pri- the specific IoT context (data
vacy/robustness specific to types, device constraints) or the
federated LLMs. edge infrastructure aspects.
Provides a holistic view of the
integration, bridging gaps
Unique focus on the three-way be’Fwe.e n gurveys.focused.on
. . .. . pairwise interactions or sin-
interaction; explicit analysis of le components. Emphasizes
synergistic effects (Section 5); & P . mphast
Synergy of IoT + LLM + FL .. the unique capabilities, pri-
. ¢ . addresses challenges arising . .
This Survey  for privacy-preserving edge vacy considerations, and chal-

intelligence

specifically from the integra-
tion; compares trade-offs in the
specific IoT + LLM + FL@Edge
context.

lenges born from the spe-
cific combination of IoT data
richness, LLM intelligence,
and FL's distributed privacy
paradigm within advanced
edge networks.

While prior reviews cover areas like edge resources for LLMs [13], FL for IoT [14],
edge LLM security [15], or federated LLM methods [10], they mainly look at pairs of these
technologies. This survey distinctively examines the combined power and challenges of
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integrating all three, including IoT, LLMs, and FL, particularly for privacy-focused intelli-
gence at the network edge. This synergy is depicted in Figure 1. It illustrates a conceptual
framework in which synergistic Al solutions emerge from the integration of IoT, LLMs, FL,
and privacy-preserving techniques (PETs). Each component contributes uniquely, where
IoT provides pervasive data sources, LLMs offer powerful reasoning and language capabil-
ities, FL supports decentralized learning, and PETs ensure data confidentiality, together
forming a foundation for scalable, intelligent, and privacy-aware edge Al systems.

oy
oo

Large Language
Models (LLMs)

_
QT
=
Internet of
Things (I0T)

Synergistic
Al Solutions

Federated Privacy Enhancing
Learning (FL) Technologies (PETSs)

Figure 1. Conceptual overview of technological convergence for synergistic Al solutions. This dia-
gram illustrates the roles of key components: IoT for data provision, LLMs for intelligence, FL for
privacy-preserving distributed training, and PETs for security, together forming a foundation for
advanced edge Al systems.

More specifically, this review provides a comprehensive analysis of the state of the
art regarding architectures, methodologies, challenges, and potential solutions for inte-
grating IoT, LLMs, and FL, with a specific emphasis on achieving privacy-preserving
intelligence in edge computing environments. We explore architectural paradigms con-
ducive to edge deployment based on [3], investigate key enabling techniques including
PEFT methods like low-rank adaptation (LoRA) [16] and distributed training strategies
such as Split Federated Learning (SFL) [17,18], and systematically analyze the inherent mul-
tifaceted challenges spanning resource constraints, communication efficiency, data/system
heterogeneity, privacy/security threats, fairness, and scalability [3]. Mitigation strategies
are discussed alongside critical comparisons highlighting advantages and disadvantages.
We survey recent applications to illustrate practical relevance [19]. While existing surveys
may cover subsets of this intersection, such as FL for IoT [20,21] or FL for LLMs [22],
this review offers a unique contribution by focusing specifically on the three-way synergy
(IoT + LLM + FL) and its implications for privacy-preserving edge intelligence [10]. We aim
to provide a structured taxonomy of relevant techniques, critically compare their suitability
for resource-constrained and distributed IoT settings, identify research gaps specifically
arising from this unique technological confluence, and propose targeted future research
directions essential for advancing the field of trustworthy, decentralized AI [23].

As summarized in Figure 2, the subsequent sections are structured as follows: Section 2
introduces foundational concepts related to IoT systems, LLMs, FL principles, and PETs.
Section 3 discusses architectural considerations for deploying LLMs within IoT ecosystems.
Section 4 examines FL methodologies specifically adapted for LLM training and fine-tuning
in this context, including frameworks and data considerations. Section 5 analyzes the
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unique synergistic effects arising from the integration of IoT, LLMs, and FL, highlighting
emergent capabilities. Section 6 provides an expanded analysis of key challenges encoun-
tered in the integration, discusses mitigation strategies, and evaluates inherent trade-offs.
Section 7 identifies critical research gaps and elaborates on future research directions stem-
ming from the synergistic integration. Section 8 concludes the review, summarizing the key
insights and forward-looking perspectives on privacy-preserving, intelligent distributed
systems enabled by IoT, LLMs, and FL.

Structure of the Review 1
Sz 2 Sec 3: Sec 4: Sec 5: S L Sec 8:
Foundational ) ) o Challenges & Research Gaps & .
Architectures FL Methodologies Synergistic Effects e L Conclusion
Concepts Mitigation Future Directions
IoT Systems Deployment F'?sg?r’::ﬂe: C:Vr;;e:;t- Resource I(Eg)'g'rzrr:g Summary of
Architectures 9 Intelligence Constraints Edge) Insights
Y Fedsepr"atted Intelligent Communication Robustness & Forward-
S LLM for loT Learning Interpretation Overhead Fairness Looking
Perspectives
FL Principles Personalized Scalable Heterogeneity Practical
(FedAvg) Lkl FL (PFL) Specialization & Fairness Privacy
PETs (DP, HE, Edge Fine- BP-Free Illustrative Use Privacy & Security &
etc.) ning Methods Case (lloT) Security Risks Trust
(PEFT/LoRA)
Frameworks & Synergy o
Edge Scalabilit: Standardization
T Benchmarks Challenges y
Data Mitigation q
Considerations Strategies Multimodal FL
Trade-offs Al Agents

Figure 2. Overview of the review’s organizational structure. The diagram outlines the paper’s
progression through its main sections: Foundational Concepts (Section 2), Architectures (Section 3),
FL Methodologies (Section 4), Synergistic Effects (Section 5), Challenges and Mitigation (Section 6),
Research Gaps and Future Directions (Section 7), and Conclusion (Section 8). Key topics within each
section are indicated, offering a reader roadmap.

To ensure a comprehensive and systematic review, we adopted a structured literature
search and selection methodology.

*  Search Strategy and Databases: We conducted extensive searches in prominent aca-
demic databases, including Google Scholar, IEEE Xplore, ACM Digital Library, Scopus,
and ArXiv (for pre-prints). The search was performed between February 2024 and
May 2025 to capture the most recent advancements.

e Search Keywords: A combination of keywords was used, including, but not lim-
ited to “Internet of Things” OR “IoT” AND “Large Language Models” OR “LLMs”
AND “Federated Learning” OR “FL”; “LLMs on edge devices”; “Federated LLMs for
IoT”; “privacy-preserving LLMs in IoT”; “LoRA for Federated Learning”; “Split Fed-
erated Learning for LLMs”; “efficient LLM deployment on IoT”; “AloT AND LLMs”;
“Industrial IoT AND Federated Learning”.

* Inclusion Criteria: Papers were included if they were peer-reviewed journal articles,
conference proceedings, or highly cited pre-prints directly relevant to the integration of
IoT, LLMs, and FL. We prioritized studies that discussed system architectures, method-
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ologies, applications, challenges, or future directions related to this tripartite synergy,
particularly those addressing resource constraints and privacy in IoT environments.

*  Exclusion Criteria: Papers were excluded if they focused solely on one technology
without significant discussion of its integration with the other two, were not written in
English, or were not accessible in full text. Short abstracts, posters, and non-academic
articles were also excluded.

¢ Literature Screening and Selection Statistics: Our initial search across the specified
databases (Google Scholar, IEEE Xplore, ACM Digital Library, Scopus, and ArXiv
using keywords such as ((“Internet of Things” OR “IoT”) AND (“Large Language
Models” OR “LLMs”) AND (“Federated Learning” OR “FL”)) AND (“Edge Comput-
ing” OR “Privacy”)) yielded 223 unique articles. After screening titles and abstracts
for relevance to the tripartite synergy of IoT, LLMs, and FL, particularly in edge envi-
ronments, 160 articles were retained. These 160 articles underwent a full-text review
against our predefined inclusion and exclusion criteria. From this detailed assess-
ment, 78 articles were identified as directly pertinent to the core research questions
of this review and were selected for in-depth data extraction and synthesis. The final
manuscript cites a total of 135 references, which encompass these 78 core articles along
with foundational papers and other supporting literature.

* Bias Assessment and Mitigation: To ensure a balanced review, potential sources of
bias were considered. Publication bias, the tendency to publish positive or significant
results, was mitigated by including pre-prints from ArXiv, allowing for the inclusion
of recent and ongoing research that may not yet have undergone peer review. To coun-
teract database bias, we utilized multiple prominent and diverse academic databases.
Furthermore, keyword bias was addressed by developing a comprehensive list of
search terms, including synonyms and variations, related to IoT, LLMs, FL, and their
intersection with edge computing and privacy. The selection and data extraction were
primarily conducted by two authors, with discrepancies resolved through discussion
to minimize individual researcher bias.

¢  Data Extraction and Synthesis: Relevant information regarding methodologies, chal-
lenges, proposed solutions, applications, and future trends was extracted from the
selected papers. This information was then synthesized to identify common themes,
research gaps, and the overall state of the art, forming the basis of this review.

2. Foundational Concepts

This section lays the groundwork for our review by introducing the fundamental
concepts underpinning the integration of IoT, LLMs, and FL. We will briefly define each
core technology, including IoT systems and their characteristics in advanced networks,
the capabilities and challenges of LLMs, the principles of FL such as FedAvg, and key
PETs like differential privacy and Homomorphic Encryption. Understanding these foun-
dational elements is crucial for appreciating the synergistic approach and addressing the
complexities discussed in later sections.

2.1. IoT in Advanced Networks

The IoT encompasses vast networks of interconnected physical objects and devices,
enabling them to collect, exchange, and act upon data, often without direct human in-
tervention [24,25]. This ecosystem is characterized by its massive scale and significant
heterogeneity in terms of hardware capabilities, power sources, connectivity, and the types
of data generated in real time [6], as summarized in Table 2. To better understand the
context for integrating advanced Al it is useful to consider key IoT sub-domains:
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Massive IoT (MIoT): This segment focuses on connecting a very large number of low-
cost, low-power devices (e.g., in smart metering or environmental monitoring) that
typically transmit small amounts of data infrequently. Key challenges include ensuring
scalability to billions of devices, long battery life, and managing connectivity for
devices with severely limited local processing capabilities. The data, while individually
small, can be voluminous in aggregate [26].

Industrial IoT (IloT): Applied in sectors like manufacturing and energy, IloT priori-
tizes high reliability, low latency, and robust security for critical operations such as
predictive maintenance and process automation. IloT systems often generate large
volumes of high-frequency, time-sensitive data from sophisticated sensors and ma-
chinery, frequently necessitating a strong trend towards edge computing for localized
processing and real-time analytics [27].

Artificial Intelligence of Things (AloT): AloT signifies the convergence of Al technolo-
gies with IoT infrastructure, aiming to embed Al capabilities, including machine learn-
ing and potentially Large Language Models (LLMs), into IoT devices, edge gateways,
or associated platforms. This facilitates intelligent decision-making and autonomous
operations across diverse applications (e.g., smart homes, intelligent transportation).
A primary challenge in AloT is managing the computational demands of AI models

on typically resource-constrained IoT hardware [28].

Table 2. Comparison of IoT characteristics.

Characteristic

Massive IoT (MIoT)

Industrial IoT (IIoT)

Artificial Intelligence
of Things (AloT)

General Consumer
IoT

Primary Goal

Wide-scale, low-cost
data collection from
numerous simple de-
vices [29]

High-reliability, low-
latency control and
monitoring of critical
industrial processes

Enhanced automa-
tion, intelligent
decision-making,

and adaptive behavior
through AI/ML at the
edge/device

Convenience, automa-
tion, and enhanced
user experience in

daily life

Smart metering, envi-
ronmental monitoring,

Manufacturing au-
tomation (PLCs,
SCADA), predic-

Smart surveillance
(intelligent video an-
alytics), autonomous

Smart home devices
(lights, thermostats,

Typical Applications  asset tracking, smart . . vehicles/drones, ad-  speakers), wearables
. tive maintenance, . X
agriculture (large- . vanced robotics, per-  (fitness trackers), con-
robotics, process con- ! .
scale sensor networks) . sonalized healthcare nected appliances
trol, smart grids . .
monitors, smart retail
mall k Time-seri nsor .
Sma ‘data packets, € SCres Senso Multimodal data
often infrequent; high data (vibration, pres- . . User commands
(video, audio, sensor .
volume due to mas-  sure, temperature), . (voice, app), sensor
. ) . fusion, text), complex L .
Data Types and Vol-  sive device numbers; control signals, ma- data (activity, environ-
RN . features extracted by :
ume primarily sensor read- chine status, produc- ment), media streams;

ings (temperature,
humidity, location,
status)

tion data; moderate to
high volume per de-
vice, often continuous

Al models; volume
varies greatly depend-
ing on Al task [30]

volume varies, can be
high for media
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Table 2. Cont.

Artificial Intelligence

General Consumer

Characteristic Massive IoT (MIoT) Industrial IoT (IloT) of Things (AIoT) IoT
P (oS s TS v, ko,
LPWAN (LoRaWAN, o 1cb27OTbus), Te 2/ Oy DIUCTOOTL e, Z-Wave; typi-
NB-IoT, Sigfox), cellu- liable wireless (e.g.,  Zigbee, wired; edge- callv star or mesh
Network Topology 7 1BHOX), private 5G, Wi-Fi centric or device-to- Y

and Connectivity

lar IoT; star or mesh
topologies; focus on
long range, low power

HalLow); often de-
terministic networks;
Focus on reliability,
low latency

device communica-
tion; focus on band-
width and latency for
Al processing

connected to a home
hub /router; focus
on ease of use and
interoperability

Key Constraints and

Extreme low power,
low cost per device,
massive scalability,

Ultra-high reliability,
low and determinis-
tic latency, security
against cyber—physical

Computational power
for Al on device/edge,
energy for Al process-
ing, real-time Al infer-

User privacy, security
vulnerabilities, ease of
setup and use, inter-

Challenges simple device man-  attacks, harsh oper-  ence, complexity of Al operability between
agement, intermittent ating environments, model deployment vendor ecosystems,
connectivity interoperability of and management, device cost

legacy systems [31] data quality for Al
FL for anomaly detec- FL for predictive F.L for training sophis- FL for personalized
. . maintenance models, ticated Al models
tion across massive LLMs for analvzin (e.q., vision, speech) models (e.g., smart
datasets, simple sta- . yzng 8 'SP home routines), LLMs
L maintenance logs and at the edge, LLMs . .
tus summarization . for voice assistants
LLM/FL Relevance . generating reports, for complex scene o
by LLMs (if data ag- . and intuitive con-
LLMs for human-— understanding, natu- )
gregated); SFL for L . trol; SFL for privacy-
. machine interfaces ral language interac- . .
very basic feature . . preserving on-device
. (NL queries about ma- tion, and autonomous .
extraction. learning [32]

chine status).

decision-making.

Across these varied IoT deployments, and particularly as AloT applications become

more sophisticated, the inherent resource limitations (such as CPU, memory, battery,
and power budgets) of many end devices and even edge nodes represent a primary
bottleneck. Executing complex Al models, such as LLMs, directly at the extreme edge is
thus particularly challenging [33], underscoring the critical need for resource-efficient Al
techniques, including PEFT and FL, which are central to this review.

2.2. Large Language Models

LLMs are deep learning models, primarily Transformer-based [34], possessing billions
of parameters and demonstrating powerful emergent capabilities derived from extensive
pre-training [1,35]. They typically undergo fine-tuning for task adaptation [36]. Their
significant size imposes high computational costs for training and inference, making
deployment on standard IoT hardware challenging [4]. Ethical considerations regarding
potential biases and responsible use are also critical [5,37].

2.3. Federated Learning

FL enables collaborative training on decentralized data [9]. The most widely known
FL algorithm is Federated Averaging (FedAvg) [9,38,39]. In each communication round t,
local clients receive the current global model weights w; from the central server. K selected
clients then train the model locally using its data Dy for E epochs, and update local weights
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wk 11,k € K. The server aggregates these local weights to produce the updated global model
w; 1, as defined in (1):
Sy
Wiig < Y — Wy, 1)
n
k=1

where n; = |Dg| is the number of data points on client k, and n = Z,Ile n; is the total
number of data points across the selected clients [40]. This weighted average aims to give
more importance to updates from clients with more data. The adoption of FL, particularly
in sensitive or distributed environments like 10T, is driven by several key advantages over
traditional centralized approaches [7]:

*  Enhanced Privacy: Data remains localized on user devices, reducing risks associated
with central data aggregation.

*  Communication Efficiency: Transmitting model updates instead of raw data signifi-
cantly reduces network load.

e  Utilizing Distributed Resources: Leverages the computational power available at the
edge devices [41].

While FedAvg provides a foundational approach, practical FL implementations in-
volve several key characteristics, architectural choices, and challenges:

*  CFL vs. DFL: Centralized FL (CFL) uses a server for coordination and aggregation,
offering simplicity but creating a potential bottleneck and single point of failure [42].
Decentralized FL (DFL) employs peer-to-peer communication, potentially increasing
robustness and scalability for certain network topologies (like mesh networks common
in IoT scenarios) but adding complexity in coordination and convergence analysis [43].

¢ Non-IID Data: A central challenge in FL stems from heterogeneous data distributions
across clients, commonly referred to as Non-Independent and Identically Distributed
(Non-IID) data [44]. This means the statistical properties of data significantly vary
between clients; for instance, clients might hold data with different label distributions
(label skew) or different feature characteristics for the same label (feature skew). Such
heterogeneity can substantially degrade the performance of standard algorithms like
FedAvg, as the single global model aggregated from diverse local models may not
generalize well to each client’s specific data distribution [7].

2.4. Privacy-Preserving Techniques

FL’s privacy benefits can be further enhanced using PETs, with significant advantages
and disadvantages, particularly relevant in the resource-constrained IoT context:

Differential Privacy (DP): DP provides a formal, mathematical definition of privacy
guarantees [45,46]. A randomized mechanism M satisfies (¢, §)-DP if, for any two adjacent
datasets D; and D, (differing by at most one element), and for any possible subset of
outputs S, the following inequality holds:

P[M(D;) € S] < eP[M(D5) € S] +3, )

where € is the privacy budget, and J represents the probability that the strict e-DP guarantee
might be violated. The privacy budget (€) is a fundamental concept in differential privacy
that quantifies the maximum amount of information leakage or privacy loss permitted in
a privacy-preserving mechanism. A smaller privacy budget (a smaller € value) indicates
stronger privacy by limiting the influence of any single data point on the output, thereby
making it harder to infer individual information. However, this typically results in lower
utility of the data or model, as more noise is often required to achieve stronger privacy.
In the context of Federated Learning with LLMs, the privacy budget must be carefully
managed across multiple rounds of training and participating clients to balance privacy
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protection with model performance, especially in sensitive loT applications like healthcare
or smart homes. For 4, it is typically set to a very small value (e.g., less than the inverse of
the dataset size | D|), representing a small probability that the pure e-DP guarantee is broken.
This definition ensures that the output distribution of the mechanism is statistically similar
regardless of the presence or absence of any single individual’s data [47]. DP guarantees
are commonly achieved by adding carefully calibrated noise (e.g., following a Gaussian or
Laplace distribution) to function outputs, gradients, or model updates, as implemented in
algorithms like DP-SGD [48].

DP offers strong, mathematically rigorous privacy guarantees against inference attacks.
Its computational overhead is generally lower compared to cryptographic methods like
HE or SMPC. However, a key challenge of DP is the inherent trade-off between privacy
and utility, where increasing noise (reducing €) to enhance privacy typically degrades
model accuracy [49], as conceptually illustrated in Figure 3. This figure compares the
relative computational and communication overheads of various privacy-preserving tech-
niques in FL. It highlights that while DP introduces additional costs, its overhead remains
modest compared to more complex methods like SMPC and HE. Notably, homomor-
phic encryption incurs the highest total overhead, underscoring the practicality of DP in
resource-constrained edge scenarios. Managing privacy budgets effectively across rounds
and clients is complex [50-52], and DP noise can disproportionately affect fairness for
underrepresented groups [3].

Conceptual Overhead Comparison of Privacy Techniques in FL
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Figure 3. Conceptual illustration of the privacy—utility trade-off in DP. Stronger privacy guarantees
(lower €) often correlate with a decrease in model utility or accuracy. The exact curve depends heavily

on the dataset, model, and specific DP mechanism.

Homomorphic Encryption (HE): HE allows specific computations (e.g., addition for
averaging updates) on encrypted data [53]. The server aggregates ciphertexts without
decrypting them. The advantage of HE lies in the fact that it provides strong confidentiality
against the server (server learns nothing about individual updates), hence no impact on
model accuracy (utility) compared to non-private aggregation. However, HE can have
extremely high computational overhead for encryption/decryption and homomorphic
operations, significantly expanding the communication data size (ciphertext size). Thus,
HE is currently impractical for direct implementation on most resource-constrained IoT
devices [7].
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Secure Multi-Party Computation (SMPC): SMPC enables multiple parties to jointly
compute a function, such as the sum of updates, using cryptographic protocols like secret
sharing, without revealing their private inputs [54]. The primary advantage of SMPC lies in
its strong privacy guarantees achieved by distributing trust among participants, including
potentially the server and clients, with no impact on model accuracy [55]. However,
SMPC protocols often require complex multi-round interactions, leading to significant
communication overhead. Furthermore, assumptions of synchronous participation or the
need for fault tolerance mechanisms add complexity, posing challenges for deployment in
dynamic IoT environments [3].

Secure Aggregation: Secure Aggregation utilizes specialized protocols, often based on
secret sharing or lightweight cryptography, optimized specifically for the FL aggregation
task [56]. These protocols allow the server to securely compute only the sum or average of
client updates [57]. Compared to general HE or SMPC, Secure Aggregation is significantly
more efficient computationally and communication-wise for this specific task, leading to its
widespread adoption in practical FL systems. Nevertheless, while it protects individual
updates from the server during the aggregation phase, it does not shield the final aggregated
result from potential inference attacks, nor does it secure the updates during transmission
unless combined with additional encryption methods.

Table 3 provides a comparative summary of these key privacy-preserving techniques,
highlighting their mechanisms, pros, and cons within the FL context. The practical choice
often involves secure aggregation, potentially combined with DP for stronger client-level
guarantees, or relies on trust in the server, depending heavily on the threat model, sys-
tem capabilities, and regulatory environment (e.g., GDPR, HIPAA constraints on data
processing and transfer) [3,58].

Table 3. Comparison of key privacy-preserving techniques in the FL context.

Technique Mechanism Pros Cons
. . ‘ Adds calibrated noise to gradients, Strong, mathematlcal privacy guar Direct privacy—utility Frade off (noise vs.
Differential Pri- antees; relatively lower computa- accuracy); complex privacy budget manage-
updates, or data for formal (¢, 6)- . . . : .
vacy . tional overhead than cryptographic ~ ment; can impact fairness; overhead can still
privacy guarantees. o .
methods. be significant for resource-poor IoT devices.
- . Extremely high computational overhead (en-
Allows specific computations (e.g., . L . . - . s
. e Strong confidentiality against the cryption, decryption, operations); significant
Homomorphic addition) on encrypted data; server . L . .
. . . server; no impact on model accu- communication overhead (ciphertext size);
Encryption aggregates ciphertexts without

decryption.

racy (utility).

largely impractical for direct use on most
IoT devices.

Secure Multi-

Enables joint computation (e.g.,
sum) via cryptographic protocols

Strong privacy guarantees (dis-

Requires complex multi-round interaction
protocols; significant communication over-

Party Computa- . ' . . tributed trust); no impact on model  head; often assumes synchronicity or fault
. without parties revealing private . R
tion . accuracy. tolerance mechanisms, challenging in dy-
inputs. .
namic IoT.
Specialized protocols (often secret More efficient (computationally and Protects m‘leldual upc'lates from the
. .. e . server during aggregation, but not the
Secure Aggrega-  sharing-based) optimized for se- communication-wise) than general . .
. . ¢ final aggregated model from inference,
tion curely computing the sum/average = HE/SMPC for the aggregation task;

of client updates.

widely adopted.

nor updates during transmission without
extra encryption.

3. LLM-Empowered IoT Architecture for Distributed Systems

Having established the foundational concepts of IoT, LLMs, and FL in the preceding
section, this section transitions to explore the architectural frameworks necessary for ef-
fectively deploying LLM-empowered IoT systems within distributed environments. We
begin by outlining a general multi-tier (Cloud-Edge-Device) architecture that balances
computational demands with data locality and latency requirements. Subsequently, we
delve into two key operational perspectives: first, how LLMs can augment and enhance
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the capabilities of IoT systems (termed “LLM for loT”) by enabling intelligent interfaces,
advanced data analytics, and automated control; second, the crucial strategies and optimiza-
tion techniques for efficiently running LLMs on or near resource-constrained IoT devices
(termed “LLM on IoT”), covering essential aspects like edge fine-tuning and edge inference.

3.1. Architectural Overview

Deploying LLMs within IoT often favors multi-tier architectures (Cloud-Edge-Device)
to balance computation, latency, and data locality [33]. This involves strategically placing
LLM-related tasks: heavy pre-training in the cloud, fine-tuning and inference closer to the
edge, and potentially highly optimized inference on capable end devices [25]. This architec-
ture supports both leveraging LLMs for IoT enhancement (“LLM for IoT”) and efficiently
managing LLMs within IoT constraints (“LLM on IoT”) [10].

3.2. LLM for IoT
LLMs can significantly enhance IoT system capabilities through the following:

* Intelligent Interfaces and Interaction: Enabling sophisticated natural language control
(e.g., complex conditional commands for smart environments) and dialogue-based
interaction with IoT systems for status reporting or troubleshooting [59].

*  Advanced Data Analytics and Reasoning: Fusing data from multiple sensors (e.g., cor-
relating camera feeds with environmental sensor data for scene understanding in
smart cities), performing complex event detection, predicting future states (e.g., equip-
ment failure prediction in IloT based on subtle degradation patterns), and providing
causal explanations for system behavior.

¢ Automated Optimization and Control: Learning complex control policies directly
from high-dimensional sensor data for optimizing resource usage (e.g., dynamic
energy management in buildings considering real-time occupancy, weather fore-
casts, and energy prices) or network performance (e.g., adaptive traffic routing in
vehicular networks).

3.3. LLM on IoT: Deployment Strategies

Efficiently running LLMs on or near IoT devices requires optimization. In the training
stage, model pruning is a typical strategy, while inference adaptation can also be performed
for edge devices. These techniques are reviewed next.

3.3.1. Edge Fine-Tuning

Adapting pre-trained models locally using PEFT is key. To adapt large pre-trained
models like LLMs without incurring the high computational and memory costs of full fine-
tuning, PEFT methods can be employed. A prominent example is the popular LoRA [16].
Instead of updating the entire pre-trained weight matrix Wy € R?*k, LoRA introduces
two smaller, low-rank matrices, A € R?*" and B € R"*¥, where the rank r is typically
much smaller than d or k (i.e., ¥ < min(d, k)). The core idea is to represent the weight
update AW as the product of these low-rank matrices (AW = BA). During fine-tuning,
the original weights Wy remain frozen, and only the parameters in A and B are trained.
This mechanism is illustrated in Figure 4. The effective weight matrix used in the forward
pass is then computed as

W =W, + AW = W, + BA. 3)

This approach drastically reduces the number of trainable parameters from d x k
for full fine-tuning down to only r x (d + k) for LoRA [60]. This significant reduction in
parameters, memory usage, and computation makes fine-tuning large models feasible
even on resource-constrained edge devices and substantially decreases communication
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overhead in Federated Learning scenarios where only the small A and B matrices need to
be exchanged [61].

Pre-trained LLM |

W +

n LoRA Adapter |

Figure 4. Illustration of the LoRA adapter mechanism, potentially used with quantized base model

| Quantized Parameters

weights (as in QLoRA [62]). The large pre-trained weights (W) might be stored in a quantized format
(W’), while the task-specific update is learned via the small, trainable low-rank adapter matrices
(Band A).

Recent advancements in LoRA have produced variants that further address chal-
lenges pertinent to resource-constrained IoT and FL settings. For instance, DoRA (Weight-
Decomposed Low-Rank Adaptation) [63] extends LoRA by decomposing the pre-trained
weights into magnitude and direction components for fine-tuning. This allows LoRA up-
dates to refine the model with a different learning mechanism compared to full fine-tuning
of magnitudes and directions, reportedly enabling more efficient and effective training by
potentially better capturing nuanced parameter adjustments while maintaining or even
improving performance over standard LoRA. Such an approach can be particularly valu-
able in Federated Learning rounds over bandwidth-constrained IoT environments where
efficient yet impactful updates are crucial.

Building upon such decomposed approaches, EDoRA (Efficient DoRA) [64] aims
to further optimize training efficiency. The EDoRA methodology is designed to signif-
icantly reduce the computational burden and memory footprint during the fine-tuning
process, potentially involving techniques like quantization or structured pruning tailored
for the decomposed components. For example, EDoRA is reported to achieve substantial
reductions in communication overhead compared to standard LoRA while maintaining
comparable task performance by employing sparse updating mechanisms or more ag-
gressive compression. These characteristics make variants like EDoRA highly suitable for
IoT+FL scenarios where both computational and communication efficiency are critical for
practical deployment on diverse and often limited edge devices.

However, PEFT methods, including LoRA and its variants, have benefits and draw-
backs. The choice of parameters, such as the rank r in LoRA, directly impacts the balance
between efficiency and the model’s adaptation capacity; a very low rank might limit the
model’s ability to capture complex task-specific nuances [65]. Furthermore, the generaliza-
tion capability of PEFT methods, especially when adapting models to tasks significantly
different from the pre-training data, compared to full fine-tuning, remains an active area of
investigation [66].

3.3.2. Edge Inference

Prediction/generation performance can be optimized through the following techniques.
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*  On-device Inference: Utilizes model compression (quantization, pruning, distillation) [62,67].
Compression inherently risks degrading model accuracy or robustness, and the extent
depends heavily on the technique and compression ratio [68].

*  Co-inference/Split Inference: Divides layers between device and edge server [18].
It introduces network latency and dependency on the edge server, although it keeps
raw data local. This is distinct from SFL used for training.

e  Edge Caching: Reduces latency for repeated queries [3].

4. Federated Learning for Privacy-Preserving LLM Training in IoT

Having established the foundational concepts and architectural considerations, this
section delves into the specific methodologies required to effectively train and adapt LLMs
within distributed IoT environments using FL. We examine various techniques designed to
overcome the inherent challenges of resource constraints, communication overhead, data
heterogeneity, and privacy concerns that arise when integrating these powerful models
with FL paradigms at the edge [61]. Key topics include core federated fine-tuning strategies
tailored for LLMs, methods for personalization, alternative training approaches, essential
supporting frameworks and data handling techniques, the emerging role of LLMs in
aiding the FL process itself, and crucial evaluation metrics specific to this context [69].
Understanding these methodologies is crucial for realizing the practical potential of the
synergistic IoT, LLM, and FL integration.

4.1. Federated Fine-Tuning of LLMs

Applying FL to fine-tune Large Language Models enables collaborative adaptation
on decentralized IoT data, crucial for personalization and domain specialization while
preserving privacy [23]. The integration of FL with PEFT methods, particularly LoRA,
significantly reduces communication overhead by transmitting only lightweight parameter
updates (typically <1% of total model parameters) [70]. Beyond CFL approaches, research is
exploring decentralized fine-tuning methods [71]. For instance, Dec-LoRA is an algorithm
designed for decentralized fine-tuning of LLMs using LoRA without relying on a central pa-
rameter server [72]. Experimental results suggest that Dec-LoRA can achieve performance
comparable to centralized LoRA, even when facing challenges like data heterogeneity
and quantization constraints, offering a potential pathway for more robust and scalable
federated fine-tuning in certain network topologies [60].

4.2. Split Federated Learning

SFL addresses the critical memory limitations on edge devices during the training
phase of large models within an FL context [19]. By partitioning the model and offloading a
significant portion of the computation (especially backward passes through deeper layers)
to a server, SFL allows memory-constrained devices to participate [18]. Integrating LoRA
further optimizes this [17]. However, SFL introduces latency due to the necessary exchange
of activations and gradients between client and server per iteration, and its performance is
sensitive to the network bandwidth and the choice of the model split point [18].

4.3. Personalized Federated LLMs

PFL methods are vital for addressing client heterogeneity in FL, aiming to provide mod-
els better suited to individual client data or capabilities than a single global model [73,74].
Table 4 provides a comparative overview.
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Table 4. Comparative overview of personalized PFL approaches for LLMs.

Approach Mechanism g:;e;ﬁe %enelty Efficiency Trade-Offs
Chents train personal- Primarily statistical High communi-  Personalization depth
ized PEFT components at- (data); some methods > - .
PEFT-based cation efficiency  limited by PEFT capac-
PFL (Prompts tached to a shared, frozen ~adapt to system het- (small updates); ity; potential for nega-
P! LLM backbone. Global ag- erogeneity by adjust- P ’ i p e
Adapters, . . . . moderate compu- tive interference if global
gregation might occur on ing PEFT complexity .
LoRA) tation (only PEFT components are poorly
these PEFT components or (e.g., heterogeneous tuning) [30] ageregated [81]
parts thereof [16,61,75-77]. LoRA ranks) [78,79]. &) 1oVl E81CE :
Global model is struc- Primarily sys- Reduced client Eifiel:bﬁe%e:s%ngg;é_
Model Decom- turally divided; clients tem (computa- computation; com- requires clzoare ful model !
position/Partial train only specific tion/memory); can ~ munication de- a?‘titionin desion: bo-
Training assigned layers or assign smaller parts to pends on the size patHoing cesigh, p
: . tential information loss
blocks [69,82,83]. weaker clients. of the trained part. b
etween components.
Uses outputs (logits) or in- Commumcatlon e
. involves log- Distillation process can be
termediate features from a Can handle model its/features, po-  complex: potential privac
Knowledge Dis- global “teacher” model (or heterogeneity (differ- tentiall sm’a Eer leakePl) o f’rEm sharecl:l) logi tZ’
tillation (KD)-  ensemble of client mod-  ent student architec- than a};ame ters:  the s t%l dent’s model m? ht,
based PFL els) to guide the training  tures); adaptable to P ! &

of personalized local “stu-
dent” models [84-86].

data heterogeneity.

client computation
depends on stu-
dent model size.

not perfectly capture the
teacher’s knowledge.

Meta-Learning-
based PFL (e.g.,
Reptile, MAML
adaptations)

Learns a global model
initialization that can be
rapidly adapted (fine-
tuned) to each client’s
local data with few gradi-
ent steps [74].

Focuses on adapting
to statistical (data)
heterogeneity.

Communication
similar to standard
FL; potentially
more local com-
putation during
adaptation phase.

Can be sensitive to task
diversity across clients;
training the meta-model
can be computationally
intensive.

4.4. Backpropagation-Free Methods

These methods (e.g., zeroth-order optimization) bypass standard backpropagation,

reducing peak memory usage by eliminating the need to store activations [87-90]. Limi-
tations: They often require significantly more function evaluations (slower convergence)
and can be less stable or scalable for very high-dimensional parameter spaces compared to
gradient-based methods [87,91]. Their practical application in large-scale federated LLM
training remains an active research topic.

4.5. Frameworks and Benchmarks

The practical implementation and evaluation of federated LLMs rely on specialized
software frameworks and benchmarks:

Frameworks: Libraries like FedML [92] with its FedLLM component [92], Flower [93,94],
FATE-LLM [95], and FederatedScope-LLM [96] provide infrastructure for simulating or de-
ploying FL. Features relevant to IoT/edge include support for heterogeneous devices, PEFT
methods (e.g., LoRA), various aggregation algorithms, security mechanisms (DP, secure
aggregation), and sometimes specific optimizations for edge deployment (e.g., efficient
client runtimes, handling intermittent connectivity). Selecting a framework depends on
the specific research or deployment needs regarding scale, flexibility, supported models,
and available privacy/security features.

Benchmarks: Standardized datasets and evaluation protocols are crucial for com-
paring different algorithms. Efforts like FedIT [97] focus on benchmarking federated
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instruction tuning. FedNLP [98] provided early benchmarks for standard NLP tasks in
FL. OpenFedLLM aims to offer a comprehensive platform with multiple datasets and met-
rics [99]. However, benchmarks specifically capturing the complexities of real-world IoT
data heterogeneity, network conditions, and device constraints for LLMs are still needed.

4.6. Initialization and Data Considerations

Effective federated LLM training depends significantly on model initialization and
data handling;:

Model Initialization: Starting FL from a well-pre-trained LLM, rather than random
initialization, significantly improves convergence speed, final model performance, and ro-
bustness to Non-IID data [100]. It allows FL to focus on adaptation rather than learning
foundational knowledge from scratch [101].

Data Processing: Handling massive, distributed datasets requires scalable tools. Libraries
like Dataset Grouper aim to facilitate partitioning large datasets for FL simulation [102].

Synthetic Data Generation: When local data is scarce or highly skewed, generating
synthetic data can augment training [10]. LLMs show promise for generating high-quality
synthetic data that reflects complex real-world distributions, potentially overcoming limita-
tions of earlier generative models used in FL [103]. Frameworks like GPT-FL explore using
LLM-generated data to aid FL. Selecting relevant public data using distribution matching
techniques can also enhance privacy-preserving training via knowledge distillation [104].

4.7. LLM-Assisted Federated Learning

Beyond using FL to train LLMs, the reciprocal relationship where LLMs assist FL is
also emerging [23]:

Mitigating Data Heterogeneity: LLMs pre-trained on vast datasets can generate high-
quality synthetic data reflecting diverse distributions. This synthetic data can be used
centrally or shared (with privacy considerations) to augment clients’ local datasets, helping
to alleviate the negative impacts of Non-IID data on FL convergence [103].

Knowledge Distillation: A large, powerful LLM (potentially centrally available or
trained via FL itself) can act as a “teacher” model. Its knowledge (e.g., predictions, rep-
resentations) can be distilled into smaller “student” models trained by clients in the FL
network, improving the efficiency and performance of client models, especially on resource-
constrained devices [65].

Intelligent FL Orchestration: LLMs could potentially be used for more sophisticated
FL management tasks, such as predicting client resource availability, assessing data quality
for client selection, or even dynamically tuning FL hyperparameters based on observed
training dynamics.

4.8. Evaluation Metrics

Evaluating federated LLM systems requires a multifaceted approach beyond standard
accuracy measures, particularly in the IoT context (see Table 5). Developing standardized
benchmarks that allow for consistent evaluation across these diverse metrics is a key
challenge and future direction [97]. Table 5 summarizes the key categories of evaluation,
including model utility, efficiency, privacy, fairness, and scalability, each with specific
metrics tailored to the constraints and demands of federated IoT settings. For instance,
communication and computation efficiency metrics reflect the limited bandwidth, energy,
and processing power typical of edge devices. Privacy is evaluated through both theoretical
guarantees (such as differential privacy parameters) and empirical attack resistance, while
fairness and scalability ensure inclusiveness and robustness across heterogeneous clients.
Together, these metrics offer a comprehensive framework for assessing the real-world
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feasibility and trustworthiness of federated LLM systems deployed across diverse and

distributed IoT environments.

Table 5. Key evaluation metrics for federated LLM systems in IoT contexts.

Category Specific Metric Examples Relevance/Notes
. Acc1'1racy, El—scp re, BLEU, ROUGE, per— Task-specific performance and reliability of the
Model Utility plexity, calibration, robustness (to noise,
1. learned model.
adversarial inputs)
Efficiency: Crucial for resource-constrained and
y: bandwidth-limited IoT environments.
- Communica- Total bytes/bits transmitted, number of Impacts network load, energy consumption on
tion rounds, compression rates wireless devices.
. (.?henfc training t.1me/r0ur1d, SCIVET aggrega- Determines feasibility on device, overall sys-
- Computation  tion time, edge inference latency, total FLOPs, .
. tem speed, battery life.
energy consumption
- Memor Peak RAM usage (client/server), model Critical for devices with limited
y storage size memory capacity.
. F?Fmal guarantees (.g,, (€, 5)_1?13 values), em- Quantifies the level of privacy protection pro-
Privacy pirical leakage (e.g., Membership Inference . . o
vided against specific threats.
Attack success rate)
Fairness Variance in accuracy across clients/groups, Measures consistency of performance for di-
worst-group performance vs. average verse participants or data subpopulations.
Scalability Performance/efficiency degradation as the Assesses the system’s ability to handle large-

number of clients increases

scale IoT deployments.

5. Synergistic Effects of Integrating 10T, LLMs, and Federated Learning

The previous sections have laid the groundwork by introducing the core concepts and
individual capabilities of IoT, LLM and FL. While pairwise integrations—such as applying
LLMs to IoT data analytics [105], using FL for privacy-preserving IoT applications [20,21],
or employing FL to train LLMs [23]—offer significant advancements, they often encounter
inherent limitations [10]. Centralized LLM processing of IoT data raises critical privacy
and communication bottlenecks [13]; traditional FL models struggle with the complexity
and scale of raw IoT data [14]; and federated LLMs without direct access to real-world IoT
streams lack crucial grounding and context [7].

This section argues that the true transformative potential lies in the synergistic con-
vergence of all three technologies, 10T, LLMs, and FL, explicitly enhanced by Privacy-
Enhancing Technologies [49]. This three-way integration creates a powerful ecosystem
where the strengths of each component compensate for the weaknesses of the others, en-
abling capabilities and solutions that are fundamentally unattainable or significantly less
effective otherwise [45]. We posit that this synergy is not merely additive but multiplicative,
paving the way for a new generation of advanced, privacy-preserving, context-aware
distributed intelligence operating directly at the network edge [15]. We will explore this
“1+1+ 1> 3” effect through three core synergistic themes, building upon the motivations
discussed in works like [56].

5.1. Theme 1: Privacy-Preserving, Context-Aware Intelligence from Distributed Real-World Data

The Challenge: LLMs thrive on vast, diverse, and timely data to develop nuanced
understanding and maintain relevance [8]. IoT environments generate precisely this type
of data—rich, real-time, multimodal streams reflecting the complexities of the physical
world [7,49]. However, this data is inherently distributed across countless devices and
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locations [14], and often contains highly sensitive personal, operational, or commercial
information, making centralized collection legally problematic (e.g., GDPR, HIPAA com-
pliance [21]), technically challenging (bandwidth costs, latency [13]), and ethically un-
desirable [5,22]. Relying solely on public datasets limits LLM grounding and domain
specificity [10].

The Synergy (IoT + LLM + FL): Federated Learning acts as the crucial enabling mecha-
nism [9] that allows LLMs to tap into the rich, distributed data streams generated by IoT
devices without compromising data locality and privacy [15]. IoT provides the continu-
ous flow of real-world, multimodal data (the “what” and “where”) [14]. FL provides the
privacy-preserving framework for collaborative learning across these distributed sources
(the “how”) [10]. The LLM provides the advanced cognitive capabilities to learn deep
representations, understand context, and extract meaningful intelligence from this data
(the “why” and “so what?”) [69].

Emergent Capability: This synergy empowers LLMs to maintain robust general ca-
pabilities while dynamically adapting to specific real-world contexts. By leveraging fresh,
diverse, and privacy-sensitive IoT data, these models achieve continuous grounding in
evolving environments. This allows for the following:

¢ Hyper-Personalization: Training models tailored to individual users or specific environ-
ments (e.g., a smart home assistant learning user routines from sensor data via FL [14]).

*  Real-time Domain Adaptation: Continuously fine-tuning LLMs (e.g., using PEFT like
LoRA [61]) with the latest IoT data to adapt to changing conditions (e.g., adapting a
traffic prediction LLM based on real-time sensor feeds from different city zones [106]).

e  Enhanced Robustness: Learning from diverse, real-world loT data sources via FL can
make LLMs more robust to noise and domain shifts compared to training solely on
cleaner, but potentially less representative, centralized datasets [44].

5.2. Theme 2: Intelligent Interpretation and Action within Complex IoT Environments

The Challenge: IoT environments produce data that is often complex, noisy, unstruc-
tured, and multimodal (e.g., raw sensor time series, machine logs, video feeds, acoustic
signals) [14]. Traditional FL, while preserving privacy, often employs simpler models that
struggle to extract deep semantic meaning or perform complex reasoning on such data [49].
Conversely, powerful LLMs, while capable of understanding complexity [15], lack the direct
connection to the physical world for sensing and actuation and struggle with distributed
private data access [107].

The Synergy (IoT + LLM + FL): LLMs bring sophisticated natural language under-
standing, reasoning, and generation capabilities to the table [1], allowing the system to
interpret intricate patterns, correlate information across different IoT modalities, and even
generate human-readable explanations or reports [105]. FL provides the means to train
these powerful LLMs collaboratively using the relevant complex IoT data distributed
across the network [61]. Crucially, IoT devices provide the physical grounding, acting as
the sensors collecting the complex data and potentially as actuators executing decisions
derived from LLM insights [3]. Furthermore, LLMs can enhance the FL process itself by
intelligently guiding client selection based on interpreting the relevance or quality of their
IoT data, or even assisting in designing personalized FL strategies [15].

Emergent Capability: The combination allows for systems that can deeply understand
complex physical environments and interact intelligently within them. This goes beyond
simple data aggregation or pattern matching:

Contextual Anomaly Detection: Identifying subtle anomalies in IIoT machine behavior
by correlating multi-sensor data and unstructured logs, understood and explained by an
LLM trained via FL [108]. Causal Reasoning in Smart Cities: Using FL-trained LLMs to
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analyze diverse IoT data (traffic, pollution, events) to infer causal relationships and predict
cascading effects [14,106]. Goal-Oriented Dialogue with Physical Systems: Enabling users to
interact with complex IoT environments (e.g., a smart factory floor) using natural language,
where an LLM interprets the request, queries relevant IoT data (potentially involving FL
for aggregation), and generates responses or even commands for actuators [15].

5.3. Theme 3: Scalable and Adaptive Domain Specialization at the Edge

The Challenge: Deploying large, general-purpose LLMs directly onto resource-
constrained IoT devices is often infeasible due to their size and computational require-
ments [62]. While smaller, specialized models can run on the edge, training them from
scratch for every specific IoT application or location is inefficient and does not leverage the
power of large pre-trained models [15]. Centralized fine-tuning of large models for specific
domains requires access to potentially private or distributed IoT data [13].

The Synergy (IoT + LLM + FL): FL combined with PEFT techniques like LoRA [70]
provides a highly scalable and resource-efficient way to specialize pre-trained LLMs for
diverse IoT domains using distributed edge data [13,60]. IoT devices/edge servers provide
the specific local data needed for adaptation [14]. PEFT ensures that only a small fraction
of parameters need to be trained and communicated during the FL process, drastically
reducing computation and communication overhead [61,82]. The base LLM provides the
powerful foundational knowledge, while FL+PEFT enables distributed, privacy-preserving
specialization [71].

Emergent Capability: This synergy enables the mass customization and deployment
of powerful, specialized Al capabilities directly within diverse IoT environments. Key out-
comes include the following:

e Locally Optimized Performance: Models fine-tuned via FL+PEFT on local IoT data will
likely outperform generic models for specific edge tasks (e.g., a traffic sign recognition
LLM adapted via FL to local signage variations [14]).

* Rapid Adaptation: New IoT devices or locations can quickly join the FL process and
adapt the shared base LLM using PEFT without needing massive data transfers or full
retraining [10].

*  Resource-Aware Deployment: Allows for leveraging powerful base LLMs even when
end devices can only handle the computation for small PEFT updates during FL
training [79], or optimized inference models (potentially distilled using FL-trained
knowledge [86]). Frameworks like Split Federated Learning can further distribute the
load [17,18].

5.4. Illustrative Use Case: Predictive Maintenance in Federated Industrial IoT

Consider a scenario involving multiple manufacturing plants belonging to differ-
ent subsidiaries of a large corporation, or even different collaborating companies [108].
Each plant operates similar types of critical machinery (e.g., CNC machines, robotic arms)
equipped with various sensors (vibration, temperature, acoustic, power consumption—the
IoT component). The goal is to predict potential machine failures proactively across the
entire fleet to minimize downtime and optimize maintenance schedules, while ensuring
that proprietary operational data and specific machine performance characteristics from
one plant are not shared with others.

Below, we summarize the limitations without synergy.

e JoT only: Basic thresholding or simple local models on sensor data might miss complex
failure patterns. No collaborative learning.

¢  IoT + Cloud LLM: Requires sending massive, potentially sensitive sensor streams and
logs to the cloud, incurring high costs, latency, and privacy risks [13].
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¢ IoT + FL (Simple Models): Can learn collaboratively but struggles to interpret unstruc-
tured maintenance logs or complex multi-sensor correlations indicative of subtle wear
patterns [14].

e LLM + FL (No IoT): Lacks real-time grounding; trained on potentially outdated or
generic data, not the specific, current state of the machines [10].

To address the issues highlighted above, a synergistic solution (IoT + LLM + FL) is
illustrated next.

*  Data Generation: Sensors on machines continuously generate multimodal time-series
data and operational logs.

¢ Model Choice (LLM): A powerful foundation LLM (potentially pre-trained on general
engineering texts and machine manuals) is chosen as the base model. It possesses the
capability to understand technical language in logs and potentially process time-series
data patterns [15].

*  Collaborative Fine-Tuning (FL + PEFT): FL is used to fine-tune this LLM across the
plants using their local IoT sensor data and maintenance logs [69]. To manage re-
sources and communication, PEFT (e.g., LoRA [16]) is employed. Only the small LoRA
adapter updates are shared with a central FL server (or aggregated decentrally [72])—
preserving privacy regarding raw data and detailed operational parameters [61].

e Intelligence and Action (LLM + IoT): The fine-tuned LLM (potentially deployed at edge
servers within each plant [13]) analyzes incoming IoT data streams and logs in near-
real time. It identifies complex failure precursors missed by simpler models, correlates
sensor data with log entries, predicts remaining useful life, and generates concise,
human-readable alerts and maintenance recommendations for specific machines [108].
These alerts can be directly integrated into the plant’s maintenance workflow system
(potentially an IoT actuation).

This integrated system can achieve highly accurate, context-aware predictive main-
tenance across multiple entities by leveraging diverse operational data (IoT) through
privacy-preserving collaborative learning (FL), powered by the deep analytical and inter-
pretive capabilities of LLMs, all achieved efficiently using PEFT. This outcome would be
significantly harder, if not impossible, to achieve with only two of the three components.

5.5. Challenges Arising from the Synergy

While powerful, the tight integration of IoT, LLMs, and FL introduces unique chal-
lenges beyond those of the individual components:

Cross-Domain Data Alignment and Fusion: Effectively aligning and fusing heteroge-
neous, multimodal IoT data streams within an FL framework before feeding them to an
LLM requires sophisticated alignment and representation techniques [105].

Resource Allocation Complexity: How to jointly optimize computation (LLM infer-
ence/training, FL aggregation), communication (IoT data upload, FL updates), and privacy
(PET overhead) across heterogeneous IoT devices, edge servers, and potentially the cloud
specifically for this integrated task [13].

Model Synchronization vs. Real-time Needs: Balancing the need for FL. model synchro-
nization (potentially slow for large LLM updates [10]) with the real-time data processing
and decision-making requirements of many IoT applications.

Emergent Security Vulnerabilities: New attack surfaces emerge at the interfaces,
e.g., malicious IoT data poisoning FL training specifically to mislead the LLM’s interpreta-
tion [109], or FL privacy attacks aiming to reconstruct sensitive IoT context interpreted by
the LLM [110]. Verifying the integrity of both IoT data and FL updates becomes critical [15].
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5.6. Concluding Remarks on Synergy

The convergence of IoT, Large Language Models, and Federated Learning represents
a fundamental paradigm shift in designing intelligent distributed systems. As demon-
strated, their synergy unlocks capabilities far exceeding the sum of their individual parts.
By enabling powerful LLMs to learn from diverse, real-world, privacy-sensitive IoT data
through the secure framework of FL, we can create adaptive, context-aware, and specialized
Al solutions deployable at the network edge. This synergy directly addresses the limitations
inherent in previous approaches, paving the way for truly intelligent, efficient, and trustwor-
thy applications across critical domains like Industrial IoT, autonomous systems, and smart
infrastructure. While unique challenges arise from this tight integration, they also define
fertile ground for future research focused on realizing the full, transformative potential of
this powerful technological triad.

6. Key Challenges and Mitigation Strategies

In this section, we identify the key challenges of the synergy of IoT, LLM, and FL,
and suggest potential mitigation strategies based on relevant techniques found in the open
literature. Table 6 summarizes the main challenges and mitigation methods, as elaborated

on next.

Table 6. Major challenges in integrating IoT, LLMs, and FL, with mitigation strategies.

Challenge

Description

Mitigation Strategies

Trade-Offs/Notes

Resource Con-
straints (Com-

Severe limitations on
many IoT devices conflict

Model compression [62]; split
computing [3,18]; PEFT [16];

Accuracy loss (compression);
latency/sync needs (split);

pute, Memory,  with LLM computational adaptive distribution limited adaptivity; orchestra-
Energy) demands [3,24]. p ’ tion complexity (adaptive).

High cost of transmitting PEFT [16]; update com- Smaller u.pdates hrmt model

i . changes; info loss risk (com-
Communication large model updates fre- pression [111]; reduced fre- -
. ) pression); slower conver-

Overhead quently over constrained IoT  quency [9]; asynchronous pro- ence (frequency); staleness

networks [10,111]. tocols [101,112]. & 9 Y

issues (Async).

) Non-IID data hinders conver- Robust Aggregation (e.g., . i .
Data‘Hetero gence and fairness [44,113]; FedProx) [44]; PFL [73,74]; Complexity (PFL); p(.)tentla'l
geneity (Non- . o . . . . avg. accuracy reduction (fair-

. biases can be amplified [37]; fairness-aware algorithms; . .
IID) and Fair- . . N . . ness); privacy concerns with
decentralized bias mitigation  synthetic/public data aug- .
ness data augmentation.

is hard.

mentation [103,104].

Privacy and

Balancing privacy vs. util-
ity; protecting against
leakage [110,114], poison-

ing [109,115], Byzantine [116],

PETs (DP [48], HE [53],

SMPC [55], secure aggrega-
tion [56]); Robust Aggregation
(e.g., Krum [116], PEAR [120]);

Accuracy loss (DP) [49]; high
overhead (HE/SMPC) [3];
limited protection (SecAgg);

Security Risks backdoor attacks [117-119]; attack detection [121,122]; aAssur)r‘q\), telfirfzzé?;ilt(li(%bés;
regulatory compliance TEEs [123]; ZKP-based meth- Seigi"a{ble 3 y '
(GDPR, HIPAA). ods (e.g., ByzSFL [124]). ’
Edge infrastructure optimiza-
- . . tion (caching, serving) [3];
On-Demand Efﬁaently managing FL train scalable FL orchestration . .
ing and LLM inference across ) . ] Orchestration trade-offs; in-
Deployment massive, dynamic IoT popula- (hierarchical, decentralized, centive complexit
and Scalability - dyn pop asynchronous) [42,101,125]; p Y

tions [3].

resource-aware manage-
ment [3,43].
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6.1. Resource Constraints

A primary obstacle when deploying LLMs within IoT ecosystems arises from the
stark mismatch between the models” demands and the typically severe resource constraints
of edge devices [3]. Edge units often provide limited processing power, small memory
capacities (e.g., typically 1-4 GB of RAM), and must operate under strict power bud-
gets (often < 10 W) [24]. Yet, even moderately sized models, like a 7-billion-parameter
LLM, can require approximately 4 GB of memory just for inference, making deployment
challenging [10].

To bridge this gap and enable on-device LLM adaptation and execution, several miti-
gation strategies focusing on efficiency can be employed. Model compression techniques,
notably quantization (e.g., to 4-bit precision), can significantly slash memory usage by
roughly 75% while often preserving a high percentage (e.g., 92-97%) of the original model’s
accuracy on tasks like text classification [62]. Another approach is split computing, par-
ticularly SFL, which partitions the model layers between the device and a more capable
edge server. This can cut on-device memory requirements substantially (e.g., by 40-60%),
though it introduces trade-offs such as increased round-trip latency (e.g., 150-300 ms)
during operations like federated training iterations [18]. Furthermore, PEFT methods have
emerged as a highly promising strategy. Techniques like LoRA drastically reduce the
number of trainable parameters by updating only a small fraction (e.g., about 1-2%) of the
model’s weights, achieving massive reductions (up to 98%) in parameters needing training
and storage [16]. Impressively, this efficiency often comes with only a modest decrease
in performance, retaining substantial percentages (e.g., around 89%) of full fine-tuning
performance on standard benchmarks.

The trade-offs between parameter efficiency and task performance for various PEFT
methods, including LoRA, adapter tuning, and prompt tuning compared to full fine-tuning,
are clearly visualized in Figure 5. Full fine-tuning involves updating all model parameters,
which leads to the highest performance but at a substantial computational and memory
cost. In contrast, PEFT methods significantly reduce the number of trainable parame-
ters—LoRA updates approximately 1% of parameters, adapters around 2%, and prompt
tuning fewer than 0.1%—while still achieving competitive downstream task performance.
As the figure illustrates, these methods strike different balances between efficiency and
effectiveness, making them particularly attractive for resource-constrained IoT and Feder-
ated Learning settings where full fine-tuning is often impractical. This visual comparison
underscores the growing importance of PEFT techniques in scaling LLM applications to
diverse, decentralized edge environments.

Finally, complementing these model-level optimizations, adaptive distribution tech-
niques employing dynamic workload schedulers can monitor real-time device telemetry
(available RAM, CPU load, network bandwidth) to adjust model partitioning or batch
sizes on the fly, maximizing the utilization of available resources. Together, these diverse
approaches—compression, splitting, parameter-efficient adaptation, and dynamic schedul-
ing—make it increasingly practical to deploy and adapt sophisticated LLMs effectively on
resource-constrained IoT hardware.
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Figure 5. Trade-off between trainable parameter ratio and downstream task performance (e.g., typical
accuracy observed on natural language understanding tasks from benchmarks like GLUE) for various
LLM fine-tuning methods. Full fine-tuning updates 100% of parameters, whereas PEFT approaches
such as LoRA (1%), adapter (2%), and prompt tuning (<0.1%) offer large savings in parameter updates
at the cost of some performance.

6.2. Communication Overhead

The high communication overhead associated with FL poses another significant
challenge, particularly in IoT networks characterized by potentially unreliable or low-
bandwidth connections [10]. Transmitting large model updates frequently between nu-
merous devices and a central server can saturate the network and consume considerable
energy. Several approaches aim to mitigate this communication burden. As mentioned,
PEFT methods are highly effective, as only the small adapter updates need to be transmit-
ted [101]. Update compression techniques can further reduce the size of transmitted data,
but carry a risk of information loss [111]. Reducing the frequency of communication rounds
can save bandwidth, but typically slows down the convergence of the global model [9].
Additionally, asynchronous protocols allow devices to communicate more flexibly based
on their availability, alleviating delays caused by stragglers, but they introduce challenges
related to model staleness and potential inconsistencies [112].

6.3. Data Heterogeneity and Fairness

The performance and fairness of FL systems are significantly impacted by data het-
erogeneity, commonly referred to as Non-IID data, which is prevalent in IoT environ-
ments [113]. Data distributions often vary substantially across devices due to differing
local environments, usage patterns, or sensor types (e.g., label or feature skew). This
heterogeneity can hinder the convergence of standard FL algorithms like Fed Avg and lead
to a global model that performs poorly for specific clients. Furthermore, biases present in
local data or even within the pre-trained base LLM can be amplified or unfairly distributed
across participants through the FL process, and measuring or mitigating such biases in
a decentralized manner remains difficult [37]. Strategies to address Non-IID data and
promote fairness include using Robust Aggregation algorithms (like FedProx), designed to
be less sensitive to diverging updates [44], and employing PFL techniques that tailor parts
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of the model to local data, although this adds complexity [73,74]. Fairness-aware algorithms
explicitly try to balance performance across different client groups, sometimes at the cost of
overall average accuracy. Another approach involves augmenting local data with synthetic
data (potentially generated by LLMs) or relevant public data, but this requires careful
consideration of privacy implications [103,104].

6.4. Privacy and Security Risks

Ensuring robust privacy and security is perhaps the most critical challenge, given
the sensitive nature of IoT data and the distributed nature of FL. Key concerns in-
volve balancing model utility against privacy guarantees, protecting against various at-
tacks such as data leakage from model updates [110,114], data or model poisoning by
malicious clients [109,115], Byzantine failures [116], and backdoor attacks targeting the
models [117-119], all while complying with regulatory mandates like GDPR or HIPAA.

A variety of techniques, often referred to as PETs and robust mechanisms, are used
to mitigate these risks, each with distinct trade-offs in aspects like overhead (conceptually
compared in Figure 6) and utility. DP offers strong, mathematical guarantees against in-
ference attacks by adding calibrated noise. While generally having lower computational
overhead than cryptographic methods, it introduces a direct privacy—utility trade-off,
where increasing noise to enhance privacy typically degrades model accuracy [49], as illus-
trated conceptually in Figure 6. Cryptographic approaches like HE allow computations
(like aggregation) on encrypted data, providing strong confidentiality against the server
without accuracy loss, but their extremely high computational and communication over-
head makes them largely impractical for direct use on most IoT clients [3,53]. Similarly,
SMPC enables joint computations without revealing private inputs, offering strong security
through distributed trust with no accuracy loss, but typically requires complex, multi-round
interactions unsuitable for dynamic IoT environments [55]. Secure aggregation protocols
are optimized specifically for the FL summation task, offering much better efficiency than
general HE/SMPC and protecting individual updates from the server during aggregation,
but they do not protect the final model from inference or updates during transmission
without additional measures [56].

To defend against malicious clients sending faulty updates (poisoning or Byzantine
attacks), Robust Aggregation methods like Krum [116], Bulyan [126], coordinate-wise me-
dian, or trimmed mean are employed to filter outlier updates. However, their effectiveness
can decrease with sophisticated attacks or high Non-IID levels [127,128]. Recent advance-
ments show promise, such as the PEAR mechanism using cosine similarity and trust scores
for better robustness in Non-IID settings [120], or techniques like ByzSFL that integrate
Byzantine robustness with secure computation using zero-knowledge proofs (ZKPs) for ef-
ficient verification without revealing private data [124]. Complementary strategies include
explicit attack detection and verification mechanisms [121,122] and leveraging hardware
security through Trusted Execution Environments (TEEs) to provide protected enclaves for
computation [123].
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Figure 6. Illustration of the privacy—utility trade-off under differential privacy for Federated Learning
models. The plot compares the model accuracy (%) of two different DP-based optimization methods,
DPSGD and DP-Adam, across a range of privacy budgets (€) on a logarithmic scale. As the privacy
guarantee strengthens (smaller €), model performance consistently degrades, highlighting the inher-
ent trade-off between privacy protection and predictive utility. Key privacy levels (e =0.01, 0.1, 1,
and 10) are annotated to demonstrate performance sensitivity.

6.5. Scalability and On-Demand Deployment

Finally, achieving efficient scalability and supporting on-demand deployment is crucial
for applying FL-trained LLMs across massive and dynamic IoT populations [42]. Managing
the training process and subsequent inference efficiently requires optimized edge infras-
tructure, including techniques like caching and optimized model serving [43]. Scalable
FL orchestration is also essential, employing architectures like hierarchical, decentralized,
or asynchronous FL, each presenting different trade-offs in coordination complexity, ro-
bustness to failures or stragglers, and communication latency [101]. Furthermore, effective
resource-aware management, incorporating adaptive scheduling, intelligent client selection
strategies, and potentially incentive mechanisms, is needed to handle the dynamic nature
of device availability and network conditions [125].

7. Research Gaps and Future Directions

The IoT, LLMs, and FL have seen rapid progress, establishing a notable current state of
development and research. However, despite these advancements, substantial challenges
persist. This section aims to provide a structured overview by first briefly acknowledging
key aspects of the current landscape within specific domains of this integration. Building
on this, we then identify critical research gaps, supported by detailed evidence and insights
from recent literature. Finally, based on these identified gaps, we delineate promising
future directions for advancing the synergistic application of these technologies.

Efficiency for Extreme Edge: LLMs are notoriously resource-intensive, but edge IoT
devices often operate on milliwatts of power with kilobytes of RAM. Techniques like
QLoRA [62] reduce fine-tuning memory use by combining 4-bit quantization and low-rank
adaptation, making LLMs tractable for edge execution. Similarly, SparseGPT achieves one-
shot pruning with negligible accuracy drop on billion-parameter models [67]. SmoothQuant
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enhances post-training quantization by aligning activations and weights to improve stabil-
ity under int8 quantization [68]. Backpropagation-free training is emerging as a potential
direction to eliminate memory-heavy gradient calculations; the survey in [87] reviews
biologically inspired and forward—forward alternatives relevant to constrained hardware.
These are particularly promising when combined with hardware-aware co-design, as advo-
cated in [3], for FL in 6G IoT networks.

Robustness to Heterogeneity and Fairness: Extreme client heterogeneity in IoT-FL,
both in data and hardware, poses serious convergence and fairness challenges. Pfeiffer
et al. [24] analyze system-level disparities and advocate for client-specific adaptation layers.
Carlini et al. [37] further highlight how adversarial alignment in neural networks can
propagate biases, underscoring the need for fairness constraints in model design. Multi-
prototype FL, as discussed in the Wevolver report [12], enables clients to specialize on
subsets of prototypes that better represent their local distributions. Deng et al. [73] propose
a hierarchical knowledge transfer scheme that separates global, cluster, and local models,
reducing the negative transfer from outlier clients. Formal fairness-aware FL protocols,
however, are still lacking.

Practical Privacy Guarantees: Applying PETs to LLM-based FL is non-trivial. While
traditional DP mechanisms such as those in [45,48] remain foundational, Ahmadi et al. [49]
show that when applied to LLMs in FL, DP introduces substantial performance degradation
unless combined with hybrid masking and adaptive clipping strategies. Liu et al. [70]
propose DP-LoRA, which selectively adds noise only to low-rank adaptation matrices,
achieving a trade-off between utility and formal privacy. Yet, computational cost remains
high. HE and SMPC offer stronger privacy but with significant communication and
computational overheads unsuitable for IoT [53,55]. Efficient and scalable PET integration
into low-power FL deployments remains an open issue.

Advanced Security and Trust: Foundation models open new attack surfaces in FL.
Li et al. [118] demonstrate that compromised foundation models can inject imperceptible
backdoors into global models during federated fine-tuning. Wu et al. [119] study adversar-
ial adaptations where model updates mimic benign behavior, bypassing current anomaly
detection. Existing aggregation defenses like Krum [116] and Bulyan [126] struggle when
attackers use model-aligned poisoning. Fan et al. [124] propose using zero-knowledge
proofs for secure update verification in FL, though integration into LLM systems is yet to
be tested. Decentralized trust frameworks with verifiable integrity, such as those discussed
in [42], could mitigate these threats in IoT federations.

Standardization and Benchmarking: Most existing FL. benchmarks are designed for
small NLP tasks (e.g., FedNLP [98]), lacking scale and modality diversity. Zhang et al. [97]
introduce Federated GPT to benchmark instruction tuning under FL settings, incorporating
metrics like alignment score and robustness. FederatedScope-LLM [96] goes further, provid-
ing end-to-end support for parameter-efficient tuning (e.g., LoORA, prompt tuning) across
diverse datasets. However, neither covers streaming sensor data, nor evaluates under
network constraints typical in IoT. A comprehensive benchmark must include multimodal
tasks, model size variability, privacy/utility/fairness trade-offs, and realistic simulation
environments [129].

Multimodal Federated Learning: IoT deployments naturally involve multimodal data.
ImageBind [130] demonstrates crossmodal LLMs trained on image, audio, depth, and IMU
inputs in a single embedding space, but assumes centralized training. Cui et al. [105] high-
light the challenges of decentralized multimodal alignment, including inter-client modality
mismatch and unbalanced contributions. Communication-efficient multimodal fusion
techniques and modality-specific adapters are needed. Sensor-based FL must incorporate
asynchronous updates and crossmodal imputation to be practical in the real world.
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Federated Learning for Al Agents: Li et al. [131] envision LLM-based Al agents capa-
ble of perception, planning, and actuation across decentralized IoT systems. Such agents
require lifelong learning and task adaptation, which traditional FL lacks. PromptFL [80]
proposes learning shared prompts instead of entire models, while FedPrompt [81] enhances
this with privacy-preserving prompt updates. These methods significantly reduce commu-
nication and allow client-specific behavior, but lack the reasoning and memory modules
required by generalist agents. Integration with reinforcement FL and safe exploration
policies is a future direction.

Continual Learning and Adaptability: The temporal nature of IoT data leads to fre-
quent concept drift. Shenaj et al. [132] propose online adaptation techniques but do not
consider privacy. Wang et al. [107] review continual FL methods including regularization-
based and rehearsal-based strategies. Xia et al. [108] propose FCLLM-DT, which maintains
temporal awareness via digital twins. These approaches should be enhanced with memory-
efficient adaptation and forgettable modules that meet legal obligations on data deletion.

Legal, Ethical, and Economic Considerations: Federated LLMs operating across juris-
dictions must comply with evolving data governance policies. Cheng et al. [10] outline
open legal questions in multi-party FL, such as liability for biased decisions and model
misuse. Qu et al. [13] emphasize ethical concerns such as disproportionate access to com-
puting resources and biased training data. Witt et al. [43] review incentive mechanisms like
token-based payments or fairness-based credit allocation, critical for encouraging client
participation. However, these are rarely tested in LLM-specific scenarios, and no consensus
exists on equitable reward strategies.

Machine Unlearning and Data Erasure: Hu et al. [133] propose erasing LoRA-tuned
knowledge via gradient projection and local retraining to remove specific client data contri-
butions without damaging generalization. Patil et al. [134] leverage influence functions
to reduce a sample’s effect on final predictions, but require full access to model internals.
Qiu et al. [135] address federated unlearning by designing reverse aggregation schemes,
though practical validation on LLMs is absent. Verifiability and efficiency of unlearning
remain open problems, especially in decentralized, heterogeneous FL contexts.

8. Conclusions

Before summarizing our findings, it is important to acknowledge certain limitations
of this review. While we endeavored to conduct a comprehensive search across multiple
prominent databases and included pre-prints to capture the latest advancements, the se-
lection process may be subject to inherent biases. Our exclusion of non-English language
articles and the specific keywords chosen might have inadvertently omitted some rele-
vant studies. Furthermore, the field of integrating IoT, LLMs, and FL is exceptionally
dynamic; consequently, new developments may have emerged subsequent to our literature
search cutoff in May 2025 that are not encompassed in this work. The review’s primary
focus on the tripartite synergy also means that related pairwise integrations or broader
technological aspects might have received less exhaustive coverage than in specialized
surveys. These factors should be considered when interpreting the scope and conclusions
of this review.

Bringing together the IoT, LLMs, and FL creates a powerful combination. This review
has explored how this three-way synergy, backed by strong privacy techniques, paves the
way for smarter, more responsive, and trustworthy distributed systems, achieving results
that are not available when these technologies are used in pairs. We have mapped out
the motivations, the edge-focused architectures, the key methods like PEFT and SFL that
make it work, and importantly, the significant challenges involved. Making this powerful
integration a reality means tackling some tough hurdles head-on. We need to find ways
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to run demanding LLMs on resource-limited IoT devices using FL, manage data sharing
across networks without overwhelming them, handle the inherent diversity in IoT data
and systems, and ensure fairness for everyone involved. Above all, protecting user privacy
and securing the entire system against attack, all while meeting legal requirements, is
absolutely critical. Despite these difficulties, researchers are actively finding solutions.
We are seeing progress with techniques like model compression, smarter communication
strategies, personalized learning, advanced privacy methods, and robust ways to combine
model updates, though finding the right balance is always key. Encouragingly, real-world
applications are starting to emerge, showing the clear value of using FL to let LLMs learn
from distributed IoT data privately and effectively.

However, there is still a gap between this potential and widespread, reliable use.
To close this gap, the research community needs to focus on several key areas. We urgently
need breakthroughs in on-device efficiency for tiny edge devices, more robust algorithms
that can handle messy real-world data and potential attacks, reliable ways to guarantee
privacy and fairness, standard benchmarks to measure progress fairly, and clear thinking
on the legal, ethical, and economic implications. By taking on these challenges with focused,
collaborative research, we can unlock the true promise of this technological convergence.
Getting this right means building a future with distributed Al systems that are not only
powerful and efficient but also fundamentally trustworthy and respectful of data rights,
impacting critical areas from industry to healthcare and beyond.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CFL Centralized Federated Learning
DFL Decentralized Federated Learning
DP Differential Privacy

FL Federated Learning

GDPR General Data Protection Regulation
HE Homomorphic Encryption

HIPAA  Health Insurance Portability and Accountability Act
IIoT Industrial Internet of Things

IoT Internet of Things

KD Knowledge Distillation

LLM Large Language Model

LoRA Low-Rank Adaptation
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Non-IID  Non-Independent and Identically Distributed

PEFT Parameter-Efficient Fine-Tuning
PET Privacy-Enhancing Technology
PFL Personalized Federated Learning
SFL Split Federated Learning
SMPC Secure Multi-Party Computation
TEE Trusted Execution Environment
ZKP Zero-Knowledge Proof
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