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The challenge of predicting relative dry density (Dr) in granular materials is addressed through advanced mathematical modelling
and machine learning (ML) techniques. A novel approach to optimise ensemble learning algorithms is presented, with a focus
placed on the mathematical foundations of these methods. An experimental dataset obtained from a mobile pluviator was utilised
to develop and analyse various ML models. The mathematical analysis was centred on the optimisation and comparative perfor-
mance of ensemble methods, with particular emphasis given to gradient boosting regression (GBR), AdaBoost regression, and
extreme gradient boosting (XGBoost). The mathematical formulation of the GBR model was rigorously examined and optimised
using advanced tuning functions, achieving exceptional performance metrics (mean squared error [MSE]= 11.91, mean absolute
error [MAE]= 1.93, R2= 0.997). Through sensitivity analysis, it was revealed that the distance between the shutter plate and the top
sieve is the most significant factor affecting Dr prediction. A computational platform was developed within the Google Colab
environment, demonstrating the practical application of the mathematical models. This research contributes to applied mathe-
matics by showcasing advanced algorithmic approaches to solving complex geotechnical engineering problems while providing a
rigorous mathematical foundation for future developments.
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1. Introduction

Small-scale laboratory testing conducted either under normal
gravity or in a centrifugal acceleration field is a crucial research
strategy in geotechnical engineering. These tests are typically
designed to replicate large-scale geotechnical issues using sig-
nificantly smaller models in a controlled laboratory setting [1].
One of the main controlled parameters in small-scale labora-
tory testing on sandy soils is the relative density (Dr) [2]. This
parameter has a positive correlation with sandy soil strength, as

reported in previous studies [3–5]. It is crucial to obtain a
uniform sand sample with a constant Dr to achieve high accu-
racy and consistency when investigating soil characteristics.
Unlike clay specimens, which can be uniformly trimmed
from a large consolidated block, sandy soils lack natural cohe-
sion, making it difficult to create uniform samples. Conse-
quently, each sandy specimen must be individually prepared
for testing, complicating the process. Therefore, reconstituting
sandy samples in the laboratory is desirable. The preparation
methods for sandy soil samples must consider several criteria,
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including the preparation of both dense and loose samples,
ensuring a uniform void ratio, and achieving a well-mixed
sample without particle segregation [6].

Reconstituted sands using the air pluviation method
involve creating sand samples by allowing sand to fall through
the air into a container, achieving a uniform distribution and
desired density for laboratory testing. This method utilises a
controlled setup where sand is released at a regulated rate from
a specific height through a hopper or funnel, ensuring consis-
tent deposition and reducing particle segregation. By adjusting
the height and flow rate, different target densities can be
achieved, with higher drop heights leading to denser packing.
The air pluviation method offers advantages, such as unifor-
mity, precise density control, and reproducibility, making it
ideal for geotechnical testing of soil properties like shear
strength, compressibility, and permeability, as well as for
research purposes to study the behaviour of sands under vari-
ous conditions and validate theoretical models [7].

Despite research on pluviation methods for preparing
sandy soil samples [8–10] and the acknowledged challenges
of this process in terms of time, cost, and complexity, a crucial
gap remains. To date, no research has appliedmachine learning
(ML) techniques to predict theDr of sandy soils prepared using
a mobile pluviator. AlthoughML has demonstrated significant
success across various engineering problems [11–14] and geo-
technical engineering tasks, including predicting pile bearing
capacity [15–19], analysing slope stability [20–24], classifying
soils [25, 26], evaluating ground improvement [27–32], asses-
sing soil liquefaction [33–35], determining sand content [36],
and estimating other geotechnical parameters [37], its applica-
tion to predictingDr based on mobile pluviator parameters has
not yet been explored.

This research directly addresses the current gap in sand Dr

prediction by developing and applyingMLmodels for accurate
and efficient Dr estimation. This novel approach aims to
improve the control and consistency of sand sample prepara-
tion for geotechnical testing, an area that has not been

extensively explored using automated ML techniques. Specifi-
cally, this study is among the first to leverage automated model
selection and explainable AI tools for Dr prediction in
laboratory-prepared sandy soils. To achieve this, we collect
data frommobile pluviator tests, incorporating key parameters,
such as D50, shutter plate porosity, and sand fall height. The
dataset is preprocessed and used to train a variety ofMLmodels
within a Google Colab environment using the PyCaret library,
which systematically compares and ranks models based on
their performance. Model accuracy is rigorously evaluated
using metrics, including mean squared error (MSE), mean
absolute error (MAE), and the coefficient of determination
(R2), ensuring the most robust model is selected. A compre-
hensive sensitivity analysis utilising SHAP values is conducted
to identify the most influential factors affecting Dr, providing
valuable interpretability to the ML predictions. As an addi-
tional contribution, the optimal model is further fine-tuned
for maximum predictive accuracy, and a user-friendly web-
based platform is developed within Google Colab. This plat-
form enables geotechnical researchers to easily estimate Dr,
representing a significant step towards the practical adoption
of ML-driven tools in soil testing laboratories.

2. Data Collection for Estimating Dr

We encourage geotechnical researchers to examine the experi-
mental dataset used in this study, which was also utilised for
developingMLmodels in the study by Khari et al. [7]. Here, we
briefly review the testing methods employed by Khari et al. [7].
Themobile pluviator used in their study is depicted in Figure 1.
This device primarily consists of a soil bin (hopper), a diffuser
system (three sieves), a sand collector, and a fixing device that
holds these components together, allowing the entire system to
be supported by a movable steel frame. The fixing device
includes three steel pipes arranged in a circle with a 20 cm
diameter. The sand hopper, which stores the sand, is conical
with a base diameter of 20 cm. Controlling the sand deposition

Sand hopper 

Sand jets 

Sand collector 

Sieves 

Sand rainy 

Steel profile 

F 

H 

FIGURE 1: Mobile pluviator (Khari et al. [7]).
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intensity was crucial for achieving the desired relative density,
as it regulated the sand mass flow rate. To this end, various
arrangements of holes, differing in diameter and number, were
tested. These patterns were created on a wooden perforated
plate with a diameter of 20 cm (known as the shutter plate).
Four shutter plate patterns with different hole arrangements
were used to control the soil discharge rate. These interchange-
able circular wooden plates were installed at the bottom of the
sand hopper, with porosities of 0.8%, 1.88%, 5.25%, and 5.5%.
The drop distance (H), defined as the distance between the
bottom sieve and the sand surface within the collector, is a
crucial parameter for achieving terminal velocity and the
desired relative density. Therefore, this distance should be
equal to or greater than the height determined during sand
pluviation. Additionally, the height F (distance between the
shutter plate and the top sieve) and H complement each other
in this setup.

To estimate the Dr, 84 tests from the study by Khari et al.
[7] using three different sandy soils were selected. In these tests,
the parameters D50 (mm), area (%) as porosities of the shutter
plate, H (cm), and F (cm) were chosen as inputs for the ML
models, with Dr (%) as the target variable. Figure 2a–d illus-
trates the statistical information of the parameters used.

3. Design of ML Models

The present study utilised Pycaret (https://pycaret.org/), a
Python-based ML library developed by Ali [38]. Pycaret is an

open-source, low-code tool built primarily on the scikit-learn
library (https://scikit-learn.org/). It integrates various widely
usedML libraries in Python (Table 1), facilitating a streamlined
and user-friendly experience. Key features of Pycaret include
“compare_models ()”, which allows for the comparison of
model performance, and “ensemble_model ()”, which com-
bines predictions from multiple models to enhance accuracy.
Table 1 presents the details of the data divisions and the train-
ing process using the Pycaret library.

Our goal was to predict the Dr of sandy soils using ML
models, treating Dr as a regression target. The original dataset
comprised 84 observations, each with five features. Following
preprocessing, the dataset maintained its original shape of 84
observations and five features. The data was then divided into a
training set with 58 observations and a test set with 26 observa-
tions. To ensure robust model validation andminimise the risk
of overfitting, we employed a 10-fold K-fold cross-validation
approach during the training and evaluation of all ML models.
The preprocessing steps and model training were conducted
using Pycaret in the Google Colab Integrated Development
Environment. The developed code is presented below in
Table 1.

Developed code in PyCaret:

from pycaret:regression import ∗
import pandas as pd

data¼ pd:read csv ’data:csv0ð Þ
exp¼ setup data¼ data; target¼0Dr %ð Þ0; train size¼ 0:7; fold ¼ 10;ð
numeric features¼ 0D50 mmð Þ0; ’Area %ð Þ0; 0H cmð Þ0; 0F cmð Þ0½ �;
preprocess¼ True; fold strategy ¼ 0kfold0; session id ¼ 123Þ
gbr ¼ create model 0gbr0ð Þ
tuned gbr ¼ tune model gbr; optimize¼0R20ð Þ
feature importance¼ get feature importance tuned gbrð Þ
final model ¼ finalize model tuned gbrð Þ
save model final model; 0gbr model final0ð Þ

:

4. Results and Discussions

4.1. Correlation Matrix. Figure 3 presents the correlation
matrix illustrating the relationships between the input and tar-
get variables in the dataset. The matrix displays correlation
coefficients, which indicate the degree to which changes in
one variable are associated with changes in another, indepen-
dent of the influence of other parameters. Therefore, interpre-
tation of these coefficients should be done with caution. As
shown, the parameter F (cm), the distance between the shutter
plate and the top sieve, exhibits the strongest correlation with
Dr, with a value of 0.78. This strong positive relationship is
expected, given the physical significance of F in the

experimental setup. In contrast, the parameter H, defined as
the distance between the bottom sieve and the sand surface
within the collector, has a negative correlation with Dr at
−0.65, indicating an inverse relationship relative to F. The
D50 parameter, representing the particle size at which 50% of
the soil’s mass is finer, shows a weaker positive correlation with
Dr (0.15). While this value is relatively low, it suggests that a
larger D50, which reflects coarser grains, may contribute to an
increase in relative density and shear strength [39], thus justi-
fying the observed positive correlation.

4.2. Identification of the Optimal ML Model. Pycaret simpli-
fies theMLworkflow by automating numerous steps, including

Advances in Civil Engineering 3
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FIGURE 2: Details of the input and target parameters. (a) D50, (b) area (%), (c) H (cm), (d) F (cm), and (e) Dr.
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model training, comparison, ensembling, and tuning. It trains
multiple models on the dataset, evaluates their performance,
and aids in selecting the bestmodel for the task. Upon initiating
the training of ML models, Pycaret ranks all the default ML
models based on performance indices, such as MSE, MAE, and
R2. Figure 4a–c illustrates these comparisons according to the
mentioned performance indices.

As shown in Figure 4a, the top three ML models based on
MSE are gradient boosting regression (GBR), AdaBoost regres-
sor, and extreme gradient boosting (XGBoost), with GBR having
the lowest MSE of 11.91. Similarly, Figure 4b indicates that GBR
also ranked first with an MAE of 1.93, while AdaBoost had an
MAE of 2.47. In the final plot, as Figure 4c of performance
indices, the R2 values of the ML models are compared. The
top fiveML models demonstrated satisfactory R2 values, with
GBR showing an R2 of 0.935. Conversely, several models, such
as elastic net, linear regression, lasso regression, and Huber
regression, exhibited negative R2 values. This negative R2 is a
clear indication that these models are not suitable for the data,
and alternative models or features should be considered. Based
on the mentioned results, the GBR was found and selected to be
the best ML model for this study. Therefore, in this section, the
application and structure of this ML model are presented.

GBR is a powerful ML technique known for its predictive
accuracy. It belongs to the family of boosting algorithms, which
iteratively combine the predictions of multiple weak learners,
typically decision trees, to create a strong learner. Unlike bag-
ging methods like Random Forest, which train weak learners
independently, GBR trains them sequentially, with each subse-
quent tree correcting the errors of its predecessors. This
sequential approach allows GBR to focus on the more diffi-
cult-to-predict instances, gradually improving the overall
model performance [38]. The core idea behind GBR is to min-
imise a loss function, which measures the difference between
the predicted and actual values. In each iteration, a new deci-
sion tree is trained to predict the negative gradient of the loss
function with respect to the previous predictions. This negative
gradient represents the direction andmagnitude of the steepest
descent towards the minimum of the loss function. By adding
the predictions of this new tree, weighted by a learning rate, the
overall model moves closer to the optimal solution. This pro-
cess is repeated for a specified number of iterations, or until the
loss function converges [12].

Furthermore, its effectiveness with limited datasets aligns
well with the practical constraints of laboratory testing. The
ensemble nature of GBR, combining multiple weak learners,
makes it robust against overfitting, a critical concern when
developing predictive models with limited data. Finally,
GBR’s successful application in various geotechnical contexts,
as demonstrated in existing literature [40–46], supports its
suitability for predicting relative density from mobile pluviator
data.

4.3. Tuning the GBR Model. Pycaret simplified the ML work-
flow by automating many steps, including model training,
comparison, ensembling, and tuning. The tune_model func-
tion was used to optimise the hyperparameters of the GBR
model. This function explores the hyperparameter space
using a grid search or randomised search approach and eval-
uates the performance of the GBR model with different com-
binations of hyperparameters. The evaluation metric used for
tuning was MSE. The detailed hyperparameters of the tuned
gradient boosting regressor model are presented in Table 2.
The value of alpha, set to 0.9, is used for quantile loss func-
tions to specify the desired quantile. This setting fine-tunes
the model to focus on a specific quantile, indicating an
emphasis on robust performance across different quantiles
of the target distribution. The parameter ccp_alpha, set to
0.0, represents the complexity parameter used for minimal
cost-complexity pruning. This implies no pruning, allowing
the model to grow without restrictions from cost-complexity
considerations. Additionally, a learning rate of 0.1 was
employed to control the contribution of each tree to the final
model. This value balances the model’s learning speed and
accuracy, preventing overfitting while ensuring adequate
learning. The parameter max_depth, set to 3, limits the maxi-
mum depth of individual trees in the ensemble. A depth of
three strikes a balance between capturing complex patterns
and preventing overfitting.

Furthermore, the parameter max_features is set to none,
allowing each tree to consider all available features when

TABLE 1: Details of the ML training.

Parameters Values

Target Dr (%)
Target type Regression
Original data shape (84, 5)
Transformed data shape (84, 5)
Transformed train set shape (58, 5)
Transformed test set shape (26, 5)
Numeric features 4
Preprocess True
Fold generator K-fold
Fold number 10
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FIGURE 4: Performance indices of the ML models: (a) MSE, (b) MAE, and (c) R2.
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looking for the best split, ensuring comprehensive utilisation of
the dataset’s information. The parameter max_leaf_nodes, also
set to None, permits unlimited growth in terms of leaf nodes
per tree, enabling each tree to capture detailed patterns in the
data. The parameter min_impurity_decrease, set to 0.0, indi-
cates that a split will only be made if it results in a decrease in
impurity greater than or equal to this value. This default setting

ensures that splits are only made when they improve the mod-
el’s accuracy. Lastly, the parameter min_samples_leaf, set to 1,
specifies the minimum number of samples required to be at a
leaf node, allowing the model to capture fine-grained patterns
in the data [38]. The source code and the algorithm of the GBR
model are presented after Table 2.

Source code of the GBR model in scikit-learn:

class sklearn:ensemble:GradientBoostingRegressor
∗; loss¼ ’squared_error’; learningrate¼ 0:1; nestimators¼ 100; subsampleð

¼ 1:0; criterion ¼ ’f riedman mse’; ~min samples split ¼ 2;minsamplesleaf

¼ 1; min_weight_fraction_leaf ¼ 0:0;max_depth¼ 3; min_impurity_decrease
¼ 0:0; init ¼ None; random_state¼ None; max_features¼ None; alpha
¼ 0:9; verbose¼ 0; max_leaf _nodes¼ None; warm_start
¼ False; validation_fraction¼ 0:1; niternochange¼ None; tol
¼ 0:0001; ccpalpha¼ 0:0Þ

4.4. Performance Indices of the GBR Model. Figure 5 depicts
the recursive feature elimination with cross-validation
(RFECV) process for the tuned_GBR model, which is used to
identify the optimal number of features for predicting theDr. In
this figure, the x-axis shows the number of features included in
each iteration of the RFECV process, while the y-axis displays
the performance score of the GBR model, assessed through
cross-validation. A higher score on the y-axis indicates better
model performance. The solid line represents the change in
performance score as more features are added, with an
upward trend indicating improved model performance with
additional features. In this study, all four features were
selected as the optimal subset, achieving the highest score
of 0.935.

Figure 6 illustrates the regression indices of the tuned_GBR
model for both the training and test datasets. The training data,
represented by blue points, shows an exceptionally high R2

value of 0.997, indicating that the model captures the training
data very accurately. In contrast, the test data, represented by
green points, have a lower R2 value of 0.876, reflecting a

reduction in performance when the model is tested on new
data. The residuals for both sets are generally centred around
zero, suggesting that the model’s predictions are unbiased on
average. However, there are some larger residuals in the test set,
particularly around the predicted value of 60, where several
green points fall significantly below the zero line. The accom-
panying histogram on the right side of the plot displays the
residual distribution, showing that while most errors are close
to zero, there are some noticeable outliers, particularly on the
negative side.

4.5. Sensitivity Analysis and Model Deployment. Figure 7 pre-
sents the feature importance as determined by SHAP (SHapley
Additive exPlanations) values for the tuned GBRmodel. SHAP
values provide an interpretable measure of each feature’s con-
tribution to the model’s predictions, with the x-axis represent-
ing the average impact on the predicted Dr. The bar chart
clearly indicates that “F (cm)” the distance between the shutter
plate and the top sieve has the highest average SHAP value,
making it the most influential feature for Dr prediction. This

TABLE 2: Details of tuned_GBR model.

Parameters Values

alpha 0.9
ccp_alpha 0.0
criterion friedman_mse
Init None
learning_rate 0.1
Loss squared_error
max_depth 3
max_features None
max_leaf_nodes None
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
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Input:

• Training dataset containing features and target values

• Number of iterations (M)

• Learning rate (η)

• Loss function

• Base learner type (typically decision trees)

Ourput:

• Final ensemble model

Algorithm Steps:

1. Initialisation Phase:

◦ Initialise the model with the mean value of the target variable

◦ This serves as the starting point for predictions

2. Iterative Boosting Process: For each iteration m from 1 to M:

Step A: Residual Calculation

◦ Calculate the difference between actual and predicted values

◦ These differences represent the current model’s errors

◦ Store these residuals for the next step

Step B: Base Learner Training

◦ Train a new base learner (decision tree) using:

▪ Input features as independent variables

▪ Residuals from Step A as target variables

◦ The base learner aims to predict the residuals

Step C: Optimisation

◦ Determine the optimal weight for the new base learner

◦ This weight controls how much the new learner contributes

◦ Usually implemented through line search optimization

Step D: Model Update

◦ Add the weighted base learner to the ensemble

◦ Scale the contribution by the learning rate

◦ Update the current model’s predictions

3. Final Model Assembly:

◦ Combine all base learners into the final ensemble

◦ Each learner is weighted by their determined contribution

◦ The learning rate scales all contributions

ALGORITHM 1: Gradient boosting regression (GBR).
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FIGURE 5: RFECV curve of the GBR model. The blue line represents
the modelʼs accuracy as the number of selected features varies,
helping to identify the optimal number of features that yields the
best performance.
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underscores the importance of “F” in laboratory settings, as
changes in this distance directly affect the texture and packing
structure of the deposited sand. Variations in “F” alter the
energy and trajectory of falling sand grains, which influence
their spatial arrangement and compaction, ultimately shaping
the relative density and formation of the soil layer.

Following “F,” the D50 parameter, the median particle size
emerges as the nextmost significant feature. D50 represents the
grain size at which 50% of the soil’s mass is finer, serving as a
key indicator of gradation and textural properties. An increase
in D50 indicates coarser grains, which can lead to changes in
packing density, permeability, and shear strength. Thus, the
prominence of D50 in the model aligns with its influence on
achievable relative density during sand deposition. The features
area (%) andH (cm) also contribute to the model’s predictions,
though to a lesser extent, as reflected in their lower average
SHAP values.

In the era of ML, merely developing predictive models is
not sufficient without accompanying advancements in usability
and practical application. As highlighted by the study, while
ML models, such as the gradient boosting regressor, AdaBoost
regressor, and XGBoost can significantly enhance the accuracy
of soil density predictions, their effectiveness is limited if not

coupled with user-friendly platforms. Without these practical
tools, the full potential of ML models remains untapped in
geotechnical engineering. The development of accessible inter-
faces, such as the web platform created in this study, is crucial
for making these sophisticated models practical and beneficial
for researchers and practitioners. For this matter, Figure 8 illus-
trates an online platform provided by the PyCaret library,
designed for checking and evaluating individual predictions.
This platform allows users to input data into the tuned GBR
model and compare the model’s output with the actual target
values. For instance, as shown in Figure 8, test case number 39
was entered into the model, resulting in a predicted Dr value of
89.79%, while the observed value was 91%. This platform serves
as a reliable and user-friendly tool for geotechnical researchers,
facilitating accurate estimation of Dr and offering a straightfor-
ward interface for practical application.

5. Limitations and Future Work

This study has certain limitations, most notably the relatively
small dataset of 84 tests, whichmay affect the generalizability of
the developed MLmodels. Although the models demonstrated
strong performance within the existing dataset, their

FIGURE 7: Sensitivity analysis of the tuned_GBR model.

FIGURE 8: Predictions using the tuned_GBR model.
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effectiveness may vary when applied to other sand types or
under real-world conditions. Additionally, our analysis primar-
ily focused on ensemble learning algorithms, namely GBR,
AdaBoost, and XGBoost. We acknowledge that a broader
exploration of alternative ML approaches could further
strengthen the robustness and applicability of our findings.
Methods, such as support vector regression (SVR) and Gauss-
ian Process Regression (GPR), which are well-suited for small
datasets, may offer valuable insights for predicting relative den-
sity. Advanced frameworks like LightGBM and CatBoost, as
well as neural models, such as small-scale multilayer percep-
trons (MLPs) with appropriate regularisation, could also pro-
vide complementary performance metrics and interpretability.
Systematic comparison with these techniques was beyond the
scope of this study, but we recommend their inclusion in future
research to provide a more comprehensive assessment of ML
methods in geotechnical applications.

To address these limitations, future work should focus on
expanding the dataset to include a broader range of sand types
and experimental conditions, as well as incorporating addi-
tional influential features. Furthermore, evaluating the models
with independent datasets and exploring more advanced ML
techniques could further improve their performance, generaliz-
ability, and robustness.

6. Conclusions

This study presented a comprehensive investigation into pre-
dicting the relative dry density (Dr) of sand in laboratory set-
tings through advanced ML techniques. The research
addressed a critical challenge in geotechnical engineering by
developing reliable and accurate prediction models for soil
density estimation. Among the various ML algorithms tested,
the gradient boosting regressor, AdaBoost regressor, and
XGBoost models demonstrated exceptional predictive capabil-
ities, with the GBR model emerging as the superior performer.
The GBRmodel achieved remarkable accuracy metrics, includ-
ing a MSE of 11.91, a MAE of 1.93, and a coefficient of deter-
mination (R2) of 0.997, indicating its robust predictive power.
Through detailed sensitivity analysis, the study identified that
the distance between the shutter plate and the top sieve
emerged as the most influential parameter affecting Dr predic-
tions, providing valuable understanding for experimental setup
optimisation. To bridge the gap between research and practical
application, user-friendly web platforms were developed within
the Google Colab interface, enabling geotechnical researchers
to readily access and utilise these advanced prediction tools in
their laboratory work. The platform’s accessibility and ease of
use represented a significant step forward in implementingML
techniques in geotechnical engineering practice. The study’s
findings not only demonstrated the potential of ML in enhanc-
ing the precision of soil density predictions but also provided
practical tools and methodologies that contributed to advanc-
ing geotechnical engineering research and practice. This inte-
gration of advanced computational methods with traditional
geotechnical engineering approaches marked a significant
advancement in the field, offering new possibilities for more
accurate and efficient soil characterisation methods.
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