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Introduction
Researchers, practitioners, and investors have long been interested in financial mar-
kets due to the opportunities they offer to invest excess funds and generate positive 
returns. Among the primary objectives in the study of financial markets is the accurate 
prediction of stock price movements, as this enables one to outperform the market and 
achieve significant gains. Substantial efforts have been made to develop models that can 
effectively capture the complex dynamics of stock markets, providing tools for making 
informed decisions based on historical data (Chernov et al. 2003; Kothari and Zimmer-
man 1995; Long et al. 2019).
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In recent years, machine learning models have gained immense popularity for feature 
selection and extraction (Kumari et al. 2023; Htun et al. 2023) as well as for predicting 
future price movements (Muhammad 2023; Li et  al. 2023; Lawi et  al. 2022; Shen and 
Shafiq 2020; Zhong and Enke 2019). Despite their success, the black box nature of these 
models hinders their interpretability. Traditional asset pricing models, such as the cap-
ital asset pricing model (CAPM), the Fama–French models, and the arbitrage pricing 
theory (APT) model, offer a simpler framework by characterizing the linear relation-
ships between stock returns and some underlying factors (Giglio et  al. 2021; Lintner 
1965; Sharpe 1964; Fama and French 1993). However, these interpretable linear models 
often fail to capture the market’s complexities. Thus, models must combine the inter-
pretability of conventional linear asset pricing models with the predictive capabilities of 
machine learning models to provide a deeper understanding of stock price movement 
dynamics.

This study leverages the econometrics literature by analyzing stock market price 
movements through the lens of dynamic factor analysis. Although not commonly used 
in financial applications, the dynamic factor model (DFM) may be used to explain stock 
returns as the sum of a common component and an idiosyncratic component (Geweke 
1977). The former is further decomposed as a linear combination of a set of predictive 
features, known as the common factors, extracted by the unsupervised model. Thus, 
similar to traditional linear asset pricing models, DFM offers an interpretable way to 
explain market phenomena while possessing the predictive capabilities of machine 
learning models. Moreover, although the model has been predominantly used for pre-
dictive purposes, this study focuses on analyzing the extracted loadings and common 
factors as an alternative approach to understanding the complex dynamics of price 
movements in the stock market.

Using the Kalman method and maximum likelihood estimation, the analysis of the 
Philippine Stock Exchange (PSE), validated against the CAPM, provides novel and alter-
native insights into classical market theories. The common factor in a one-factor model 
may be used to represent the systematic or market dynamics similar to the composite 
index, whereas the common factors in a two-factor model may be used to represent 
market trends and volatility. Moreover, an application of the model for nowcasting the 
growth rates of the Philippine gross domestic product (GDP) further demonstrates the 
utility of the extracted common factors as viable real-time market indicators, achieving a 
reduction of over 34% in the out-of-sample prediction error. These results highlight the 
unique perspective of dynamic factor analysis in understanding the dynamics of market 
price movements.

The study is further organized as follows. The next section describes related works 
with a particular focus on the CAPM, APT model, and principal component analysis 
(PCA). The following section then  formally introduces the DFM, which addresses the 
limitations of the previous models. This section also covers the model fitting methodol-
ogy, validation procedures, and implementation details. The subsequent section presents 
the results of the model when applied to the PSE, followed by a demonstration of the 
utility of the extracted common factors within a macroeconomic nowcasting applica-
tion. The last section then concludes with a summary of the research and recommenda-
tions for future work.
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Related works
Recent developments in the analysis of price movements in stock markets primarily 
focus on the application of machine learning models, which generally serve two main 
objectives: performing feature extraction for downstream analysis tasks and predicting 
future price movements. Toward the first objective, models such as random forests and 
autoencoders have been employed to extract features for explaining price movements 
(Kumari et al. 2023; Htun et al. 2023). For example, Gunduz (2021) applied variational 
autoencoders to extract features that successfully predicted the direction of stock price 
movements using long short-term memory and LightGBM models. Additionally, Shah-
varoughi Farahani et  al. (2021) used genetic algorithms to select representative fea-
tures for the same purpose, using a simple neural network model. From another aspect, 
toward the second objective, Wang (2024) demonstrated the effectiveness of a neural 
network model in capturing the nonlinear relationships between firm-specific and mac-
roeconomic factors with stock price returns. Similarly, Htun et al. (2024) explored the 
use of random forests, support vector machines, and long short-term memory mod-
els to predict the excess return of a stock relative to a composite index. Other studies 
employed deep learning models, such as Transformers and gated recurrent units, to cap-
ture the complex dynamics of stock price movements (Muhammad 2023; Li et al. 2023; 
Lawi et  al. 2022; Shen and Shafiq 2020; Zhong and Enke 2019). Notably, the majority 
of these models rely only on historical stock price data as features. Nevertheless, some 
of these works incorporate additional features such as technical (Gunduz 2021; Shahva-
roughi Farahani et al. 2021), fundamental (Wang 2024; Shen and Shafiq 2020), and mac-
roeconomic indicators (Wang 2024) to boost predictive capability. Despite their superior 
performance, these machine learning models often lack the interpretability of classical 
linear models. Moreover, the features extracted through such models may possess lim-
ited explanatory value for analyses beyond price movement prediction.

The DFM, rooted in econometrics literature, addresses several limitations of machine 
learning models while remaining performant in predictive applications (Luciani et  al. 
2018; Hayashi et al. 2022; Chernis et al. 2020). Moreover, DFM also provides interpret-
able loadings and latent features that may be used for further analysis. In what follows, 
the CAPM and the APT models are first introduced as foundational models, offering 
insights into traditional approaches for analyzing stock price movements. Subsequently, 
PCA is presented as an alternative method for extracting data-driven factors within the 
APT model.

Capital asset pricing model CAPM is widely recognized in finance literature as a 
means of explaining stock price returns. It describes the linear relationship between the 
expected return of a given stock and its exposure to systematic or market risks (Lintner 
1965; Sharpe 1964). Suppose E(Ri) is the expected return of stock i. The model assumes 
the following dynamics:

where RF is the risk-free rate of return, E(RM) is the expected market return, and βi is 
the CAPM beta of stock i that measures the sensitivity of the risk premium E(Ri)− RF 
to the expected excess market return E(RM)− RF.

(1)E(Ri)− RF = βi[E(RM)− RF ],
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Numerous studies have used CAPM to investigate the relationship between risk 
and return (Blume and Friend 1973; Perold 2004; Elbannan 2014; Rossi 2016). CAPM 
assumes that the expected return of a stock co-moves with the expected return of the 
market and that variations in the CAPM beta are sufficient to explain the cross-sectional 
differences in stock price returns.

Arbitrage pricing theory model The APT model is another linear model widely used 
in finance literature to explain stock price returns. This model extends the CAPM since 
empirical evidence indicates the need for a multifactor model to explain stock price 
dynamics (Barucci and Fontana 2017). The APT model assumes that stock returns are 
explained by a linear combination of a finite number of risk factors and a random factor 
specific to each stock. Suppose Ri is the return of stock i. The model assumes the follow-
ing dynamics:

where F  is a vector of n risk factors, Zi is a stock-specific random factor for stock i, and 
βi measures the sensitivity of stock i to risk factors.

The APT model relaxes some assumptions of the CAPM and uses firm-specific or 
macroeconomic factors for F  to explain the stock price returns. Firm-specific factors 
include the book-to-market ratio, dividend yield, and cash-flow-to-price ratio, whereas 
macroeconomic factors include expected inflation, the yield spread between long- and 
short-term interest rates, and the yield spread between corporate high- and low-grade 
bonds (Barucci and Fontana 2017). With the inclusion of different risk factors, the model 
can better explain stock price movements than CAPM (Reinganum 1981; Elshqirat 
2019).

Despite these advantages, the question of which and how many factors to include 
remains unresolved, with empirical evidence indicating that models utilizing derived 
factors may sometimes outperform those based on traditional economic and financial 
indicators (French 2017; Reinganum 1981). This makes a compelling case for using fac-
tors derived from models such as PCA, which provides a systematic and data-driven 
approach to factor extraction, addressing the challenge of factor selection within the 
APT model.

Principal component analysis PCA is another linear model widely used in the litera-
ture. Unlike CAPM and APT models, which are used to explain stock price returns, PCA 
is primarily used for dimensionality reduction. This model compresses high-dimensional 
data into a lower-dimensional representation that preserves as much information and 
variability from the original data as possible (Jolliffe 2002; Pearson 1901). The com-
pressed data, known as the principal components, are mutually uncorrelated linear com-
binations of the original variables (Jolliffe and Cadima 2016). Suppose that the data is 
represented as a T × S matrix X = [x1, x2, . . . , xS] containing T observations of S vari-
ables. The model determines the linear combination

(2)Ri − RF = βi
⊤F + Zi,

(3)Xa =

S∑

s=1

asxs
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that maximizes the variance given by Var(Xa) = a⊤�̂a , where �̂ is the sample covari-
ance matrix of X . Thus, the problem is reduced to maximizing a⊤�̂a subject to �a� = 1 , 
restricting a to be a unit vector. Using Lagrange multipliers, this is equivalent to 
maximizing

The above optimization problem results in the equation �̂a = �a , indicating that a is a 
unit eigenvector and � is the corresponding eigenvalue of the sample covariance matrix 
�̂ . Moreover, given that

� must be the largest eigenvalue of �̂ . The first principal component is therefore calcu-
lated as Xa(1) , where a(1) is the unit eigenvector associated with the largest eigenvalue 
of �̂ . The succeeding principal components may be similarly obtained by adding the 
constraint

or equivalently, a⊤
(i)
a(j) = 0 for j < i . This results in Xa(i) being the ith principal com-

ponent, where a(i) is the unit eigenvector associated with the ith largest eigenvalue of �̂ 
(Jolliffe 2002).

PCA is widely used in the literature and practical applications (Ghorbani and Chong 
2020; Lim et al. 2024; Yu 2023; Xi et al. 2024). It learns the optimal linear compression 
of high-dimensional data into principal components without requiring additional data, 
making it an unsupervised feature extraction model. However, PCA inherently assumes 
that the T observations are independent, which does not hold when X is a time series 
data.

This study employs DFM to address the limitations of these models by integrating the 
strengths of linear and machine learning models, thereby effectively achieving a bal-
ance between interpretability and predictive performance. Although the model has been 
extensively applied for predictive purposes, this study focuses on the extracted loadings 
and latent features, along with their corresponding economic interpretation, as an alter-
native approach to understanding the dynamics of price movements in the stock market.

Dynamic factor model
DFM is another linear model that combines the features of PCA and APT models and 
may be regarded as an unsupervised time series extension of the latter (Geweke 1977). 
Similar to the APT model, DFM is a multifactor model that can be used to explain stock 
price returns. However, unlike most asset pricing factor models that rely on a predefined 
set of factors, DFM does not require such inputs. Instead, it directly estimates the factors 
from the observed data, offering valuable insights into the dynamics of price movements 
in a data-driven and unsupervised manner similar to PCA. Suppose Rit is the return of 
stock i at time t. The model assumes the following dynamics:

(4)a⊤�̂a− �

(

a⊤a − 1
)

.

(5)Var(Xa) = a⊤�̂a = �a⊤a = �,

(6)Cov
(

Xa(i),Xa(j)

)

= a⊤(i)�̂a(j) = �(j)a
⊤
(i)a(j) = 0
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where Ft is a vector of n common factors at time t, Zit is the stock-specific factor of 
stock i at time t, βi is the vector of loadings of stock i for the common factors, σi is the 
loading of stock i for the stock-specific factor, �j is an n× n vector autoregressive coef-
ficient matrix for Ft−j , ψij is an autoregressive coefficient for Zi(t−j) , and εt ∼ N (0, In) 
and γit ∼ N (0, 1) are Gaussian noise processes. Furthermore, γit and γjt ′ are independent 
for all i  = j and any t, t ′ . Thus, the model assumes that the return of stock i at time t is 
a combination of two components: common and idiosyncratic. A linear combination of 
the common factors Ft governs the common component, whereas Zit , a stock-specific 
factor, governs the idiosyncratic component.

In addition, the model assumes that stock price returns follow a Gaussian distri-
bution similar to other literature (Kendall 1953; Osborne 1959; Black and Scholes 
1973; Officer 1972; Roll and Ross 1980; Phelan 1997; Marathe and Ryan 2005; Hull 
et  al. 2016; Li 2023). Under the stationarity assumption of the vector autoregres-
sive and autoregressive processes and the model specifications, the common factors 
Ft ∼ N (0,�F ) and stock-specific factors Zit ∼ N (0, σZi) follow a Gaussian distribu-
tion for all i and t, where �F  is some n× n covariance matrix and σZi > 0 . Hence, 
since Ft and Zit are independent by construction, Rit follows a Gaussian distribution 
with parameters

and

Notably, Eq.  11 highlights the model’s assumption of constant variance across time. 
Therefore, conditional heteroskedasticities, such as volatility clustering in periods of 
high uncertainty, cannot be accounted for. Nonetheless, DFM remains a versatile and 
powerful tool with broad applicability across various domains. For instance, it has been 
effectively used in nowcasting economic indicators, demonstrating efficiency and accu-
racy in providing timely insights crucial for policymakers, financial analysts, and other 
stakeholders involved in decision-making processes (Luciani et al. 2018; Hayashi et al. 
2022; Chernis et al. 2020). Beyond nowcasting, the DFM is also extensively applied in 
business cycle, inflation dynamics, and structural analysis (Stock and Watson 1999; 
Boivin and Giannoni 2006). In contrast to these predictive applications, this study 
focuses on analyzing the extracted loadings, common factors, and their evolution pro-
cesses along with their economic interpretations as an alternative framework. It aims 
to understand the complex dynamics of stock price movements, complementing estab-
lished market theories.

(7)Rit = βi
⊤Ft + σiZit ,

(8)Ft = �1Ft−1 +�2Ft−2 + · · · +�pFt−p + εt ,

(9)Zit = ψi1Zi(t−1) + ψi2Zi(t−2) + · · · + ψiqZi(t−q) + γit ,

(10)E(Rit) = E

(

βi
⊤Ft

)

+ E(σiZit) = 0

(11)Var(Rit) = Var
(

βi
⊤Ft

)

+ Var(σiZit) = βi
⊤�Fβi + σ 2

i σ
2
Zi.
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Model fitting

One approach to fitting the DFM is to formulate the model as a state-space model and 
apply the Kalman method and maximum likelihood estimation. The mathematical details 
of the fitting methodology are presented as follows:

Suppose {Yt} is an observed time series process. A linear Gaussian state-space model 
assumes the following dynamics:

where {Xt} is an unobserved latent factor process, M is the measurement loading matrix, 
T  is the transition loading matrix, and ǫt ∼ N (0,�ǫ), ηt ∼ N

(
0,�η

)
 are Gaussian noise 

processes.
Denote the following for convenience:

where Rt is the vector of S stock returns at time t, β is the combined loadings matrix of 
all S stocks for the common factors, σ is the diagonal loadings matrix of all S stocks for 
the stock-specific factors, Z̃t is the vector of Z̃it := σiZit , and �j is the diagonal matrix 
containing the jth AR coefficients of every Zi(t−j) . The DFM can be formulated as a state-
space model as follows:

(12)Yt = MXt + ǫt ,

(13)Xt = TXt−1 + ηt ,

(14)

Rt :=







R1t

R2t

.

.

.

RSt






,

β :=








β1
⊤

β2
⊤

.

.

.

βS
⊤







,

σ :=







σ1 0 · · · 0

0 σ2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · σS






,

Z̃t :=








Z̃1t

Z̃2t

.

.

.

Z̃St







,

�j :=







ψ1j 0 · · · 0

0 ψ2j · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · ψSj






,
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with �ǫ = 0 and �η = diag
(
In, 0, . . . , 0, σ

2, 0, . . . , 0
)
.

For a fixed set of parameters M,T  , �ǫ , and �η , the Kalman filter may be used to estimate 
the state of the model Xt , and consequently the common factors Ft and stock-specific fac-
tors Zit . For convenience, denote

The Kalman filter prediction step predicts the current state of the system as follows:

where

The Kalman filter update step then combines knowledge about the predicted state Xt 
with the new observation Yt to produce an updated estimate of the current state of the 
system as Xt | Y1:t ∼ N

(
µt|t ,�t|t

)
 , where

(15)
Rt
����

Yt

=
�
β 0 · · · 0 Is 0 · · · 0

�

� �� �

M

















Ft
Ft−1

.

.

.

Ft−p+1

Z̃t

Z̃t−1

.

.

.

Z̃t−q+1

















� �� �

Xt

+ ǫt ,

(16)

















Ft
.
.
.

Ft−p+2

Ft−p+1

Z̃t

.

.

.

Z̃t−q+2

Z̃t−q+1

















� �� �

Xt

=
















�1 · · · �p−1 �p 0 · · · 0 0

In · · · 0 0 0 · · · 0 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 · · · In 0 0 · · · 0 0

0 · · · 0 0 �1 · · · �q−1 �q

0 · · · 0 0 Is · · · 0 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 · · · 0 0 0 · · · Is 0
















� �� �

T

















Ft−1

.

.

.

Ft−p+1

Ft−p

Z̃t−1

.

.

.

Z̃t−q+1

Z̃t−q

















� �� �

Xt−1

+ ηt ,

(17)Y1:t := {Y1,Y2, . . . ,Yt},

(18)µt|t ′ := E(Xt | Y1:t ′),

(19)�t|t ′ := Cov(Xt | Y1:t ′).

(20)Xt | Y1:t−1 ∼ N
(
µt|t−1,�t|t−1

)
,

(21)µt|t−1 = Tµt−1|t−1,

(22)�t|t−1 = T�t−1|t−1T
⊤ + �η .

(23)Kt :=�t|t−1M
⊤
(

M�t|t−1M
⊤ +�ǫ

)−1

,
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Hence, the Kalman filter uses past and current observations to estimate the current state 
of the system. The optimal parameters can then be obtained via maximum likelihood 
estimation.

Additionally, Kalman smoothing may be used at time t ′ > t to combine knowledge 
about all observations until time t ′ to produce an updated estimate of the state of the 
system at time t as Xt | Y1:t ′ ∼ N

(
µt|t ′ ,�t|t ′

)
 , where

Unlike the Kalman filter, Kalman smoothing uses past, current, and future observations 
to estimate the current state of the system.

Model validation

The theoretical and empirical validity of the DFM relies on specifying the correct num-
ber of common factors n. Although previous research often set n based on prior knowl-
edge and existing studies, Bai and Ng (2002) provided three information criteria as 
statistical measures to consistently estimate n from a given dataset. These criteria, exten-
sively used in literature (Bai 2003; Stock and Watson 2002, 2016; Giglio et al. 2022), are 
expressed as follows:

where V(n) is the mean of the squared residuals when PCA is used to estimate n com-
mon factors. In contrast, Onatski (2009) proposed a hypothesis testing procedure for 
determining the number of common factors n. More recently, Molero-González et  al. 
(2023) provided an alternative method based on random matrix theory (RMT).

Additionally, following the approach in Molero-González et al. (2023), additional anal-
yses can be performed to assess the model’s alignment with established market theories. 
Examining the relationship between common factors Ft and a market’s composite index 
may reveal the model’s ability to capture systematic market movements and distinguish 

(24)µt|t =µt|t−1 + Kt

(
Yt −Mµt|t−1

)
,

(25)�t|t =�t|t−1 − KtM�t|t−1.

(26)Jt :=�t|tT
⊤�t+1|t

−1
,

(27)µt|t ′ =µt|t + Jt
(
µt+1|t ′ − µt+1|t

)
,

(28)�t|t ′ =�t|t + Jt
(
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)
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⊤
.
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)
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)

,

(30)IC2(n) = lnV (n)+ n

(
S + T
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)

lnmin {S,T },

(31)IC3(n) = lnV (n)+ n

(
lnmin {S,T }

min {S,T }

)

,
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idiosyncratic components of stock price dynamics. Moreover, analyzing the correlation 
between factor loadings βi and the CAPM beta, as defined in Eq. 1, offers insights into 
how effectively the model reflects a conventional measure of systematic risk exposure. 
By selecting an appropriate number of factors n with corresponding loadings and com-
mon factors that align with market theories, the empirical validity of the DFM can be 
effectively demonstrated.

Model implementation

The DFM fitting and validation procedures are implemented in the DynamicFac-
torAnalysis Python package. Other common data science libraries were also used in 
the implementation.

Results
To reiterate, this study analyzes the extracted loadings βi and common factors Ft to offer 
an alternative perspective on the dynamics of stock price movements, distinguishing 
itself from recent developments in literature, particularly that of Molero-González et al. 
(2023), which did not provide a subsequent analysis into βi and Ft after using RMT to 
determine the number of common factors underlying stock price dynamics. Whereas 
Molero-González et  al. (2023) primarily focused on factor dimensionality, the results 
of this study specifically analyzed and interpreted βi and Ft in relation to the broader 
framework of known econometric and market facts.

To this end, the PSE is considered owing to its distinct economic landscape and inves-
tor behavior. This approach broadens insights into stock price dynamics in a unique 
economic context while demonstrating the robustness of the DFM in providing insights 
aligned with established market theories. The historical stock price data used in this 
model are obtained using the Python library fastquant, which wraps the data request 
process using the Phisix API.1 Additionally, data for the PSE index (PSEi) is obtained 
from https://​stooq.​com.

The period from January 1, 2015, to December 31, 2020 is considered. Following the 
data cleaning procedure of existing works (Neszveda 2025; Feder-Sempach et al. 2024; 
Feng 2019), stocks with over 1% missing observations were excluded from the analysis 
to ensure data integrity. This results in a dataset comprising 72 stocks, exceeding the 
top 30 in terms of market capitalization included in the PSEi. Given the objective of the 
study, the aforementioned procedure would result in the exclusion of generally low-vol-
ume stocks, which are likely to make a relatively smaller contribution to overall market 
dynamics. Consequently, the remaining high-volume stocks would carry greater weight 
in the analysis, guaranteeing generalizability despite the data cleaning procedure.

Notably, although the COVID-19 pandemic introduces significant volatility to the 
data, demonstrating the ability of the model to provide robust insights into the mar-
ket even in the presence of extreme events is an important aspect of the present study. 
Thus, the inclusion of the pandemic period provides a rigorous test case to evaluate the 

1  https://​github.​com/​phisix-​org/​phisix.

https://stooq.com
https://github.com/phisix-org/phisix
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robustness of the model under such unprecedented conditions, in line with Molero-
González et al. (2023).

The percentage return Rit is considered to ensure the stationarity of the data. If Sit is 
the closing price of stock i at time t, the percentage return is obtained as follows:

Information criteria in Eqs. 29, 30, and 31 across different values of n are then calcu-
lated and presented in Fig. 1. The information criteria are lower for models with n = 1 
or n = 2 factors than for a white noise model containing zero factors. This result vali-
dates the choice of a factor model as it suggests that the inclusion of at least one factor 
considerably improves the fit with the data. Although an analysis based entirely on the 
information criteria would indicate that a model with n = 1 common factor fits the data 
best, a model with n = 2 common factors also exhibits a comparably close fit, making it 
a viable alternative for consideration.

One‑factor model

First, the model with n = 1 common factor following an AR(3) process and the stock-
specific factors following AR(5) processes is considered, where p and q are chosen 
based on the Bayesian information criterion (BIC). As a validation, the common fac-
tor Ft is compared with the return of PSEi, as shown in Fig.  2. Composite indices 
generally contain a diversified portfolio of stocks in a particular market. This diver-
sification removes stock-related movements and risks, leaving only systematic move-
ments and risks. Consequently, the PSEi is commonly used as a proxy for systematic 
market movements. The (Kalman-smoothed) common factor Ft and the PSEi returns 
exhibit a correlation of 0.9283, establishing the former as a viable indicator of sys-
tematic market movements. Nevertheless, in contrast to the PSEi, which only cov-
ers the top 30 stocks with the largest market capitalization, the common factor Ft 
captures the systematic movements across the broader market, reflecting the overall 

(32)Rit =
Sit − Si(t−1)

Si(t−1)

.

Fig. 1  Information criteria for different numbers of common factors n 
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stock price movements. This accounts for the discrepancy between the common fac-
tor and the PSEi and explains why their correlation coefficient falls short of a perfect 
association.

Nonetheless, the common factor Ft remains versatile in capturing market conditions 
at various time points. Notably, it accurately reflects significant market events, such as 
the sharp downturn on August 24, 2015, which resulted from the global financial market 
sell-offs owing to concerns about China’s economy. It also reflects the high economic 
volatility during the first two quarters of 2020, when the Philippine economy underwent 
a lockdown because of the COVID-19 pandemic. The common factor remains informa-
tive in reflecting the challenges during the subsequent recovery process. Other similar 
observations, such as volatility clustering during times of high economic uncertainty, 
can also be noted. This finding further supports that the common factor Ft represents 
systematic market movements.

The common factor Ft is estimated to evolve according to

where only the parameter �2 = 0.0225 is not statistically significant. This indicates that 
systematic market shocks are expected to persist for at least three trading days. Such 
persistence may reveal important aspects of market behavior. For example, policy-
related shocks may influence the market over an extended period, indicating the need 
for caution when announcing or implementing policies that are expected to impact the 
market (Li et al. 2010; Chatziantoniou et al. 2013).

(33)Ft = 0.1256Ft−1 + 0.0225Ft−2 + 0.1380Ft−3 + εt ,

Fig. 2  The common factor Ft for DFM ( n = 1 , p = 3 , q = 5 ), the first principal component, and the PSEi return 
from 2015 to 2020
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Moreover, PCA is investigated for comparison. Table 1 presents a summary of the 
correlation figures. The (Kalman-smoothed) common factor Ft exhibits a correlation 
of 0.9975 with the first principal component, as illustrated in Fig.  2. This principal 
component also has a strong correlation of 0.9144 with the PSEi returns. Although 
these results may indicate that DFM performs similarly to PCA in explaining system-
atic stock price movements, it must be noted that the two models are fundamentally 
distinct. PCA derives principal components as a linear combination of stock price 
returns, whereas DFM explains stock price returns as a linear combination of some 
underlying common factors. The latter is also a time series model that accounts for 
the dynamics of stock price returns across time. Moreover, the first principal com-
ponent will remain constant when considering n > 1 factors, whereas the common 
factors Ft will adapt depending on the model specifications. Hence, DFM can better 
capture the dynamics of stock price movements than PCA.

Table 1  Summary of correlation figures for DFM ( n = 1, p = 3, q = 5)

Series 1 Series 2 Correlation

CAPM βi βi 0.8348

Ft PSEi 0.9283

Ft PC1 0.9975

PC1 PSEi 0.9144

Fig. 3  Scatterplot of the loading βi for DFM ( n = 1 , p = 3 , q = 5 ) and the CAPM beta
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Table 2  Loadings for DFM ( n = 1 , p = 3 , q = 5)

Stock βi σi

2GO 0.8470 3.9217

ABA 0.9707 3.2377

AC 1.2704 1.4373

AEV 1.0996 1.8298

AGI 1.2715 1.7219

ALI 1.8711 1.6140

AP 0.7276 1.5130

BDO 1.2555 1.4833

BEL 0.8189 1.6531

BLOOM 1.5229 2.7239

BPI 1.0013 1.4661

BRN 1.2399 3.3060

CEB 1.3312 2.4174

CHIB 0.4127 0.9347

CNPF 0.6633 1.7277

COSCO 0.7777 1.4535

CPG 0.8730 2.2062

DD 0.7787 2.4391

DMC 1.2795 1.8911

DNL 1.1504 2.2307

EEI 0.8018 2.1847

EW 1.0251 1.8732

FGEN 0.8139 1.8883

FLI 1.0034 1.5730

FNI 1.2429 6.0448

FPH 0.7029 1.2352

GERI 1.0278 2.1231

GLO 0.7262 1.8556

GMA7 0.3908 1.3900

GTCAP 1.2195 1.8579

HOUSE 0.3541 1.8103

ICT 1.1416 1.8282

IMI 0.9508 2.4919

JFC 1.1580 1.7656

JGS 1.4660 1.8076

LC 0.1881ns 3.0327

LPZ 0.7766 2.0411

LTG 0.9536 2.1000

MAXS 1.1587 2.0482

MBT 1.1226 1.5110

MEG 1.5200 1.7571

MER 0.6730 1.5231

MPI 1.2415 1.9402

MWC 0.7810 2.2912

MWIDE 0.9886 2.3709

NI 0.3982 2.5281

NIKL 1.3189 3.6951

PCOR 0.9497 2.1039

PGOLD 0.7605 1.6123
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The loading βi is compared against its corresponding CAPM beta for further model 
validation, which is widely accepted as a measure of exposure to market risks. Figure 3 
presents the scatterplot between the loading βi and the CAPM beta.2 The figure indi-
cates a strong positive correlation between the two measures, with a correlation of 
0.8348, validating the relationship of βi and exposure to systematic movements. Table 2 
subsequently presents the summary of the loading βi and σi for the 72 stocks included in 
the analysis. At a significance level of α = 0.05 , the loading βi for the common factor Ft 
is statistically significant for all but one stock.3 This result highlights that the common 
factor Ft explains price movements in the market, capturing the systematic or market 
dynamics similar to the PSEi. More mature and developed stocks, such as AC, GTCAP, 
JFC, SM, and URC, have relatively balanced βi and σi values. Conversely, less mature or 
more volatile stocks, such as ABA, BRN, FNI, PXP, and SSP, have relatively higher σi 
values, indicating more significant contribution from idiosyncratic movements owing to 
stock-specific shocks. Hence, the ratio between βi and σi may also indicate relative sensi-
tivity to market-specific or stock-specific volatilities.

Table 2  (continued)

Stock βi σi

PLC 1.1563 2.4863

PNB 0.7994 1.5993

PNX 0.4600 1.9619

PX 0.5659 2.4845

PXP 1.3042 5.2152

RLC 1.4767 1.9403

RRHI 0.7599 1.7353

SCC 0.9913 2.8519

SECB 1.0943 1.7228

SLI 0.3344 2.0121

SM 1.1180 1.6795

SMC 0.7581 1.7769

SMPH 1.2124 1.5934

SSI 1.4767 2.7815

SSP 0.9031 3.6809

STI 0.6874 2.6140

TECH 0.9746 3.7055

TEL 0.8290 1.9001

UBP 0.2162 1.0130

URC​ 1.0050 1.7758

VITA 1.1404 3.6114

VLL 1.1170 2.1362

WEB 1.0387 4.8616

3  The loading βi for stock LC is not statistically significant due to a significant stock-specific shock—the sizable clo-
sure order against its operations (https://​denr.​gov.​ph/​news-​events/​lopez-​orders-​closu​re-​of-​23-​metal​lic-​mines/, Catajan 
2021)—which lasted from 2017 to 2020. This case is expected to have a pronounced impact on its financial outlook, 
thereby overshadowing general market conditions.

2  https://​www.​barro​ns.​com/​market-​data/​stocks.

https://denr.gov.ph/news-events/lopez-orders-closure-of-23-metallic-mines/
https://www.barrons.com/market-data/stocks
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Fig. 4  The common factors Ft for DFM ( n = 2 , p = 2 , q = 5 ), the first two principal components, and the PSEi 
return from 2015 to 2020

Table 3  Summary of correlation figures for DFM ( n = 2, p = 2, q = 5)

Series 1 Series 2 Correlation

CAPM βi β1i 0.5132

F1t PSEi 0.6727

F1t PC1 0.8982

PC1 PSEi 0.9144

CAPM βi β2i 0.8528

F2t PSEi 0.7704

F2t PC2 0.8229

PC2 PSEi 0.3498
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Two‑factor model

Next, the model with n = 2 common factors following a VAR(2) process and stock-spe-
cific factors following AR(5) processes is considered, where p and q are chosen based 
on the BIC. The (Kalman-smoothed) common factors Ft are also compared against the 
PSEi returns and principal components in Fig. 4. The correlation figures are presented 
in Table 3. The first common factor F1t has correlations of 0.6727 and 0.8982 with the 
PSEi returns and the first principal component, respectively. The second common factor 
F2t has correlations of 0.7704 and 0.8229 with the PSEi returns and the second principal 
component, respectively. The first and second principal components have correlations 
of 0.9144 and 0.3498 with the PSEi returns, respectively. The common factors Ft of the 
DFM adapt based on the model specification, whereas PCA remains static regardless of 
the number of factors considered. This result may be observed from the common factor 
F1t in Fig. 4 that deviates from the common factor Ft in Fig. 2 while still maintaining the 
overall trend. This highlights the distinctive advantage of DFM over PCA in determining 
systematic movements in the PSE. PCA requires that the principal components maxi-
mize variance while remaining mutually orthogonal. Conversely, DFM does not explic-
itly impose such restrictions, thereby offering greater flexibility.

Exploring common factors in greater detail, it is worth noting that F1t and F2t have a 
correlation of 0.0798, which is nearly orthogonal. A linear regression of Ft on F1t and 
F2t also produced an R2 of 0.998. These results indicate that the model further decom-
posed Ft into two nearly uncorrelated signals, namely, F1t and F2t . A visual inspection of 
Fig. 4 reveals that F1t represents the broader market trend, whereas F2t represents mar-
ket uncertainties independent of the general market direction. This further allows for 
the following interpretations: β1i as exposure to market trends, β2i as exposure to market 
volatility, and σi as exposure to stock-specific volatility. This provides a new perspective 
on portfolio risk management beyond the traditional CAPM framework, as investors 
can now account for two dimensions of market movements.

The common factors Ft = [F1t , F2t ]
⊤ are then estimated to evolve according to

where only the coefficients −0.0262 and −0.0931 are not statistically significant. Simi-
larly, the results also indicate the persistence of systematic shocks in the market (Gil-
Alana et al. 2023).

For validation, the loadings β1i and β2i are also compared against the CAPM beta, as 
presented in Fig. 5. The CAPM beta exhibited correlations of 0.5132 and 0.8528 with β1i 
and β2i , respectively. The lower correlation with β1i indicates that the first common fac-
tor F1t captures market dynamics not considered by the CAPM. Meanwhile, the higher 
correlation between β2i and the CAPM beta aligns with the interpretation of the second 
common factor F2t capturing market volatility, a key aspect that the CAPM also empha-
sizes. Despite these differences, the common factors F1t and F2t significantly contribute 
to the explanation of systematic stock price movements, highlighting the ability of the 
model to capture market trends and additional specific sources of volatility. Table 4 pre-
sents the summary of the loadings β1i , β2i , and σi . The β1i ’s are statistically significant for 
all stocks, whereas half of the β2i ’s are statistically significant at α = 0.05 . This indicates 

(34)Ft =

[
0.4894 0.1680

−0.0262 −0.2526

]

Ft−1 +

[
0.5094 −0.1726

−0.1627 −0.0931

]

Ft−2 + εt ,
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that the two-factor model captures additional variance in the data, highlighting how the 
common factors obtained are viable indicators of systematic market movements.

In summary, the results from DFM ( n = 1 , p = 3 , q = 5 ) and DFM ( n = 2 , p = 2 , 
q = 5 ) align with established theories and provide a new and alternative understanding 
of price movement dynamics. The relationship between the common factors Ft and the 
PSEi returns provides unique insights into how these models quantify systematic market 
movements and idiosyncratic movements. Notably, DFM ( n = 2 , p = 2 , q = 5 ) offers 
a more nuanced characterization of market dynamics, which complements established 
portfolio risk management theories by decomposing market trends and market volatility. 
Furthermore, the correlation between the factor loadings βi and the CAPM beta high-
lights that the models closely capture the conventional measure of systematic risk expo-
sure. Overall, the results demonstrate that dynamic factor analysis can provide novel 
insights into classical market theories.

Nowcasting GDP application

The above results indicate that the common factors Ft are viable real-time market indi-
cators that can be effectively extracted from real-time stock price returns data. These 
factors can be extended to various economic and financial applications. This subsection 
illustrates the utility of the common factors Ft of DFM (n = 2, p = 2, q = 5) within an 
economic context.

A major limitation faced by economic leaders is the substantial delay in releas-
ing key economic indicators. For instance, policymakers rely on the quarterly GDP 

Fig. 5  Scatterplot of the loadings βi for DFM ( n = 2 , p = 2 , q = 5 ) and the CAPM beta
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Table 4  Loadings for DFM ( n = 2 , p = 2 , q = 5)

Stock β1i β2i σi

2GO 0.9241 0.0236ns 3.8987

ABA 1.0070 0.1693ns 3.2195

AC 0.9129 0.8448 1.3988

AEV 0.7433 0.9720 1.7430

AGI 1.2384 0.4100 1.7036

ALI 1.0328 0.9285 1.5250

AP 0.4345 0.7176 1.4191

BDO 0.9548 0.9023 1.4394

BEL 0.8462 0.1517 1.6286

BLOOM 1.5024 0.4127 2.6979

BPI 0.7470 0.7162 1.4348

BRN 1.2011 0.3564 3.2954

CEB 1.2868 0.3642 2.3957

CHIB 0.3963 0.1341 0.9321

CNPF 0.6854 0.0993ns 1.7111

COSCO 0.7646 0.1666 1.4362

CPG 0.8825 0.1603ns 2.1836

DD 0.7264 0.2518 2.4382

DMC 1.1218 0.5568 1.8945

DNL 1.2014 0.1748ns 2.1834

EEI 0.8138 0.1628ns 2.1700

EW 1.0218 0.2420 1.8502

FGEN 0.7343 0.3185 1.8883

FLI 0.9935 0.2374 1.5466

FNI 1.1952 0.3580ns 6.0388

FPH 0.7587 0.0554ns 1.1902

GERI 1.0304 0.1669ns 2.0919

GLO 0.4331 0.6612 1.8105

GMA7 0.4239 − 0.0013ns 1.3740

GTCAP 0.9541 0.7777 1.8355

HOUSE 0.4075 − 0.0132ns 1.7982

ICT 0.8903 0.7307 1.8127

IMI 1.1230 − 0.0340ns 2.4140

JFC 1.0451 0.5168 1.7643

JGS 1.0386 1.1688 1.7109

LC 0.3592 − 0.2497ns 3.0048

LPZ 0.8387 0.0945ns 2.0117

LTG 0.8529 0.3950 2.0992

MAXS 1.2711 0.1540ns 1.9789

MBT 0.9099 0.6560 1.5007

MEG 1.2877 0.7545 1.7593

MER 0.4251 0.6250 1.4782

MPI 0.9654 0.7626 1.9291

MWC 0.7678 0.1878ns 2.2833

MWIDE 1.1309 0.0369ns 2.3085

NI 0.5448 − 0.1908ns 2.4880

NIKL 1.3530 0.2689ns 3.6684

PCOR 0.9715 0.1949ns 2.0778



Page 20 of 24Lim et al. Financial Innovation            (2026) 12:4 

growth rates as the primary indicator of economic performance, as it measures the 
total monetary value of all goods and services produced in a country over the specific 
period. However, this figure is typically released several weeks following the end of 
a quarter. Fiscal and monetary policies must be enacted based on incomplete infor-
mation during this period. Many institutions have developed nowcasting models to 
predict these economic indicators to aid economic decisions. Hence, inspired by pre-
vious works (Luciani et al. 2018; Hayashi et al. 2022; Babii et al. 2022; Ashwin et al. 
2021; Giannone et al. 2005), this subsection considers the problem of nowcasting the 
GDP growth rates.

As a benchmark, the AR(1) model is considered. The in-sample period for model 
training is from January 1, 2015 to December 31, 2020. The period from January 1, 
2021 to December 31, 2022 is then treated as the out-of-sample period for model 
evaluation. Figure  6 presents the nowcasts of the model, whereas Table  5 presents 
a summary of the root mean squared error (RMSE) figures. The model obtained an 
RMSE of 3.8533 and 12.3095 during the in- and out-of-sample periods, respectively. 
Notably, the out-of-sample RMSE is expected to be greater owing to the more signifi-
cant fluctuations in GDP growth rates caused by the COVID-19 pandemic.

To demonstrate the utility of the DFM, the common factors Ft are first trans-
formed into monthly indicators to adjust for the difference in frequency with the 

Table 4  (continued)

Stock β1i β2i σi

PGOLD 0.7043 0.2572 1.6095

PLC 1.1682 0.2474 2.4584

PNB 0.8758 0.0977ns 1.5576

PNX 0.3580 0.2852 1.9598

PX 0.6711 − 0.0153ns 2.4571

PXP 1.2902 0.3148ns 5.2036

RLC 1.1662 0.9296 1.9170

RRHI 0.6137 0.4181 1.7350

SCC 0.9616 0.2731ns 2.8422

SECB 0.9898 0.4194 1.7240

SLI 0.3454 0.0164ns 2.0057

SM 0.7241 1.0227 1.5732

SMC 0.6562 0.3536 1.7768

SMPH 0.8483 1.0137 1.5017

SSI 1.3420 0.5626 2.7782

SSP 0.9091 0.1473ns 3.6650

STI 0.7093 0.1038ns 2.6003

TECH 0.9719 0.2527ns 3.6977

TEL 0.5027 0.7467 1.8468

UBP 0.2440 − 0.0131ns 1.0038

URC​ 0.6913 0.7876 1.7318

VITA 1.1600 0.2145ns 3.5918

VLL 1.2861 − 0.0188ns 2.0218

WEB 1.0343 0.2561ns 4.8515
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GDP releases. The common factors Ft are the Kalman-smoothed and Kalman-fil-
tered common factors during the in-sample and out-of-sample periods, respec-
tively. The mean and standard deviation of the common factors F1t and F2t are 
calculated. These monthly indicators are then integrated into the AR(1) model via 
ordinary least squares regression to explain the GDP growth rate for the quarter. 
For example, the common factors Ft for January, February, and March are used to 
explain the GDP growth rate for the first quarter. Figure  6 presents the nowcasts 
of the model, whereas Table 5 presents a summary of the RMSE figures. The model 
obtained RMSE values of 0.6122 and 8.0667 during the in-sample and out-of-sample 
periods, respectively. The inclusion of the derived monthly indicators, constructed 
from the common factors, substantially improved the in-sample RMSE by 84.11% 
and the out-of-sample RMSE by 34.47%, demonstrating the utility of the model. This 
result further supports how the common factors Ft may be used as real-time market 
indicators.

Fig. 6  Philippine GDP growth rate nowcasts of AR(1) and AR(1) with Ft

Table 5  Philippine GDP growth rate nowcasts RMSE values of AR(1) and AR(1) with Ft

Model In-sample Out-of-sample

AR(1) 3.8533 12.3095

AR(1) w/ Ft 0.6122 8.0667
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Conclusion
In summary, this study explores DFM to analyze price movements in the PSE, inte-
grating the predictive capabilities of machine learning models with the interpretabil-
ity of traditional linear asset pricing models, thereby effectively bridging econometric 
theory and financial practice. Specifically, it  focuses on the extracted loadings and 
common factors to provide alternative perspectives for understanding the dynam-
ics of price movements. The results of a validation analysis with the CAPM reveal 
novel insights into market phenomena. Similar to the composite index, the one-factor 
model closely captures systematic or market dynamics, whereas the two-factor model 
further decomposes it into market trends and volatility, providing novel perspectives 
beyond conventional portfolio risk management theories. Additionally, an application 
on nowcasting GDP growth rates demonstrates the viability of the common factors 
as real-time market indicators in economic and financial applications by provid-
ing substantial performance improvements. These results demonstrate the value of 
dynamic factor analysis in providing a deeper understanding of price movements in 
the market.

Future studies may build on current findings by relaxing the DFM assumptions in 
Gaussian stock price returns and the cross-sectional independence in the errors Zit . 
Specifically, exploring deviations from normality in the form of heavy tails may be 
useful, as observed in empirical results (Peiró 1994; Li 2023). To this end, one may 
incorporate a generalized autoregressive conditional heteroskedasticity (GARCH) 
process for the common factors Ft to allow for time-varying conditional variances, 
leading to more accurate stock return distribution modeling. Although this would 
typically introduce additional layers of complexity to the model fitting methodology, 
they may be accommodated through approximate inferential methods using advances 
in Bayesian variational inference algorithms (Dayta et al. 2024). Additionally, replac-
ing the Kalman filter for model fitting with variational inference may allow for higher 
orders of flexibility in terms of the factor distribution and other additional effects, 
such as GARCH terms and market or industry-level dynamics. These model improve-
ments would better capture the intricate dynamics of stock price movements while 
maintaining predictive performance and interpretability.
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