

REVIEW

Perioperative Management of GLP-1 Receptor Agonists: Balancing Aspiration Risk with Therapeutic Benefit

Enoch Chi Ngai Lim¹ · Chi Eung Danform Lim^{2,3}

Received: 30 June 2025 / Revised: 29 August 2025 / Accepted: 6 September 2025
© The Author(s) 2025

Abstract

The prescribing of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) has surged for the treatment of diabetes and obesity, with more than 15 million users worldwide. These medications also delay gastric emptying through neural mechanisms, increasing the risk for perioperative aspiration during anaesthesia and sedation. This narrative review aims to bridge the gap between evidence and clinical practice regarding the use of GLP-1 RAs in the perioperative period by critically evaluating changing clinical recommendations to inform a balance between the risks of aspiration and the potential surgical benefits. Important conclusions drawn from recent meta-analyses involving over 300,000 patients report that while the retained gastric contents are significantly increased (fivefold to tenfold increase; odds ratio 3.35–36.97), rates of pulmonary aspiration (0.1% to 0.2%) remain quite low, with no significant increase in comparison to control groups. Guidelines have evolved considerably from routine medication cessation in 2023 to GLP-1 RA continuation with individualised risk assessment in 2024–2025, illustrating increasing acknowledgment that certain theoretical risks may be underestimated. The evidence supports shared decision-making frameworks, where patient needs, procedure timeframes, and other management approaches, such as liquid diets, ultrasound evaluation of the stomach preoperatively, or anaesthetic modification tailored techniques, are considered primary drivers for care rather than rigid guidelines. The principle under which GLP-1 RAs should be managed has shifted to strategy layering—restoring calculator systems tailored to patients, rather than blanket medication cessation triggers that dominated prior models' suspension approach.

Keywords GLP-1 receptor agonists · Perioperative management · Aspiration · Anaesthesia

Introduction

The use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) has expanded rapidly, with more than 15 million people prescribed worldwide and projected market growth to USD 268 billion by 2034 [1]. Initially developed for type 2 diabetes, these drugs are now widely used for obesity and cardiovascular risk reduction, with emerging applications in neurological disease [2, 3]. Their broad uptake has raised

perioperative concerns, particularly delayed gastric emptying and aspiration risk during anaesthesia [4, 5]. GLP-1 RAs slow gastric emptying through vagal and central nervous system pathways, leading to retained stomach contents despite standard fasting [6–8]. Early reports of aspiration in fasting patients prompted changes to clinical guidance [4, 5].

Recommendations have shifted from routine medication cessation to continuation with individualised risk assessment [9, 10]. This reflects a more balanced view of potential aspiration risks against proven therapeutic benefits, especially for diabetes and cardiovascular care [11, 12]. As a result, anaesthetists increasingly encounter GLP-1 RAs in daily practice, where decisions affect both surgical safety and long-term outcomes. The aim of this review is to synthesise current evidence, highlight guideline evolution, and outline practical strategies for risk assessment and management. It seeks to guide clinicians in balancing aspiration risk with the therapeutic benefits of continuing GLP-1 RAs perioperatively.

✉ Chi Eung Danform Lim
Chi.Lim@westernsydney.edu.au;
ChiEungDanform.Lim@uts.edu.au

¹ Translational Research Department, Specialist Medical Services Group, Earlwood, NSW, Australia

² NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia

³ School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia

Methodology

A comprehensive literature review was conducted to examine the perioperative management of GLP-1 receptor agonists and their associated risk of aspiration. Multiple electronic databases were systematically searched, including PubMed/MEDLINE, Embase, Cochrane Library, and Google Scholar, covering publications from January 2020 to April 2025. The search strategy employed a combination of Medical Subject Headings (MeSH) terms and free-text keywords including: “glucagon-like peptide-1 receptor agonist”, “GLP-1”, “semaglutide”, “liraglutide”, “dulaglutide”, “tirzepatide”, “perioperative”, “preoperative”, “anaesthesia”, “anesthesia”, “gastric emptying”, “aspiration”, “regurgitation”, “delayed gastric emptying”, and “pulmonary aspiration”. Boolean operators (AND, OR) were used to combine search terms effectively. Additional sources were identified through manual searching of reference lists from included studies, professional society guidelines, and grey literature, including conference abstracts and institutional reports. Professional guidelines from major organisations, including the American Society of Anesthesiologists, the American Gastroenterological Association, the Australian and New Zealand College of Anaesthetists, the Association of Anaesthetists (UK), and regulatory guidance from health authorities, were specifically reviewed. Case reports, observational studies, randomised controlled trials, systematic reviews, meta-analyses, and expert consensus statements were included without language restrictions. Priority was given to recent publications and high-quality evidence, with emphasis on studies published after 2022 reflecting the evolving understanding of perioperative risks.

Pharmacology and Pathophysiology

Mechanism of Action and Gastric Effects

GLP-1 receptor agonists exert their gastric effects through complex neurally-mediated mechanisms rather than direct gastric smooth muscle actions [13]. The primary pathway involves activation of GLP-1 receptors located in the myenteric plexus of the enteric nervous system, coupled to G_{αs} protein subunits that activate adenylyl cyclase and increase cyclic adenosine monophosphate (cAMP) levels [14]. This cascade ultimately inhibits vagal motor activity, leading to delayed gastric emptying and increased pyloric tone [15].

Central nervous system mediation occurs through GLP-1 receptors in the hypothalamus and brainstem,

particularly the area postrema and nucleus tractus solitarius [8]. These central effects complement peripheral mechanisms and contribute to the overall gastric motility changes observed with GLP-1 RA therapy [16]. The clinical result is a coordinated reduction in antral contractility and increased pyloric resistance, leading to prolonged gastric residence times for both liquids and solids [17]. In this context, “residence time” refers to the duration that ingested food or liquid remains within the stomach before passing into the duodenum. GLP-1 RAs slow both liquid and solid transit, meaning material stays in the stomach longer than expected under normal fasting physiology.

Tachyphylaxis and Duration of Effects

A key feature of gastric effects associated with GLP-1 RA is the phenomenon of tachyphylaxis, where the gastric emptying effects diminish over time with continuous exposure lasting 8 to 24 h [18]. This rapid adaptation focuses on the level of vagal nerves, which is why there is a marked gastric response to insulin in the early phase after a meal, rather than during steady state [19]. Recent studies using scintigraphy suggest that long-acting GLP-1 RAs may have fewer gastric effects than short-acting formulations due to the phenomenon of tachyphylaxis [20]. The attenuation of effect with tachyphylaxis primarily reduces the delay in gastric emptying, with long-acting formulations showing less consistent slowing of emptying compared to short-acting agents.

The effect of tachyphylaxis has considerable clinical significance in the context of perioperative care. Adherence to long-term stable GLP-1 RA therapy appears to result in less delay in gastric emptying compared to patients who have recently started the therapy [21]. Moreover, the duration of impact on gastrin secretion after stopping medication is markedly different due to differences in pharmacokinetic profiles; for example, weekly injections may continue to have an effect for 1–2 weeks after cessation, while daily injections stop having an effect within 24–48 h after stopping [22].

Pharmacokinetic Profiles of Available Agents

The pharmacokinetic diversity amongst GLP-1 RAs has important implications for perioperative decision-making (Table 1). Semaglutide, with its 7-day half-life and once-weekly dosing, represents the longest-acting formulation currently available [23]. Its C18 di-acid side-chain attachment provides enhanced albumin binding and 89% subcutaneous bioavailability, resulting in sustained therapeutic levels for approximately 14 days following discontinuation [24].

Liraglutide, with a 13-h half-life and once-daily dosing, offers more predictable cessation kinetics for perioperative

Table 1 GLP-1 receptor agonists—pharmacokinetic properties and clinical characteristics

Agent	Half-life	Dosing schedule	Peak concentration	Bioavailability	Duration of gastric effects
Semaglutide	7 days (165–184 h)	Once weekly	1–3 days	89%	May persist 1–2 weeks
Liraglutide	13 h	Once daily	8–12 h	55%	24–48 h
Exenatide IR	2.4 h	Twice daily	2.1 h	Variable	24–48 h
Exenatide ER	~2 weeks	Once weekly	Multiphasic	Variable	1–2 weeks
Dulaglutide	5 days	Once weekly	2–4 weeks	Variable	1–2 weeks
Tirzepatide	5 days	Once weekly	4–5 weeks	Variable	Potentially reduced

management [23]. Its C16 fatty acid attachment mechanism provides 55% bioavailability with extensive albumin binding exceeding 98% [25]. The shorter half-life allows for more precise timing of medication cessation when clinically indicated [26].

Exenatide is available in both immediate-release (2.4-h half-life, twice-daily dosing) and extended-release formulations (approximately 2-week half-life with multiphasic profile) [27]. The extended-release formulation maintains therapeutic levels exceeding 50 pg/mL from approximately 2 weeks post-injection, complicating perioperative timing decisions [28].

Dulaglutide utilises a large recombinant fusion protein with Fc fragment for prolonged action, achieving a 5-day half-life with once-weekly dosing [29]. Tirzepatide, the newest dual GLP-1/GIP receptor agonist, has a similar 5-day half-life, but limited data suggest potentially less gastric emptying delay compared to pure GLP-1 agonists due to dual receptor activation [30].

Clinical Evidence

Aspiration Risk Evidence

The clinical evidence regarding GLP-1 RA-associated aspiration risk has evolved from alarming case reports to more nuanced observational data. The landmark Klein and Hobai case report documented the first objectively verified pulmonary aspiration in a 42-year-old patient on semaglutide who underwent upper gastrointestinal endoscopy [4]. Despite 18-h fasting, the patient had substantial gastric contents requiring bronchoscopic removal of food remains from the trachea and bronchi, providing concrete evidence of the potential perioperative risks [4].

Subsequent case reports have documented similar concerning events, including the Gulak and Murphy series describing a 70-year-old male who regurgitated large-volume particulate contents during laryngoscopy two days after semaglutide cessation [5]. This patient developed aspiration pneumonia requiring intensive care unit ventilation,

highlighting that effects may persist beyond expected pharmacological half-lives [5].

However, large-scale observational studies have provided more reassuring data regarding actual aspiration rates. The Silveira et al. retrospective analysis of 886 patients found retained gastric contents in 24.2% of semaglutide patients versus 5.1% of controls (adjusted odds ratio 5.15, 95% confidence interval 1.92–12.92), yet actual aspiration occurred in only 1 of 404 patients (0.24%) [31].

Retained Gastric Contents Studies

Multiple studies have consistently demonstrated increased rates of retained gastric contents in patients taking GLP-1 RAs, though with variable magnitude depending on study design and patient populations [32]. The Sen et al. JAMA Surgery study of 1,046 patients identified independent risk factors for food retention with GLP-1 RA use (odds ratio 9.19, 95% confidence interval 2.73–30.8), with tirzepatide demonstrating the strongest association amongst available agents [33].

The prospective Nersessian et al. gastric ultrasound study provides the most robust evidence to date, examining 220 patients and finding retained gastric contents in 40% of semaglutide patients versus 3% of controls (adjusted odds ratio 36.97, 95% confidence interval 16.54–99.32) [34]. This study's strength lies in its prospective design and objective gastric ultrasound assessment, reducing potential bias inherent in retrospective reviews [34].

Importantly, these studies demonstrate a consistent pattern: whilst retained gastric contents are significantly more common in GLP-1 RA users, the absolute rates vary considerably depending on patient factors, medication duration, and assessment methods [35]. Rates of retained gastric contents range from 24 to 40% in GLP-1 RA groups compared to 1.3–5.1% in control groups across major studies [36].

Meta-Analysis Outcomes

Recent meta-analyses have provided crucial insights into the relationship between retained gastric contents and actual aspiration events. The Tarar et al. systematic review of 13

studies encompassing 84,065 patients demonstrated significantly higher retained gastric contents rates (odds ratio 5.56, 95% confidence interval 3.35–9.23) but found no significant difference in actual aspiration rates (odds ratio 1.75, 95% confidence interval 0.64–4.77) [37].

Another meta-analysis by Elkin et al. of 28 studies involving 304,060 individuals with 481 documented aspiration cases found that GLP-1 RA exposure was not associated with increased pulmonary aspiration (odds ratio 1.04, 95% confidence interval 0.87–1.25) despite a significant association with retained gastric contents (odds ratio 5.96, 95% confidence interval 3.96–8.98) [38]. This large-scale analysis provides the most robust evidence to date that increased gastric residual contents do not necessarily translate to clinically significant aspiration risk [38].

These meta-analyses highlight a critical distinction between theoretical risk (retained gastric contents) and clinical outcomes (actual aspiration events). The dissociation between these measures suggests that current risk assessment models may overestimate the clinical significance of delayed gastric emptying in the perioperative setting [39].

Evolving Guidelines and Recommendations

Timeline of Guidance Evolution

The evolution of professional guidance regarding perioperative GLP-1 RA management reflects rapidly accumulating evidence and changing risk-benefit assessments. The American Society of Anesthesiologists (ASA) released initial consensus-based guidance in June 2023, recommending medication cessation: daily dosing held on the day of procedure and weekly dosing held one week prior [9]. This guidance reflected the limited evidence available at the time, consisting primarily of case reports and small case series [40].

The paradigm shifted dramatically with the release of multi-society guidance in October 2024, endorsed by the ASA, American Gastroenterological Association, American Society for Metabolic and Bariatric Surgery, International Society of Perioperative Care of Patients with Obesity, and Society of American Gastrointestinal and Endoscopic Surgeons [10]. This updated guidance states that “most patients

should continue taking their glucagon-like peptide-1 receptor agonists before elective surgery” with emphasis on individualised risk assessment and shared decision-making [41]. Given the rapid pace of new clinical data, it is likely that guidelines will continue to evolve. Further prospective studies, particularly on long-term users and high-risk surgical populations, may refine recommendations on fasting duration, imaging use, and anaesthetic modifications. Clinicians should therefore remain alert to emerging updates and apply flexible, evidence-based approaches.

International Consensus Development

International guidelines have shown similar evolution toward continuation with risk mitigation (Table 2). The UK Association of Anaesthetists published comprehensive multidisciplinary consensus in January 2025, recommending that GLP-1 receptor agonists be continued before surgery with individualised risk assessment [42]. The guidance explicitly acknowledges “insufficient evidence to put forward definitive guidance regarding the ideal cessation period” [42].

Australian guidelines from ANZCA and multiple endorsing societies emphasise not withholding medications prior to procedures, recommending that patients who have taken medication in the last four weeks should be considered unfasted [43]. The Australian approach incorporates consideration of 24-h clear fluid diets and prokinetic agent administration as risk mitigation strategies [44].

The UK Medicines and Healthcare products Regulatory Agency issued safety guidance in 2024 requiring healthcare professionals to be aware of aspiration risk whilst emphasising individualised assessment [45]. This guidance specifically notes that patients may not readily disclose off-label aesthetic use of these medications, highlighting the importance of comprehensive medication histories [45].

Key Differences and Commonalities

Despite geographical and organisational differences, several common themes emerge across guidelines. All acknowledge the limited quality of available evidence and rely on consensus-based recommendations rather than high-level evidence [46]. The evolution from 2023 to 2024–2025 represents a

Table 2 Comparison of major professional guidelines

Organisation	Year	Medication management	Risk assessment	Alternative strategies	Evidence grade
ASA USA	2023	Cessation (1 day daily, 1 week weekly)	GI symptom-based	Gastric ultrasound	Consensus
Multi-Society USA	2024	Continue for most patients	Individualised risk assessment	24-h liquid diet	Guidance
UK Association	2025	Continue as normal	Comprehensive assessment	Point-of-care tools	Consensus
ANZCA Australia	2024	Do not withhold	Consider unfasted if used < 4 weeks	Prokinetic agents	Consensus

movement from precautionary cessation to continuation with risk mitigation, reflecting a more sophisticated understanding of risk-benefit profiles [47].

Critical commonalities include emphasis on shared decision-making between patients, surgeons, and anaesthetists; recognition that emergency procedures should proceed with “full stomach” precautions regardless of medication status; and acknowledgement that patient equity considerations must be balanced against theoretical safety concerns [48]. Guidelines consistently recommend enhanced fasting protocols, gastric ultrasound assessment, and modified anaesthetic techniques as alternatives to medication cessation [49].

Clinical Decision-Making Framework

Risk Stratification Approaches

Effective perioperative management of GLP-1 RA therapy requires systematic risk stratification incorporating patient factors, medication characteristics, and procedural considerations [22] (Table 3). High-risk patient factors include active gastrointestinal symptoms (odds ratio 7.66, 95% confidence interval 3.42–17.17), early treatment phase (less than 4 weeks), higher medication doses, pre-existing diabetic gastroparesis, obesity (BMI greater than 30), and gastroesophageal reflux disease [31].

Conversely, protective factors include long-term stable therapy (greater than 3 months) due to tachyphylaxis effects, asymptomatic patients without gastrointestinal complaints, properly timed medication cessation when indicated, and absence of additional gastroparesis risk factors [13]. Procedural factors influencing risk include procedure urgency (emergency versus elective), duration and complexity, requirement for general anaesthesia versus regional techniques, and institutional experience with alternative management strategies [50].

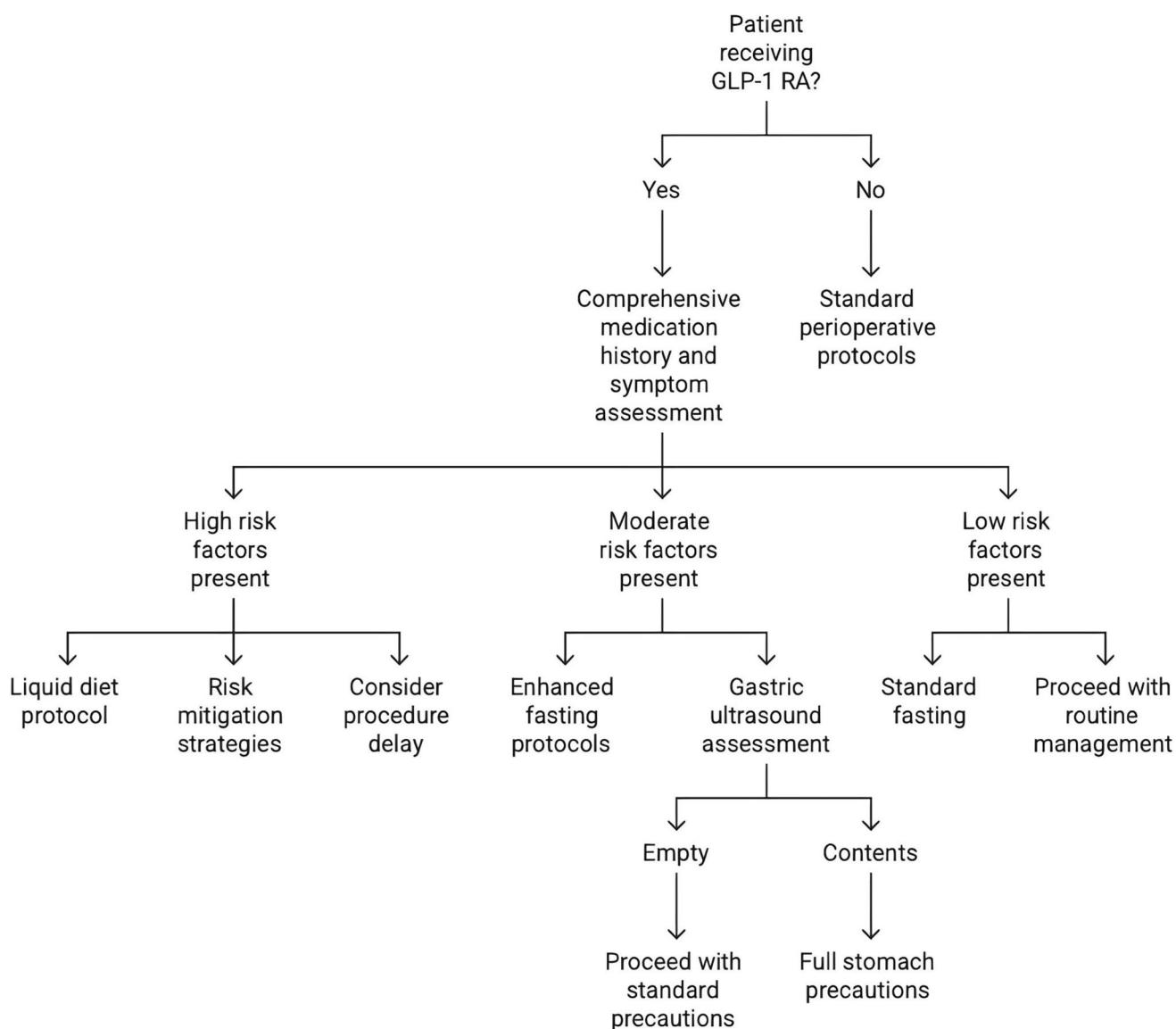
Medication-specific factors require consideration of pharmacokinetic properties, with weekly formulations potentially having more prolonged effects than daily preparations [51]. Tirzepatide, as a dual GLP-1/GIP agonist, may have

different gastric effects compared to pure GLP-1 agonists, though evidence remains limited [52].

Preoperative Assessment Algorithm

Systematic preoperative assessment begins with comprehensive medication history, including specific inquiry about weight loss indications that patients may not readily volunteer [53]. Assessment of gastrointestinal symptoms focuses on nausea, vomiting, early satiety, bloating, and abdominal pain, which correlate with increased gastric retention risk [32].

Multi-factorial risk scoring incorporates patient factors, medication characteristics, and procedural requirements to stratify patients into low, moderate, and high-risk categories [54]. Figure 1 illustrates the perioperative management considerations for individuals using GLP-1 RA. Low-risk patients (asymptomatic, long-term stable therapy, properly held medications) may proceed with standard fasting protocols [55]. Moderate-risk patients benefit from enhanced fasting protocols and consideration of gastric ultrasound assessment [56]. High-risk patients require comprehensive evaluation including liquid diet protocols, prokinetic agent consideration, and potential procedure delay [57].


Alternative Management Strategies

When medication cessation is not optimal, several alternative strategies can mitigate aspiration risk whilst preserving therapeutic benefits. Twenty-four-hour clear liquid diets represent the primary alternative for high-risk patients, permitting clear broths, clear juices, gelatin, and tea or coffee without milk whilst avoiding solids, dairy products, and thick liquids [53]. Evidence demonstrates reduced gastric residual volumes with this approach compared to standard fasting alone [58].

Another important factor is the cost of case cancellation. When surgery is delayed or cancelled due to concerns about gastric emptying, hospitals incur financial loss through wasted operating time and resource reallocation. Patients also face indirect costs, including additional leave from work, extended waiting periods, and potential

Table 3 Risk stratification for GLP-1 RA perioperative management

Risk category	Patient factors	Medication factors	Management approach
Low risk	Asymptomatic, long-term stable therapy, no gastroparesis	Properly timed cessation, daily formulations	Standard fasting protocols
Moderate risk	Mild GI symptoms, intermediate therapy duration	Weekly formulations, missed cessation	Enhanced fasting, consider gastric ultrasound
High risk	Active GI symptoms, early therapy, gastroparesis	Recent initiation, high doses	Liquid diet protocol, prokinetic agents, consider delay

Fig. 1 Clinical decision algorithm for GLP-1 RA perioperative management

deterioration in their health condition. Balancing these tangible costs against theoretical aspiration risks reinforces the need for pragmatic, patient-centered management rather than blanket cancellation policies.

Point-of-care gastric ultrasound provides real-time decision-making capability through qualitative and quantitative gastric content evaluation [59]. Technical considerations include proper patient positioning in right lateral decubitus, antral cross-sectional area measurement, and qualitative assessment categorising gastric contents as empty, clear fluid, or thick fluid/solids [60]. Limitations include user dependence requiring training and experience, potential for false positives and negatives, and inability to completely eliminate aspiration risk [61].

Prokinetic agents offer pharmacological enhancement of gastric emptying, though efficacy in GLP-1 RA patients varies by agent [62]. Erythromycin as a motilin receptor agonist shows promise but faces limitations from tachyphylaxis and drug interactions [63]. Metoclopramide demonstrates mixed results due to central nervous system side effects and limited upper gastrointestinal effectiveness [64]. Domperidone shows effectiveness as a selective dopamine D2 antagonist that does not cross the blood–brain barrier [65].

Regional anaesthesia techniques offer preserved airway reflexes and reduced aspiration risk when appropriate for the surgical procedure [66]. Preferred techniques include spinal anaesthesia for orthopaedic procedures, interscalene blocks for upper extremity surgery, and femoral/sciatic blocks for

lower extremity procedures [67]. Technical contraindications and patient factors may limit applicability, requiring individualised assessment [68].

Take-Home Messages

The routine practice of stopping GLP-1 receptor agonists before surgery has shifted to individualised risk assessment. Current evidence suggests that, although gastric volumes are often higher, aspiration rates remain low.

Perioperative management should focus on patient-centred care, including full medication review, risk profiling, and shared decision-making. The therapeutic benefits of these agents—glycaemic control, cardiovascular protection, and weight management—must be balanced against largely theoretical aspiration risks.

Clinicians should remain vigilant, especially for bariatric and aesthetic procedures. Practical strategies include liquid diets, gastric ultrasound, and regional anaesthesia where appropriate. Future work should develop validated risk tools and standardised protocols to guide safe, evidence-based practice.

Conclusion

GLP-1 receptor agonists illustrate how emerging evidence reshapes clinical practice and refines evidence-based medicine. Current guidance supports stratified risk assessment based on individual patient factors rather than routine medication cessation. Studies show that retained gastric contents do not correlate with increased aspiration risk, challenging earlier conservative approaches. The move from blanket cessation to risk-adjusted continuation reflects improved understanding of therapeutic value, promoting shared decision-making and equity in care. Widespread use of these agents requires systematic perioperative strategies by anaesthetists to balance safety with therapeutic benefit. Most elective surgery patients can safely continue treatment with safeguards. High-risk patients need tailored precautions. The goal remains evidence-informed care that prioritises patient safety and optimises outcomes.

Author Contribution CRediT author contribution statement Conceptualization: ENCL, CEDL Data curation: ENCL Formal analysis: ENCL Funding acquisition: CEDL Investigation: ENCL Methodology: ENCL, CEDL Project administration: ENCL Supervision: CEDL Visualization: ENCL, CEDL Writing original draft: ENCL Writing-review & editing: ENCL, CEDL.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availability No datasets were generated or analysed during the current study.

Code Availability Non-applicable.

Declarations

Ethics Approval Waived for narrative review – Non-applicable.

Consent to Participate Non-applicable.

Consent for Publication Consent for publication is not applicable as this is a narrative review with no individual data included.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Grand View Research. GLP-1 receptor agonist market size & share report, 2030. Market Analysis Report. 2024. Available from: <https://www.grandviewresearch.com/industry-analysis/glp-1-receptor-agonist-market>. Accessed 28 June 2025
2. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. *N Engl J Med*. 2016;375(19):1834–44. <https://doi.org/10.1056/NEJMoa1607141>.
3. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. *N Engl J Med*. 2021;384(11):989–1002. <https://doi.org/10.1056/NEJMoa2032183>.
4. Klein SR, Hobai IA. Semaglutide, delayed gastric emptying, and intraoperative pulmonary aspiration: a case report. *Can J Anaesth*. 2023;70(8):1394–6. <https://doi.org/10.1007/s12630-023-02440-3>.
5. Gulak MA, Murphy P. Regurgitation under anesthesia in a fasted patient prescribed semaglutide for weight loss: a case report. *Can J Anaesth*. 2023;70(8):1397–400. <https://doi.org/10.1007/s12630-023-02521-3>.
6. Marathe CS, Rayner CK, Jones KL, Horowitz M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. *Diabetes Care*. 2013;36(5):1396–405. <https://doi.org/10.2337/dc12-2618>.
7. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. *Lancet Diabetes Endocrinol*. 2016;4(6):525–36. [https://doi.org/10.1016/S2213-8587\(15\)00482-9](https://doi.org/10.1016/S2213-8587(15)00482-9).
8. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. *Cell Metab*. 2018;27(4):740–56. <https://doi.org/10.1016/j.cmet.2018.03.001>.
9. American Society of Anesthesiologists. Consensus-based guidance on preoperative management of patients on glucagon-like peptide-1 receptor agonists. ASA News Release. 2023. Available

from: <https://www.asahq.org/about-asa/newsroom/news-releases/2023/06/american-society-of-anesthesiologists-consensus-based-guidance-on-preoperative>. Accessed 28 June 2025

10. Kindel TL, Wang AY, Wadhwa A, et al. Multisociety clinical practice guidance for the safe use of glucagon-like peptide-1 receptor agonists in the perioperative period. *Clin Gastroenterol Hepatol.* 2024;22(12):2456–67. <https://doi.org/10.1016/j.cgh.2024.10.003>.
11. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022: a consensus report by the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care.* 2022;45(11):2753–86. <https://doi.org/10.2337/dc22-0034>.
12. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. *Eur Heart J.* 2020;41(2):255–323. <https://doi.org/10.1093/eurheartj/ehz486>.
13. Jalleh RJ, Plummer MP, Marathe CS, et al. Clinical consequences of delayed gastric emptying with GLP-1 receptor agonists and tirzepatide. *J Clin Endocrinol Metab.* 2024. <https://doi.org/10.1210/clinend/dgae719>.
14. Holst JJ. The physiology of glucagon-like peptide 1. *Physiol Rev.* 2007;87(4):1409–39. <https://doi.org/10.1152/physrev.00034.2006>.
15. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. *Mol Metab.* 2021;46:101102. <https://doi.org/10.1016/j.molmet.2020.101102>.
16. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. *Cell Metab.* 2013;17(6):819–37. <https://doi.org/10.1016/j.cmet.2013.04.008>.
17. Young RL, Chia B, Isaacs NJ, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. *PLoS ONE.* 2013;8(4):e61876. <https://doi.org/10.1371/journal.pone.0061876>.
18. Umapathysivam MM, Lee MY, Jones KL, et al. Comparative effects of prolonged and intermittent stimulation of the glucagon-like peptide 1 receptor on gastric emptying and glycemia. *Diabetes.* 2014;63(2):785–90. <https://doi.org/10.2337/db13-0893>.
19. Linnebjerg H, Park S, Kothare PA, et al. Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. *Regul Pept.* 2008;151(1–3):123–9. <https://doi.org/10.1016/j.regpep.2008.07.003>.
20. Jones KL, Huynh LQ, Hatzinikolas S, et al. Exenatide once weekly slows gastric emptying of solids and liquids in healthy, overweight people at steady-state concentrations. *Diabetes Obes Metab.* 2020;22(5):788–97. <https://doi.org/10.1111/dom.13956>.
21. Jensterle M, Ferjan S, Ležaič L, et al. Semaglutide delays 4-hour gastric emptying in women with polycystic ovary syndrome and obesity. *Diabetes Obes Metab.* 2023;25(4):975–84. <https://doi.org/10.1111/dom.14944>.
22. Milder DA, Milder TY, Liang SS, Kam PCA. Glucagon-like peptide-1 receptor agonists: a narrative review of clinical pharmacology and implications for peri-operative practice. *Anaesthesia.* 2024;79(7):735–47. <https://doi.org/10.1111/anae.16082>.
23. Jacobsen LV, Hindsberger C, Robson R, Zdravkovic M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. *Br J Clin Pharmacol.* 2009;68(6):898–905. <https://doi.org/10.1111/j.1365-2125.2009.03536.x>.
24. Kapitza C, Nosek L, Jensen L, et al. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. *J Clin Pharmacol.* 2015;55(5):497–504. <https://doi.org/10.1002/jcph.443>.
25. Agersø H, Jensen LB, Elbrønd B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. *Diabetologia.* 2002;45(2):195–202. <https://doi.org/10.1007/s00125-001-0719-z>.
26. Flint A, Kapitza C, Hindsberger C, Zdravkovic M. The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. *Adv Ther.* 2011;28(3):213–26. <https://doi.org/10.1007/s12325-010-0110-x>.
27. Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: differential effects on fasting and postprandial glucose. *Diabetes Obes Metab.* 2012;14(8):675–88. <https://doi.org/10.1111/j.1463-1326.2012.01560.x>.
28. DeYoung MB, MacConell L, Sarin V, et al. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. *Diabetes Technol Ther.* 2011;13(11):1145–54. <https://doi.org/10.1089/dia.2011.0050>.
29. Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. *Diabetes Metab Res Rev.* 2010;26(4):287–96. <https://doi.org/10.1002/dmrr.1080>.
30. Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. *Mol Metab.* 2018;18:3–14. <https://doi.org/10.1016/j.molmet.2018.09.009>.
31. Silveira SQ, da Silva LM, de Campos Vieira Abib A, et al. Relationship between perioperative semaglutide use and residual gastric content: a retrospective analysis of patients undergoing elective upper endoscopy. *J Clin Anesth.* 2023;87:111091. <https://doi.org/10.1016/j.jclinane.2023.111091>.
32. Kobori T, Onishi Y, Yoshida Y, et al. Association of glucagon-like peptide-1 receptor agonist treatment with gastric residue in an esophagogastroduodenoscopy. *J Diabetes Investigig.* 2023;14(6):767–73. <https://doi.org/10.1111/jdi.14005>.
33. Sen S, Potnuru PP, Hernandez N, et al. Glucagon-like peptide-1 receptor agonist use and residual gastric content before anesthesia. *JAMA Surg.* 2024;159(6):660–7. <https://doi.org/10.1001/jamasurg.2024.0111>.
34. Nersessian RSF, da Silva LM, Carvalho MAS, et al. Relationship between residual gastric content and peri-operative semaglutide use assessed by gastric ultrasound: a prospective observational study. *Anaesthesia.* 2024;79(12):1317–24. <https://doi.org/10.1111/anae.16454>.
35. Stark JE, Cole JL, Ghazarian RN, Klass MJ. Impact of glucagon-like peptide-1 receptor agonists on food content during esophagogastroduodenoscopy. *Ann Pharmacother.* 2022;56(8):922–6. <https://doi.org/10.1177/10600280211055804>.
36. Firkins SA, Yates J, Shukla N, et al. Clinical outcomes and safety of upper endoscopy while on glucagon-like peptide-1 receptor agonists. *Clin Gastroenterol Hepatol.* 2024;22(8):1756–63. <https://doi.org/10.1016/j.cgh.2024.03.013>.
37. Tarar ZI, Farooq U, Chaudhry A, et al. Evidence report on the safety of gastrointestinal endoscopy in patients on glucagon-like peptide-1 receptor agonists: a systematic review and meta-analysis. *Diagnostics.* 2025;15(6):770. <https://doi.org/10.3390/diagnostics15060770>.
38. Elkin CP, Parikh PJ, Sperling JW, et al. Association between glucagon-like peptide-1 receptor agonist use and perioperative aspiration: a systematic review and meta-analysis. *Perioper Med.* 2024;13(1):89. <https://doi.org/10.1186/s13741-024-00439-y>.
39. Phillips LK, Deane AM, Jones KL, Rayner CK, Horowitz M. Gastric emptying and glycaemia in health and diabetes mellitus. *Nat Rev Endocrinol.* 2015;11(2):112–28. <https://doi.org/10.1038/nrendo.2014.202>.
40. Joshi GP, Abdelmalak BB, Weigel WA, et al. American Society of Anesthesiologists consensus-based guidance on preoperative management of patients on glucagon-like peptide-1 receptor agonists. *Anesthesiology.* 2023;139(6):832–42. <https://doi.org/10.1097/ALN.0000000000004740>.
41. Kindel TL, Wang AY, Wadhwa A, et al. Multisociety clinical practice guidance for the safe use of glucagon-like peptide-1

receptor agonists in the perioperative period. *Surg Obes Relat Dis.* 2024;20(12):1183–6. <https://doi.org/10.1016/j.soard.2024.08.033>.

42. El-Boghdadly K, Dhesi J, Fabb P, et al. Elective peri-operative management of adults taking glucagon-like peptide-1 receptor agonists, glucose-dependent insulinotropic peptide agonists and sodium-glucose cotransporter-2 inhibitors: a multidisciplinary consensus statement. *Anaesthesia.* 2025;80(4):412–24. <https://doi.org/10.1111/anae.16541>.

43. Hocking SL, Scott DA, Remedios ML, et al. Clinical practice recommendations regarding patients taking GLP-1 receptor agonists and dual GLP-1/GIP receptor co-agonists prior to anaesthesia or sedation for surgical and endoscopic procedures. ANZCA Consensus Statement. 2025. Available from: <https://www.anzca.edu.au/resources/professional-documents/endorsed-guidelines/periprocedural-glp-1-use-consensus-clinical-guide.pdf>. Accessed 28 June 2025

44. Australian Society of Anaesthetists. Perioperative management of patients on GLP-1 receptor agonists. ASA Fact Sheet. 2024. Available from: <https://asa.org.au/wp-content/uploads/2024/10/ASA-FS1-Perioperative-Management-of-Patients-on-GLP-1-Receptor-Agonists-GLP-1-RAs.pdf>. Accessed 28 June 2025

45. Medicines and Healthcare products Regulatory Agency. GLP-1 and dual GIP/GLP-1 receptor agonists: potential risk of pulmonary aspiration during general anaesthesia or deep sedation. Drug Safety Update. 2025. Available from: <https://www.gov.uk/drug-safety-update/glp-1-and-dual-gip-slash-glp-1-receptor-agonists-potential-risk-of-pulmonary-aspiration-during-general-anaesthesia-or-deep-sedation>. Accessed 28 June 2025

46. van Zuylen ML, Siegelaar SE, Plummer MP, et al. Perioperative management of long-acting glucagon-like peptide-1 receptor agonists: concerns for delayed gastric emptying and pulmonary aspiration. *Br J Anaesth.* 2024;132(4):644–8. <https://doi.org/10.1016/j.bja.2024.01.001>.

47. Jones PM, Hobai IA, Murphy PM. Anesthesia and glucagon-like peptide-1 receptor agonists: proceed with caution! *Can J Anaesth.* 2023;70(8):1281–6. <https://doi.org/10.1007/s12630-023-02550-y>.

48. Arnold DE, Joshi GP. Multi-society guidance on perioperative management of GLP-1 receptor agonists. *Anesthesiology.* 2024;141(6):1249–51. <https://doi.org/10.1097/ALN.00000000000005231>.

49. Oprea AD, Ostapenko LJ, Sweitzer B, et al. Perioperative management of patients taking glucagon-like peptide 1 receptor agonists: Society for Perioperative Assessment and Quality Improvement multidisciplinary consensus statement. *Br J Anaesth.* 2025;134(2):294–306. <https://doi.org/10.1016/j.bja.2024.11.032>.

50. American Society of Anesthesiologists Committee. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. *Anesthesiology.* 2017;126(3):376–93. <https://doi.org/10.1097/ALN.0000000000001452>.

51. Friedrichsen M, Breitschaff A, Tadayon S, et al. The effect of semaglutide 2.4 mg once weekly on energy intake, appetite, control of eating, and gastric emptying in adults with obesity. *Diabetes Obes Metab.* 2021;23(3):754–62. <https://doi.org/10.1111/dom.14265>.

52. Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: the SUR-PASS clinical trials. *Diabetes Ther.* 2021;12(1):143–57. <https://doi.org/10.1007/s13300-020-00981-0>.

53. Popov VB, Ahmed AM, Yeoh A, et al. Glucagon-like peptide-1 receptor agonists and safety of gastrointestinal endoscopic procedures: a systematic review and meta-analysis. *Gastroenterology.* 2024;167(4):742–54. <https://doi.org/10.1053/j.gastro.2024.03.015>.

54. Raven LM, Brown C, Greenfield JR. Considerations of delayed gastric emptying with peri-operative use of glucagon-like peptide-1 receptor agonists. *Med J Aust.* 2024;220(7):372–4. <https://doi.org/10.5694/mja2.52267>.

55. Girón-Arango L, Perlas A. Point-of-care gastric ultrasound to identify a full stomach on a diabetic patient taking a glucagon-like peptide 1 receptor agonist. *A A Pract.* 2024;18(4):e01751. <https://doi.org/10.1213/XAA.0000000000001751>.

56. Hodgson JA, Rivera-Rodriguez H, Wu P, et al. Point-of-care ultrasound aids in the management of patient taking semaglutide before surgery: a case report. *A A Pract.* 2024;18(4):e01762. <https://doi.org/10.1213/XAA.0000000000001762>.

57. Anazco D, Fansa S, Hurtado MD, et al. Low incidence of pulmonary aspiration during upper endoscopy in patients prescribed a glucagon-like peptide 1 receptor agonist. *Clin Gastroenterol Hepatol.* 2024;22(6):1333–1335.e2. <https://doi.org/10.1016/j.cgh.2023.11.024>.

58. Baig MU, Piazza A, Lahooti A, et al. Glucagon-like peptide-1 receptor agonist use and the risk of residual gastric contents and aspiration in patients undergoing GI endoscopy: a systematic review and meta-analysis. *Gastrointest Endosc.* 2025;101(4):762–771.e13. <https://doi.org/10.1016/j.gie.2024.12.019>.

59. Van de Putte P, Perlas A. Ultrasound assessment of gastric content and volume. *Br J Anaesth.* 2014;113(1):12–22. <https://doi.org/10.1093/bja/aeu151>.

60. Perlas A, Mitsakakis N, Liu L, et al. Validation of a mathematical model for ultrasound assessment of gastric volume by gastroscopic examination. *Anesth Analg.* 2013;116(2):357–63. <https://doi.org/10.1213/ANE.0b013e318274fc19>.

61. Charlesworth M, Wiles MD. Pre-operative gastric ultrasound – should we look inside Schrödinger's gut? *Anaesthesia.* 2019;74(1):109–12. <https://doi.org/10.1111/anae.14461>.

62. Janssen P, Harris MS, Jones M, et al. The relation between symptom improvement and gastric emptying in the treatment of diabetic and idiopathic gastroparesis. *Am J Gastroenterol.* 2013;108(9):1382–91. <https://doi.org/10.1038/ajg.2013.118>.

63. Meier JJ, Kemmeries G, Holst JJ, Nauck MA. Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. *Diabetes.* 2005;54(7):2212–8. <https://doi.org/10.2337/diabetes.54.7.2212>.

64. Schvarcz E, Palmér M, Aman J, et al. Physiological hyperglycemia slows gastric emptying in normal subjects and patients with insulin-dependent diabetes mellitus. *Gastroenterology.* 1997;113(1):60–6. [https://doi.org/10.1016/s0016-5085\(97\)70079-5](https://doi.org/10.1016/s0016-5085(97)70079-5).

65. Patterson D, Abell T, Rothstein R, et al. A double-blind multi-center comparison of domperidone and metoclopramide in the treatment of diabetic patients with symptoms of gastroparesis. *Am J Gastroenterol.* 1999;94(5):1230–4. <https://doi.org/10.1111/j.1572-0241.1999.01076.x>.

66. Horlocker TT, Vandermeulen E, Kopp SL, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines. *Reg Anesth Pain Med.* 2018;43(3):263–309. <https://doi.org/10.1097/AAP.00000000000000763>.

67. Neal JM, Barrington MJ, Fettiplace MR, et al. The third American Society of Regional Anesthesia and Pain Medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. *Reg Anesth Pain Med.* 2018;43(2):113–23. <https://doi.org/10.1097/AAP.0000000000000720>.

68. Avraham SA, Hossein J, Somri F, et al. Pulmonary aspiration of gastric contents in two patients taking semaglutide for weight loss. *Anaesth Rep.* 2024;12(1):e12278. <https://doi.org/10.1002/anr3.12278>.