
Energy 333 (2025) 137130 

A
0

 

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy  

Smart buildings energy consumption forecasting using adaptive evolutionary 

bagging extra tree learning models
Mehdi Neshat a ,∗, Menasha Thilakaratne b, Mohammed El-Abd c , Seyedali Mirjalili d,e,
Amir H. Gandomi a,e, John Boland f
a Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, 2007, NSW, Australia
b School of Computer Science, The University of Adelaide, Adelaide, 5005, Australia
c College of Engineering and Applied Sciences, American University of Kuwait, Kuwait
d Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Brisbane, QLD 4006, Australia
e University Research and Innovation Center (EKIK), Obuda University, Budapest, 1034, Hungary
f Industrial AI Research Centre, UniSA STEM, University of South Australia, Mawson Lakes, 5095, Australia

A R T I C L E  I N F O

Keywords:
Smart building
Energy forecasting
Deep learning
Ensemble learning
Extra tree
Optimisation
Hyper-parameter tuning

 A B S T R A C T

Smart buildings are gaining popularity because they have the capability to enhance energy efficiency, lower 
costs, improve security, and provide a more comfortable and convenient environment for building occupants. A 
considerable ratio of the global energy supply has been consumed in building sectors and plays a pivotal role in 
the future decarbonisation pathways. In order to manage energy consumption and improve energy efficiency 
in smart buildings, developing reliable and accurate energy demand forecasting is crucial and meaningful. 
However, extending an effective predictive model for the total energy use of appliances at the buildings’ 
level is challenging due to temporal oscillations and complex linear and non-linear patterns. This paper 
proposes three hybrid ensemble predictive models, incorporating Bagging, Stacking, and Voting mechanisms 
combined with a fast and effective evolutionary hyper-parameters tuner. The performance of the proposed 
energy forecasting model was evaluated using a hybrid dataset of meteorological parameters, energy use of 
appliances, temperature, humidity, and lighting energy consumption from different sections collected by 18 
sensors in a building located in Stambruges, Mons in Belgium. In order to provide a comparative framework 
and investigate the efficiency of the proposed predictive model, 15 popular machine learning (ML) models, 
including two classic ML models, three Neural Networks (NN), a Decision Tree (DT), a Random Forest (RF), 
two Deep Learning (DL) and six Ensemble models, were compared. The prediction results indicate that the 
adaptive evolutionary bagging model surpassed other predictive models in both accuracy and learning error. 
Notably, it delivered accuracy gains of 12.6%, 13.7%, 12.9%, 27.04%, and 17.4% when compared to Extreme 
Gradient Boosting (XGB), Categorical Boosting (CatBoost), Gradient Boosting Machine (GBM), Light Gradient 
Boosting Machine (LGBM), and RF.
Nomenclature

See Table  1.

1. Introduction

One-third of the world’s primary energy is approximately consumed 
by buildings [1]. Buildings are a significant contributor to carbon diox-
ide (CO2) emissions, accounting for nearly 39% of such emissions [2]. 
Due to this high level of buildings’ energy consumption contribu-
tion to global energy demand, developing smart buildings is crucial. 
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There are numerous advantages in advancing smart buildings, such as 
enhanced energy optimisation, augmented residents’ satisfaction and 
productivity [3], as well as improved health and well-being [4]. These 
benefits have been achieved due to hiring cutting-edge technologies 
such as artificial intelligence (AI)-based methods, deep neural networks 
(DNNs) [5], and adaptive learning controls in smart buildings [6], 
which enable such facilities to control various systems (cooling, heat-
ing, cooking, etc. [7]) to evolve more efficient in terms of energy and 
comfort [8]. Furthermore, smart buildings prioritise indoor air quality, 
ensuring thermal, acoustic, and visual comfort.
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Table 1
Summary of key abbreviations used in the manuscript for clarity.
 Abbreviation Full name  
 AI Artificial intelligence  
 ANN Artificial Neural networks  
 Bi-LSTM Bidirectional Long short-term memory network  
 BIM-DB Building information modelling-design builder  
 BIM Building Information Modelling  
 BS Batch size  
 CART Classification and regression tree  
 CatBoost Categorical Boosting  
 CR Probability crossover rate  
 CL Cooling load  
 CMA-ES Covariance matrix adaptation evolution strategy 
 CNN Convolutional neural network  
 DDPG Deep Deterministic Policy Gradient  
 DE Differential evolution  
 DNN Deep neural networks  
 DT Decision Tree  
 EA Evolutionary Algorithm  
 ELM Extreme Learning Machine  
 EVS Explained variance score  
 GA Genetic algorithm  
 GBT Gradient boosting tree  
 GBM Gradient Boosting Machine  
 GC Generalised correntropy  
 GPT Generative Pre-trained Transformers  
 GRU Gated recurrent unit  
 HGBR Histogram-Based Gradient Boosting Regressor  
 HL Heating load  
 HVAC Heating, Ventilation, and Air Conditioning  
 IoT Internet of Things  
 LGBM Light Gradient Boosting Machine  
 LOF Local outlier factor algorithm  
 LRD Local reachability density  
 LHTES Latent heat thermal energy storage  
 LSTM Long short-term memory network  
 MAE Mean absolute error  
 ML Machine learning  
 MLP Multi-layer perceptron  
 MSE Mean square error  
 NSGA Non-dominated Sorting Genetic Algorithm  
 NM Nelder–Mead simplex direct search method  
 PSO Particle Swarm Optimisation  
 PHPP Passive House Planning Package  
 RF Random Forest  
 RIME Rime optimisation algorithm  
 RMSE Root mean square error  
 RNN Recurrent neural networks  
 SCO Sine cosine optimisation  
 SMAPE Symmetric mean absolute percentage error  
 SVM Support vector machines  
 XGB Extreme Gradient Boosting  

In smart buildings, to enhance communication and information 
sharing, technologies such as the Internet of Things (IoT), Building 
Information Modelling (BIM), and Blockchain have been incorporated 
to improve security and management [9]. Another significant advan-
tage of developing smart buildings is their contribution to the energy 
sector decarbonisation [10] by supporting the electrical grid through 
providing demand response functionality [11] and balancing electricity 
demand with non-dispatchable renewable energy sources [12].

In the last two decades, various ML techniques have experienced 
significant growth, particularly in modelling energy consumption in 
smart buildings. This surge of interest can be attributed to the re-
markable efficacy and robustness exhibited by ML predictors in this 
field. Impressively, ML models have demonstrated exceptional gener-
alisation and flexibility abilities [13], making them widely pertinent 
to a diverse range of problems. They have been hailed as ‘‘universal 
function approximators’’ because of their unparallelled adaptability. A 
comprehensive review of the rapid advancements in Artificial Intelli-
gence (AI) and ML models within the context of smart buildings has 
yielded a meaningful conclusion [14] and determined that the overall 
2 
adaptability of buildings to unforeseen changes can be significantly 
enhanced through the enactment of AI-driven learning processes. More-
over, integrating adaptability solutions on the timescales of heating, 
ventilation, and air conditioning (HVAC) control and electricity market 
participation has been identified as the most promising avenue for 
achieving substantial improvements in energy efficiency.

One pivotal advantage of employing ML models lies in their aptitude 
for analysing extensive datasets and uncovering intricate patterns that 
elude traditional statistical methodologies. By considering an array of 
factors, such as construction characteristics, occupancy patterns, and 
weather states, these models offer accurate predictions of energy usage 
within buildings [15]. This capability stems from their capacity to 
process vast volumes of data and discern hidden correlations that would 
otherwise remain inconspicuous. Moreover, the prevalence of multiple 
sensors for data collection in smart buildings necessitates the develop-
ment of real-time systems for monitoring, controlling, predicting, and 
optimising total power consumption. ML models excel in this arena 
by continuously analysing sequential data and constructing precise 
models of these dynamic systems [16]. Through incessant monitoring 
and data analysis, these models can adapt control settings for Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems, lighting, and 
other building components to attain desired energy efficiency targets. 
Recently, Lie et al. [17] proposed a novel HVAC control system for 
intelligent buildings that uses a multi-step predictive deep learning 
model to reduce power consumption costs while maintaining user 
satisfaction. The system combines Long Short-term Memory (LSTM), 
generalised correntropy (GC) loss function, and Deep Deterministic 
Policy Gradient (DDPG) for predicting house temperature and dynamic 
power adjustment. Simulation results showed over 12% cost savings 
compared to alternative approaches.

Another compelling rationale for incorporating machine learning 
(ML) models in energy demand modelling for smart buildings lies in 
their forecasting capabilities. By leveraging historical data, weather 
forecasts, and other relevant characteristics, ML aids in accurately 
predicting future energy demands [18]. This proficiency in demand 
forecasting facilitates superior planning for energy generation, dis-
tribution, and load management, culminating in a more dependable 
and efficient energy supply. These factors collectively enable the op-
timisation of energy utilisation, enhance operational efficiency, and 
contribute to the establishment of sustainable [19] and intelligent 
building systems.

Somu et al. [20] proposed a hybrid building power consumption 
model (kCNN-LSTM) consisting of LSTM, a Convolutional neural net-
work (CNN) combined with a K-means clustering method and sine 
cosine optimisation (SCO) algorithm [21] to tune the hyper-parameters 
of LSTM. The kCNN-LSTM model outperforms existing demand forecast 
models and offers precise energy consumption prediction. An auto-
mated building energy load forecasting methodology [22] has recently 
been introduced based on Generative Pre-trained Transformers (GPT) 
in combination with prompt optimisation, external knowledge use, and 
self-correction. The method effectively mitigates technical barriers to 
entry for non-experts and permits precise low-budget energy prediction. 
It was compared with actual test buildings and proved to have a mean 
R2 of 0.95, demonstrating the engineering viability of mass language 
models for smart building energy management innovation.

While ML models have been shown to be promising for the predic-
tion of building energy consumption, current research focuses mainly 
on short-term prediction. It seldom introduces new parameters to im-
prove prediction accuracy. To address this gap, a team developed a 
data-driven method [23] to predict the hourly energy consumption 
of a university office building by integrating meteorological, tempo-
ral, and an introduced meta-parameter, air conditioning demand. Five 
ML algorithms (Random Forest (RF), Gradient Boosted Trees (GBT), 
Support Vector Machines (SVM), Artificial Neural Networks (ANN), 
and Deep Neural Networks (DNN)) are compared and experimental 
results show that DNN provide the best performance (Root mean square 
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error (RMSE) = 4.796 kWh, Mean Absolute Percentage Error (MAPE) 
= 5.738%), outperforming existing methods. Incorporating the air con-
ditioning demand parameter significantly enhances model accuracy for 
every algorithm.

Ensemble models offer excellent benefits in building energy predic-
tion [24] by exploiting the strengths of different algorithms, enhancing 
prediction accuracy and generalisability compared to individual mod-
els. While much attention is being given now, most prior studies have 
focused on single ML models or basic ensemble techniques without 
fully harnessing stacked architectures for heating and cooling load 
(HL and CL) prediction. Furthermore, there has been limited research 
in the literature on integrating hyperparameter-tuned models with 
heterogeneous base models for predicting residential building energy. 
Closing these gaps, in a recent work [25], a stacked ensemble model 
was introduced integrating XGB, DT, RF, and Bayesian optimisation 
for hyperparameter tuning. Closing these gaps, a recent work [25] 
introduced a stacked ensemble model that integrates XGB, DT, RF, 
and Bayesian optimisation for hyperparameter tuning. The suggested 
model performed considerably better than the traditional techniques, 
providing better performance (RMSE of 0.484 for HL and 0.948 for 
CL). Another example of ensemble models is [26] which proposes a 
stacked learning model for predicting the dynamic performance of 
PCM-based double-pipe latent heat thermal energy storage (LHTES) 
units. Main contributions include sensitivity analysis for variable se-
lection, a two-stage ensemble model combining Regression Trees, SVR, 
and Linear Regression, and comprehensive validation across datasets 
and phase change stages. The proposed infrastructure demonstrated 
a 7.82% improvement in MAPE, a 25.6% increase in stability, and a 
9.7% reduction in peak demand for heating, ventilation, and air con-
ditioning (HVAC) systems, contributing to more flexible, data-driven 
building energy management. Another study [27] suggested a stack-
ing ensemble learning model for home net load-interval prediction, 
which combines k-means user clustering, LRIME-based optimisation, 
and bootstrap interval estimation. Their main contributions included 
developing interpretable interval forecasts, recommending the rime 
optimisation algorithm (LRIME) for improved performance, and adding 
LSTM, XGBoost, and ELM as optimised base learners. Australian Aus-
grid data tests confirm the model’s improved accuracy, robustness, and 
uncertainty estimation over state-of-the-art models.

Combining ML models with optimisation methods is one of the 
popular techniques used to forecast energy consumption in buildings. 
To address the lack of integrated prediction and optimisation methods 
in green building design, a recent study [28] proposed a framework 
combining BIM-DB simulation, Bayesian-Random Forest (Bayesian-RF) 
prediction, and Non-dominated Sorting Genetic Algorithm (NSGA-
III) optimisation. BIM-DB efficiently generates building performance 
data, while Bayesian-RF achieves high prediction accuracy (𝑀𝑆𝐸 <
0.08, 𝑅2 > 0.85). The prediction model guides NSGA-III to optimise en-
ergy use, emissions, cost, and thermal comfort. A case study conducted 
on a teaching building demonstrated reductions of 7.68% in energy 
consumption, 6.48% in carbon emissions, and 1.77% in operational 
costs while also enhancing occupant comfort. Current approaches to 
optimising public building sustainability struggle to reconcile compet-
ing goals and integrate expert knowledge with data-driven forecasting. 
A recent study [29] suggested a hybrid approach that blended building 
information modelling-design builder (BIM-DB) simulations with a 
BO-CatBoost-NSGA-III algorithm to overcome these limitations. Their 
major contributions included a two-stage knowledge a data-driven 
approach to secure dataset generation, a BO-optimised CatBoost model 
with 𝑅2 > 0.97 across targets, and finally, multiobjective optimisation 
using NSGA-III, which delivered 32.20% lower energy consumption, 
48.77% lower CO2 emissions, 60.69% improved thermal comfort, and 
15.45% less glare.
3 
1.1. Research gaps

Sequential ML models, such as LSTM, BiLSTM, CNN-LSTM, etc., 
have gained recognition for their success in these specific domains [30]. 
However, they do come with certain drawbacks that need to be con-
sidered as follows. One notable disadvantage is the complex architec-
ture of these models, which can result in extensive training runtimes, 
mainly when dealing with large-scale datasets. Consequently, the com-
putational requirements for training these models can be substantial. 
Moreover, achieving optimal performance with these models heavily 
relies on careful design and parameter tuning. Improper choice of 
hyper-parameters can lead to suboptimal performance or overfitting, 
underscoring the need for meticulous attention during the model con-
figuration phase. Another drawback is the need for more interpretabil-
ity of LSTM and its family models. These models are often considered 
black boxes, making it challenging to comprehend the underlying 
reasoning behind their predictions. Interpreting the learned represen-
tations and understanding the critical features becomes a non-trivial 
task. Furthermore, when faced with limited data, these sequential mod-
els may struggle to extract meaningful patterns and achieve optimal 
performance [31]. Uncovering hidden patterns and dependencies relies 
heavily on the availability of sufficient training examples, which can be 
a limitation in scenarios where data is scarce.

Considering these drawbacks is crucial when deciding whether to 
employ LSTM, BiLSTM, or CNN-LSTM models. The trade-off between 
their success in specific domains and the associated challenges of train-
ing runtime, parameter tuning, interpretability, and data limitations 
should be carefully evaluated to ensure the most suitable approach for 
a given application.

Furthermore, despite notable advancements in ML and ensemble-
based approaches for smart building energy forecasting, several re-
search challenges and gaps remain unresolved:

• Limited integration of heterogeneous ensemble strategies: While 
individual ensemble techniques such as bagging, boosting, and 
stacking have shown promise, most existing studies rely on sin-
gular strategies. Few attempts have been made to systematically 
combine these approaches within a unified hybrid framework to 
leverage their complementary strengths.

• Insufficient use of advanced hyper-parameter optimisation: Many 
prior works employ default or manually-tuned parameters, which 
may result in suboptimal model performance. The integration 
of meta-heuristic optimisation algorithms, such as Genetic Al-
gorithms (GA), Differential Evolution (DE), or 1+1 Evolutionary 
Algorithms for automated and adaptive hyperparameter tuning 
remains underexplored in this domain.

• Neglect of real-world temporal and environmental complexity: 
Existing models often oversimplify input features or overlook dy-
namic environmental factors, such as temporal variability, sensor 
heterogeneity, and inter-feature dependencies. There is a need for 
models that can robustly learn from multivariate, high-resolution 
data collected via Internet of Things (IoT) sensors in actual smart 
building environments.

• Lack of comprehensive benchmarking with modern deep and 
ensemble models: Although deep learning models (e.g., CNNs, 
LSTMs) and gradient-boosting methods (e.g., XGBoost, CatBoost, 
LGBM) are increasingly adopted, few studies conduct extensive 
comparative analyses involving a broad spectrum of baseline 
models across classical ML, deep networks, and ensemble meth-
ods under consistent evaluation metrics.

• Moreover, limited focus on model generalisability and robustness: 
Many forecasting models are tailored to specific datasets or set-
tings, raising concerns about their adaptability across different 
buildings or climatic regions. There is a gap in assessing generalis-
ability through cross-validation techniques and testing on diverse 
time periods or unseen environments.
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• Last but not least, sparse consideration of interpretability and 
computational trade-offs: Highly accurate models such as deep 
networks or ensemble stacks often lack interpretability and in-
cur high computational costs. Few studies explicitly address the 
trade-off between model complexity, transparency, and real-time 
applicability, especially in the context of building management 
systems.

1.2. Key contributions

To address the aforementioned challenges, in this study, we propose 
a hybrid learning model specifically designed for predicting the total 
power usage of compliances in a Stambruges, Mons, Belgium building. 
The model incorporated three ensemble mechanisms: Bagging, Stack-
ing and Voting models, as well as a fast and effective Evolutionary 
framework. The study’s primary objective was to develop a robust 
and accurate model for predicting power consumption in smart build-
ings. To achieve this, data collected from 18 sensors installed in the 
building was used to capture meteorological parameters, energy use 
of appliances, temperature, humidity, and lighting energy consumption 
of different sections. The main contributions of this study are listed as 
follows:

• Comprehensive data analysis was conducted to extract various 
characteristics and correlations among the collected features and 
power consumption. This analysis provided valuable insights into 
the relationships between different variables, helping to inform 
the development of the predictive model.

• A wide range of machine and deep learning models were im-
plemented and compared to ensure the most efficient learning 
model. This included classic ML models such as DT and RF, as 
well as various Neural Networks (NN) and Ensemble models. 
By developing this comprehensive comparative framework, the 
designers will be able to identify the most effective learning 
model for predicting power consumption in the smart building 
context.

• Further, the study addressed the challenge of hyper-parameter 
tuning initialisation, which can significantly impact the model’s 
performance. To overcome this challenge, four optimisation meth-
ods were tested and compared to improve prediction accuracy 
and reduce modelling training errors. The aim was to find a 
practical and smart hyper-parameter tuner that would enhance 
the overall performance of the power consumption prediction 
model.

• Finally, this study contributes to the field of smart buildings by 
proposing an adaptive evolutionary ensemble learning model that 
leverages the power of various ML and tree-based techniques 
combined with a fast and effective Evolutionary algorithm. To 
this end, we developed and evaluated six Voting models, eight 
Bagging models, and ten Stacking architectures, each composed of 
different configurations of decision trees, gradient-boosted meth-
ods, and neural learners. The comprehensive data analysis, ex-
tensive model comparison, and optimisation methods employed 
in this study provide valuable insights and techniques for accu-
rately predicting power consumption in similar smart building 
scenarios.

The remainder of this paper is organised as follows. Section 2 
introduces the dataset and presents a detailed statistical analysis. Sec-
tion 3 outlines the methodological framework, encompassing outlier 
detection, ensemble learning strategies, and optimisation techniques. 
Section 4 presents the experimental results and compares model per-
formance. Moreover, Section 5 discusses the key findings and their 
implications. Finally, Section 6 concludes the study by summarising 
the research contributions, acknowledging its limitations, and outlining 
directions for future work.
4 
2. Data sets and statistical analysis

The hybrid dataset utilised in this study was obtained from a 
residential property in Stambruges, Belgium, approximately 24 km from 
the City of Mons [32]. The house’s construction was completed in 
December 2015, incorporating entirely new mechanical systems. The 
architectural design followed the principles of passive house certifica-
tion [33], which entails limiting the annual heating and cooling loads to 
a maximum of 15 kWh/m2 per year, as determined by design software 
(Passive House Planning Package (PHPP)). It is worth highlighting 
that in September 2016, the building’s air leakage was assessed and 
measured to be 0.6 air changes per hour at 50 Pa. A heat recovery 
ventilation unit with an efficiency ranging between 90% and 95% is 
employed to ensure proper ventilation. The total floor area of the house 
amounts to 280 m2, with the heated area encompassing 220 m2. The 
map of two floors of the building [32] with the location of sensors to 
record temperature and humidity (see Fig.  1).

Electrical energy consumption in the passive house was monitored 
using M-BUS energy counters, which captured data every 10 min. 
This tracking included individual power loads from the domestic hot 
water, devices, lighting, heat recovery ventilation unit, and electric 
baseboard heaters. The energy devices used correspond to the list 
given in Ref. [32]. An internet-based energy monitoring system collects 
the energy data, keeps it and dispatches notifications via email every 
12 h. Lighting energy consumption constituted between 1% and 4% 
of the total, predominantly due to LED fixtures. Temperature and 
humidity conditions within the house were tracked using a wireless 
sensor network (ZigBee) constructed with XBeeradios, Atmega328P 
microcontrollers, and DHT-22 sensors. The house’s large size and solid 
construction necessitated the inclusion of two additional XBee radios 
functioning as routers to facilitate effective communication from the 
end nodes to the coordinator. Battery-powered sensor nodes relayed 
information approximately every 3.3 min. The list of variables, along 
with their locations in the dataset, is presented in Table S1.

Table  2 presents a statistical analysis of the dataset’s variables, 
providing a brief overview of the dataset and highlighting key char-
acteristics, including coverage, prominent trends, and variability.

Figure S3 illustrates the distribution of the energy consumption 
profile over five months. The graph displays a significant variance in 
energy usage, ranging from zero to 1000 Wh. From a broad perspective, 
no discernible pattern is observed, presenting a challenging scenario for 
the accurate estimation of power utilisation by ML models.

Fig.  2 is a plot of the daily average time series profiles of tem-
perature and humidity data recorded by nine sensors mounted across 
the interior and exterior of the smart building. Out of these, T6 and 
T-out represent outdoor conditions, and the remaining ones represent 
indoor climate measurements. The result shows that the indoor sensors 
display a consistent and stable thermal trend over the four-month 
observation period, indicating a well-managed indoor environment. On 
the other hand, T6 and T-out are more diverse, reflecting the effect of 
outside weather volatility. Overall, the average outdoor temperature, 
at approximately 15 ◦C, is considerably lower than indoor tempera-
tures, a reflection of the quality of the building’s insulation and the 
effectiveness of internal climate control.

In Fig.  3b, we observe the descriptive statistics of power consump-
tion across the five-month period, specifically from January to May. 
Remarkably, the average power consumption in January and April is 
the highest among the months considered. This information provides 
insights into the varying power usage levels throughout the months. 
Besides, when comparing weekdays and weekends, Fig.  3c reveals that 
Thursday and Saturday are the days with the highest energy con-
sumption. This data further highlights the distinction between energy 
consumption patterns on different days of the week. These graphical 
representations contribute to a comprehensive understanding of the 
energy consumption dynamics, highlighting the challenges faced by the 
ML model in accurately estimating power utilisation.
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Fig. 1. The building map of (a) the First and (b) the Second floor and temperature and humidity sensors position.
Table 2
Statistical analysis of total energy consumption of the building and other features.
 Appliances Lights T1 RH_1 T2 RH_2 T3 RH_3 T4 RH_4 T5 RH_5 T6 RH_6  
 Min 10.000 0.000 16.790 27.023 16.100 20.463 17.200 28.767 15.100 27.660 15.330 29.815 −6.065 1.000  
 Max 1080.000 70.000 26.260 63.360 29.857 56.027 29.236 50.163 26.200 51.090 25.795 96.322 28.290 99.900 
 Mean 97.695 3.802 21.687 40.260 20.341 40.420 22.268 39.243 20.855 39.027 19.592 50.949 7.911 54.609 
 Median 60.000 0.000 21.600 39.657 20.000 40.500 22.100 38.530 20.667 38.400 19.390 49.090 7.300 55.290 
 STD 102.525 7.936 1.606 3.979 2.193 4.070 2.006 3.255 2.043 4.341 1.845 9.022 6.090 31.150 
 T7 RH_7 T8 RH_8 T9 RH_9 T_out Press_mm_hg RH_out Windspeed Visibility Tdewpoint rv1 rv2  
 Min 15.390 23.200 16.307 29.600 14.890 29.167 −5.000 729.300 24.000 0.000 1.000 −6.600 0.005 0.005  
 Max 26.000 51.400 27.230 58.780 24.500 53.327 26.100 772.300 100.000 14.000 66.000 15.500 49.997 49.997 
 Mean 20.267 35.388 22.029 42.936 19.486 41.552 7.412 755.523 79.750 4.040 38.331 3.761 24.988 24.988 
 Median 20.033 34.863 22.100 42.375 19.390 40.900 6.917 756.100 83.667 3.667 40.000 3.433 24.898 24.898 
 STD 2.110 5.114 1.956 5.224 2.015 4.151 5.317 7.399 14.901 2.451 11.795 4.195 14.497 14.497 
Fig. 2. Time series of daily average (a) temperature and (b) humidity recorded from sensors.
Fig.  4 depicts the average electricity usage of both devices and lights 
at different times. The graph reveals a considerable correlation between 
the two variables. Particularly, a high correlation is observed through-
out the time range. However, it is noteworthy that between 12:00 PM 
and 6:00 PM, the average power consumption of devices surpasses 
that of lights. This finding aligns with expectations, as daytime usage 
typically involves increased activity and higher demand for related to 
device electricity. After 6:00 pm, a shift in the pattern becomes evident 
with the average power consumption of lights increases, likely corre-
sponding to the evening hours when lighting requirements typically 
become more prominent. Consequently, during this period, the average 
power consumption of lights surpasses that of devices.

Figure S4 presents the correlation coefficient analysis between tem-
perature variables recorded by ten sensors and the power consumption 
of appliances. Two noteworthy observations can be made from this 
analysis. Firstly, a positive correlation is observed between all indoor 
temperature variables and power consumption. This indicates that as 
5 
indoor temperatures rise, the power consumption of appliances also 
tends to increase. Furthermore, there is a positive correlation among 
the indoor temperature variables themselves, suggesting that similar 
changes in the others accompany changes in one temperature variable. 
In contrast, the outdoor temperature variable negatively correlates with 
power consumption and the other indoor temperature variables. This 
observation implies that as the outdoor temperature rises, there is an 
inclination to decline in power consumption and indoor temperatures. 
This negative correlation likely stems from cooling systems or strate-
gies to maintain comfortable indoor conditions despite higher outdoor 
temperatures. Last but not least, the highest correlation between appli-
ances and the temperature variable T2 indicates a strong relationship 
between these two factors. Further, the second-largest correlation be-
tween appliances and temperature variable T6 is observed, further 
highlighting their interdependence.

To explore the correlation between temperature and humidity vari-
ables, and power consumption, we analysed as depicted in Figure 
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Fig. 3. (a) The distribution of consumption through five months. (b) The statistical observations for energy consumption in five months as a box-plot.
Fig. 4. The average power usage of appliances and lights between 12:00 AM and 11:59 PM.
S5. This line chart provides insights into the relationships between 
these variables. The chart reveals a positive correlation pattern among 
temperature variables, with correlations higher than those observed 
for humidity features. Nevertheless, most humidity variables exhibit a 
negative correlation with power consumption, which implies that as 
humidity levels increase, power consumption tends to decrease. The 
negative correlations observed for humidity variables highlight the in-
fluence of humidity on energy usage patterns. This negative correlation 
could be attributed to the impact of moisture on cooling requirements, 
ventilation systems, or other factors affecting power consumption.

Building on the insights gained from the statistical analysis of the 
smart building dataset, the next section outlines the methodological 
framework employed to construct and optimise predictive models.

3. Methods

In this section, the technical approaches adopted in this research 
are presented. Firstly, the Local Outlier Factor algorithm is presented 
(Section 3.1) to filter and remove outlying data points and present a 
high-quality dataset for model building. Secondly, the meta-heuristic 
algorithms (Section 3.2), including GA, DE, and the (1+1) Evolutionary 
Algorithm, and their details in optimisation and search abilities are 
emphasised. Next, ensemble learning strategies (Section 3.3) such as 
Stacking, Bagging, Voting, and Boosting are outlined, sharing their ad-
vantages in predictive precision, stability, and generalisability. Finally, 
this study introduces the Adaptive Evolutionary Ensemble Learning 
model (Section 3.4), which highlights its novelty and advantages over 
ensemble learning and evolutionary algorithms for minimising the 
function under adverse optimisation landscapes.
6 
3.1. Data preprocessing and outlier detection

Local outlier factor (LOF) algorithm. To detect and remove outliers, we 
employed the LOF method [34], one of the most popular and effec-
tive techniques for cleaning time series data. LOF is an unsupervised, 
neighbourhood-based algorithm and compares each observation with 
k-nearest Neighbours estimates, finding the ratio density that estimates 
the local reachable of observation versus that over its neighbourhood; 
therefore, it calculates this LOF score, corresponding to an observation’s 
average density to those neighbours. Thus, it considers outlier points 
whose densities are significantly lower than those of their neighbours, 
which is why LOF effectively identifies anomalies within datasets with 
varying density distributions. Eq.  (1) shows the LOF computed for 𝑥
observation [35]. Also, variable 𝑜 is an observation to an individual 
nearest observation from among the k-nearest neighbours of data point 
𝑥. 

𝐿𝑂𝐹𝑖(𝑥) =
1

|

|

𝑁𝑖(𝑥)||

𝑁
∑

𝑜∈𝑁𝑖(𝑥)

LRD 𝑑𝑖𝑠𝑖(𝑜)
𝐿𝑅𝐷𝑖(𝑥)

, (1)

where the local reachability density shows by 𝐿𝑅𝐷 and |
|

𝑁𝑖(𝑥)|| denotes 
the number of samples in the neighbourhood of 𝑥 observation. To 
compute the rate of reachability distance for each sample in the dataset, 
Eq.  (2) was introduced. 
̃𝑑𝑖𝑠𝑖(𝑥, 𝑜) = max

(

𝑑𝑖𝑠𝑖(𝑜), 𝑑𝑖𝑠𝑖(𝑥, 𝑜)
)

, (2)

It is noted that 𝑑𝑖𝑠𝑖(𝑜) mentions the shortest distance among the neigh-
bours of observation 𝑜. Therefore, the LRD of observation 𝑥 is defined 
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as follows. 

LRD𝑖(𝑥) = 1∕

∑

𝑜∈𝑁𝑖(𝑥)
̃𝑑𝑖𝑠𝑖(𝑥, 𝑜)

|

|

𝑁𝑖(𝑥)||
(3)

The formula is calculated as the inverse of the average reachability 
distance between 𝑥 and its 𝑘-nearest neighbours 𝑜 ∈ 𝑁𝑖(𝑥). The term 
𝑑𝑖𝑠𝑖(𝑥, 𝑜) represents the reachability distance from 𝑥 to neighbour 𝑜, 
which accounts for both the actual distance and the neighbourhood 
radius of 𝑜. This measure quantifies how densely 𝑥 is located with 
respect to its local neighbourhood—higher LRD values indicate that 𝑥
resides in a denser region.

The LOF algorithm is suited for detecting outliers in datasets, includ-
ing different distributions concerning density because it uses a relative 
measure of the density at every point concerning its surrounding neigh-
bours instead of a general threshold value [36]. LOF is also resistant to 
differing data scales and able to handle both clustered and nonuniform 
data.

3.2. Evolutionary optimisation algorithms

Evolutionary Optimisation Algorithms have proved highly effective 
in optimising the performance of hybrid learning strategies such as 
ensemble models. These algorithms, namely GA, DE, and (1+1)EA, 
are optimally employed in challenging optimisation problems where 
traditional gradient-based or exhaustive search strategies are not ap-
plicable [37]. Ensemble learning algorithms typically have several 
base learners and a number of control parameters, such as learning 
rates, tree depths, and voting weights, whose manual tuning is time-
consuming and inefficient. Meta-heuristic algorithms solve this issue 
by intelligently searching and exploring the parameter space in order to 
avoid premature convergence, making a balance between global and lo-
cal search [38]. Their ability to operate without derivative information 
and adapt to very nonlinear, high-dimensional objective landscapes 
renders them highly beneficial for hyperparameter optimisation by 
hand and the improvement of ensemble model accuracy, stability, and 
generalisation.

3.2.1. Differential Evolution (DE) algorithm
DE [39] is an evolutionary computational method, population-

based, inspired by biological processes that use a stochastic search 
strategy to find the global optimum of a given problem. DE generates 
and maintains a population of candidate solutions, and each solution 
is designated as a vector of decision variables (binary, discrete or 
continuous values) in the optimisation problems. In order to evaluate 
the fitness of each solution, an objective function is introduced and 
based on this fitness, the solutions can be sorted. In the following 
generations, DE algorithm develops new vectors (offspring) by integrat-
ing and mutating individuals in the current population. The primary 
evolutionary operators of DE include crossover, mutation and selection.

Mutation operator:. In DE algorithms, the most significant operator is 
the mutation that stochastically perturbs a solution in the population 
to generate a new candidate solution [40]. The popular type of DE 
mutation is entitled ‘‘DE/rand/1/bin’’ (Eq.  (4)). This strategy often 
intuitively supports a stronger exploration ability but almost shows a 
low convergence speed, promoting global exploration and reducing the 
risk of premature convergence. As a result, this strategy can usually be 
used to optimise problems with multi-modal attributes. 
⃖⃖⃗𝑉 𝑔 = ⃖⃖⃗𝐷𝑟1 + 𝜔 × ( ⃖⃖⃗𝐷𝑟2 − ⃖⃖⃗𝐷𝑟3) (4)

where ⃖⃖⃗𝑉 𝑔 is the differential vector of three candidates ( ⃖⃖⃗𝐷𝑟1, ⃖⃖⃗𝐷𝑟2, and 
⃖⃖⃗𝐷𝑟3) chosen randomly from the current population, and to tune the 
exploration step size, 𝜔 is introduced as the mutation factor.
7 
Crossover operator:. The binomial crossover strategy of DE enjoys 
several advantages that result in its effectiveness and wide use in real-
world problems of continuous optimisation. Its computationally effi-
cient and simple construction relies on random sampling and
component-wise replacement, hence making it scalable to high-
dimensional problems. Crossover rate (𝐶𝑅) is a direct control parameter 
that facilitates flexible balancing between exploitation and exploration 
by regulating the fraction of the mutant vector in the trial solution. This 
promotes population diversity and avoids premature convergence. In 
addition, binomial crossover typically includes a mechanism to ensure 
that at least one component of the mutant vector is incorporated into 
the trial vector, thereby preventing cyclical solutions and enhancing 
the algorithm’s ability to avoid local optima. Its generality in various 
problem spaces and robustness to diverse objective function topologies 
also speaks volumes about its effectiveness in solving complicated 
optimisation problems. The crossover operator combines the mutated 
solution with another one in the current population to form a trial 
solution. One of the well-known types of crossover is binomial [40], 
formulated based on Eq.  (5). 

⃖⃖⃗𝑆 𝑖,𝑗 =

{

⃖⃖⃗𝑉 𝑖,𝑗 if (r ≤ 𝐶𝑅) or (𝑗 == 𝐶𝑛),
⃖⃖⃗𝐷𝑖,𝑗 otherwise.

𝑗 = 1, 2,…𝑁𝐷 (5)

where 𝑆 and 𝐶𝑅 are the trial vector and the rate of probability crossover 
defined in the range of [0–1], respectively. 𝐶𝑛 is the index of solutions 
chosen in the crossover.
Selection strategy:. In Differential Evolution (DE), the selection strategy 
plays a crucial role in guiding the evolution process to optimal solu-
tions. After a trial vector is created through mutation and crossover, 
DE applies a greedy selection strategy to determine whether the new 
solution should be retained. The new solution (𝑆 𝑖) is generated and 
combined with its parent (𝐷𝑖) to replace the offspring as follows. 

⃖⃖⃗𝐷𝑔+1
𝑖 =

{

⃖⃖⃗𝑆𝑔
𝑖 if 𝑓

(

⃖⃖⃗𝑆𝑔
𝑖

)

≤ 𝑓
(

⃖⃖⃗𝐷𝑔
𝑖

)

,
⃖⃖⃗𝐷𝑔
𝑖 otherwise.

(6)

DE exhibits outstanding power in solving optimisation problems 
and has advantages such as simplicity, reliability, and robustness, 
and is particularly useful for solving complex optimisation problems 
where the objective function is non-linear, non-convex [41] and may 
have multiple local optima. However, DE has weaknesses, including 
slow convergence speed, difficulty adjusting parameters for different 
problems, and performance deterioration with increasing search space 
dimensionality.

3.2.2. Genetic Algorithms (GA)
GAs are population-based stochastic optimisation techniques that 

emulate the process of evolutionary biology to identify the best solu-
tions [42]. GAs start with an array of feasible solutions; each expressed 
as a series of decision parameters. These candidate solutions are then 
subjected to selection, crossover, and mutation processes to generate 
new offspring solutions. Each resultant solution is then assessed by an 
objective function to determine its fitness level. Those with higher fit-
ness are more likely to persist into subsequent generations, while those 
with lower fitness are phased out over time. The cycle repeats until 
a termination criterion is satisfied, such as reaching a predetermined 
number of cycles or finding an acceptable solution.

GAs achieve a delicate balance between the exploratory and ex-
ploitative aspects of optimisation [43]. Exploration involves surveying 
the search space to find new areas that might house superior solutions. 
Exploitation, on the other hand, is about improving the solutions 
located in promising regions. This equilibrium is realised through se-
lection, crossover, and mutation. Selection favours the survival of fitter 
solutions. Crossover merges the genetic information of chosen solutions 
to create new offspring exhibiting a blend of characteristics. Mutation 
triggers random alterations in the offspring, fostering exploration by 
bringing unique genetic variations.



M. Neshat et al. Energy 333 (2025) 137130 
Crossover operator:. The geometric crossover technique [44] has been 
strategically chosen for its remarkable ability to identify and uncover 
potential solutions that lie precisely on the edge of what can be consid-
ered a feasible solution space, as referenced in the source. Moreover, 
this operation enables smooth transition in the search space, enhancing 
exploitation while preserving diversity. It is particularly beneficial 
for real-valued and continuous optimisation problems since it guar-
antees feasibility and enables convergence towards optimal regions 
with higher precision. Envision two parent chromosomes, represented 
mathematically as 𝐴 =

{

𝑎1, 𝑎2,… , 𝑎𝑛
} and 𝐵 =

{

𝑏1, 𝑏2,… , 𝑏𝑛
}

, from 
which the offspring are derived through a specific calculation method 
outlined below. 
𝐶 =

{

√

𝑎1 ⋅ 𝑏1,
√

𝑎2 ⋅ 𝑏2,… ,
√

𝑎𝑛 ⋅ 𝑏𝑛
}

(7)

𝐶𝑖 =
(

𝐴𝑖
)𝛼

⋅
(

𝐵𝑖
)1−𝛼 . (8)

In this context, the variable 𝑖 denotes the number of individual indexes 
associated with each chromosome. At the same time, 𝛼 is confined to 
the interval [0,1], indicating the proportion that influences the merging 
of the parent chromosomes. Specifically when the value of 𝛼 is set to 
1
2 , thereby illustrating a balanced combination of both parent genes. 
Two offspring are created by swapping parent positions during the 
second calculation, adding variety to genetic mixing. This method also 
supports multiple parents, increasing genetic diversity and innovation 
as follows. 

𝐶𝑖 =
(

𝐴1
𝑖
)𝛼1 (𝐴2

𝑖
)𝛼2 (𝐴3

𝑖
)𝛼3 …

(

𝐴𝑛
𝑖
)𝛼𝑛 ,  where, 

𝑛
∑

𝑖=1
𝛼𝑖 = 1 (9)

Mutation operator:. A crucial mechanism in the realm of genetic algo-
rithms is a mutation, which plays a significant role in altering one or 
more genes within a given population, thereby enhancing the overall 
variability and diversity of that population in an effort to explore the 
vast landscape of potential solutions more thoroughly.

To illustrate this concept, let us consider an individual represented 
as A1 =

(

a1, a2,… , a𝑛
)

, where each variable in a solution ai is confined 
within a specific range, defined by the lower bound Lowb(i) and the 
upper bound Upb(i), which respectively set the limits for that variable’s 
potential values.

A non-uniform mutation operator was used, which is designed to 
alter the selected variables in a manner that is not uniform across 
the population but rather varies depending on certain criteria. Eq. 
(10) shows the formulation of this mutation where 𝑖𝑡𝑒𝑟 and iter𝑚𝑎𝑥 are 
the current and maximum generation number, 𝜗 is a random number 
between 0 and 1, and 𝛽 is a system parameter determining the degree 
of non-uniformity equal to 6 in this research. 

𝑎′𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑎𝑖 +
(

𝑈𝑝𝑏(𝑖) − 𝑎𝑖
)

(

𝜗 ⋅
(

1 − 𝑖𝑡𝑒𝑟
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

))𝛽
𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝛼

𝑎𝑖 −
(

𝑎𝑖 − 𝐿𝑜𝑤𝑏(𝑖)
)

(

𝜗 ⋅
(

1 − 𝑖𝑡𝑒𝑟
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

))𝛽
𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝛼

(10)

Population size importance:. Population size that determines the num-
ber of solutions in it is a critical factor in determining the effectiveness 
of GAs. A large population promotes greater diversity and exploration, 
but it also results in higher computational expense. Small populations, 
conversely, might converge more quickly but have the potential to 
get stuck in suboptimal solutions. Problem complexity, search space, 
and computing resources can determine the optimal selection of a 
population size. It should measure the objectives, boundaries, and 
requirements specific to the problem and establish how close a solution 
is to global or local optimal. These fitness values are utilised by the 
GA to guide the search process, favouring solutions with greater fitness 
values. GAs can also be hybridised in a hybridisation with other opti-
misation methods in an attempt to enhance performance. Hybridisation 
strategies leverage the strengths of various algorithms while mitigating 
their weaknesses. For instance, genetic algorithms can be blended with 
local search techniques to enhance the performance of the genetic 
algorithm and convergence to improved solutions.
8 
3.2.3. Single-parent evolutionary algorithm
The Single-Parent evolutionary algorithm known as 1+1EA is an 

optimisation method [45] that begins with a starting solution, 𝑋 and 
generates a new solution, 𝑌 , in each iteration by randomly altering one 
or more selected variables in 𝑋 (𝑋𝑖𝑡𝑒𝑟 ∈ {𝐿𝐵,𝑈𝐵}𝑁 ), where 𝑈𝐵 and 
𝐿𝐵 represent the upper and lower bounds of the variable, respectively, 
and 𝑁 denotes the number of variables. Unlike the standard 1+1EA, 
which employs a uniform distribution for mutation, resulting in a local 
search that is both non-curved and noisy, we prefer to utilise a normally 
distributed transformation [46]. Next, the new solution generated is 
evaluated and compared with its parent. If the fitness of the new 
solution dominates the previous one, it will be replaced. Otherwise, the 
new solution will be removed, and another solution generates from the 
parent candidate.
Mutation operator:. Contrary to the default 1+1EA with uniform ran-
dom mutation, leading to non-curved and noisy search behaviour, our 
implementation employs a Gaussian (normally distributed) mutation 
scheme to enable better local search in the vicinity of the parent so-
lution. Specifically, the mutation for each decision variable 𝑖 is defined 
as: 
𝑌𝑖 = 

(

𝜇 = 𝑋𝑖, 𝜎
2 = 0.2 × (𝑈𝐵 − 𝐿𝐵)

)

(11)

The parameter 𝜇 = 𝑋𝑖 defines the mean of the distribution, ensuring 
that mutations occur locally around the current solution. The stan-
dard deviation 𝜎 is derived from the problem’s variable bounds and 
is computed as 

√

0.2 × (𝑈𝐵 − 𝐿𝐵). This adaptive normal distribution 
enables a more refined search around the parent solution, allowing 
for better exploitation of promising regions in the search space. The 
use of Gaussian noise is particularly effective in real-valued continuous 
optimisation problems where smooth convergence is desirable [46].
Selection strategy:. Once the new solution 𝑌  is generated, it undergoes 
fitness evaluation. The selection mechanism in 1+1EA follows a greedy 
strategy: 

𝑋(𝑖𝑡𝑒𝑟+1) =

{

𝑌 ,  if 𝑓 (𝑌 ) ≤ 𝑓
(

𝑋(𝑖𝑡𝑒𝑟))

𝑋(𝑖𝑡𝑒𝑟),  otherwise (12)

1+1EA offers the advantage of changing only a small number of 
variables in each iteration. This characteristic allows for a gradual ap-
proach towards a nearly optimal solution. However, for large-scale opti-
misation problems, this can incur significant costs. Empirical evidence 
suggests that simpler EAs can occasionally outperform more complex 
methods. Additionally, 1+1EA proves to be a suitable choice when the 
fitness function involves a combinatorial optimisation problem [47].

3.3. Ensemble learning architectures

In machine learning, ensemble models combine several different 
models, resulting in much better overall predictions [48]. The proce-
dure compensates for the weaknesses that may result from overfitting 
or bias. Now, this can be looked at broadly under three sections: first, 
bagging; second, boosting; and third, stacking. As the model trains 
on varied subsets to reduce variance, an exemplary model created 
with the procedure of ‘bagging ’ is a Random Forest [49]. Boosting, 
in a manner similar to that of Adaptive Boosting (AdaBoost) [50], 
XGBoost [51] and Gradient Boosting [52], tries to decrease the bias 
by iteratively correcting the model’s past mistakes. Stacking takes an 
approach to meta-learning by making use of a high-order model to 
combine the predictions of lower-level base learners. Through their 
ability to aggregate diverse models, these ensemble methods have 
been successful in generalising and providing performance when single-
model techniques fail. Among others, three significant advantages can 
be identified as more important than the benefits created by more 
traditional ML methods in this work: enhanced accuracy, robustness, 
and adaptability. This generally leads to better overall performances, 
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as ensemble methods aggregate several models to minimise both bias 
and variance in error [53]. It is much more robust towards noise and 
outliers among the data points. Above all, most ensemble methods 
can be seamlessly integrated with almost all data and problem types, 
whether classification or regression, making them natural selections for 
complex, practical applications—advantages that fully implement their 
valuable contribution to achieving state-of-the-art machine learning 
tasks.

3.3.1. Stacking ensemble models
Stacking ensemble models typically combines a set of base models 

— usually referred to as the level-0 learners — predictions via a higher-
level meta-model, commonly referred to as the level-1 learner, for 
improving results [54]. Each of the base models uses different algo-
rithms in their training with the same dataset with the aim of ensuring 
diversity that would utilise each of their unique strengths. It is crucial 
that the meta-model learns how to effectively combine the output from 
these base learners in a refined and generally more accurate final 
prediction [55]. The key insight to stacking is when different models 
specialise in combining strengths and other aspects of the problem. 
The advantages include increased predictive accuracy arising due to 
the combination of various models and immense versatility regarding 
the handling of complex challenges.

The framework of stacking can be described in the following steps
[48]: The base models are trained using certain algorithms, the choice 
of which depends on the problem domain and requirements of the 
user. This step involves preparing the base learners using the provided 
training data. These, in turn, are used to develop a new dataset. This 
new dataset will contain the predicted outputs of the base models 
as new features and the actual target labels as corresponding tar-
get values. For example, any instance in the original dataset 𝑅 if of 
the form 𝑎𝑖, 𝑓 (𝑎)𝑖, then the same instance in the new dataset created 
will be in the form 𝑎̂𝑖, 𝑓 (𝑎)𝑖 where 𝑎̂𝑖 is composed of the various 
outputs ℎ1(𝑎𝑖), ℎ2(𝑎2),… , ℎ𝑇 (𝑎𝑖) from the different base models. The 
meta-learner is then trained using this new dataset, hence learning how 
to integrate the predictions of the base models [48]. The meta-model 
is then deployed to combine the outputs from the base models for new, 
unseen data. In stacking, for an out-of-sample instance 𝑎, the ultimate 
prediction is a function from the meta-learner: ℎ̂(ℎ1(𝑎), ℎ2(𝑎),… , ℎ𝑇 (𝑎)), 
with respect to outputs from the base models—the level-0 models. 
However, despite its potential for high accuracy, stacking is not as 
widely adopted as either bagging or boosting due to the complexity 
of its implementation and the potential for data leakage if not handled 
appropriately.

3.3.2. Bagging ensemble models
Bagging, short for bootstrap aggregating, is an ensemble technique 

aimed at reducing the variance of model predictions and improving 
generalisation by combining multiple models [56]. These models are 
trained independently on diverse, randomly generated subsets of ei-
ther the training data or input features. Each is trained separately 
on a different, random subset of the training data or input features. 
Bootstrapping refers to creating 𝑀 sets of data {𝐷1, 𝐷2,… , 𝐷𝑀

} with 
size 𝑛, each drawn with replacement from the original training set 𝐷. 
Mathematically, for each dataset 𝐷𝑚, with 𝑚 = 1, 2,… ,𝑀 , we have: 
𝐷𝑚 =

{(

𝑥𝑖, 𝑦𝑖
)}𝑛

𝑖=1 , 𝐷𝑚 ∼ 𝐷 (13)

Each subset 𝐷𝑚 is used to train a base model ℎ𝑚(𝑥). The final 
prediction is made by aggregating the outputs of these base models: 
For regression tasks, the prediction is given by the average: 

𝑦̂ = 1
𝑀

𝑀
∑

𝑚=1
ℎ𝑚(𝑥) (14)

The final prediction is made by aggregating the outputs of these 
models, using majority voting for classification tasks or averaging 
for regression tasks [57]. A prominent application of Bagging is the 
9 
Random Forest algorithm, which builds numerous decision trees and 
combines their results to produce stable and accurate predictions.

Relative to stacking and boosting, Bagging possesses distinct ad-
vantages. Unlike boosting, which sequentially trains models with the 
emphasis being placed on rectifying errors from the previous iterations, 
Bagging trains its base models in parallel and independently from one 
another [58]. The parallel approach reduces the risk of overfitting and 
enhances computational efficiency. In addition, while stacking com-
bines the heterogeneous algorithm predictions using a meta-learner, 
Bagging tends to employ a single algorithm type to create homogeneous 
models, which are simpler to implement. Another significant benefit 
of Bagging is that it is robust to noisy data and outliers because 
boosting does not assign extra weight to difficult instances. Bagging 
is particularly valuable in applications where variance reduction and 
generating consistent, generalised predictions are key goals.

3.3.3. Voting ensemble models
Voting is one of the most straightforward ensemble learning tech-

niques, and the underlying principle is that combining predictions 
from multiple models yields overall improvements in performance. This 
approach works by aggregating base model outputs by majority vote or 
averaging [59]. Voting ensembles can be composed of homogeneous 
models (i.e., models of the same type trained on different data subsets) 
or heterogeneous models (i.e., models based on different algorithms). 
There are two main types of voting: majority voting for classification 
tasks and averaging for regression tasks. In an 𝑁𝐶 class in a classifica-
tion problem with 𝑁𝑒 base classifiers, the output of the 𝑖t h classifier 
for class 𝑐 is denoted as 𝑂𝑖,𝑐 ∈ {0, 1}, where 𝑂𝑖,𝑐 = 1 if the classifier 
ℎ𝑖 predicts class 𝑐𝑟 and 𝑂𝑖,𝑐 = 0 otherwise. With majority voting, the 
ensemble prediction 𝜔𝑐∗  is the class label that receives the most votes: 

𝑐∗ = arg max
𝑐∈

{

1,…,𝑁𝐶
}

𝑁𝑒
∑

𝑖=1
𝑂𝑖,𝑐 (15)

In weighted majority voting, every classifier ℎ𝑖 is assigned a weight 
𝑤𝑖, which is its estimated reliability or generalisation ability. The class 
𝑐∗ is predicted by computing the weighted sum of votes across all 
classifiers: 

𝑐∗ = arg max
𝑐∈

{

1,…,𝑁𝐶
}

𝑁𝑒
∑

𝑖=1
𝑤𝑖 ⋅ 𝑂𝑖,𝑐 (16)

For regression, voting is replaced by averaging. Each base model 
produces a real-valued output ℎ𝑖(𝑥), and the final prediction 𝑦̂ is taken 
to be the average (or weighted average) of all base outputs: 

𝑦̂ = 1
𝑁𝑒

𝑁𝑒
∑

𝑖=1
ℎ𝑖(𝑥)  (unweighted)  or 𝑦̂ =

𝑁𝑒
∑

𝑖=1
𝑤𝑖 ⋅ℎ𝑖(𝑥)  (weighted) 

(17)

This ensemble process is simple yet effective, particularly when the 
base learners are heterogeneous because it tends to reduce variance 
while enhancing robustness.

3.3.4. Boosting ensemble models
Extreme gradient boosting XGBoost is an innovative machine-

learning methodology that enhances tree-based models through an as-
sembly of classification and regression trees (CART) [51]. This method-
ology is structured on a gradient-boosting framework, which enables 
simultaneous tree boosting. The tree assembly model merges numer-
ous weak learners to forecast the output by applying an incremental 
training approach. The steps of this incremental training are as follows: 
initially, the full scope of input data is adjusted by the first learner, 
after which the residuals, which are used to rectify the deficiencies of 
a weak learner, are modified by a subsequent learner. This adjustment 
procedure is repeated multiple times until the termination condition is 
met. The final prediction of the model is then derived as the cumulative 
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prediction of all learners. The parallel procedures are autonomously 
executed during the training phase, thereby facilitating the efficient 
use of computational resources [60]. Moreover, in order to deal with 
over-fitting issues, an advanced regularised formulation is applied as 
follows: 

𝐿(𝜔) =
𝑁
∑

𝑖
𝑑(𝑦′𝑖 , 𝑦𝑖) +

∑

𝑘
𝜆(𝑓𝑘) (18)

𝜆(𝑓 ) = 𝛼𝑇 + 1∕2𝛽‖𝑠‖2 (19)

where 𝑑 plays the role of the loss function to calculate the difference 
between the predicted value and true value. 𝜆 is the regularisation 
function to penalise the ld complexity of the model. 𝛼 is a threshold 
to extend the leaf node. The weight of the leaf and regularisation 
parameter are shown by 𝑠 and 𝛽, and 𝑇  is the number of tree leaves.

XGBoost offers several advantages contributing to its widespread 
adoption and success in various domains. It can be used in a wide range 
of data types, including numerical, categorical, and text data. Addi-
tionally, XGBoost allows customising loss functions, enabling users to 
specify their objective functions and tailor the model to distinct condi-
tions. Another benefit of XGBoost is offering valuable information about 
the significance of features, qualifying the users to comprehend how 
different predictors contribute to the model’s overall performance [61]. 
Assessing feature importance simplifies the identification of influential 
variables, facilitates feature selection, and enhances the understanding 
of the underlying data.

3.4. Proposed adaptive evolutionary ensemble learning model

This section outlines the technical aspects of the proposed neuro-
evolutionary model for forecasting energy consumption in smart build-
ings. The methodology comprises six main steps: baseline model com-
parison, hyper-parameter selection, and optimisation of the chosen 
model.

• Initially, we selected 15 diverse ML models for evaluation, includ-
ing four traditional algorithms: Support Vector Machine (SVM), 
Logistic Regression (LR), Bayesian Linear Regression (BR), and 
k-nearest Neighbours (KNN). Additionally, we incorporated three 
neural network architectures: Multi-Layer Perceptron (MLP),
Dense Neural Network (DNN), and Convolutional Deep Neural 
Network (CDNN). To further enhance diversity, three tree-based 
models, RF [62], DT, and Extra Tree (ET) were included. Lastly, 
seven ensemble models were trained and assessed: XGBoost [51], 
AdaBoost [63], Gradient Boosting Regressor (GBR) [64],
Histogram-Based Gradient Boosting Regressor (HGBR) [65], Cate-
gorical Boosting (CatBoost) [66], and Light Gradient Boosting Ma-
chine (LGBM). The specific configurations [52] used for training 
these models are detailed in Table S4.

• We developed a robust hybrid ensemble framework that incorpo-
rates three strategies: stacking, bagging, and voting, to enhance 
the learning capability of an individual model by improving its 
predictive accuracy. This effectively fuses the strengths of each 
method in leveraging their complementary mechanisms towards 
a more accurate and reliable predictive model.

• In the stacking ensemble model, the best-performing model
among 15 candidates was selected as the initial base learner, with 
linear regression as the meta-learner. Additional base learners 
were identified using a greedy search approach, incrementally 
adding models that improved performance metrics such as accu-
racy or error reduction. At each step, the combination of base 
learners yielding the highest performance was retained, ensuring 
the inclusion of only the most effective models while avoiding 
redundancy. The same technique was applied to optimise the 
meta-learner, further enhancing the ensemble’s predictive capa-
bility (See Fig.  5). The details of the stacking ensemble model 
procedure can be seen in Algorithm 1 (In Appendix).
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• In the second proposed ensemble model, we began with six 
superior-performing ML methods embedded in a weighted major-
ity vote framework. Then, the models went one by one into the 
removing process, and the performance of the resultant ensemble 
was re-evaluated in the absence of the model that was being 
removed. The process was reiterated to see if this improved the 
accuracy of the prediction result. Then, weights within the final 
resultant ensemble were also optimised using the Nelder–Mead 
local search. The result was an optimal voting model, which only 
contained two methods, XGB and LGBM, having equal weights 
(See Table  6 and Fig.  9).

• Leveraging the unique advantages of bagging ensemble models — 
such as reducing variance, preventing overfitting, and improving 
stability — we developed an adaptive bagging framework. This 
approach involved evaluating nine models trained and tested 
within the bagging framework. The best-performing model, Extra 
Trees, was then selected for further optimisation. To enhance its 
performance, we applied a fast and robust optimisation algorithm, 
1+1 Evolutionary Algorithm (1+1EA), to fine-tune its hyper-
parameters, ensuring optimal predictive accuracy and efficiency 
(See Table  5 and Fig.  8).

• Finally, we implemented and compared four widely used meta-
heuristic algorithms — GA, DE, Particle Swarm Optimisation
(PSO), and 1+1EA — to optimise the hyper-parameters of the 
proposed ensemble models, assessing their effectiveness and per-
formance. Meta-heuristic algorithms explore and find the optimal 
and feasible combination of parameters to maximise the pre-
diction accuracy of total power consumption using IoT-collected 
information. The formulation is represented as follows. 

𝑓 ∗(ℎ) = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝛹𝑓 (ℎ)

Subject to
[ℎ𝑖] ∈ 𝛬, 𝑖 = 1,… , 𝑁ℎ

(20)

where 𝛹 and 𝑁ℎ are the search space and number of hyper-
parameters listed in Table S3. 𝑓 (ℎ) evaluates the machine learn-
ing effectiveness with the set of hyper-parameters ℎ that should 
be maximised. The fitness function (𝑓 (ℎ)) is subjected to the 
boundary constraints (𝛬) listed in Table S4.

For the stacking ensembles’ meta-learner, we selected the top ten 
models performing on cross-validation metrics (R-value, MAE, RMSE). 
This ensured that only those models with very high individual pre-
dictive ability were chosen for the second-level learning process. To 
construct the sub-learner block in stacking and voting ensembles, we 
employed a greedy forward selection strategy. This strategy begins 
with the top-performing model and gradually includes the subsequent 
candidates one by one, only retaining a model if its addition leads 
to a gain in average performance for all measures of evaluation. The 
procedure is iterated until no more models can further enhance the 
predictive performance of the ensemble. Using this method, we pre-
pared and tested ten stacked scenarios, each being compared in terms of 
performance gains. Similarly, in the case of bagging ensembles, we cre-
ated eight models with the ensemble of the top-performing individual 
learners under a single feature space. In the case of voting ensembles, 
a greedy selection strategy demonstrated that gains in performance 
plateaued after two base models at maximum, so we had six fine-tuned 
voting models. Such systematic selection also ensures that resultant 
ensemble structures are not only high-performing but also efficient in 
computation and non-redundant.

In order to ensure guarantees of convergence and stability of in-
dividual learners in the ensemble, our proposed framework (Fig.  5) 
contains several precautions designed to mitigate the impact of non-
converging models on the overall process of training. Each candi-
date learner is first independently tested with K-fold cross-validation, 
thereby separating any instability or non-convergence associated with 
that specific model so that it does not contaminate the integrity of the 



M. Neshat et al. Energy 333 (2025) 137130 
Fig. 5. Schematic flowchart illustrating the workflow of the proposed adaptive evolutionary stacking ensemble model, highlighting the ensemble tree model’s performance as 
determined by the greedy search method.
ensemble. Suppose a learner fails to converge or has a score below some 
threshold. In that case, the greedy selection strategy, illustrated on 
the right of the schematic, removes it systematically from the stacking 
structure. This is based on the difference in performance (𝛥𝑃 ), and 
only those sub-learners that enhance the ensemble’s overall predictive 
accuracy are retained in the transient and subsequently in the per-
manent stack. Moreover, the hyperparameter optimisation module (in 
the top centre of the figure) enhances the likelihood of convergence 
through the application of a metaheuristic search strategy to incre-
mentally tune each learner’s parameters adaptively. This serves the 
purpose of bypassing local optimum areas of parameter space, which 
else could induce training instability or divergence. Finally, the meta-
learner is trained only after the sub-learner block has been completed 
from converged and validated models. Therefore, any non-converging 
learner is naturally excluded from the final ensemble, and the pipeline 
for training is stable, robust, and driven by validated performance 
improvement.

With the modelling framework and optimisation techniques estab-
lished, the following section presents the experimental results. Here, 
we evaluate the predictive performance of the proposed hybrid ensem-
ble models in comparison with baseline machine learning and deep 
learning algorithms using a range of statistical metrics.

4. Experimental results

This study presents the outcomes achieved through the utilisation 
of the proposed three hybrid evolutionary ensemble strategies and 
15 popular ML models in predicting the total power consumption of 
appliances based on a hybrid dataset of meteorological parameters, 
energy use of appliances, temperature, humidity, and lighting energy 
consumption of different sections collected by 18 sensors in a building 
which is located in Stambruges, Mons in Belgium. Additionally, a con-
cise analysis of the key findings from this research is presented. With 
regard to developing a comprehensive and robust comparative predic-
tion framework, 14 effective ML models were selected. Each model 
was independently trained ten times based on 10-fold cross-validation, 
with the percentages of training, validation, and testing set at 80%, 
10%, and 10%, respectively. We employed a parallelised K-fold cross-
validation strategy to address computational demands associated with 
training advanced ensemble models through K-fold cross-validation. 
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Because every fold in cross-validation is independent, model training 
and validation for every fold were executed in parallel on multiple CPU 
cores. This significantly reduced the overall runtime without sacrificing 
cross-validation’s strengths in robustness and generalisability. Specifi-
cally, we utilised parallel computing abilities in Python’s scikit-learn 
package (via n_jobs = −1) and tuned our model pipelines to enable 
parallel processing without compromising reproducibility.

4.1. Evaluation metrics

To assess the performance of the proposed hybrid models alongside 
the other 15 ML models, we utilised seven widely recognised evaluation 
metrics [67], as outlined in Table S2. Among these, MSE, RMSE, MAE, 
MSLE, and SMAPE are metrics where lower values indicate better 
performance. Conversely, higher values are more desirable for EVS and 
R-value, as they reflect greater predictive accuracy and a stronger linear 
relationship between predictions and true values. Where 𝑁𝑠 represents 
the total number of samples, 𝑓𝑒(𝑘) denotes the estimated (predicted) 
output of the model for the 𝑘th  sample, and 𝑓𝑡(𝑘) is the corresponding 
true (target) value.

4.2. Quantitative evaluation and statistical analysis

This section provides a detailed quantitative comparison of the 
proposed models on the basis of statistical performance metrics. Cer-
tain error measures and R-values are used to compare the accuracy, 
robustness, and generalisation capacity of the models with various 
experimental configurations. Comparative statistical analysis with con-
ventional methods is also included to reasonably validate the excellence 
of the proposed framework in predicting energy consumption in smart 
buildings.

4.2.1. Baseline models experimental results
Table  3 presents the statistical results corresponding to 14 ML mod-

els’ performance to predict the power appliances’ consumption using 
six evaluation metrics. The analysis of the provided Table  3 reveals 
intriguing findings regarding various models’ prediction accuracy (R-
value). Notably, the XGBoost model emerged as the top performer, 
exhibiting an impressive average accuracy of 73% across ten runs. We 
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Table 3
Statistical analysis results of the appliances power consumption prediction using 14 well-known machine learning methods, neural networks, deep learning, ensemble, tree-based 
and hybrid methods. 
 SVM MLP

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 9.45E+01 4.11E+01 2.99E−01 3.28E+01 9.46E−02 3.72E−01 Min 8.19E+01 4.24E+01 2.43E−01 3.46E+01 2.79E−01 5.29E−01 
 Max 1.05E+02 4.47E+01 3.30E−01 3.49E+01 1.10E−01 4.15E−01 Max 8.83E+01 5.46E+01 4.60E−01 4.71E+01 3.59E−01 6.00E−01 
 Mean 1.01E+02 4.30E+01 3.14E−01 3.37E+01 1.01E−01 3.85E−01 Mean 8.55E+01 4.69E+01 3.26E−01 4.02E+01 3.20E−01 5.67E−01 
 Median 1.02E+02 4.32E+01 3.15E−01 3.36E+01 1.00E−01 3.81E−01 Median 8.56E+01 4.67E+01 3.05E−01 4.06E+01 3.19E−01 5.66E−01 
 STD 2.61E+00 1.09E+00 9.25E−03 5.24E−01 4.36E−03 1.16E−02 STD 2.16E+00 3.05E+00 6.57E−02 3.05E+00 2.15E−02 1.86E−02 
 DNN CDNN

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 7.22E+01 3.72E+01 2.04E−01 3.10E+01 3.17E−01 5.82E−01 Min 7.38E+01 3.33E+01 1.77E−01 2.68E+01 3.56E−01 6.35E−01 
 Max 8.55E+01 4.37E+01 2.38E−01 3.47E+01 4.80E−01 7.13E−01 Max 8.29E+01 3.66E+01 1.97E−01 2.80E+01 4.53E−01 6.91E−01 
 Mean 8.17E+01 4.08E+01 2.23E−01 3.30E+01 3.89E−01 6.43E−01 Mean 7.80E+01 3.48E+01 1.87E−01 2.72E+01 4.01E−01 6.59E−01 
 Median 8.25E+01 4.15E+01 2.21E−01 3.34E+01 3.77E−01 6.38E−01 Median 7.77E+01 3.49E+01 1.87E−01 2.72E+01 3.96E−01 6.56E−01 
 STD 4.06E+00 1.99E+00 1.29E−02 1.32E+00 4.57E−02 3.58E−02 STD 2.71E+00 1.04E+00 7.20E−03 3.95E−01 2.95E−02 1.70E−02 
 HGBR DT

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 7.11E+01 3.61E+01 1.81E−01 3.02E+01 4.26E−01 6.54E−01 Min 8.56E+01 3.56E+01 2.13E−01 2.60E+01 1.54E−01 5.85E−01 
 Max 7.93E+01 3.96E+01 2.05E−01 3.17E+01 5.12E−01 7.23E−01 Max 9.50E+01 3.94E+01 2.43E−01 2.81E+01 3.05E−01 6.46E−01 
 Mean 7.53E+01 3.76E+01 1.94E−01 3.10E+01 4.64E−01 6.84E−01 Mean 9.01E+01 3.77E+01 2.23E−01 2.70E+01 2.27E−01 6.17E−01 
 Median 7.57E+01 3.78E+01 1.95E−01 3.09E+01 4.61E−01 6.82E−01 Median 9.03E+01 3.77E+01 2.22E−01 2.70E+01 2.37E−01 6.17E−01 
 STD 2.31E+00 8.54E−01 6.40E−03 3.88E−01 2.18E−02 1.73E−02 STD 2.38E+00 9.20E−01 8.54E−03 4.24E−01 4.64E−02 2.01E−02 
 EBM XGB

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 6.61E+01 3.16E+01 1.57E−01 2.55E+01 4.58E−01 6.87E−01 Min 6.76E+01 3.15E+01 1.48E−01 2.46E+01 4.84E−01 7.03E−01 
 Max 7.74E+01 3.54E+01 1.75E−01 2.70E+01 5.47E−01 7.41E−01 Max 7.52E+01 3.48E+01 1.67E−01 2.59E+01 5.58E−01 7.49E−01 
 Mean 7.15E+01 3.37E+01 1.64E−01 2.62E+01 5.06E−01 7.14E−01 Mean 7.09E+01 3.27E+01 1.55E−01 2.52E+01 5.28E−01 7.30E−01 
 Median 7.11E+01 3.36E+01 1.64E−01 2.62E+01 5.06E−01 7.13E−01 Median 7.09E+01 3.25E+01 1.54E−01 2.52E+01 5.27E−01 7.30E−01 
 STD 3.02E+00 9.74E−01 5.03E−03 4.00E−01 2.35E−02 1.53E−02 STD 1.93E+00 7.34E−01 5.23E−03 3.80E−01 1.97E−02 1.24E−02 
 AdaB CatB

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 1.00E+02 6.62E+01 5.12E−01 5.16E+01 −2.83E−01 3.46E−01 Min 6.85E+01 3.43E+01 1.71E−01 2.92E+01 4.79E−01 6.94E−01 
 Max 1.82E+02 1.67E+02 1.68E+00 1.03E+02 1.02E−01 4.01E−01 Max 7.48E+01 3.64E+01 1.87E−01 3.06E+01 5.52E−01 7.45E−01 
 Mean 1.31E+02 1.02E+02 8.96E−01 6.88E+01 −7.98E−02 3.69E−01 Mean 7.10E+01 3.55E+01 1.75E−01 2.98E+01 5.21E−01 7.23E−01 
 Median 1.26E+02 9.56E+01 8.26E−01 6.62E+01 −7.00E−02 3.66E−01 Median 7.07E+01 3.56E+01 1.75E−01 2.98E+01 5.20E−01 7.24E−01 
 STD 2.04E+01 2.40E+01 2.76E−01 1.21E+01 9.37E−02 1.40E−02 STD 1.72E+00 6.65E−01 3.98E−03 3.08E−01 1.61E−02 1.17E−02 
 BR RF

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 9.00E+01 5.20E+01 3.73E−01 4.57E+01 1.52E−01 3.90E−01 Min 6.83E+01 3.36E+01 1.64E−01 2.78E+01 4.67E−01 6.84E−01 
 Max 1.00E+02 5.48E+01 4.34E−01 4.80E+01 1.88E−01 4.35E−01 Max 7.61E+01 3.69E+01 1.82E−01 2.94E+01 5.26E−01 7.34E−01 
 Mean 9.46E+01 5.32E+01 3.90E−01 4.67E+01 1.66E−01 4.07E−01 Mean 7.20E+01 3.49E+01 1.74E−01 2.85E+01 4.96E−01 7.07E−01 
 Median 9.46E+01 5.30E+01 3.86E−01 4.66E+01 1.64E−01 4.04E−01 Median 7.18E+01 3.47E+01 1.75E−01 2.86E+01 4.97E−01 7.08E−01 
 STD 2.52E+00 7.13E−01 1.54E−02 5.37E−01 1.23E−02 1.54E−02 STD 2.42E+00 8.78E−01 5.55E−03 4.10E−01 1.99E−02 1.55E−02 
 GBM LGBM

 RMSE MAE MSLE SMAPE EVS R-value RMSE MAE MSLE SMAPE EVS R-value  
 Min 6.80E+01 3.28E+01 1.57E−01 2.72E+01 4.98E−01 7.06E−01 Min 7.71E+01 4.25E+01 2.60E−01 3.89E+01 3.13E−01 6.16E−01 
 Max 7.40E+01 3.55E+01 1.73E−01 2.85E+01 5.53E−01 7.44E−01 Max 8.68E+01 4.55E+01 2.81E−01 4.06E+01 3.59E−01 6.78E−01 
 Mean 7.08E+01 3.42E+01 1.66E−01 2.80E+01 5.28E−01 7.28E−01 Mean 8.33E+01 4.43E+01 2.72E−01 4.00E+01 3.35E−01 6.47E−01 
 Median 7.02E+01 3.42E+01 1.67E−01 2.80E+01 5.31E−01 7.30E−01 Median 8.40E+01 4.45E+01 2.72E−01 4.01E+01 3.37E−01 6.48E−01 
 STD 1.93E+00 9.19E−01 4.96E−03 3.74E−01 1.45E−02 1.07E−02 STD 2.81E+00 8.44E−01 4.72E−03 4.12E−01 1.07E−02 1.48E−02 
can see that in the best-case scenario, this model achieved a remarkable 
accuracy of 75%. Furthermore, the GBM, CatBoost, and EBM models 
also demonstrated considerable accuracy levels, with respective values 
of 72.8%, 72.3%, and 71.4%. It is worth mentioning that, in general, 
the performance of neural networks and deep learning models, such 
as Dense (DNN) and convolutional (CDNN) deep models, fell slightly 
behind ensemble models in terms of average accuracy. However, it 
is noteworthy to investigate that the AdaBoost model proved to be 
an oddity to this trend. These findings shed light on the comparative 
performance of different models, providing valuable insights for future 
analysis and decision-making processes.

4.2.2. Ensemble learning models result
In this section, we present a detailed discussion, analysis, and 

comparison of the performance of the three proposed evolutionary 
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ensemble models: stacking, bagging, and voting. Finally, we evaluate 
these strategies against one another and identify the most effective 
approach, providing recommendations based on the results.
Stacking ensemble models finding. We evaluated the performance of 
various stacking models by combining multiple ML models as base 
learners and integrating them with meta-learners, as detailed in Table 
4. The highest average accuracy, 80.3%, was achieved with a combi-
nation of ExtraTree, LGBM, RF, and KNN as base learners, paired with 
meta-learners such as Linear Regression or MLP, both yielding similar 
results. On average, stacking models demonstrated approximately a 
10% improvement in prediction accuracy compared to individual ML 
models. Regarding MAE, the stacking model comprising ExtraTree, 
LGBM, RF, and KNN with Linear Regression as the meta-learner out-
performed XGB, LGBM, and RF, with improvements of 91.2%, 159.0%, 
and 102.3%, respectively.
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Table 4
Statistical analysis results of the appliances power consumption prediction using 10 stacking ensemble methods. 
 Stacking (ExtraTree+LGBM+RF+KNN/Cat) Stacking (ExtraTree+LGBM+RF+KNN/linear)

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.04E+01 1.62E+01 7.58E−01 6.96E−02 5.56E−01 1.88E+01 Min 2.70E+01 1.51E+01 7.53E−01 6.63E−02 5.67E−01 1.84E+01 
 Max 3.74E+01 1.91E+01 8.29E−01 9.86E−02 6.86E−01 2.08E+01 Max 3.75E+01 1.89E+01 8.45E−01 9.20E−02 7.10E−01 2.08E+01 
 Mean 3.45E+01 1.78E+01 7.91E−01 8.46E−02 6.22E−01 1.95E+01 Mean 3.29E+01 1.71E+01 8.03E−01 8.02E−02 6.44E−01 1.93E+01 
 Median 3.46E+01 1.78E+01 7.85E−01 8.46E−02 6.16E−01 1.95E+01 Median 3.36E+01 1.73E+01 8.06E−01 8.05E−02 6.47E−01 1.94E+01 
 STD 2.04E+00 8.05E−01 2.03E−02 6.98E−03 3.42E−02 5.45E−01 STD 2.62E+00 9.82E−01 2.10E−02 6.78E−03 3.33E−02 5.94E−01 
 Stacking (ExtraTree+LGBM+RF+KNN/MLP) Stacking (ExtraTree+LGBM+RF+KNN+XGB/CBR)

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.05E+01 1.56E+01 7.35E−01 6.23E−02 5.39E−01 1.74E+01 Min 3.20E+01 1.69E+01 7.41E−01 7.71E−02 5.42E−01 1.85E+01 
 Max 3.82E+01 1.98E+01 8.40E−01 9.68E−02 6.98E−01 2.14E+01 Max 3.87E+01 1.99E+01 8.32E−01 1.01E−01 6.87E−01 2.11E+01 
 Mean 3.38E+01 1.75E+01 8.03E−01 8.24E−02 6.43E−01 1.95E+01 Mean 3.47E+01 1.81E+01 7.88E−01 8.62E−02 6.17E−01 1.97E+01 
 Median 3.33E+01 1.75E+01 8.08E−01 8.33E−02 6.49E−01 1.95E+01 Median 3.44E+01 1.78E+01 7.93E−01 8.49E−02 6.28E−01 1.96E+01 
 STD 2.05E+00 1.08E+00 2.56E−02 7.41E−03 3.98E−02 9.44E−01 STD 1.90E+00 8.33E−01 2.46E−02 5.86E−03 4.07E−02 6.10E−01 
 Stacking (ExtraTree+LGBM+RF+KNN+XGB/KNN) Stacking (ExtraTree+LGBM+RF+KNN+XGB/linear)

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.61E+01 1.89E+01 6.68E−01 1.05E−01 3.86E−01 2.19E+01 Min 3.19E+01 1.69E+01 7.23E−01 7.80E−02 5.16E−01 1.89E+01 
 Max 4.32E+01 2.22E+01 7.56E−01 1.27E−01 5.48E−01 2.37E+01 Max 4.19E+01 2.17E+01 8.12E−01 1.11E−01 6.58E−01 2.21E+01 
 Mean 4.00E+01 2.11E+01 7.20E−01 1.16E−01 4.85E−01 2.29E+01 Mean 3.53E+01 1.88E+01 7.77E−01 8.99E−02 6.00E−01 2.04E+01 
 Median 3.98E+01 2.11E+01 7.26E−01 1.15E−01 4.94E−01 2.30E+01 Median 3.47E+01 1.85E+01 7.82E−01 8.82E−02 6.07E−01 2.03E+01 
 STD 1.84E+00 8.30E−01 2.38E−02 6.74E−03 4.41E−02 5.32E−01 STD 2.55E+00 1.15E+00 2.57E−02 8.58E−03 4.11E−02 7.80E−01 
 Stacking (ExtraTree+LGBM+RF+KNN+XGB/RF) Stacking (ExtraTree+LGBM+RF+KNN+XGB/SVM)

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.17E+01 1.73E+01 7.40E−01 7.83E−02 5.28E−01 1.96E+01 Min 3.12E+01 1.59E+01 7.56E−01 7.18E−02 5.58E−01 1.80E+01 
 Max 3.83E+01 2.03E+01 8.14E−01 1.05E−01 6.60E−01 2.19E+01 Max 3.85E+01 1.92E+01 8.34E−01 9.02E−02 6.74E−01 2.03E+01 
 Mean 3.50E+01 1.88E+01 7.83E−01 9.23E−02 6.08E−01 2.06E+01 Mean 3.44E+01 1.72E+01 8.00E−01 7.97E−02 6.30E−01 1.90E+01 
 Median 3.48E+01 1.87E+01 7.81E−01 9.32E−02 6.07E−01 2.07E+01 Median 3.43E+01 1.71E+01 8.04E−01 7.98E−02 6.33E−01 1.90E+01 
 STD 1.85E+00 8.25E−01 1.97E−02 6.92E−03 3.45E−02 6.10E−01 STD 1.93E+00 8.29E−01 1.74E−02 5.79E−03 2.69E−02 6.61E−01 
 Stacking (ExtraTree+LGBM+RF+KNN+XGB/XGB) Stacking (ExtraTree+LGBM+RF+KNN+XGB/ExtraTree)

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.02E+01 1.67E+01 7.15E−01 7.36E−02 5.05E−01 1.92E+01 Min 3.17E+01 1.71E+01 7.41E−01 7.95E−02 5.30E−01 1.96E+01 
 Max 4.16E+01 2.11E+01 8.44E−01 1.07E−01 7.10E−01 2.19E+01 Max 3.79E+01 2.07E+01 8.21E−01 1.10E−01 6.73E−01 2.26E+01 
 Mean 3.54E+01 1.88E+01 7.85E−01 8.99E−02 6.13E−01 2.05E+01 Mean 3.48E+01 1.87E+01 7.83E−01 9.12E−02 6.09E−01 2.07E+01 
 Median 3.54E+01 1.86E+01 7.80E−01 9.01E−02 6.07E−01 2.05E+01 Median 3.52E+01 1.86E+01 7.81E−01 9.07E−02 6.06E−01 2.06E+01 
 STD 2.43E+00 9.42E−01 2.79E−02 7.63E−03 4.57E−02 6.40E−01 STD 1.98E+00 1.00E+00 2.08E−02 7.84E−03 3.44E−02 7.71E−01 
To evaluate the contribution of each component within the best-
performing stacking model (ST3), a series of ablation experiments 
were conducted by incrementally excluding and including individual 
learners. The prediction accuracy and corresponding MAE for each 
configuration are illustrated in Figure S2. Initially, the stacking model 
was tested using only KNN as the base learner, achieving an av-
erage R-value of 0.76. When Random Forest (RF) was incorporated 
into the ensemble, the model’s accuracy improved by 2.63%, indi-
cating its significant complementary effect. Further enhancement was 
observed upon adding LightGBM (LGBM), resulting in an additional 
2.56% increase in accuracy. Finally, the inclusion of ExtraTree yielded 
a substantial improvement of 5.00%, confirming its valuable contribu-
tion to the ensemble. These results collectively highlight the additive 
performance gains achieved through a carefully structured stacking 
approach.

Bagging ensemble models finding. In the second prediction scenario, we 
developed eight bagging ensemble models selected from 15 ML models 
based on their individual prediction accuracy. As summarised in Table 
5, Bagging Extra-Trees outperformed all other bagging models, achiev-
ing an average accuracy of 82.1%, representing a 9% improvement 
over the standalone Extra-Tree base model. The high performance of 
Bagging Extra-Trees can be attributed to their randomised splitting 
mechanism, which enhances generalisation and reduces the risk of 
overfitting. In contrast, models like XGBoost, CatBoost, and GBR are 
more susceptible to overfitting, particularly on noisy or imbalanced 
datasets, unless carefully regularised.

To assess the effect of the number of estimators on the perfor-
mance of bagging ensembles, we conducted a detailed experiment using 
Bagging with Extra Trees (Bag-ExtraTree, which performed best) and 
13 
XGBoost (Bag-XGB) as base learners. Each model was evaluated across a 
range of ensemble sizes, varying the number of estimators from 1 to 30. 
As can be illustrated in Figure S1, increasing the number of estimators 
initially leads to improvements in both prediction accuracy (R-value) 
and MAE, indicating enhanced generalisation and reduced prediction 
error. However, this trend does not persist until 30. In the case of 
Bag-ExtraTree, performance gains plateau after 14 estimators, while 
Bag-XGB shows diminishing returns beyond 24 estimators. These obser-
vations highlight the importance of selecting an optimal ensemble size 
to avoid unnecessary computational complexity without compromising 
model accuracy.
Voting ensemble models finding. Table  6 presents the statistical predic-
tion results of six voting ensemble models. Among these, the combi-
nation of Extra-Trees and LGBM in a bagging framework achieved the 
highest average accuracy of 80.6%. This superior performance can be 
attributed to the complementary strengths of the two algorithms, as 
their diversity and aggregation enhance overall predictive capabilities. 
The box-and-whisker plot in

4.3. Visual interpretation and model performance insights

This section presents a qualitative overview of the most significant 
experimental results, complementing the quantitative findings in the 
previous section. Using various plots, model behaviour comparisons, 
and performance visualisations, we aspire to provide deeper insight 
into the predictive ability and interpretability of the proposed ensem-
ble learning models. The visualisations help identify temporal trends, 
model robustness, and relative performance of different configurations 
under actual real-world smart building conditions.
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Table 5
Statistical analysis results of the appliances power consumption prediction using four proposed neuro-evolutionary methods. 
 Bag-XGB Bag-CATB

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 2.96E+01 1.57E+01 7.42E−01 6.29E−02 5.47E−01 1.78E+01 Min 3.35E+01 1.88E+01 7.25E−01 9.40E−02 5.20E−01 2.18E+01 
 Max 3.85E+01 1.96E+01 8.66E−01 9.12E−02 7.39E−01 1.99E+01 Max 4.16E+01 2.25E+01 7.95E−01 1.20E−01 6.21E−01 2.43E+01 
 Mean 3.31E+01 1.71E+01 8.09E−01 7.73E−02 6.51E−01 1.90E+01 Mean 3.80E+01 2.08E+01 7.53E−01 1.08E−01 5.56E−01 2.32E+01 
 Median 3.24E+01 1.69E+01 8.13E−01 7.70E−02 6.56E−01 1.90E+01 Median 3.82E+01 2.09E+01 7.49E−01 1.08E−01 5.46E−01 2.32E+01 
 STD 2.68E+00 1.05E+00 2.87E−02 7.07E−03 4.43E−02 6.03E−01 STD 2.23E+00 9.13E−01 2.34E−02 6.09E−03 3.26E−02 6.44E−01 
 Bag-DT Bag-ExtraTree

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 2.85E+01 1.56E+01 7.69E−01 6.50E−02 5.90E−01 1.76E+01 Min 2.96E+01 1.62E+01 7.85E−01 6.70E−02 6.14E−01 1.81E+01 
 Max 3.72E+01 1.92E+01 8.48E−01 9.21E−02 7.17E−01 2.06E+01 Max 3.72E+01 1.81E+01 8.56E−01 8.71E−02 7.30E−01 1.96E+01 
 Mean 3.26E+01 1.69E+01 8.09E−01 7.69E−02 6.52E−01 1.89E+01 Mean 3.28E+01 1.70E+01 8.21E−01 7.66E−02 6.72E−01 1.88E+01 
 Median 3.29E+01 1.70E+01 8.11E−01 7.70E−02 6.56E−01 1.91E+01 Median 3.28E+01 1.71E+01 8.22E−01 7.71E−02 6.75E−01 1.88E+01 
 STD 2.39E+00 9.73E−01 2.39E−02 6.82E−03 3.77E−02 6.87E−01 STD 2.04E+00 5.64E−01 1.95E−02 5.40E−03 3.16E−02 4.58E−01 
 Bag-GBR Bag-LGBM

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.86E+01 2.30E+01 5.96E−01 1.24E−01 3.50E−01 2.58E+01 Min 3.23E+01 1.91E+01 6.85E−01 9.71E−02 4.67E−01 2.21E+01 
 Max 4.73E+01 2.66E+01 7.19E−01 1.59E−01 4.94E−01 2.85E+01 Max 4.43E+01 2.38E+01 7.85E−01 1.30E−01 6.08E−01 2.55E+01 
 Mean 4.27E+01 2.46E+01 6.61E−01 1.43E−01 4.27E−01 2.73E+01 Mean 3.83E+01 2.14E+01 7.36E−01 1.14E−01 5.35E−01 2.38E+01 
 Median 4.31E+01 2.45E+01 6.60E−01 1.43E−01 4.27E−01 2.73E+01 Median 3.83E+01 2.14E+01 7.43E−01 1.14E−01 5.41E−01 2.39E+01 
 STD 2.60E+00 1.00E+00 2.45E−02 9.92E−03 2.88E−02 6.90E−01 STD 2.93E+00 1.25E+00 2.55E−02 8.43E−03 3.54E−02 7.63E−01 
 Bag-RF Bag-KNN

 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.01E+01 1.65E+01 7.67E−01 6.98E−02 5.80E−01 1.88E+01 Min 2.98E+01 1.55E+01 7.90E−01 7.01E−02 6.21E−01 1.76E+01 
 Max 3.69E+01 1.91E+01 8.33E−01 9.61E−02 6.71E−01 2.13E+01 Max 3.74E+01 1.79E+01 8.35E−01 8.62E−02 6.89E−01 1.91E+01 
 Mean 3.36E+01 1.79E+01 7.99E−01 8.38E−02 6.29E−01 2.01E+01 Mean 3.26E+01 1.66E+01 8.08E−01 7.58E−02 6.52E−01 1.85E+01 
 Median 3.39E+01 1.80E+01 8.01E−01 8.50E−02 6.30E−01 2.02E+01 Median 3.26E+01 1.65E+01 8.08E−01 7.48E−02 6.51E−01 1.85E+01 
 STD 1.94E+00 7.82E−01 1.80E−02 7.32E−03 2.57E−02 6.90E−01 STD 1.99E+00 6.66E−01 1.32E−02 4.79E−03 2.02E−02 4.72E−01 
Table 6
Statistical analysis results of the appliances power consumption prediction using six proposed voting ensemble methods. 
 Voting (XGB+LGBM) Voting (XGB+CATB)
 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.23E+01 1.73E+01 7.69E−01 7.61E−02 5.87E−01 1.92E+01 Min 2.86E+01 1.69E+01 7.04E−01 7.74E−02 4.94E−01 1.93E+01 
 Max 3.68E+01 1.97E+01 8.42E−01 9.46E−02 7.06E−01 2.10E+01 Max 3.84E+01 2.04E+01 8.24E−01 1.02E−01 6.74E−01 2.18E+01 
 Mean 3.42E+01 1.82E+01 7.92E−01 8.41E−02 6.27E−01 2.00E+01 Mean 3.47E+01 1.85E+01 7.85E−01 8.79E−02 6.14E−01 2.05E+01 
 Median 3.40E+01 1.81E+01 7.89E−01 8.49E−02 6.22E−01 1.99E+01 Median 3.56E+01 1.83E+01 7.87E−01 8.67E−02 6.17E−01 2.04E+01 
 STD 1.43E+00 6.35E−01 2.05E−02 4.70E−03 3.24E−02 4.71E−01 STD 2.64E+00 1.14E+00 2.60E−02 8.02E−03 3.94E−02 6.92E−01 
 Voting (XGB+KNN) Voting (ExtraTree+LGBM)
 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 3.02E+01 1.60E+01 7.38E−01 7.17E−02 5.36E−01 1.84E+01 Min 2.91E+01 1.61E+01 7.65E−01 7.25E−02 5.85E−01 1.85E+01 
 Max 3.85E+01 1.94E+01 8.40E−01 9.86E−02 7.01E−01 2.10E+01 Max 3.67E+01 1.91E+01 8.48E−01 1.02E−01 7.17E−01 2.11E+01 
 Mean 3.43E+01 1.75E+01 7.98E−01 8.28E−02 6.35E−01 1.93E+01 Mean 3.34E+01 1.75E+01 8.06E−01 8.32E−02 6.48E−01 1.96E+01 
 Median 3.40E+01 1.73E+01 7.95E−01 8.27E−02 6.32E−01 1.91E+01 Median 3.31E+01 1.74E+01 8.05E−01 8.08E−02 6.43E−01 1.94E+01 
 STD 2.19E+00 8.50E−01 2.43E−02 7.51E−03 3.93E−02 6.37E−01 STD 2.10E+00 9.03E−01 2.15E−02 8.19E−03 3.44E−02 7.93E−01 
 Voting (ExtraTree+CATB) Voting (ExtraTree+KNN)
 Metric RMSE MAE R_value MSLE EVS SMAPE Metric RMSE MAE R_value MSLE EVS SMAPE  
 Min 2.99E+01 1.64E+01 7.63E−01 7.01E−02 5.79E−01 1.86E+01 Min 2.87E+01 1.54E+01 7.51E−01 6.66E−02 5.58E−01 1.79E+01 
 Max 3.72E+01 1.94E+01 8.23E−01 9.29E−02 6.76E−01 2.09E+01 Max 3.84E+01 1.93E+01 8.48E−01 9.69E−02 7.19E−01 2.03E+01 
 Mean 3.39E+01 1.80E+01 7.98E−01 8.35E−02 6.35E−01 1.99E+01 Mean 3.40E+01 1.74E+01 7.98E−01 8.27E−02 6.34E−01 1.90E+01 
 Median 3.42E+01 1.82E+01 8.03E−01 8.38E−02 6.41E−01 2.00E+01 Median 3.45E+01 1.77E+01 7.96E−01 8.31E−02 6.33E−01 1.89E+01 
 STD 1.98E+00 7.98E−01 1.83E−02 6.06E−03 2.89E−02 5.58E−01 STD 2.89E+00 1.21E+00 2.31E−02 9.19E−03 3.82E−02 7.82E−01 
4.3.1. Benchmark models results
The box-and-whisker plot 6 presented in this analysis offers a com-

prehensive evaluation of 14 machine and deep learning techniques 
utilised for predicting household appliance energy consumption. This 
evaluation focuses on prediction accuracy and MAE. In plot 6, a box 
is drawn between the first and third quartiles, with a vertical line 
passing through the box at the median. The whiskers extend from 
each quartile to the minimum and maximum values. Additionally, any 
outliers in the dataset are represented by single red crosses on the 
diagram. Upon analysing the plot, it becomes evident that XGBoost 
consistently outperforms other models in terms of the median accuracy 
metric. Following XGBoost, the GBM and Catboost models exhibit 
comparable performances. Furthermore, an intriguing observation can 
14 
be made regarding the effectiveness of adding a convolutional layer to 
a dense model. This enhancement significantly improves the average 
performance of the model, indicating its potential for achieving higher 
accuracy. These findings provide valuable insights into the comparative 
performance of different machine and deep learning techniques in 
predicting household appliance energy consumption. This information 
can aid researchers and practitioners in selecting the most suitable 
models for their specific purposes, thereby enhancing the accuracy of 
energy consumption predictions. Furthermore, Fig.  6(b) presents the 
average absolute validation error for a set of 14 ML models. In terms of 
MSE, XGBoost stands out as the top performer with an impressive score 
of 32. Notably, the EBM model showcases a competitive performance in 
MAE and secures the second rank. Moreover, the GBM, Random Forest, 
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Fig. 6. The box-and-whisker plot of statistical results evaluation for 14 machine and deep learning techniques used for predicting the energy consumption of household appliances, 
based on (a) prediction accuracy (R-value) and (b) mean absolute error (MAE).
Fig. 7. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for the ten stacking ensemble method in predicting the energy consumption of appliances in the 
smart house.
and CDNN models also demonstrate noteworthy performances, yielding 
acceptable results in their respective evaluations. This information 
provides valuable insights and highlights the strengths of XGBoost in 
achieving low MSE while acknowledging the competitive performance 
of the EBM model in MAE. The notable performances of GBM, Random 
Forest, and CDNN further contribute to the range of acceptable results 
obtained. These findings assist in understanding the efficacy of different 
ML models and offer guidance for selecting the most suitable approach 
based on the desired evaluation metric.

4.3.2. Ensemble models findings
Fig.  7 presents the statistical performance of 10 stacking models 

(listed in Table S5) evaluated in terms of R-value and MAE. Among 
these, the best-performing model in terms of median R-value accuracy 
is ST-M3 (ExtraTree+LGBM+RF+KNN/MLP), achieving an accuracy of 
81%. Conversely, the model ST-M8 (ExtraTree+LGBM+RF+KNN+XGB/
SVM) exhibits the lowest median MAE, accurately predicting appliance 
power consumption with a value of approximately 17.1.

Fig.  8 provides a detailed comparison of the eight bagging mod-
els in terms of R-value and MAE. While Bagging KNN demonstrated 
the lowest average MAE among all models, its overall accuracy was 
lower than that of Bagging Extra-Trees, Decision Trees, and XGBoost. 
15 
This highlights a trade-off between minimising error and maximising 
accuracy, with Bagging Extra-Trees striking the best balance among the 
evaluated models.

Fig.  9 illustrates the performance of these models in terms of R-
value and MAE. While Voting(XGB+LGBM) achieved the best median 
R-value, Voting(Extra-Tree+KNN) outperformed other models with the 
lowest average MAE, demonstrating its effectiveness in minimising 
prediction error.

4.3.3. Final comparisons
To ensure a fair comparison among the ensemble models proposed 

in this study, the results are presented in Fig.  10. As observed, the 
Bagging Extra-Trees model significantly outperformed the other en-
semble methods, with a p-value less than 0.05 for both accuracy and 
MAE, indicating its superior predictive performance. Bagging ensem-
bles are particularly effective in scenarios requiring variance reduction, 
noise handling, and robust generalisation across diverse datasets. These 
characteristics make bagging an ideal choice for predicting appliance 
power consumption, outperforming voting and stacking models in this 
context.

The results of the experiment demonstrate the superiority of the 
ExtraTree Bagging ensemble model over the Stacking (ST-M2, ST-M3, 
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Fig. 8. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for eight bagging ensemble method in predicting the energy consumption of appliances in the smart 
house.
Fig. 9. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for six voting ensemble methods in predicting the energy consumption of appliances in the smart 
house.
and ST-M8) and Voting ensemble methods. Specifically, the Bagging 
model achieved the best prediction accuracy rates for all the perfor-
mance metrics. This is because the nature of Bagging reduces variance 
by combining the predictions of several decorrelated ExtraTree base 
models trained on different bootstrap samples. The ExtraTrees’ ran-
domness encourages model diversity and generalisation, thus, more 
stable and precise predictions. The Stacking model, however, relies on 
a meta-model to combine base models, which can sometimes introduce 
additional bias and be susceptible to overfitting if not carefully tuned. 
The Voting ensemble, similarly, treats all base learners equally with-
out dynamically leveraging their individual strengths. These findings 
confirm that Bagging architecture, coupled with ExtraTrees provides a 
more robust and stable solution for energy consumption prediction in 
smart buildings.

4.3.4. Comparison with other techniques
To ensure a comprehensive comparison with previous studies using 

similar datasets, we evaluated 19 machine-learning models adopted 
from the works of Candanedo et al. [32], and Han et al. [68]. These 
models include Affinity Propagation Radial Basis Function (AP-RBF), 
16 
standard Radial Basis Function (RBF) networks, and Backpropaga-
tion (BP) neural networks [68], each tested under varying configura-
tions of hidden nodes to enable a robust and consistent performance 
assessment.

Fig.  11 provides a comparative assessment of RMSE scores of a 
variety of prediction models applied to the same dataset. Among all the 
models, our proposed model, Voting (XGB+KNN) ensemble produced 
the lowest RMSE, indicating superior predictive accuracy. It was closely 
followed by Bag-ExtraTree and ST-M3, both of which also performed 
well with significantly lower error rates than their standard base mod-
els. On the other hand, models such as AP-BP [68] and AP-ELM [68] 
possessed the highest RMSE values, which signifies poor generalisation 
ability and fitness to the target data. Ensemble methods, such as XGB, 
CatB, and HGBR, performed better than individual models, including 
SVM-Radial [32], GBM [32], and RF [32], consistently, reinforcing 
the advantage of ensemble creation in increasing predictability and 
robustness. Besides, neural-based architectures like MLP, DNN, and BP 
of reasonable sizes acted competitively but were sensitive to network 
size and training dynamics. Overall, the results show that ensemble and 
hybrid strategies are highly effective in controlling prediction errors in 
this application field.
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Fig. 10. The box-and-whisker plot of (a) R-value and (b) MAE statistical results for best-performed voting, bagging and stacking ensemble methods in predicting the energy 
consumption of appliances in the smart house.
Fig. 11. Comparative analysis of energy consumption forecasting between the proposed models and prior studies.
4.4. Hyper-parameters optimisation

To evaluate the impact of hyper-parameters on model performance, 
we conducted an analysis using a greedy search, focusing on four key 
hyper-parameters: the number of estimators for Extra-Trees and Bag-
ging, along with the maximum rate of features and samples used during 
training. The optimisation landscape for the number of estimators in 
Extra-Trees and Bagging is depicted in Fig.  12(a). For the Bagging 
ensemble, the number of estimators was evaluated in the range of 5 
to 50, while for the Extra Trees model, the range of 10 to 100 was 
tested. The highest prediction accuracy was achieved with Bagging at 
Ns = 15 and with Extra Trees when the number of estimators exceeded 
60. The results indicate that the number of estimators in the Bagging 
model has a more substantial influence on achieving higher accuracy 
compared to the number of estimators in the Extra-Trees model. Fig. 
12(b) illustrates the prediction accuracy across different configurations 
of maximum sample rate and feature rate. The results indicate that the 
highest accuracy is obtained when both parameters exceed a threshold 
of 0.6, suggesting that retaining a larger proportion of samples and 
features enhances model performance. This highlights the critical role 
17 
of properly tuning the Bagging model’s hyper-parameters for improved 
predictive performance.

In this study, we employed four effective and well-known optimisa-
tion methods to adjust the hyper-parameters of ensemble models. In the 
first step, we focused on XGBoost hyper-parameters optimisation, and 
they are listed in Table S3. Fig.  13 illustrates a comparison of the av-
erage convergence speeds exhibited by these optimisation methods. It 
is important to note that the population size and maximum evaluation 
number are consistent across all methods at 25 and 1000, respectively. 
Upon analysis of Fig.  13, it is evident that XGB-EA demonstrates rapid 
convergence towards a semi-optimal configuration of hyper-parameters 
within the initial 20% of the total evaluation count. However, XGB-
EA encounters challenges when confronted with a local optimum, 
and the mutation strategy employed does not effectively facilitate the 
exploration of alternative feasible regions. Conversely, although XGB-
DE initially displayed a convergence rate lower than that of XGB-PSO 
and XGB-GA during the exploration phase, it ultimately managed to 
discover superior solutions. Considering the computational expense and 
time consumption associated with training the model, we recommend 
employing the 1+1EA meta-heuristic as a hyper-parameter optimiser.
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Fig. 12. Hyper-parameters tuning using grid search for bagging Extra Tree ensemble model.
Moreover, Fig.  13(b) and (c) shows the statistical performance 
analysis of the XGBoost with predefined hyper-parameters and four pro-
posed neuro-evolutionary methods in terms of accuracy and MAE. It is 
crystal clear that the best-performing hybrid model is XGB-DE in terms 
of metrics, accuracy, and MAE. The accuracy and MAE improvement 
of XGB-DE are 3.5% and 7.6% compared with XGBoost.

Table S6 reports more technical comparison results of four evo-
lutionary ensemble models. We can see that the XGB-DE prediction 
results had the minimum distance with the true power consumption 
values confirmed by metrics RMSE, MAE, and MSLE. In terms of the 
correlation coefficient (R-value), all hybrid models performed com-
petitively; however, XGB-DE outperformed the other models. Finally, 
we evaluated the performance of four optimisation methods to en-
hance the Bagging Extra-Trees, best-performed model, as shown in 
Fig.  14. Among the tested methods, 1+1EA (Bag-ET-EA) demonstrated 
the fastest convergence during the initial iterations, highlighting its 
efficiency in optimisation. This experiment confirms that 1+1EA is 
an effective optimiser for fine-tuning hyper-parameters. Additionally, 
the balance between exploration and exploitation for the four hyper-
parameters is illustrated in Fig.  14(b–e), providing further insights into 
the optimisation dynamics of each method.

As can be seen from Fig.  14(b), the optimisation process com-
menced by exploring a wide range of values for the number of Bagging 
estimators, ranging from 10 to 90. Throughout successive iterations, 
the search space became increasingly narrow, echoing the transition 
from exploration to exploitation, and ultimately converged within an 
optimum range of 60 to 65. An identical convergence pattern could 
be observed for the maximum feature rate hyperparameter, plotted in 
Fig.  14(c), where the search process converged around the value of 
0.4. At the highest sample rate Fig.  14(d), the optimiser found good 
performing regions early in the search and converged rapidly to values 
above 0.9, finally settling at 1. Moreover, the number of estimations 
was subjected to an extensive and dense search over a larger space, 
with over 200 evaluations. Despite the wide initial range, the optimiser 
focused on configurations from above 60 estimators onwards and even-
tually settled at 80. Results like these bear testament to the optimiser’s 
fair balance of local refinement and global search, terminating at 
well-chosen hyper-parameters for better model performance.

The quantitative results from Section 4 provide a solid foundation 
for interpreting the practical implications of the proposed approach. In 
this section, we delve into a critical discussion of the findings, high-
lighting performance trends, methodological strengths, and potential 
limitations based on the observed results.
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5. Discussions and future directions

The proposed hybrid evolutionary ensemble models offer principal 
advantages in predicting total power consumption in smart buildings 
by effectively harnessing the merits of diverse learning algorithms and 
strong evolutionary optimisation. By integrating ensemble techniques 
such as Bagging, Stacking, and Voting with adaptive metaheuristic-
based hyper-parameter tuning, the models achieve better accuracy, 
stability, and generalisations on highly dynamic and nonlinear en-
ergy consumption patterns. The hybrid approach enables the model 
to capture sophisticated dependencies between weather conditions, 
occupancy patterns, appliance usage, and ambient factors, typically 
neglected by separate algorithms. Moreover, the evolutionary optimisa-
tion process intelligence searches the hyper-parameter space, free from 
hand-tuning, and circumvents possible overfitting.

5.1. Scalability and dynamic pattern

The adaptive ensemble evolution learning method demonstrated 
in the proposal holds high scalability potential for use across various 
smart building environments with varying occupancy behaviour and 
energy use patterns. This is due to the modularity of the model, where 
multiple base learners (ExtraTrees, XGBoost, LGBM) are blended across 
ensemble frameworks (Bagging, Stacking, and Voting) and leverage 
evolutionary algorithms to drive optimisation of hyper-parameters. 
The combination of diverse learning paradigms enables the model 
to learn linear and nonlinear energy consumption patterns, and the 
evolutionary optimisation adjusts hyper-parameters according to dif-
ferent building-specific data distributions. These capabilities put the 
model in a position to generalise well beyond the current test case, 
particularly when retrained on new data from buildings with different 
spatial configurations, climate regions, or operating schedules.

Furthermore, the hybrid dataset used in this research, which in-
cludes indoor and outdoor temperature, humidity, lighting, occupancy, 
and appliance-level usage, represents a realistic and comprehensive 
sensing environment that is becoming increasingly common in mod-
ern smart buildings. The evolutionary tuning process also enables the 
model to adapt dynamically to changes in input feature importance, 
such as peak-hour demand or seasonal trends, which makes it more 
robust across various environments. Therefore, the model proposed 
is not limited to the Belgian building used for evaluation but can 
also be generalised to other types of buildings, such as commercial 
offices, schools, or housing estates. Follow-up work will focus on testing 
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Fig. 13. (a) A convergence rate comparison for four neuro-evolutionary algorithms, including XGB-GA, XGB-DE, XGB-PSO, and XGB-EA. The lines show the average accuracy 
achieved by whole solutions in each generation.
the generality of the model using transfer learning techniques and 
cross-building training data to facilitate global deployment for energy 
prediction and management in various smart building setups.

5.2. Real-time and computational efficiency

The proposed adaptive models possess great potential for real-time 
deployment in smart building environments. By leveraging the use of 
lightweight learners, such as Extra Trees, within a Bagging framework 
and adjusting the parameters using computationally lightweight meta-
heuristic algorithms, such as the 1+1 EA, the computational overhead 
19 
at both the training and inference phases is significantly reduced. Due 
to its parallelisable nature, the Bagging framework facilitates simulta-
neous training and independent operation of numerous base models, 
making scaling simpler on multi-core or distributed systems. Addition-
ally, the evolutionary optimisation method accelerates convergence to 
optimal model configurations by efficiently exploring the search space, 
which decreases the number of training iterations. These qualities make 
the proposed models highly suitable for real-time or near-real-time 
energy forecasting, where quick adaptation to new sensor readings is 
essential for dynamic energy management and demand-side response 
in smart buildings.
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Fig. 14. (a) Convergence rate of Bagging Extra-tree’s hyper-parameters tuning using four optimisation methods and the exploration of parameters search space, (b) Bagging 
estimator number, (c) maximum feature rate of Bagging, (d) maximum sample rate of Bagging, and (e) estimator number of Extra tree method.
Additionally, the framework’s computational efficiency was verified 
by monitoring training and prediction run times during cross-validation 
experiments. Compared to traditional ensemble models such as boost-
ing models (e.g., XGBoost, CatBoost, GBM) which involve sequential 
model updating and longer processing, the proposed Bagging-based 
model, enhanced by evolutionary tuning, consistently had lower com-
putational costs without sacrificing predictive accuracy. This accuracy-
efficiency trade-off ensures the practical viability of deploying the 
model in real building management systems, where timely forecasting 
is crucial for energy scheduling, load balancing, and integration with 
renewable sources. Thus, the hybrid evolutionary ensemble method 
improves the forecasting accuracy and meets the operational require-
ments of smart building applications in terms of speed, scalability, and 
resource efficiency.

5.3. Future directions

Future research will focus on enhancing the applicability and ro-
bustness of the proposed adaptive evolutionary ensemble models by 
their broader implementation in different building typologies and cli-
matic zones. This will be realised by integrating diversified, large-scale 
datasets with varying occupancy schedules, appliance utilisation pro-
files, architectural features, types of HVAC systems, and external envi-
ronmental factors such as solar irradiance, wind speed, and air quality. 
By including a more extensive set of input features, the model will 
generalise better to residential, commercial, and institutional buildings 
with different temporal and spatial patterns of energy consumption. 
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Additionally, an effort will be made to integrate real-time data stream-
ing into the prediction pipeline, allowing the model to operate in an 
online learning mode. This will enable the forecasting engine to adjust 
its parameters in real time as it receives new sensor data, thereby 
delivering more accurate and responsive control in dynamic energy 
management systems.

Advanced optimisation techniques, such as multi-objective evolu-
tionary algorithms, cooperative coevolution, and meta-reinforcement 
learning, will be explored to attain further improvements in model 
convergence speed, scalability, and flexibility. Finally, incorporating 
renewable energy forecasting, such as photovoltaic and wind power 
generation, into the ensemble framework will help develop smart, 
carbon-aware decision-making systems. These enhancements will not 
only improve forecast accuracy but also enable real-time load balanc-
ing, demand-side management, and, ultimately, the decarbonisation 
and sustainability of future smart buildings.

Future research will also focus on applying the model developed 
to other forms of smart buildings with varying configurations and 
usage patterns. To enhance the objectivity and generalisability of the 
model, we also intend to incorporate standardised building classifica-
tion systems and develop a taxonomy-based modelling process that 
accounts for variations in room types, appliance densities, and user 
usage patterns. In addition, applying the framework to multi-building 
datasets will provide cross-building validation and more scalable and 
policy-relevant energy forecasting solutions.

Having discussed the key outcomes and their relevance, the final 
section concludes the study by summarising the major contributions, 
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acknowledging inherent limitations, and outlining future directions for 
improving energy forecasting models in smart building environments.

6. Conclusion

In conclusion, the building sector accounts for a significant portion 
of global energy consumption and plays a crucial role in future decar-
bonisation efforts. Therefore, developing reliable and accurate energy 
demand forecasting models is crucial for effectively managing energy 
consumption and enhancing energy efficiency in smart buildings.

This paper addresses the challenges of predicting total energy use 
in smart buildings, complicated by temporal oscillations and complex 
linear and non-linear patterns. To overcome these challenges, the paper 
proposes three adaptive evolutionary ensemble models that integrate 
various bagging, stacking and voting models with a fast and effec-
tive evolutionary hyper-parameters tuner. Data filtering and automatic 
outlier removal techniques were also employed to extract relevant 
parameters and enhance prediction accuracy.

The proposed energy forecasting model was evaluated using a hy-
brid dataset encompassing meteorological parameters, appliance en-
ergy use, temperature, humidity, and lighting energy consumption data 
collected from 18 sensors in a Stambruges, Mons, Belgium building. To 
benchmark the performance of the proposed model, it was compared 
against 15 popular ML models, including classic ML models, neural 
networks, decision trees, random forests, deep learning models, and 
ensemble models. The findings demonstrate that the adaptive evolu-
tionary bagging model outperformed the other prediction models in 
terms of accuracy and learning error. Specifically, it achieved accuracy 
improvements of 12.6%, 13.7%, 12.9%, 27.04%, and 17.4% compared 
to XGB, CatBoost, GBM, LGBM, and RF, respectively. These results high-
light the effectiveness of the advanced evolutionary ensemble approach 
for energy demand forecasting in intelligent buildings. By surpassing 
the performance of various established ML models, the proposed model 
showcases its potential to enhance prediction accuracy and contribute 
to efficient energy management in smart buildings.
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