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Abstract

Asthma is a diverse disease that can be categorized into various phenotypes and endotypes, including obesity-related asthma:tg
allergic asthma. “Treatable traits (TTs)” represent a new approach to managing asthma. Asthma accompanied by dyslipidemia
would be a distinct asthma phenotype that is becoming increasingly common. Therefore, dyslipidemia can potentially serve as a
target for the management of asthma. Nevertheless, it remains highly under-researched compared to other observable traits. Gain-
ing knowledge about the clinical and inflammatory characteristics, underlying mechanisms, and potential therapeutic medications
for asthma with dyslipidemia is crucial for its effective management. This review aimed to provide a comprehensive overview of
asthma with dyslipidemia, consolidating existing knowledge and ongoing research.
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Introduction

Asthma is a global public health problem that affects
approximately 300 million people worldwide and causes
approximately 1000 deaths per day."?! In China, the
prevalence of asthma in adults aged >20 years is 4.2%,
corresponding to 45.7 million Chinese people.’! Clearly,
this disease poses a huge health burden on society and
individuals with the disease. Asthma has been defined as
a heterogeneous disease that can be divided into different
phenotypes and endotypes,!!! which can be used to refine
asthma management. In recent years, “treatable traits
(TTs)” have been proposed as a new paradigm for the
21st century management of chronic airway diseases such
as asthma. The “TTs” approach aims to provide individu-
alized assessment and precise treatment for patients with
asthma based on their specific phenotype or endotype, and
it is considered the preferred approach towards managing
airway diseases using precision medicine. TTs are defined
as disease characteristics that are identifiable and measurable,
clinically relevant, and treatable. Generally, TTs comprise
three different domains: pulmonary, extrapulmonary,

and behavioral/lifestyle/risk factors.l*l Because many

extrapulmonary traits are present as comorbidities that

may affect asthma severity and control,l%*

identifying
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these comorbidities as extrapulmonary TTs and targeting
them is important in asthma management. Obesity is a
common comorbidity of asthma and has been identified
as an extrapulmonary TT.[”#/ Obesity is a primary cause
of metabolic dysfunction that can lead to metabolic
syndromes including dyslipidemia, hyperglycemia, and
hypertension.l”! Although there is increasing evidence
demonstrating the impact of obesity and metabolic syn-
drome on the development, severity, clinical features, and
management of asthma,/”!% few studies have explored
the effects of dyslipidemia on asthma alone. Limited evi-
dence shows that correlations exist between blood lipid
profiles and asthma, independent of body mass index
(BMI).[""-13] Recently, we found that dyslipidemia can
affect asthma independent of obesity and other compo-
nents of metabolic syndrome, highlighting the i importance
of considering dyslipidemia as an extrapulmonary TT in
asthma management.

Dyslipidemia is a condition of abnormal serum lipid
levels, including abnormal levels in one or more routine
clinical lipid tests for triglyceride (TG), total cholesterol
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(TC), low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C).">] Due to
racial and dietary differences, the cut-off values for iden-
tifying dyslipidemia differ across countries. In American
adults, dyslipidemia is defined as TG >2.25 mmol/L,
TC >6.20 mmol/L, LDL-C >4.13 mmol/L or HDL-C
<1.03 mmol/L.["*! In Chinese adults, dyslipidemia is
defined as TG > 1.7 mmol/L, TC > 5.20 mmol/L, LDL-C
>3.4 mmol/L or HDL-C <1.0 mmol/L.'”! Because lipid
levels change with growth and maturation, normal values
for children differ from those for adults. Dyslipidemia in
children is determined based on an established range of
lipids and lipoproteins in the pediatric population.l'¥! In
recent years, the increasing prevalence of dyslipidemia has
become a significant global public health concern. Accord-
ing to a World Health Organization (WHO) report,!”!
the age-adjusted prevalence of dyslipidemia is 47.7% in
America, 53.7% in Europe, and 30.3% in the Asia Pacific
region. In China, the 2018 national survey revealed the
prevalence of dyslipidemia was 35.6% in adults aged >18
years,!3! which was higher than the results from the 2015
national survey.l?”! Thus, the disease burden caused by
dyslipidemia cannot be ignored.

Considering the high global prevalence of dyslipidemia,
coupled with the fact that dyslipidemia can play a sig-
nificant role in asthma, it is imperative to understand
the mechanistic link. Therefore, in this review, we sum-
marize the epidemiology of asthma with dyslipidemia
and describe the clinical and inflammatory features and
underlying mechanisms of asthma with dyslipidemia.
Finally, we summarize potential therapeutic drugs target-
ing asthma with dyslipidemia.

Epidemiological Links Between Asthma and Dyslipidemia

Epidemiological studies have found that the prevalence
of dyslipidemia among asthma patients ranges from 12.4
to 45.7%.1421241 To be specific, in elderly patients with
asthma (aged >65 years), the prevalence of dyslipidemia
is 35.97%.1231 In those with severe asthma, the prevalence
of dyslipidemia is 16%./**! In addition, the prevalence of
dyslipidemia shows a female predominance, with dyslipi-
demia occurring in 20.78% of female asthma patients,
compared to 19.52% of male asthma patients./?3!

Several studies have reported that dyslipidemia is involved
in the development of asthma.!!1-1325-31 For example, a
cross-sectional study led by Ko et al*®! and a case-control
study by Ramaraju et all">! have found that higher serum
lipid levels are associated with a higher risk of asthma.
A retrospective cohort study by Lim et al'*”) and a pro-
spective cohort study conducted by Vinding et al'!l also
confirmed that higher serum lipid levels were significantly
associated with the presence of asthma. Notably, a 5-year
follow-up cohort study of 3982 children in Cyprus by
Yiallouros et al'*! found that children with a low serum
HDL-C level at age 11-12 years had an increased risk
for development of asthma during adolescence (ages
15-17 years). The estimated odds ratios (ORs) were
1.89 (95% confidence interval [CI]: 1.19-3.00) and 1.89
(95% CI: 1.02-3.53) for ever asthma and active asthma
respectively. This association remained significant after
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further adjustments for BMI and maximal oxygen consump-
tion. Further, hypercholesterolemia has been identified as a
potential risk factor for asthma, independent of obesity.*?!
The association between asthma and elevated LDL-C levels
is amplified in overweight and obese individuals.?3! A pro-
nounced sex difference in the relationships between asthma,
lipid profiles, and obesity has been identified,**! which
may be attributed to varying dietary patterns among males
and females or the influence of steroid hormones. Recently,
Liu et al®* used the Mendelian randomization approach to
explore the relationship between dyslipidemia and asthma
and found a causal relationship between higher levels of
LDL-C, TC, and lower levels of HDL-C and an increased
risk of asthma. Although a few studies have found no
association between the risk of asthma and dyslipidemia,
these findings are limited b?l study design, sample size, and
population characteristics.3%3¢) Collectively, dyslipidemia
is a risk factor for asthma.

The impact of asthma on lipid levels remains to be
determined. Reports regarding serum lipid levels among
individuals with asthma are inconsistent, with some studies
demonstrating either higher,3"3% lower, 122540411 or
unchanged,***! levels of HDL-C compared to control
groups. Regarding TC, TG, and LDL-C, studies have
observed elevations,[!332:33:3%4¢ reductions,®”**”! or no
significant changes,/**~***8! in asthma patients compared
to the control groups. Due to differences in research designs
and small sample sizes, larger studies are needed to better
understand these contradictory findings. In addition,
medications for asthma may affect lipid levels. Long-
term use of medium to high-dose inhaled corticosteroid
(ICS) has the potential to induce systemic effects and may
increase the requirement for cholesterol-lowering medica-
tions.[*”) And long-term use of oral corticosteroids (OCs)
in asthma patients can lead to a range of adverse effects,
including dyslipidemia.>%! Collectively, this evidence sug-
gests that it is prudent to monitor blood lipid levels in
patients with asthma who require long-term medication,
especially ICS and even OCs. Currently, several biologics
are available for asthma patients with severe disease.
However, the effects of biologics on blood lipid levels in
asthmatic patients have not yet been reported. Given that
interleukin (IL)-6 biologics have adverse effects on blood
lipids in rheumatoid arthritis,’’1:*?! lipid level monitoring
in asthmatic patients using biologics is also worth con-
sidering.

Asthma with Dyslipidemia: A Specific Phenotype

Asthma is a heterogeneous disease that can be categorized
into different phenotypes. Several asthma phenotypes
have been identified, including eosinophilic asthma,
allergic asthma, neutrophilic asthma, and obesity-re-
lated asthma.®®! Phenotyping asthma is instrumental
in elucidating the heterogeneous manifestations of the
disease, thereby guiding tailored treatment strategies.
We identified distinct characteristics in asthmatics with
dyslipidemia compared to those with normal lipid levels,
including demographics, lung function, and asthma con-
trol, indicating that “dyslipidemia-associated asthma”
would be a specific phenotype.['*! Recently, Park et all*!
suggested the presence of an asthma phenotype with
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metabolic dysfunction, which includes central obesity,
insulin resistance, dyslipidemia, and vitamin D deficiency.

Clinical Characteristics of Asthma with Dyslipidemia

Asthma patients with dyslipidemia are older, have elevated
BMI, and are more often female.l"*! Several studies have
demonstrated that dyslipidemia is associated with worse
airway obstruction in adults with asthma. Serum choles-
terol is negatively correlated with lung function (forced
expiratory volume in one second [FEV,]% predicted).>!
Low HDL-C levels are associated with reduced forced
vital capacity (FVC) and FEVy, and these findings are
consistent in men and women.®) Our previous prospec-
tive cohort study confirmed these findings, reporting that
the dyslipidemia group had worse FEV;% predicted,
maximal mid-expiratory flow (MMEF)% predicted, and
FEV/EVC ratio than the normal lipid group, and the dif-
ference remained significant even after adjusting for age,
sex, BMI, ICS dose, smoking, hypertension, and fasting
blood glucose.!'*! Based on its density and size, LDL-C
can be categorized into seven distinct subclasses (LDL-1
to LDL-7). LDL-1 shows a positive correlation with
predicted FVC% and FEV,%, whereas LDL-3 displays
an inverse association with FVC% and FEV{% in adults
with asthma.’”! Moreover, serum levels of HDL-C and
apolipoprotein A-I (apoA-I) are positively associated with
FEV,, whereas serum levels of TG, LDL-C, apolipopro-
tein B (apoB), and the apoB/apoA-I ratio are negatively
correlated with FEV, in atopic asthmatic subjects.[®!
Taken together, these findings suggest that dyslipidemia
can impair lung function in adult patients with asthma.

Consistent with the view that comorbidities may affect
asthma severity and control, several studies have shown
that asthmatic individuals with dyslipidemia have more
severe asthma and worse asthma control. Increased
plasma cholesterol has been reported to be independently
associated with severe asthma (OR =1.98; 95% CI:
1.05-3.73).5%1 Our previous study!'* also reported that
dyslipidemia is associated with a higher risk of severe
asthma (adjusted OR =2.055, 95% CI: 1.102-3.832).
And when dividing patients into groups with normal
and abnormal blood lipid levels, the dyslipidemia
group had a higher proportion of uncontrolled asthma
(32.1% wvs. 21.3%; P = 0.007) compared with the nor-
mal lipid group, and dyslipidemia was a risk factor for
uncontrolled asthma (adjusted OR =1.808, 95% CI:
1.167-2.801) after adjusting for age, sex, BMIL, ICS dose,
smoking, hypertension, and fasting blood glucose."*! Fur-
thermore, hyperlipidemia was significantly associated with
asthma exacerbations (AEs).”) Recently, our prospective
cohort study!*! based on the Australasian Severe Asthma
Network (ASAN) presented compelling evidence demon-
strating that dyslipidemia is associated with increased
AEs, independent of other components of metabolic
syndrome.

Inflammatory Characteristics of Asthma with Dyslipidemia

Asthma is a highly complex chronic inflammatory airway
disease that can be classified into different endotypes
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and phenotypes.!®® The current paradigm broadly cate-
gorizes airway inflammation into two distinct groups:
Type 2 (T2) and non-T2 asthma. T2 asthma is typically
characterized by eosinophilic airway inflammation and
elevated levels of T2 cytokines, including IL-4, IL-5, and
IL-13. Biomarkers of T2 asthma include elevated blood or
sputum eosinophils and fraction of exhaled nitric oxide
(FeNO). Some studies have explored the relationship
between dyslipidemia and inflammatory biomarkers
in asthma. In atopic asthmatics, blood eosinophils are
negatively correlated with serum HDL-C levels and total
HDL particles and positively correlated with serum TG
levels.[®! Serum periostin levels negatively correlate with
total HDL particles. Serum TC, LDL-C, and apoB levels
are positively associated with FeNO.[®?l In addition,
atopy has been used to define T2 asthma.!! High levels of
HDL-C were found to be associated with decreased risk of
aeroallergen sensitization (adjusted OR = 0.27; 95% CI:
0.01-0.70; P = 0.01), while high TG levels were associated
with aeroallergen sensitization (adjusted OR =2.01;
95% CI: 1.14-3.56; P = 0.02).'!l These findings suggest
that dyslipidemia may be linked to T2 inflammation in
asthma. However, in our previous study,'*! compared to
the normal lipid group, the dyslipidemia group had lower
immunoglobulin E (IgE) levels and was less atopic, with
an increased risk of nonallergic asthma, indicating the
presence of non-T2 inflammation. Taken together, these
findings suggest that dyslipidemia may have an effect on
asthma through both T2 and non-T2 pathways.

Underlying Mechanisms for Asthma with Dyslipidemia

The mechanistic basis for the relationship between asthma
and dyslipidemia has not been established, but some
potential factors including common etiologies (genetics,
diet and nutrients), cytokines and inflammation, oxidative
stress, microbiome, or metabolic dysfunction as following
may be involved [Figure 1].

Shared genetic vulnerability

Multiple studies have verified the significant roles of genetic
factors in the development of asthma and altered lipid
levels [Figure 1].163-65 Orosomucoid 1-like 3 (ORMDL3)
is a gene universally confirmed to be associated with
asthma susceptibility and has recently been identified
as a crucial modulator of lipid metabolism.[*®¢7 Lipid
metabolism is closely associated with dyslipidemia and
atherosclerosis. Ma et all®® reported that ORMDL3
contributes to the risk of atherosclerosis in the Chinese
Han population and mediates oxidized low-density lipo-
protein-induced autophagy in endothelial cells, indicating
that ORMDL3 may be a shared genetic risk factor for
asthma, atherosclerosis, and dyslipidemia. In addition,
IL10 gene polymorphisms at position-1082 are associated
with serum HDL-C and TG concentrations,/®® as well
as pediatric asthma in Chinese individuals.””! Further-
more, in a cohort of children in Cyprus, Yiallouros et all”!!
found that two single nucleotide polymorphisms (TNFA
rs3093664 and PRKCA rs9892651) located in different
genetic loci were correlated with both wheezing and
HDL-C levels. Specifically, the relationship between
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Figure 1: Underlying mechanisms in asthma with dyslipidemia. Shared genetic vulnerability and diet and nutrients, can affect both dyslipidemia and asthma. Dyslipidemia may affect
asthma via cytokines and inflammation, oxidative stress, microbiome alterations, and metabolic dysfunction. Created with BioRender.com. GPCR: G-protein-coupled receptor; IL: Interleu-
kin; JAK-STAT: Janus kinase-signal transducer and activator of transcription; MAPK: Mitogen-activated protein kinase; NF-«B: Nuclear factor-kappa B; NLRs: NOD-like receptors; Nrf2:
Nuclear factor erythroid 2-related factor 2; ORMDL3: ORMDL sphingolipid biosynthesis regulator 3; ROS: Reactive oxygen species; Th: T helper; TLRs: Toll-like receptors; TNF-o.: Tumor

necrosis factor-o..

TNFA rs3093664 and wheezing is partially mediated
through its influence on HDL-C levels, while the associ-
ation between PRKCA rs9892651 and wheezing seems
to occur independently of HDL-C levels. These studies
suggest that asthma with dyslipidemia may partly origi-
nate from overlapping genetic susceptibilities. However,
to confirm these genetic associations, future research is
needed to directly explore the genetic differences between
asthma combined with dyslipidemia and asthma alone.

Diet and nutrients

An increasing amount of evidence indicates that diet and
nutrients play a significant role in the development and
management of asthma [Figure 1].7273] An animal study

has found that hypercholesterolemia induced by a high-
cholesterol/high-fat diet may lead to Toll-like receptors
(TLRs)/nuclear factor -kappa B (NF-kB) pathway-related
low-grade pulmonary inflammation in C57BL/6] mice,
which could alter the lungs’ immune response to various
environmental exposures.”*! In human, our previous
study reported a dose-response pattern between fast food
consumption, especially of hamburgers, and asthma:
the adjusted odds ratio of current asthma associated
with hamburger consumption was 1.59 (95% CI: 1.13-
2.25).71 And our other two studies have found that a
high-fat meal can augment neutrophilic airway inflamma-
tion and suppress bronchodilator recovery in asthma,!”!
and the underlying mechanism for this phenomenon may
involve differences in gene expression changes due to a
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high-fat meal between asthmatics and healthy controls.””!

Further, our study suggested that increased consumption
of a high-fat diet can elevate circulating saturated fatty
acids, which alter innate immune responses by activating
inflammatory signaling pathways such as NF-«B, reactive
oxygen species (ROS), and mitogen-activated protein
kinase (MAPK), thereby promoting NOD-like receptor
family pyrin domain containing 3 (NLRP3) inflammasome-
dependent airway inflammation in asthma.l”8! A healthy
diet has protective effects against asthma and wheezing
in children.l””) Adopting a healthy diet that is abundant in
antioxidants and fiber can mitigate the adverse effects of
oxidative stress and systemic inflammation in obesity-re-
lated asthma.[3%!

Diet and nutrients can also influence lipid levels.®!
Unhealthy dietary patterns, including excessive intake of
saturated fatty acids, trans fatty acids, soft drinks, and
refined carbohydrates are strongly associated with the
development of dyslipidemia.l®?l Managing dyslipidemia,
especially lowering LDL-C and TC levels, can be effec-
tively achieved by altering the macronutrient composition
of the diet.!®!l Healthy dietary patterns such as the Medi-
terranean diet, which is characterized by a high intake of
plant foods such as fruits and vegetables and an increased
intake of monounsaturated and omega-3 fats, may be a
rational option for protecting against asthma and dys-
lipidemia.®3%4] Intermittent fasting is characterized by
brief intervals of intense energy restriction (involving a
75-100% reduction in caloric intake on fasting days),
interspersed with days of ‘regular’ or ‘normal’ eating. This
dietary approach encompasses various fasting types such
as alternate-day fasting, the 5:2 diet, and time-restricted
eating. Alternate day calorie restriction may be effective
in improving asthma symptoms and asthma control and
these improved clinical findings were associated with
decreased levels of serum cholesterol and TG,®*! indicat-
ing that intermittent fasting may have a potential effect on
asthma with dyslipidemia. Collectively, diet and nutrients
may play an important role in asthma with dyslipidemia.

Cytokines and inflammation

Dyslipidemia induces a state of low-grade systemic inflam-
mation, characterized by the upregulation of various
pro-inflammatory cytokines, including tumor necrosis
factor-alpha (TNF-a), IL-1p, and IL-6, etc.!®¢-%] These
cytokines also play significant roles in the initiation and
progression of asthma. Studies have reported increased
TNF-0. concentrations in the airways of individuals
with severe asthma.®”?"! TNF-a contributes to disease
pathology through multiple mechanisms: it promotes the
recruitment of inflammatory cells, stimulates the produc-
tion of inflammatory mediators, and induces oxidative
stress, airway hyperresponsiveness, and tissue remode-
ling.®!l Fatty acids trigger a signaling cascade through
TLR4 that leads to the assembly of the NLRP3 inflammasome
and activation of caspase-1, which ultimately cleaves and
releases mature IL-1B from its inactive precursor. IL-1
can drive inflammation by promoting T-helper (Th) 17
cell differentiation.””l As a key biomarker of systemic
inflammation and metabolic dysfunction, IL-6 is found to
be associated with severe asthma. And elevated IL-6 levels
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clinically correlate with worse lung function and more
frequent exacerbations in asthma.l*’!

In addition, the pathophysiological mechanisms of
asthma are closely related to inflammation triggered by
immune responses. This involves multiple inflammatory
signaling pathways, including TLRs and NOD-like recep-
tors (NLRs), Janus kinase-signal transducer and activator
of transcription (JAK-STAT), NF-xB, inflammasomes,
MAPK, and G-protein-coupled receptor (GPCR) path-
ways.”"l Fach of these pathways contributes to the
progression and severity of asthma. The inflammation
triggered by dyslipidemia also involves inflammatory
pathways such as MAPK, JAK-STAT, and NF-xB.[*>%]
Therefore, we hypothesize that dyslipidemia may partici-
pate in the pathophysiological mechanisms of asthma
by releasing inflammatory mediators and regulating the
inflammatory signaling pathways. However, the signaling
mechanisms by which dyslipidemia modulates inflam-
mation to affect asthma remain to be established. Future
research is required to confirm this mechanism.

Oxidative stress

Oxidative stress is a key contributor to the development
of asthma, resulting from an imbalance between ROS
generation and antioxidant capacity, which induces
cellular injury and promotes inflammatory processes.
Oxidative stress is involved in the pathophysiological
mechanisms of asthma through multiple signaling path-
ways, including the nuclear factor erythroid 2-related
factor 2 (Nrf2), NF-«xB, thioredoxin-1, mitochondrial,
MAPK, and aldose reductase pathways.!”*! Dyslipidemia
can lead to oxidative stress and increase the production
of ROS.P7) Animal studies revealed that asthmatic-hyper-
lipidemic rats exhibited a significant increase in serum
concentrations of nitrite and malondialdehyde, alongside
a significant decrease in total thiol content and the activities
of superoxide dismutase and catalase.”®*"! These changes
collectively indicate an exacerbation of oxidative damage.
In addition, oxidized LDL can activate the MAPK signa-
ling pathway, leading to MAPK phosphorylation, which
generates abundant ROS, promotes monocyte accumula-
tion in the arterial wall, reduces collagen and extracellular
matrix secretion by vascular smooth muscle cells, and
ultimately induces cytotoxicity.l'%! Furthermore, oxi-
dized LDL has been found to be elevated in pulmonary
diseases such as chronic obstructive pulmonary disease,
and are associated with lung function, inflammation, and
oxidative stress.''%! Therefore, dyslipidemia may con-
tribute to the development and progression of asthma by
inducing oxidative stress via the aforementioned signaling
pathways. However, further research is needed to confirm
which specific pathways are involved and how they regu-
late the pathological processes of asthma.

Microbiome alterations

The microbiome performs several crucial functions in
the development, regulation, and maintenance of healthy
immune responses, while dysbiosis and the resulting
imbalance in microbiota-related immunological processes
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contribute significantly to the development of a number
of diseases, including asthma and dyslipidemia.['02-103]
Crosstalk between the microbiome and asthma has been
established [Figure 1].11%4 Perturbation of airway, skin,
and gut microbiomes coincides with asthma-associated
immune dysfunction.['% The microbiome is associated
with the origin, phenotype, persistence, and severity
of asthma.['%l And the gut microbiome can influence
asthma by modulating immune responses through the
gut—lung axis.'””! In addition, the gut microbiome can
modulate lipid metabolism and is associated with lipid
levels in humans. Negative correlations were observed
between gut microbiome diversity and TG and LDL levels,
whereas HDL-C was positively linked with microbial
richness.!1%811% The composition and function of the gut
microbiome are dynamic and can be influenced by dietary
factors, including the quantity and type of lipids. There-
fore, dietary lipids might affect asthma by interacting with
the gut microbiome. Whether dyslipidemia affects asthma
via the airway microbiome requires further investigation.

Metabolic dysfunction

Metabolic dysfunction is a broad concept and dyslipidemia
is a manifestation of metabolic dysfunction [Figure 1]. Dys-
lipidemia is closely related to and may be a consequence
of lipid metabolism disorders.!'"!l Lipid metabolism is an
intricate physiological process encompassing the uptake,
transportation, biosynthesis, and degradation of lipids
that are integral to numerous bodily functions."'?! Accu-
mulating evidence from laboratory and clinical studies
has highlighted the pivotal role of lipid metabolism in the
pathogenesis of asthma.''3! Genes associated with lipid
metabolism, including ASAH1, ACER3, and SGPP1, play
pivotal roles in the development of asthma and regulate
the immune microenvironment."'* Th17 cells, which
play a crucial role in the pathogenesis of steroid-resistant
asthma, are connected to lipid metabolism by modulat-
ing retinoid-related orphan receptor gamma t (RORyt)
activation.['’! The activation of the Yes-associated protein/
hypoxia inducible factor-1o/microRNA-182/early growth
response 2 signaling pathway may foster Th17 cell differen-
tiation, intensify asthma progression, and deteriorate lipid
metabolism dysregulation, pointing to a possible therapeu-
tic strategy for asthma management.!''®l And abnormal
lipid metabolism has been shown to correlate with disease
severity and IgE levels in patients with asthma.[!1”]

In addition, a potential link between lipid metabolism
and lung dysfunction has been established in individuals
with mild to moderate asthma.['*¥l In two Trans-Omics
for Precision Medicine Initiative cohorts, five metabo-en-
dotypes of asthma with differences in lung function were
discovered and validated, and the identification of choles-
terol esters, TGs, and fatty acids as significant factors in
determining metabo-endotypes indicates that imbalances
in pulmonary surfactant homeostasis could potentially
contribute to the severity of asthma.l''”! Cholesterol is a
crucial component of the pulmonary surfactant.!'?%| Recent
advancements in understanding the interplay between cir-
culating cholesterol and the lungs have revealed that the
lungs possess a distinct requirement for sterol uptake and
metabolism, and cholesterol homeostasis is necessary for
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pulmonary physiology.!'?1:122l Therefore, an imbalance
in cholesterol metabolism may significantly affect lung
immunity and function.

Immunology of asthma with dyslipidemia

Asthma is an inflammatory airway disease involving various
inflammatory cytokines, immune cells, and activation of
several inflammatory cascades. Dyslipidemia can affect
asthma by activating immune pathways and amplifying
airway inflammation [Figure 2]. The airway epithelium is
an important barrier against external stimuli such as air
pollutants and respiratory pathogens. Disruption of the
airway epithelial barrier is a key driver of asthma initia-
tion, persistence, and exacerbation.!'?3 Airway epithelial
injury can initiate an inflammatory cascade in asthma
by releasing epithelium-derived cytokines, namely IL-25,
IL-33, and thymic stromal lymphopoietin (TSLP).!124!
Dyslipidemia can enhance systemic inflammation by
upregulating IL-1B and IL-6, which can also influence
the airway epithelium.!®¢!25! Circulating IL-1B can cause
airway epithelial cell dysfunction.!'?¢! Thus, dyslipidemia
may affect asthma immunology by initiating abnormal
airway epithelial responses.

Dyslipidemia can affect asthma by influencing various
immune cells. CD4* T helper (Th) cells play a key role in
the orchestration of airway inflammation. When exposed
to allergens, T cells are activated, leading to the clonal
proliferation of allergen-specific Th cells. These Th cells
assume diverse phenotypes, several of which may con-
tribute to asthma pathogenesis. For example, Th2 cells
secrete IL-4, IL-5, and IL-13; Th1 cells produce interferon
(IFN)-y; and Th17 cells secrete IL-17A. Dyslipidemia
can induce a switch from a Th1 to a Th2 response.!'?”!
In addition, dyslipidemia can amplify Th2 and Th17
responses by increasing the production of Th2 and Th17
cytokines, including IL-4 and IL-17A.1128!

Neutrophils are strongly linked to corticosteroid insen-
sitivity and severe asthma; thus, dyslipidemia may affect
asthma treatment response and severity via neutrophils.
IL-6 and IL-8 are inflammatory cytokines associated
with both neutrophilic asthma (NA) and dyslipidemia.[8¢]
Dyslipidemia may amplify neutrophilic inflammation in
asthma by increasing IL-6 and IL-8 levels. In addition,
neutrophil extracellular traps (NETs) play an important
role in NA.I'"?’! Hypercholesterolemia can impair the
clearance of NETs and promote inflammation, ultimately
exacerbating asthma.['3"]

Macrophages play a pivotal role in the pathogenesis of
asthma. When exposed to local micro-environments,
recruited macrophages undergo polarization and trans-
form into either classically activated (M1) or alternatively
activated (M2) phenotypes.['*!) Macrophage polarization
has been linked to the pathogenesis of asthma. Lipopol-
ysaccharide (LPS), IFN-y, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) are potent activators
that promote the polarization of macrophages towards
the M1 phenotype.!'3?! Conversely, M2 macrophages are
induced by cytokines, such as IL-4, IL-13, and IL-10. M1
polarization leads to increased expression of Th1 and
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Figure 2: Immunology in asthma with dyslipidemia. The immunology of asthma involves an intricate cascade of immune cells, cytokines, and chemokines. Dyslipidemia can induce
pro-inflammatory cytokines such as IL-13 and IL-6, which could damage airway epithelium and initiate cascade reactions of asthma. Further, dyslipidemia can affect the cascade reaction
of asthma via Th2, Th17, ILCs, and macrophage cells. Created with BioRender.com. APC: Antigen-presenting cell; IL: Interleukin; GM-CSF: Granulocyte-macrophage colony-stimulating
factor; HDL: High-density lipoprotein; IFN-y: Interferon-gamma; IL: Interleukin; ILC2: Group 2 innate lymphoid cell; LDL: Low-density lipoprotein; Th: T helper; LPS: Lipopolysaccharide;
TNF-a.: Tumor necrosis factor-o; NETs: Neutrophil extracellular traps; TSLP: Thymic stromal lymphopoietin.

Th17 cells, whereas M2 polarization predominantly elicits
a Th2 cell response.!'*!I Oxidized LDL is also involved
in macrophage polarization towards M2 phenotype, '3’
thereby contributing to T2 inflammation. While the
accumulation of cholesterol esters triggers a shift in the
polarity of murine macrophages, directing them toward
classically activated inflammatory phenotypes (M 1),!134
contributing to non-T2 inflammation. Thus, dyslipidemia
can affect asthma by regulating macrophage polarization,
triggering T2 or non-T2 inflammation. In addition, group
2 innate lymphoid cells (ILC2) also play a significant role
in asthma.!'>) HDL-C decreases the levels of ILC2 and
Th2 cytokines, demonstrating a protective role in asthma
inflammation.[13¢]

Potential Therapeutic Drugs Targeting Asthma with
Dyslipidemia

Statins

Statins are lipid-lowering agents widely prescribed for
the management of hyperlipidemia and cardiovascular
diseases. Statins exhibit lipid-lowering activity by inhibiting
3-hydroxymethyl-3-glutaryl coenzyme A reductase, a pivotal

enzyme involved in cholesterol production. Recently,
statins have been found to exhibit pleiotropic effects,
including anti-inflammatory, anti-fibroproliferative, and
immunomodulatory effects, independent of their choles-
terol-lowering abilities.!'3”:138] The pleiotropic effects of
statins suggest that they may be effective against asthma.

Cellular and animal experiments using statins to treat
asthma have been well studied. Several cellular exper-
iments have shown that statins have inhibitory effects
on cytokine and chemokine production,'**-141 a5 well
as bronchial wall remodeling.!"**1#4 These effects have
also been confirmed in mouse asthma models. As shown
in Table 1,1989%145-170] most studies have used ovalbumin
(OVA)-induced murine models of allergic asthma to
explore the effects of statins. Statin treatment has been
shown to decrease airway inflammation, reduce Th2
cytokines such as IL-4, IL-5, and IL-13, and improve air-
way remodeling and airway hyperresponsiveness (AHR).
A few studies have used obese- or hyperlipidemic mouse
models of asthma. In a mouse model of obesity and asthma
induced by a high-fat diet and OVA, simvastatin treatment
effectively reduced glucose, lipid, leptin, and neutrophil
percentages, while also improving airway inflammation
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Table 1: Effects of statins on asthma in animal models.

Study

Disease model

Pharmacological agent

Outcome

McKay et al'*)

Xu et al'*)

Ahmad et al'*”)

Zeki et al'*$)

Kim et all'*”)

Liu et all'>)

Gu et all™!

Mohammadian
et al'3?
Jha et al'>3!

Zeki et al"*

Han et al'>

Chen et all'>

Sharif-Askari

et al'>")

Saadat et all*82%158

Zhu et all'>)

OVA-induced murine model of
allergic asthma

OVA-induced murine model of
asthma

OVA-induced murine model of
asthma

OVA-induced murine model of

asthma

OVA-induced mouse allergic
asthma model

OVA-specific asthma model
in mice

OVA-induced asthma mouse
model

OVA-induced asthma model
in mouse

House dust mite challenged
murine model of allergic
asthma

OVA-induced mouse model of
allergic asthma

High-fat diet and OVA
sensitization and challenge
to establish a mouse model
of obesity and asthma

A mouse model of severe
asthma with neutrophil-pre-
dominant inflammation
(OVA+LPS mice)

OVA-induced mouse model of
asthma

Asthmatic, hyperlipidemic,

and asthmatic-hyperlipidemic
rat models

(asthmatic animals were
sensitized with OVA)

OVA-induced murine model of
chronic asthma

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Simvastatin

Rosuvastatin

Rosuvastatin

| The total inflammatory cell infiltrate and eosinophilia in the BALF

| BALF IL-4, IL-5

| IL-4, IL-5, IL-6, and IFN-y in thoracic lymph node cultures from simvastatin-treated
mice

| Airway remodeling and hyperresponsiveness

| BALF eosinophils, lymphocytes, macrophagocytes and neutrophils

| BALF CCL-11, IL-4, and IL-5

1 BALF IEN-y

| Eosinophil infiltration, mucus production and collagen deposition in the lung tissues
| BALF total cell count, macrophage, and eosinophil

| Mucus hypersecretion, airway remodeling, and AHR

| Total lung lavage leukocytes, eosinophils, and macrophages
| BALF IL-4, IL-13, and TNF-a
1 Lung compliance

| Airway hyperreactivity
1 OVA-specific IgE level, BALF total inflammatory cells, macrophages, neutrophils, and
eosinophils

1CD40, CD40L, and VCAM-1 expression, mRNA and protein levels of IL-4, IL-13 and
TNF-a, goblet cells, activities of MMPs, small G proteins, MAP kinases, and
NF-«xB

| Airway responsiveness, BALF IL-4, IL-5, IL-13

| CD4* cells; CD4*/CD8* T-cell ratio

| VCAM-1 and ICAM-1 proteins
1 Autophagy-related protein Atg5, LC3B, and Beclin1 expression and autophagosome
formation in lung tissue

1 IFN=y
| IL-4, IL-5 and IL-13; extracellular matrix deposition
| WBC counts, neutrophils, and eosinophils

| TNF-0,, CXCL1, IL-6, IL-4, IL-1p, and IFN-y

| Goblet cell hyperplasia, neutrophil, and eosinophil influx

| Goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme

activity

1 Glucose, lipid, leptin, neutrophil percentage, airway inflammation, and remodeling

| BALF total cell, neutrophil counts, IL-4, IL-1pB, IFN-y, and IL-17A, perivascular and
peribronchial leukocyte infiltration, mucus production; proportions of Th2 and Th17,
AHR

| NET formation in BALF and lung tissue

1 Treg cells
| Infiltration of both effector memory T and central memory T memory subtypes, IL-4,
IL-13

| ICAM-1 and VCAM-1 levels in the lung homogenate
1 WBC counts, neutrophilia, eosinophilia, and monocytes, IL-6, IL-10

| Tracheal responsiveness to methacholine, muscle hypertrophy, and emphysema
| Oxidative stress by decreasing nitrite and malondialdehyde concentrations
1 Th1/Th2 balance

1 Total thiol content, superoxide dismutase, and catalase activities

| BALF total inflammatory cells, lymphocytes, macrophages, neutrophils, and eosino-
phils

| BALF IL-4, IL-5, IL-13, and TNF-a

| Histological mucus index and gamma-aminobutyric acid type A receptor B2 expression

(continued)
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(continued)
Study Disease model Pharmacological agent Outcome
Liu et all'®) OVA-exposed mice model of Atorvastatin | Tissue transglutaminase and triggering receptor expressed on myeloid cells-1 in lung
asthma tissue, lymphocytes and eosinophils, AHR, lung collagen deposition, airway wall area,
airway smooth muscle thickness, and pathological changes in the lung
| TNF-a, IL-8, IL-13, and IL-17 in serum
Blanquiceth et al'!! OVA-induced model of allergic Atorvastatin 1 Tregs in mediastinal lymph nodes and IL-10 in lungs
asthma No significant changes were observed in the number of inflammatory cells in the BALF,
OVA-specific immunoglobulin E in the serum, and Th2 cytokines in the lungs
Firinci et all'®? OVA-induced murine model of Atorvastatin | Thicknesses of basement membrane and subepithelial smooth muscle layer, height of
chronic asthma epithelium, number of mast and goblet cells
1 IL-4 and IL-S levels of the lung tissue
Lee et all'®! Obesity-related asthma mouse Pravastatin | BALF IL-4, IL-5, and IL-17
model: | Serum leptin and adiponectin ratio
CS7BL/6 mice were fed a | Airway inflammation of lung tissues and AHR
high-fat diet to induce
obesity with or without
OVA sensitization and
challenge
Wu et all'% An asthma mouse model: Pravastatin | Airway resistance, bronchial tube thickness, and goblet cell hyperplasia in lung tissues
Mice were sensitized and | BALF eosinophil counts and total inflammatory cell counts, IL-4, IL-17
challenged with OVA to 1 BALF CD4* CD25* Foxp3* Treg, IFN-y
establish the asthma model
Yeh et all'®) Male C57BL/6 mice were Pravastatin | Eosinophil infiltration
fed either a control diet | BALF IL-S, PGE2, and MCP-1
or a diet supplemented 12
with 2% cholesterol after k-
sensitization and inhalation
exposure to OVA
Zeki et all'®®) OVA-induced murine allergic Pravastatin | Airway goblet cell hyperplasia/metaplasia; airway hypersensitivity
asthma | BALF TNF-a and keratinocyte-derived chemokine
Imamura et al''”!  OVA-induced mouse model of Pravastatin | BALF eosinophilia
asthma

| Serum total IgE, OVA-specific IgE, and OVA-specific IgG1 levels

1 IL-17, Th17 response

[168] OVA-induced mice model of

asthma

Huang et al Pravastatin/Atorvastatin

| AHR
| Th1- and Th2-mediated antibody responses, reducing serum specific IgE, IgG, IgG1,

and IgG2a levels

| BALF IL-4, IL-5, and TFN-y
1 BALFIL-10

Chiba et all'®?) Rats with experimental Lovastatin

asthma:

Rats were sensitized and
repeatedly challenged with
2,4-dinitrophenylated
Ascaris suum antigen

OVA-induced mouse model of
asthma

Chiba et al'”") Lovastatin

| Total cholesterol levels
| Bronchial smooth muscle hyperresponsiveness

1 BALF cell counts

| Airway eosinophilia

AHR: Airway hyperresponsiveness; Atg5: Autophagy protein 5; BALF: Bronchoalveolar lavage fluid; CCL: Chemokine (C-C motif) ligand;

CD40L: CDA40 ligand; CXCL: C-X-C motif chemokine ligand; Foxp3:

Forkhead box protein P3; ICAM: Intercellular adhesion molecule; IFN-y:

Interferon-gamma; IgE: Immunoglobulin E; IgG: Immunoglobulin G; IL: Interleukiny; LC3B: Microtubule-associated protein 1 light chain 3 beta;
LPS: Lipopolysaccharide; MAP: Mitogen activated protein; MCP: Monocyte chemoattractant protein; MMP: Matrix metalloproteinase; mRNA:

Messenger RNA; NET: Neutrophil extracellular trap; NF-xB: Nuclear

factor-kappa B; OVA: Ovalbumin; PGE2: Prostaglandin E2; Th: T helper;

TNF: Tumor necrosis factor; VCAM: Vascular cell adhesion molecule; WBC: White blood cell. 1: Increase; |: Decrease.

and remodeling, suggesting a therapeutic effect of
simvastatin on obesity-associated asthma.!'>5! Pravasta-
tin treatment in obese asthmatic mice alleviates allergic
airway inflammation and AHR through the inhibition
of Th2- and Th17-associated signaling pathways.!1®*! In
asthmatic-hyperlipidemic animals, rosuvastatin treatment
modulates the Th1/Th2 balance and reduces AHR, lung

inflammation, and oxidative stress.”®°%158] Pravasta-

tin has also been shown to inhibit allergic pulmonary
inflammation in OVA-induced asthmatic mice fed with
2% cholesterol.l'®S!  Furthermore, simvastatin, while
inhibiting Th2 inflammation, suppresses Th17-mediated
neutrophilic inflammation and airway hyperreactivity by
reducing peptidyl arginine deiminase 4 (PAD4) expression
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Table 2
(continued)

Serum lipid levels before and after statin  Serum lipid levels before and after non-statin or

placebo treatment Effect of statin therapy

treatment

Duration

No. and participants

Design

Study

or placebo, with simultaneous ICS

reduction until loss of control, then

ICS increase until control

Mean morning PEF, spirometry, or ACQ

Serum lipid levels after placebo therapy:
Cholesterol: 5.1 (4.5, 5.7) mmol/L; TG:

Serum lipid levels after atorvastatin

54 adults with atopic 22 weeks (2x8

Double-blind randomized controlled

Hothersall

score: -

therapy:
Cholesterol: 3.3 (2.9, 3.9) mmol/L; TG:

weeks treatment

asthma on ICS

crossover trial:

et al'74

Sputum macrophages and leukotriene

1.1 (0.8, 1.6) mmol/L; HDL-C: 1.4 (1.1,

1.7) mmol/L

plus 6-week

oral atorvastatin 40 mg daily or

B4: |

0.9 (0.6, 1.3) mmol/L; HDL-C: 1.2

(1.1, 1.5) mmol/L

washout)

matched placebo

Serum lipid levels before vs. after placebo Peripheral eosinophil, lung volumes, or

Serum lipid levels before vs. after

1 month

16 patients with

Menzies et al''”!! Randomized, double-blind crossover

airway resistance: —

treatment:
TC: 4.7 £ 0.2 vs. 4.6 = 0.2 mmol/L; LDL-C:

simvastatin treatment:
TC: 4.7 £ 0.2 vs. 3.6 + 0.2 mmol/L;

mild to moderate

trial: simvastatin vs. placebo after

asthma on ICS

withdrawing anti-inflammatory

2.4 + 0.2 vs. 2.3 + 0.2 mmol/L; HDL-C:

0.1 mmol/L; HDL-C: 1.6 + 0.1 vs.

1.5 + 0.1 mmol/L

LDL-C: 2.4 + 0.2 vs. 1.0 +

medications

1.6 + 0.1 vs. 1.4 + 0.1 mmol/L

ACQ: Asthma control questionnaire; ACT: Asthma control test; BDP: Beclomethasone dipropionate; CCL: Chemokine (C-C motif) ligand; ED: Emergency department; ER: Emergency room; FEV:

1
in
gand; TC: Total cholesterol; TG: Triglyceride; TGF: Transforming growth factor. —: No change; 1:

oprotein cholesterol; ICS: Inhaled corticosteroid; IL: Interleukin; LDL-C: Low-density lipoprote

fi

iratory volume in one second; FGF: Fibroblast growth factor; HDL-C: Hi%h—density li
; MMP: Matrix metalloproteinase; PEF: Peak expiratory flow; sCD40L: Soluble CD40

f
Increase; |: Decrease.

Forced ex
cholestero
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and inhibiting NETosis in a mouse model of severe asthma
with neutrophil-predominant inflammation induced by
OVA and LPS.!15¢!

Despite promising results from preclinical studies,
clinical studies using statins to protect against asthma
have produced underwhelming or contradictory results
[Table 2].1171-18¢1 Several studies with case-control or
retrospective cohort designs, have reported that statins
have protective effects on asthma clinical outcomes, such
as asthma-related emergency department visits,!!76178]
or hospitalizations.['”%!83] In contrast, a number of ran-
domized clinical trials found that statins did not affect
inflammation or clinical asthma outcomes.!'”1=175 The
reasons for these heterogeneous results can be explained
by several potential contributing factors such as short-term
treatment duration, small sample size, type of statin used,
and variations in asthma endotypes.!'?! Previous clinical
trials on human asthma have all used approved oral
statin administration, which may hinder lung bioavaila-
bility because of extensive liver metabolism, potentially
reducing the bioactive dose in the lungs.''®”] Rodent
studies have suggested that inhaled statins might be a
superior choice,!'*1%¢] but this route of administration
has not yet been approved for human use. Therefore, the
measurement of drug concentration in the lungs in future
studies is prudent. In addition, almost all current clinical
studies have been conducted among patients with mild,
moderate, or severe asthma without specific phenotypic
classification, which may lead to an inability to properly
assess the effects of an intervention on different asthma
phenotypes. Furthermore, none of these clinical studies
have characterized blood lipid levels or identified patients
with asthma and dyslipidemia. Meanwhile, it is unclear
whether statins influence asthma through lipid-lowering,
anti-inflammatory effects, or both. Thus, the effects of
statins on specific phenotypes of asthmatic patients with
dyslipidemia require further research.

Other promising therapeutic drugs

Additional cholesterol-targeting agents, including liver X
receptor (LXR) agonists and apolipoprotein mimetic pep-
tides, have been investigated in asthma models. Activation
of LXR can inhibit the expression of proinflammatory
mediators in human airway smooth muscle cells,'® and
attenuate IgE production and airway remodeling in a
mouse model of chronic asthma,!'®”! indicating that the
modulation of LXR activity may be a new therapeutic
approach for asthma. However, other studies reported
contradictory results. LXR agonists increase airway
inflammation, AHR, and airway remodeling in animal
models.["?1°2] Hence, further investigation of the effects
of these drugs on asthma is required.

Apolipoproteins, such as apoA-I and apolipoprotein E
(apoE), are crucial constituents of lipoprotein particles
that facilitate the efficient transportation of cholesterol,
TGs, and phospholipids between plasma and cells. The
pivotal roles of apolipoproteins in lung disease pathogenesis
and therapy are gaining increasing recognition due to
their ability to alleviate inflammation, oxidative stress,
and tissue remodeling while improving adaptive immunity
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and host defense.l”! In animal models of asthma, apoA-I
mimetic peptides such as SA and D-4F can attenuate the
development of airway inflammation and AHR.!!?41%5]
The action of 5A in reducing airway inflammation was
mediated by the reduction of Th2 and Th17 cytokines
as well as C-C chemokines. Intranasal administration
of 5A also inhibited neutrophilic airway inflammation
in OVA-challenged ApoA-I-deficient mice.l"”®! Taken
together, the SA and D-4F apoA-I mimetic peptides
may be a novel therapeutic approach for asthma. ApoE
mimetic peptides inhibited airway inflammation, AHR,
goblet cell hyperplasia, IgE production, and the expression
of Th2 and Th17 cytokines in a house dust mite-induced
model of murine asthma via an LDL receptor-dependent
mechanism,"®”! suggesting a potential treatment option
for asthma. In addition, whether other novel lipid-lower-
ing drugs, such as proprotein convertase subtilisin/kexin
type 9 and inclisran, can be applied for the treatment
of asthma patients with dyslipidemia requires further
research.

Conclusion

A thorough understanding of asthma and dyslipidemia
is clinically significant. Asthma with dyslipidemia would
be a specific phenotype of asthma, with an increasing
prevalence worldwide. Asthma with dyslipidemia is
characterized by older age, elevated BMI, female pre-
dominance, worse lung function, airway obstruction,
severe asthma, and worse asthma control. Dyslipidemia
can influence asthma inflammation via both the T2 and
non-T2 pathways. Finding surrogate or complementary
signature biomarkers that can accurately identify asthma
with dyslipidemia phenotypes is a pivotal direction
for future research and may contribute to the effective

WWW.Cmj.org

management of asthma. Several underlying mechanisms
have been identified to explain asthma with dyslipidemia;
however, the underlying pathological pathways remain
unclear. Importantly, dyslipidemia is a significant TT for
asthma [Figure 3]. Identifying new potential therapeutic
targets for asthma with dyslipidemia may improve the
prognosis of patients with asthma, including those with
severe and steroid-insensitive asthma. Finally, we provide
some suggestions for future research. The development
and utilization of animal models of asthma with dys-
lipidemia will help better understand the phenotype of
dyslipidemia-associated asthma. Future clinical trials
should not generalize asthma phenotypes and should iso-
late this phenotype for specific research. With advances in
biotechnology, the application of multi-omics technolo-
gies, including single-cell transcriptomics, microbiomics,
and metabolomics, can comprehensively explore this
phenotype.
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Clinical characteristics
e Older, higher BMI, female predominance
»  Worse lung function, airway obstruction
* Severe asthma, worse asthma control
* Higher risk of asthma exacerbation
* Airway inflammation (T2 or non-T2)

Possible mechanisms
* Common etiologies:
genetics, diet and nutrients
* Cytokines and inflammation
* Oxidative stress
* Microbiome
*  Metabolic dysfunction

Asthma with dyslipidemia

Potential therapeutic drugs
» Statins ?
» Liver X receptor agonists ?
* Apolipoprotein mimetic peptides ?

Figure 3: Clinical characteristics, possible mechanisms and potential therapeutic drugs for asthma with dyslipidemia. Dyslipidemia can act as a treatable trait in asthma management
with precision medicine. Targeted lipid-lowering drugs including statins, liver X receptor agonists, and apolipoprotein mimetic peptides may improve asthma outcomes, such as asthma

control, asthma exacerbation, lung function, and clinical remission.
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