
Results in Engineering 26 (2025) 105568

Available online 4 June 2025
2590-1230/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Results in Engineering  

journal homepage: www.sciencedirect.com/journal/results-in-engineering

Review article

Advances in impact force identification: A comprehensive review of 

techniques and mathematical innovations

Hamed Kalhori a,b, ,∗, Shabnam Tashakori c,∗, Ben Halkon a, Mehrisadat Makki Alamdari d, 
Bing Li e,∗, Morteza Saberi f

a School of Mechanical and Mechatronic Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia
b Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
c Department of Mechanical Engineering, Shiraz University of Technology, 71557-13876, Iran
d School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
e School of Aeronautics, Northwestern Polytechnical University, Xian, Shaanxi, 710072, China
f School of Computer Science, University of Technology Sydney, NSW 2007, Australia

A R T I C L E I N F O A B S T R A C T 

Keywords:

Impact force reconstruction

Impact localization

Structural Health Monitoring (SHM)

Regularization

Machine learning

This review provides a comprehensive and critical synthesis of state-of-the-art methodologies for impact 
force identification, a pivotal inverse problem in aerospace, automotive, civil infrastructure, and robotics 
systems. A systematic taxonomy is established to evaluate impact force reconstruction techniques, including 
deconvolution, subspace state-space formulations, and data-driven models, as well as localization strategies, 
such as triangulation, similarity-based matching, and optimization-based algorithms. The comparative analysis 
underscores the trade-offs between model-based approaches, which offer high computational efficiency in 
linear regimes, and machine learning methods, which demonstrate robustness in capturing nonlinear and high

dimensional system behaviors. The paper delves into recent mathematical advancements aimed at mitigating 
the inherent ill-posedness of inverse problems, emphasizing the roles of advanced regularization schemes, 
compressed sensing, and sparsity-promoting techniques. Notable emerging directions include hybrid physics

informed machine learning frameworks, domain adaptation and transfer learning to alleviate data dependency, 
and incremental learning paradigms suited for real-time deployment. Unresolved challenges are also identified, 
particularly in scenarios involving multiple concurrent impacts, sparse sensor networks, and online operation 
under dynamic environmental conditions. The review concludes by outlining future research trajectories to 
advance the accuracy, generalizability, and real-time feasibility of impact force identification methods.
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1. Introduction

Many engineering structures are frequently subjected to impact 
events throughout their service life, which can lead to progressive dam

age and, ultimately, structural failure. For instance, the compressive 
strength of composite laminates may decrease by 65 to 80 percent un

der impact forces, even when no visible external damage is observed 
[1]. Aircraft are particularly susceptible to various impact events, in

cluding damage caused by tire debris, hail, or bird strikes. Notably, bird 
strikes account for approximately 90 percent of reported incidents and 
can cause significant damage to forward-facing components of an air

craft [2], as shown in Fig. 1. Therefore, accurate identification of the 
impact location and magnitude is critical for effective structural health 
monitoring of aircraft.

Measurement of impact loads directly is often impractical or infea

sible for several reasons: (i) installing sensors throughout a structure 
can be challenging and may alter the dynamic characteristics of the 
structure, (ii) capturing large impact forces over a short duration is dif

ficult and may damage sensors over time, and (iii) positioning sensors 
in all desired locations, such as inaccessible areas between substruc

tures in a large system to measure interaction forces, presents significant 
challenges [4,5]. As an alternative to direct measurement, inverse al

gorithms can be utilized to estimate impact forces based on available 
system dynamic responses. Typically, dynamic problems associated with 
impacts are classified into the following categories: (i) the forward prob

lem, and (ii) the inverse problem, shown schematically in Fig. 2. In 
forward problems, the responses of a given system are found on the 
basis of given inputs. In inverse problems, system inputs are estimated 
from observed system dynamics and collected vibration responses. Ad

ditionally, determining the system model itself from known inputs and 
responses constitutes another type of inverse problem.

There are a noticeable number of studies in the literature that em

ploy inverse algorithms for the reconstruction of impact forces, which 
can be categorized into two main classes: (i) model-based techniques 
[6--22], and (ii) machine/deep learning methods [23--29]. Most model

based approaches are only applicable to linear problems [30]. Generally 

speaking, machine learning methods are superior when (i) the underly

ing dynamics are inaccessible or too complex, and (ii) the identification 
problem is nonlinear [25,31]. On the other hand, machine and deep 
learning techniques have a significant drawback: their accuracy heavily 
depends on large amounts of training data. Consequently, the main ad

vantages of model-based approaches and machine learning methods for 
solving inverse problems are, respectively, the reduced data and compu

tational requirements for model-based methods, and the applicability of 
machine learning techniques to complex or inaccessible dynamics, see 
Fig. 3.

Structural integrity inspection can be performed quickly with non

destructive techniques [32] when the location of the impact is known 
beforehand [33]. When the impact location is not known, it can be 
potentially identified inversely based on available measurements and 
by employing impact localization techniques. There are different ap

proaches for impact localization which are generally based on either (i) 
structural vibration, (ii) time differences and geometry, or (iii) machine 
and deep learning approaches. The structural vibration approach relies 
on the fact that the mode shape transformations are extremely sensi

tive to damage and hence can be employed to detect the impact force 
[34--36]. These methods require baseline health data, which is a sig

nificant limitation for use outside controlled settings. To overcome this 
issue, Gapped smoothing techniques in order to simulate the healthy 
structure [37,38] and the Wavelet Transform technique [39,40] have 
been proposed [41]. Moreover, this strategy is time-consuming for sys

tems with finite degrees-of-freedom (DoF) and infeasible for distributed 
structures [16]. The time and geometry based approaches, that are based 
on positioning of impact signals and their time differences, are only 
applicable to isotropic materials as they assume that the wave prop

agation speed through the structure is uniform [42--45]. To remedy 
this issue, several studies have been conducted [46--53]. For anisotropic 
wave propagation, the localization problem can be defined as a non

linear problem with geometrical constrains which can subsequently be 
solved by utilizing optimization algorithms [54,55]. The machine and 
deep learning approaches [24,56,57] rely on fitting or interpolating 
a known dataset with the impact data. The main limitation of these 

Fig. 1. Aircraft components most susceptible to bird strikes, highlighting areas prone to significant damage, such as the windshield, engines, and leading edges of 
wings [3].
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Table 1
Illustrative summary of impact localization methods.

Impact localization approaches Example Shortcoming Solution

Structural vibrations (i) Time-reversal method, 
(ii) Normalized cross-correlation 
technique, 
(iii) Cosine similarity technique

(i) Need benchmark data of a healthy 
structure, 
(ii) Time consuming for finite DOF 
systems, 
(iii) Infeasible for continuous structures

Simulate the healthy structure using, 
e.g., 
(i) Gapped smoothing technique, 
(ii) Wavelet transform technique

Time difference 
and geometry

Triangulation method Not applicable to anisotropic materials, 
and complicated structures

Express as a nonlinear problem with 
geometrical constraints, then solving 
it by, e.g., GA or PSO

Machine/deep learning (i) Reference database, 
(ii) Neural Networks

Need large training dataset Artificially create dataset

Fig. 2. Forward vs. inverse force problems. 

Fig. 3. Classification and comparison of different inverse algorithms for impact 
force reconstruction.

methods is their need for huge training data [44]. See Table 1 for an 
illustrative concise summary of impact localization methods.

An algebraic problem is considered well-posed if it satisfies the fol

lowing conditions: (i) the solution is unique, (ii) a globally-defined so

lution exists for all reasonable data, and (iii) the solution continuously 
depends on the given data [58]. The force identification problem is typ

ically ill-posed for two main reasons: (i) a high condition number of 
the transfer functions, making the problem sensitive to small perturba

tions such as measurement noise, and (ii) non-collocated excitation and 
observation points, leading to non-unique solutions due to time-delays 
and disturbances between input signal and measurement. The general 
approach to address this issue is to transform it into a well-posed prob

lem by incorporating additional information about the desired solution 
[58,59]. Various approaches, typically referred to as filtering and regu

larization methods in this context, have been employed to address the 
ill-posedness of inverse reconstruction and localization problems.

This review paper investigates various methods for impact force re

construction and localization, with an effort to classify the available 
approaches. It also introduces mathematical techniques to address the 
challenge of ill-posedness. The main contributions are twofold: first, it 
offers a comprehensive literature review of impact force identification; 
second, it provides a classification and comparison of the tools and tech

niques utilized.

The paper is organized as follows. Section 2 presents model-based 
impact force reconstruction methods. Next, the model-based impact lo

calization techniques are presented in Section 3. A review of the ap

plication of machine learning and deep learning approaches in both 
the reconstruction and localization of the impact force is presented in 
Section 4. Section 5 introduces some relevant mathematical tools and 
techniques to deal with ill-posedness. Finally, concluding remarks are 
provided in Section 7.

2. Model-based impact force reconstruction

Model-based techniques utilize the collected vibration response 
along with an a priori structural model to reconstruct the unknown 
impact force. These approaches involve a model that describes the dy

namic behavior of the structure under impact, which can be developed 
using various methods. [60]: (i) analytical solutions [61], (ii) numer

ical methods [8,62], or (iii) experiments (e.g., the transfer functions) 
[63,64].

Two main approaches have been proposed for model-based impact 
force reconstruction [65]: (i) the deconvolution method, and (ii) state 
estimation. In the deconvolution approach, the relationship between un

known forces and measured responses is first established, after which 
the reconstruction is formulated as a least squares optimization problem 
[66]. However, such inverse problems are typically ill-posed [6] mak

ing the least squares solution highly sensitive to measurement noise. To 
address this, several mathematical techniques are employed, which will 
be discussed in Section 5. Additionally, the deconvolution technique is 
not computationally efficient for large-scale structures or extended time 
periods. Two main approaches to remedy this issue are as follows: (i) 
employing dictionaries [7,14,65,67] in order to reduce the number of 
variables which, in turn, leads to the reduction of computation cost, 
and (ii) employing iterative regularization methods, such as Landweber 
method [68,69], Kaczmarz method [69--71], and Krylov Subspace meth

ods [72], which avoid extensive regularization parameter selection. On 
the other hand, in the state estimation approach, impact forces are for

mulated as state variables. The superiority of this approach is that it can 
identify the external impact forces, the system state variables, and even 
the parameters of the system, simultaneously. Note that the state esti

mation approach is not applicable in the event of sudden changes as it 
assumes that the forces are time-invariant with stochastic perturbation 
noises [65]. Though, it is still more robust and computationally more 
efficient than the deconvolution approach. The above discussion is il
lustratively summarized in Fig. 4. In the following, several model-based 
methods to reconstruct impact forces are presented.

2.1. Deconvolution technique

The deconvolution technique is the most frequently employed strat

egy for impact force identification [73,74]. This method is known as a 
straightforward method to reconstruct impact forces [75]. However, it 
has two main limitations, namely, (i) it is only applicable to linear prob

lems, i.e., it is limited to small deflections, and (ii) it is ill-posed, i.e., is 
sensitive to measurement noise [6]. To deal with the first limitation, a 
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Fig. 4. The pros of each model-based approach for impact force reconstruction. 

Fig. 5. Classification of approaches for the deconvolution method used for im

pact force identification.

generalized form of the convolution integral has been proposed in the 
literature [25], which expresses the nonlinear system as a series of infi

nite sums of convolutional integrals, named Volterra series [76,77]. To 
solve the second issue (ill-posedness), several mathematical techniques 
such as regularization methods are proposed in the literature, which will 
be reviewed in Section 5.

Three main approaches of the deconvolution method are (i) the 
time domain approach [15,16,60,78], (ii) the frequency domain ap

proach [79,80], and (iii) the time/frequency domain wavelet technique 
[81--84], see Fig. 5. In general, frequency domain strategies require 
lower computational effort, nevertheless, (i) they are not applicable 
when time series data is accessible over a relatively short duration [85] 
and hence they are commonly infeasible for transient phenomena, and 
(ii) for some applications such as robotic surgery, a real time identi

fication of the force is preferred. In particular, when using frequency 
domain methods, inverse Fourier Transform is required to obtain the 
forces in time domain. Those methods are more suitable for stable and 
stationary random forces.

2.1.1. Time domain deconvolution

Time domain deconvolution has been widely used in the literature 
for identifying impact forces [6,16,18,86--90]. The overall idea behind 
this method is as follows.

Consider an impact applied to a structure at a known location, with 
𝑛 sensors mounted on the structure to measure system responses, as 
illustrated in Fig. 6. The convolution integral, describing the relation 
between the response 𝑟 and the impact force 𝑓 , is as follows [18]:

𝑟(𝑦, 𝑡) =

𝑡 

∫
0 

𝑇𝑠(𝑥, 𝑦, 𝑡− 𝜁)𝑓 (𝑥, 𝜁)𝑑𝜁, (1)

where 𝑇𝑠(𝑥, 𝑦, 𝑡− 𝜁), 𝑠 = 1, ...𝑛, is the transfer function between the im

pact force, applied at point 𝑥, and the 𝑠th sensor, located at point 𝑦, at 
time 𝑡 = 𝜁 . Note that Eq. (1) does not account for the influence of the 
system’s initial conditions. This is based on the assumption that the sys

tem remains at rest prior to the application of the impact force. Equation 
(1) can be discretized as follows:

r = T𝑠f, (2)

where r ∈ 𝑅𝑚 is the measured response vector with 𝑚 the number of 
samples, f ∈ 𝑅𝑚 is the impact force vector (to be reconstructed), and 
T𝑠 ∈𝑅𝑚×𝑚 is the impulse response matrix, given by:

r =

⎡⎢⎢⎢⎢⎢⎣

𝑟(Δ𝑡)
𝑟(2Δ𝑡)

⋮
𝑟((𝑚− 1)Δ𝑡)

𝑟(𝑚Δ𝑡)

⎤⎥⎥⎥⎥⎥⎦
, f =

⎡⎢⎢⎢⎢⎢⎣

𝑓 (Δ𝑡)
𝑓 (2Δ𝑡)

⋮
𝑓 ((𝑚− 1)Δ𝑡)

𝑓 (𝑚Δ𝑡)

⎤⎥⎥⎥⎥⎥⎦
,

T𝑠 =

⎡⎢⎢⎢⎢⎢⎣

𝑇𝑠(Δ𝑡) 0 … 0
𝑇𝑠(2Δ𝑡) 𝑇𝑠(Δ𝑡) … 0

⋮ ⋮ ⋱ ⋮
𝑇𝑠((𝑚− 1)Δ𝑡) 𝑇𝑠((𝑚− 2)Δ𝑡) … 0

𝑇𝑠(𝑚Δ𝑡) 𝑇𝑠((𝑚− 1)Δ𝑡) … 𝑇𝑠(Δ𝑡)

⎤⎥⎥⎥⎥⎥⎦
, (3)

with Δ𝑡 the time interval. The solution of Eq. (2) can be regarded as the 
following least-squares problem:

𝑚𝑖𝑛‖r − T𝑠f‖22, (4)

where T𝑠 can be obtained by using the following relation:

r = Ft𝑠, (5)

where F ∈𝑅𝑚×𝑚 is a reference impact force, r ∈𝑅𝑚 is its corresponding 
measured response, and t𝑠 ∈𝑅𝑚 is the vector of transfer function, given 
by:

F =

⎡⎢⎢⎢⎢⎢⎣

𝑓 (Δ𝑡) 0 … 0 0
𝑓 (2Δ𝑡) 𝑓 (Δ𝑡) … 0 0

⋮ ⋮ ⋱ ⋮ ⋮
𝑓 ((𝑚− 1)Δ𝑡) 𝑓 ((𝑚− 2)Δ𝑡) … 𝑓 (Δ𝑡) 0

𝑓 (𝑚Δ𝑡) 𝑓 ((𝑚− 1)Δ𝑡) … 𝑓 (2Δ𝑡) 𝑓 (Δ𝑡)

⎤⎥⎥⎥⎥⎥⎦
,

t𝑠 =

⎡⎢⎢⎢⎢⎢⎣

𝑇𝑠(Δ𝑡)
𝑇𝑠(2Δ𝑡)

⋮
𝑇𝑠((𝑚− 1)Δ𝑡)

𝑇𝑠(𝑚Δ𝑡)

⎤⎥⎥⎥⎥⎥⎦
. (6)

Again, the solution of Eq. (5) can be regarded as a least squares problem, 
as follows:

𝑚𝑖𝑛‖r − Ft𝑠‖22. (7)

Note that while Eqs. (2)-(4) are similar to Eqs. (5)-(7), they describe two 
different problems. However, both problems represented by Eq. (4) and 
Eq. (7) are ill-posed, which can lead to instability in the solution. Math

ematical methods to deal with ill-posedness are presented in Section 5.

2.1.2. Frequency domain approach

The frequency domain strategy relies on spectral analysis. Similar 
to the time domain deconvolution approach, the impact force is identi

fied at each frequency by using the measured response vector and the 
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Fig. 6. Illustration of impact force reconstruction (the location of the impact force and the sensors are respectively shown by 𝐼1 and 𝑆𝑖). 

pseudo-inverse of the frequency response function matrix at that specific 
frequency [80], which is discussed below in detail.

The frequency domain deconvolution formulation is obtained by ap

plying the Fourier Transform to both sides of Eq. (1) and rearranging as 
follows [79,80,91]:

𝑟(𝑦,𝜔) = 𝑇̃𝑠(𝑥, 𝑦,𝜔)𝑓 (𝑥,𝜔), (8)

where 𝑟, 𝑇̃𝑠, and 𝑓 are complex functions of 𝜔 that is the harmonic circu

lar frequency. For a scenario that several responses are gauged at various 
locations, Eq. (8) can be expressed in the following matrix form:

r̃(𝜔)𝑙×1 = T̃𝑠(𝜔)𝑙×𝑞 f̃(𝜔)𝑞×1, (9)

with T̃𝑠(𝜔) the Frequency Response Function (FRF) matrix. In Eq. (9), 
𝑙 is the number of locations with mounted sensors, and 𝑞 is the num

ber of unknown forces. Pre-multiplying Eq. (9) by T̃−1
𝑠
(𝜔) can lead to 

the computation of f̃(𝜔). This pre-multiplication can be done if, firstly, 
r̃(𝜔) and T̃𝑠(𝜔) are known, and secondly, 𝑙 = 𝑞. However, using a least 
squares scheme with 𝑙 > 𝑞, which involves employing additional mea

surement locations, leads to a more accurately identified force. Then, 
the formulation is as follows:

f̃(𝜔) = T̃𝑠(𝜔)+r̃(𝜔), (10)

where T̃𝑠(𝜔)+ is the pseudo-inverse of T̃𝑠(𝜔), which is a non-square ma

trix, defined by:

T̃
+
𝑠
= (T̃𝐻

𝑠
T̃𝑠)−1T̃

𝐻

𝑠
, (11)

with the superscript 𝐻 , the Hermitian transpose.

With the given measured responses and the FRF matrix, the unknown 
impact forces can be obtained by using Eq. (10). Note that this formu

lation needs the matrix inversion process to be as accurate as possible. 
With an ill-conditioned T̃𝑠, the response errors will be amplified and can 
ultimately lead to unstable results. This clarifies the importance of em

ploying regularization methods, which can be exploited if a numerical 
solution of Eq. (9) exists.

2.1.3. Wavelet deconvolution technique

The wavelet deconvolution technique can provide more accurate re

sults for identifying impact forces, which have an inherently finite time 
duration, compared to the frequency domain deconvolution method 
[25]. This is because the Fourier Transform represents the impact force 
signal as a linear combination of sinusoidal functions, which are infinite 
in time [81]. Whereas, an arbitrary impact force signal can be repre

sented as a linear combination of wavelets, which are finite in time, 
by taking the Wavelet Transform. Furthermore, this approach can help 
alleviating the ill-conditionedness of the transfer function matrix, as a 
dictionary to decompose the load into basic functions and coefficients.

Wavelets were first employed for impact force reconstruction only 
with time domain shifting [92], however, it is more effective when the 
basic wavelets are also scaled [81]. Efforts to modify and enhance the 
use of wavelets to identify impact forces have been published [93--95]. 
Considering both scaling and shifting of the wavelet for impact force 

reconstruction is studied in [82]. Controlling both shift and scale compo

nents provides a pseudo regularization and hence reduces the ill-posed 
nature of the problem [84]. More recently, in [96], the wavelet deconvo

lution method is exploited to reconstruct the exerted impact forces on a 
rectangular carbon fiber-epoxy honeycomb composite sandwich panel. 
Therein, the efficacy of different mother wavelets is also investigated. 
The wavelet deconvolution method is also verified experimentally on a 
polycarbonate plate in [84].

Using the discrete Wavelet Transform theory, the impact force 𝑓 (𝑡)
can be approximated by the following summation [84]:

𝑓 (𝜏) =
𝑀∑

𝑚=𝑚0

𝑁𝑚∑
𝑛=𝑛0

𝑓𝑑
𝑚,𝑛

𝜓𝑚,𝑛(𝜏) +
𝑁𝑀∑
𝑛=𝑛0

𝑓𝑎
𝑀,𝑛

𝜑𝑀,𝑛(𝜏), (12)

where 𝑚 and 𝑛 are integers and 𝜏 is the normalized time. In Eq. (12), 
𝑓𝑑
𝑚,𝑛

and 𝑓𝑎
𝑀,𝑛

are, respectively, the expansion coefficients at scaling 
levels 𝑚 and 𝑀 with the superscripts 𝑑 and 𝑎 denoting the detail and 
approximation terms. The scaled and shifted wavelet function 𝜓(𝜏) and 
scaling function 𝜑(𝜏) are, respectively, given by [82]:

𝜓𝑚,𝑛(𝜏) = 𝑎
−𝑚∕2
0 𝜓

( 𝜏 − 𝑛𝑏0𝑎
𝑚
0

𝑎𝑚0

)
, (13a)

𝜑𝑀,𝑛(𝜏) = 𝑎
−𝑀∕2
0 𝜑

( 𝜏 − 𝑛𝑏0𝑎
𝑀
0

𝑎𝑀0

)
, (13b)

with 𝑎−𝑚∕20 and 𝑎−𝑀∕2
0 the normalization parameters, 𝑎−𝑚0 and 𝑎−𝑀0 the 

scaling parameters, and 𝑛𝑏0𝑎𝑚0 and 𝑛𝑏0𝑎𝑀0 the shifting parameters. Con

sequently, the response function 𝑟(𝜏) can be obtained as follows based 
on the new formulation of impact force in Eq. (12):

𝑟(𝜏) =
𝑀∑

𝑚=𝑚0

𝑁𝑚∑
𝑛=𝑛0

𝑓𝑑
𝑚,𝑛

Ψ𝑚,𝑛(𝜏) +
𝑁𝑀∑
𝑛=𝑛0

𝑓𝑎
𝑀,𝑛

Φ𝑀,𝑛(𝜏), (14)

where,

Ψ𝑚,𝑛(𝜏) =

𝜏

∫
0 

𝑇𝑠(𝜏 − 𝜁)𝜓𝑚,𝑛(𝜁)𝑑𝜁, (15a)

Φ𝑀,𝑛(𝜏) =

𝜏

∫
0 

𝑇𝑠(𝜏 − 𝜁)𝜑𝑀,𝑛(𝜁)𝑑𝜁, (15b)

can be regarded as the responses to the wavelet force. In Eq. (15), 𝑇𝑠
is the impulse response function. Equations (12) and (14) can be dis

cretized in the following form:

{𝑓} = [𝜆]{𝑓}, (16a)

{𝑟} = [Λ]{𝑓}, (16b)

where the elements of column vector 𝑓 are 𝑓𝑑
𝑚,𝑛

and 𝑓𝑎
𝑀,𝑛

, the matrix 
[𝜆] consists of 𝜓𝑚,𝑛(𝜏) and 𝜑𝑀,𝑛(𝜏), and matrix [Λ] composed of Ψ𝑚,𝑛(𝜏)
and Φ𝑀,𝑛(𝜏). Given Eq. (16a) and Eq. (16b), the impact force can be 
reconstructed as follows:
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{𝑓} = [𝜆][Λ]+{𝑟}, (17)

with [Λ]+ the Moore-Penrose generalized inverse of [Λ]. Note that [Λ]
can be constructed using a reference impact and a reference response 
with the same procedure of impact force reconstruction, see [82,84].

An adaptive wavelet-regularized time-domain deconvolution method 
has also been utilized for efficient impact force identification (IFI) [97]. 
Adaptive impact windows are generated using wavelet transform and 
multi-resolution analysis to reduce signal length, with wavelet bases 
filtered based on energy contributions for regularization. Validation 
through experiments with small-mass hammer and large-mass drop 
tower impacts demonstrated the method’s computational efficiency and 
accuracy, particularly for large-mass impacts with significant local de

formation.

2.2. State estimation-based approach

In this approach, force identification is considered as a state esti

mation problem, where the forces applied to the system are considered 
as the inputs. Then, various state estimation methods can be exploited 
to find the solution. The main advantages of the current approach, 
compared to deconvolution approach, are as follows [12,65]: (i) state 
variable formulation can be employed to simultaneously identify the ex

ternal loads, the state variables, and even the parameters of the system, 
and (ii) these methods are computationally more efficient for large-scale 
structures. However, state variable formulation methods may lose their 
efficacy when the applied force is prone to abrupt changes as they as

sume that the forces are time-invariant within a time step. The accuracy 
of this approach can be improved by adjusting the time step sufficiently 
small. Nonetheless, this remedy results in heavy computation burden, 
and increases the ill-posedness [12]. Alternatively, the principle of mo

mentum can be employed to transform the equation of motion, which is 
second-order, into a first-order momentum equation that can hone the 
rapid changes of the load [98]. Another approach presented in the lit
erature to overcome the mentioned issue is utilizing the conventional 
implicit Newmark method [9], which is beneficial especially in the case 
of low sampling frequency. Still, very small time steps should be used 
with direct integration methods, including the Newmark method, in or

der to deal with discontinuous loadings [99]. In [12], an improved state

space method is proposed that considers the function interpolation for 
the external force. Therein, two interpolation functions are presented, (i) 
the linear interpolation, and (ii) the sigmoid curve interpolation, which 
both are shown effective in the case of long sampling time and/or low 
sampling frequency. Furthermore, an extended method based on divid

ing the time step and making the problem over-determined, is proposed 
which can also be applied to systems prone to high noise level.

The linear equation of motion of a structure is generally expressed 
by a continuous-time second-order differential equation [10]:

Mü(𝑡) + Cu̇(𝑡) + Ku(𝑡) = f(𝑡), (18)

where u(𝑡) ∈ ℝ𝑛, with 𝑛 the number of DOF, is the vector of displace

ment and f(𝑡) ∈ℝ𝑛 is the vector of excitation force. Herein, the matrices 
M ∈ℝ𝑛×𝑛,C ∈ℝ𝑛×𝑛 and K ∈ℝ𝑛×𝑛 are, respectively, the mass, damping 
and stiffness matrices. These coefficient matrices are positive-definite, 
symmetric, and real-valued.

The state-space formulation of the system dynamics in Eq. (18) is 
given by [10]:

ẋ(𝑡) = Ax(𝑡) + Bf(𝑡), (19)

where the matrices A and B are functions of the coefficient matrices, 
M,C, and K, with the state vector x(𝑡) introduced as:

x(𝑡) =
[

u(𝑡)
u̇(𝑡)

]
. (20)

In a general form, the measurement equation is defined as follows:

r(𝑡) =
⎡⎢⎢⎣

S𝑑 0 0
0 S𝑣 0
0 0 S𝑎

⎤⎥⎥⎦
⎡⎢⎢⎣

u(𝑡)
u̇(𝑡)
ü(𝑡)

⎤⎥⎥⎦ , (21)

where r(𝑡) is the measurement vector, and S𝑑 ,S𝑣 and S𝑎 are the selection 
matrices. Equation (21) can also be reformulated into state-space form, 
as follows:

r(𝑡) = Gx(𝑡) + Jf(𝑡), (22)

with the matrices G and J functions of the coefficient matrices and the 
selection matrices. Equations (19) and (22) form the full order state

space formulation which can be utilized for input and state estimation.

Although physical phenomena are continuous in time, the experi

mentally measured response data are discrete in time. The discretized 
form of Eq. (19) with sampling frequency 1∕Δ𝑡 is given by [11]:

x𝑘+1 = A𝑑x𝑘 + B𝑑 f𝑘, 𝑘 = 0,1,2, ...,𝑁, (23)

with 𝑁 the number of samples, and the discrete time instants are defined 
as 𝑡𝑘 = 𝑘Δ𝑡. Herein, the matrices A𝑑 and B𝑑 are defined as follows:

A𝑑 = 𝑒𝑥𝑝(AΔ𝑡), (24a)

B𝑑 = A−1(A𝑑 − I)B. (24b)

Note that to arrive at Eq. (23), the force has been assumed constant 
in the integration time step. Moreover, the discretized system output is 
given by:

r(𝑘) = G𝑑x(𝑘) + J𝑑 f(𝑘), (25)

with 𝐺𝑑 =𝐺 and 𝐽𝑑 = 𝐽 .

2.2.1. Markov parameters precise computation

The impact force can be identified based on the impulse response 
of the system, i.e., the system Markov parameters [11]. Suppose a unit 
impulse load is applied to the system at time 𝑡 = 0 (i.e., 𝛿0 = 1) and the 
initial conditions of the system are zero. Then, given Eq. (23) and Eq. 
(25), the impulse responses at various time points are given by:

H0 = G𝑑x(0) + J𝑑𝛿0 = J𝑑 ,

x(1) = A𝑑x(0) + B𝑑𝛿0 = B𝑑 ,

H1 = G𝑑x(1) + J𝑑𝛿1 = G𝑑B𝑑 ,

x(2) = A𝑑x(1) + B𝑑𝛿1 = A𝑑B𝑑 ,

H2 = G𝑑x(2) + J𝑑𝛿2 = G𝑑A𝑑B𝑑 ,

x(3) = A𝑑x(2) + B𝑑𝛿2 = A2
𝑑
B𝑑 ,

H3 = G𝑑x(3) + J𝑑𝛿3 = G𝑑A2
𝑑
B𝑑 ,

⋮

H𝑖 = G𝑑A𝑖−1
𝑑

B𝑑 . (26)

Therefore, the response can be obtained by the convolution of the im

pulse response and the input force as follows:

r(𝑘) =
𝑘 ∑
𝑖=0 

H𝑖f(𝑘− 𝑖), (27)

which is known as Markov parameter representation of a structural 
system with the matrices H𝑖 called forward Markov parameters. The for

ward Markov parameters are obtained based on system dynamic prop

erties, and represent the response of a discrete system subjected to a 
unit impulse. These parameters can be calculated either analytically or 
experimentally, where the system output is measured for a known input.

In the case of inverse problem, i.e., estimating the input force based 
on given forward Markov parameters and responses of the system, the 
convolution relation is as follows:
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f(𝑘) =
𝑘 ∑
𝑖=0 

h𝑖r(𝑘− 𝑖), (28)

where the matrices h𝑖 are the inverse Markov parameters, given by (see 
[11]):

h0 = (H𝑇
0 H0)−1H𝑇

0 ,

h𝑘 = −h0

𝑘 ∑
𝑖=1 

H𝑖h𝑘−𝑖. (29)

Although determining the inverse Markov parameters from forward 
Markov parameters needs intensive computation, it is to be performed 
only once for a specific system. Therefore, highly precise force identi

fication can be performed without much computing cost. Nevertheless, 
the force identification problem is still ill-posed as a result of the noise 
in the measurements and the inversion process [11].

2.2.2. Kalman filter approach

In the process of force identification by inverse approaches, two 
kinds of uncertainty that are (i) modeling uncertainties, and (ii) uncer

tainty in the measured responses are present. Deterministic-stochastic 
methods are employed to take these uncertainties into account, which 
are usually represented in state-space. These methods presume that 
both the measurements and the state variables are subjected to noise, 
while the unknown force is treated as a deterministic quantity. Most of 
stochastic (or deterministic-stochastic) force identification methods rely 
on the Kalman filter [100].

In Kalman filter methods, the model error and the measurement 
noise are considered as stochastic processes in state-space. The exter

nal force and structural responses are then considered as unknowns 
[8,101--103]. The external force is estimated in a separate process as the 
state estimation [104], which may result in biased identification errors 
[13]. Generally, the Kalman filter has several advantages over deter

ministic methods. This includes (i) noise intervention cancellation, (ii) 
robustness, and (iii) online monitoring [105]. In the following, several 
Kalman filter approaches employed in the literature are briefly intro

duced:

• Augmented Kalman filter: An augmented Kalman filter technique 
is developed in [8] for force identification, where noise is consid

ered as a stochastic process. In [8], unknown forces are included 
in the state vector. This augmented vector is then estimated by 
employing the standard Kalman filter. This deterministic-stochastic 
method is presented in time domain and demonstrates insensitivity 
to modeling and measurement errors [105].

• Dual Kalman filter: To estimate unknown input and system states, 
a dual implementation of the Kalman filter is proposed in [10]. This 
method, which is compatible with linear systems, is numerically 
applicable even in case of un-observability and rank deficiency of 
the augmented problem formulation.

• Sparse Kalman filter: This method is a time domain recursive strat

egy which facilitates simultaneous localization and reconstruction 
of unknown forces [17]. Its main strength is that it can detect large 
number of forces, applied on potential locations, with employing 
a relatively fewer sensors and in less time, compared to conven

tional methods. Furthermore, the time delay between measurement 
and the corresponding input estimation is considered. On the other 
hand, the main defect of this method is the increase in the compu

tational burden.

• Unscented Kalman filter: Like Sparse Kalman filter method, this 
method can also localize and reconstruct the input simultaneously 
[13,75], while it can be employed for nonlinear structures.

• Extended Kalman filter: This method is employed for nonlinear 
structures in order to identify the parameters and estimate the exter

nal forces [106--108]. It is applicable on linear systems or structures 
with slight nonlinear property. Nevertheless, the Unscented Kalman 

filter leads to higher identification accuracy for nonlinear systems 
[109] compared to Extended Kalman filter.

Wrapping up, among model-based impact force identification meth

ods, those based on the state-space formulation have been shown to 
outperform the methods based on the deconvolution approach. Still, the 
application of mentioned methods in complicated structures needs to be 
investigated in more detail. Additionally, the performance of each ap

proach for real-time identification is still inconclusive in the literature. 
It is also unclear to the authors which approach performs better in the 
cases of (i) multiple impact occurrence, and (ii) limited instrumentation.

3. Model-based impact localization

The force reconstruction methods, presented in Section 2, assume 
that the impact location is known a priori. In the current section, some 
mostly-used model-based localization techniques are reviewed with two 
different approaches, (i) based on time difference and geometry, and (ii) 
based on structural vibrations.

3.1. Methods based on time difference and geometry

These methods seek the impact location based on propagating elastic 
waves resulting from the impact and the corresponding Time of Arrival 
(ToA) at a specific sensor location [55]. Hence, these methods are nor

mally only applicable to isotropic materials through which the wave 
propagation speed is uniform. To make them applicable for anisotropic 
materials, some modifications have been proposed in the literature re

lying on optimization algorithms such as Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) [54,55]. In the following, the idea 
behind this approach is presented through the Triangulation method.

One of the most popularly employed wave-based localization strate

gies is the Triangulation method, which has been presented in time 
domain and frequency domain [33]. Fig. 7 illustrates the idea of the 
triangulation method on a rectangle plate with 4 sensors mounted at its 
corners [44]. First, the distance between each sensor and the impact lo

cation is estimated. Then, a circle is drawn around each sensor with a 
radius equal to the related estimated distance of the impact location. 
Subsequently, the common area of these circles is defined as the impact 
region. Mathematically, one could first search for the midpoint of the in

tersection line between every two adjacent circles, shown by 𝑃1, 𝑃2, 𝑃3, 
and 𝑃4 in Fig. 7, and then determine the estimated impact location as 
the intersection point of lines 𝑃1 − 𝑃2 and 𝑃3 − 𝑃4. The distance be

tween the impact point and each sensor location can be estimated from 
the magnitudes of sensor signals, see [44,45], or the wave propagation 
speeds, see [42,43,55]. Furthermore, several pieces of research have 
been conducted in the literature to calculate ToA, which is needed for 
both signal magnitude and wave propagation approaches [52,110--113]. 
Among which, (i) Threshold method, (ii) Correlation method, and (iii) 
Likelihood algorithm are compared in [43] and a detailed discussion on 
the pros and cons of each method is presented.

Early triangulation techniques [114] were initially designed for 
isotropic materials, relying on the assumption that wave propagation 
speed remains uniform throughout the structure. However, recent ad

vancements have extended these methods to accommodate anisotropic 
materials [46--53]. In [51], a hybrid two-step approach was introduced 
for acoustic source prediction in anisotropic plates. The first step sim

plified the problem by assuming that waves travel along straight paths 
from the acoustic source to the sensor, enabling initial localization. This 
preliminary estimate was then refined in the second step through an op

timization process. Experimental validation confirmed that this second 
step consistently adjusted the estimates to more accurately align with 
the actual source location.

Still, this method loses its efficiency for complex structures as wave 
propagation highly relies on the structure geometry and properties 
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Fig. 7. Triangulation method for localizing impact location. 

[115]. More advanced signal processing methods have been also ex

ploited for impact localization on complex structures, e.g., similarity 
searching strategies [16,96,116--118] that will be discussed in the fol

lowing sections.

3.2. Methods based on structural vibrations

These methods employ the mode shape transformations of a struc

ture before and after an impact event. The main shortcoming of these 
methods is that they rely on a benchmark data of the intact structure. 
Additionally, they are generally computationally inefficient, especially 
for large or distributed structures [16]. The methods based on struc

tural vibrations are classified into two groups: (i) similarity searching 
strategies, and (ii) optimization-based techniques.

3.2.1. Similarity searching methods

Mathematically, a similarity searching method can be utilized to 
evaluate the similarity level between two time series. These methods 
are employed to detect the most similar time series. The similarity be

tween the time series is quantified as a similarity metric. The similarity 
searching methods are utilized to localize the impact force by compar

ing the measured impact signal with pre-obtained reference data. The 
similarity metric will be higher for those training points which are lo

cated closer to the actual impact force than other training points, which, 
in turn, determines the impact location. In the following, several meth

ods based on similarity searching approach are presented, namely, (i) 
Time reversal, (ii) Normalized cross-correlation, (iii) Cosine similarity, 
and (iv) Indexing strategy using Wavelet Transform.

• Time reversal method:

The Time Reversal method consists of two steps: (i) forward propa

gation step, and (ii) backward propagation step [119]. In the first step, 
the following information is acquired and stored: (1) the time history of 
low-velocity impacts which are performed at 𝑚 excitation points by a 
hand-held modal hammer, and (2) the responses of the structure, which 
are measured by 𝑛 sensors mounted on the structure. This step gives an 
𝑛 × 𝑚 matrix of stored responses, shown by (𝐺r𝑚). Suppose an impact 
with an unknown location is performed on the structure. The relating 
responses form an 𝑛× 1 matrix (𝐺r𝑚0). In the second step, a correlation 
between (𝐺r𝑚0) and (𝐺r𝑚) is performed, which leads to 𝑛×𝑚 functions 
𝑅𝑇𝑅, named ``time reversal operators''.

Let us define 𝐸𝐺𝑟𝑚0
as the geometric mean of the energy of the 

unknown impact response, and 𝐸𝐺𝑟𝑚
as the 𝑚 energies of the impact 

responses, stored in the first step. Then, for the responses measured 
by a specific sensor, the moduli of the 1 × 𝑚 calculated 𝑅𝑇𝑅𝑠

are nor

malized with 𝐸𝐺𝑟𝑚0
and 𝐸𝐺𝑟𝑚

, respectively. To evaluate the similarity 

between two signals, the correlation coefficient 𝑐𝑇𝑅 is employed, de

fined as [120,121]:

𝑐𝑇𝑅 =𝑚𝑎𝑥
( |𝑅𝑇𝑅| √

𝐸𝐺𝑟𝑚
𝐸𝐺𝑟𝑚0

)
. (30)

When the signals are similar, 0 < 𝑐𝑇𝑅 < 1 is close to 1, which happens at 
the true impact location. For each excitation point, 𝑛 correlation coeffi

cients are obtained, while the mean correlation coefficient is considered. 
And for each cell, a mean value of the coefficients related to its four cor

ners is calculated, called a global correlation coefficient 𝑐𝑇𝑅−𝐺𝐿𝑂𝐵𝐴𝐿 . 
The cell with the maximum 𝑐𝑇𝑅−𝐺𝐿𝑂𝐵𝐴𝐿 can then be chosen as the im

pact cell, which can be localized by a center-of-gravity method [122]:

𝑥𝐼 =
∑4

𝑖=1 𝑥𝑖𝑐𝑇𝑅𝑖∑4
𝑖=1 𝑐𝑇𝑅𝑖

,

𝑦𝐼 =
∑4

𝑖=1 𝑦𝑖𝑐𝑇𝑅𝑖∑4
𝑖=1 𝑐𝑇𝑅𝑖

, (31)

with 𝑐𝑇𝑅𝑖
the averaged correlation coefficient related to the 𝑖𝑡ℎ node, 

and impact source coordinates 𝑥𝐼 and 𝑦𝐼 , where 𝑥𝑖 and 𝑦𝑖 are the coor

dinates of the 𝑖𝑡ℎ node of the impact cell.

• Normalized cross-correlation technique:

The normalized cross-correlation technique is another impact local

ization method which relies on the similarity searching between a ref

erence database and the measured signals of the impact with unknown 
location [117,123]. The cross-correlation between signals 𝑓 and 𝑔 with 
𝜏 time lag is given by:

(𝑓 ∗ 𝑔)(𝜏) =

+∞

∫
−∞

𝑓 (𝑡)𝑔(𝑡+ 𝜏)𝑑𝑡, (32)

where ∗ is the cross-correlation operator. Consequently, the normalized 
cross-correlation is as follows:( 𝑓
𝐹

∗ 𝑔

𝐺

)
(𝜏), (33)

with normalizing constants 𝐹 and 𝐻 that correspond to signals 𝑓 and 
𝑔, respectively, given by:

𝐹 =

+∞

∫
−∞

|𝑓 (𝑡)|𝑑𝑡, (34a)

𝐺 =

+∞

∫
−∞

|𝑔(𝑡)|𝑑𝑡. (34b)

The normalized cross-correlation in Eq. (33) is ideally 1 when two sig

nals 𝑓 and 𝑔 are similar and the time-lag 𝜏 is zero.

Fig. 8 illustrates the concept of the cross-correlation method, which 
localizes an impact force by employing the normalized cross-correlation 
between the measured impact signals excited in the structure and a 
reference database. Suppose 𝑛 sensors are mounted on the structure, 
hence, for each training point, (𝑛) datasets are available. Similarly, when 
an impact occurs on the structure, 𝑛 signals are recorded by sensors. 
Next, for all the training points, the normalized cross-correlation of each 
reference data is compared with the acquired signal. The point that cor

responds to the higher value of normalized cross-correlation is identified 
as the impact location [117,123].

• Cosine similarity technique:

Cosine similarity method exploits the cosine of the angle between 
two non-zero signals to evaluate the error between them, as shown in 
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Fig. 8. General idea of the normalized cross-correlation technique for impact localization [117]. 

Fig. 9. Searching for the similarity between two vectors by Cosine similarity 
technique, employed for impact force localization.

Fig. 9, while it neglects the signals magnitude. The cosine similarity of 
vectors 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛) and 𝑞 = (𝑞1, 𝑞2, ..., 𝑞𝑛) is evaluated by [16,118]:

𝑀(𝑝, 𝑞) = 𝑝.𝑞 ‖𝑝‖‖𝑞‖ =
∑𝑛

𝑖=1 𝑝𝑖𝑞𝑖√∑𝑛

𝑖=1 𝑝
2
𝑖

√∑𝑛

𝑖=1 𝑞
2
𝑖

. (35)

Two vectors with the same orientation will result in the cosine similar

ity 𝑀 equal to 1, whereas perpendicular vectors give the value 𝑀 = 0. 
To localize an impact force, the reconstructed forces at each potential 
impact location are compared with a half-sine vector. The idea behind 
this is that normally an impact force signal is similar to a half-sine func

tion, even in the case of damage [63]. In [118], the following half-sine 
signal is introduced:

𝑝 =

{
𝑠𝑖𝑛( 𝜋

𝑎 𝑡) 0 < 𝑡 < 𝑎

0 𝑎 < 𝑡 < 𝑇
, (36)

with 𝑎 the scaling parameter and 𝑇 the time window. The definition of 
the similarity index 𝛿 is then given by:

𝛿 =𝑚𝑎𝑥‖𝑀‖. (37)

The impact location can be then identified as the value of 𝛿 is maximum 
at the true impact location among all the other possible locations.

• Indexing strategy using Wavelet Transform:

Continuous Wavelet Transform has been employed for the localiza

tion of damage in beam structures with single damage [124--130] or 
multiple damages [131,132]. The same idea and formulation can be em

ployed for impact localization as well. An indexing strategy can be used 
for each reconstructed force signal based on the determined wavelet co

efficients [90,133]. The true impact location will be then identified as 
it has the highest index.

This mathematical transformation, continuous Wavelet Transform, 
facilitates the similarity measurement between a signal 𝑓 (𝑡) and an an

alyzing function 𝜓(𝑡) [41,128]. The wavelet coefficient 𝑊 , which is a 
measure of similarity between the signal and the mother wavelet, is 
given by [96]:

𝑊 (𝑎, 𝑏) = 1 √
𝑎 ∫ 𝑓 (𝑡)𝜓( 𝑡− 𝑏

𝑎 
)𝑑𝑡, (38)

where real parameters 𝑎 > 0 and 𝑏 are, respectively, the scale and trans

lation parameters. The larger the value of 𝑊 is, the finer the correlation 
between the signal and the wavelet is, at that particular location. When 
the mother wavelet and the true impact force have similar shapes, the 
wavelet coefficient will be larger for the true impact force than the one 
for the false reconstructed forces. Consequently, in [90], a similarity in

dex is proposed as:

𝛿 =
∑
𝑎 

∑
𝑏 
|𝑊 (𝑎, 𝑏)|, (39)

where 𝛿 is the force localization index, which will be maximum for the 
true impact force.

3.2.2. Optimization-based methods

In model-based localization methods, the difference between the 
computed analytical data and the measured vibration data at all sen

sors is minimized for all possible impact locations. The location and the 
time history of the impact force can be obtained when the difference is 
least. Different formulations have been employed in the literature as an 
objective function, e.g.,

𝐸 =
𝑚 ∑
𝑖=1 

||T(𝑖)
𝑠

f − r(𝑖)||, (40)

where r(𝑖) is the response of 𝑖th measurement point, f is the impact force, 
T
(𝑖)
𝑠 is the transfer function of 𝑖th measurement point and 𝑚 denotes the 

number of possible impact locations. The optimization-based techniques 
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normally seek the minimum value of the objective function (e.g., func

tion 𝐸 in Eq. (40)).

Conventional optimization methods are mostly gradient-based, 
which may lose their efficiency in case of highly nonlinear objective 
functions. More recently, artificial intelligent optimization algorithms 
are employed for impact localization, e.g., GA [62,134], and PSO [135]. 
Compared to GA, PSO is simpler and in many cases more efficient [136]. 
Additionally, it requires fewer function evaluations. Whereas, it can lead 
to premature convergence, like many other optimization algorithms, for 
which some enhancements are proposed in the literature [137,138].

Model based impact force localization techniques have been re

viewed above. These methods have shown their efficacy in localizing 
impact forces applied on simple structures that undergo one impact force 
only at a time. The literature should still be enriched for more complex 
structures, potentially under multiple concurrent impacts, with limited 
number of sensors (as few as possible). Moreover, as far as the authors 
know, the compatibility of these approaches for real-time impact force 
localization has not been investigated. Investigation of the sensitivity 
of different localization strategies to modeling uncertainties is another 
potential future research.

4. Machine and deep learning approach

Machine Learning (ML) techniques have emerged as viable candi

dates for impact force reconstruction and localization in recent years 
[25--28,30,60,139--145]. In Structural Health Monitoring (SHM), these 
techniques are employed in order to obtain models which map the input 
pattern to the output target. However, typical ML techniques are re

stricted in processing raw form of huge amount of measured data [146]. 
Hence, engineering knowledge is essential for the extraction of features 
from raw data. The conundrum is that there is no guarantee that a set of 
features suitable for a specific structure can be used for other structures 
as well. To circumvent this conundrum, Deep Learning (DL) techniques 
have been explored in recent years, which facilitate using the data in raw 
form. Using DL methods, features are discovered in an intelligent way 
from even high-dimensional data. Though, the key challenge in many 
SHM applications is that the impact identification should be fulfilled in 
an unsupervised manner, since the data for different impact scenarios 
are often not available [146].

Artificial Neural Network (ANN) is an advanced ML algorithm which 
underpins most DL models, and can be employed to model complex 
nonlinear input-output relations [147,148]. ANNs also rely on data to 
perform supervised learning like other ML techniques. However, as the 
weight information is specified, it can be employed for online identifi

cation like adaptive impact absorption systems [149]. In [25], ANN is 
exploited to identify the impact forces that result in large deflections in 
a composite stiffened panel. Therein, two networks are introduced, one 
for impact force reconstruction and the other for peak prediction. The 
exciting point of the proposed ANNs is that they do not need the loca

tion of the impact a priori. Another interesting idea employed in this 
research to improve the predictions is classifying the impacts into (i) 
large mass and (ii) small mass, for which separate networks are trained. 
Still, not many applications of ANNs are available for impact force iden

tification of nonlinear structures due to the following reasons [30]:

1. Most used ANNs have Multi-Layer Perceptron (MLP) architecture 
and the input of MLP is two dimensional, i.e., data scale and feature, 
while force reconstruction is three dimensional, i.e., data scale, fea

ture, and time.

2. Human domain knowledge is needed for feature extraction.

3. It is essential to have dynamic responses from numerous sensors 
placed optimally like model-based approaches.

Deep Recurrent Neural Network (RNN) is another DL approach em

ployed for impact force identification [30]. The deep RNN gives the 
impact history by using the raw response through a model trained by 

back-propagation through time algorithm. Compared to ANNs, RNNs es

tablish more connections in the hidden layer, so that the hidden layer 
receives the hidden cells of the previous states as well as the original 
data. Like many other identification techniques, the deep RNN method 
suffers from instability due to data contamination. For this, data regu

larization can be a solution [150].

Generally, the main advantages of DL methods are as follows:

1. DL methods are able to deal with noisy data which is common in 
the real application,

2. DL methods can automatically extract the features and make them 
faster versus methods that rely on hand-craft.

The required training data can be constructed either synthetically [151--

155] or experimentally (civil infrastructure [156], hydro-junction in

frastructure [157], operating Vestas V27 wind turbine [155], PVC sand

wich plate [158], bridge [159]) which makes the universal comparison 
difficult on one hand while showing how the DL method can be useful 
in real settings. These research papers mainly used DL as a tool without 
much contribution to the DL method itself.

Table 2 provides a summary of how Machine Learning models have 
been applied for impact force identification. The table highlights that 
contributions from the development of new ML models are limited, with 
ANNs being the most commonly used models. Algorithms such as Ge

netic Algorithms (GA), Wavelet Transform, and Neuro-Fuzzy models 
have been employed in combination with ANNs. The table also indi

cates that comparisons with baseline models are not comprehensive. 
The studies considered various scenarios, including composite plates, 
rotating multi-damage cantilever rotors, Perspex plate structures, rein

forced concrete beams, curved composite plates, and aluminum plate 
structures.

In anisotropic structures, wave propagation exhibits strong direction

dependent behavior, requiring deep learning models to explicitly incor

porate anisotropic effects for accurate impact localization and force 
identification. A hybrid approach integrates physics-based principles 
with data-driven learning to effectively account for material anisotropy, 
enhancing model robustness and accuracy. A hybrid strategy takes into 
account anisotropy using:

1. Orientation-aware input features: traditional deep learning models 
often rely solely on raw sensor signals, but for anisotropic materi

als, additional contextual information is essential. By incorporating 
material orientation angles at each impact location into the input 
vectors, the model can better capture directional variations in wave 
propagation, leading to improved localization accuracy.

2. Physics-based data augmentation: to address the challenge of lim

ited experimental data, training datasets are augmented using trans

formed stiffness matrices derived from classical laminate theory. 
These matrices simulate variations in fiber orientation, allowing the 
model to generalize across different anisotropic configurations. This 
augmentation ensures that the network learns meaningful physical 
relationships rather than relying on purely empirical patterns.

3. Attention mechanisms for path weighting: in anisotropic materials, 
wave propagation efficiency varies based on direction. To account 
for this, neural attention layers are introduced, enabling the model 
to dynamically assign higher weights to sensor signals traveling 
along optimal paths. This mechanism improves the model’s abil

ity to distinguish meaningful signals from noise and enhances its 
robustness against directional dispersion effects.

By integrating these strategies, the hybrid framework effectively com

bines domain-specific knowledge with deep learning capabilities, sig

nificantly improving performance in anisotropic systems. Such physics

informed architectures pave the way for more reliable impact localiza

tion and force reconstruction in complex composite structures, ensuring 
greater adaptability in real-world applications.
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Table 2
A list of papers using machine learning models for impact force identification.

Ref. Main aim Technical model Conclusion

[160] Impact identification on an aluminum plate Support Vector Machine (SVM) SVM accuracy is better than ANN

[161] Simultaneous force localization and force his

tory reconstruction

Distance-assisted Graph Neural Network (DAGNN) The accuracy of DAGNN is higher than a conven

tional GNN model

[162] Impact localization and force reconstruction 
of impacts applied to composite panel struc

tures

Artificial neural networks (ANN) The impact identification procedure is much faster 
than that of the traditional model-based techniques

[163] Impact identification on composite stiffened 
panels

Artificial neural networks (ANN) The performance of three ANNs is better than a 
single ANN trained

[164] Prediction of the acceleration, deflection, and 
strain responses of on a smart reinforced con

crete beam

Wavelet-based Time delayed Adaptive Neuro

Fuzzy Inference System (W-TANFIS)

W-TANFIS model has better performance over the 
ANFIS

[165] Impact load identification and localization on 
real engineering structures

(i) Gradient Boosting Decision Tree (GBDT) model 
based on ensemble learning, (ii) Convolutional 
Neural Network (CNN) model and (iii) Bidirec

tional Long Short-Term Memory (BLSTM) model 
based on deep learning

The methods can accurately identify impact loads 
and its location

[166] Impact force identification through establish

ing inverse mapping relationships between 
structural vibration responses and impact 
forces

Gated Temporal Convolutional Network (GTCN) 
method

The GTCN performs better than Temporal Convo

lutional Network (TCN) and Convolutional Neural 
Network (CNN)

[167] Impact identification on Perspex plate struc

ture

Artificial neural networks (ANN), Multilayer Per

ceptron

Impact localization with MAT feature yields the 
highest accuracy

[168] Classification of pathological gait patterns us

ing 3D Ground Reaction Force (GRFs) data

Nearest Neighbor Classifier (NNC) and Artificial 
Neural Networks (ANN)

The optimal feature set of six features enhances the 
accuracy up to 95 percent

[169] Predicting and analyzing highly nonlinear be

havior of integrated structure-control systems 
subjected to high impact loading

Time-delayed Adaptive Neuro-Fuzzy Inference 
System (TANFIS)

TANFIS modeling framework is an effective way to 
capture nonlinear behavior of integrated structure

MR damper systems under high impact loading

[140] Impact identification on a Perspex plate struc

ture

Radial Basis Function Network (RBFN) The performance of the RBFN surpasses that of the 
conventional Multilayer Perceptron (MLP) by sig

nificantly reducing errors

[170] Impact force reconstruction on composite 
structures to evaluate the health status of the 
structure

Artificial Neural networks (ANN), Genetic Algo

rithm (GA)

ANN+GA reconstructed method outperforms ANN.

Some state-of-the-art DL methods which can be used in the impact 
force reconstruction and localization are as follows:

1. Incremental learning: In this paradigm, the new data/feature is 
used for modifying the trained DL method without doing the learn

ing from scratch. This makes the DL more applicable in the real 
setting when we expect the flow of data and emerging of new fac

tors. By applying incremental learning models, the DL based impact 
reconstruction/localization can be embedded in the tools for the 
real application.

2. Explainable DL: In 2016, the European Parliament and Council of 
the European Union passed the rules namely, ``The General Data 
Protection Regulation''. This requires organizations that use AI to 
tell their user what information they hold about them and how it is 
being used. This means for the construction industry, they should be 
able to explain how DL based impact reconstruction/localization is 
working. This also makes their solution and service more attractive 
and useful. Explainable DL can also lead to better accuracy when 
the feedback of the knowledge workers is obtained.

3. Human-AI interaction: The setting of the right interaction be

tween AI solutions and its user is becoming important these days 
due to the wide adoption and utilization of AI-powered products 
across various ranges of industries.

There are other state-of-the-art ML methods to deal with the data 
scarcity issue which are discussed in the next section:

4.1. Machine learning data requirements

One of the most significant challenges in applying ML to impact force 
identification is the limited availability of labeled data, particularly for 
real-world structural systems where generating large-scale experimen

tal datasets is time-consuming, costly, or infeasible. Furthermore, the 
reliance on benchmark, i.e., healthy-state data presents a major obstacle 
in deploying ML methods for impact force identification in real-world 
settings. Recently, several approaches have emerged to address these 
limitations through the integration of physical knowledge and data

e˙icient learning frameworks:

1. Synthetic data generation: Physics-based simulations, such as Fi

nite Element Models (FEM), can generate synthetic datasets that 
mimic real structural responses. These datasets are often used 
to pretrain models before fine-tuning on limited real measure

ments. Studies like [183--186] have demonstrated this simulation

to-reality transfer using hybrid FEM–ML pipelines, achieving good 
generalization across scenarios.

2. Data augmentation: Inspired by techniques in computer vision, 
data augmentation introduces variability by transforming existing 
data. For vibration signals, this can include time-warping, noise 
injection, or domain-specific transformations like frequency shifts. 
These techniques help improve generalization and reduce overfit

ting when only a few real samples are available.

3. Transfer learning: Transfer learning has gained significant promi

nence in the domains of Machine Learning and Deep Learning, 
owing to various challenges, including (i) concept drifts that lead to 
evolving data distributions, and (ii) limited access to training data, 
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often due to costly, time consuming, or hazardous data collection 
procedures. Impact force reconstruction training data collection 
face similar problems due to slow and costly process. As a best prac

tice usually, the data collect in a region (domain target) and using 
transfer learning method can be used for the monitoring of other re

gions (target domains) [171--174]. These studies employ synthetic 
impact datasets generated via finite element simulations to pretrain 
ML models, which are then fine-tuned using a limited amount of 
experimental data. This approach allows for reliable force identi

fication with minimal physical testing, reducing the dependency 
on benchmark datasets. This technique significantly lowers data 
requirements while maintaining accuracy. Thus, development of 
transfer learning techniques to support stakeholders in enhancing 
the impact force reconstruction task proves highly advantageous. 
Having said that, considering the high stakes nature of the im

pact force reconstruction task, the development of transfer learning 
methods is crucial.

4. Self-supervised and unsupervised learning: Unsupervised learn

ing methods such as autoencoder-based anomaly detection can 
identify deviations from normal structural behavior without requir

ing labeled healthy-state data. These models learn compact latent 
representations from operational signals and flag anomalies, includ

ing impacts, based on reconstruction errors. As demonstrated in 
[146], this enables autonomous detection without needing prede

fined baseline responses.

5. Zero-shot and Few-Shot Learning (FSL): The zero-shot and few

shot deep-based learning methods are able to classify new classes. 
Examination of these advanced techniques for the impact recon

struction/localization can be a new direction which increases the 
applicability of these methods, especially for cases in which safety 
is an important element for the stakeholders. This is particularly 
useful when labeled impact events are rare. Recent work [175] 
has shown that embedding physical laws, such as wave propaga

tion dynamics, within model architectures enables accurate force 
localization and reconstruction even in cases where the impact lies 
outside the training distribution. This physics-informed machine 
learning paradigm combines the generalizability of physical mod

els with the adaptability of data-driven methods, offering a major 
advancement over conventional data-intensive techniques.

These data-e˙icient learning techniques are becoming essential tools 
for extending machine learning methods to field-deployable structural 
health monitoring systems. They also represent a shift toward physics

informed, data-e˙icient, simulation-augmented, and transfer-aware ML 
paradigms, which aim to mitigate the need for large-scale data collec

tion and are more practical for in-service structures lacking benchmark 
datasets or undergoing dynamic operational conditions.

5. Mathematical techniques to deal with ill-posedness

Given the ill-posed nature of inverse problems in impact force iden

tification, noise sensitivity poses a significant challenge. Recent studies 
have introduced a range of stabilization techniques aimed at enhancing 
robustness against measurement noise. These techniques can be broadly 
categorized into sensor optimization, direct regularization schemes, in

cluding probabilistic (Bayesian) frameworks, and iterative regulariza

tion methods, each contributing to more accurate and stable force re

constructions.

Both the deconvolution technique and the state-space approach ul

timately lead to the same type of algebraic problem (that is in the form 
of 𝑦 =𝐴𝑥). Although the notation differs in Section 2.1 and Section 2.2, 
one notation will be used in this section for clarity, i.e., r = Hf, which de

scribes the forward problem. Consequently, the inverse problem would 
be formulated as f = H−1r. This problem is said well-posed, if its solution 
is stable as well as unique, otherwise, it is called ill-posed.

5.1. Posedness investigation

Singular Value Decomposition (SVD) is an efficient tool to investi

gate the problem posedness [176--178]. Applying SVD, the matrix H is 
decomposed as follows [100]:

H = UΣV𝑇 , (41)

where the diagonal matrix Σ consists of the singular values of H. U
and V are the left and right vectors of singular values, consisting of 
the eigenvectors of HH𝑇 and H𝑇 H, respectively. In other words, U and 
V can be considered the mode shapes of the response and the input, 
respectively. Eigenvalues of the matrices HH𝑇 and H𝑇 H are identical, 
defined as 𝜎2

𝑖
. To investigate the posedness, the condition number can 

be employed, which is as follows for matrix H:

𝑐𝑜𝑛𝑑(H) =
𝜎1
𝜎𝑚

, (42)

with 𝑚 the dimension of r, the output. The condition number shows 
how sensitive the output is to small changes, errors, or noise in in

put [179,180]. Condition number of one states perfect orthogonality 
between columns of H. Higher numbers of the condition number state 
weaker orthogonality. The condition number will be infinity if at least 
two columns are linearly dependent. Normally, a matrix is known as ill
conditioned when its condition number is greater than 1×103 [100]. In 
such cases, it is impossible to invert the matrix H, hence, the problem 
r = Hf can not be straightly inverted to find f.

5.2. The least squares solution

The inverse problem can be solved with the Least Squares (LS) solu

tion, where the following objective function is minimized [100]:

𝐽 = ‖Hf − r‖2, (43)

which results in:

f𝐿𝑆 = (H𝑇 H)−1H𝑇 r. (44)

This can be written in terms of the SVD, given by:

f𝑠𝑣𝑑 = VΣ−1Σ𝑇 r, (45)

or rewritten as follows:

f𝑠𝑣𝑑 =
𝑞∑
𝑖=1 

𝑢𝑖r

𝜎𝑖
𝑣𝑖, (46)

with 𝑞 = 𝑟𝑎𝑛𝑘(H). For very small singular values 𝜎𝑖, even small per

turbations in r lead to large changes in f𝑠𝑣𝑑 . Due to this sensitivity, 
the least squares solution is not robust. In some cases, simply filtering 
the high-frequency contents in the response signal or adding more sen

sors to make the transfer function over-determined can eliminate the 
ill-posedness [75]. While regularization techniques can be principally 
employed to eliminate this amplification by regularizing the matrix H
[65,181].

5.3. Sensor placement and measurement optimization

It has been shown that increasing the number of sensors can be 
one of the effective ways to avoid ill-posedness, while it is important 
to note that the number of the sensors and their positions are of sig

nificance and have a high impact on the result of the identification 
[6,18,88,182--184]. When these factors (number and positions of sen

sors) are not taken consciously, the identification is unreliable even if 
more sensors are mounted on the structure than the number of forces 
(over-determined case) [182]. In [184], the coherence-based placement 
strategies—specifically positioning sensors near anti-nodal regions of 
dominant vibration modes—is proposed to reduce the condition num

ber of the system matrix. This reduction directly improves numerical 
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stability and minimizes the amplification of noise during inversion. For 
more info on optimal sensor placement, refer to the review paper [185].

5.4. Regularization methods

In regularization methods, the matrix H is regularized such that the 
influence of some small singular values is decreased, which will, in turn, 
improve the problem posedness, however, as a result, the solution found 
is an approximation of the actual solution.

The literature on regularization approaches can be divided into two 
groups: (i) Direct approach, and (ii) Iterative approach. In the direct 
approach, the matrix H is decomposed by the SVD technique and the 
modes that are affected by noise are removed. The performance of these 
methods depends on the selection of the regularization parameter. On 
the other hand, methods based on iteration do not require the SVD which 
is computationally costly when the dimension of the matrix H is large. 
In this approach, the number of iterations is similar to the regulariza

tion parameter in the direct approach in terms of responsibility for the 
solution convergence and accuracy. In the following, some of the direct 
and iterative regularization methods are reviewed.

5.4.1. Direct approach for regularization

The most commonly employed regularization technique for impact 
force identification is the Tikhonov method [186--188]. This method 
balances the objective function and exploits a smoothness condition for 
the solution to moderate the ill-conditioning [30]. There are a number 
of methods for the parameter selection for the Tikhonov regularization 
technique, e.g., the L-curve method [189], the S-curve method [190], 
and the Generalized Cross Validation (GCV) method [191], which are 
based on the SVD of the coefficient matrix [75]. These methods can

cel the part of the matrix relating to the very small singular values, 
and use the new reformulated matrix to solve the inverse problem. The 
main shortcomings of the Tikhonov regularization method are as fol

lows: (i) it is computationally ineffective for large-size inverse problems 
as it takes too long to be of practical use and may even fail in compu

tation [192], and (ii) it is only applicable in case of smooth excitation 
signals or fields [193]. One of the remedies proposed in the literature to 
deal with the second issue is employing LASSO regularization, which is 
also known as 𝑙1-regularization [193]. This method develops the spar

sity of the regularized solutions, whilst it still keeps the inverse problem 
convex [194--196].

The Truncated Singular Value Decomposition (TSVD) regularization 
method was introduced in [197,198] for linear ill-posed problems in 
impact force identification. TSVD has been also used for force identi

fication in frequency domain [199]. For a comparison between sim

plified Generalized Singular Value Decomposition (GSVD) and TSVD 
with the Tikhonov technique, in time and frequency domain, refer to 
[6,200,201]. Therein, it is concluded that TSVD is useful when the high

frequency contents are responsible for the solution instability, while 
Tikhonov acts globally, and impacts the whole signal. Hence, roughly 
speaking, Tikhonov has shown to outperform TSVD in terms of identifi

cation accuracy [6,201]. In [202], the Truncated GSVD is combined with 
Tikhonov method in order to reach higher accuracy with less memory 
requirement and less computational time for large-scale ill-posed prob

lems.

Lately, Bayesian regularization, also referred as the augmented 
Tikhonov regularization [203,204], has been employed for impact force 
identification, which lies within the Tikhonov framework with 𝑙2-norm 
features [60]. In this method, the forces are considered as real random 
vectors with generalized Gaussian distribution [193,205--208]. Com

pared to the traditional Tikhonov method, the regularization parameters 
of this method are chosen adaptively and the noise level is detected 
from the measurements [192,209,210]. A Bayesian inference frame

work is formulated in [60] that not only reconstructs impact forces but 
also estimates the statistical characteristics of the noise. Their method 
reduced noise-induced reconstruction errors compared to conventional 

approaches, particularly when prior information about the system or 
loading is available. The power of the Bayesian regularization is that 
when it is used for impact force reconstruction, (i) the impact shape, (ii) 
the impact duration, (iii) the impact peak, and (iv) the impact energy 
can all be identified [75]. Moreover, this technique gives a probabilis

tic description of the impact force, enabling uncertainty analysis [211]. 
On the other hand, its main drawback is that the reconstructed im

pact forces are fluctuated with negative values while the impact force 
is intrinsically non-negative [212]. The application of Bayesian regular

ization in SHM and its potential in relaxing the ill-conditioning of the 
inverse problems are studied in [192,209,210].

Another regularization method which has been shown to be effi

cient for impact force identification problems is the sparse regularization 
[67]. This method is based on the sparsity exploration of the forces 
in time or space domain and hence can be effectively employed for 
the identification of forces with sparse structure [65], namely, (i) im

pact forces (sparsity in time domain) [15,213], (ii) concentrated forces 
(sparsity in space domain) [214,215], and (iii) forces with sparse pre

sentation, for example by employing Fourier series or wavelets [14,67]. 
However, sparse regularization can be highly sensitive to noise in the 
data, which may lead to inaccurate or unstable estimates, especially 
in the presence of significant noise. Furthermore, finding the optimal 
sparse solution often requires solving complex optimization problems, 
which can be computationally intensive and time-consuming, particu

larly for large datasets or high-dimensional problems. Moreover, the 
performance of sparse regularization depends heavily on the choice 
of the regularization parameter. Improper selection can lead to either 
overfitting (if too small) or underfitting (if too large), requiring careful 
tuning and validation.

Recent advancements have explored combining classical Tikhonov 
regularization with sparsity-promoting 𝑙1-norm constraints. For in

stance, a hybrid regularization framework is proposed in [19] that 
balances smoothness and sparsity in the reconstructed forces. These 
hybrid methods are particularly effective in capturing localized or tran

sient forces while suppressing high-frequency noise.

5.4.2. Iterative regularization

Iterative solvers have gained attention for their robustness in noisy 
environments. Unlike direct methods, these algorithms update the solu

tion iteratively using randomly selected measurement equations, allow

ing for better error averaging and improved convergence under high 
noise conditions. There are various iterative regularization methods 
in the literature, such as Levenberg–Marquardt regularization method 
[216], the Landweber method [68,188,217,218], the Kaczmarz method 
[70,71], and Krylov subspace methods [72], which include Conjugate 
Gradients [219,220], Least Square QR (LSQR) [221], and LSMR [222]. 
The main advantages of iterative regularization methods are that they 
do not need extensive regularization parameter selection and are there

fore suitable for large-scale problems [72], and that they generally pro

duce more reliable and accurate solutions. Krylov subspace methods 
have become more popular recently compared to Landweber and Kacz

marz methods because of their faster convergence [223]. However, the 
Krylov subspace method may lead to poor solution accuracy without 
proper stopping criteria due to more semi-convergence behavior [224]. 
On the other hand, the Landweber method is still better in terms of sim

plicity and stability which makes it more applicable in some real-world 
situations [225,226]. Adaptive Landweber method [227] has been also 
developed to speed up the convergence of this method. But its per

formance is not enhanced when there is no suitable preset parameter. 
Generally, the weaknesses of iterative approaches can be listed as fol

lows:

• (i) Iterative methods can sometimes converge to local minima 
rather than the global minimum, especially if the initial guess is 
not close to the optimal solution. This can result in suboptimal per

formance.
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Table 3
A list of regularization methods.

Regularization method Strength Weakness

Direct 
approach

Tikhonov regularization Simplicity (i) Computationally ineffective for large-size inverse 
problems 
(ii) Not applicable in case of nonsmooth excitation 
signals

Truncated Singular 
Value Decomposition 
(TSVD)

Effective when the solution instability is caused by 
high-frequency contents

Less identification accuracy

Bayesian regularization (i) Adaptive choice of the regularization parameters 
(ii) Detection of the noise level from the 
measurements 
(iii) Identification of the impact shape, duration, 
peak, and energy 
(iv) Probabilistic description of the impact force

Fluctuated reconstructed impact forces with 
negative values

Sparse regularization Effective for the identification of forces with sparse 
structure, e.g., impact force

(i) Sensitivity to noise 
(ii) Computational complexity 
(iii) Dependence on the choice of the regularization 
parameter

Iterative 
approach

Levenberg–Marquardt (i) Suitable for large-scale inverse problems 
(ii) More reliable and accurate solutions compared 
to direct approach

(i) Possibility of suboptimal performance 
(ii) Computational cost 
(iii) Sensitivity to parameters 
(iv) Slow convergence 
(v) Dependence on initial guess

Landweber

Kaczmarz

Krylov subspace 
methods

• (ii) Iterative methods can be computationally expensive, particu

larly for large-scale problems, as they require multiple iterations 
to converge. The computational cost increases with the number of 
iterations and the complexity of each iteration.

• (iii) These methods are sensitive to the choice of algorithm-specific 
parameters, such as step size in Landweber or damping factors in 
Levenberg–Marquardt. Improper tuning of these parameters can ad

versely affect the convergence rate and solution quality.

• (iv) In some cases, especially with ill-conditioned problems, itera

tive methods can exhibit slow convergence, requiring a large num

ber of iterations to achieve a satisfactory solution.

• (v) The effectiveness of iterative approaches often depends on the 
quality of the initial guess. Poor initial guesses can lead to slow 
convergence or failure to converge.

Recently, a probabilistic regularized load reconstruction method was 
proposed, incorporating an iterative strategy to address uncertainty 
[228]. This method accounts for uncertainty factors in both regular

ization parameter selection and the reconstruction process. Compared 
to traditional methods, it provides more accurate and robust results, 
with the added benefit of quantifying the effect of uncertainty within 
the framework of probability theory.

A summary of the above discussion on direct and iterative regular

ization methods is provided in Table 3. Also, refer to [181] for a critical 
survey on modern nonlinear regularization techniques.

6. Applicability and real-time feasibility

Real-time identification and reconstruction of impact forces are es

sential for applications such as structural health monitoring and active 
control systems. Various methods have demonstrated real-time capabil

ity, balancing latency, computational load, and practical feasibility to 
different degrees.

Piezoelectric sensor-based methods utilize the direct measurement 
of stress waves induced by impact forces. These sensors detect transient 
stress wave signals with minimal delay, enabling impact force charac

terization in real time. Supported by finite element modeling for cali

bration, these approaches combine low latency and moderate computa

tional effort, making them highly applicable for continuous monitoring 

and active control scenarios that demand rapid and precise impact de

tection [229].

The dynamic reduced dictionary approach leverages the sparsity of 
impact forces in both temporal and spatial domains, enabling efficient 
and rapid identification by focusing computations only on sparse fea

tures of the signal. This significantly reduces the computational load 
while maintaining detection accuracy, making it well-suited for real

time applications [230].

Data-physics hybrid-driven deep learning methods integrate physics

based models with data-driven deep learning architectures, specifically 
time-reversed LSTMs, to resolve the inverse problem of impact force 
identification. This approach effectively mitigates errors resulting from 
limited experimental data and inaccuracies in transfer matrices, achiev

ing low latency with moderate computational demand suitable for active 
control system integration [231].

The Weighted Reference Database Method (WRDM) constructs a 
sparse reference database with bicubic interpolation to increase the den

sity of impact reference points. It further employs a cosine distance 
variant for weighted localization, balancing localization accuracy and 
computational efficiency. This method achieves high impact localization 
accuracy with real-time capability. The use of a compact, interpolated 
database reduces computational cost and improves feasibility for de

ployment in active control and monitoring [232].

Challenges in data-driven impact localization methods arise when 
localizing impacts outside the training coverage area, particularly in 
anisotropic composite structures. These challenges have been addressed 
in [175] by incorporating the physical dispersion relations of impact

induced flexural waves, derived from first-order shear deformation and 
classical laminate theories, into the localization process. The wave ve

locity profile was explicitly formulated and optimized with respect 
to structural stiffness and wave frequency using gradient-based tech

niques. Experimental validation on composite panels demonstrated the 
efficiency and accuracy of this hybrid physics-based and data-driven 
method, requiring minimal training data and successfully localizing im

pacts, even outside the training coverage area. Additionally, the meth

ods discussed in [233] further enhance impact localization by address

ing uncertainties and improving group velocity profile estimation in 
composite structures, thereby expanding the applicability of the ap

proach.
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While computational efficiency is a key consideration, it is impor

tant to note that systematic runtime benchmarks are seldom reported 
in the literature. Performance metrics such as latency and throughput 
vary widely depending on factors such as problem size, noise levels, al

gorithmic formulation, and hardware configuration. If reported at all, 
such metrics are typically context-specific and not generalizable. For 
this reason, we have opted not to include detailed performance compar

isons, as doing so without consistent data could be misleading.

Methods differ in their trade-offs among latency, computational load, 
and localization accuracy. Dynamic reduced dictionaries and deep learn

ing hybrids emphasize efficient computation and accuracy, suitable for 
real-time control. Hybrid methods integrate recognition and optimiza

tion to speed processing while maintaining precision. WRDMs exploit 
sparse data structures with interpolation to enhance speed and accu

racy balance, and piezoelectric sensor-based approaches provide rapid, 
direct force sensing essential for active monitoring. Selecting a method 
depends on system requirements related to computational resources, la

tency tolerance, and accuracy needs. Continued research is warranted 
to further optimize these techniques and develop hybrid strategies that 
integrate their strengths for robust real-time impact identification.

7. Conclusions

In many real-world applications, the impact forces acting on struc

tures cannot be directly measured. In such cases, impact force recon

struction and localization techniques are employed. Different recon

struction as well as localization methods are reviewed in this paper, 
giving an overview of the relevant literature. Herein, both model

based and machine/deep learning approaches are presented. Available 
methods are categorized and some are described in detail to provide 
an insight about the characteristic of each category. Furthermore, the 
strengths and drawbacks of each method are discussed which can help 
researchers to choose the right approach based on their problem char

acteristics. As these inverse problems are ill-posed, some applicable 
mathematical tools are introduced, which can be exploited to relax 
the ill-conditioning. Lastly, some applications of force identification ap

proaches are presented.

A solid basis has been established for impact force reconstruction 
and localization in the literature. Still, there is room to improve the 
applicability and efficiency of these techniques for real-world applica

tions. Future works could, firstly, focus on the real-time suitability of 
available impact localization and reconstruction methods which is of 
the utmost importance particularly when active control needs to be per

formed. Secondly, the available techniques can be strengthened to work 
efficiently in case of limited instrumentation, since it might be impos

sible to install the desired number of sensors in a structure. Thirdly, 
the identification of multiple concurrent impact forces is another issue 
worthy of in-depth investigation. And fourthly, the employment of ma

chine learning approaches for this research area is still in its early stages. 
In the current paper, some state-of-the-art deep learning methods were 
presented along with how they can be exploited for impact force iden

tification.
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