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Abstract
Low-rank and sparse structures have been pro-
foundly studied in matrix completion and com-
pressed sensing. In this paper, we develop “Go
Decomposition” (GoDec) to efficiently and ro-
bustly estimate the low-rank part L and the sparse
part S of a matrix X = L + S + G with noise
G. GoDec alternatively assigns the low-rank ap-
proximation of X − S to L and the sparse ap-
proximation of X − L to S. The algorithm can
be significantly accelerated by bilateral random
projections (BRP). We also propose GoDec for
matrix completion as an important variant. We
prove that the objective value ∥X − L − S∥2F
converges to a local minimum, while L and S lin-
early converge to local optimums. Theoretically,
we analyze the influence of L, S and G to the
asymptotic/convergence speeds in order to dis-
cover the robustness of GoDec. Empirical stud-
ies suggest the efficiency, robustness and effec-
tiveness of GoDec comparing with representative
matrix decomposition and completion tools, e.g.,
Robust PCA and OptSpace.

1. Introduction
It has proven in compressed sensing (Donoho, 2006) that a
sparse signal can be exactly recovered from a small num-
ber of its random measurements, and in matrix completion
(Keshavan & Oh, 2009) that a low-rank matrix can be ex-
actly completed from a few of its entries sampled at ran-
dom. When signals are neither sparse nor low-rank, its
low-rank and sparse structure can be explored by either ap-
proximation or decomposition.

Recent research about exploring low-rank and sparse struc-
tures (Zhou et al., 2011) concentrates on developing fast
approximations and meaningful decompositions. Two ap-
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pealing representatives are the randomized approximate
matrix decomposition (Halko et al., 2009) and the ro-
bust principal component analysis (RPCA) (Candès et al.,
2009). The former proves that a matrix can be well ap-
proximated by its projection onto the column space of its
random projections. This rank-revealing method provides
a fast approximation of SVD/PCA. The latter proves that
the low-rank and the sparse components of a matrix can
be exactly recovered if it has a unique and precise “low-
rank+sparse” decomposition. RPCA offers a blind separa-
tion of low-rank data and sparse noises.

In this paper, we first consider the problem of fast low-
rank approximation. Given r bilateral random projections
(BRP) of an m × n dense matrix X (w.l.o.g, m ≥ n), i.e.,
Y1 = XA1 and Y2 = XTA2, wherein A1 ∈ Rn×r and
A2 ∈ Rm×r are random matrices,

L = Y1

(
AT

2 Y1

)−1
Y T
2 (1)

is a fast rank-r approximation of X . The computation of
L includes an inverse of an r × r matrix and three matrix
multiplications. Thus, for a dense X , 2mnr floating-point
operations (flops) are required to obtain BRP, r2(2n+ r)+
mnr flops are required to obtain L. The computational cost
is much less than SVD based approximation. The L in (1)
has been proposed in (Fazel et al., 2008) as a recovery of
a rank-r matrix X from Y1 and Y2, where A1 and A2 are
independent Gaussian/SRFT random matrices. However,
we propose that L is a tight rank-r approximation to a full
rank matrix X , when A1 and A2 are correlated random ma-
trices updated from Y2 and Y1, respectively. We then apply
power scheme (Roweis, 1998) to L for improving the ap-
proximation precision, especially when the eigenvalues of
X decay slowly. The error of BRP based approximation
approaches to the error of SVD approximation under mild
conditions. Compared to randomized SVD (Halko et al.,
2009) that extracts the column space from unilateral ran-
dom projections, the BRP based method estimates both col-
umn and row spaces from bilateral random projections.

We then study the approximated “low-rank+sparse” de-
composition of a matrix X , i.e.,

X = L+ S +G, rank(L) ≤ r, card(S) ≤ k, (2)
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where G is the noise. This problem is intrinsically different
from RPCA that assumes X = L + S. In this paper, we
develop “Go Decomposition” (GoDec) to estimate the low-
rank part L and the sparse part S from X . We show that
BRP can significantly accelerate GoDec.

In particular, GoDec alternatively assigns the r-rank ap-
proximation of X − S to L and assigns the sparse approx-
imation with cardinality k of X − L to S. The updating
of L is obtained via singular value hard thresholding of
X − S, while the updating of S is obtained via entry-wise
hard thresholding (Bredies & Lorenz, 2008) of X−L. The
term “Go” is owing to the similarities between L/S in the
GoDec iteration rounds and the two players in the game of
go. BRP based low-rank approximation is applied to accel-
erating the r-rank approximation of X − S in GoDec. We
show GoDec can be extended to solve matrix completion
problem with competitive robustness and efficiency.

We theoretically analyze the convergence of GoDec. The
objective value (decomposition error) ∥X−L−S∥2F mono-
tonically decreases and converges to a local minimum.
Since the updating of L and S in GoDec is equivalent to
alternatively projecting L or S onto two smooth manifolds,
we use the framework proposed in (Lewis & Malick, 2008)
to prove the asymptotical property and linear convergence
of L and S. The asymptotic and convergence speeds are
mainly determined by the angle between the two manifolds.
We discuss how L, S and G influence the speeds via in-
fluencing the cosine of the angle. The analyses show the
convergence of GoDec is robust to the noise G.

Both GoDec and RPCA can explore the low-rank and
sparse structures in X , but they are intrinsically differ-
ent. RPCA assumes X = L + S (S is sparse noise) and
exactly decomposes X into L and S without predefined
rank(L) and card(S). However, GoDec produces approx-
imated decomposition of a general matrix X whose exact
RPCA decomposition does not exist due to the additive
noise G and pre-defined rank(L) and card(S). In prac-
tice, rank(L) and card(S) are preferred to be restricted
in order to control the model complexity. Another major
difference is that GoDec directly constrains the rank range
of L and the cardinality range of S, while RPCA mini-
mizes their corresponding convex polytopes, i.e., the nu-
clear norm of L and ℓ1 norm of S. Chandrasekaran et al.
(Chandrasekaran et al., 2009) proposed an exact decompo-
sition based on a different assumption but the same opti-
mization procedure used in RPCA. Stable principal com-
ponent pursuit (Zhou et al., 2010) is an extension of RPCA
to handle noise by minimizing the nuclear norm and ℓ1
norm. Therefore, they are different from GoDec. In ad-
dition, GoDec can be extended to solve matrix completion
problems because it is able to control the support set of S,
while RPCA cannot because the support set of S is auto-

matically determined.

GoDec has low computational cost in “low-rank+sparse”
decomposition and matrix completion tasks. It is power-
ful in background modeling of videos and shadow/light re-
moval of images. For example, it processes a 200 frame
video with 256× 320 resolution within 200 seconds, while
RPCA requires 1, 800+ seconds.

In this paper, a standard Gaussian matrix is a random ma-
trix whose entries are independent standard normal vari-
ables; the SVD of a matrix X is UΛV T and λi or λi(X)
stands for the ith largest singular value of X; PΩ (·) is the
projection of a matrix to an entry set Ω; and the QR decom-
position of a matrix results in Q and R.

2. Bilateral random projections (BRP) based
low-rank approximation

We first introduce the bilateral random projections (BRP)
based low-rank approximation and its power scheme mod-
ification.

2.1. Low-rank approximation with closed form

In order to improve the approximation precision of L in (1),
we use the obtained right random projection Y1 to build a
better left projection matrix A2, and use Y2 to build a better
A1. In particular, after Y1 = XA1, we update A2 = Y1

and calculate the left random projection Y2 = XTA2, and
then we update A1 = Y2 and calculate the right random
projection Y1 = XA1. A better low-rank approximation L
will be obtained when the new Y1 and Y2 are applied to (1).
This improvement requires additional flops of mnr.

2.2. Power scheme modification

When singular values of X decay slowly, (1) may perform
poorly. We design a modification for this situation based
on the power scheme (Roweis, 1998). In the power scheme
modification, we instead calculate BRP of a matrix X̃ =
(XXT )qX , whose singular values decay faster than X . In
particular, λi(X̃) = λi(X̃)

2q+1
. Both X and X̃ share the

same singular vectors. The BRP of X̃ is:

Y1 = X̃A1, Y2 = X̃TA2. (3)

According to (1), the BRP based r rank approximation of
X̃ is:

L̃ = Y1

(
AT

2 Y1

)−1
Y T
2 . (4)

In order to obtain the approximation of X with rank r, we
calculate the QR decomposition of Y1 and Y2, i.e.,

Y1 = Q1R1, Y2 = Q2R2. (5)
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The low-rank approximation of X is then given by:

L =
(
L̃
) 1

2q+1

= Q1

[
R1

(
AT

2 Y1

)−1
RT

2

] 1
2q+1

QT
2 . (6)

The power scheme modification (6) requires an inverse of
an r× r matrix, an SVD of an r× r matrix and five matrix
multiplications. Therefore, for a dense X , 2(2q + 1)mnr
flops are required to obtain BRP, r2(m + n) flops are re-
quired to obtain the QR decompositions, 2r2(n+2r)+mnr
flops are required to obtain L. The power scheme modifi-
cation reduces the error of (1) by increasing q. When the
random matrices A1 and A2 are built from Y1 and Y2, mnr
additional flops are required in BRP.

In (Zhou & Tao, 2010), we show that the deterministic
bound, average bound and deviation bound for the approx-
imation error of BRP and its power scheme modification
approach to those of SVD under mild conditions.

3. Go Decomposition (GoDec)
The approximated “low-rank+sparse” decomposition prob-
lem stated in (2) can be solved by minimizing the decom-
position error:

min
L,S

∥X − L− S∥2F
s.t. rank (L) ≤ r,

card (S) ≤ k.

(7)

3.1. Naı̈ve GoDec

We propose the naı̈ve GoDec algorithm in this section. The
optimization problem of GoDec (7) can be solved by alter-
natively solving the following two subproblems until con-
vergence:

Lt = arg min
rank(L)≤r

∥X − L− St−1∥2F ;

St = arg min
card(S)≤k

∥X − Lt − S∥2F .
(8)

Although both subproblems (8) have nonconvex con-
straints, their global solutions Lt and St exist.

In particular, the two subproblems in (8) can be solved by
updating Lt via singular value hard thresholding of X −
St−1 and updating St via entry-wise hard thresholding of
X − Lt, respectively, i.e.,

Lt =
r∑

i=1

λiUiV
T
i , svd (X − St−1) = UΛV T ;

St = PΩ (X − Lt) ,Ω :
∣∣∣(X − Lt)i,j∈Ω

∣∣∣ ̸= 0

and ≥
∣∣∣(X − Lt)i,j∈Ω

∣∣∣ , |Ω| ≤ k.

(9)

The main computation in the naı̈ve GoDec algorithm (9) is
the SVD of X − St−1 in the updating Lt sequence. SVD
requires min

(
mn2,m2n

)
flops, so it is impractical when

X is of large size.

3.2. Fast GoDec via BRP based approximation

Since BRP based low-rank approximation is near optimal
and efficient, we replace SVD with BRP in naı̈ve GoDec in
order to significantly reduce the time cost.

We summarize GoDec using BRP based low-rank approx-
imation (1) and power scheme modification (6) in Algo-
rithm 1. When q = 0, For dense X , (1) is applied. Thus
the QR decomposition of Y1 and Y2 in Algorithm 1 are not
performed, and Lt is updated as Lt = Y1

(
AT

2 Y1

)−1
Y T
2 .

In this case, Algorithm 1 requires r2 (2n+ r)+4mnr flops
per iteration. When integer q > 0, (6) is applied and Al-
gorithm 1 requires r2 (m+ 3n+ 4r)+ (4q+4)mnr flops
per iteration.

Algorithm 1 GoDec
Input: X , r, k, ϵ, q
Output: L, S
Initialize: L0 := X , S0 := 0, t := 0
while ∥X − Lt − St∥2F /∥X∥2F > ϵ do

t := t+ 1;
L̃ =

[
(X − St−1) (X − St−1)

T
]q

(X − St−1);

Y1 = L̃A1, A2 = Y1;
Y2 = L̃TY1 = Q2R2, Y1 = L̃Y2 = Q1R1;
If rank

(
AT

2 Y1

)
< r then r := rank

(
AT

2 Y1

)
, go to

the first step; end;

Lt = Q1

[
R1

(
AT

2 Y1

)−1
RT

2

]1/(2q+1)

QT
2 ;

St = PΩ (X − Lt), Ω is the nonzero subset of the
first k largest entries of |X − Lt|;

end while

3.3. GoDec for matrix completion

We consider the problem of exactly completing a low-
rank matrix X with rank(X) ≤ r from a subset of
its entries Y = PΩ(X), wherein Ω is the sampling
index set. Different from the two conventional meth-
ods, nuclear norm minimization (Candès & Tao, 2009) and
low-rank subspace optimization on Grassmann manifold
(Keshavan & Oh, 2009), we formulate the matrix comple-
tion problem as a rank constrained optimization:

min
X,Z

∥Y −X − Z∥2F
s.t. rank (X) ≤ r,

supp (Z) = Ω,

(10)

where Z is an estimate of −PΩ(X). Therefore, Godec al-
gorithms can be extended to solve (10) after the following
two slight modifications.

• Replacing X , L and S in Algorithm 1 with Y , X and
Z, respectively.

• Replacing the entry set Ω used in the last step of Al-
gorithm 1 with Ω, wherein Ω is the sampling index set
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in matrix completion.

The same as GoDec, its extension (10) for solving the
matrix completion problem converges to a local optimum.
Compared with the nuclear norm minimization methods,
(10) is more efficient because it does not require time con-
suming SVD for X . Compared with the subspace opti-
mization methods, GoDec avoids the unstableness and the
local barriers of the optimization on Grassmann manifold.
Moreover, GoDec is parameter free (both the rank range r
and the tolerance ϵ are predefined parameters) and thus it is
easier to use compared with existing methods.

4. Convergence of GoDec
In this section, we analyze the convergence properties of
GoDec. In particular, we first prove that the objective value
∥X − L− S∥2F (decomposition error) converges to a local
minimum. Then we demonstrate the asymptotic properties
of GoDec and prove that the solutions L and S respectively
converge to local optimums with linear rate less than 1, by
using the framework presented in (Lewis & Malick, 2008).
The influence of L, S and G to the asymptotic/convergence
speeds is analyzed. The speeds will be slowed by aug-
menting the magnitude of noise part ∥G∥2F . However, the
convergence will not be harmed unless ∥G∥2F ≫ ∥L∥2F or
∥G∥2F ≫ ∥S∥2F .

We have the following theorem about the convergence of
the objective value ∥X − L− S∥2F in (7).

Theorem 1. (Convergence of objective value). The alter-
native optimization (8) produces a sequence of ∥X − L −
S∥2F that converges to a local minimum.

Proof. Let the objective value ∥X−L−S∥2F after solving
the two subproblems in (8) be E1

t and E2
t , respectively, in

the tth iteration. On the one hand, we have

E1
t = ∥X − Lt − St−1∥2F , E2

t = ∥X − Lt − St∥2F . (11)

The global optimality of St yields E1
t ≥ E2

t . On the other
hand,

E2
t = ∥X−Lt−St∥2F , E1

t+1 = ∥X−Lt+1−St∥2F . (12)

The global optimality of Lt+1 yields E2
t ≥ E1

t+1. There-
fore, the objective values (decomposition errors) ∥X−L−
S∥2F keep decreasing throughout GoDec (8):

E1
1 ≥ E2

1 ≥ E1
2 ≥ · · · ≥ E1

t ≥ E2
t ≥ E1

t+1 ≥ · · · (13)

Since the objective of (7) is monotonically decreasing and
the constraints are satisfied all the time, (8) produces a se-
quence of objective values that converge to a local mini-
mum. This completes the proof.

The asymptotic property and the linear convergence of L
and S in GoDec are demonstrated based on the framework
proposed in (Lewis & Malick, 2008). We firstly consider
L. From a different prospective, GoDec algorithm shown
in (9) is equivalent to iteratively projecting L onto one man-
ifold M and then onto another manifold N . This kind of
optimization method is the so called “alternating projec-
tions on manifolds”. To see this, in (9), by substituting St

into the next updating of Lt+1, we have:

Lt+1 = PM (X − PΩ (X − Lt)) = PMPN (Lt) , (14)

Both M and N are two Ck-manifolds around a point L ∈
M∩N :{

M = {H ∈ Rm×n : rank (H) = r} ,
N = {X −PΩ (X −H) : H ∈ Rm×n} . (15)

According to the above definitions, any point L ∈ M∩N
satisfies:

L = PM∩N (L) ⇒ (16)
L = X −PΩ (X − L) , rank (L) = r. (17)

Thus any point L ∈ M∩N is a local solution of L in (7).

We define the angle between two manifolds M and N at
point L as the angle between the corresponding tangent
spaces TM(L) and TN (L). The angle is between 0 and
π/2 with cosine:

c (M,N , L) = c (TM(L), TN (L)) . (18)

In addition, if S is the unit sphere in Rm×n, the angle be-
tween two subspaces M and N in Rm×n is defined as the
angle between 0 and π/2 with cosine:

c (M,N) = max
{
⟨x, y⟩ : x ∈ S ∩M ∩ (M ∩N)

⊥
,

y ∈ S ∩N ∩ (M ∩N)
⊥
}
.

We give the following proposition about the angle between
two subspaces M and N :

Proposition 1. Following the above definition of the angle
between two subspaces M and N , we have

c (M,N) = max
{
⟨x, y⟩ : x ∈ S ∩M ∩N⊥,

y ∈ S ∩N ∩M⊥} .
The angle between M and N is used in the asymptoti-
cal property and the linear convergence rate of “alternating
projections on manifolds” algorithms.

Theorem 2. (Asymptotic property (Lewis & Malick,
2008)). Let M and N be two transverse C2-manifolds
around a point L ∈ M∩N . Then

lim sup
L→L,L/∈M∩N

∥PMPN (L)− PM∩N (L)∥
∥L− PM∩N (L)∥

≤ c
(
M,N , L

)
.
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A refinement of the above argument is

lim sup
L→L,L/∈M∩N

∥(PMPN )
n
(L)− PM∩N (L)∥

∥L− PM∩N (L)∥
≤ c2n−1

for n = 1, 2, ... and c = c
(
M,N , L

)
.

Theorem 3. (Linear convergence of variables
(Lewis & Malick, 2008)). In Rm×n, let M and N
be two transverse manifolds around a point L ∈ M ∩ N .
If the initial point L0 ∈ Rm×n is close to L, then the
method of alternating projections

Lt+1 = PMPN (Lt) , (t = 0, 1, 2, ...)

is well-defined, and the distance dM∩N (Lt) from the iter-
ate Lt to the intersection M ∩ N decreases Q-linearly to
zero. More precisely, given any constant c strictly larger
than the cosine of the angle of the intersection between the
manifolds, (̧M,N , L), if L0 is close to L, then the iterates
satisfy

dM∩N (Lt+1) ≤ c · dM∩N (Lt), (t = 0, 1, 2, ...)

Furthermore, Lt converges linearly to some point L∗ ∈
M∩N , i.e., for some constant α > 0,

∥Lt − L∗∥ ≤ αct, (t = 0, 1, 2, ...).

Since GoDec algorithm can be written as the form of al-
ternating projections on two manifolds M and N given in
(15) and they satisfy the assumptions of Theorem 2 and
Theorem 3, L in GoDec converges to a local optimum with
linear rate. Similarly, we can prove the linear convergence
of S.

Since cosine (̧M,N , L) in Theorem 2 and Theorem 3 de-
termines the asymptotic and convergence speeds of the al-
gorithm. We discuss how L, S and G influence the asymp-
totic and convergence speeds via analyzing the relationship
between L, S, G and c(M,N , L).

Theorem 4. (Asymptotic and convergence speed). In
GoDec, the asymptotical improvement and the linear con-
vergence of L and S stated in Theorem 2 and Theorem 3
will be slowed by augmenting

For L :
∥∆L∥F

∥L+∆L∥F
,∆L = (S +G)− PΩ (S +G) ,

For S :
∥∆S∥F

∥S +∆S∥F
,∆S = (L+G)− PM (L+G) .

However, the asymptotical improvement and the linear con-
vergence will not be harmed and is robust to the noise G
unless when ∥G∥F ≫ ∥S∥F and ∥G∥F ≫ ∥L∥F , which
lead the two terms increasing to 1.

Proof. GoDec approximately decomposes a matrix X =
L + S + G into the low-rank part L and the sparse part
S. According to the above analysis, GoDec is equivalent to
alternating projections of L on M and N , which are given
in (15). According to Theorem 2 and Theorem 3, smaller
c(M,N , L) produces faster asymptotic and convergence
speeds, while c(M,N , L) = 1 is possible to make L and
S stopping converging. Below we discuss how L, S and G
influence c(M,N , L) and further influence the asymptotic
and convergence speeds of GeDec.

According to (18), we have

c
(
M,N , L

)
= c

(
TM(L), TN (L)

)
. (19)

Substituting the equation given in Proposition 1 into the
right-hand side of the above equation yields

c
(
M,N , L

)
= max

{
⟨x, y⟩ : x ∈ S ∩ TM(L) ∩NN (L),

y ∈ S ∩ TN (L) ∩NM(L)
}
.

(20)
The normal spaces of manifolds M and N on point L is
respectively given by

NM(L) =
{
y ∈ Rm×n : uT

i yvj = 0, L = UDV T
}
,

NN (L) =
{
X − PΩ

(
X − L

)}
,

(21)
where L = UDV T represents the eigenvalue decomposi-
tion of L, U = [u1, ..., ur] and V = [v1, ..., vr]. Assume
X = L+ S +G, wherein G is the noise corresponding to
L, we have

L = X −
(
S +G

)
,

L̂ = X −PΩ

(
S +G

)
,⇒

L̂ = L+
[(
S +G

)
− PΩ

(
S +G

)]
= L+∆. (22)

Thus the normal space of manifold N is

NN (L) =
{
L+∆

}
. (23)

Since the tangent space is the complement space of the nor-
mal space, by using the normal space of M in (21) and the
normal space of N given in (23), we can verify

NN (L) ⊆ TM(L), NM(L) ⊆ TN (L). (24)

By substituting the above results into (20), we obtain

c
(
M,N , L

)
= max

{
⟨x, y⟩ : x ∈ S ∩NN (L),

y ∈ S ∩NM(L)
}
.

(25)

Hence we have

⟨x, y⟩ = tr
(
V DUT y +∆T y

)
= tr

(
DUT yV

)
+ tr

(
∆T y

)
= tr

(
∆T y

)
. (26)
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The last equivalence is due to uT
i yvj = 0 in (21). Thus

c
(
M,N , L

)
= max {⟨x, y⟩} ≤ max {⟨D∆, Dy⟩} , (27)

where the diagonal entries of D∆ and Dy are composed by
eigenvalues of ∆ and y, respectively. The last inequality is
obtained by considering the case when x and y have iden-
tical left and right singular vectors. Because L+∆, y ∈ S
infers ∥L+∆∥2F = ∥y∥2F = 1, we have

c
(
M,N , L

)
≤ max {⟨D∆, Dy⟩}
≤ ∥D∆∥F ∥Dy∥F ≤ ∥D∆∥F . (28)

Since c in Theorem 3 can be selected as any constant that is
strictly larger than c

(
M,N , L

)
≤ ∥D∆∥F , we can choose

c = c
(
M,N , L

)
+ ∆c ≤ ∥D∆∥F . In Theorem 2, the

cosine c
(
M,N , L

)
is directly used.

Therefore, the asymptotic and convergence speeds of L
will be slowed by augmenting ∥∆∥F , and vice versa. How-
ever, the asymptotical improvement and the linear conver-
gence will not be jeopardized unless ∥∆∥F = 1. For gen-
eral L+∆ that is not normalized onto the sphere S, ∥∆∥F
should be replaced by ∥∆∥F /∥L+∆∥F .

For the variable S, we can obtain an analogous result via
an analysis in a similar style as above. For general L + ∆
without normalization, the asymptotic/convergence speed
of S will be slowed by augmenting ∥∆∥F /∥S +∆∥F , and
vice versa, wherein

∆ = (L+G)− PM (L+G) . (29)

The asymptotical improvement and the linear convergence
will not be jeopardized unless ∥∆∥F /∥S +∆∥F = 1.

This completes the proof.

Theorem 4 reveals the influence of the low-rank part L,
the sparse part S and the noise part G to the asymp-
totic/convergence speeds of L and S in GoDec. Both ∆L

and ∆S are the element-wise hard thresholding error of
S + G and the singular value hard thresholding error of
L+G, respectively. Large errors will slow the asymptotic
and convergence speeds of GoDec. Since S − PΩ(S) = 0
and L − PM(L) = 0, the noise part G in ∆L and ∆S can
be interpreted as the perturbations to S and L and deviates
the two errors from 0. Thus noise G with large magnitude
will decelerate the asymptotical improvement and the lin-
ear convergence, but it will not ruin the convergence unless
∥G∥F ≫ ∥S∥F or ∥G∥F ≫ ∥L∥F . Therefore, GoDec
is robust to the additive noise in X and is able to find the
approximated L + S decomposition when noise G is not
overwhelming.

5. Experiments
This section evaluates both the effectiveness and the ef-
ficiency of the BRP based low-rank approximation and
GoDec for computer vision applications, low-rank+sparse
decomposition and matrix completion. We run all the ex-
periments in MatLab on a server with dual quad-core 3.33
GHz Intel Xeon processors and 32 GB RAM. The relative
error ∥X − X̂∥2F /∥X∥2F is used to evaluate the effective-
ness, wherein X is the original matrix and X̂ is an esti-
mate/approximation.

5.1. RPCA vs. GoDec

Since RPCA and GoDec are related in their motivations, we
compare their relative errors and time costs on square ma-
trices with different sizes, different ranks of low-rank com-
ponents and different cardinality of sparse components. For
a matrix X = L+ S +G, its low-rank component is built
as L = AB, wherein both A and B are n × r standard
Gaussian matrices. Its sparse part is built as S = PΩ(D),
wherein D is a standard Gaussian matrix and Ω is an en-
try set of size k drawn uniformly at random. Its noise
part is built as G = 10−3 · F , wherein F is a standard
Gaussian matrix. In our experiments, we compare RPCA
1 (inexact alm rpca) with GoDec (Algorithm 2 with
q = 2). Since both algorithms adopt the relative error
of X as the stopping criterion, we use the same tolerance
ϵ = 10−7. Table 1 shows the results and indicates that
both algorithms are successful in recovering the correct
“low-rank+sparse” decompositions with relative error less
than 10−6. GoDec usually produces less relative error with
much less CPU seconds than RPCA. The improvement of
accuracy is due to that the model of GoDec in (2) is more
general than that of RPCA by considering the noise part.
The improvement of speed is due to that BRP based low-
rank approximation significantly saves the computation of
each iteration round.

5.2. Matrix completion

We test the performance of GoDec in matrix completion
tasks. Each test low-rank matrix is generated by X = AB,
wherein both A and B are n × r standard Gaussian ma-
trices. We randomly sample a few entries from X and re-
cover the whole matrix by using Algorithm 1 (after the two
modifications presented in Section 4.1). The experimen-
tal results are shown in Table 2. Compared with the pub-
lished results (Keshavan & Oh, 2009) of the popular matrix
completion methods, e.g., OptSpace, SVT, FPCA and AD-
MIRA, GoDec requires both less computational time and
less samples to recover a low-rank matrix.

1http://watt.csl.illinois.edu/p̃erceive/matrix-rank
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5.3. Background modeling

Background modeling (Cheng et al., 2010) is a challenging
task to reveal the correlation between video frames, model
background variations and foreground moving objects. A
video sequence satisfies the low-rank+sparse structure, be-
cause backgrounds of all the frames are related, while the
variation and the moving objects are sparse and indepen-
dent. We apply GoDec (Algorithm 2 with q = 2) to four
surveillance videos 2, respectively. The matrix X is com-
posed of the first 200 frames of each video. For example,
the second video is composed of 200 frames with the reso-
lution 256×320, we convert each frame as a vector and thus
the matrix X is of size 81920×200. We show the decompo-
sition result of one frame in each video sequence in Figure
1. The background and moving objects are precisely sepa-
rated (the person in L of the fourth sequence does not move
throughout the video) without losing details. The results of
the first sequence and the fourth sequence are comparable
with those shown in (Candès et al., 2009). However, com-
pared with RPCA (36 minutes for the first sequence and
43 minutes for the fourth sequence) (Candès et al., 2009),
GoDec requires around 50 seconds for each of both. There-
fore, GoDec makes large-scale applications available.

Shadow/Light removal

Shadow and light in training images always pull down the
quality of learning in computer vision applications. GoDec
can remove the shadow/light noises by assuming that they
are sparse and the rest parts of the images are low-rank. We
apply GoDec (Algorithm 2 with q = 2) to face images of
four individuals in the Yale B database 3. Each individual
has 64 images with resolution 192×168 captured under dif-
ferent illuminations. Thus the matrix X for each individual
is of size 32760×64. We show the GoDec of eight example
images (2 per individual) in Figure 2. The real face of each
individual are remained in the low rank component, while
the shadow/light noises are successfully removed from the
real face images and stored in the sparse component. The
learning time of GoDec for each individual is less than
30 seconds, which encourages for large-scale applications,
while RPCA requies around 685 seconds.

6. Conclusion
In this paper, we first proposed a bilateral random projec-
tions (BRP) based low-rank approximation with fast speed
and nearly optimal error bounds. We then develop “Go De-
composition” (GoDec) to estimate the low-rank part L and
the sparse part S of a general matrix X = L + S + G,
wherein G is noise. GoDec is significantly accelerated

2http://perception.i2r.a-star.edu.sg/bk model/bk index.html
3http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

by using BRP based approximation. The discussions of
asymptotic and convergence speeds indicate that GoDec is
robust to noise G.
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Table 1. Relative error and time cost of RPCA and GoDec in low-rank+sparse decomposition tasks. The results separated by “/” are
RPCA and GoDec, respectively.

size(X) rank(L) card(S) rel.error(X) rel.error(L) rel.error(S) time
(square) (1) (104) (10−8) (10−8) (10−6) (seconds)

500 25 1.25 3.70/1.80 1.50/1.20 2.00/0.95 6.07/2.83
1000 50 5.00 4.98/4.56 1.82/1.85 5.16/4.90 20.96/12.71
2000 100 20.0 8.80/1.13 3.10/1.10 1.81/1.24 101.74/74.16
3000 250 45.0 6.29/4.98 5.09/5.05 33.9/55.3 562.09/266.11
5000 400 125 63.1/24.4 30.2/29.3 54.2/18.8 2495.31/840.39

10000 500 600 6.18/3.04 2.27/2.88 58.3/36.6 9560.74/3030.15

Table 2. Relative error and time cost of OptSpace and GoDec in matrix completion tasks. The results separated by “/” are SVT (Cai et al.,
2010) (a nuclear norm minimization method), OptSpace (Keshavan & Oh, 2009) (a subspace optimization method on Grassmann mani-
fold) and GoDec, respectively. See (Keshavan & Oh, 2009) for the results of the other methods, e.g., FPCA and ADMIRA.

size(X) rank(X) sampling rate rel.error(X) time
(square) (1) (%) (10−5) (seconds)

1000 10 0.12/0.12/0.075 1.68/1.18/1.77 40/28/15.43
50 0.39/0.39/0.18 1.62/0.92/1.11 247/212/26.36
100 0.57/0.57/0.3 1.71/1.49/1.24 694/723/43.47

5000 10 0.024/0.024/0.021 1.76/1.51/1.39 112/252/300.96
50 0.1/0.1/0.084 1.62/1.16/1.48 1312/850/415.96
100 0.16/0.16/0.12 1.73/0.83/1.09 5432/3714/551.95

10000 10 0.012/0.012/0.04 1.75/0.76/0.50 221/632/1101.83
50 0.05/0.05/0.045 1.63/1.19/1.17 2872/2585/1172.68
100 0.08/0.08/0.075 1.76/1.46/1.84 10962/8514/1505.93

Figure 1. Background modeling results of four 200-frame surveillance video sequences in X = L + S mode. Top left: lobby in an
office building (resolution 128 × 160, learning time 39.75 seconds). Top right: shopping center (resolution 256 × 320, learning time
203.72 seconds). Bottom left: Restaurant (resolution 120×160, learning time 36.84 seconds). Bottom right: Hall of a business building
(resolution 144× 176, learning time 47.38 seconds).

Figure 2. Shadow/light removal of face images from four individuals in Yale B database in X = L + S mode. Each individual has 64
images with resolution 192× 168 and needs 24 seconds learning time.
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Graph

Maayan  Roth;  Tzvika  Barenholz;  Assaf  Ben-David;
David Deutscher; Guy Flysher; Avinatan Hassidim; Ilan
Horn;  Ari Leichtberg;  Naty  Leiser;  Yossi Matias;  Ron
Merom

Relevance  and  ranking  in  online  dating
systems

Fernando Diaz; Donald Metzler; Sihem Amer-Yahia

We Just Clicked - Conversational Features
of Social Bonding in Speed Dates

Rajesh Ranganath; Dan Jurafsky; Dan McFarland

8I Neural
Networks  and
Deep Learning

Yoshua Bengio

Enhanced Gradient and Adaptive Learning
Rate  for  Training  Restricted  Boltzmann
Machines

KyungHyun Cho; Tapani Raiko; Alexander Ilin

On optimization methods for deep learning Quoc  Le;  Jiquan Ngiam;  Adam  Coates;  Abhik  Lahiri;
Bobby Prochnow; Andrew Ng

The  Hierarchical  Beta  Process  for
Convolutional  Factor  Analysis  and  Deep
Learning

Bo  Chen;  Gungor  Polatkan;  Guillermo  Sapiro;  David
Dunson; Lawrence Carin

Multimodal Deep Learning Jiquan Ngiam; Aditya Khosla; Mingyu Kim; Juhan Nam;
Honglak Lee; Andrew Ng

8E Reinforcement
Learning

Prasad Tadepalli

Mean-Variance  Optimization  in  Markov
Decision Processes

Shie Mannor; John Tsitsiklis

Incremental  Basis  Construction  from
Temporal Difference Error

Yi  Sun;  Faustino  Gomez;  Mark  Ring;  Jürgen
Schmidhuber

Variational Inference  for  Policy  Search in
changing situations

Gerhard Neumann

Finite-Sample Analysis of Lasso-TD Mohammad Ghavamzadeh;  Alessandro  Lazaric;  Remi
Munos; Matthew Hoffman

8F Bayesian
Inference  and
Probabilistic
Models

Andrew Ng

Estimating  the  Bayes  Point  Using  Linear
Knapsack Problems

Brian Potetz

Message  Passing  Algorithms  for  the
Dirichlet Diffusion Tree

David Knowles; Jurgen Van Gael; Zoubin Ghahramani

Variational  Inference  for  Stick-Breaking
Beta Process Priors

John Paisley; Lawrence Carin; David Blei

Infinite Dynamic Bayesian Networks Finale Doshi; David Wingate; Josh Tenenbaum; Nicholas
Roy

8G Supervised
Learning

Alexandru
Niculescu-Mizil

Multi-Label  Classification  on  Tree-  and
DAG-Structured Hierarchies

Wei Bi; James Kwok

Surrogate  losses  and  regret  bounds  for
cost-sensitive classification with example-
dependent costs

Clayton Scott

Support  Vector  Machines  as  Probabilistic
Models

Vojtech Franc; Alexander Zien; Bernhard Schölkopf

Locally Linear Support Vector Machines Lubor Ladicky; Philip Torr

Thu,
3.20-3.50

Coffee Break

Thu,
3.50-4.40

9A Social
Networks

Alice Zheng

Uncovering  the  Temporal  Dynamics  of
Diffusion Networks

Manuel  Gomez  Rodriguez;  David  Balduzzi;  Bernhard
Schölkopf

Dynamic  Egocentric  Models  for  Citation
Networks

Duy Vu; Arthur Asuncion; David Hunter; Padhraic Smyth
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9I Evaluation
Metrics

Tomas Singliar

Brier  Curves:  a  New  Cost-Based
Visualisation of Classifier Performance

Jose Hernandez-Orallo; Peter Flach; Cèsar Ferri

A  Coherent  Interpretation  of  AUC  as  a
Measure  of  Aggregated  Classification
Performance

Peter Flach; Jose Hernandez-Orallo; Cèsar Ferri

9E statistical
relational
learning

Pedro Domingos

Relational  Active  Learning  for  Joint
Collective Classification Models

Ankit Kuwadekar; Jennifer Neville

A Three-Way Model for Collective Learning
on Multi-Relational Data

Maximilian Nickel; Volker Tresp; Hans-Peter Kriegel

9F Outlier
Detection

Jennifer Dy

Learning  Multi-View  Neighborhood
Preserving Projections

Novi Quadrianto; Christoph Lampert

On  the  Robustness  of  Kernel  Density
M-Estimators

JooSeuk Kim; Clayton Scott

9G Time Series

Masashi
Sugiyama

Time  Series  Clustering:  Complex  is
Simpler!

Lei Li; B. Aditya Prakash

Learning Discriminative Fisher Kernels Laurens Van der Maaten

Thu, 4:50pm Buses  leave
for  the
banquet

Fri, 1 July

Time Session Session Title
Session Chair Paper Title Authors

Fri,
8.30-9.30

10A Keynote

Tobias Scheffer

Machine Learning in Google Goggles Hartmut Neven

Fri, 9.30-10 Coffee Break

Fri,
10-12.10

11A Graphical Models
and  Bayesian
Inference

Pradeep Ravikumar

Variational  Heteroscedastic  Gaussian  Process
Regression

Miguel Lazaro-Gredilla; Michalis Titsias

Predicting Legislative Roll Calls from Text Sean Gerrish; David Blei
Bounding  the  Partition  Function  using  Holder's
Inequality

Qiang Liu; Alexander Ihler

On Bayesian PCA: Automatic Dimensionality Selection
and Analytic Solution

Shinichi  Nakajima;  Masashi  Sugiyama;
Derin Babacan

Bayesian CCA via Group Sparsity Seppo Virtanen; Arto Klami; Samuel Kaski
11I Sparsity  and

Compressed
Sensing

Nati Srebro

Efficient  Sparse  Modeling  with  Automatic  Feature
Grouping

Wenliang Zhong; James Kwok

Robust Matrix Completion and Corrupted Columns Yudong  Chen;  Huan  Xu;  Constantine
Caramanis; Sujay Sanghavi

Clustering  Partially  Observed  Graphs  via  Convex
Optimization

Ali  Jalali;  Yudong  Chen;  Sujay  Sanghavi;
Huan Xu

Noisy  matrix  decomposition  via  convex  relaxation:
Optimal rates in high dimensions

Alekh Agarwal;  Sahand Negahban;  Martin
Wainwright

Submodular  meets  Spectral:  Greedy  Algorithms  for
Subset  Selection,  Sparse  Approximation  and
Dictionary Selection

Abhimanyu Das; David Kempe

11E Clustering

Jennifer Neville

On  Information-Maximization  Clustering:  Tuning
Parameter Selection and Analytic Solution

Masashi  Sugiyama;  Makoto  Yamada;
Manabu Kimura; Hirotaka Hachiya

Pruning nearest neighbor cluster trees Samory Kpotufe; Ulrike von Luxburg
A  Co-training  Approach  for  Multi-view  Spectral
Clustering

Abhishek Kumar; Hal Daume III

Clusterpath: an Algorithm for Clustering using Convex
Fusion Penalties

Toby  Hocking;  Jean-Philippe  Vert;  Francis
Bach; Armand Joulin

A  Unified  Probabilistic  Model  for  Global  and  Local
Unsupervised Feature Selection

Yue Guan; Jennifer Dy; Michael Jordan

11F Game  Theory
and Planning and
Control

Shie Mannor

Integrating Partial Model Knowledge in Model Free RL
Algorithms

Aviv Tamar; Dotan Di Castro; Ron Meir

Task Space Retrieval Using Inverse Feedback Control Nikolay Jetchev; Marc Toussaint
PILCO: A Model-Based and Data-Efficient Approach to
Policy Search

Marc Deisenroth; Carl Rasmussen

Approximating Correlated Equilibria using Relaxations
on the Marginal Polytope

Hetunandan  Kamisetty;  Eric  Xing;
Christopher Langmead

Generalized Value Functions for Large Action Sets Jason Pazis; Ron Parr
11G Semi-Supervised

Learning

William Cohen

Vector-valued Manifold Regularization Ha Quang Minh; Vikas Sindhwani

Semi-supervised Penalized Output  Kernel Regression
for Link Prediction

Céline  Brouard;  Florence  D'Alche-Buc;
Marie Szafranski

Access  to  Unlabeled  Data  can Speed  up  Prediction
Time

Ruth  Urner;  Shai  Shalev-Shwartz;  Shai
Ben-David

Automatic  Feature  Decomposition  for  Single  View
Co-training

Minmin Chen; Kilian Weinberger; Yixin Chen
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Towards Making Unlabeled Data Never Hurt Yu-Feng Li; Zhi-Hua Zhou

Fri,
12.10-1.40

Lunch Break

IMLS  Board
Luncheon

IMLS Board Members

Fri,
1.40-3.45

12A Kernel  Methods
and Optimization

Thorsten Joachims

Learning  Output  Kernels  with  Block  Coordinate
Descent

Francesco  Dinuzzo;  Cheng  Soon  Ong;
Peter Gehler; Gianluigi Pillonetto

Implementing regularization implicitly via approximate
eigenvector computation

Michael Mahoney; Lorenzo Orecchia

Adaptive  Kernel  Approximation  for  Large-Scale
Non-Linear SVM Prediction

Michele Cossalter; Rong Yan; Lu Zheng

Suboptimal  Solution  Path  Algorithm  for  Support
Vector Machine

Masayuki Karasuyama; Ichiro Takeuchi

Functional Regularized Least Squares Classication with
Operator-valued Kernels

Hachem  Kadri;  Asma  Rabaoui;  Philippe
Preux;  Emmanuel  Duflos;  Alain
Rakotomamonjy

12I Neural Networks
and NLP

Hal Daume III

Parsing  Natural  Scenes  and  Natural  Language  with
Recursive Neural Networks

Richard Socher; Cliff Chiung-Yu Lin; Andrew
Ng; Chris Manning

Domain  Adaptation  for  Large-Scale  Sentiment
Classification: A Deep Learning Approach

Xavier  Glorot;  Antoine  Bordes;  Yoshua
Bengio

Large-Scale  Learning  of  Embeddings  with
Reconstruction Sampling

Yann  Dauphin;  Xavier  Glorot;  Yoshua
Bengio

Generating Text with Recurrent Neural Networks Ilya  Sutskever;  James  Martens;  Geoffrey
Hinton

Contractive Auto-Encoders: Explicit Invariance During
Feature Extraction

Salah Rifai;  Pascal Vincent;  Xavier Muller;
Xavier Glorot; Yoshua Bengio

12E Probabilistic
Models & MCMC

Ruslan
Salakhutdinov

Probabilistic Matrix Addition Amrudin  Agovic;  Arindam  Banerjee;
Snigdhansu Chatterje

SampleRank:  Training  Factor  Graphs  with  Atomic
Gradients

Michael  Wick;  Khashayar  Rohanimanesh;
Kedar  Bellare;  Aron  Culotta;  Andrew
McCallum

A  New  Bayesian  Rating  System  for  Team
Competitions

Sergey Nikolenko; Alexander Sirotkin

Bayesian Learning  via  Stochastic  Gradient  Langevin
Dynamics

Max Welling; Yee Whye Teh

ABC-EP:  Expectation Propagation for Likelihood-free
Bayesian Computation

Simon Barthelmé; Nicolas Chopin

12F Online Learning

Claudio Gentile

Online AUC Maximization Peilin Zhao; Steven Hoi; Rong Jin; Tianbao
Yang

Online  Submodular  Minimization  for  Combinatorial
Structures

Stefanie Jegelka; Jeff Bilmes

Better Algorithms for Selective Sampling Francesco Orabona; Nicolò Cesa-Bianchi
Learning Linear Functions  with Quadratic  and Linear
Multiplicative Updates

Tom Bylander

Optimal Distributed Online Prediction Ofer  Dekel;  Ran  Gilad-Bachrach;  Ohad
Shamir; Lin Xiao

12G Ranking  and
Information
Retrieval

Mikhail Bilenko

Learning Mallows Models with Pairwise Preferences Tyler Lu; Craig Boutilier

Preserving Personalized Pagerank in Subgraphs Andrea  Vattani;  Deepayan  Chakrabarti;
Maxim Gurevich

Learning  Scoring  Functions  with  Order-Preserving
Losses and Standardized Supervision

David Buffoni; Clément Calauzenes; Patrick
Gallinari; Nicolas Usunier

Bipartite  Ranking through Minimization of  Univariate
Loss

Wojciech  Kotlowski;  Krzysztof
Dembczynski; Eyke Huellermeier

k-DPPs: Fixed-Size Determinantal Point Processes Alex Kulesza; Ben Taskar

Fri,
3.45-4.15

Coffee break

Fri,
4.15-5.15

13A Keynote

Ray Mooney

Building Watson: An Overview of the DeepQA Project David Ferrucci

Fri,
5.15-6.15

14A Business
Meeting

Ray Mooney

Lise Getoor, Tobias Scheffer

Fri, 6-10 Poster Session Papers from Sessions 8A-12G - Evergreen Balroom
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