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Abstract

The intricate dynamics of stock markets have led to extensive research on models

that are able to effectively explain their inherent complexities. This study leverages

the econometrics literature to explore the dynamic factor model as an interpretable
model with sufficient predictive capabilities for capturing essential market phenomena.
Although the model has been extensively applied for predictive purposes, this study
focuses on analyzing the extracted loadings and common factors as an alternative
framework for understanding stock price dynamics. The results reveal novel insights
into traditional market theories when applied to the Philippine Stock Exchange using
the Kalman method and maximum likelihood estimation, with subsequent validation
against the capital asset pricing model. Notably, a one-factor model extracts a com-
mon factor representing systematic or market dynamics similar to the composite index,
whereas a two-factor model extracts common factors representing market trends

and volatility. Furthermore, an application of the model for nowcasting the growth
rates of the Philippine gross domestic product highlights the potential of the extracted
common factors as viable real-time market indicators, yielding over a 34% decrease

in the out-of-sample prediction error. Overall, the results underscore the value

of dynamic factor analysis in gaining a deeper understanding of market price move-
ment dynamics.

Keywords: Dynamic factor analysis, Kalman filtering, Philippine Stock Exchange, State-
space model, Stock price movement

Introduction

Researchers, practitioners, and investors have long been interested in financial mar-
kets due to the opportunities they offer to invest excess funds and generate positive
returns. Among the primary objectives in the study of financial markets is the accurate
prediction of stock price movements, as this enables one to outperform the market and
achieve significant gains. Substantial efforts have been made to develop models that can
effectively capture the complex dynamics of stock markets, providing tools for making
informed decisions based on historical data (Chernov et al. 2003; Kothari and Zimmer-
man 1995; Long et al. 2019).

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.


http://orcid.org/0000-0003-1168-4295
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-025-00807-7&domain=pdf

Lim et al. Financial Innovation (2026) 12:4 Page 2 of 24

In recent years, machine learning models have gained immense popularity for feature
selection and extraction (Kumari et al. 2023; Htun et al. 2023) as well as for predicting
future price movements (Muhammad 2023; Li et al. 2023; Lawi et al. 2022; Shen and
Shafiq 2020; Zhong and Enke 2019). Despite their success, the black box nature of these
models hinders their interpretability. Traditional asset pricing models, such as the cap-
ital asset pricing model (CAPM), the Fama—French models, and the arbitrage pricing
theory (APT) model, offer a simpler framework by characterizing the linear relation-
ships between stock returns and some underlying factors (Giglio et al. 2021; Lintner
1965; Sharpe 1964; Fama and French 1993). However, these interpretable linear models
often fail to capture the market’s complexities. Thus, models must combine the inter-
pretability of conventional linear asset pricing models with the predictive capabilities of
machine learning models to provide a deeper understanding of stock price movement
dynamics.

This study leverages the econometrics literature by analyzing stock market price
movements through the lens of dynamic factor analysis. Although not commonly used
in financial applications, the dynamic factor model (DFM) may be used to explain stock
returns as the sum of a common component and an idiosyncratic component (Geweke
1977). The former is further decomposed as a linear combination of a set of predictive
features, known as the common factors, extracted by the unsupervised model. Thus,
similar to traditional linear asset pricing models, DFM offers an interpretable way to
explain market phenomena while possessing the predictive capabilities of machine
learning models. Moreover, although the model has been predominantly used for pre-
dictive purposes, this study focuses on analyzing the extracted loadings and common
factors as an alternative approach to understanding the complex dynamics of price
movements in the stock market.

Using the Kalman method and maximum likelihood estimation, the analysis of the
Philippine Stock Exchange (PSE), validated against the CAPM, provides novel and alter-
native insights into classical market theories. The common factor in a one-factor model
may be used to represent the systematic or market dynamics similar to the composite
index, whereas the common factors in a two-factor model may be used to represent
market trends and volatility. Moreover, an application of the model for nowcasting the
growth rates of the Philippine gross domestic product (GDP) further demonstrates the
utility of the extracted common factors as viable real-time market indicators, achieving a
reduction of over 34% in the out-of-sample prediction error. These results highlight the
unique perspective of dynamic factor analysis in understanding the dynamics of market
price movements.

The study is further organized as follows. The next section describes related works
with a particular focus on the CAPM, APT model, and principal component analysis
(PCA). The following section then formally introduces the DFM, which addresses the
limitations of the previous models. This section also covers the model fitting methodol-
ogy, validation procedures, and implementation details. The subsequent section presents
the results of the model when applied to the PSE, followed by a demonstration of the
utility of the extracted common factors within a macroeconomic nowcasting applica-
tion. The last section then concludes with a summary of the research and recommenda-

tions for future work.
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Related works

Recent developments in the analysis of price movements in stock markets primarily
focus on the application of machine learning models, which generally serve two main
objectives: performing feature extraction for downstream analysis tasks and predicting
future price movements. Toward the first objective, models such as random forests and
autoencoders have been employed to extract features for explaining price movements
(Kumari et al. 2023; Htun et al. 2023). For example, Gunduz (2021) applied variational
autoencoders to extract features that successfully predicted the direction of stock price
movements using long short-term memory and LightGBM models. Additionally, Shah-
varoughi Farahani et al. (2021) used genetic algorithms to select representative fea-
tures for the same purpose, using a simple neural network model. From another aspect,
toward the second objective, Wang (2024) demonstrated the effectiveness of a neural
network model in capturing the nonlinear relationships between firm-specific and mac-
roeconomic factors with stock price returns. Similarly, Htun et al. (2024) explored the
use of random forests, support vector machines, and long short-term memory mod-
els to predict the excess return of a stock relative to a composite index. Other studies
employed deep learning models, such as Transformers and gated recurrent units, to cap-
ture the complex dynamics of stock price movements (Muhammad 2023; Li et al. 2023;
Lawi et al. 2022; Shen and Shafiq 2020; Zhong and Enke 2019). Notably, the majority
of these models rely only on historical stock price data as features. Nevertheless, some
of these works incorporate additional features such as technical (Gunduz 2021; Shahva-
roughi Farahani et al. 2021), fundamental (Wang 2024; Shen and Shafiq 2020), and mac-
roeconomic indicators (Wang 2024) to boost predictive capability. Despite their superior
performance, these machine learning models often lack the interpretability of classical
linear models. Moreover, the features extracted through such models may possess lim-
ited explanatory value for analyses beyond price movement prediction.

The DFM, rooted in econometrics literature, addresses several limitations of machine
learning models while remaining performant in predictive applications (Luciani et al.
2018; Hayashi et al. 2022; Chernis et al. 2020). Moreover, DFM also provides interpret-
able loadings and latent features that may be used for further analysis. In what follows,
the CAPM and the APT models are first introduced as foundational models, offering
insights into traditional approaches for analyzing stock price movements. Subsequently,
PCA is presented as an alternative method for extracting data-driven factors within the
APT model.

Capital asset pricing model CAPM is widely recognized in finance literature as a
means of explaining stock price returns. It describes the linear relationship between the
expected return of a given stock and its exposure to systematic or market risks (Lintner
1965; Sharpe 1964). Suppose E(R;) is the expected return of stock i. The model assumes

the following dynamics:
E(R;) — Rr = Bi[E(Rm) — RF], (1)

where Rr is the risk-free rate of return, E(Rys) is the expected market return, and p; is
the CAPM beta of stock i that measures the sensitivity of the risk premium E(R;) — Rf
to the expected excess market return E(Ryr) — Rr.
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Numerous studies have used CAPM to investigate the relationship between risk
and return (Blume and Friend 1973; Perold 2004; Elbannan 2014; Rossi 2016). CAPM
assumes that the expected return of a stock co-moves with the expected return of the
market and that variations in the CAPM beta are sufficient to explain the cross-sectional
differences in stock price returns.

Arbitrage pricing theory model The APT model is another linear model widely used
in finance literature to explain stock price returns. This model extends the CAPM since
empirical evidence indicates the need for a multifactor model to explain stock price
dynamics (Barucci and Fontana 2017). The APT model assumes that stock returns are
explained by a linear combination of a finite number of risk factors and a random factor
specific to each stock. Suppose R; is the return of stock i. The model assumes the follow-

ing dynamics:
Ri—Rp =B F+Z, (2)

where F is a vector of » risk factors, Z; is a stock-specific random factor for stock i, and
Bi measures the sensitivity of stock i to risk factors.

The APT model relaxes some assumptions of the CAPM and uses firm-specific or
macroeconomic factors for F to explain the stock price returns. Firm-specific factors
include the book-to-market ratio, dividend yield, and cash-flow-to-price ratio, whereas
macroeconomic factors include expected inflation, the yield spread between long- and
short-term interest rates, and the yield spread between corporate high- and low-grade
bonds (Barucci and Fontana 2017). With the inclusion of different risk factors, the model
can better explain stock price movements than CAPM (Reinganum 1981; Elshgqirat
2019).

Despite these advantages, the question of which and how many factors to include
remains unresolved, with empirical evidence indicating that models utilizing derived
factors may sometimes outperform those based on traditional economic and financial
indicators (French 2017; Reinganum 1981). This makes a compelling case for using fac-
tors derived from models such as PCA, which provides a systematic and data-driven
approach to factor extraction, addressing the challenge of factor selection within the
APT model.

Principal component analysis PCA is another linear model widely used in the litera-
ture. Unlike CAPM and APT models, which are used to explain stock price returns, PCA
is primarily used for dimensionality reduction. This model compresses high-dimensional
data into a lower-dimensional representation that preserves as much information and
variability from the original data as possible (Jolliffe 2002; Pearson 1901). The com-
pressed data, known as the principal components, are mutually uncorrelated linear com-
binations of the original variables (Jolliffe and Cadima 2016). Suppose that the data is
represented as a 7 x S matrix X = [x1,%9,...,%s] containing T observations of S vari-
ables. The model determines the linear combination

s
Xa = Z AgXs (3)
s=1
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that maximizes the variance given by Var(Xa) = a"3a, where ¥ is the sample covari-
ance matrix of X. Thus, the problem is reduced to maximizing @' Xa subject to ||a| = 1,
restricting @ to be a unit vector. Using Lagrange multipliers, this is equivalent to

maximizing
a'Sa— }v(aTa — 1). (4)

The above optimization problem results in the equation Sa=la, indicating that  is a
unit eigenvector and / is the corresponding eigenvalue of the sample covariance matrix

A

¥. Moreover, given that
Var(Xa) =a' Ya = ja'a =/, (5)

A must be the largest eigenvalue of 3. The first principal component is therefore calcu-
lated as Xa(1), where a(y) is the unit eigenvector associated with the largest eigenvalue
of ¥. The succeeding principal components may be similarly obtained by adding the
constraint

COV(Xﬂ(l‘),Xa(j)) = az';)):a(,») = /l(j)a;';)ag) =0 (6)

or equivalently, a?;)a(j) = 0 for j < i. This results in Xa; being the ith principal com-
ponent, where a;) is the unit eigenvector associated with the ith largest eigenvalue of X
(Jolliffe 2002).

PCA is widely used in the literature and practical applications (Ghorbani and Chong
2020; Lim et al. 2024; Yu 2023; Xi et al. 2024). It learns the optimal linear compression
of high-dimensional data into principal components without requiring additional data,
making it an unsupervised feature extraction model. However, PCA inherently assumes
that the T observations are independent, which does not hold when X is a time series
data.

This study employs DFM to address the limitations of these models by integrating the
strengths of linear and machine learning models, thereby effectively achieving a bal-
ance between interpretability and predictive performance. Although the model has been
extensively applied for predictive purposes, this study focuses on the extracted loadings
and latent features, along with their corresponding economic interpretation, as an alter-
native approach to understanding the dynamics of price movements in the stock market.

Dynamic factor model

DEM is another linear model that combines the features of PCA and APT models and
may be regarded as an unsupervised time series extension of the latter (Geweke 1977).
Similar to the APT model, DFM is a multifactor model that can be used to explain stock
price returns. However, unlike most asset pricing factor models that rely on a predefined
set of factors, DFM does not require such inputs. Instead, it directly estimates the factors
from the observed data, offering valuable insights into the dynamics of price movements
in a data-driven and unsupervised manner similar to PCA. Suppose Rj; is the return of
stock i at time £. The model assumes the following dynamics:
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Rit = Bi ' Fe + 0:Z4, (7)
Fr=AF 1 +AsF o+ -+ ApFy_p+ 6y, (8)
Zit = Vi1 Zic—1) + Yi2Zig—2) + - + VigZit—q) T Vits 9)

where Fy is a vector of n common factors at time ¢, Z;; is the stock-specific factor of
stock i at time ¢, B; is the vector of loadings of stock i for the common factors, o; is the
loading of stock i for the stock-specific factor, A; is an # x n vector autoregressive coef-
ficient matrix for F;_j, ¥;; is an autoregressive coefficient for Z;;_j), and e; ~ N(0, I,)
and y;; ~ N(0, 1) are Gaussian noise processes. Furthermore, y;; and y;y are independent
for all i # j and any ¢, ¢'. Thus, the model assumes that the return of stock i at time ¢ is
a combination of two components: common and idiosyncratic. A linear combination of
the common factors F; governs the common component, whereas Z;;, a stock-specific
factor, governs the idiosyncratic component.

In addition, the model assumes that stock price returns follow a Gaussian distri-
bution similar to other literature (Kendall 1953; Osborne 1959; Black and Scholes
1973; Officer 1972; Roll and Ross 1980; Phelan 1997; Marathe and Ryan 2005; Hull
et al. 2016; Li 2023). Under the stationarity assumption of the vector autoregres-
sive and autoregressive processes and the model specifications, the common factors
F; ~ N(0,XF) and stock-specific factors Z; ~ N(0,0yz;) follow a Gaussian distribu-
tion for all { and ¢, where Xf is some n x n covariance matrix and oz > 0. Hence,
since Fy and Z;; are independent by construction, R; follows a Gaussian distribution

with parameters
E(Rio) = E(8;"F;) + E(0iZit) = 0 (10)
and
N T ) 8T8 4 o202
Var(Ry) = Var (ﬂ, Ft) + Var(0iZy) = B; | BB + o202, (11)

Notably, Eq. 11 highlights the model’s assumption of constant variance across time.
Therefore, conditional heteroskedasticities, such as volatility clustering in periods of
high uncertainty, cannot be accounted for. Nonetheless, DFM remains a versatile and
powerful tool with broad applicability across various domains. For instance, it has been
effectively used in nowcasting economic indicators, demonstrating efficiency and accu-
racy in providing timely insights crucial for policymakers, financial analysts, and other
stakeholders involved in decision-making processes (Luciani et al. 2018; Hayashi et al.
2022; Chernis et al. 2020). Beyond nowcasting, the DEM is also extensively applied in
business cycle, inflation dynamics, and structural analysis (Stock and Watson 1999;
Boivin and Giannoni 2006). In contrast to these predictive applications, this study
focuses on analyzing the extracted loadings, common factors, and their evolution pro-
cesses along with their economic interpretations as an alternative framework. It aims
to understand the complex dynamics of stock price movements, complementing estab-
lished market theories.
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Model fitting
One approach to fitting the DFM is to formulate the model as a state-space model and
apply the Kalman method and maximum likelihood estimation. The mathematical details
of the fitting methodology are presented as follows:

Suppose {Y;} is an observed time series process. A linear Gaussian state-space model

assumes the following dynamics:

Yy = MX; + €, (12)

Xt = TX¢—1+ 1, (13)

where {X;} is an unobserved latent factor process, M is the measurement loading matrix,
T is the transition loading matrix, and €, ~ N (0, X¢), 9 ~ N (0, Z,,) are Gaussian noise
processes.

Denote the following for convenience:

[Rit
Ry
Rt = . )
LRst
B’
Ba"

1Bs "

Yji=|. : . Sl

L O 0 - Yy

where Ry is the vector of S stock returns at time £, § is the combined loadings matrix of
all S stocks for the common factors, ¢ is the diagonal loadings matrix of all S stocks for
the stock-specific factors, Zt is the vector of Z;; := 0;Z;;, and V; is the diagonal matrix
containing the jth AR coefficients of every Z;(; ). The DFM can be formulated as a state-

space model as follows:
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P -
F_,
Fip+1
R =[0-0L0 - 0| F |+e,
~—~ 1t (15)
Y M Zi
_Zt—q+1_
———
Xt
[ F A1 Ap—l Ap 0 0 07 [ Fe—1
: I, 0 0 0 s 0 0 :
Fipi2 : : : : : : F pi1
Frpi| |o L, 0 0 0| | Li—p |
Z |~ |0 0 0 Wyr Wyl | Zey [T
. 0 0 0 I 0 0
zt—q+2 : K : : . : Zg—q+1
Zig1) Lo ... 0 0 0o ... I ol |z, |
—_———
Xt T Xt—l
(16)

with £¢ = 0and X, = diag(I,,0,...,0,6%0,...,0).
For a fixed set of parameters M, T, X, and X, the Kalman filter may be used to estimate
the state of the model X¢, and consequently the common factors Fy and stock-specific fac-

tors Z;;. For convenience, denote

Yl:t = {Y17 YZ; e Yt}r (17)
ey = EXe | Y1up), (18)
Yy = Cov(Xe | Y1op). (19)

The Kalman filter prediction step predicts the current state of the system as follows:

Xe | Yiie—1 ~ N (eje=1, Zeje-1), (20)
where

Heje—1 = Tpe-1je-1, (21)

Toe-1 = TE1j—1 T + 2y (22)

The Kalman filter update step then combines knowledge about the predicted state X
with the new observation Y; to produce an updated estimate of the current state of the

system as X | Y1:¢ ~ N(;Lm, Et”), where

-1
Ki =ZqeaM" (MEqeaM T+ 2c) (23)
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Meje =Meje—1 + Kt(Yt - Mﬂtlt—l): (24)

Yo =Xge-1 — KeMZgpp-1. (25)

Hence, the Kalman filter uses past and current observations to estimate the current state
of the system. The optimal parameters can then be obtained via maximum likelihood
estimation.

Additionally, Kalman smoothing may be used at time ¢’ > ¢ to combine knowledge
about all observations until time ¢’ to produce an updated estimate of the state of the
system at time £ as X; | Y1.p ~ N(;Lmr, Emr), where

Jo :=%e: T Zpgre (26)
Wepe =teje +Je (Berrje — Bes1pe) (27)
e =Zee + e (Zegrye — Zt+1|t)]tT~ (28)

Unlike the Kalman filter, Kalman smoothing uses past, current, and future observations
to estimate the current state of the system.

Model validation

The theoretical and empirical validity of the DFM relies on specifying the correct num-
ber of common factors n. Although previous research often set # based on prior knowl-
edge and existing studies, Bai and Ng (2002) provided three information criteria as
statistical measures to consistently estimate # from a given dataset. These criteria, exten-
sively used in literature (Bai 2003; Stock and Watson 2002, 2016; Giglio et al. 2022), are
expressed as follows:

ICi(n) =InV(n) + n<S;_TT> In (Si—TT>' (29)
ICo(n) =InV(n) +n <S;_TT) In min {S, T}, (30)

ICs(n) = In V(1) + 1 (h”mn{ST}>

min {S, T'} (31)

where V(n) is the mean of the squared residuals when PCA is used to estimate n com-
mon factors. In contrast, Onatski (2009) proposed a hypothesis testing procedure for
determining the number of common factors n. More recently, Molero-Gonzalez et al.
(2023) provided an alternative method based on random matrix theory (RMT).
Additionally, following the approach in Molero-Gonzilez et al. (2023), additional anal-
yses can be performed to assess the model’s alignment with established market theories.
Examining the relationship between common factors F; and a market’s composite index
may reveal the model’s ability to capture systematic market movements and distinguish
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idiosyncratic components of stock price dynamics. Moreover, analyzing the correlation
between factor loadings B; and the CAPM beta, as defined in Eq. 1, offers insights into
how effectively the model reflects a conventional measure of systematic risk exposure.
By selecting an appropriate number of factors # with corresponding loadings and com-
mon factors that align with market theories, the empirical validity of the DFM can be
effectively demonstrated.

Model implementation

The DEM fitting and validation procedures are implemented in the DynamicFac-
torAnalysis Python package. Other common data science libraries were also used in
the implementation.

Results

To reiterate, this study analyzes the extracted loadings 8; and common factors F; to offer
an alternative perspective on the dynamics of stock price movements, distinguishing
itself from recent developments in literature, particularly that of Molero-Gonzélez et al.
(2023), which did not provide a subsequent analysis into 8; and F; after using RMT to
determine the number of common factors underlying stock price dynamics. Whereas
Molero-Gonzdlez et al. (2023) primarily focused on factor dimensionality, the results
of this study specifically analyzed and interpreted B; and F; in relation to the broader
framework of known econometric and market facts.

To this end, the PSE is considered owing to its distinct economic landscape and inves-
tor behavior. This approach broadens insights into stock price dynamics in a unique
economic context while demonstrating the robustness of the DFM in providing insights
aligned with established market theories. The historical stock price data used in this
model are obtained using the Python library fastquant, which wraps the data request
process using the Phisix APL.! Additionally, data for the PSE index (PSEi) is obtained
from https://stooq.com.

The period from January 1, 2015, to December 31, 2020 is considered. Following the
data cleaning procedure of existing works (Neszveda 2025; Feder-Sempach et al. 2024;
Feng 2019), stocks with over 1% missing observations were excluded from the analysis
to ensure data integrity. This results in a dataset comprising 72 stocks, exceeding the
top 30 in terms of market capitalization included in the PSEi. Given the objective of the
study, the aforementioned procedure would result in the exclusion of generally low-vol-
ume stocks, which are likely to make a relatively smaller contribution to overall market
dynamics. Consequently, the remaining high-volume stocks would carry greater weight
in the analysis, guaranteeing generalizability despite the data cleaning procedure.

Notably, although the COVID-19 pandemic introduces significant volatility to the
data, demonstrating the ability of the model to provide robust insights into the mar-
ket even in the presence of extreme events is an important aspect of the present study.
Thus, the inclusion of the pandemic period provides a rigorous test case to evaluate the

! https://github.com/phisix-org/phisix.
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robustness of the model under such unprecedented conditions, in line with Molero-
Gonzdlez et al. (2023).

The percentage return Rj is considered to ensure the stationarity of the data. If Sj; is
the closing price of stock i at time £, the percentage return is obtained as follows:

Sit — Sit—1)

Ry = (32)

Sit—1)
Information criteria in Eqs. 29, 30, and 31 across different values of # are then calcu-
lated and presented in Fig. 1. The information criteria are lower for models with n = 1
or n = 2 factors than for a white noise model containing zero factors. This result vali-
dates the choice of a factor model as it suggests that the inclusion of at least one factor
considerably improves the fit with the data. Although an analysis based entirely on the
information criteria would indicate that a model with » = 1 common factor fits the data
best, a model with # = 2 common factors also exhibits a comparably close fit, making it
a viable alternative for consideration.

One-factor model

First, the model with # = 1 common factor following an AR(3) process and the stock-
specific factors following AR(5) processes is considered, where p and g are chosen
based on the Bayesian information criterion (BIC). As a validation, the common fac-
tor F; is compared with the return of PSEi, as shown in Fig. 2. Composite indices
generally contain a diversified portfolio of stocks in a particular market. This diver-
sification removes stock-related movements and risks, leaving only systematic move-
ments and risks. Consequently, the PSEi is commonly used as a proxy for systematic
market movements. The (Kalman-smoothed) common factor F; and the PSEi returns
exhibit a correlation of 0.9283, establishing the former as a viable indicator of sys-
tematic market movements. Nevertheless, in contrast to the PSEi, which only cov-
ers the top 30 stocks with the largest market capitalization, the common factor F;
captures the systematic movements across the broader market, reflecting the overall

— 1C
2.30 1 1C,
— IC;
2.28
2.26 1
2.24 1
0 1 2 3 4 5

Number of Common Factors n
Fig. 1 Information criteria for different numbers of common factors n
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Scaled Smoothed F;

—10 1

T T T T T T T

Scaled Principal Component 1

—10 A

PSEi Returns

—101

2015 2016 2017 2018 2019 2020 2021
Fig. 2 The common factor f; for DFM (n = 1, p = 3,g = 5), the first principal component, and the PSEi return
from 2015 to 2020

stock price movements. This accounts for the discrepancy between the common fac-
tor and the PSEi and explains why their correlation coefficient falls short of a perfect
association.

Nonetheless, the common factor F; remains versatile in capturing market conditions
at various time points. Notably, it accurately reflects significant market events, such as
the sharp downturn on August 24, 2015, which resulted from the global financial market
sell-offs owing to concerns about China’s economy. It also reflects the high economic
volatility during the first two quarters of 2020, when the Philippine economy underwent
a lockdown because of the COVID-19 pandemic. The common factor remains informa-
tive in reflecting the challenges during the subsequent recovery process. Other similar
observations, such as volatility clustering during times of high economic uncertainty,
can also be noted. This finding further supports that the common factor F; represents
systematic market movements.

The common factor F; is estimated to evolve according to
F; = 0.1256F;_1 + 0.0225F;_9 + 0.1380F;_3 + &, (33)

where only the parameter Ay = 0.0225 is not statistically significant. This indicates that
systematic market shocks are expected to persist for at least three trading days. Such
persistence may reveal important aspects of market behavior. For example, policy-
related shocks may influence the market over an extended period, indicating the need
for caution when announcing or implementing policies that are expected to impact the
market (Li et al. 2010; Chatziantoniou et al. 2013).
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Table 1 Summary of correlation figures for DFM (n = 1,p = 3,g = 5)

Series 1 Series 2 Correlation
CAPM B; Bi 0.8348
Ft PSEi 0.9283
Ft PC1 0.9975
PCI PSEi 09144
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Fig. 3 Scatterplot of the loading i for DFM (n = 1, p = 3,q = 5) and the CAPM beta

Moreover, PCA is investigated for comparison. Table 1 presents a summary of the
correlation figures. The (Kalman-smoothed) common factor F; exhibits a correlation
of 0.9975 with the first principal component, as illustrated in Fig. 2. This principal
component also has a strong correlation of 0.9144 with the PSEi returns. Although
these results may indicate that DFM performs similarly to PCA in explaining system-
atic stock price movements, it must be noted that the two models are fundamentally
distinct. PCA derives principal components as a linear combination of stock price
returns, whereas DFM explains stock price returns as a linear combination of some
underlying common factors. The latter is also a time series model that accounts for
the dynamics of stock price returns across time. Moreover, the first principal com-
ponent will remain constant when considering n > 1 factors, whereas the common
factors F; will adapt depending on the model specifications. Hence, DEM can better
capture the dynamics of stock price movements than PCA.

Page 13 of 24
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Table 2 LoadingsforDFM (n = 1,p =3,g=5)

Stock Bi oj
2GO 0.8470 39217
ABA 0.9707 3.2377
AC 1.2704 14373
AEV 1.0996 1.8298
AGI 1.2715 1.7219
ALl 1.8711 1.6140
AP 0.7276 15130
BDO 1.2555 14833
BEL 0.8189 1.6531
BLOOM 15229 2.7239
BPI 1.0013 1.4661
BRN 1.2399 3.3060
CEB 13312 24174
CHIB 04127 0.9347
CNPF 0.6633 1.7277
COSCO 0.7777 14535
CPG 0.8730 22062
DD 0.7787 24391
DMC 1.2795 1.8911
DNL 1.1504 22307
EEl 0.8018 2.1847
EW 1.0251 1.8732
FGEN 0.8139 1.8883
FLI 1.0034 1.5730
FNI 1.2429 6.0448
FPH 0.7029 1.2352
GERI 1.0278 21231
GLO 0.7262 1.8556
GMA7 0.3908 1.3900
GTCAP 1.2195 1.8579
HOUSE 0.3541 1.8103
ICT 1.1416 1.8282
IMI 0.9508 24919
JFC 1.1580 1.7656
JGS 1.4660 1.8076
LC 0.1881™ 3.0327
LPZ 0.7766 2.0411
LTG 0.9536 2.1000
MAXS 1.1587 2.0482
MBT 1.1226 15110
MEG 1.5200 1.7571
MER 0.6730 1.5231
MPI 1.2415 1.9402
MWC 0.7810 22912
MWIDE 0.9886 2.3709
NI 0.3982 25281
NIKL 1.3189 3.6951
PCOR 0.9497 2.1039
PGOLD 0.7605 16123

Page 14 of 24



Lim et al. Financial Innovation (2026) 12:4 Page 15 of 24

Table 2 (continued)

Stock Bi gj

PLC 1.1563 24863
PNB 0.7994 1.5993
PNX 0.4600 1.9619
PX 0.5659 24845
PXP 1.3042 52152
RLC 14767 1.9403
RRHI 0.7599 1.7353
SCC 0.9913 2.8519
SECB 1.0943 1.7228
St 0.3344 20121
SM 1.1180 1.6795
SMC 0.7581 1.7769
SMPH 1.2124 1.5934
SSI 14767 27815
SSP 0.9031 3.6809
STI 0.6874 26140
TECH 0.9746 3.7055
TEL 0.8290 1.9001
UBP 02162 1.0130
URC 1.0050 1.7758
VITA 1.1404 36114
VLL 1.1170 21362
WEB 1.0387 4.8616

The loading B; is compared against its corresponding CAPM beta for further model
validation, which is widely accepted as a measure of exposure to market risks. Figure 3
presents the scatterplot between the loading ; and the CAPM beta.” The figure indi-
cates a strong positive correlation between the two measures, with a correlation of
0.8348, validating the relationship of B; and exposure to systematic movements. Table 2
subsequently presents the summary of the loading 8; and o; for the 72 stocks included in
the analysis. At a significance level of & = 0.05, the loading §; for the common factor F;
is statistically significant for all but one stock.® This result highlights that the common
factor F; explains price movements in the market, capturing the systematic or market
dynamics similar to the PSEi. More mature and developed stocks, such as AC, GTCAP,
JEC, SM, and URC, have relatively balanced §; and o; values. Conversely, less mature or
more volatile stocks, such as ABA, BRN, FNI, PXP, and SSP, have relatively higher o;
values, indicating more significant contribution from idiosyncratic movements owing to
stock-specific shocks. Hence, the ratio between B; and o; may also indicate relative sensi-
tivity to market-specific or stock-specific volatilities.

% https://www.barrons.com/market-data/stocks.

® The loading B for stock LC is not statistically significant due to a significant stock-specific shock—the sizable clo-
sure order against its operations (https://denr.gov.ph/news-events/lopez-orders-closure-of-23-metallic-mines/, Catajan
2021)—which lasted from 2017 to 2020. This case is expected to have a pronounced impact on its financial outlook,
thereby overshadowing general market conditions.


https://denr.gov.ph/news-events/lopez-orders-closure-of-23-metallic-mines/
https://www.barrons.com/market-data/stocks
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Fig. 4 The common factors Ft for DFM (n = 2, p = 2,q = 5), the first two principal components, and the PSEi
return from 2015 to 2020

Table 3 Summary of correlation figures for DFM (n = 2,p = 2,g = 5)

Series 1 Series 2 Correlation
CAPM B; Bii 0.5132
Fit PSEi 06727
Fit PC1 0.8982
PC1 PSEi 0.9144
CAPM B; Boi 0.8528
For PSEi 0.7704
For pC2 0.8229

PC2 PSEi 0.3498




Lim et al. Financial Innovation (2026) 12:4 Page 17 of 24

Two-factor model

Next, the model with # = 2 common factors following a VAR(2) process and stock-spe-
cific factors following AR(5) processes is considered, where p and g are chosen based
on the BIC. The (Kalman-smoothed) common factors F; are also compared against the
PSEi returns and principal components in Fig. 4. The correlation figures are presented
in Table 3. The first common factor Fy; has correlations of 0.6727 and 0.8982 with the
PSEi returns and the first principal component, respectively. The second common factor
Fy; has correlations of 0.7704 and 0.8229 with the PSEi returns and the second principal
component, respectively. The first and second principal components have correlations
of 0.9144 and 0.3498 with the PSEi returns, respectively. The common factors F; of the
DFM adapt based on the model specification, whereas PCA remains static regardless of
the number of factors considered. This result may be observed from the common factor
Fi; in Fig. 4 that deviates from the common factor F; in Fig. 2 while still maintaining the
overall trend. This highlights the distinctive advantage of DFM over PCA in determining
systematic movements in the PSE. PCA requires that the principal components maxi-
mize variance while remaining mutually orthogonal. Conversely, DFM does not explic-
itly impose such restrictions, thereby offering greater flexibility.

Exploring common factors in greater detail, it is worth noting that Fi; and Fy; have a
correlation of 0.0798, which is nearly orthogonal. A linear regression of F; on Fj; and
Fy; also produced an R? of 0.998. These results indicate that the model further decom-
posed F; into two nearly uncorrelated signals, namely, Fi; and Fy;. A visual inspection of
Fig. 4 reveals that F}; represents the broader market trend, whereas Fy; represents mar-
ket uncertainties independent of the general market direction. This further allows for
the following interpretations: 8;; as exposure to market trends, B; as exposure to market
volatility, and o; as exposure to stock-specific volatility. This provides a new perspective
on portfolio risk management beyond the traditional CAPM framework, as investors
can now account for two dimensions of market movements.

The common factors F; = [Fyy, FZt]T are then estimated to evolve according to

04894 0.1680 05094 —0.1726
Fe=1_00262 —0.2526} Fr1 + [—0.1627 —0.0931| Fr-2t €0 (34)

where only the coefficients —0.0262 and —0.0931 are not statistically significant. Simi-
larly, the results also indicate the persistence of systematic shocks in the market (Gil-
Alana et al. 2023).

For validation, the loadings f;; and By; are also compared against the CAPM beta, as
presented in Fig. 5. The CAPM beta exhibited correlations of 0.5132 and 0.8528 with f;
and By;, respectively. The lower correlation with fj; indicates that the first common fac-
tor Fi; captures market dynamics not considered by the CAPM. Meanwhile, the higher
correlation between fy; and the CAPM beta aligns with the interpretation of the second
common factor Fy; capturing market volatility, a key aspect that the CAPM also empha-
sizes. Despite these differences, the common factors Fy; and Fy; significantly contribute
to the explanation of systematic stock price movements, highlighting the ability of the
model to capture market trends and additional specific sources of volatility. Table 4 pre-
sents the summary of the loadings f1;, B2i, and o;. The B1/’s are statistically significant for
all stocks, whereas half of the fy;’s are statistically significant at « = 0.05. This indicates
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Fig. 5 Scatterplot of the loadings Bjfor DFM (n = 2, p = 2,q = 5) and the CAPM beta

that the two-factor model captures additional variance in the data, highlighting how the
common factors obtained are viable indicators of systematic market movements.

In summary, the results from DFM (n =1, p=3, g =5) and DEM (n =2, p =2,
q = 5) align with established theories and provide a new and alternative understanding
of price movement dynamics. The relationship between the common factors F; and the
PSEi returns provides unique insights into how these models quantify systematic market
movements and idiosyncratic movements. Notably, DEM (1 =2, p = 2, g = 5) offers
a more nuanced characterization of market dynamics, which complements established
portfolio risk management theories by decomposing market trends and market volatility.
Furthermore, the correlation between the factor loadings B; and the CAPM beta high-
lights that the models closely capture the conventional measure of systematic risk expo-
sure. Overall, the results demonstrate that dynamic factor analysis can provide novel

insights into classical market theories.

Nowcasting GDP application
The above results indicate that the common factors Fy are viable real-time market indi-
cators that can be effectively extracted from real-time stock price returns data. These
factors can be extended to various economic and financial applications. This subsection
illustrates the utility of the common factors F; of DFM (n = 2,p = 2,q = 5) within an
economic context.

A major limitation faced by economic leaders is the substantial delay in releas-
ing key economic indicators. For instance, policymakers rely on the quarterly GDP
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Table 4 LoadingsforDFM(n=2,p=2,g=75)

Stock Bii Bai i
2GO 09241 0.0236" 3.8987
ABA 1.0070 0.1693™ 32195
AC 09129 0.8448 13988
AEV 0.7433 09720 1.7430
AGI 1.2384 04100 1.7036
ALl 1.0328 0.9285 1.5250
AP 04345 0.7176 14191
BDO 09548 0.9023 14394
BEL 0.8462 0.1517 16286
BLOOM 1.5024 04127 26979
BPI 0.7470 0.7162 14348
BRN 1.2011 0.3564 3.2954
CEB 1.2868 0.3642 23957
CHIB 0.3963 0.1341 0.9321
CNPF 06854 0.0993™ 17111
COSCo 0.7646 0.1666 14362
CPG 0.8825 0.1603™ 2.1836
DD 0.7264 02518 24382
DMC 1.1218 0.5568 1.8945
DNL 1.2014 0.1748™ 2.1834
EEl 08138 0.1628™ 2.1700
EW 1.0218 0.2420 1.8502
FGEN 07343 03185 1.8883
FLI 0.9935 0.2374 1.5466
FNI 1.1952 0.3580™ 6.0388
FPH 0.7587 0.0554™ 1.1902
GERI 1.0304 0.1669™ 20919
GLO 04331 0.6612 1.8105
GMA7 04239 —0.0013™ 1.3740
GTCAP 0.9541 0.7777 1.8355
HOUSE 04075 —00132™ 1.7982
ICT 0.8903 0.7307 1.8127
IMI 1.1230 —0.0340™ 24140
JFC 1.0451 05168 17643
JGS 1.0386 1.1688 17109
LC 0.3592 —0.2497™ 3.0048
LPZ 0.8387 0.0945™ 20117
LG 0.8529 0.3950 20992
MAXS 1.2711 0.1540™ 1.9789
MBT 0.9099 0.6560 15007
MEG 1.2877 0.7545 1.7593
MER 04251 0.6250 14782
MPI 0.9654 0.7626 1.9291
MWC 0.7678 0.1878™ 2.2833
MWIDE 1.1309 0.0369" 2.3085
NI 0.5448 —0.1908™ 24880
NIKL 13530 0.2689" 3.6684

PCOR 0.9715 0.1949™ 20778
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Table 4 (continued)

Stock Bii Bai i
PGOLD 0.7043 0.2572 1.6095
PLC 1.1682 0.2474 24584
PNB 0.8758 0.0977" 1.5576
PNX 0.3580 0.2852 1.9598
PX 06711 —0.0153"™ 24571
PXP 1.2902 0.3148™ 5.2036
RLC 1.1662 0.9296 1.9170
RRHI 06137 04181 1.7350
SCC 0.9616 02731™ 2.8422
SECB 0.9898 04194 1.7240
SLI 03454 0.0164" 2.0057
SM 0.7241 1.0227 1.5732
SMC 06562 0.3536 17768
SMPH 0.8483 1.0137 1.5017
SSI 13420 0.5626 27782
SSP 0.9091 0.1473™ 3.6650
STI 0.7093 0.1038™ 2.6003
TECH 0.9719 02527 3.6977
TEL 05027 0.7467 1.8468
uBP 0.2440 -00131™ 1.0038
URC 0.6913 0.7876 1.7318
VITA 1.1600 0.2145™ 35918
VLL 1.2861 —0.0188™ 20218
WEB 1.0343 0.2561™ 4.8515

growth rates as the primary indicator of economic performance, as it measures the
total monetary value of all goods and services produced in a country over the specific
period. However, this figure is typically released several weeks following the end of
a quarter. Fiscal and monetary policies must be enacted based on incomplete infor-
mation during this period. Many institutions have developed nowcasting models to
predict these economic indicators to aid economic decisions. Hence, inspired by pre-
vious works (Luciani et al. 2018; Hayashi et al. 2022; Babii et al. 2022; Ashwin et al.
2021; Giannone et al. 2005), this subsection considers the problem of nowcasting the
GDP growth rates.

As a benchmark, the AR(1) model is considered. The in-sample period for model
training is from January 1, 2015 to December 31, 2020. The period from January 1,
2021 to December 31, 2022 is then treated as the out-of-sample period for model
evaluation. Figure 6 presents the nowcasts of the model, whereas Table 5 presents
a summary of the root mean squared error (RMSE) figures. The model obtained an
RMSE of 3.8533 and 12.3095 during the in- and out-of-sample periods, respectively.
Notably, the out-of-sample RMSE is expected to be greater owing to the more signifi-
cant fluctuations in GDP growth rates caused by the COVID-19 pandemic.

To demonstrate the utility of the DFM, the common factors F; are first trans-
formed into monthly indicators to adjust for the difference in frequency with the
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Fig. 6 Philippine GDP growth rate nowcasts of AR(1) and AR(1) with F¢

Table 5 Philippine GDP growth rate nowcasts RMSE values of AR(1) and AR(1) with F¢

Model In-sample Out-of-sample
AR(1) 3.8533 12.3095
AR(1) w/ F¢ 06122 8.0667

GDP releases. The common factors F; are the Kalman-smoothed and Kalman-fil-
tered common factors during the in-sample and out-of-sample periods, respec-
tively. The mean and standard deviation of the common factors Fi; and Fy; are
calculated. These monthly indicators are then integrated into the AR(1) model via
ordinary least squares regression to explain the GDP growth rate for the quarter.
For example, the common factors F; for January, February, and March are used to
explain the GDP growth rate for the first quarter. Figure 6 presents the nowcasts
of the model, whereas Table 5 presents a summary of the RMSE figures. The model
obtained RMSE values of 0.6122 and 8.0667 during the in-sample and out-of-sample
periods, respectively. The inclusion of the derived monthly indicators, constructed
from the common factors, substantially improved the in-sample RMSE by 84.11%
and the out-of-sample RMSE by 34.47%, demonstrating the utility of the model. This
result further supports how the common factors F; may be used as real-time market
indicators.
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Conclusion

In summary, this study explores DFM to analyze price movements in the PSE, inte-
grating the predictive capabilities of machine learning models with the interpretabil-
ity of traditional linear asset pricing models, thereby effectively bridging econometric
theory and financial practice. Specifically, it focuses on the extracted loadings and
common factors to provide alternative perspectives for understanding the dynam-
ics of price movements. The results of a validation analysis with the CAPM reveal
novel insights into market phenomena. Similar to the composite index, the one-factor
model closely captures systematic or market dynamics, whereas the two-factor model
further decomposes it into market trends and volatility, providing novel perspectives
beyond conventional portfolio risk management theories. Additionally, an application
on nowcasting GDP growth rates demonstrates the viability of the common factors
as real-time market indicators in economic and financial applications by provid-
ing substantial performance improvements. These results demonstrate the value of
dynamic factor analysis in providing a deeper understanding of price movements in
the market.

Future studies may build on current findings by relaxing the DFM assumptions in
Gaussian stock price returns and the cross-sectional independence in the errors Zj.
Specifically, exploring deviations from normality in the form of heavy tails may be
useful, as observed in empirical results (Peiré 1994; Li 2023). To this end, one may
incorporate a generalized autoregressive conditional heteroskedasticity (GARCH)
process for the common factors F; to allow for time-varying conditional variances,
leading to more accurate stock return distribution modeling. Although this would
typically introduce additional layers of complexity to the model fitting methodology,
they may be accommodated through approximate inferential methods using advances
in Bayesian variational inference algorithms (Dayta et al. 2024). Additionally, replac-
ing the Kalman filter for model fitting with variational inference may allow for higher
orders of flexibility in terms of the factor distribution and other additional effects,
such as GARCH terms and market or industry-level dynamics. These model improve-
ments would better capture the intricate dynamics of stock price movements while
maintaining predictive performance and interpretability.

Abbreviations

APT Arbitrage pricing theory

AR Autoregressive process

BIC Bayesian information criterion
CAPM Capital asset pricing model

DFM Dynamic factor model

GARCH  Generalized autoregressive conditional heteroskedasticity
GDP Gross domestic product

PCA Principal component analysis
PSE Philippine Stock Exchange

PSEi Philippine Stock Exchange Index
RMSE Root mean squared error

RMT Random matrix theory

VAR Vector autoregressive process
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