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Abstract: The sustainable integration of Distributed Energy Resources (DER) with the next-
generation distribution networks requires robust, adaptive, and accurate hosting capacity
(HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for
power import/export to the grid, ensuring dynamic DER integration and efficient network
operation. However, conventional HC analysis and forecasting approaches struggle to
capture temporal dependencies, the impact of DOE constraints on network operation, and
uncertainty in DER output. This study introduces a dynamic optimization framework that
leverages the benefits of the sensitivity gate of the Sensitivity-Enhanced Recurrent Neural
Network (SERNN) forecasting model, Particle Swarm Optimization (PSO), and Bayesian
Optimization (BO) for HC forecasting. The PSO determines the optimal weights and
biases, and BO fine-tunes hyperparameters of the SERNN forecasting model to minimize
the prediction error. This approach dynamically adjusts the import/export of the DER
output to the grid by integrating the DOE constraints into the SG-PSO-BO architecture.
Performance evaluation on the IEEE-123 test network and a real Australian distribution
network demonstrates superior HC forecasting accuracy, with an R2 score of 0.97 and
0.98, Mean Absolute Error (MAE) of 0.21 and 0.16, and Root Mean Square Error (RMSE)
of 0.38 and 0.31, respectively. The study shows that the model effectively captures the
non-linear and time-sensitive interactions between network parameters, DER variables,
and weather information. This study offers valuable insights into advancing dynamic HC
forecasting under real-time DOE constraints in sustainable DER integration, contributing
to the global transition towards net-zero emissions.

Keywords: hosting capacity; distributed energy resources; forecasting; dynamic operating
envelopes; sensitivity-enhanced rnn (SERNN); SG-PSO-BO; bayesian optimization;
dynamic optimization; green energy

1. Introduction
The increasing penetration of Distributed Energy Resources (DER) in modern power

systems triggers operational issues like voltage instability, thermal violation, and equip-
ment overloading [1]. These challenges necessitate innovative approaches for accurate and
adaptive Hosting Capacity (HC) forecasting under dynamic network conditions. While
large Renewable Energy Resources (RESs) are connected with Medium Voltage (MV) or
High Voltage (HV) levels, such as a high proliferation of DER—such as in Rooftop Photo-
voltaics (PVs), residential Battery Energy Storage Systems (BESSs), and Electric Vehicles
(EVs)—they create operational challenges in Low Voltage (LV) distribution networks. This
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study focuses on various network and DER integration challenges, including voltage rise,
line congestion, and reverse power flow due to limited capacity and infrastructure con-
straints of the network. The intermittent characteristics of DER output [2], limited data
availability, and dynamic network behavior pose further challenges for forecasting network
HC. Different studies address these challenges by deploying different forecasting and
optimization frameworks.

Various strategies were investigated for hyperparameter tuning and optimization in
forecasting models such as Particle Swarm Optimization (PSO), Bayesian Optimization
(BO), Genetic Algorithm (GA), and other hybrid approaches. The probabilistic optimization
framework was studied using the PSO algorithm in [3] for PV HC maximization. The PSO
demonstrated potential improvement in convergence and accuracy in load forecasting
models [4]. It also showed excellent performance for efficient parameter tuning [5] and bal-
ancing long/short dependencies [6] in load forecasting. The BO algorithm was employed to
optimize the ensemble weights [7], hyperparameter tuning [8], and model stochastic nature
of PV generation [9]. The GA was used for high-dimensional parameter optimization [10]
and feature selection with dynamic interactions [11]. In [12], the authors employed the
RBF-based surrogate optimization for reducing evaluation costs in optimization. Gradient
descent optimization for the LSTM-based wind power prediction model was explored
in [13]. The authors in [14] studied the ensemble deep learning model with quantile re-
gression to achieve high generalization and reliability. Random and grid searches were
studied in [15] to achieve computational efficiency in big data and hyperparameter op-
timization [16]. The hybrid optimization model also showed promising performance in
handling various aspects like uncertainties in renewable resources [17], long-term depen-
dencies in grids [18], and reliability and autocorrelation issues [19]. The authors in [20]
investigated the impact of fixed, single-axis, and dual-axis tracking mechanisms on PV
capacity enhancement. Their study demonstrated that dual-axis tracking systems can
significantly increase PV contributions while maintaining operational stability in isolated
Low-Voltage (LV) networks, such as the PV system on Ikaria Island, Greece. However,
the study did not address the dynamic hosting capacity of the network or explore real-time
and short-term forecasting of hosting capacity using data-driven models, which are critical
for operational flexibility under high DER variability. The day-ahead optimization algo-
rithm for energy communities was studied in [21], focusing on minimizing operational costs
under net billing. By considering PV generation, battery energy storage systems (BESS),
and flexible loads, the study demonstrated that, in a hypothetical Greek energy community,
costs could be reduced by up to 25% through BESS integration and by up to 24.5% through
cooperative energy sharing. However, the study relied on static day-ahead scheduling and
did not address real-time hosting capacity forecasting or adaptive operational strategies.

DOE has gained much attention among researchers. In [22], the authors highlighted
real-time tracking and DER integration scalability through the Alternating Direction
Method of Multipliers (ADMM). They proposed a two-stage DOE-based demand con-
trol strategy, ensuring compliance with network statutory limits. DOE allocation in MV-LV
distribution networks was investigated in [23], ensuring fair allocation of network HC
while maintaining voltage stability. In this study, the authors introduced a top-down
two-stage DOE allocation, using real-world Australian data. DER integration through Flex-
ibility Envelopes (FEs) for economic dispatch of power and flexibility planning in power
system operations was discussed in [24]. The authors claimed that the proposed model
can improve renewable energy integration and system-wide flexibility. DOE-based power
system operation through the Active Network Management (ANM) and DOE allocation
framework in [25] provided a principled approach for DOE allocation to integrate with
the market mechanism. In [26], the authors proposed a deterministic method to calculate
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the Robust DOE (RDOE) to ensure network compliance considering the voltage and ther-
mal constraints and load/generation variability. Residential DER integration was studied
in [27] utilizing the available HC of the distribution network. In the study, the authors
focused on the scalability of DOE frameworks in real-world systems and implemented
time-varying DOE for household DER participation. The fair allocation of dynamic ex-
port limits in advance through the day-ahead DOE estimation for low-voltage networks
was investigated in [28]. The authors emphasized handling uncertainty in load and solar
irradiance in their study.

Despite extensive research on optimization strategies, a substantial gap remains in
developing a unified, adaptive, and resilient optimization framework for HC analysis
and forecasting in distribution networks with integrated DER scenarios. Existing stud-
ies emphasized specific algorithms like PSO, BO, and GA to focus on selected domains.
Moreover, the DOE presents a relatively undiscovered domain for the HC analysis and
forecasting of next-generation distribution networks. These indicate the lack of a hybrid
approach that can address the real-time adaptability, scalability, and sensitivity to dynamic
temporal and spatial dependencies. However, the existing models are unsuccessful in
accommodating the dynamic nature of the network and DER variables, missing explicit
integration of time-sensitive variables and limited adaptability to highly dynamic and
large-scale datasets typical in DER-integrated networks. The Sensitivity-Enhanced Recur-
rent Neural Network (SERNN) forecasting model addresses temporal dependencies and
DER integration attributes with its dynamic sensitivity gate [29]. Therefore, an advanced
optimization framework is required to fine-tune its hyperparameters and feature selection
dynamically to achieve optimal performance and scalability, ensuring real-time adaptability
to distribution networks’ stochastic and dynamic nature. Table 1 compares the proposed
SG-PSO-BO hybrid approach with the existing ones.

Table 1. Comparison of the proposed approach with previous methods.

Study/Approach Optimization
Technique

Network
Level

DOE
Constraints

Real-Time
Adaptation

Temporal
Dependency
Handling

PSO for PV HC PSO LV Not included No Limited
GA for DER
optimization GA MV Not included No Limited

BO for PV
stochastic modeling

Bayesian
Optimization (BO) LV Not included No Some

DOE with
deterministic
constraints

None
(Deterministic
method)

LV/MV Included No Limited

Proposed
(SG-PSO-BO)

SG-PSO + Bayesian
Optimization LV Included

(DOE)
Real-time HC
adaptation

Explicit temporal
sensitivity
via SERNN

The proposed SG-PSO-BO optimization framework is adaptable across voltage levels.
This study focuses on low-voltage distribution networks due to their unique operational
challenges. The low-voltage distribution network experiences frequent network constraint
violations, such as voltage fluctuations, reverse power flow, thermal violations, and equip-
ment overloading issues due to high penetration of DER. These issues necessitate dynamic
constraint formulation and objective functions within the hosting capacity analysis and
optimization process, making LV network hosting capacity forecasting both technically
critical and distinct from MV or HV contexts.
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This research proposes a hybrid optimization framework that integrates Sensitivity-
Gated-Particle Swarm Optimization (SG-PSO) and Bayesian Optimization (BO) to optimize
the SERNN model for real-time HC forecasting, complying with the real-time DOE con-
straints. The framework is designed to capture dynamic relationships among distribution
network variables, DER, and weather features, while explicitly modeling the time sensi-
tivity of the variables using the sensitivity gate. The optimization framework minimizes
the forecasting error by refining the weights, biases, and hyperparameters of the SERNN
model to capture the dynamic relationships between network variables, DER outputs,
and weather conditions. The contribution of the study can be summarized as follows:

(a) Hybrid SG-PSO-BO optimization for adaptive hyperparameter and weight tuning
in hosting capacity forecasting model:
The sequential hybrid optimization framework integrates SG-PSO for parameter opti-
mization, integrating sensitivity dynamics of the SERNN and BO for hyperparameter
tuning. The SG-PSO calculates the optimal weights and biases of the SERNN model
by capturing complex, non-linear relationships among network, DER, and weather
variables. In contrast, the BO stage optimizes model hyperparameters to ensure global
performance, balancing accuracy, and computational efficiency. This hybrid approach
supports scalable, real-time forecasting, efficiently handling large, diverse datasets,
and improving the model’s adaptability to real-world scenarios.

(b) Integration of the sensitivity gate of the SERNN model with the SG-PSO-BO
framework under DOE constraints:
The optimization framework uniquely integrates the sensitivity gate functionality
of the SERNN forecasting model to capture the temporal dynamics under DOE
constraints. The SG-PSO optimization explicitly modulates the network, DER,
and weather variables’ temporal dependencies as dynamic input features. The fitness
function balances forecasting accuracy and sensitivity gate stability in the proposed
hybrid optimization model. On the other hand, the regularization of the sensitivity
gate output prevents temporal overfitting and ensures model robustness.

(c) Real-time hosting capacity forecasting framework with DOE adaptation:
The study develops a real-time DOE-aware optimization framework that integrates
voltage stability, thermal constraints, and DER import/export limits into the fore-
casting model’s decision-making process. This framework enhances grid stability,
improves network visibility, and supports sustainable DER integration by ensuring
safe operational limits and avoiding transformer overloading, voltage violations,
and excessive DER curtailment.

The rest of the paper is organized as follows: Section 2 presents the sensitivity-aware
optimization framework. Section 3 discusses the results, and Section 4 highlights the
study outcomes and practical implications. Finally, Section 5 summarizes the key findings,
implications of the study, and future research direction.

2. Sensitivity-Aware Optimization Framework for DOE-Constrained
Hosting Capacity Forecasting

The core of the proposed model is the SERNN, designed to capture the temporal
dependencies and dynamic characteristics of the input variables, like network and DER
parameters, and weather variables [29]. The unique sensitivity gate, processing time-
sensitive input (e.g., hour), adjusts the dynamic response of the model to the periodic
nature of the network and DER variables. To enhance performance, a hybrid optimization
framework is deployed, comprising modified PSO equipped with dynamic inertia weights
and BO for hyperparameter tuning. This hybrid approach ensures effective learning of the
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model parameters under dynamic network conditions, including the learning rate, number
of neurons, batch size, number of hidden layers, and activation units.

Figure 1 illustrates overall process flow of the sensitivity-aware optimization frame-
work. After cleaning and removing outliers, the input data are normalized to ensure
data integrity. The feature engineering process uses cyclic and binary encoding for time-
dependent variables, as well as DER variables and weather parameters. The modified PSO
and BO provide optimized hyperparameters for training, validation, and testing of the
forecasting model. The performance indices like Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R2) compare the performance
with the baseline models. The following outlines the overall process flow of the proposed
optimization framework.

Figure 1. Process flow for HC forecasting using SG-PSO-BO framework.

2.1. Dynamic Operating Envelope (DOE) Constraints

The DOE defines the limits of time-varying DER import/export, ensuring network
constraints for real-time control while optimizing the HC of the distribution network [25].
Unlike static constraints, DOE enables real-time control of DER injections, ensuring grid
stability under varying load and generation conditions [30]. The proposed HC optimization
framework incorporates the voltage and thermal limits, transformer overloading, and
power import/export limits as the key DOE constraints as stated below.

• Voltage constraint: The voltage at node i at time t must be within permissible limits.
Due to power export/import from DER, this voltage may violate the limits. To pre-
vent such violations, the DOE dynamically adjusts the power export/import using a
sensitivity-based voltage response function by modifying the allowable DER injection
at each node. Applying the voltage response factor Sij at base voltage Vi(t) of node i,
the node voltage Vi(t) at time t can be represented by,

Vi(t) = Vbase + ∑
j∈N

SijPj(t) (1)
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Thus, the DOE ensures the node voltage remains within limits:

Vlower ≤ Vi(t) ≤ Vupper, ∀i ∈ N, ∀t

• Thermal limit: The current passing through the i conductor Ii(t) at time t must be
within the rated capacity Ii,rated such that Ii ≤ Ii,rated.

• Transformer overloading: The transformer must ensure that its rated capacity will
not be violated such that Px f ormer ≤ Prated.

• Export/Import constraints: The network must ensure that the power export/import
through node i at time t always remains within permissible limits following the
export/import limits as Pexport,i(t) ≤ Pexport,max and Pimport,i(t) ≤ Pimport,max.

These constraints enable dynamic adjustment of DOE constraints for stable network
operation and real-time HC forecasting of the distribution network.

2.2. Hosting Capacity (HC) Formulation

HC measures the distribution network capacity to integrate DER without violating
the network operating constraints [31]. The HC (HCt) of the distribution network with the
integrated DER at time t can be expressed by Equation (2) [32],

HCt = max ∑
iεJ

DERi,t subject to


vlower ≤ vi ≤ vupper

Ii ≤ Irated

Px f ormer ≤ Prated

(2)

where DERi,t is the power injected from the integrated DER at time t.
Conventional approaches fail to capture real-time variations in network topology, de-

mand fluctuations, and DER intermittency, resulting in sub-optimal HC limits. To overcome
these limitations, the DOE-enhanced HC estimation approach introduces time-dependent
constraints and dynamically regulates DER injections, improving responsiveness to real-
time conditions. This adaptive approach is modeled in Equation (3), which incorporates
the time-dependent limits and penalty factors to ensure the dynamic constraint compliance
subject to the DOE limits. Equation (3) dynamically calculates the lower DOE considering
the allowable under-voltage limits of the network based on the minimum power intake
from the integrated DER, maintaining the network operation constraints. It considers
real-time load conditions and network topology, ensuring that the lower bound adapts to
changing demand and system conditions to prevent network instability.

HCt = max ∑
i∈J

PDER,i(t)− λDOE ∑
i∈J

max(0, PDER,i(t)− PDER,DOE,i(t))2 (3)

The penalty function in Equation (3) enforces strict adherence to DOE constraints.
The quadratic function ensures that small violations incur mild penalties, while larger
violations are penalized more aggressively, discouraging unsafe operating conditions.
The voltage sensitivity factor (Sij) captures the DER-induced voltage variations. The penalty
term λDOE ensures that DOE violations are actively penalized, preventing excessive DER
injections. Thus, the HC reflects dynamic, real-world operating conditions more accurately.

2.3. Data Preparation

The structured data preparation process is essential for accurate and robust HC fore-
casting, supporting sustainable and efficient DER integration. The data preparation process
includes power flow analysis, HC estimation, feature engineering, and data processing.
The following outlines the time-series data preparation process for the forecasting model.
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2.3.1. Power Flow Analysis

The power flow analysis was conducted to determine the network HC with integrated
DER. Based on the real-time DOE constraints, the simulation used the network parameters,
DER characteristics, and weather data. The simulation employed the OpenDSS, inter-
faced with Python 3.11 using the py-DSS-interface 2.1.1 package, to simulate the dynamic
interactions between network and DER variables under varying operational scenarios.

Starting from the baseline capacity, DER integration was incrementally increased until
technical constraints were violated. Key constraints included voltage compliance (0.95 per
unit ≤ voltage ≤ 1.05 per unit), thermal limits of the conductors, transformer loading
capacities, and power export/import limits. The analysis generated hourly time-series data
of critical feature variables: total circuit power, maximum and minimum node voltages,
maximum current passing through the conductors, maximum power passing through the
transformers measured at the secondary terminals, PV output, irradiance, temperature,
and network HC, as defined in Equation (3).

2.3.2. Feature Engineering

To enhance the forecasting model performance, the temporal features were encoded
using sine–cosine encoding to capture the cyclical patterns [33]. The hour of the day (h)
was encoded as,

hsine = sine(2π ∗ h/24) (4)

hcos = cos(2π ∗ h/24) (5)

Additionally, one-hot encoding technique [34] modified PV output and irradiance to
represent their intermittency,

f (xt) =

{
1 i f xt > 0;
0 otherwise

(6)

where xt denotes the value of the feature variable at time t, separating active from inactive
DER/weather conditions.

2.3.3. Data Processing

To ensure quality and consistency, the dataset was cleaned to remove duplicates, out-
liers, and missing values. All variables aligned at hourly intervals to synchronize network
and DER dynamics at uniform temporal resolution. The Min–Max normalization [35] was
applied to scale variables and mitigate disproportionate influences. The dataset was split
into training (80%) and testing (20%) subsets, with additional splitting of the testing data
into validation sets to reduce overfitting and enhance generalization.

This comprehensive data preparation process ensures the model receives high-quality,
temporally coherent input, capturing the realistic network and DER integration, forming
the basis for accurate and reliable HC forecasting.

2.4. Sensitivity-Enhanced Recurrent Neural Network (SERNN) Forecasting Model

The Sensitivity-Enhanced Recurrent Neural Network (SERNN) is designed to capture
time-sensitive dynamics of distribution networks, DER, and weather inputs [29]. Figure 2
illustrates the data flow and internal gating mechanism of the SERNN model.
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Figure 2. SERNN forecasting model [29].

• Input Gate: Regulates the flow of new information from the current input, previous
hidden state, and cell state using a sigmoid activation function:

it = σ(Wi[xt; ht−1; Ct−1] + bi) (7)

• Forget Gate: Controls flow of information from the previous memory by applying a
sigmoid function that determines information retention and discards conditionalities:

ft = σ(W f [xt; ht−1; Ct−1] + b f ) (8)

• Sensitivity Gate: Enables adaptive weighting of time-dependent external variables
(e.g., hour of the day, irradiance, PV output) to influence state updates dynamically.

st = σ(Wsxs + bs) (9)

• Cell State Update: The candidate update i(t,s) is modulated by the sensitivity gate and
the input gate, shaping the information flow by the tanh function.

i(t,s) = tanh[(σ(Wsxs + bs)(Wi[xt; ht−1; Ct−1] + bi)] (10)

The new cell state is computed as: Ct = ftCt−1 + it,s
• Hidden State and Output: The hidden state is derived from the updated cell state

through the tanh activation function.

iht = tanh(C1) (11)

The linear transformation of the current hidden state combined with an output bias
produces the final output of the model as:

yt = Woht + bo

where,
σ: activation function;
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Wi: weight factor for the input gate;
xt: input matrix at time t;
ht−1: previous hidden state;
Ct−1: previous cell state;
bs: input bias/sensitivity bias;
W f : weight factor for the forget gate;
b f : forget gate bias;
Ws: weight matrix for sensitivity gate;
xs: sensitivity gate input;
ft: forget gate input;
i(t,s): cell state update with sensitivity input;
Wo: output weight matrix;
bo: output bias.

The modified architecture enables the SERNN to better capture temporal dependencies
and context-aware features that influence HC forecasting under realistic and dynamic
operating conditions.

The gate value b is not a fixed threshold. Within the proposed sensitivity gate mecha-
nism, b is determined through a data-driven learning process. The model adaptively learns
b during training via backpropagation, enabling it to dynamically capture the temporal
sensitivity of input features without manual threshold selection.

2.5. Objective Function

The objective of the proposed optimization framework is to minimize forecasting error
in HC prediction using the SERNN satisfying network and DOE constraints. The optimiza-
tion problem is formulated as a multi-objective function that balances forecasting accuracy,
model stability, constraint compliance, and hyperparameter optimization. The optimiza-
tion is conducted using the SG-PSO-BO framework, which tunes model weights, biases,
and hyperparameters using the objective function defined in Equation (12).

J′SG−PSO−BO =
N

∑
i=1

βiℓ(yi, ŷi) + λs(t)
N

∑
i=1

∥gs(si; ws, bs)∥2

+ γ
N

∑
i=1

∥∇ℓ(yi, ŷi)∥2 + Jconstraints + JDOE + JBO (12)

where,
ℓ(yi, ŷi): loss function of the forecasting model;
βi: feature importance factor;
gs(si; ws, bs): sensitivity factor controlling time-sensitive variables;
λs(t): time-dependent regularization coefficient for the sensitivity gate function gs(si; ws, bs);
Jconstraints, JDOE: DOE-based penalty factors ensuring HC constraints compliance;
JBO: optimization function for hyperparameter tuning;

γ
N
∑

i=1
∥∇ℓ(yi, ŷi)∥2: gradient penalty for enhancing model stability.

The loss function ℓ(yi, ŷi)) measures the difference between the actual HC (yi) and
model prediction (ŷi). This function helps to achieve robustness and sensitivity to outliers:

ℓ(yi, ŷi) = α · 1
n

n

∑
i=1

(yi − ŷi)
2 + (1 − α) · 1

n

n

∑
i=1

|yi − ŷi|

where the weighting factor α adjusts the balance between MAE and MSE.
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The regularization mechanism incorporates the sensitivity gate function {gs(si, ws, bs)}
to modulate the time-sensitive feature variables. The regularization parameter (λs) serves
as a control mechanism to balance the contribution of the sensitivity gate in enhancing
the temporal sensitivity of the model without introducing instability or overfitting. This
mechanism improves the model generalization and temporal adaptability.

The gradient-based penalty discourages abrupt parameter changes by penalizing large
gradients in the loss function, thus stabilizing the model’s learning process.

The constraint penalty Jconstraints ensures model safety and operational stability by
enforcing voltage and thermal limits:

Jconstraints = Jvoltage + Jthermal

The voltage constraint penalty Jvoltage maintains the voltage within permissible limits
whereas the thermal constraint penalty Jthermal ensures the permissible loading conditions:

Jvoltage = λ1

N

∑
i=1

max(0, Vi(t))2

Jthermal = λ2

N

∑
i=1

max(0, Pi(t)− Prated)
2

where λ1 and λ2 denote penalty coefficients for voltage and thermal violations, respectively.
These terms penalize instances where voltage or power flow exceed permissible limits.

The DOE-based constraint penalty JDOE prevents the predicted HC from exceeding
the allowable DER integration limit defined by real-time DOE regulations:

JDOE = λ3

N

∑
i=1

max(0, PDER,i(t)− PDER,DOE,i(t))2

where PDER,DOE,i(t) is the real-time network HC limit imposed by DOE and λ3 controls
the severity of the penalty.

The objective function in Equation (12) integrates prediction accuracy, temporal regu-
larization, and constraint adherence into a unified optimization framework. Thus, the pro-
posed hybrid optimization framework achieves robust and scalable performance for time-
sensitive HC forecasting in distribution networks.

2.6. Stages of Optimization Process

The proposed hybrid optimization framework leverages the benefits of Sensitivity
Gate, PSO, and BO optimization algorithms to optimize the weights, biases, and hyperpa-
rameters. The framework addresses the temporal dependencies, stabilizes the impact of
sensitivity input by modulating sensitivity gate output, and enhances forecasting perfor-
mance through an efficient and scalable optimization process.

2.6.1. Stage 1: Sensitivity-Gated Particle Swarm Optimization (SG-PSO)

The Sensitivity-Gated Particle Swarm Optimization (SG-PSO) optimizes weights (w)

and biases (b) of the SERNN model, including the parameters controlling the sensitivity
gate. It minimizes the forecasting error while the model dynamically adjusts time-sensitive
DOE constraints. The algorithm dynamically updates the particle velocity by incorporating
the DOE penalties and sensitivity adjustment, as shown in Equation (13):

Vt+1
i = ω(t)Vt

i + c1r1(Pbest,i − Pt
i ) + c2r2(Gbest − Pt

i ) + Si(t).∆PDOE,i (13)
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where,
w(t): Inertia weight that controls exploration–exploitation;
c1, c2: Acceleration coefficients to find the local and global best;
r1, r2: Random factors that ensure the stochastic movement of particles;
Si(t): Sensitivity gate function to dynamically adjust DOE constraints;
∆PDOE,i: DOE violations correction term.

The sensitivity function Si(t) in Equation (13) dynamically adjusts the exploration–
exploitation balance such that Si(t) = exp

(
−λs(t)∑N

j=1 max(0, PDER,j(t)− PDER,DOE, j(t))
)

.
The exponential term reduces exploration to ensure faster convergence during higher DOE
violations. The position of each particle is updated by: Pt+1

i = Pt
i + Vt+1

i .
The fitness function evaluates the forecasting accuracy and compliance with DOE

constraints by minimizing the objective function:

J′SG−PSO =
N

∑
i=1

ℓ(yi, ŷi) + λs(t)
N

∑
i=1

∥gs(si; ws, bs)∥2 + Jvoltage + Jthermal + JDOE (14)

The SG-PSO terminates when the objective function converges or the algorithm reaches
the maximum number of iterations, ensuring efficient convergence.

2.6.2. Stage 2: Hyperparameter Optimization Using the Bayesian Optimization (BO)

BO effectively solves computationally expensive optimization problems when the
objective function lacks a closed-form expression and derivatives are challenging [36].
After optimizing model weights and biases using the SG-PSO algorithm, the BO is em-
ployed to fine-tune the hyperparameters (θ) such as learning rate (α), batch size (B),
dropout rate (d), and hidden layers size (h). The acquisition function minimizes the fore-
casting error and regularization parameter defined as:

JBO(θ) = min
(

J′SG−PSO(w
∗, b∗, θ) + JDOE

)
(15)

where θ denotes the hyperparameter set to be optimized, w∗ and b∗ represent the optimized
weights and biases obtained from SG-PSO, and JDOE ensures DOE-compliant constraints
during optimization.

The Gaussian Process Regression (GPR) model [37] is used to maintain the probabilistic
estimate of the objective function in the BO process. At each iteration, the next candidate set
of hyperparameters is selected by maximizing the Expected Improvement (EI) function [38]:

EI(θ) = (µ(θ)− Jbest)Φ(Z) + σ(θ)φ(Z) (16)

where µ(θ) and σ(θ) represent the mean and variance of the GPR model, Jbest is the current
best observed value of the objective function, Φ(Z) and ϕ(Z) denote the Cumulative
Distribution Function (CDF) and Probability Density Function (PDF) of the standard
normal distribution, respectively.

The optimization process terminates either when the maximum number of iterations
is reached or the improvement of JBO falls below a specified threshold. The BO enhances
model stability, avoids overfitting, and maintains a balance between computational effi-
ciency and forecasting accuracy. Furthermore, the model incorporates DOE constraints
dynamically into hyperparameter selection. The combined SG-PSO and BO framework
provides a robust, scalable, and accurate optimization strategy for the SERNN forecasting
model. The following outlines the overall solution approach.
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2.7. Overall Solution Approach

The solution approach aims to optimize forecasting accuracy and network stability
while ensuring compliance with HC and DOE constraints. It integrates data processing and
feature engineering, SG-PSO, for updating the SERNN model weights and biases, and BO
for hyperparameter tuning. This comprehensive approach supports real-time adaptability
and regulatory compliance in next-generation distribution networks.

2.7.1. Data Processing and Feature Engineering

The necessary data for the forecasting model was generated through HC analysis
using power flow analysis, feature engineering, and data processing steps, as discussed
in Section 2.3. This process prepares the dataset to capture the temporal dependencies
and feature variability, enabling the model to reflect the real-world distribution network
scenarios with integrated DER.

(1) Power Flow Analysis: The network and DER variables were collected through the
power flow analysis using OpenDSS. The py-DSS-interface application library was
used to interface with OpenDSS for data extraction and further analysis.

(2) Feature Engineer: Temporal dependency and cyclical behavior of the time-dependent
variables were captured using sine–cosine encoding. Binary representation was applied to
weather data and DER output to reflect their intermittency and non-linear characteristics.

(3) Sensitivity Input Selection: Time-dependent input, specifically the hour of the day,
was encoded as a sensitivity factor to enhance the temporal adaptability of the model
in dynamic operational scenarios.

(4) Data Preparation for Model Training: Input features Xt and target variables yt were
structured to incorporate temporal dependency and operational constraints across a
look-back window (t) and forecasting horizon (T) for real-time HC forecasting. The Xt

vector includes historical network, DER, and weather variables over the look-back
window, while yt forecasts the network HC at a future time t + T. This formulation
integrates DOE constraints by aligning prediction with real-time constraints such as
voltage, thermal limits, and the overloading threshold. Therefore, the model supports
sustainable DER integration and efficient network operation.

2.7.2. Hybrid Model Optimization Using the SG-PSO and Bayesian Optimization

The proposed hybrid optimization framework integrates the SG-PSO for tuning
weights and biases and Bayesian Optimization (BO) for hyperparameter tuning, thereby
enhancing the accuracy and robustness of the SERNN in HC forecasting.

Stage 1: SG-PSO for Weights and Biases Optimization

SG-PSO is employed to minimize the SERNN forecasting error and stabilize the sensi-
tivity gate output by optimizing the weights (w) and biases (b) through the following steps:

(1) Particle initialization: Each particle represents a candidate set for the SERNN model
parameters. Each particle encodes a candidate solution comprising the weights (w)

and biases (b) of the SERNN model.
(2) Fitness function evaluation: Minimize the forecasting error (ℓ(yi, ŷi)) and regularize

sensitivity gate output gs for stability by evaluating the objective function, as defined
in Equation (12).

(3) Velocity and position updates: Particles iteratively update their position convergence
to the optimal weights (w∗) and biases (b∗). The algorithm continues until minimized
forecasting error is achieved or a predefined iteration limit is exhausted.

(4) Output: Optimized weights (w∗) and biases (b∗) of the SERNN model to minimize
error and stabilize sensitivity gate outputs.
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Stage 2: Bayesian Optimization (BO) for Hyperparameter Tuning

The Bayesian Optimization (BO) is deployed to fine-tune the hyperparameter set of
the SERNN model using the following steps:

(1) Define the search space: The key hyperparameters like learning rate, batch size, and
number of LSTM units are defined with upper and lower boundaries based on the
network design and operational constraints.

(2) Optimize the acquisition function: The EI acquisition function is employed to balance
between exploration and exploitation:

EI(θ) = (µ(θ)− Jbest)Φ(Z) + σ(θ)φ(Z)

(3) Iterative updates: The algorithm continues until it achieves the desired hyperparame-
ter convergence.

(4) Output: The model provides the optimal hyperparameter set that enhances model
generalization and forecasting accuracy.

(5) Termination: The process terminates when the desired improvement becomes negligi-
ble over successive iterations.

2.8. Algorithm of the SG-PSO-BO Hybrid Optimization Framework

The Algorithm 1 outlines a stepwise optimization process for dynamic HC forecasting,
ensuring compliance with real-time operational constraints.

Model Training and Evaluation

The SERNN forecasting model is trained with processed data using the optimal
parameters derived from the SG-PSO-BO. The model dynamically follows the network
and DOE constraints during the training process. The forecasted HC is compared with
performance evaluation metrics and compared with standard optimization models.

(1) Model training: The SERNN forecasting model is trained using the processed time-
series data derived from the test networks and the optimal parameters gathered from
the SG-PSO-BO. The model incorporates the network and DOE constraints to prevent
any possible violations.

(2) Model Evaluation: The model is evaluated using performance metrics such as MAE,
RMSE, and Coefficient of Determination (R2):

(a) Mean Absolute Error (MAE): MAE = 1
n ∑n

i=1 |yi − ŷi|;

(b) Root Mean Square Error (RMSE): RMSE =
√

1
n ∑n

i=1(yi − ŷi)2;

(c) Coefficient of Determination (R2): R2 = 1 − ∑(yi−ŷi)
2

∑(yi−ȳ)2 .

(3) Model Validation: The performance of the trained model is compared against the
baseline models to validate its performance improvements in forecasting efficiency.

By incorporating network and DOE constraints at every stage of the optimization
framework, the final forecasting model ensures robust and scalable HC forecasting, suitable
for real-world applications.
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Algorithm 1 SG-PSO-BO optimization for HC forecasting.

1: Input: Feature variables X, sensitivity input S, target variable y (HC)
2: Network and DOE constraints, Hyperparameter search space Θ
3: Output: Optimized weights w∗, biases b∗, and hyperparameters θ∗

4: Final trained SERNN model

Step 1: Data Processing and Feature Engineering
5: Load power system data
6: Apply feature engineering techniques and look-back window transformation

Step 2: SG-PSO for Weights and Biases Optimization
7: Initialize particle swarm with randomly generated SERNN weights and biases.
8: for each particle do
9: Evaluate DOE-aware fitness function

10: Update velocity and position using sensitivity input s.
11: Apply dynamic HC and DOE constraints
12: end for
13: Store optimized weights w∗, biases b∗.

Step 3: Bayesian Optimization for Hyperparameter Tuning
14: Initialize Bayesian Optimization using Gaussian Process (GP) surrogate model
15: Define the hyperparameter objective function:
16: for each iteration do
17: Select hyperparameters using the EI acquisition function
18: Evaluate the objective function and update GP model.
19: end for
20: Store optimal hyperparameter set θ∗.

Step 4: Final Model Training and Evaluation
21: Train the SERNN model with optimized parameters w∗, b∗, θ∗.
22: Validate the model on the test dataset.
23: Compute evaluation metrics and compare with baseline models

Step 5: Real-time HC forecasting
24: Deploy the optimized SERNN model for HC forecasting
25: Dynamically adapt to operational based on real-time network conditions
26: Continuously update model parameters and hyperparameters as required

3. Results
This section evaluates the performance of the proposed SG-PSO-BO hybrid opti-

mization framework, emphasizing its capability to improve HC accuracy, computational
efficiency, and adaptability under real-time conditions. Model effectiveness was assessed
using key performance metrics like MAE, RMSE, and Coefficient of Determination (R2).
The framework was also benchmarked against several baseline models, including PSO,
GA, Random Search, Grid Search, and TLBO. Furthermore, convergence behavior, compu-
tational efficiency, and scalability were analyzed to validate the model’s performance for
real-time operational conditions.

3.1. Simulation Setup

This study evaluates the performance of the proposed hybrid SG-PSO-BO framework
by implementing it on the SERNN model for the HC forecasting in the next-generation
distribution networks. The evaluation was conducted using time-series data from both
the IEEE-123 test network and a real Australian Distribution Network. The DE, including
PV, EVs, and BESS were modeled according to the OpenDSS simulation architecture [39].
Weather information like temperature (Figure 3a) and irradiance (Figure 3b) data, required
for PV operation, were obtained from the Bureau of Meteorology (BoM), Australia. Wind
speed was not included as a primary input feature in this study, as the focus is on low-
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voltage distribution networks integrated with DERs such as PV, BESS, and EVs, which are
not directly influenced by wind conditions.

(a) Temperature (b) Irradiance

Figure 3. Temperature and irradiance data.

Time-series datasets were generated through the power flow simulation using
OpenDSS [40], iteratively increasing PV, EVs, and BESS penetration while monitoring
for HC constraint violations. Hourly data of network, DER, and Weather variables were
recorded over a one-year period to reflect realistic variability. Load profiles were derived
from real Australian distribution network data. PV systems were initially set at 10 kVA
with a unity power factor, and their capacity was incremented by 10% in each iteration.
EVs and BESS were operated in ‘Schedule’ mode with the following parameters:

(a) Rated Capacity: 120 kW and 360 kWh;
(b) Initial Stored Capacity: 50% of rated capacity;
(c) Reserve Capacity: 20% of rated capacity;
(d) Charging Rate: 25% of rated capacity;
(e) Discharging Rate: 50% of rated capacity.

In this study, different charging and discharging rates were assigned to replicate
the real-world scenarios. The lower charging rate was set to utilize the PV power and
increase. On the other hand, the higher discharging was set to support the network through
rapid response during peak load period. This operational setup aligns with real-world
DER usage patterns and grid-support strategies. A 20% reserve capacity threshold was
applied in this study to define the minimum allowable State of Charge (SoC) for both
BESS and EV systems. This value represents a technical lower limit to prevent full battery
depletion and maintain basic operational flexibility. While industry practice often favors
higher reserve margins to account for battery aging, safety margins, and operational
contingencies, the 20% level was chosen to explore maximum discharge flexibility within
safe operating conditions. To maximize the available storage capacity of BESS and EVs,
the upper SoC limit was set to 100% in this study, allowing for simplified simulation under
ideal storage availability conditions. This approach enabled the assessment of maximum
DER utilization by evaluating system performance at the theoretical upper limit of storage
capacity. However, in practical applications, the maximum SoC is typically capped at
90–95% in accordance with industry best practices to mitigate battery degradation and
extend battery lifespan.

The Australian Distribution Network considered in this study comprises 17 distribution
transformers configured in a Delta-Wye topology. The network integrates 8 PV systems,
among which five are three-phase and three are single-phase installations, reflecting a
typical mix of residential and small commercial rooftop PV deployments. Additionally,
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the network includes eight energy storage systems, each of which is capacity-matched (in
KWh rating) to its corresponding PV installation. This configuration enables the analysis of
coordinated PV–battery interactions and their impact on network hosting capacity under
varying load and generation conditions. Load data were recorded at one-hour intervals
over a 356-day period, providing detailed insight into daily and seasonal demand patterns.
Network and DER parameters—including PV output, state of charge (SoC) of storage
systems, node voltages, line currents, and transformer loading—were obtained using time-
series power flow analysis conducted at hourly resolution over 365 consecutive days. This
dataset enables a comprehensive evaluation of the dynamic behavior of both demand and
DER across the entire network, capturing their combined impact on hosting capacity in
different operating scenarios.

In the IEEE-123 test network, DERs were randomly allocated on the eligible nodes,
with total DER penetration levels incrementally increased during the simulation. The sizing
of individual PV and BESS systems was assigned proportionally based on average residen-
tial/commercial load demands. BESS follows a ratio of 1:2 with PV capacity depending
on the scenario. EVs were distributed evenly across residential loads following a realistic
adoption rate (30% penetration scenarios).

Forecasting performance was evaluated using MAE, RMSE, and Coefficient of Deter-
mination (R2). Both MAE and RMSE were measured in megawatts (MW), consistent with
the HC of the test networks. The Coefficient of Determination (R2) is unitless and ranges
between 0 and 1, indicating the proportion of variance explained by the model.

All simulations were executed on a system equipped with an 11th Gen Intel(R) Core
(TM) i7-1185G7 CPU @ 3.00GHz and 16 GB RAM. Network simulation was carried out using
OpenDSS version 9.6.1.1 (64-bit build) interfaced with Python 3.11 via the Py-DSS-Interface
2.0.4 within the PyCharm 2024.3.6 Community Edition. The test networks considered a
voltage constraint of 0.95–1.05 per unit, thermal limits based on conductor capacity, and the
transformer loading limit defined at the secondary terminal.

3.2. Feature Correlation

Feature correlation analysis identifies the implications of feature variables on target
variables by removing irrelevant information. This process enhances model performance
by reducing computational complexity, improving learning efficiency, and increasing
comprehension of the learning model [41].

Figure 4 shows the correlation analysis of the feature variables using the Spearman,
Pearson, and Kendall [42] correlation analysis techniques. The Pearson analysis assessed
the linear relationship, Spearman captured the non-linear relationship, and Kendall mea-
sured the ranking and dependency between the feature variables and network HC with
integrated DER. The analysis revealed that circuit power () and renewable output exhibited
strong positive correlations with HC. Strong non-linear dependency (0.74) of time-based
cyclic effects was observed for the cosine component of the time of the day (‘Hour’) vari-
able, reflecting significant time-based cyclic effects. On the other hand, irradiance (Irrad)
and renewable output (PV_kW) showed strong negative correlation with network HC.
Capturing the positive, negative, and non-linear correlation among the feature variables,
the findings highlight the effectiveness of the SERNN with SG-PSO-BO hybrid optimization
model for accurate and robust HC forecasting of next-generation distribution networks.
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IEEE-123 Test Network. Australian Distribution Network.

(a) Spearman correlation.

(b) Pearson correlation.

(c) Kendall correlation.

Figure 4. Correlation analysis of feature variables using Spearman, Pearson, and Kendall methods
for the IEEE-123 and Australian distribution networks.

3.3. Hosting Capacity Forecasting

Table 2 summarizes the performance of the SERNN forecasting model optimized using
the SG-PSO-BO across two distribution networks with integrated DER: the IEEE-123 Test
Network and a real Australian Distribution Network. The table compares key performance
metrics, network-specific model architecture, hyperparameter, and execution time.
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Table 2. Optimization model performance for HC forecasting.

Metrices IEEE-123 Test Network Australian Distribution Network

MAE 0.21 0.16

RMSE 0.38 0.31

R2 0.97 0.98

LSTM Layers 55 55

Dense Layers 28 30

Learning Rate 0.001 0.01

Execution Time (s) 145 147

The results illustrate that the optimized forecasting model demonstrates high fore-
casting accuracy across both networks, achieving an R2 of 0.97 and 0.98 for the IEEE-123
Australian networks, respectively, indicating a strong correlation between predicted and
actual HC. The Australian distribution network achieves lower MAE (0.16) and RMSE
(0.31), suggesting better model generalization in real-world operational settings.

The SG-PSO-BO-optimized SERNN forecasting model uses slightly different optimized
architectures for both networks. Although the LSTM architecture remains consistent
across both cases, slight variations in dense layer count and learning rate were observed.
The higher learning rate (0.01) for the Australian distribution network facilitated faster
convergence while maintaining comparable execution time (147 s). These results validate
the effectiveness and adaptability of the SG-PSO-BO optimization framework in dynamic
HC forecasting of next-generation with real-time DOE requirements.

3.4. Forecasting Results (Actual vs. Predicted Hosting Capacity)

The SG-PSO-BO optimization framework was deployed to enhance the efficiency and
reliability for optimization of the SERNN model in forecasting HC under DOE conditional-
ities. The HC forecasting process used the following hyperparameter boundaries:

The parameter ranges in Table 3 were selected based on a combination of best practices
in energy time series forecasting and preliminary sensitivity testing. This approach ensured
that the model captured both effective configurations and computational efficiency, while
providing sufficient flexibility for the optimization algorithm to explore high-performance
parameter combinations.

Table 3. Hyperparameter boundaries of the optimization framework.

Optimizer Hyperparameter Parameter Boundary

Adam Number of Neurons 16, 64

Learning Rate 1 × 10−4, 1 × 10−2

Batch Size 16, 32

Epochs 10, 50

Dropout Rate 1 × 10−1, 5 × 10−1

Number of Hidden Layers 1, 3

Number of Activation Units 16, 64

Figure 5a and Figure 5b present a comparison of actual vs. forecasted HC of the
IEEE-123 test network and a real Australian Distribution Network, respectively. The results
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exhibit minimal deviation between measured and predicted HC, demonstrating strong
model generalization and reliability across different networks.

(a) IEEE-123 test network. (b) Australian distribution network.

Figure 5. Actual vs. predicted hosting capacity of the test networks.

3.5. Training Convergence Analysis (Loss (MSE) vs. Epochs)

Figure 6 presents the learning behavior of the SG-PSO-BO optimization framework
for both test networks. The steady decreasing trend of the learning curve signifies effective
model training, with stable loss after several epochs, ensuring robust training. Lower loss
in the Australian distribution network compared to the IEEE-123 test network indicates
smoother convergence and better generalization of the framework in real-world scenarios.
These results demonstrate that the proposed framework effectively minimizes forecasting
errors while maintaining stable learning dynamics.

(a) IEEE-123 Test Network. (b) Australian Distribution Network.

Figure 6. Comparison of learning curve (loss vs. epochs).

Figure 6 showed rapid convergence due to the limited number of training epochs
(10 epochs per iteration) used during hyperparameter optimization to ensure computa-
tional feasibility during the simulation. The adam optimizer with adaptive learning rates
and the batch normalization effect accelerates convergence during each training cycle.
In practical deployments, more training epochs can be employed to further fine-tune
performance after optimization.

3.6. Error Convergence Analysis

The model error minimization process is illustrated in Figure 7, which compares
the MAE loss over training epochs for both test networks. The Australian distribution
network demonstrates faster convergence than the IEEE-123 test network, indicating model
adaptability to real-world network conditions. The consistent decline in MAE throughout
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training demonstrates the model’s capability for dynamic adjustments of weights and
biases to minimize forecasting errors. This capability makes the model more suitable to
accommodate dynamic DOE constraints.

(a) IEEE-123 test network. (b) Australian distribution network.

Figure 7. Comparison of error convergence curve (MAE vs. epochs).

3.7. Residual Error Analysis

The residual error analysis in Figure 8 illustrates the deviation between the actual and
predicted HC values for both the IEEE-123 test network and the Australian distribution
network. The residuals for both networks are closely clustered around zero, indicating high
predictive accuracy and minimal systemic bias. Moreover, the Australian distribution net-
work exhibits lower residual variation compared to the IEEE-123 test network, suggesting
that the SG-PSO-BO model demonstrates superior generalization capability and robustness
in real-world operating conditions.

(a) IEEE-123 test network. (b) Australian distribution network.

Figure 8. Residual analysis of test networks.

3.8. Long-Term Prediction Error Analysis

The close alignment between the actual and predicted HC of the SG-PSO-BO opti-
mization framework, as shown in Figure 9, demonstrates robust generalization capability
under varying network conditions. The error margin is lower in the Australian distribution
network, suggesting that the model effectively incorporates real-time learning adjustments
over extended operational periods.
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(a) IEEE-123 test network. (b) Australian distribution network.

Figure 9. Long-term prediction errors analysis of test networks.

3.9. Comparison with the Conventional Optimization Models

This study evaluated the proposed SG-PSO-BO optimization framework against sev-
eral stand-alone optimization models such as PSO, BO, GA, Grid Search, Random Search,
and TLBO. The results demonstrate that the SG-PSO-BO consistently outperforms these
benchmark models, achieving superior forecasting accuracy and computational efficiency.

Table 4 demonstrates that the Australian distribution network achieved the lowest
prediction errors, with MAE (0.16) and RMSE (0.31), along with the highest accuracy
(R2: 0.98). These results indicate superior generalization capability in real-world scenarios.
The PSO and BO exhibited significantly higher error rates and lower forecasting accuracy,
rendering them less suitable for SERNN optimization in forecasting HC accurately in
real-world scenarios. GA, TLBO, and Random Search showed moderate improvements
and lacked the necessary adaptability and precision for time-sensitive HC forecasting.
The proposed SG-PSO-BO optimization framework, integrated with SERNN, effectively
captures the dynamic response of DOE constraints, enhancing its ability to model temporal
variations in network and DER variables. This capability makes the framework particularly
robust for accurate HC forecasting in dynamic environments.

Table 4. Comparison of the proposed framework with the conventional models.

Models LSTM Units Dense Units Learning Rate MAE RMSE R2 Execution Time (s)

IEEE-123 Test Network

SG-PSO-BO 55 28 0.001 0.21 0.38 0.97 145

PSO 60 40 0.001 3.25 5.67 0.92 163

BO 50 35 0.002 3.1 5.45 0.93 150

GA 45 32 0.004 3.2 5.5 0.92 160

Grid Search 40 30 0.005 3.4 5.8 0.91 180

Random Search 55 38 0.003 3.3 5.7 0.91 140

TLBO 58 39 0.003 3.15 5.48 0.92 130

Australian Distribution Network

SG-PSO-BO 55 30 0.001 0.16 0.31 0.98 147

PSO 60 40 0.001 3.25 5.67 0.92 163

BO 50 35 0.002 3.1 5.45 0.93 150

GA 45 32 0.004 3.2 5.5 0.92 160

Grid Search 40 30 0.005 3.4 5.8 0.91 180

Random Search 55 38 0.003 3.3 5.7 0.91 140

TLBO 58 39 0.003 3.15 5.48 0.92 130
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3.10. Comparison with the Hybrid Models

Various hybrid optimization techniques were compared with the SG-PSO-BO to opti-
mize the SERNN model for HC forecasting in next-generation distribution networks under
DOE conditionalities.

As shown in Table 5, the SG-PSO-BO framework demonstrated superior performance
compared to competing models across all performance metrics. Specifically, the SG-PSO-BO
achieved the highest forecasting accuracy, with an R2 value of 0.97 for the IEEE-123 test
network and 0.98 for the real Australian distribution network. In addition, it attained the
lowest errors and execution time for both networks, demonstrating reduced computational
overhead. Its ability to dynamically adjust model parameters and enhance forecasting
precision highlights its practical applicability in large-scale distribution networks with
dynamic DER integration. The framework’s robustness and efficiency position it as a
practical solution for real-world grid management applications.

Table 5. Comparison of the proposed framework with hybrid optimization models.

Hybrid Models LSTM Units Dense Units Learning Rate MAE RMSE R2 Execution Time (s)

IEEE-123 Test Network

SG-PSO-BO 55 28 0.001 0.21 0.38 0.97 145

PSO-BO 72 28 0.001 0.3 0.53 0.97 763

TLBO-PSO 81 20 0.001 0.26 0.37 0.98 3407

TLBO-BO 54 27 0.003 1.11 1.98 0.82 181

GA-BO 98 45 0.001 0.26 0.47 0.97 198

SERNN-BO 26 42 0.002 0.5 0.99 0.9 151

Australian Distribution Network

SG-PSO-BO 55 30 0.001 0.16 0.31 0.98 147

PSO-BO 72 28 0.001 0.3 0.53 0.94 763

TLBO-PSO 81 20 0.001 0.26 0.37 0.95 3401

TLBO-BO 54 27 0.003 1.11 1.98 0.82 171

GA-BO 98 45 0.001 0.26 0.47 0.93 185

SERNN-BO 26 42 0.002 0.5 0.99 0.94 153

3.11. Adaptive DER Power Import/Export Management

The proposed optimization framework integrates the SERNN forecasting model with
SG-PSO-BO algorithm under DOE conditions to dynamically manage power import/export,
BESS operation, and EV charging/discharging schedules. By maximizing PV utilization
and enabling a forecast-driven decision-making process, the framework ensures efficient
DER operations. Real-time BESS control and EV charging is achieved through DOE-based
parameter tuning, leveraging HC forecasts to determine optimal charging and discharging.

The adaptive management of the DER power depends on multiple influencing factors
such as PV output, BESS capacity, EV travel patterns, load demand, and grid constraints.
To achieve an adaptive DER management framework, the SERNN forecasting layer, DOE-
driven optimization layer, and real-time execution layer should be synchronized. The first
layer provides HC availability and DER constraints, the second layer refines operational
parameters of the network, PV, BESS, and EVs for optimal performance, and the third layer
dynamically implements optimized DER schedules dynamically based on real-time HC
and grid conditions.
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Algorithm 2 illustrates the steps for adaptive DER management procedures. It com-
prises four stages: (i) HC forecasting, (ii) scheduling optimization, (iii) real-time execution,
and (iv) performance evaluation. The process begins with forecasting HC using the SERNN
model, DOE constraints, and DER parameters, including PV output, EVs, and BESS ca-
pacity. The forecasting model provides HC prediction for the next time-step t + 1 to
estimate the available HC of the network to integrate the DER. PV output, BESS capacity,
charging/discharging rate, and EV trip distances and charging modes are used to select
the schedules for optimum DER power utilization. Considering the HC, DER, and DOE
constraints, the DER scheduling optimizes real-time power export/import decisions.

Algorithm 2 Real-Time DER scheduling with HC forecasting and optimization.

1: Input: Real-time PV Output, Load Demand, Historical DER Data
2: Scheduling Parameters: PV Levels, BESS Discharge Rates, EV Trip Distances, Charging

Modes
3: Output: Optimized DER Power Export/Import and BESS/EV Charging/Discharging

Schedules
4: Step 1: HC Forecasting using SERNN Model
5: Train SERNN using historical HC data, network constraints, and DER variables
6: Predict HC availability for the next time step
7: Step 2: DOE-Enabled Optimization using SG-PSO-BO
8: for each DOE setting (PV Levels, BESS rates, EV trip distances) do
9: Apply SG-PSO-BO to optimize scheduling parameters

10: end for
11: Step 3: Real-Time DER Scheduling Execution
12: Initialize BESSSOC = 20%, EVSOC = 20%
13: for each time-step t in real-time operation do
14: Load real-time PV Output, HC forecast, and Load Demand
15: if BESS SOC ≤ 20% and PV Output ≥ BESS Capacity then
16: Start BESS charging until SOC reaches 100%
17: end if
18: if 5PM ≤ Time ≤ 23:00 and BESS SOC > 20% then
19: Discharge BESS at DOE-specified rate to support grid demand
20: end if
21: if EV is in travel window [07 : 00 − 09 : 00] or [16 : 00 − 21 : 00] then
22: Discharge EV based on DOE-specified trip distance
23: end if
24: if EV charging demand exists and PV ≥ EV requirement and EVSOC < 90% then
25: Start EV charging with available PV power
26: end if
27: if DER Output ≥ BESS and EV requirement then
28: Export excess DER power to the grid
29: end if
30: Update BESSSOC and EVSOC after each transaction
31: end for
32: Store results and visualize performances

The real-time DER scheduling algorithm dynamically manages the availability of
PV output, peak demand support through BESS, and EV usage patterns. To maintain
operational continuity, the minimum allowable State of Charge (SoC) for both the BESS
and EV state is maintained at 20% of their respective capacities.

BESS initiates charging when SoC ≤ 100% and the PV output meets or exceeds the
BESS charging requirement. Also, BESS supports peak demand by discharging power at
a predefined rate until the SoC reaches 20% of the rated capacity, ensuring support for
grid stability during peak demand. EV discharging is determined by the total distance
traveled, with energy discharged at a predetermined rate based on EV specification. EV
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charging is activated when a charging request is detected, sufficient PV output is available,
and the EV SoC falls below the specified threshold value. The DER power export decision
is determined based on the availability of surplus energy after fulfilling BESS and EV
charging requirements. Excess DER power is exported to the grid following HC constraints
and DOE operational conditions.

Figure 10 illustrates the dynamic variations in the SoC of the BESS and EVs and the
DER power export to the grid over a simulation period. The x-axis represents the time
step (in hours), while the y-axis indicates the SoC for BESS and EV and the exported DER
power to the grid. The figure demonstrates that the BESS follows a periodic charging
and discharging cycle, charging when PV output is available, reaching 100% SoC at peak
charging times. It discharges to support grid demand, reducing to 20% SoC, which is the
lower operational threshold. The EV follows a distinct charging/discharging pattern based
on PV power availability and scheduling constraints. EV discharging occurs in specific
time slots corresponding to predefined driving schedules. EVs recharge when PV output is
sufficient, following a stepped charging profile. DER exports power to the network when
BESS and EV demands are met and excess power is available. Export patterns align with
high PV generation periods, suggesting optimal utilization of surplus power. This dynamic
interaction among BESS, EVs, and DER export highlights the effectiveness of real-time
energy management and ensures efficient DER integration.

Figure 10. BESS, EV SoC, and PV power export to the grid.

The adaptive DER management strategy optimizes real-time energy dispatch by
scheduling PV output, BESS, and EVs based on HC forecasting. This approach ensures
efficient energy storage operation by preventing overcharging/discharging and facilitates
optimal export decisions under the DOE constraints. Integrating HC forecasting, DOE-
driven optimization, and real-time execution layers improves the network responsiveness
to dynamic conditions, making it a robust strategy for DER integration.

4. Discussion and Limitations
The SG-PSO-BO framework efficiently optimizes the SERNN forecasting model for

robust, accurate, and adaptive HC forecasting of the next-generation distribution networks
complying with the DOE constraints. This hybrid approach leverages PSO to determine
the optimum weights and biases of the model, capturing the temporal dependency of
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network variables through its sensitivity gate architecture. Additionally, the BO fine-tunes
hyperparameters to ensure reliability and accuracy for real-time HC forecasting.

Table 4 demonstrates the feature impact on SERNN model performance. The model
incorporates network parameters like circuit power, voltage profile, and current passing
through the conductors to observe operational conditionality while dynamically adjust-
ing DER import/export limits based on the weather conditions and DOE requirements.
Temporal dynamics, captured through the time of the day (‘Hour’) as the sensitivity gate
input, alongside sine and cosine encoding, enhance the model’s capability to address cyclic
behaviors of the network parameters, DER variables, and weather conditions.

The SG-PSO-BO-optimized SERNN achieves impressive HC forecasting performance,
achieving R2 values of 0.97 and 0.98, and significantly reduces MAE (0.21 and 0.16) and
RMSE (0.38 and 0.31) for the IEEE-123 test network and the real Australian distribution
network, respectively. These results demonstrate the superior capability of the proposed
architecture to capture the non-linear and time-sensitive relationships between network
and DER variables, as well as weather conditions. The proposed framework outperforms
conventional standalone optimization models such as PSO, BO, and TLBO, and hybrid
approaches, highlighting scalability, computational efficiency, and adaptability in real-time
HC forecasting. The SERNN model’s sensitivity gate effectively addresses the time-sensitive
impact of input features like PV output, temperature, and circuit power. The study shows
that the Australian distribution network demonstrates superior performance due to actual
parameters and real-world scenarios of the network operations. This emphasizes the
real-world adaptation of the proposed model.

The proposed optimization framework is designed with modular flexibility, allowing
the incorporation of additional physical constraints beyond voltage profile, equipment
overloading, and thermal capacity of the conductors. Constraints such as power fac-
tor, phase angle, voltage imbalance thresholds, and battery operational restrictions can
be integrated within the optimization process. This capability enhances the practicality
of the approach, enabling customization to reflect specific network configurations and
regulatory requirements.

In low voltage distribution networks, phase unbalances caused by DER locations and
uncertain power injection, along with uneven load distribution, can influence the network
parameter and HC limits. This study focused on the aggregated power flow analysis at
the distribution transformer level, where the total active and reactive power flows are
considered without explicitly modeling phase-specific imbalances. Economic aspects,
including net metering, net billing, or dynamic pricing schemes, were not considered in
this analysis. Other important technical requirements stipulated in distribution codes,
such as power quality standards, fault ride-through capability, protection coordination,
and anti-islanding regulations, are not explicitly modeled in this framework. These factors
are essential for the practical implementation of DERs in real distribution networks. Future
research will aim to incorporate these distribution code requirements to enhance the
practical applicability and regulatory compliance of the proposed framework.

The proposed SG-PSO-BO framework is based on established methods, and its novelty
lies in the synergistic integration tailored for real-time hosting capacity forecasting under
DOE constraints in low voltage networks. Besides numerical accuracy improvements,
the method also enhances forecasting consistency, dynamic adaptability, and network
stability, addressing real-world operational needs. Even moderate improvements in error
metrics can lead to significant reductions in unnecessary DER curtailment, better voltage
compliance, and greater DER hosting without infrastructure upgrades. These advantages
make the proposed framework a practical and scalable solution for distribution network
operators facing increasing DER penetration.
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5. Conclusions
This research introduces a sensitivity-aware hybrid optimization framework, integrat-

ing the SG-PSO and BO for robust, reliable, and accurate HC forecasting of the distribution
networks with integrated DER. This approach optimizes the SERNN forecasting model,
incorporating the DOE-constrained model to capture the interactions among the network,
DER, and weather variables. The PSO determines the optimized weights and biases
and fine-tunes the hyperparameters of the SERNN forecasting model. Thus, the model
dynamically adjusts the DER power import/export to the network, ensuring adaptable
DER integration and reliable grid operations. The model achieves high forecasting accuracy
in terms of R2 value of 0.97 for the IEEE-123 test network and 0.98 for the real Australian
distribution network. It also demonstrates significantly low MAE (0.21 and 0.16) and
RMSE (0.38 and 0.31) for the IEEE-123 test network and Australian distribution network,
respectively. Additionally, it achieves stable convergence, low variation of residuals, and a
lower error margin between the actual and predicted HC. The optimization framework is
validated on real-world networks, demonstrating practical applicability through sustain-
able DER integration. This framework advances the dynamic network HC forecasting by
addressing the limitations of existing models, providing a scalable, real-time solution for
the next-generation distribution networks. The high forecasting accuracy and real-time
adaptability validate the effectiveness of the proposed SG-PSO-BO hybrid optimization
framework in enhancing SERNN model performance for dynamic HC forecasting. Valida-
tion on real-world networks highlights its practical applicability in facilitating sustainable
DER integration and grid stability. This study will provide necessary network visibility to
the network operators for real-time DER integration under DOE constraints.

Future research could include other DER types, such as wind power and other renew-
able resources, and explore pricing and tariff structures under diverse network scenarios to
enhance the robustness and practical applicability of the proposed optimization framework.
These advancements would offer grid operators a generalized forecasting tool to effectively
manage next-generation distribution networks. However, the model modification may
require the incorporation of high-resolution wind forecasting data, probabilistic power
output modeling, and additional temporal–spatial parameters to capture the intermittency
of wind. Furthermore, enhancement in the existing optimization algorithm may be needed
to coordinate between wind and existing DERs to ensure system stability and optimal
hosting capacity under diverse generation scenarios.
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