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ABSTRACT

Smart buildings are gaining popularity because they have the capability to enhance energy efficiency, lower
costs, improve security, and provide a more comfortable and convenient environment for building occupants. A
considerable ratio of the global energy supply has been consumed in building sectors and plays a pivotal role in
the future decarbonisation pathways. In order to manage energy consumption and improve energy efficiency
in smart buildings, developing reliable and accurate energy demand forecasting is crucial and meaningful.
However, extending an effective predictive model for the total energy use of appliances at the buildings’
level is challenging due to temporal oscillations and complex linear and non-linear patterns. This paper
proposes three hybrid ensemble predictive models, incorporating Bagging, Stacking, and Voting mechanisms
combined with a fast and effective evolutionary hyper-parameters tuner. The performance of the proposed
energy forecasting model was evaluated using a hybrid dataset of meteorological parameters, energy use of
appliances, temperature, humidity, and lighting energy consumption from different sections collected by 18
sensors in a building located in Stambruges, Mons in Belgium. In order to provide a comparative framework
and investigate the efficiency of the proposed predictive model, 15 popular machine learning (ML) models,
including two classic ML models, three Neural Networks (NN), a Decision Tree (DT), a Random Forest (RF),
two Deep Learning (DL) and six Ensemble models, were compared. The prediction results indicate that the
adaptive evolutionary bagging model surpassed other predictive models in both accuracy and learning error.
Notably, it delivered accuracy gains of 12.6%, 13.7%, 12.9%, 27.04%, and 17.4% when compared to Extreme
Gradient Boosting (XGB), Categorical Boosting (CatBoost), Gradient Boosting Machine (GBM), Light Gradient
Boosting Machine (LGBM), and RF.

Nomenclature

See Table 1.

1. Introduction

There are numerous advantages in advancing smart buildings, such as
enhanced energy optimisation, augmented residents’ satisfaction and
productivity [3], as well as improved health and well-being [4]. These
benefits have been achieved due to hiring cutting-edge technologies
such as artificial intelligence (AI)-based methods, deep neural networks
(DNNs) [5], and adaptive learning controls in smart buildings [6],

One-third of the world’s primary energy is approximately consumed
by buildings [1]. Buildings are a significant contributor to carbon diox-
ide (CO2) emissions, accounting for nearly 39% of such emissions [2].
Due to this high level of buildings’ energy consumption contribu-
tion to global energy demand, developing smart buildings is crucial.

* Corresponding author.

which enable such facilities to control various systems (cooling, heat-
ing, cooking, etc. [7]) to evolve more efficient in terms of energy and
comfort [8]. Furthermore, smart buildings prioritise indoor air quality,
ensuring thermal, acoustic, and visual comfort.

E-mail addresses: mehdi.neshat@uts.edu.au (M. Neshat), menasha.thilakaratne@adelaide.edu.au (M. Thilakaratne), melabd@auk.edu.kw (M. El-Abd),
ali.mirjalili@laureate.edu.au (S. Mirjalili), gandomi@uts.edu.au (A.H. Gandomi), John.Boland@unisa.edu.au (J. Boland).

https://doi.org/10.1016/j.energy.2025.137130

Received 16 December 2024; Received in revised form 11 June 2025; Accepted 13 June 2025

Available online 11 July 2025

0360-5442/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/energy
https://www.elsevier.com/locate/energy
https://orcid.org/0000-0002-9537-9513
https://orcid.org/0000-0003-0938-8542
https://orcid.org/0000-0003-1132-7589
mailto:mehdi.neshat@uts.edu.au
mailto:menasha.thilakaratne@adelaide.edu.au
mailto:melabd@auk.edu.kw
mailto:ali.mirjalili@laureate.edu.au
mailto:gandomi@uts.edu.au
mailto:John.Boland@unisa.edu.au
https://doi.org/10.1016/j.energy.2025.137130
https://doi.org/10.1016/j.energy.2025.137130
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2025.137130&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Neshat et al.

Table 1

Summary of key abbreviations used in the manuscript for clarity.
Abbreviation Full name
Al Artificial intelligence
ANN Artificial Neural networks
Bi-LSTM Bidirectional Long short-term memory network
BIM-DB Building information modelling-design builder
BIM Building Information Modelling
BS Batch size
CART Classification and regression tree
CatBoost Categorical Boosting
CR Probability crossover rate
CL Cooling load
CMA-ES Covariance matrix adaptation evolution strategy
CNN Convolutional neural network
DDPG Deep Deterministic Policy Gradient
DE Differential evolution
DNN Deep neural networks
DT Decision Tree
EA Evolutionary Algorithm
ELM Extreme Learning Machine
EVS Explained variance score
GA Genetic algorithm
GBT Gradient boosting tree
GBM Gradient Boosting Machine
GC Generalised correntropy
GPT Generative Pre-trained Transformers
GRU Gated recurrent unit
HGBR Histogram-Based Gradient Boosting Regressor
HL Heating load
HVAC Heating, Ventilation, and Air Conditioning
IoT Internet of Things
LGBM Light Gradient Boosting Machine
LOF Local outlier factor algorithm
LRD Local reachability density
LHTES Latent heat thermal energy storage
LSTM Long short-term memory network
MAE Mean absolute error
ML Machine learning
MLP Multi-layer perceptron
MSE Mean square error
NSGA Non-dominated Sorting Genetic Algorithm
NM Nelder-Mead simplex direct search method
PSO Particle Swarm Optimisation
PHPP Passive House Planning Package
RF Random Forest
RIME Rime optimisation algorithm
RMSE Root mean square error
RNN Recurrent neural networks
SCO Sine cosine optimisation
SMAPE Symmetric mean absolute percentage error
SVM Support vector machines
XGB Extreme Gradient Boosting

In smart buildings, to enhance communication and information
sharing, technologies such as the Internet of Things (IoT), Building
Information Modelling (BIM), and Blockchain have been incorporated
to improve security and management [9]. Another significant advan-
tage of developing smart buildings is their contribution to the energy
sector decarbonisation [10] by supporting the electrical grid through
providing demand response functionality [11] and balancing electricity
demand with non-dispatchable renewable energy sources [12].

In the last two decades, various ML techniques have experienced
significant growth, particularly in modelling energy consumption in
smart buildings. This surge of interest can be attributed to the re-
markable efficacy and robustness exhibited by ML predictors in this
field. Impressively, ML models have demonstrated exceptional gener-
alisation and flexibility abilities [13], making them widely pertinent
to a diverse range of problems. They have been hailed as “universal
function approximators” because of their unparallelled adaptability. A
comprehensive review of the rapid advancements in Artificial Intelli-
gence (AI) and ML models within the context of smart buildings has
yielded a meaningful conclusion [14] and determined that the overall
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adaptability of buildings to unforeseen changes can be significantly
enhanced through the enactment of Al-driven learning processes. More-
over, integrating adaptability solutions on the timescales of heating,
ventilation, and air conditioning (HVAC) control and electricity market
participation has been identified as the most promising avenue for
achieving substantial improvements in energy efficiency.

One pivotal advantage of employing ML models lies in their aptitude
for analysing extensive datasets and uncovering intricate patterns that
elude traditional statistical methodologies. By considering an array of
factors, such as construction characteristics, occupancy patterns, and
weather states, these models offer accurate predictions of energy usage
within buildings [15]. This capability stems from their capacity to
process vast volumes of data and discern hidden correlations that would
otherwise remain inconspicuous. Moreover, the prevalence of multiple
sensors for data collection in smart buildings necessitates the develop-
ment of real-time systems for monitoring, controlling, predicting, and
optimising total power consumption. ML models excel in this arena
by continuously analysing sequential data and constructing precise
models of these dynamic systems [16]. Through incessant monitoring
and data analysis, these models can adapt control settings for Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems, lighting, and
other building components to attain desired energy efficiency targets.
Recently, Lie et al. [17] proposed a novel HVAC control system for
intelligent buildings that uses a multi-step predictive deep learning
model to reduce power consumption costs while maintaining user
satisfaction. The system combines Long Short-term Memory (LSTM),
generalised correntropy (GC) loss function, and Deep Deterministic
Policy Gradient (DDPG) for predicting house temperature and dynamic
power adjustment. Simulation results showed over 12% cost savings
compared to alternative approaches.

Another compelling rationale for incorporating machine learning
(ML) models in energy demand modelling for smart buildings lies in
their forecasting capabilities. By leveraging historical data, weather
forecasts, and other relevant characteristics, ML aids in accurately
predicting future energy demands [18]. This proficiency in demand
forecasting facilitates superior planning for energy generation, dis-
tribution, and load management, culminating in a more dependable
and efficient energy supply. These factors collectively enable the op-
timisation of energy utilisation, enhance operational efficiency, and
contribute to the establishment of sustainable [19] and intelligent
building systems.

Somu et al. [20] proposed a hybrid building power consumption
model (kCNN-LSTM) consisting of LSTM, a Convolutional neural net-
work (CNN) combined with a K-means clustering method and sine
cosine optimisation (SCO) algorithm [21] to tune the hyper-parameters
of LSTM. The kCNN-LSTM model outperforms existing demand forecast
models and offers precise energy consumption prediction. An auto-
mated building energy load forecasting methodology [22] has recently
been introduced based on Generative Pre-trained Transformers (GPT)
in combination with prompt optimisation, external knowledge use, and
self-correction. The method effectively mitigates technical barriers to
entry for non-experts and permits precise low-budget energy prediction.
It was compared with actual test buildings and proved to have a mean
R2 of 0.95, demonstrating the engineering viability of mass language
models for smart building energy management innovation.

While ML models have been shown to be promising for the predic-
tion of building energy consumption, current research focuses mainly
on short-term prediction. It seldom introduces new parameters to im-
prove prediction accuracy. To address this gap, a team developed a
data-driven method [23] to predict the hourly energy consumption
of a university office building by integrating meteorological, tempo-
ral, and an introduced meta-parameter, air conditioning demand. Five
ML algorithms (Random Forest (RF), Gradient Boosted Trees (GBT),
Support Vector Machines (SVM), Artificial Neural Networks (ANN),
and Deep Neural Networks (DNN)) are compared and experimental
results show that DNN provide the best performance (Root mean square
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error (RMSE) = 4.796 kWh, Mean Absolute Percentage Error (MAPE)
= 5.738%), outperforming existing methods. Incorporating the air con-
ditioning demand parameter significantly enhances model accuracy for
every algorithm.

Ensemble models offer excellent benefits in building energy predic-
tion [24] by exploiting the strengths of different algorithms, enhancing
prediction accuracy and generalisability compared to individual mod-
els. While much attention is being given now, most prior studies have
focused on single ML models or basic ensemble techniques without
fully harnessing stacked architectures for heating and cooling load
(HL and CL) prediction. Furthermore, there has been limited research
in the literature on integrating hyperparameter-tuned models with
heterogeneous base models for predicting residential building energy.
Closing these gaps, in a recent work [25], a stacked ensemble model
was introduced integrating XGB, DT, RF, and Bayesian optimisation
for hyperparameter tuning. Closing these gaps, a recent work [25]
introduced a stacked ensemble model that integrates XGB, DT, RF,
and Bayesian optimisation for hyperparameter tuning. The suggested
model performed considerably better than the traditional techniques,
providing better performance (RMSE of 0.484 for HL and 0.948 for
CL). Another example of ensemble models is [26] which proposes a
stacked learning model for predicting the dynamic performance of
PCM-based double-pipe latent heat thermal energy storage (LHTES)
units. Main contributions include sensitivity analysis for variable se-
lection, a two-stage ensemble model combining Regression Trees, SVR,
and Linear Regression, and comprehensive validation across datasets
and phase change stages. The proposed infrastructure demonstrated
a 7.82% improvement in MAPE, a 25.6% increase in stability, and a
9.7% reduction in peak demand for heating, ventilation, and air con-
ditioning (HVAC) systems, contributing to more flexible, data-driven
building energy management. Another study [27] suggested a stack-
ing ensemble learning model for home net load-interval prediction,
which combines k-means user clustering, LRIME-based optimisation,
and bootstrap interval estimation. Their main contributions included
developing interpretable interval forecasts, recommending the rime
optimisation algorithm (LRIME) for improved performance, and adding
LSTM, XGBoost, and ELM as optimised base learners. Australian Aus-
grid data tests confirm the model’s improved accuracy, robustness, and
uncertainty estimation over state-of-the-art models.

Combining ML models with optimisation methods is one of the
popular techniques used to forecast energy consumption in buildings.
To address the lack of integrated prediction and optimisation methods
in green building design, a recent study [28] proposed a framework
combining BIM-DB simulation, Bayesian-Random Forest (Bayesian-RF)
prediction, and Non-dominated Sorting Genetic Algorithm (NSGA-
III) optimisation. BIM-DB efficiently generates building performance
data, while Bayesian-RF achieves high prediction accuracy (M SE <
0.08, R2 > 0.85). The prediction model guides NSGA-III to optimise en-
ergy use, emissions, cost, and thermal comfort. A case study conducted
on a teaching building demonstrated reductions of 7.68% in energy
consumption, 6.48% in carbon emissions, and 1.77% in operational
costs while also enhancing occupant comfort. Current approaches to
optimising public building sustainability struggle to reconcile compet-
ing goals and integrate expert knowledge with data-driven forecasting.
A recent study [29] suggested a hybrid approach that blended building
information modelling-design builder (BIM-DB) simulations with a
BO-CatBoost-NSGA-III algorithm to overcome these limitations. Their
major contributions included a two-stage knowledge a data-driven
approach to secure dataset generation, a BO-optimised CatBoost model
with R2 > 0.97 across targets, and finally, multiobjective optimisation
using NSGA-III, which delivered 32.20% lower energy consumption,
48.77% lower CO2 emissions, 60.69% improved thermal comfort, and
15.45% less glare.
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1.1. Research gaps

Sequential ML models, such as LSTM, BiLSTM, CNN-LSTM, etc.,
have gained recognition for their success in these specific domains [30].
However, they do come with certain drawbacks that need to be con-
sidered as follows. One notable disadvantage is the complex architec-
ture of these models, which can result in extensive training runtimes,
mainly when dealing with large-scale datasets. Consequently, the com-
putational requirements for training these models can be substantial.
Moreover, achieving optimal performance with these models heavily
relies on careful design and parameter tuning. Improper choice of
hyper-parameters can lead to suboptimal performance or overfitting,
underscoring the need for meticulous attention during the model con-
figuration phase. Another drawback is the need for more interpretabil-
ity of LSTM and its family models. These models are often considered
black boxes, making it challenging to comprehend the underlying
reasoning behind their predictions. Interpreting the learned represen-
tations and understanding the critical features becomes a non-trivial
task. Furthermore, when faced with limited data, these sequential mod-
els may struggle to extract meaningful patterns and achieve optimal
performance [31]. Uncovering hidden patterns and dependencies relies
heavily on the availability of sufficient training examples, which can be
a limitation in scenarios where data is scarce.

Considering these drawbacks is crucial when deciding whether to
employ LSTM, BiLSTM, or CNN-LSTM models. The trade-off between
their success in specific domains and the associated challenges of train-
ing runtime, parameter tuning, interpretability, and data limitations
should be carefully evaluated to ensure the most suitable approach for
a given application.

Furthermore, despite notable advancements in ML and ensemble-
based approaches for smart building energy forecasting, several re-
search challenges and gaps remain unresolved:

» Limited integration of heterogeneous ensemble strategies: While
individual ensemble techniques such as bagging, boosting, and
stacking have shown promise, most existing studies rely on sin-
gular strategies. Few attempts have been made to systematically
combine these approaches within a unified hybrid framework to
leverage their complementary strengths.

Insufficient use of advanced hyper-parameter optimisation: Many
prior works employ default or manually-tuned parameters, which
may result in suboptimal model performance. The integration
of meta-heuristic optimisation algorithms, such as Genetic Al-
gorithms (GA), Differential Evolution (DE), or 1+1 Evolutionary
Algorithms for automated and adaptive hyperparameter tuning
remains underexplored in this domain.

Neglect of real-world temporal and environmental complexity:
Existing models often oversimplify input features or overlook dy-
namic environmental factors, such as temporal variability, sensor
heterogeneity, and inter-feature dependencies. There is a need for
models that can robustly learn from multivariate, high-resolution
data collected via Internet of Things (IoT) sensors in actual smart
building environments.

Lack of comprehensive benchmarking with modern deep and
ensemble models: Although deep learning models (e.g., CNNs,
LSTMs) and gradient-boosting methods (e.g., XGBoost, CatBoost,
LGBM) are increasingly adopted, few studies conduct extensive
comparative analyses involving a broad spectrum of baseline
models across classical ML, deep networks, and ensemble meth-
ods under consistent evaluation metrics.

Moreover, limited focus on model generalisability and robustness:
Many forecasting models are tailored to specific datasets or set-
tings, raising concerns about their adaptability across different
buildings or climatic regions. There is a gap in assessing generalis-
ability through cross-validation techniques and testing on diverse
time periods or unseen environments.
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» Last but not least, sparse consideration of interpretability and
computational trade-offs: Highly accurate models such as deep
networks or ensemble stacks often lack interpretability and in-
cur high computational costs. Few studies explicitly address the
trade-off between model complexity, transparency, and real-time
applicability, especially in the context of building management
systems.

1.2. Key contributions

To address the aforementioned challenges, in this study, we propose
a hybrid learning model specifically designed for predicting the total
power usage of compliances in a Stambruges, Mons, Belgium building.
The model incorporated three ensemble mechanisms: Bagging, Stack-
ing and Voting models, as well as a fast and effective Evolutionary
framework. The study’s primary objective was to develop a robust
and accurate model for predicting power consumption in smart build-
ings. To achieve this, data collected from 18 sensors installed in the
building was used to capture meteorological parameters, energy use
of appliances, temperature, humidity, and lighting energy consumption
of different sections. The main contributions of this study are listed as
follows:

» Comprehensive data analysis was conducted to extract various
characteristics and correlations among the collected features and
power consumption. This analysis provided valuable insights into
the relationships between different variables, helping to inform
the development of the predictive model.

A wide range of machine and deep learning models were im-
plemented and compared to ensure the most efficient learning
model. This included classic ML models such as DT and RF, as
well as various Neural Networks (NN) and Ensemble models.
By developing this comprehensive comparative framework, the
designers will be able to identify the most effective learning
model for predicting power consumption in the smart building
context.

Further, the study addressed the challenge of hyper-parameter
tuning initialisation, which can significantly impact the model’s
performance. To overcome this challenge, four optimisation meth-
ods were tested and compared to improve prediction accuracy
and reduce modelling training errors. The aim was to find a
practical and smart hyper-parameter tuner that would enhance
the overall performance of the power consumption prediction
model.

Finally, this study contributes to the field of smart buildings by
proposing an adaptive evolutionary ensemble learning model that
leverages the power of various ML and tree-based techniques
combined with a fast and effective Evolutionary algorithm. To
this end, we developed and evaluated six Voting models, eight
Bagging models, and ten Stacking architectures, each composed of
different configurations of decision trees, gradient-boosted meth-
ods, and neural learners. The comprehensive data analysis, ex-
tensive model comparison, and optimisation methods employed
in this study provide valuable insights and techniques for accu-
rately predicting power consumption in similar smart building
scenarios.

The remainder of this paper is organised as follows. Section 2
introduces the dataset and presents a detailed statistical analysis. Sec-
tion 3 outlines the methodological framework, encompassing outlier
detection, ensemble learning strategies, and optimisation techniques.
Section 4 presents the experimental results and compares model per-
formance. Moreover, Section 5 discusses the key findings and their
implications. Finally, Section 6 concludes the study by summarising
the research contributions, acknowledging its limitations, and outlining
directions for future work.
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2. Data sets and statistical analysis

The hybrid dataset utilised in this study was obtained from a
residential property in Stambruges, Belgium, approximately 24 km from
the City of Mons [32]. The house’s construction was completed in
December 2015, incorporating entirely new mechanical systems. The
architectural design followed the principles of passive house certifica-
tion [33], which entails limiting the annual heating and cooling loads to
a maximum of 15 kWh/m? per year, as determined by design software
(Passive House Planning Package (PHPP)). It is worth highlighting
that in September 2016, the building’s air leakage was assessed and
measured to be 0.6 air changes per hour at 50 Pa. A heat recovery
ventilation unit with an efficiency ranging between 90% and 95% is
employed to ensure proper ventilation. The total floor area of the house
amounts to 280 m?, with the heated area encompassing 220 m?. The
map of two floors of the building [32] with the location of sensors to
record temperature and humidity (see Fig. 1).

Electrical energy consumption in the passive house was monitored
using M-BUS energy counters, which captured data every 10 min.
This tracking included individual power loads from the domestic hot
water, devices, lighting, heat recovery ventilation unit, and electric
baseboard heaters. The energy devices used correspond to the list
given in Ref. [32]. An internet-based energy monitoring system collects
the energy data, keeps it and dispatches notifications via email every
12 h. Lighting energy consumption constituted between 1% and 4%
of the total, predominantly due to LED fixtures. Temperature and
humidity conditions within the house were tracked using a wireless
sensor network (ZigBee) constructed with XBeeradios, Atmega328P
microcontrollers, and DHT-22 sensors. The house’s large size and solid
construction necessitated the inclusion of two additional XBee radios
functioning as routers to facilitate effective communication from the
end nodes to the coordinator. Battery-powered sensor nodes relayed
information approximately every 3.3 min. The list of variables, along
with their locations in the dataset, is presented in Table S1.

Table 2 presents a statistical analysis of the dataset’s variables,
providing a brief overview of the dataset and highlighting key char-
acteristics, including coverage, prominent trends, and variability.

Figure S3 illustrates the distribution of the energy consumption
profile over five months. The graph displays a significant variance in
energy usage, ranging from zero to 1000 Wh. From a broad perspective,
no discernible pattern is observed, presenting a challenging scenario for
the accurate estimation of power utilisation by ML models.

Fig. 2 is a plot of the daily average time series profiles of tem-
perature and humidity data recorded by nine sensors mounted across
the interior and exterior of the smart building. Out of these, T6 and
T-out represent outdoor conditions, and the remaining ones represent
indoor climate measurements. The result shows that the indoor sensors
display a consistent and stable thermal trend over the four-month
observation period, indicating a well-managed indoor environment. On
the other hand, T6 and T-out are more diverse, reflecting the effect of
outside weather volatility. Overall, the average outdoor temperature,
at approximately 15 °C, is considerably lower than indoor tempera-
tures, a reflection of the quality of the building’s insulation and the
effectiveness of internal climate control.

In Fig. 3b, we observe the descriptive statistics of power consump-
tion across the five-month period, specifically from January to May.
Remarkably, the average power consumption in January and April is
the highest among the months considered. This information provides
insights into the varying power usage levels throughout the months.
Besides, when comparing weekdays and weekends, Fig. 3c reveals that
Thursday and Saturday are the days with the highest energy con-
sumption. This data further highlights the distinction between energy
consumption patterns on different days of the week. These graphical
representations contribute to a comprehensive understanding of the
energy consumption dynamics, highlighting the challenges faced by the
ML model in accurately estimating power utilisation.
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Fig. 1. The building map of (a) the First and (b) the Second floor and temperature and humidity sensors position.
Table 2
Statistical analysis of total energy consumption of the building and other features.
Appliances Lights T1 RH_1 T2 RH_2 T3 RH_3 T4 RH_4 T5 RH.5 T6 RH_6
Min 10.000 0.000 16.790 27.023 16.100 20.463 17.200  28.767 15.100 27.660 15.330 29.815 -6.065  1.000
Max 1080.000 70.000 26.260 63.360 29.857 56.027 29.236  50.163 26.200 51.090 25.795 96.322 28.290  99.900
Mean 97.695 3.802 21.687 40.260 20.341  40.420 22.268  39.243 20.855 39.027 19.592 50.949 7.911 54.609
Median 60.000 0.000 21.600 39.657 20.000 40.500 22.100 38.530 20.667 38.400 19.390 49.090 7.300 55.290
STD 102.525 7.936 1.606 3.979 2.193 4.070 2.006 3.255 2.043 4.341 1.845 9.022 6.090 31.150
T7 RH7 T8 RH_8 T9 RH_ 9 T out Pressmm_hg RH_out Windspeed  Visibility = Tdewpoint  rvl v2
Min 15.390 23.200 16.307 29.600 14.890 29.167 -5.000  729.300 24.000 0.000 1.000 —6.600 0.005 0.005
Max 26.000 51.400 27.230 58.780 24.500 53.327 26.100  772.300 100.000  14.000 66.000 15.500 49.997  49.997
Mean 20.267 35.388 22.029 42.936 19.486 41.552 7.412 755.523 79.750 4.040 38.331 3.761 24.988 24.988
Median  20.033 34.863 22.100 42375 19.390 40.900 6.917 756.100 83.667 3.667 40.000 3.433 24.898  24.898
STD 2.110 5.114 1.956 5.224 2.015 4.151 5.317 7.399 14.901 2.451 11.795 4.195 14.497  14.497
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Fig. 2. Time series of daily average (a) temperature and (b) humidity recorded from sensors.

Fig. 4 depicts the average electricity usage of both devices and lights
at different times. The graph reveals a considerable correlation between
the two variables. Particularly, a high correlation is observed through-
out the time range. However, it is noteworthy that between 12:00 PM
and 6:00 PM, the average power consumption of devices surpasses
that of lights. This finding aligns with expectations, as daytime usage
typically involves increased activity and higher demand for related to
device electricity. After 6:00 pm, a shift in the pattern becomes evident
with the average power consumption of lights increases, likely corre-
sponding to the evening hours when lighting requirements typically
become more prominent. Consequently, during this period, the average
power consumption of lights surpasses that of devices.

Figure S4 presents the correlation coefficient analysis between tem-
perature variables recorded by ten sensors and the power consumption
of appliances. Two noteworthy observations can be made from this
analysis. Firstly, a positive correlation is observed between all indoor
temperature variables and power consumption. This indicates that as

indoor temperatures rise, the power consumption of appliances also
tends to increase. Furthermore, there is a positive correlation among
the indoor temperature variables themselves, suggesting that similar
changes in the others accompany changes in one temperature variable.
In contrast, the outdoor temperature variable negatively correlates with
power consumption and the other indoor temperature variables. This
observation implies that as the outdoor temperature rises, there is an
inclination to decline in power consumption and indoor temperatures.
This negative correlation likely stems from cooling systems or strate-
gies to maintain comfortable indoor conditions despite higher outdoor
temperatures. Last but not least, the highest correlation between appli-
ances and the temperature variable T2 indicates a strong relationship
between these two factors. Further, the second-largest correlation be-
tween appliances and temperature variable T6 is observed, further
highlighting their interdependence.

To explore the correlation between temperature and humidity vari-
ables, and power consumption, we analysed as depicted in Figure
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. 3. (a) The distribution of consumption through five months. (b) The statistical observations for energy consumption in five months as a box-plot.
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Fig. 4. The average power usage of appliances and lights between 12:00 AM and 11:59 PM.

S5. This line chart provides insights into the relationships between
these variables. The chart reveals a positive correlation pattern among
temperature variables, with correlations higher than those observed
for humidity features. Nevertheless, most humidity variables exhibit a
negative correlation with power consumption, which implies that as
humidity levels increase, power consumption tends to decrease. The
negative correlations observed for humidity variables highlight the in-
fluence of humidity on energy usage patterns. This negative correlation
could be attributed to the impact of moisture on cooling requirements,
ventilation systems, or other factors affecting power consumption.
Building on the insights gained from the statistical analysis of the
smart building dataset, the next section outlines the methodological
framework employed to construct and optimise predictive models.

3. Methods

In this section, the technical approaches adopted in this research
are presented. Firstly, the Local Outlier Factor algorithm is presented
(Section 3.1) to filter and remove outlying data points and present a
high-quality dataset for model building. Secondly, the meta-heuristic
algorithms (Section 3.2), including GA, DE, and the (1+1) Evolutionary
Algorithm, and their details in optimisation and search abilities are
emphasised. Next, ensemble learning strategies (Section 3.3) such as
Stacking, Bagging, Voting, and Boosting are outlined, sharing their ad-
vantages in predictive precision, stability, and generalisability. Finally,
this study introduces the Adaptive Evolutionary Ensemble Learning
model (Section 3.4), which highlights its novelty and advantages over
ensemble learning and evolutionary algorithms for minimising the
function under adverse optimisation landscapes.

3.1. Data preprocessing and outlier detection

Local outlier factor (LOF) algorithm. To detect and remove outliers, we
employed the LOF method [34], one of the most popular and effec-
tive techniques for cleaning time series data. LOF is an unsupervised,
neighbourhood-based algorithm and compares each observation with
k-nearest Neighbours estimates, finding the ratio density that estimates
the local reachable of observation versus that over its neighbourhood;
therefore, it calculates this LOF score, corresponding to an observation’s
average density to those neighbours. Thus, it considers outlier points
whose densities are significantly lower than those of their neighbours,
which is why LOF effectively identifies anomalies within datasets with
varying density distributions. Eq. (1) shows the LOF computed for x
observation [35]. Also, variable o is an observation to an individual
nearest observation from among the k-nearest neighbours of data point
X.

1 N LRDdis;(0)

LOF,‘(X)= IN‘(x)I LRDi(X) 5

@
0EN;(x)
where the local reachability density shows by LRD and |N,(x)| denotes
the number of samples in the neighbourhood of x observation. To
compute the rate of reachability distance for each sample in the dataset,
Eq. (2) was introduced.

d~is,-(x, 0) = max (disi(o), dis;(x, o)) s (2)

It is noted that dis;(0) mentions the shortest distance among the neigh-
bours of observation o. Therefore, the LRD of observation x is defined
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as follows.
ZueN,(x) dis;(x, 0)

LRD,(x) = 1/ e

3

The formula is calculated as the inverse of the average reachability
distance between x and its k-nearest neighbours o € N;(x). The term
dis;(x,0) represents the reachability distance from x to neighbour o,
which accounts for both the actual distance and the neighbourhood
radius of o. This measure quantifies how densely x is located with
respect to its local neighbourhood—higher LRD values indicate that x
resides in a denser region.

The LOF algorithm is suited for detecting outliers in datasets, includ-
ing different distributions concerning density because it uses a relative
measure of the density at every point concerning its surrounding neigh-
bours instead of a general threshold value [36]. LOF is also resistant to
differing data scales and able to handle both clustered and nonuniform
data.

3.2. Evolutionary optimisation algorithms

Evolutionary Optimisation Algorithms have proved highly effective
in optimising the performance of hybrid learning strategies such as
ensemble models. These algorithms, namely GA, DE, and (1+1)EA,
are optimally employed in challenging optimisation problems where
traditional gradient-based or exhaustive search strategies are not ap-
plicable [37]. Ensemble learning algorithms typically have several
base learners and a number of control parameters, such as learning
rates, tree depths, and voting weights, whose manual tuning is time-
consuming and inefficient. Meta-heuristic algorithms solve this issue
by intelligently searching and exploring the parameter space in order to
avoid premature convergence, making a balance between global and lo-
cal search [38]. Their ability to operate without derivative information
and adapt to very nonlinear, high-dimensional objective landscapes
renders them highly beneficial for hyperparameter optimisation by
hand and the improvement of ensemble model accuracy, stability, and
generalisation.

3.2.1. Differential Evolution (DE) algorithm

DE [39] is an evolutionary computational method, population-
based, inspired by biological processes that use a stochastic search
strategy to find the global optimum of a given problem. DE generates
and maintains a population of candidate solutions, and each solution
is designated as a vector of decision variables (binary, discrete or
continuous values) in the optimisation problems. In order to evaluate
the fitness of each solution, an objective function is introduced and
based on this fitness, the solutions can be sorted. In the following
generations, DE algorithm develops new vectors (offspring) by integrat-
ing and mutating individuals in the current population. The primary
evolutionary operators of DE include crossover, mutation and selection.

Mutation operator:. In DE algorithms, the most significant operator is
the mutation that stochastically perturbs a solution in the population
to generate a new candidate solution [40]. The popular type of DE
mutation is entitled “DE/rand/1/bin” (Eq. (4)). This strategy often
intuitively supports a stronger exploration ability but almost shows a
low convergence speed, promoting global exploration and reducing the
risk of premature convergence. As a result, this strategy can usually be
used to optimise problems with multi-modal attributes.

Vy=D, +ox (D, —D,3) (4)

where Vg is the differential vector of three candidates (D,;, D,,, and
D,3) chosen randomly from the current population, and to tune the
exploration step size, w is introduced as the mutation factor.
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Crossover operator:. The binomial crossover strategy of DE enjoys
several advantages that result in its effectiveness and wide use in real-
world problems of continuous optimisation. Its computationally effi-
cient and simple construction relies on random sampling and
component-wise replacement, hence making it scalable to high-
dimensional problems. Crossover rate (Cy) is a direct control parameter
that facilitates flexible balancing between exploitation and exploration
by regulating the fraction of the mutant vector in the trial solution. This
promotes population diversity and avoids premature convergence. In
addition, binomial crossover typically includes a mechanism to ensure
that at least one component of the mutant vector is incorporated into
the trial vector, thereby preventing cyclical solutions and enhancing
the algorithm’s ability to avoid local optima. Its generality in various
problem spaces and robustness to diverse objective function topologies
also speaks volumes about its effectiveness in solving complicated
optimisation problems. The crossover operator combines the mutated
solution with another one in the current population to form a trial
solution. One of the well-known types of crossover is binomial [40],
formulated based on Eq. (5).

—. . Vii
L] —
s = {Bi,f'

where S and Cy, are the trial vector and the rate of probability crossover
defined in the range of [0-1], respectively. C, is the index of solutions
chosen in the crossover.

if(r<Cpg)or (j ==C,), j=

1,2,... N 5
otherwise. b ®)

Selection strategy:. In Differential Evolution (DE), the selection strategy
plays a crucial role in guiding the evolution process to optimal solu-
tions. After a trial vector is created through mutation and crossover,
DE applies a greedy selection strategy to determine whether the new
solution should be retained. The new solution (S’) is generated and
combined with its parent (D) to replace the offspring as follows.

oo {5 1))
{3

otherwise.

DE exhibits outstanding power in solving optimisation problems
and has advantages such as simplicity, reliability, and robustness,
and is particularly useful for solving complex optimisation problems
where the objective function is non-linear, non-convex [41] and may
have multiple local optima. However, DE has weaknesses, including
slow convergence speed, difficulty adjusting parameters for different
problems, and performance deterioration with increasing search space
dimensionality.

(6)

3.2.2. Genetic Algorithms (GA)

GAs are population-based stochastic optimisation techniques that
emulate the process of evolutionary biology to identify the best solu-
tions [42]. GAs start with an array of feasible solutions; each expressed
as a series of decision parameters. These candidate solutions are then
subjected to selection, crossover, and mutation processes to generate
new offspring solutions. Each resultant solution is then assessed by an
objective function to determine its fitness level. Those with higher fit-
ness are more likely to persist into subsequent generations, while those
with lower fitness are phased out over time. The cycle repeats until
a termination criterion is satisfied, such as reaching a predetermined
number of cycles or finding an acceptable solution.

GAs achieve a delicate balance between the exploratory and ex-
ploitative aspects of optimisation [43]. Exploration involves surveying
the search space to find new areas that might house superior solutions.
Exploitation, on the other hand, is about improving the solutions
located in promising regions. This equilibrium is realised through se-
lection, crossover, and mutation. Selection favours the survival of fitter
solutions. Crossover merges the genetic information of chosen solutions
to create new offspring exhibiting a blend of characteristics. Mutation
triggers random alterations in the offspring, fostering exploration by
bringing unique genetic variations.
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Crossover operator:. The geometric crossover technique [44] has been
strategically chosen for its remarkable ability to identify and uncover
potential solutions that lie precisely on the edge of what can be consid-
ered a feasible solution space, as referenced in the source. Moreover,
this operation enables smooth transition in the search space, enhancing
exploitation while preserving diversity. It is particularly beneficial
for real-valued and continuous optimisation problems since it guar-
antees feasibility and enables convergence towards optimal regions
with higher precision. Envision two parent chromosomes, represented
mathematically as A = {aj,a,,...,a,} and B = {b;,b,,...,b,}, from
which the offspring are derived through a specific calculation method
outlined below.

C:{\/a]~b],\/a2-b2,...,\/aﬂ~b,,} @

1-a

G = (Ai)a : (Bi) @)

In this context, the variable i denotes the number of individual indexes
associated with each chromosome. At the same time, « is confined to
the interval [0,1], indicating the proportion that influences the merging
of the parent chromosomes. Specifically when the value of « is set to
%, thereby illustrating a balanced combination of both parent genes.
Two offspring are created by swapping parent positions during the
second calculation, adding variety to genetic mixing. This method also
supports multiple parents, increasing genetic diversity and innovation
as follows.

n
C = (A:)Oll (A[.Z)o'2 (A?)a3 . (AM*, where, Za,- =1 9
i=1
Mutation operator:. A crucial mechanism in the realm of genetic algo-
rithms is a mutation, which plays a significant role in altering one or
more genes within a given population, thereby enhancing the overall
variability and diversity of that population in an effort to explore the
vast landscape of potential solutions more thoroughly.

To illustrate this concept, let us consider an individual represented
as A; = (a;, ay, ..., a,), where each variable in a solution a is confined
within a specific range, defined by the lower bound Low, (i) and the
upper bound Up, (i), which respectively set the limits for that variable’s
potential values.

A non-uniform mutation operator was used, which is designed to
alter the selected variables in a manner that is not uniform across
the population but rather varies depending on certain criteria. Eq.
(10) shows the formulation of this mutation where iter and iter,,,, are
the current and maximum generation number, 9 is a random number
between 0 and 1, and f is a system parameter determining the degree
of non-uniformity equal to 6 in this research.

. i ﬂ.
. a; + (Upy(i) — a;) <8'(1_n;;ﬁ)> if rand < a 10)

i a; — (a; — Low,(i)) (9'(1—”i))ﬂifrand>a

iteryax

Population size importance:. Population size that determines the num-
ber of solutions in it is a critical factor in determining the effectiveness
of GAs. A large population promotes greater diversity and exploration,
but it also results in higher computational expense. Small populations,
conversely, might converge more quickly but have the potential to
get stuck in suboptimal solutions. Problem complexity, search space,
and computing resources can determine the optimal selection of a
population size. It should measure the objectives, boundaries, and
requirements specific to the problem and establish how close a solution
is to global or local optimal. These fitness values are utilised by the
GA to guide the search process, favouring solutions with greater fitness
values. GAs can also be hybridised in a hybridisation with other opti-
misation methods in an attempt to enhance performance. Hybridisation
strategies leverage the strengths of various algorithms while mitigating
their weaknesses. For instance, genetic algorithms can be blended with
local search techniques to enhance the performance of the genetic
algorithm and convergence to improved solutions.
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3.2.3. Single-parent evolutionary algorithm

The Single-Parent evolutionary algorithm known as 1+1EA is an
optimisation method [45] that begins with a starting solution, X and
generates a new solution, Y, in each iteration by randomly altering one
or more selected variables in X (X;,, € {LB,UB}"), where UB and
LB represent the upper and lower bounds of the variable, respectively,
and N denotes the number of variables. Unlike the standard 1+1EA,
which employs a uniform distribution for mutation, resulting in a local
search that is both non-curved and noisy, we prefer to utilise a normally
distributed transformation [46]. Next, the new solution generated is
evaluated and compared with its parent. If the fitness of the new
solution dominates the previous one, it will be replaced. Otherwise, the
new solution will be removed, and another solution generates from the
parent candidate.

Mutation operator:. Contrary to the default 1+1EA with uniform ran-
dom mutation, leading to non-curved and noisy search behaviour, our
implementation employs a Gaussian (normally distributed) mutation
scheme to enable better local search in the vicinity of the parent so-
lution. Specifically, the mutation for each decision variable i is defined
as:

Y, =N (4=X;,06°=02%xUB - LB)) an

The parameter ;4 = X; defines the mean of the distribution, ensuring
that mutations occur locally around the current solution. The stan-
dard deviation o is derived from the problem’s variable bounds and
is computed as 4/0.2 X (UB — LB). This adaptive normal distribution
enables a more refined search around the parent solution, allowing
for better exploitation of promising regions in the search space. The
use of Gaussian noise is particularly effective in real-valued continuous
optimisation problems where smooth convergence is desirable [46].

Selection strategy:. Once the new solution Y is generated, it undergoes
fitness evaluation. The selection mechanism in 1+1EA follows a greedy
strategy:

X(iter+l) — Y,
X(irer)

1+1EA offers the advantage of changing only a small number of
variables in each iteration. This characteristic allows for a gradual ap-
proach towards a nearly optimal solution. However, for large-scale opti-
misation problems, this can incur significant costs. Empirical evidence
suggests that simpler EAs can occasionally outperform more complex
methods. Additionally, 1+1EA proves to be a suitable choice when the
fitness function involves a combinatorial optimisation problem [47].

if f(¥) < f(X0en)

. 12)
otherwise

3.3. Ensemble learning architectures

In machine learning, ensemble models combine several different
models, resulting in much better overall predictions [48]. The proce-
dure compensates for the weaknesses that may result from overfitting
or bias. Now, this can be looked at broadly under three sections: first,
bagging; second, boosting; and third, stacking. As the model trains
on varied subsets to reduce variance, an exemplary model created
with the procedure of ‘bagging’ is a Random Forest [49]. Boosting,
in a manner similar to that of Adaptive Boosting (AdaBoost) [50],
XGBoost [51] and Gradient Boosting [52], tries to decrease the bias
by iteratively correcting the model’s past mistakes. Stacking takes an
approach to meta-learning by making use of a high-order model to
combine the predictions of lower-level base learners. Through their
ability to aggregate diverse models, these ensemble methods have
been successful in generalising and providing performance when single-
model techniques fail. Among others, three significant advantages can
be identified as more important than the benefits created by more
traditional ML methods in this work: enhanced accuracy, robustness,
and adaptability. This generally leads to better overall performances,
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as ensemble methods aggregate several models to minimise both bias
and variance in error [53]. It is much more robust towards noise and
outliers among the data points. Above all, most ensemble methods
can be seamlessly integrated with almost all data and problem types,
whether classification or regression, making them natural selections for
complex, practical applications—advantages that fully implement their
valuable contribution to achieving state-of-the-art machine learning
tasks.

3.3.1. Stacking ensemble models

Stacking ensemble models typically combines a set of base models
— usually referred to as the level-0 learners — predictions via a higher-
level meta-model, commonly referred to as the level-1 learner, for
improving results [54]. Each of the base models uses different algo-
rithms in their training with the same dataset with the aim of ensuring
diversity that would utilise each of their unique strengths. It is crucial
that the meta-model learns how to effectively combine the output from
these base learners in a refined and generally more accurate final
prediction [55]. The key insight to stacking is when different models
specialise in combining strengths and other aspects of the problem.
The advantages include increased predictive accuracy arising due to
the combination of various models and immense versatility regarding
the handling of complex challenges.

The framework of stacking can be described in the following steps
[48]: The base models are trained using certain algorithms, the choice
of which depends on the problem domain and requirements of the
user. This step involves preparing the base learners using the provided
training data. These, in turn, are used to develop a new dataset. This
new dataset will contain the predicted outputs of the base models
as new features and the actual target labels as corresponding tar-
get values. For example, any instance in the original dataset R if of
the form q;, f(a);, then the same instance in the new dataset created
will be in the form 4;, f(a); where 4; is composed of the various
outputs h,(q;), hy(ay), ..., hy(a;) from the different base models. The
meta-learner is then trained using this new dataset, hence learning how
to integrate the predictions of the base models [48]. The meta-model
is then deployed to combine the outputs from the base models for new,
unseen data. In stacking, for an out-of-sample instance a, the ultimate
prediction is a function from the meta-learner: iz(h1 (a), hy(a), ..., hr(a)),
with respect to outputs from the base models—the level-0 models.
However, despite its potential for high accuracy, stacking is not as
widely adopted as either bagging or boosting due to the complexity
of its implementation and the potential for data leakage if not handled
appropriately.

3.3.2. Bagging ensemble models

Bagging, short for bootstrap aggregating, is an ensemble technique
aimed at reducing the variance of model predictions and improving
generalisation by combining multiple models [56]. These models are
trained independently on diverse, randomly generated subsets of ei-
ther the training data or input features. Each is trained separately
on a different, random subset of the training data or input features.
Bootstrapping refers to creating M sets of data { D,,D,,....,D M} with
size n, each drawn with replacement from the original training set D.
Mathematically, for each dataset D,,, with m = 1,2,..., M, we have:

D, ={(x»7)}ir.y» Duw~D 13)

Each subset D,, is used to train a base model 4,,(x). The final
prediction is made by aggregating the outputs of these base models:
For regression tasks, the prediction is given by the average:

M
R 1
y=1a; ’”2:‘,1 By(x) (14

The final prediction is made by aggregating the outputs of these
models, using majority voting for classification tasks or averaging
for regression tasks [57]. A prominent application of Bagging is the
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Random Forest algorithm, which builds numerous decision trees and
combines their results to produce stable and accurate predictions.
Relative to stacking and boosting, Bagging possesses distinct ad-
vantages. Unlike boosting, which sequentially trains models with the
emphasis being placed on rectifying errors from the previous iterations,
Bagging trains its base models in parallel and independently from one
another [58]. The parallel approach reduces the risk of overfitting and
enhances computational efficiency. In addition, while stacking com-
bines the heterogeneous algorithm predictions using a meta-learner,
Bagging tends to employ a single algorithm type to create homogeneous
models, which are simpler to implement. Another significant benefit
of Bagging is that it is robust to noisy data and outliers because
boosting does not assign extra weight to difficult instances. Bagging
is particularly valuable in applications where variance reduction and
generating consistent, generalised predictions are key goals.

3.3.3. Voting ensemble models

Voting is one of the most straightforward ensemble learning tech-
niques, and the underlying principle is that combining predictions
from multiple models yields overall improvements in performance. This
approach works by aggregating base model outputs by majority vote or
averaging [59]. Voting ensembles can be composed of homogeneous
models (i.e., models of the same type trained on different data subsets)
or heterogeneous models (i.e., models based on different algorithms).
There are two main types of voting: majority voting for classification
tasks and averaging for regression tasks. In an N class in a classifica-
tion problem with N, base classifiers, the output of the it h classifier
for class ¢ is denoted as O;. € {0,1}, where O;, = 1 if the classifier
h; predicts class ¢, and O;, = 0 otherwise. With majority voting, the
ensemble prediction w, is the class label that receives the most votes:

N,
c* =ar max O, (15)
gce{l ,,,,, Ne) ; e
In weighted majority voting, every classifier A; is assigned a weight
w;, which is its estimated reliability or generalisation ability. The class
c* is predicted by computing the weighted sum of votes across all
classifiers:

c*=arg max
ce{l....Nc}
For regression, voting is replaced by averaging. Each base model
produces a real-valued output A;(x), and the final prediction j is taken
to be the average (or weighted average) of all base outputs:

Nt’
Z w; - O; . (16)
i=1

=

e

w;-h;(x)

M=

h;(x) (unweighted) or J= (weighted)

<>

L
Ne i =

a7

This ensemble process is simple yet effective, particularly when the
base learners are heterogeneous because it tends to reduce variance
while enhancing robustness.

3.3.4. Boosting ensemble models

Extreme gradient boosting XGBoost is an innovative machine-
learning methodology that enhances tree-based models through an as-
sembly of classification and regression trees (CART) [51]. This method-
ology is structured on a gradient-boosting framework, which enables
simultaneous tree boosting. The tree assembly model merges numer-
ous weak learners to forecast the output by applying an incremental
training approach. The steps of this incremental training are as follows:
initially, the full scope of input data is adjusted by the first learner,
after which the residuals, which are used to rectify the deficiencies of
a weak learner, are modified by a subsequent learner. This adjustment
procedure is repeated multiple times until the termination condition is
met. The final prediction of the model is then derived as the cumulative
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prediction of all learners. The parallel procedures are autonomously
executed during the training phase, thereby facilitating the efficient
use of computational resources [60]. Moreover, in order to deal with
over-fitting issues, an advanced regularised formulation is applied as
follows:

N
L) = Y d0),y) + Y () (18)
i k

M) =aT +1/26]s])? a9

where d plays the role of the loss function to calculate the difference
between the predicted value and true value. 4 is the regularisation
function to penalise the 1d complexity of the model. « is a threshold
to extend the leaf node. The weight of the leaf and regularisation
parameter are shown by s and g, and T is the number of tree leaves.

XGBoost offers several advantages contributing to its widespread
adoption and success in various domains. It can be used in a wide range
of data types, including numerical, categorical, and text data. Addi-
tionally, XGBoost allows customising loss functions, enabling users to
specify their objective functions and tailor the model to distinct condi-
tions. Another benefit of XGBoost is offering valuable information about
the significance of features, qualifying the users to comprehend how
different predictors contribute to the model’s overall performance [61].
Assessing feature importance simplifies the identification of influential
variables, facilitates feature selection, and enhances the understanding
of the underlying data.

3.4. Proposed adaptive evolutionary ensemble learning model

This section outlines the technical aspects of the proposed neuro-
evolutionary model for forecasting energy consumption in smart build-
ings. The methodology comprises six main steps: baseline model com-
parison, hyper-parameter selection, and optimisation of the chosen
model.

« Initially, we selected 15 diverse ML models for evaluation, includ-
ing four traditional algorithms: Support Vector Machine (SVM),
Logistic Regression (LR), Bayesian Linear Regression (BR), and
k-nearest Neighbours (KNN). Additionally, we incorporated three
neural network architectures: Multi-Layer Perceptron (MLP),
Dense Neural Network (DNN), and Convolutional Deep Neural
Network (CDNN). To further enhance diversity, three tree-based
models, RF [62], DT, and Extra Tree (ET) were included. Lastly,
seven ensemble models were trained and assessed: XGBoost [51],
AdaBoost [63], Gradient Boosting Regressor (GBR) [64],
Histogram-Based Gradient Boosting Regressor (HGBR) [65], Cate-
gorical Boosting (CatBoost) [66], and Light Gradient Boosting Ma-
chine (LGBM). The specific configurations [52] used for training
these models are detailed in Table S4.

We developed a robust hybrid ensemble framework that incorpo-
rates three strategies: stacking, bagging, and voting, to enhance
the learning capability of an individual model by improving its
predictive accuracy. This effectively fuses the strengths of each
method in leveraging their complementary mechanisms towards
a more accurate and reliable predictive model.

In the stacking ensemble model, the best-performing model
among 15 candidates was selected as the initial base learner, with
linear regression as the meta-learner. Additional base learners
were identified using a greedy search approach, incrementally
adding models that improved performance metrics such as accu-
racy or error reduction. At each step, the combination of base
learners yielding the highest performance was retained, ensuring
the inclusion of only the most effective models while avoiding
redundancy. The same technique was applied to optimise the
meta-learner, further enhancing the ensemble’s predictive capa-
bility (See Fig. 5). The details of the stacking ensemble model
procedure can be seen in Algorithm 1 (In Appendix).

10
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» In the second proposed ensemble model, we began with six
superior-performing ML methods embedded in a weighted major-
ity vote framework. Then, the models went one by one into the
removing process, and the performance of the resultant ensemble
was re-evaluated in the absence of the model that was being
removed. The process was reiterated to see if this improved the
accuracy of the prediction result. Then, weights within the final
resultant ensemble were also optimised using the Nelder-Mead
local search. The result was an optimal voting model, which only
contained two methods, XGB and LGBM, having equal weights
(See Table 6 and Fig. 9).

Leveraging the unique advantages of bagging ensemble models —
such as reducing variance, preventing overfitting, and improving
stability — we developed an adaptive bagging framework. This
approach involved evaluating nine models trained and tested
within the bagging framework. The best-performing model, Extra
Trees, was then selected for further optimisation. To enhance its
performance, we applied a fast and robust optimisation algorithm,
1+1 Evolutionary Algorithm (1+1EA), to fine-tune its hyper-
parameters, ensuring optimal predictive accuracy and efficiency
(See Table 5 and Fig. 8).

Finally, we implemented and compared four widely used meta-
heuristic algorithms — GA, DE, Particle Swarm Optimisation
(PSO), and 1+1EA — to optimise the hyper-parameters of the
proposed ensemble models, assessing their effectiveness and per-
formance. Meta-heuristic algorithms explore and find the optimal
and feasible combination of parameters to maximise the pre-
diction accuracy of total power consumption using IoT-collected
information. The formulation is represented as follows.

f*(h) = argmax ey f (h)
Subject to
(€A, i=1,..

(20)
Ny

where ¥ and N, are the search space and number of hyper-
parameters listed in Table S3. f(h) evaluates the machine learn-
ing effectiveness with the set of hyper-parameters A that should
be maximised. The fitness function (f(h)) is subjected to the
boundary constraints (A) listed in Table S4.

For the stacking ensembles’ meta-learner, we selected the top ten
models performing on cross-validation metrics (R-value, MAE, RMSE).
This ensured that only those models with very high individual pre-
dictive ability were chosen for the second-level learning process. To
construct the sub-learner block in stacking and voting ensembles, we
employed a greedy forward selection strategy. This strategy begins
with the top-performing model and gradually includes the subsequent
candidates one by one, only retaining a model if its addition leads
to a gain in average performance for all measures of evaluation. The
procedure is iterated until no more models can further enhance the
predictive performance of the ensemble. Using this method, we pre-
pared and tested ten stacked scenarios, each being compared in terms of
performance gains. Similarly, in the case of bagging ensembles, we cre-
ated eight models with the ensemble of the top-performing individual
learners under a single feature space. In the case of voting ensembles,
a greedy selection strategy demonstrated that gains in performance
plateaued after two base models at maximum, so we had six fine-tuned
voting models. Such systematic selection also ensures that resultant
ensemble structures are not only high-performing but also efficient in
computation and non-redundant.

In order to ensure guarantees of convergence and stability of in-
dividual learners in the ensemble, our proposed framework (Fig. 5)
contains several precautions designed to mitigate the impact of non-
converging models on the overall process of training. Each candi-
date learner is first independently tested with K-fold cross-validation,
thereby separating any instability or non-convergence associated with
that specific model so that it does not contaminate the integrity of the
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K-fold cross validation
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Fig. 5. Schematic flowchart illustrating the workflow of the proposed adaptive evolutionary stacking ensemble model, highlighting the ensemble tree model’s performance as

determined by the greedy search method.

ensemble. Suppose a learner fails to converge or has a score below some
threshold. In that case, the greedy selection strategy, illustrated on
the right of the schematic, removes it systematically from the stacking
structure. This is based on the difference in performance (4P), and
only those sub-learners that enhance the ensemble’s overall predictive
accuracy are retained in the transient and subsequently in the per-
manent stack. Moreover, the hyperparameter optimisation module (in
the top centre of the figure) enhances the likelihood of convergence
through the application of a metaheuristic search strategy to incre-
mentally tune each learner’s parameters adaptively. This serves the
purpose of bypassing local optimum areas of parameter space, which
else could induce training instability or divergence. Finally, the meta-
learner is trained only after the sub-learner block has been completed
from converged and validated models. Therefore, any non-converging
learner is naturally excluded from the final ensemble, and the pipeline
for training is stable, robust, and driven by validated performance
improvement.

With the modelling framework and optimisation techniques estab-
lished, the following section presents the experimental results. Here,
we evaluate the predictive performance of the proposed hybrid ensem-
ble models in comparison with baseline machine learning and deep
learning algorithms using a range of statistical metrics.

4. Experimental results

This study presents the outcomes achieved through the utilisation
of the proposed three hybrid evolutionary ensemble strategies and
15 popular ML models in predicting the total power consumption of
appliances based on a hybrid dataset of meteorological parameters,
energy use of appliances, temperature, humidity, and lighting energy
consumption of different sections collected by 18 sensors in a building
which is located in Stambruges, Mons in Belgium. Additionally, a con-
cise analysis of the key findings from this research is presented. With
regard to developing a comprehensive and robust comparative predic-
tion framework, 14 effective ML models were selected. Each model
was independently trained ten times based on 10-fold cross-validation,
with the percentages of training, validation, and testing set at 80%,
10%, and 10%, respectively. We employed a parallelised K-fold cross-
validation strategy to address computational demands associated with
training advanced ensemble models through K-fold cross-validation.
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Because every fold in cross-validation is independent, model training
and validation for every fold were executed in parallel on multiple CPU
cores. This significantly reduced the overall runtime without sacrificing
cross-validation’s strengths in robustness and generalisability. Specifi-
cally, we utilised parallel computing abilities in Python’s scikit-learn
package (via n_jobs = —1) and tuned our model pipelines to enable
parallel processing without compromising reproducibility.

4.1. Evaluation metrics

To assess the performance of the proposed hybrid models alongside
the other 15 ML models, we utilised seven widely recognised evaluation
metrics [67], as outlined in Table S2. Among these, MSE, RMSE, MAE,
MSLE, and SMAPE are metrics where lower values indicate better
performance. Conversely, higher values are more desirable for EVS and
R-value, as they reflect greater predictive accuracy and a stronger linear
relationship between predictions and true values. Where N, represents
the total number of samples, f,(k) denotes the estimated (predicted)
output of the model for the k™ sample, and f,(k) is the corresponding
true (target) value.

4.2. Quantitative evaluation and statistical analysis

This section provides a detailed quantitative comparison of the
proposed models on the basis of statistical performance metrics. Cer-
tain error measures and R-values are used to compare the accuracy,
robustness, and generalisation capacity of the models with various
experimental configurations. Comparative statistical analysis with con-
ventional methods is also included to reasonably validate the excellence
of the proposed framework in predicting energy consumption in smart
buildings.

4.2.1. Baseline models experimental results

Table 3 presents the statistical results corresponding to 14 ML mod-
els’ performance to predict the power appliances’ consumption using
six evaluation metrics. The analysis of the provided Table 3 reveals
intriguing findings regarding various models’ prediction accuracy (R-
value). Notably, the XGBoost model emerged as the top performer,
exhibiting an impressive average accuracy of 73% across ten runs. We
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Statistical analysis results of the appliances power consumption prediction using 14 well-known machine learning methods, neural networks, deep learning, ensemble, tree-based

and hybrid methods.

SVM MLP

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 9.45E+01  4.11E+01  2.99E-01 3.28E+01  9.46E-02 3.72E-01  Min 8.19E+01  4.24E+01 2.43E-01 3.46E+01 2.79E-01  5.29E-01
Max 1.05E+02 4.47E+01 3.30E-01 3.49E+01 1.10E-01 4.15E-01 Max 8.83E+01 5.46E+01 4.60E-01 4.71E+01 3.59E-01  6.00E-01
Mean 1.01E+02  4.30E+01 3.14E-01 3.37E+01 1.01E-01 3.85E-01 Mean 8.55E+01 4.69E+01 3.26E-01 4.02E+01 3.20E-01 5.67E-01
Median 1.02E+02 4.32E+01 3.15E-01 3.36E+01  1.00E-01 3.81E-01 Median 8.56E+01 4.67E+01 3.05E-01 4.06E+01 3.19E-01 5.66E—01
STD 2.61E+00 1.09E+00 9.25E-03 5.24E-01  4.36E-03 1.16E-02 STD 2.16E+00  3.05E+00 6.57E-02 3.05E+00 2.15E-02 1.86E—02

DNN CDNN

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 7.22E+01  3.72E+01 2.04E-01 3.10E+01 3.17E-01 5.82E-01 Min 7.38E+01  3.33E+01 1.77E-01 2.68E+01 3.56E-01 6.35E-01
Max 8.55E+01  4.37E+01  2.38E-01  3.47E+01  4.80E-01 7.13E-01  Max 8.29E+01 3.66E+01 1.97E-01 2.80E+01 4.53E-01 6.91E-01
Mean 8.17E+01  4.08E+01 2.23E-01 3.30E+01  3.89E-01 6.43E-01  Mean 7.80E+01  3.48E+01 1.87E-01 2.72E+01 4.01E-01  6.59E-01
Median  8.25E+01 4.15E+01 2.21E-01 3.34E+01 3.77E-01 6.38E-01 Median  7.77E+01 3.49E+01 1.87E-01 2.72E+01 3.96E-01 6.56E-01
STD 4.06E+00 1.99E+00 1.29E-02 1.32E+00 4.57E-02 3.58E-02 STD 2.71E4+00 1.04E+00 7.20E-03 3.95E-01 2.95E-02 1.70E-02

HGBR DT

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 7.11E+01 3.61E+01 1.81E-01 3.02E+01 4.26E-01 6.54E-01 Min 8.56E+01 3.56E+01 2.13E-01 2.60E+01 1.54E-01 5.85E-01
Max 7.93E+01 3.96E+01 2.05E-01 3.17E+01 5.12E-01 7.23E-01  Max 9.50E+01  3.94E+01 2.43E-01 2.81E+01 3.05E-01 6.46E-01
Mean 7.53E+01 3.76E+01 1.94E-01 3.10E+01 4.64E-01 6.84E-01 Mean 9.01E+01  3.77E+01 2.23E-01 2.70E+01 2.27E-01 6.17E-01
Median  7.57E+01 3.78E+01 1.95E-01 3.09E+01 4.61E-01 6.82E-01 Median 9.03E+01 3.77E+01 2.22E-01 2.70E+01 2.37E-01 6.17E-01
STD 2.31E+00  8.54E-01 6.40E-03 3.88E-01 2.18E-02 1.73E-02 STD 2.38E+00 9.20E-01 8.54E-03 4.24E-01 4.64E-02 2.01E-02

EBM XGB

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 6.61E+01  3.16E+01 1.57E-01  2.55E+01  4.58E-01 6.87E-01  Min 6.76E+01  3.15E+01 1.48E-01 2.46E+01 4.84E-01 7.03E-01
Max 7.74E+01  3.54E+01 1.75E-01 2.70E+01  5.47E-01 7.41E-01 Max 7.52E+01  3.48E+01 1.67E-01 2.59E+01 5.58E-01  7.49E-01
Mean 7.15E+01 3.37E+01 1.64E-01 2.62E+01 5.06E-01 7.14E-01 Mean 7.09E+01 3.27E+01 1.55E-01 2.52E+01 5.28E-01 7.30E-01
Median 7.11E+01  3.36E+01 1.64E-01 2.62E+01  5.06E-01 7.13E-01 Median 7.09E+01 3.25E+01 1.54E-01 2.52E+01 5.27E-01  7.30E-01
STD 3.02E+00 9.74E-01 5.03E-03 4.00E-01  2.35E-02 1.53E-02 STD 1.93E+00 7.34E-01 5.23E-03 3.80E-01 1.97E-02 1.24E-02

AdaB CatB

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 1.00E+02 6.62E+01 5.12E-01 5.16E+01 —-2.83E-01 3.46E-01 Min 6.85E+01  3.43E+01 1.71E-01 2.92E+01 4.79E-01 6.94E-01
Max 1.82E+02 1.67E+02 1.68E+00 1.03E+02 1.02E-01 4.01E-01 Max 7.48E+01  3.64E+01 1.87E-01 3.06E+01 5.52E-01  7.45E-01
Mean 1.31E4+02 1.02E+02 8.96E-01 6.88E+01 —7.98E-02 3.69E-01 Mean 7.10E+01 3.55E+01 1.75E-01 2.98E+01 5.21E-01 7.23E-01
Median 1.26E+02  9.56E+01 8.26E-01 6.62E+01 —7.00E-02 3.66E-01 Median  7.07E+01 3.56E+01 1.75E-01 2.98E+01 5.20E-01 7.24E-01
STD 2.04E+01  2.40E+01 2.76E-01 1.21E+01  9.37E-02 1.40E-02 STD 1.72E+00 6.65E-01 3.98E-03 3.08E-01 1.61E-02 1.17E-02

BR RF

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 9.00E+01  5.20E+01 3.73E-01 4.57E+01 1.52E-01 3.90E-01 Min 6.83E+01  3.36E+01 1.64E-01 2.78E+01 4.67E-01  6.84E-01
Max 1.00E+02 5.48E+01 4.34E-01 4.80E+01 1.88E-01 4.35E-01 Max 7.61E+01  3.69E+01 1.82E-01 2.94E+01 5.26E-01 7.34E-01
Mean 9.46E+01  5.32E+01 3.90E-01 4.67E+01 1.66E-01 4.07E-01  Mean 7.20E+01  3.49E+01 1.74E-01 2.85E+01 4.96E-01 7.07E-01
Median  9.46E+01 5.30E+01 3.86E-01 4.66E+01 1.64E-01 4.04E-01 Median 7.18E+01 3.47E+01 1.75E-01 2.86E+01 4.97E-01 7.08E-01
STD 2.52E+00 7.13E-01 1.54E-02 5.37E-01 1.23E-02 1.54E-02 STD 2.42E+00 8.78E-01 5.55E-03 4.10E-01 1.99E-02 1.55E-02

GBM LGBM

RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value
Min 6.80E+01 3.28E+01 1.57E-01 2.72E+01 4.98E-01 7.06E-01 Min 7.71E+01 4.25E+01 2.60E-01 3.89E+01 3.13E-01 6.16E-01
Max 7.40E+01  3.55E+01 1.73E-01  2.85E+01 5.53E-01 7.44E-01 Max 8.68E+01  4.55E+01 2.81E-01 4.06E+01 3.59E-01 6.78E-01
Mean 7.08E+01 3.42E+01 1.66E—-01 2.80E+01 5.28E-01 7.28E-01 Mean 8.33E+01 4.43E+01 2.72E-01 4.00E+01 3.35E-01 6.47E-01
Median  7.02E+01  3.42E+01 1.67E-01 2.80E+01 5.31E-01 7.30E-01 Median 8.40E+01 4.45E+01 2.72E-01 4.01E+01 3.37E-01  6.48E-01
STD 1.93E+00 9.19E-01 4.96E-03 3.74E-01 1.45E-02 1.07E-02  STD 2.81E+00 8.44E-01 4.72E-03 4.12E-01 1.07E-02  1.48E-02

can see that in the best-case scenario, this model achieved a remarkable
accuracy of 75%. Furthermore, the GBM, CatBoost, and EBM models
also demonstrated considerable accuracy levels, with respective values
of 72.8%, 72.3%, and 71.4%. It is worth mentioning that, in general,
the performance of neural networks and deep learning models, such
as Dense (DNN) and convolutional (CDNN) deep models, fell slightly
behind ensemble models in terms of average accuracy. However, it
is noteworthy to investigate that the AdaBoost model proved to be
an oddity to this trend. These findings shed light on the comparative
performance of different models, providing valuable insights for future
analysis and decision-making processes.

4.2.2. Ensemble learning models result
In this section, we present a detailed discussion, analysis, and
comparison of the performance of the three proposed evolutionary
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ensemble models: stacking, bagging, and voting. Finally, we evaluate
these strategies against one another and identify the most effective
approach, providing recommendations based on the results.

Stacking ensemble models finding. We evaluated the performance of
various stacking models by combining multiple ML models as base
learners and integrating them with meta-learners, as detailed in Table
4. The highest average accuracy, 80.3%, was achieved with a combi-
nation of ExtraTree, LGBM, RF, and KNN as base learners, paired with
meta-learners such as Linear Regression or MLP, both yielding similar
results. On average, stacking models demonstrated approximately a
10% improvement in prediction accuracy compared to individual ML
models. Regarding MAE, the stacking model comprising ExtraTree,
LGBM, RF, and KNN with Linear Regression as the meta-learner out-
performed XGB, LGBM, and RF, with improvements of 91.2%, 159.0%,
and 102.3%, respectively.
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Statistical analysis results of the appliances power consumption prediction using 10 stacking ensemble methods.

Stacking (ExtraTree+LGBM+RF+KNN/Cat)

Stacking (ExtraTree+LGBM+RF+KNN/linear)

Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.04E+01 1.62E+01 7.58E-01 6.96E-02 5.56E-01 1.88E+01 Min 2.70E+01  1.51E4+01  7.53E-01 6.63E-02 5.67E-01  1.84E+01
Max 3.74E+01 1.91E+01 8.29E-01 9.86E-02 6.86E—01 2.08E+01 Max 3.75E+01 1.89E+01 8.45E-01 9.20E-02 7.10E-01  2.08E+01
Mean 3.45E+01 1.78E+01 7.91E-01 8.46E-02 6.22E-01 1.95E+01 Mean 3.29E+01 1.71E4+01 8.03E-01 8.02E-02 6.44E-01 1.93E+01
Median  3.46E+01 1.78E+01 7.85E-01 8.46E-02 6.16E-01 1.95E+01 Median 3.36E+01 1.73E+01 8.06E-01 8.05E-02 6.47E-01 1.94E+01
STD 2.04E+00 8.05E-01 2.03E-02  6.98E-03 3.42E-02 5.45E-01 STD 2.62E+00 9.82E-01 2.10E-02 6.78E-03 3.33E-02 5.94E-01
Stacking (ExtraTree+LGBM+RF+KNN/MLP) Stacking (ExtraTree+LGBM+RF+KNN+XGB/CBR)

Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.05E+01 1.56E+01 7.35E-01 6.23E-02 5.39E-01 1.74E+01 Min 3.20E+01 1.69E+01 7.41E-01 7.71E-02 5.42E-01 1.85E+01
Max 3.82E+01 1.98E+01 8.40E-01 9.68E-02 6.98E-01 2.14E+01 Max 3.87E+01 1.99E+01  8.32E-01 1.01E-01 6.87E-01 2.11E+01
Mean 3.38E+01 1.75E+01 8.03E-01 8.24E-02 6.43E-01 1.95E+01 Mean 3.47E+01 1.81E+01 7.88E-01 8.62E-02 6.17E-01 1.97E+01
Median  3.33E+01 1.75E+01 8.08E-01  8.33E-02 6.49E-01 1.95E4+01 Median 3.44E+01 1.78E+01 7.93E-01 8.49E-02 6.28E-01 1.96E+01
STD 2.05E+00 1.08E4+00 2.56E-02 7.41E-03 3.98E-02 9.44E-01 STD 1.90E+00 8.33E-01 2.46E-02 5.86E-03 4.07E-02 6.10E-01
Stacking (ExtraTree+LGBM+RF+KNN+XGB/KNN) Stacking (ExtraTree+LGBM+RF+KNN+XGB/linear)

Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.61E+01 1.89E+01  6.68E—01 1.05E-01 3.86E-01 2.19E+01 Min 3.19E+01 1.69E+01 7.23E-01  7.80E-02 5.16E-01  1.89E+01
Max 4.32E+01  2.22E+01  7.56E-01 1.27E-01 5.48E-01 2.37E+01 Max 4.19E+01 2.17E4+01  8.12E-01 1.11E-01 6.58E-01 2.21E+01
Mean 4.00E+01  2.11E4+01  7.20E-01 1.16E-01 4.85E-01 2.29E+01 Mean 3.53E+01 1.88E+01 7.77E-01  8.99E-02 6.00E-01 2.04E+01
Median 3.98E+01 2.11E+01  7.26E-01 1.15E-01 4.94E-01 2.30E+01 Median 3.47E+01 1.85E+01 7.82E-01 8.82E-02 6.07E-01  2.03E+01
STD 1.84E+00 8.30E-01 2.38E-02  6.74E-03 4.41E-02 5.32E-01 STD 2.55E+00 1.15E+00 2.57E-02  8.58E-03 4.11E-02 7.80E-01
Stacking (ExtraTree+LGBM+RF+KNN+XGB/RF) Stacking (ExtraTree+LGBM+RF+KNN+XGB/SVM)

Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.17E+01 1.73E+01 7.40E-01 7.83E-02 5.28E-01 1.96E+01 Min 3.12E+01 1.59E+01 7.56E-01 7.18E-02 5.58E-01 1.80E+01
Max 3.83E+01 2.03E+01  8.14E-01 1.05E-01 6.60E-01 2.19E+01 Max 3.85E+01 1.92E+01 8.34E-01 9.02E-02 6.74E-01  2.03E+01
Mean 3.50E+01 1.88E+01 7.83E-01 9.23E-02 6.08E-01 2.06E+01 Mean 3.44E+01 1.72E+01 8.00E-01  7.97E-02 6.30E-01  1.90E+01
Median  3.48E+01 1.87E+01 7.81E-01  9.32E-02 6.07E-01 2.07E+01 Median 3.43E+01 1.71E+01 8.04E-01 7.98E-02 6.33E-01 1.90E+01
STD 1.85E+00 8.25E-01 1.97E-02  6.92E-03 3.45E-02 6.10E-01 STD 1.93E+00 8.29E-01 1.74E-02 5.79E-03 2.69E-02 6.61E-01
Stacking (ExtraTree+LGBM+RF+KNN+XGB/XGB) Stacking (ExtraTree+LGBM+RF+KNN+XGB/ExtraTree)

Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.02E+01 1.67E+01 7.15E-01  7.36E-02 5.05E-01 1.92E+01 Min 3.17E+01 1.71E4+01 7.41E-01 7.95E-02 5.30E-01 1.96E+01
Max 4.16E+01  2.11E4+01  8.44E-01 1.07E-01 7.10E-01 2.19E+01 Max 3.79E+01  2.07E+01  8.21E-01 1.10E-01 6.73E-01  2.26E+01
Mean 3.54E+01 1.88E+01 7.85E-01 8.99E-02 6.13E-01 2.05E+01 Mean 3.48E+01 1.87E+01 7.83E-01 9.12E-02 6.09E-01 2.07E+01
Median  3.54E+01 1.86E+01 7.80E-01  9.01E-02 6.07E-01  2.05E+01 Median 3.52E+01 1.86E+01 7.81E-01 9.07E-02 6.06E-01  2.06E+01
STD 2.43E+00 9.42E-01 2.79E-02 7.63E-03 4.57E-02 6.40E-01 STD 1.98E+00 1.00E+00 2.08E-02  7.84E-03 3.44E-02 7.71E-01

To evaluate the contribution of each component within the best-
performing stacking model (ST3), a series of ablation experiments
were conducted by incrementally excluding and including individual
learners. The prediction accuracy and corresponding MAE for each
configuration are illustrated in Figure S2. Initially, the stacking model
was tested using only KNN as the base learner, achieving an av-
erage R-value of 0.76. When Random Forest (RF) was incorporated
into the ensemble, the model’s accuracy improved by 2.63%, indi-
cating its significant complementary effect. Further enhancement was
observed upon adding LightGBM (LGBM), resulting in an additional
2.56% increase in accuracy. Finally, the inclusion of ExtraTree yielded
a substantial improvement of 5.00%, confirming its valuable contribu-
tion to the ensemble. These results collectively highlight the additive
performance gains achieved through a carefully structured stacking
approach.

Bagging ensemble models finding. In the second prediction scenario, we
developed eight bagging ensemble models selected from 15 ML models
based on their individual prediction accuracy. As summarised in Table
5, Bagging Extra-Trees outperformed all other bagging models, achiev-
ing an average accuracy of 82.1%, representing a 9% improvement
over the standalone Extra-Tree base model. The high performance of
Bagging Extra-Trees can be attributed to their randomised splitting
mechanism, which enhances generalisation and reduces the risk of
overfitting. In contrast, models like XGBoost, CatBoost, and GBR are
more susceptible to overfitting, particularly on noisy or imbalanced
datasets, unless carefully regularised.

To assess the effect of the number of estimators on the perfor-
mance of bagging ensembles, we conducted a detailed experiment using
Bagging with Extra Trees (Bag-ExtraTree, which performed best) and
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XGBoost (Bag-XGB) as base learners. Each model was evaluated across a
range of ensemble sizes, varying the number of estimators from 1 to 30.
As can be illustrated in Figure S1, increasing the number of estimators
initially leads to improvements in both prediction accuracy (R-value)
and MAE, indicating enhanced generalisation and reduced prediction
error. However, this trend does not persist until 30. In the case of
Bag-ExtraTree, performance gains plateau after 14 estimators, while
Bag-XGB shows diminishing returns beyond 24 estimators. These obser-
vations highlight the importance of selecting an optimal ensemble size
to avoid unnecessary computational complexity without compromising
model accuracy.

Voting ensemble models finding. Table 6 presents the statistical predic-
tion results of six voting ensemble models. Among these, the combi-
nation of Extra-Trees and LGBM in a bagging framework achieved the
highest average accuracy of 80.6%. This superior performance can be
attributed to the complementary strengths of the two algorithms, as
their diversity and aggregation enhance overall predictive capabilities.
The box-and-whisker plot in

4.3. Visual interpretation and model performance insights

This section presents a qualitative overview of the most significant
experimental results, complementing the quantitative findings in the
previous section. Using various plots, model behaviour comparisons,
and performance visualisations, we aspire to provide deeper insight
into the predictive ability and interpretability of the proposed ensem-
ble learning models. The visualisations help identify temporal trends,
model robustness, and relative performance of different configurations
under actual real-world smart building conditions.
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Table 5

Statistical analysis results of the appliances power consumption prediction using four proposed neuro-evolutionary methods.
Bag-XGB Bag-CATB
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 2.96E+01 1.57E+01 7.42E-01 6.29E-02 5.47E-01 1.78E+01 Min 3.35E+01 1.88E+01 7.25E-01  9.40E-02 5.20E-01  2.18E+01
Max 3.85E+01 1.96E+01 8.66E-01 9.12E-02 7.39E-01 1.99E+01 Max 4.16E+01  2.25E+01 7.95E-01 1.20E-01 6.21E-01  2.43E+01
Mean 3.31E+01 1.71E401 8.09E-01 7.73E-02  6.51E-01 1.90E+01 Mean 3.80E+01 2.08E+01 7.53E-01 1.08E-01 5.56E-01 2.32E+01
Median  3.24E+01 1.69E+01 8.13E-01 7.70E-02  6.56E—-01 1.90E+01 Median  3.82E+01 2.09E+01 7.49E-01 1.08E-01 5.46E-01 2.32E+01
STD 2.68E+00 1.05E+00 2.87E-02 7.07E-03  4.43E-02 6.03E-01  STD 2.23E+00 9.13E-01  2.34E-02  6.09E-03  3.26E-02  6.44E-01
Bag-DT Bag-ExtraTree
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 2.85E+01 1.56E+401 7.69E-01 6.50E-02  5.90E-01 1.76E+01 Min 2.96E+01 1.62E+01 7.85E-01 6.70E-02  6.14E-01 1.81E+401
Max 3.72E+01  1.92E+01 8.48E-01 9.21E-02 7.17E-01 2.06E+01 Max 3.72E+01 1.81E+01 8.56E-01 8.71E-02 7.30E-01 1.96E+01
Mean 3.26E+01  1.69E+01 8.09E-01 7.69E-02 6.52E-01 1.89E+01 Mean 3.28E+01 1.70E+01 8.21E-01 7.66E-02 6.72E-01  1.88E+01
Median  3.29E+01 1.70E+01 8.11E-01 7.70E-02  6.56E—01 1.91E+01 Median  3.28E+01 1.71E+401 8.22E-01 7.71E-02  6.75E-01 1.88E+01
STD 2.39E400 9.73E-01 2.39E-02 6.82E-03 3.77E-02 6.87E-01 STD 2.04E+00 5.64E-01 1.95E-02 5.40E-03 3.16E-02  4.58E-01
Bag-GBR Bag-LGBM
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.86E+01  2.30E+01 5.96E-01 1.24E-01 3.50E-01 2.58E+01 Min 3.23E+01 1.91E+01 6.85E-01  9.71E-02 4.67E-01  2.21E+01
Max 4.73E+01 2.66E+01 7.19E-01 1.59E-01 4.94E-01 2.85E+01 Max 4.43E+01 2.38E+01 7.85E-01 1.30E-01 6.08E-01 2.55E+01
Mean 4.27E+01  2.46E+01 6.61E-01 1.43E-01 4.27E-01 2.73E+01 Mean 3.83E+01 2.14E+01 7.36E-01  1.14E-01 5.35E-01  2.38E+01
Median  4.31E+01  2.45E+01 6.60E-01 1.43E-01 4.27E-01 2.73E+01 Median 3.83E+01 2.14E+01 7.43E-01 1.14E-01 5.41E-01 2.39E+01
STD 2.60E+00 1.00E+00 2.45E-02 9.92E-03 2.88E-02 6.90E-01 STD 2.93E+00 1.25E+00 2.55E-02  8.43E-03 3.54E-02 7.63E-01
Bag-RF Bag-KNN
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.01E+01 1.65E+01 7.67E-01 6.98E-02 5.80E-01 1.88E+01 Min 2.98E+01 1.55E+01 7.90E-01  7.01E-02 6.21E-01  1.76E+01
Max 3.69E+01 1.91E+01 8.33E-01 9.61E-02 6.71E-01 2.13E+01 Max 3.74E+01 1.79E+01 8.35E-01  8.62E-02 6.89E-01 1.91E+01
Mean 3.36E+01  1.79E+01 7.99E—01 8.38E-02 6.20E—01 2.01E+01 Mean  3.26E+01 1.66E+01 8.08E-01  7.58E-02 6.52E—01  1.85E+01
Median  3.39E+01  1.80E+01 8.01E-01 8.50E-02 6.30E-01 2.02E+01 Median 3.26E+01 1.65E+01 8.08E-01  7.48E—02 6.51E-01  1.85E+01
STD 1.94E+00 7.82E-01 1.80E-02 7.32E-03 2.57E-02 6.90E-01  STD 1.99E+00 6.66E-01 1.32E-02  4.79E-03  2.02E-02 4.72E-01

Table 6

Statistical analysis results of the appliances power consumption prediction using six proposed voting ensemble methods.
Voting (XGB+LGBM) Voting (XGB+CATB)
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.23E+01 1.73E+01 7.69E-01 7.61E-02  5.87E-01 1.92E+01 Min 2.86E+01 1.69E+401 7.04E-01 7.74E-02  4.94E-01 1.93E+01
Max 3.68E+01 1.97E+01 8.42E-01 9.46E-02 7.06E-01 2.10E+01 Max 3.84E+01  2.04E+01 8.24E-01  1.02E-01 6.74E-01  2.18E+01
Mean 3.42E+01 1.82E+01 7.92E-01 8.41E-02 6.27E-01 2.00E+01 Mean 3.47E+01 1.85E+01 7.85E-01 8.79E-02 6.14E-01  2.05E+01
Median  3.40E+01 1.81E401 7.89E-01 8.49E-02  6.22E-01 1.99E+01 Median  3.56E+01 1.83E401 7.87E-01 8.67E-02  6.17E-01 2.04E+01
STD 1.43E+00 6.35E-01  2.05E-02 4.70E-03  3.24E-02 4.71E-01  STD 2.64E+00 1.14E+00 2.60E-02  8.02E-03  3.94E-02 6.92E-01
Voting (XGB+KNN) Voting (ExtraTree+LGBM)
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 3.02E+01 1.60E+01 7.38E-01 7.17E-02  5.36E-01 1.84E+01 Min 2.91E+01 1.61E+01 7.65E-01 7.25E-02  5.85E-01 1.85E+01
Max 3.85E+01 1.94E+401 8.40E-01 9.86E-02 7.01E-01 2.10E401 Max 3.67E+01 1.91E+401 8.48E-01 1.02E-01 7.17E-01 2.11E4+01
Mean 3.43E+01 1.75E4+01 7.98E-01 8.28E-02 6.35E-01 1.93E+01  Mean 3.34E+01 1.75E+01 8.06E-01 8.32E-02 6.48E—-01  1.96E+01
Median  3.40E+01 1.73E+01 7.95E-01 8.27E-02 6.32E-01 1.91E+01 Median 3.31E+01 1.74E+01 8.05E-01 8.08E-02 6.43E-01 1.94E+01
STD 2.19E4+00 8.50E-01 2.43E-02 7.51E-03 3.93E-02 6.37E-01 STD 2.10E+00  9.03E-01 2.15E-02 8.19E-03  3.44E-02 7.93E-01
Voting (ExtraTree+CATB) Voting (ExtraTree+KNN)
Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE
Min 2.99E+01 1.64E+01 7.63E-01 7.01E-02 5.79E-01 1.86E+01  Min 2.87E+01  1.54E+01 7.51E-01  6.66E-02 5.58E—01  1.79E+01
Max 3.72E+01  1.94E+01 8.23E-01 9.29E-02 6.76E-01 2.09E+01 Max 3.84E+01 1.93E+01 8.48E-01 9.69E-02 7.19E-01  2.03E+01
Mean 3.39E+01 1.80E+401 7.98E-01 8.35E-02  6.35E-01 1.99E+01 Mean 3.40E+01 1.74E401 7.98E-01 8.27E-02  6.34E-01 1.90E+01
Median  3.42E+01 1.82E+01 8.03E-01 8.38E-02 6.41E-01 2.00E+01 Median 3.45E+01 1.77E+01 7.96E-01  8.31E-02 6.33E-01  1.89E+01
STD 1.98E+00 7.98E-01 1.83E-02 6.06E-03 2.89E-02 5.58E-01 STD 2.89E+00 1.21E+00 2.31E-02  9.19E-03 3.82E-02 7.82E-01

4.3.1. Benchmark models results

The box-and-whisker plot 6 presented in this analysis offers a com-
prehensive evaluation of 14 machine and deep learning techniques
utilised for predicting household appliance energy consumption. This
evaluation focuses on prediction accuracy and MAE. In plot 6, a box
is drawn between the first and third quartiles, with a vertical line
passing through the box at the median. The whiskers extend from
each quartile to the minimum and maximum values. Additionally, any
outliers in the dataset are represented by single red crosses on the
diagram. Upon analysing the plot, it becomes evident that XGBoost
consistently outperforms other models in terms of the median accuracy
metric. Following XGBoost, the GBM and Catboost models exhibit
comparable performances. Furthermore, an intriguing observation can
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be made regarding the effectiveness of adding a convolutional layer to
a dense model. This enhancement significantly improves the average
performance of the model, indicating its potential for achieving higher
accuracy. These findings provide valuable insights into the comparative
performance of different machine and deep learning techniques in
predicting household appliance energy consumption. This information
can aid researchers and practitioners in selecting the most suitable
models for their specific purposes, thereby enhancing the accuracy of
energy consumption predictions. Furthermore, Fig. 6(b) presents the
average absolute validation error for a set of 14 ML models. In terms of
MSE, XGBoost stands out as the top performer with an impressive score
of 32. Notably, the EBM model showcases a competitive performance in
MAE and secures the second rank. Moreover, the GBM, Random Forest,
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Fig. 6. The box-and-whisker plot of statistical results evaluation for 14 machine and deep learning techniques used for predicting the energy consumption of household appliances,

based on (a) prediction accuracy (R-value) and (b) mean absolute error (MAE).
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Fig. 7. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for the ten stacking ensemble method in predicting the energy consumption of appliances in the

smart house.

and CDNN models also demonstrate noteworthy performances, yielding
acceptable results in their respective evaluations. This information
provides valuable insights and highlights the strengths of XGBoost in
achieving low MSE while acknowledging the competitive performance
of the EBM model in MAE. The notable performances of GBM, Random
Forest, and CDNN further contribute to the range of acceptable results
obtained. These findings assist in understanding the efficacy of different
ML models and offer guidance for selecting the most suitable approach
based on the desired evaluation metric.

4.3.2. Ensemble models findings

Fig. 7 presents the statistical performance of 10 stacking models
(listed in Table S5) evaluated in terms of R-value and MAE. Among
these, the best-performing model in terms of median R-value accuracy
is ST-M3 (ExtraTree+LGBM+RF+KNN/MLP), achieving an accuracy of
81%. Conversely, the model ST-M8 (ExtraTree+LGBM+RF+KNN+XGB/
SVM) exhibits the lowest median MAE, accurately predicting appliance
power consumption with a value of approximately 17.1.

Fig. 8 provides a detailed comparison of the eight bagging mod-
els in terms of R-value and MAE. While Bagging KNN demonstrated
the lowest average MAE among all models, its overall accuracy was
lower than that of Bagging Extra-Trees, Decision Trees, and XGBoost.

This highlights a trade-off between minimising error and maximising
accuracy, with Bagging Extra-Trees striking the best balance among the
evaluated models.

Fig. 9 illustrates the performance of these models in terms of R-
value and MAE. While Voting(XGB+LGBM) achieved the best median
R-value, Voting(Extra-Tree+KNN) outperformed other models with the
lowest average MAE, demonstrating its effectiveness in minimising
prediction error.

4.3.3. Final comparisons

To ensure a fair comparison among the ensemble models proposed
in this study, the results are presented in Fig. 10. As observed, the
Bagging Extra-Trees model significantly outperformed the other en-
semble methods, with a p-value less than 0.05 for both accuracy and
MAE, indicating its superior predictive performance. Bagging ensem-
bles are particularly effective in scenarios requiring variance reduction,
noise handling, and robust generalisation across diverse datasets. These
characteristics make bagging an ideal choice for predicting appliance
power consumption, outperforming voting and stacking models in this
context.

The results of the experiment demonstrate the superiority of the
ExtraTree Bagging ensemble model over the Stacking (ST-M2, ST-M3,

15
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Fig. 8. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for eight bagging ensemble method in predicting the energy consumption of appliances in the smart

house.
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Fig. 9. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for six voting ensemble methods in predicting the energy consumption of appliances in the smart

house.

and ST-M8) and Voting ensemble methods. Specifically, the Bagging
model achieved the best prediction accuracy rates for all the perfor-
mance metrics. This is because the nature of Bagging reduces variance
by combining the predictions of several decorrelated ExtraTree base
models trained on different bootstrap samples. The ExtraTrees’ ran-
domness encourages model diversity and generalisation, thus, more
stable and precise predictions. The Stacking model, however, relies on
a meta-model to combine base models, which can sometimes introduce
additional bias and be susceptible to overfitting if not carefully tuned.
The Voting ensemble, similarly, treats all base learners equally with-
out dynamically leveraging their individual strengths. These findings
confirm that Bagging architecture, coupled with ExtraTrees provides a
more robust and stable solution for energy consumption prediction in
smart buildings.

4.3.4. Comparison with other techniques

To ensure a comprehensive comparison with previous studies using
similar datasets, we evaluated 19 machine-learning models adopted
from the works of Candanedo et al. [32], and Han et al. [68]. These
models include Affinity Propagation Radial Basis Function (AP-RBF),
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standard Radial Basis Function (RBF) networks, and Backpropaga-
tion (BP) neural networks [68], each tested under varying configura-
tions of hidden nodes to enable a robust and consistent performance
assessment.

Fig. 11 provides a comparative assessment of RMSE scores of a
variety of prediction models applied to the same dataset. Among all the
models, our proposed model, Voting (XGB+KNN) ensemble produced
the lowest RMSE, indicating superior predictive accuracy. It was closely
followed by Bag-ExtraTree and ST-M3, both of which also performed
well with significantly lower error rates than their standard base mod-
els. On the other hand, models such as AP-BP [68] and AP-ELM [68]
possessed the highest RMSE values, which signifies poor generalisation
ability and fitness to the target data. Ensemble methods, such as XGB,
CatB, and HGBR, performed better than individual models, including
SVM-Radial [32], GBM [32], and RF [32], consistently, reinforcing
the advantage of ensemble creation in increasing predictability and
robustness. Besides, neural-based architectures like MLP, DNN, and BP
of reasonable sizes acted competitively but were sensitive to network
size and training dynamics. Overall, the results show that ensemble and
hybrid strategies are highly effective in controlling prediction errors in
this application field.



M. Neshat et al.

0.86F . T : . T

0.84 -

0.82

R-value

(a)

Energy 333 (2025) 137130

N
o

-
©
T

-
(=]
T

Mean Absolute Error (MAE)
3
FA
1]
-

16 [ 1
15 ¢ . . . | B
§O @&“0 ¢t o ol
134 Ve
@w‘y 90
a9
o
(b)

Fig. 10. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for best-performed voting, bagging and stacking ensemble methods in predicting the energy

consumption of appliances in the smart house.
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Fig. 11. Comparative analysis of energy consumption forecasting between the proposed models and prior studies.

4.4. Hyper-parameters optimisation

To evaluate the impact of hyper-parameters on model performance,
we conducted an analysis using a greedy search, focusing on four key
hyper-parameters: the number of estimators for Extra-Trees and Bag-
ging, along with the maximum rate of features and samples used during
training. The optimisation landscape for the number of estimators in
Extra-Trees and Bagging is depicted in Fig. 12(a). For the Bagging
ensemble, the number of estimators was evaluated in the range of 5
to 50, while for the Extra Trees model, the range of 10 to 100 was
tested. The highest prediction accuracy was achieved with Bagging at
Ns = 15 and with Extra Trees when the number of estimators exceeded
60. The results indicate that the number of estimators in the Bagging
model has a more substantial influence on achieving higher accuracy
compared to the number of estimators in the Extra-Trees model. Fig.
12(b) illustrates the prediction accuracy across different configurations
of maximum sample rate and feature rate. The results indicate that the
highest accuracy is obtained when both parameters exceed a threshold
of 0.6, suggesting that retaining a larger proportion of samples and
features enhances model performance. This highlights the critical role
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of properly tuning the Bagging model’s hyper-parameters for improved
predictive performance.

In this study, we employed four effective and well-known optimisa-
tion methods to adjust the hyper-parameters of ensemble models. In the
first step, we focused on XGBoost hyper-parameters optimisation, and
they are listed in Table S3. Fig. 13 illustrates a comparison of the av-
erage convergence speeds exhibited by these optimisation methods. It
is important to note that the population size and maximum evaluation
number are consistent across all methods at 25 and 1000, respectively.
Upon analysis of Fig. 13, it is evident that XGB-EA demonstrates rapid
convergence towards a semi-optimal configuration of hyper-parameters
within the initial 20% of the total evaluation count. However, XGB-
EA encounters challenges when confronted with a local optimum,
and the mutation strategy employed does not effectively facilitate the
exploration of alternative feasible regions. Conversely, although XGB-
DE initially displayed a convergence rate lower than that of XGB-PSO
and XGB-GA during the exploration phase, it ultimately managed to
discover superior solutions. Considering the computational expense and
time consumption associated with training the model, we recommend
employing the 1+1EA meta-heuristic as a hyper-parameter optimiser.
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Fig. 12. Hyper-parameters tuning using grid search for bagging Extra Tree ensemble model.

Moreover, Fig. 13(b) and (c) shows the statistical performance
analysis of the XGBoost with predefined hyper-parameters and four pro-
posed neuro-evolutionary methods in terms of accuracy and MAE. It is
crystal clear that the best-performing hybrid model is XGB-DE in terms
of metrics, accuracy, and MAE. The accuracy and MAE improvement
of XGB-DE are 3.5% and 7.6% compared with XGBoost.

Table S6 reports more technical comparison results of four evo-
lutionary ensemble models. We can see that the XGB-DE prediction
results had the minimum distance with the true power consumption
values confirmed by metrics RMSE, MAE, and MSLE. In terms of the
correlation coefficient (R-value), all hybrid models performed com-
petitively; however, XGB-DE outperformed the other models. Finally,
we evaluated the performance of four optimisation methods to en-
hance the Bagging Extra-Trees, best-performed model, as shown in
Fig. 14. Among the tested methods, 1+1EA (Bag-ET-EA) demonstrated
the fastest convergence during the initial iterations, highlighting its
efficiency in optimisation. This experiment confirms that 1+1EA is
an effective optimiser for fine-tuning hyper-parameters. Additionally,
the balance between exploration and exploitation for the four hyper-
parameters is illustrated in Fig. 14(b-e), providing further insights into
the optimisation dynamics of each method.

As can be seen from Fig. 14(b), the optimisation process com-
menced by exploring a wide range of values for the number of Bagging
estimators, ranging from 10 to 90. Throughout successive iterations,
the search space became increasingly narrow, echoing the transition
from exploration to exploitation, and ultimately converged within an
optimum range of 60 to 65. An identical convergence pattern could
be observed for the maximum feature rate hyperparameter, plotted in
Fig. 14(c), where the search process converged around the value of
0.4. At the highest sample rate Fig. 14(d), the optimiser found good
performing regions early in the search and converged rapidly to values
above 0.9, finally settling at 1. Moreover, the number of estimations
was subjected to an extensive and dense search over a larger space,
with over 200 evaluations. Despite the wide initial range, the optimiser
focused on configurations from above 60 estimators onwards and even-
tually settled at 80. Results like these bear testament to the optimiser’s
fair balance of local refinement and global search, terminating at
well-chosen hyper-parameters for better model performance.

The quantitative results from Section 4 provide a solid foundation
for interpreting the practical implications of the proposed approach. In
this section, we delve into a critical discussion of the findings, high-
lighting performance trends, methodological strengths, and potential
limitations based on the observed results.
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5. Discussions and future directions

The proposed hybrid evolutionary ensemble models offer principal
advantages in predicting total power consumption in smart buildings
by effectively harnessing the merits of diverse learning algorithms and
strong evolutionary optimisation. By integrating ensemble techniques
such as Bagging, Stacking, and Voting with adaptive metaheuristic-
based hyper-parameter tuning, the models achieve better accuracy,
stability, and generalisations on highly dynamic and nonlinear en-
ergy consumption patterns. The hybrid approach enables the model
to capture sophisticated dependencies between weather conditions,
occupancy patterns, appliance usage, and ambient factors, typically
neglected by separate algorithms. Moreover, the evolutionary optimisa-
tion process intelligence searches the hyper-parameter space, free from
hand-tuning, and circumvents possible overfitting.

5.1. Scalability and dynamic pattern

The adaptive ensemble evolution learning method demonstrated
in the proposal holds high scalability potential for use across various
smart building environments with varying occupancy behaviour and
energy use patterns. This is due to the modularity of the model, where
multiple base learners (ExtraTrees, XGBoost, LGBM) are blended across
ensemble frameworks (Bagging, Stacking, and Voting) and leverage
evolutionary algorithms to drive optimisation of hyper-parameters.
The combination of diverse learning paradigms enables the model
to learn linear and nonlinear energy consumption patterns, and the
evolutionary optimisation adjusts hyper-parameters according to dif-
ferent building-specific data distributions. These capabilities put the
model in a position to generalise well beyond the current test case,
particularly when retrained on new data from buildings with different
spatial configurations, climate regions, or operating schedules.

Furthermore, the hybrid dataset used in this research, which in-
cludes indoor and outdoor temperature, humidity, lighting, occupancy,
and appliance-level usage, represents a realistic and comprehensive
sensing environment that is becoming increasingly common in mod-
ern smart buildings. The evolutionary tuning process also enables the
model to adapt dynamically to changes in input feature importance,
such as peak-hour demand or seasonal trends, which makes it more
robust across various environments. Therefore, the model proposed
is not limited to the Belgian building used for evaluation but can
also be generalised to other types of buildings, such as commercial
offices, schools, or housing estates. Follow-up work will focus on testing
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Fig. 13. (a) A convergence rate comparison for four neuro-evolutionary algorithms, including XGB-GA, XGB-DE, XGB-PSO, and XGB-EA. The lines show the average accuracy

achieved by whole solutions in each generation.

the generality of the model using transfer learning techniques and
cross-building training data to facilitate global deployment for energy
prediction and management in various smart building setups.

5.2. Real-time and computational efficiency

The proposed adaptive models possess great potential for real-time
deployment in smart building environments. By leveraging the use of
lightweight learners, such as Extra Trees, within a Bagging framework
and adjusting the parameters using computationally lightweight meta-
heuristic algorithms, such as the 1+1 EA, the computational overhead
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at both the training and inference phases is significantly reduced. Due
to its parallelisable nature, the Bagging framework facilitates simulta-
neous training and independent operation of numerous base models,
making scaling simpler on multi-core or distributed systems. Addition-
ally, the evolutionary optimisation method accelerates convergence to
optimal model configurations by efficiently exploring the search space,
which decreases the number of training iterations. These qualities make
the proposed models highly suitable for real-time or near-real-time
energy forecasting, where quick adaptation to new sensor readings is
essential for dynamic energy management and demand-side response
in smart buildings.
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Additionally, the framework’s computational efficiency was verified
by monitoring training and prediction run times during cross-validation
experiments. Compared to traditional ensemble models such as boost-
ing models (e.g., XGBoost, CatBoost, GBM) which involve sequential
model updating and longer processing, the proposed Bagging-based
model, enhanced by evolutionary tuning, consistently had lower com-
putational costs without sacrificing predictive accuracy. This accuracy-
efficiency trade-off ensures the practical viability of deploying the
model in real building management systems, where timely forecasting
is crucial for energy scheduling, load balancing, and integration with
renewable sources. Thus, the hybrid evolutionary ensemble method
improves the forecasting accuracy and meets the operational require-
ments of smart building applications in terms of speed, scalability, and
resource efficiency.

5.3. Future directions

Future research will focus on enhancing the applicability and ro-
bustness of the proposed adaptive evolutionary ensemble models by
their broader implementation in different building typologies and cli-
matic zones. This will be realised by integrating diversified, large-scale
datasets with varying occupancy schedules, appliance utilisation pro-
files, architectural features, types of HVAC systems, and external envi-
ronmental factors such as solar irradiance, wind speed, and air quality.
By including a more extensive set of input features, the model will
generalise better to residential, commercial, and institutional buildings
with different temporal and spatial patterns of energy consumption.
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Additionally, an effort will be made to integrate real-time data stream-
ing into the prediction pipeline, allowing the model to operate in an
online learning mode. This will enable the forecasting engine to adjust
its parameters in real time as it receives new sensor data, thereby
delivering more accurate and responsive control in dynamic energy
management systems.

Advanced optimisation techniques, such as multi-objective evolu-
tionary algorithms, cooperative coevolution, and meta-reinforcement
learning, will be explored to attain further improvements in model
convergence speed, scalability, and flexibility. Finally, incorporating
renewable energy forecasting, such as photovoltaic and wind power
generation, into the ensemble framework will help develop smart,
carbon-aware decision-making systems. These enhancements will not
only improve forecast accuracy but also enable real-time load balanc-
ing, demand-side management, and, ultimately, the decarbonisation
and sustainability of future smart buildings.

Future research will also focus on applying the model developed
to other forms of smart buildings with varying configurations and
usage patterns. To enhance the objectivity and generalisability of the
model, we also intend to incorporate standardised building classifica-
tion systems and develop a taxonomy-based modelling process that
accounts for variations in room types, appliance densities, and user
usage patterns. In addition, applying the framework to multi-building
datasets will provide cross-building validation and more scalable and
policy-relevant energy forecasting solutions.

Having discussed the key outcomes and their relevance, the final
section concludes the study by summarising the major contributions,
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acknowledging inherent limitations, and outlining future directions for
improving energy forecasting models in smart building environments.

6. Conclusion

In conclusion, the building sector accounts for a significant portion
of global energy consumption and plays a crucial role in future decar-
bonisation efforts. Therefore, developing reliable and accurate energy
demand forecasting models is crucial for effectively managing energy
consumption and enhancing energy efficiency in smart buildings.

This paper addresses the challenges of predicting total energy use
in smart buildings, complicated by temporal oscillations and complex
linear and non-linear patterns. To overcome these challenges, the paper
proposes three adaptive evolutionary ensemble models that integrate
various bagging, stacking and voting models with a fast and effec-
tive evolutionary hyper-parameters tuner. Data filtering and automatic
outlier removal techniques were also employed to extract relevant
parameters and enhance prediction accuracy.

The proposed energy forecasting model was evaluated using a hy-
brid dataset encompassing meteorological parameters, appliance en-
ergy use, temperature, humidity, and lighting energy consumption data
collected from 18 sensors in a Stambruges, Mons, Belgium building. To
benchmark the performance of the proposed model, it was compared
against 15 popular ML models, including classic ML models, neural
networks, decision trees, random forests, deep learning models, and
ensemble models. The findings demonstrate that the adaptive evolu-
tionary bagging model outperformed the other prediction models in
terms of accuracy and learning error. Specifically, it achieved accuracy
improvements of 12.6%, 13.7%, 12.9%, 27.04%, and 17.4% compared
to XGB, CatBoost, GBM, LGBM, and RF, respectively. These results high-
light the effectiveness of the advanced evolutionary ensemble approach
for energy demand forecasting in intelligent buildings. By surpassing
the performance of various established ML models, the proposed model
showcases its potential to enhance prediction accuracy and contribute
to efficient energy management in smart buildings.
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