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Abstract
Asthma is a diverse disease that can be categorized into various phenotypes and endotypes, including obesity-re lated asthma and 
allergic asthma. “Treatable traits (TTs)” represent a new approach to managing asthma. Asthma accompanied by dyslipidemia 
would be a distinct asthma phenotype that is becoming increasingly common. Therefore, dyslipidemia can potentially serve as a 
target for the management of asthma. Nevertheless, it remains highly under-researched compared to other observable traits. Gain-
ing knowledge about the clinical and inflammatory characteristics, underlying mechanisms, and potential therapeutic medications 
for asthma with dyslipidemia is crucial for its effective management. This review aimed to provide a comprehensive overview of 
asthma with dyslipidemia, consolidating existing knowledge and ongoing research.
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Introduction

Asthma is a global public health problem that affects 
approximately 300 million people worldwide and causes 
approximately 1000 deaths per day.[1,2] In China, the 
prevalence of asthma in adults aged ≥20 years is 4.2%, 
corresponding to 45.7 million Chinese people.[3] Clearly, 
this disease poses a huge health burden on society and 
individuals with the disease. Asthma has been defined as 
a heterogeneous disease that can be divided into different 
phenotypes and endotypes,[1] which can be used to refine 
asthma management. In recent years, “treatable traits 
(TTs)” have been proposed as a new paradigm for the 
21st century management of chronic airway diseases such 
as asthma. The “TTs” approach aims to provide individu-
alized assessment and precise treatment for patients with 
asthma based on their specific phenotype or endotype, and 
it is considered the preferred approach towards managing 
airway diseases using precision medicine. TTs are defined 
as disease characteristics that are identifiable and measurable, 
clinically relevant, and treatable. Generally, TTs comprise 
three different domains: pulmonary, extrapulmonary, 
and behavioral/lifestyle/risk factors.[4] Because many 
extrapulmonary traits are present as comorbidities that 
may affect asthma severity and control,[5,6] identifying 

these comorbidities as extrapulmonary TTs and targeting 
them is important in asthma management. Obesity is a 
common comorbidity of asthma and has been identified 
as an extrapulmonary TT.[7,8] Obesity is a primary cause 
of metabolic dysfunction that can lead to metabolic 
syndromes including dyslipidemia, hyperglycemia, and 
hypertension.[9] Although there is increasing evidence 
demonstrating the impact of obesity and metabolic syn-
drome on the development, severity, clinical features, and 
management of asthma,[7,10] few studies have explored 
the effects of dyslipidemia on asthma alone. Limited evi-
dence shows that correlations exist between blood lipid 
profiles and asthma, independent of body mass index 
(BMI).[11–13] Recently, we found that dyslipidemia can 
affect asthma independent of obesity and other compo-
nents of metabolic syndrome, highlighting the importance 
of considering dyslipidemia as an extrapulmonary TT in 
asthma management.[14]

Dyslipidemia is a condition of abnormal serum lipid 
levels, including abnormal levels in one or more routine 
clinical lipid tests for triglyceride (TG), total cholesterol 
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(TC), low-density lipoprotein cholesterol (LDL-C), and 
high-density lipoprotein cholesterol (HDL-C).[15] Due to 
racial and dietary differences, the cut-off values for iden-
tifying dyslipidemia differ across countries. In American 
adults, dyslipidemia is defined as TG >2.25 mmol/L, 
TC ≥6.20 mmol/L, LDL-C >4.13 mmol/L or HDL-C 
<1.03 mmol/L.[16] In Chinese adults, dyslipidemia is 
defined as TG ≥ 1.7 mmol/L, TC ≥ 5.20 mmol/L, LDL-C 
≥3.4 mmol/L or HDL-C <1.0 mmol/L.[17] Because lipid 
levels change with growth and maturation, normal values 
for children differ from those for adults. Dyslipidemia in 
children is determined based on an established range of 
lipids and lipoproteins in the pediatric population.[18] In 
recent years, the increasing prevalence of dyslipidemia has 
become a significant global public health concern. Accord-
ing to a World Health Organization (WHO) report,[19] 
the age-adjusted prevalence of dyslipidemia is 47.7% in 
America, 53.7% in Europe, and 30.3% in the Asia Pacific 
region. In China, the 2018 national survey revealed the 
prevalence of dyslipidemia was 35.6% in adults aged ≥18 
years,[15] which was higher than the results from the 2015 
national survey.[20] Thus, the disease burden caused by 
dyslipidemia cannot be ignored.

Considering the high global prevalence of dyslipidemia, 
coupled with the fact that dyslipidemia can play a sig-
nificant role in asthma, it is imperative to understand 
the mechanistic link. Therefore, in this review, we sum-
marize the epidemiology of asthma with dyslipidemia 
and describe the clinical and inflammatory features and 
underlying mechanisms of asthma with dyslipidemia. 
Finally, we summarize potential therapeutic drugs target-
ing asthma with dyslipidemia.

Epidemiological Links Between Asthma and Dyslipidemia

Epidemiological studies have found that the prevalence 
of dyslipidemia among asthma patients ranges from 12.4 
to 45.7%.[14,21–24] To be specific, in elderly patients with 
asthma (aged ≥65 years), the prevalence of dyslipidemia 
is 35.97%.[23] In those with severe asthma, the prevalence 
of dyslipidemia is 16%.[24] In addition, the prevalence of 
dyslipidemia shows a female predominance, with dyslipi-
demia occurring in 20.78% of female asthma patients, 
compared to 19.52% of male asthma patients.[23]

Several studies have reported that dyslipidemia is involved 
in the development of asthma.[11–13,25–31] For example, a 
cross-sectional study led by Ko et al[26] and a case-control 
study by Ramaraju et al[13] have found that higher serum 
lipid levels are associated with a higher risk of asthma. 
A retrospective cohort study by Lim et al[27] and a pro-
spective cohort study conducted by Vinding et al[11] also 
confirmed that higher serum lipid levels were significantly 
associated with the presence of asthma. Notably, a 5-year 
follow-up cohort study of 3982 children in Cyprus by 
Yiallouros et al[25] found that children with a low serum 
HDL-C level at age 11–12 years had an increased risk 
for development of asthma during adolescence (ages 
15–17 years). The estimated odds ratios (ORs) were 
1.89 (95% confidence interval [CI]: 1.19–3.00) and 1.89  
(95% CI: 1.02–3.53) for ever asthma and active asthma 
respectively. This association remained significant after 

further adjustments for BMI and maximal oxygen consump-
tion. Further, hypercholesterolemia has been identified as a 
potential risk factor for asthma, independent of obesity.[32] 
The association between asthma and elevated LDL-C levels 
is amplified in overweight and obese individuals.[33] A pro-
nounced sex difference in the relationships between asthma, 
lipid profiles, and obesity has been identified,[33] which 
may be attributed to varying dietary patterns among males 
and females or the influence of steroid hormones. Recently, 
Liu et al[34] used the Mendelian randomization approach to 
explore the relationship between dyslipidemia and asthma 
and found a causal relationship between higher levels of 
LDL-C, TC, and lower levels of HDL-C and an increased 
risk of asthma. Although a few studies have found no 
association between the risk of asthma and dyslipidemia, 
these findings are limited by study design, sample size, and 
population characteristics.[35,36] Collectively, dyslipidemia 
is a risk factor for asthma.

The impact of asthma on lipid levels remains to be 
determined. Reports regarding serum lipid levels among 
individuals with asthma are inconsistent, with some studies 
demonstrating either higher,[37–39] lower,[12,25,40,41] or 
unchanged,[42–45] levels of HDL-C compared to control 
groups. Regarding TC, TG, and LDL-C, studies have 
observed elevations,[13,32,33,39,46] reductions,[37,45,47] or no 
significant changes,[42–44,48] in asthma patients compared 
to the control groups. Due to differences in research designs 
and small sample sizes, larger studies are needed to better 
understand these contradictory findings. In addition, 
medications for asthma may affect lipid levels. Long-
term use of medium to high-dose inhaled corticosteroid 
(ICS) has the potential to induce systemic effects and may 
increase the requirement for cholesterol-lowering medica-
tions.[49] And long-term use of oral corticosteroids (OCs) 
in asthma patients can lead to a range of adverse effects, 
including dyslipidemia.[50] Collectively, this evidence sug-
gests that it is prudent to monitor blood lipid levels in 
patients with asthma who require long-term medication, 
especially ICS and even OCs. Currently, several biologics 
are available for asthma patients with severe disease. 
However, the effects of biologics on blood lipid levels in 
asthmatic patients have not yet been reported. Given that 
interleukin (IL)-6 biologics have adverse effects on blood 
lipids in rheumatoid arthritis,[51,52] lipid level monitoring 
in asthmatic patients using biologics is also worth con-
sidering.

Asthma with Dyslipidemia: A Specific Phenotype

Asthma is a heterogeneous disease that can be categorized 
into different phenotypes. Several asthma phenotypes 
have been identified, including eosinophilic asthma, 
allergic asthma, neutrophilic asthma, and obesity-re-
lated asthma.[53] Phenotyping asthma is instrumental 
in elucidating the heterogeneous manifestations of the 
disease, thereby guiding tailored treatment strategies. 
We identified distinct characteristics in asthmatics with 
dyslipidemia compared to those with normal lipid levels, 
including demographics, lung function, and asthma con-
trol, indicating that “dyslipidemia-associated asthma” 
would be a specific phenotype.[14] Recently, Park et al[54] 
suggested the presence of an asthma phenotype with 
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metabolic dysfunction, which includes central obesity, 
insulin resistance, dyslipidemia, and vitamin D deficiency.

Clinical Characteristics of Asthma with Dyslipidemia

Asthma patients with dyslipidemia are older, have elevated 
BMI, and are more often female.[14] Several studies have 
demonstrated that dyslipidemia is associated with worse 
airway obstruction in adults with asthma. Serum choles-
terol is negatively correlated with lung function (forced 
expiratory volume in one second [FEV1]% predicted).[55] 
Low HDL-C levels are associated with reduced forced 
vital capacity (FVC) and FEV1, and these findings are 
consistent in men and women.[56] Our previous prospec-
tive cohort study confirmed these findings, reporting that 
the dyslipidemia group had worse FEV1% predicted, 
maximal mid-expiratory flow (MMEF)% predicted, and 
FEV1/FVC ratio than the normal lipid group, and the dif-
ference remained significant even after adjusting for age, 
sex, BMI, ICS dose, smoking, hypertension, and fasting 
blood glucose.[14] Based on its density and size, LDL-C 
can be categorized into seven distinct subclasses (LDL-1 
to LDL-7). LDL-1 shows a positive correlation with 
predicted FVC% and FEV1%, whereas LDL-3 displays 
an inverse association with FVC% and FEV1% in adults 
with asthma.[57] Moreover, serum levels of HDL-C and 
apolipoprotein A-I (apoA-I) are positively associated with 
FEV1, whereas serum levels of TG, LDL-C, apolipopro-
tein B (apoB), and the apoB/apoA-I ratio are negatively 
correlated with FEV1 in atopic asthmatic subjects.[58] 
Taken together, these findings suggest that dyslipidemia 
can impair lung function in adult patients with asthma.

Consistent with the view that comorbidities may affect 
asthma severity and control, several studies have shown 
that asthmatic individuals with dyslipidemia have more 
severe asthma and worse asthma control. Increased 
plasma cholesterol has been reported to be independently 
associated with severe asthma (OR = 1.98; 95% CI: 
1.05–3.73).[55] Our previous study[14] also reported that 
dyslipidemia is associated with a higher risk of severe 
asthma (adjusted OR = 2.055, 95% CI: 1.102–3.832). 
And when dividing patients into groups with normal 
and abnormal blood lipid levels, the dyslipidemia 
group had a higher proportion of uncontrolled asthma 
(32.1% vs. 21.3%; P = 0.007) compared with the nor-
mal lipid group, and dyslipidemia was a risk factor for 
uncontrolled asthma (adjusted OR = 1.808, 95% CI: 
1.167–2.801) after adjusting for age, sex, BMI, ICS dose, 
smoking, hypertension, and fasting blood glucose.[14] Fur-
thermore, hyperlipidemia was significantly associated with 
asthma exacerbations (AEs).[59] Recently, our prospective 
cohort study[14] based on the Australasian Severe Asthma 
Network (ASAN) presented compelling evidence demon-
strating that dyslipidemia is associated with increased 
AEs, independent of other components of metabolic 
syndrome.

Inflammatory Characteristics of Asthma with Dyslipidemia

Asthma is a highly complex chronic inflammatory airway 
disease that can be classified into different endotypes 

and phenotypes.[60] The current paradigm broadly cate-
gorizes airway inflammation into two distinct groups: 
Type 2 (T2) and non-T2 asthma. T2 asthma is typically 
characterized by eosinophilic airway inflammation and 
elevated levels of T2 cytokines, including IL-4, IL-5, and 
IL-13. Biomarkers of T2 asthma include elevated blood or 
sputum eosinophils and fraction of exhaled nitric oxide 
(FeNO). Some studies have explored the relationship 
between dyslipidemia and inflammatory biomarkers 
in asthma. In atopic asthmatics, blood eosinophils are 
negatively correlated with serum HDL-C levels and total 
HDL particles and positively correlated with serum TG 
levels.[61] Serum periostin levels negatively correlate with 
total HDL particles. Serum TC, LDL-C, and apoB levels 
are positively associated with FeNO.[62] In addition, 
atopy has been used to define T2 asthma.[1] High levels of 
HDL-C were found to be associated with decreased risk of 
aeroallergen sensitization (adjusted OR = 0.27; 95% CI:  
0.01–0.70; P = 0.01), while high TG levels were associated 
with aeroallergen sensitization (adjusted OR = 2.01; 
95% CI: 1.14–3.56; P = 0.02).[11] These findings suggest 
that dyslipidemia may be linked to T2 inflammation in 
asthma. However, in our previous study,[14] compared to 
the normal lipid group, the dyslipidemia group had lower 
immunoglobulin E (IgE) levels and was less atopic, with 
an increased risk of nonallergic asthma, indicating the 
presence of non-T2 inflammation. Taken together, these 
findings suggest that dyslipidemia may have an effect on 
asthma through both T2 and non-T2 pathways.

Underlying Mechanisms for Asthma with Dyslipidemia

The mechanistic basis for the relationship between asthma 
and dyslipidemia has not been established, but some 
potential factors including common etiologies (genetics, 
diet and nutrients), cytokines and inflammation, oxidative 
stress, microbiome, or metabolic dysfunction as following 
may be involved [Figure 1].

Shared genetic vulnerability

Multiple studies have verified the significant roles of genetic 
factors in the development of asthma and altered lipid  
levels [Figure 1].[63–65] Orosomucoid 1-like 3 (ORMDL3) 
is a gene universally confirmed to be associated with 
asthma susceptibility and has recently been identified 
as a crucial modulator of lipid metabolism.[66,67] Lipid 
metabolism is closely associated with dyslipidemia and 
atherosclerosis. Ma et al[68] reported that ORMDL3 
contributes to the risk of atherosclerosis in the Chinese 
Han population and mediates oxidized low-density lipo-
protein-induced autophagy in endothelial cells, indicating 
that ORMDL3 may be a shared genetic risk factor for 
asthma, atherosclerosis, and dyslipidemia. In addition, 
IL10 gene polymorphisms at position-1082 are associated 
with serum HDL-C and TG concentrations,[69] as well  
as pediatric asthma in Chinese individuals.[70] Further-
more, in a cohort of children in Cyprus, Yiallouros et al[71]  
found that two single nucleotide polymorphisms (TNFA 
rs3093664 and PRKCA rs9892651) located in different 
genetic loci were correlated with both wheezing and 
HDL-C levels. Specifically, the relationship between 
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TNFA rs3093664 and wheezing is partially mediated 
through its influence on HDL-C levels, while the associ-
ation between PRKCA rs9892651 and wheezing seems 
to occur independently of HDL-C levels. These studies 
suggest that asthma with dyslipidemia may partly origi-
nate from overlapping genetic susceptibilities. However, 
to confirm these genetic associations, future research is 
needed to directly explore the genetic differences between 
asthma combined with dyslipidemia and asthma alone.

Diet and nutrients

An increasing amount of evidence indicates that diet and 
nutrients play a significant role in the development and 
management of asthma [Figure 1].[72,73] An animal  study 

has found that hypercholesterolemia induced by a high- 
cholesterol/high-fat diet may lead to Toll-like receptors 
(TLRs)/nuclear factor -kappa B (NF-κB) pathway-related 
low-grade pulmonary inflammation in C57BL/6J mice, 
which could alter the lungs’ immune response to various 
environmental exposures.[74] In human, our previous 
study reported a dose-response pattern between fast food 
consumption, especially of hamburgers, and asthma: 
the adjusted odds ratio of current asthma associated 
with hamburger consumption was 1.59 (95% CI: 1.13–
2.25).[75] And our other two studies have found that a 
high-fat meal can augment neutrophilic airway inflamma-
tion and suppress bronchodilator recovery in asthma,[76] 
and the underlying mechanism for this phenomenon may 
involve differences in gene expression changes due to a 

Figure 1: Underlying mechanisms in asthma with dyslipidemia. Shared genetic vulnerability and diet and nutrients, can affect both dyslipidemia and asthma. Dyslipidemia may affect 
asthma via cytokines and inflammation, oxidative stress, microbiome alterations, and metabolic dysfunction. Created with BioRender.com. GPCR: G-protein-coupled receptor; IL: Interleu-
kin; JAK–STAT: Janus kinase-signal transducer and activator of transcription; MAPK: Mitogen-activated protein kinase; NF-κB: Nuclear factor-kappa B; NLRs: NOD-like receptors; Nrf2: 
Nuclear factor erythroid 2-related factor 2; ORMDL3: ORMDL sphingolipid biosynthesis regulator 3; ROS: Reactive oxygen species; Th: T helper; TLRs: Toll-like receptors; TNF-α: Tumor 
necrosis factor-α.
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high-fat meal between asthmatics and healthy controls.[77] 
Further, our study suggested that increased consumption 
of a high-fat diet can elevate circulating saturated fatty 
acids, which alter innate immune responses by activating 
inflammatory signaling pathways such as NF-κB, reactive 
oxygen species (ROS), and mitogen-activated protein 
kinase (MAPK), thereby promoting NOD-like receptor 
family pyrin domain containing 3 (NLRP3) inflammasome- 
dependent airway inflammation in asthma.[78] A healthy 
diet has protective effects against asthma and wheezing 
in children.[79] Adopting a healthy diet that is abundant in 
antioxidants and fiber can mitigate the adverse effects of 
oxidative stress and systemic inflammation in obesity-re-
lated asthma.[80]

Diet and nutrients can also influence lipid levels.[81] 
Unhealthy dietary patterns, including excessive intake of 
saturated fatty acids, trans fatty acids, soft drinks, and 
refined carbohydrates are strongly associated with the 
development of dyslipidemia.[82] Managing dyslipidemia, 
especially lowering LDL-C and TC levels, can be effec-
tively achieved by altering the macronutrient composition 
of the diet.[81] Healthy dietary patterns such as the Medi-
terranean diet, which is characterized by a high intake of 
plant foods such as fruits and vegetables and an increased 
intake of monounsaturated and omega-3 fats, may be a 
rational option for protecting against asthma and dys-
lipidemia.[83,84] Intermittent fasting is characterized by 
brief intervals of intense energy restriction (involving a 
75–100% reduction in caloric intake on fasting days), 
interspersed with days of ‘regular’ or ‘normal’ eating. This 
dietary approach encompasses various fasting types such 
as alternate-day fasting, the 5:2 diet, and time-restricted 
eating. Alternate day calorie restriction may be effective 
in improving asthma symptoms and asthma control and 
these improved clinical findings were associated with 
decreased levels of serum cholesterol and TG,[85] indicat-
ing that intermittent fasting may have a potential effect on 
asthma with dyslipidemia. Collectively, diet and nutrients 
may play an important role in asthma with dyslipidemia.

Cytokines and inflammation

Dyslipidemia induces a state of low-grade systemic inflam-
mation, characterized by the upregulation of various 
pro-inflammatory cytokines, including tumor necrosis 
factor-alpha (TNF-α), IL-1β, and IL-6, etc.[86–88] These 
cytokines also play significant roles in the initiation and 
progression of asthma. Studies have reported increased 
TNF-α concentrations in the airways of individuals 
with severe asthma.[89,90] TNF-α contributes to disease 
pathology through multiple mechanisms: it promotes the 
recruitment of inflammatory cells, stimulates the produc-
tion of inflammatory mediators, and induces oxidative 
stress, airway hyperresponsiveness, and tissue remode-
ling.[91] Fatty acids trigger a signaling cascade through 
TLR4 that leads to the assembly of the NLRP3 inflammasome 
and activation of caspase-1, which ultimately cleaves and 
releases mature IL-1β from its inactive precursor. IL-1β 
can drive inflammation by promoting T-helper (Th) 17 
cell differentiation.[92] As a key biomarker of systemic 
inflammation and metabolic dysfunction, IL-6 is found to 
be associated with severe asthma. And elevated IL-6 levels 

clinically correlate with worse lung function and more 
frequent exacerbations in asthma.[93]

In addition, the pathophysiological mechanisms of 
asthma are closely related to inflammation triggered by 
immune responses. This involves multiple inflammatory 
signaling pathways, including TLRs and NOD-like recep-
tors (NLRs), Janus kinase-signal transducer and activator 
of transcription (JAK-STAT), NF-κB, inflammasomes, 
MAPK, and G-protein-coupled receptor (GPCR) path-
ways.[94] Each of these pathways contributes to the 
progression and severity of asthma. The inflammation 
triggered by dyslipidemia also involves inflammatory 
pathways such as MAPK, JAK-STAT, and NF-κB.[95,96] 
Therefore, we hypothesize that dyslipidemia may partici-
pate in the pathophysiological mechanisms of asthma 
by releasing inflammatory mediators and regulating the 
inflammatory signaling pathways. However, the signaling 
mechanisms by which dyslipidemia modulates inflam-
mation to affect asthma remain to be established. Future 
research is required to confirm this mechanism.

Oxidative stress

Oxidative stress is a key contributor to the development 
of asthma, resulting from an imbalance between ROS  
generation and antioxidant capacity, which induces 
cellular injury and promotes inflammatory processes. 
Oxidative stress is involved in the pathophysiological 
mechanisms of asthma through multiple signaling path-
ways, including the nuclear factor erythroid 2-related 
factor 2 (Nrf2), NF-κB, thioredoxin-1, mitochondrial, 
MAPK, and aldose reductase pathways.[94] Dyslipidemia 
can lead to oxidative stress and increase the production 
of ROS.[97] Animal studies revealed that asthmatic-hyper-
lipidemic rats exhibited a significant increase in serum 
concentrations of nitrite and malondialdehyde, alongside 
a significant decrease in total thiol content and the activities 
of superoxide dismutase and catalase.[98,99] These changes 
collectively indicate an exacerbation of oxidative damage. 
In addition, oxidized LDL can activate the MAPK signa-
ling pathway, leading to MAPK phosphorylation, which 
generates abundant ROS, promotes monocyte accumula-
tion in the arterial wall, reduces collagen and extracellular 
matrix secretion by vascular smooth muscle cells, and 
ultimately induces cytotoxicity.[100] Furthermore, oxi-
dized LDL has been found to be elevated in pulmonary 
diseases such as chronic obstructive pulmonary disease, 
and are associated with lung function, inflammation, and 
oxidative stress.[101] Therefore, dyslipidemia may con-
tribute to the development and progression of asthma by 
inducing oxidative stress via the aforementioned signaling 
pathways. However, further research is needed to confirm 
which specific pathways are involved and how they regu-
late the pathological processes of asthma.

Microbiome alterations

The microbiome performs several crucial functions in 
the development, regulation, and maintenance of healthy 
immune responses, while dysbiosis and the resulting 
imbalance in microbiota-related immunological processes 
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contribute significantly to the development of a number 
of diseases, including asthma and dyslipidemia.[102,103] 
Crosstalk between the microbiome and asthma has been 
established [Figure 1].[104] Perturbation of airway, skin, 
and gut microbiomes coincides with asthma-associated 
immune dysfunction.[105] The microbiome is associated 
with the origin, phenotype, persistence, and severity 
of asthma.[106] And the gut microbiome can influence 
asthma by modulating immune responses through the 
gut–lung axis.[107] In addition, the gut microbiome can 
modulate lipid metabolism and is associated with lipid 
levels in humans. Negative correlations were observed 
between gut microbiome diversity and TG and LDL levels, 
whereas HDL-C was positively linked with microbial 
richness.[108–110] The composition and function of the gut 
microbiome are dynamic and can be influenced by dietary 
factors, including the quantity and type of lipids. There-
fore, dietary lipids might affect asthma by interacting with 
the gut microbiome. Whether dyslipidemia affects asthma 
via the airway microbiome requires further investigation.

Metabolic dysfunction

Metabolic dysfunction is a broad concept and dyslipidemia 
is a manifestation of metabolic dysfunction [Figure 1]. Dys-
lipidemia is closely related to and may be a consequence 
of lipid metabolism disorders.[111] Lipid metabolism is an 
intricate physiological process encompassing the uptake, 
transportation, biosynthesis, and degradation of lipids 
that are integral to numerous bodily functions.[112] Accu-
mulating evidence from laboratory and clinical studies 
has highlighted the pivotal role of lipid metabolism in the 
pathogenesis of asthma.[113] Genes associated with lipid 
metabolism, including ASAH1, ACER3, and SGPP1, play 
pivotal roles in the development of asthma and regulate 
the immune microenvironment.[114] Th17 cells, which 
play a crucial role in the pathogenesis of steroid-resistant 
asthma, are connected to lipid metabolism by modulat-
ing retinoid-related orphan receptor gamma t (RORγt)  
activation.[115] The activation of the Yes-associated protein/
hypoxia inducible factor-1α/microRNA-182/early growth 
response 2 signaling pathway may foster Th17 cell differen-
tiation, intensify asthma progression, and deteriorate lipid 
metabolism dysregulation, pointing to a possible therapeu-
tic strategy for asthma management.[116] And abnormal 
lipid metabolism has been shown to correlate with disease 
severity and IgE levels in patients with asthma.[117]

In addition, a potential link between lipid metabolism 
and lung dysfunction has been established in individuals 
with mild to moderate asthma.[118] In two Trans-Omics 
for Precision Medicine Initiative cohorts, five metabo-en-
dotypes of asthma with differences in lung function were 
discovered and validated, and the identification of choles-
terol esters, TGs, and fatty acids as significant factors in 
determining metabo-endotypes indicates that imbalances 
in pulmonary surfactant homeostasis could potentially 
contribute to the severity of asthma.[119] Cholesterol is a 
crucial component of the pulmonary surfactant.[120] Recent 
advancements in understanding the interplay between cir-
culating cholesterol and the lungs have revealed that the 
lungs possess a distinct requirement for sterol uptake and 
metabolism, and cholesterol homeostasis is necessary for 

pulmonary physiology.[121,122] Therefore, an imbalance 
in cholesterol metabolism may significantly affect lung 
immunity and function.

Immunology of asthma with dyslipidemia

Asthma is an inflammatory airway disease involving various 
inflammatory cytokines, immune cells, and activation of 
several inflammatory cascades. Dyslipidemia can affect 
asthma by activating immune pathways and amplifying 
airway inflammation [Figure 2]. The airway epithelium is 
an important barrier against external stimuli such as air 
pollutants and respiratory pathogens. Disruption of the 
airway epithelial barrier is a key driver of asthma initia-
tion, persistence, and exacerbation.[123] Airway epithelial 
injury can initiate an inflammatory cascade in asthma 
by releasing epithelium-derived cytokines, namely IL-25, 
IL-33, and thymic stromal lymphopoietin (TSLP).[124] 
Dyslipidemia can enhance systemic inflammation by 
upregulating IL-1β and IL-6, which can also influence 
the airway epithelium.[86,125] Circulating IL-1β can cause 
airway epithelial cell dysfunction.[126] Thus, dyslipidemia 
may affect asthma immunology by initiating abnormal 
airway epithelial responses.

Dyslipidemia can affect asthma by influencing various 
immune cells. CD4+ T helper (Th) cells play a key role in 
the orchestration of airway inflammation. When exposed 
to allergens, T cells are activated, leading to the clonal 
proliferation of allergen-specific Th cells. These Th cells 
assume diverse phenotypes, several of which may con-
tribute to asthma pathogenesis. For example, Th2 cells 
secrete IL-4, IL-5, and IL-13; Th1 cells produce interferon 
(IFN)-γ; and Th17 cells secrete IL-17A. Dyslipidemia 
can induce a switch from a Th1 to a Th2 response.[127] 
In addition, dyslipidemia can amplify Th2 and Th17 
responses by increasing the production of Th2 and Th17 
cytokines, including IL-4 and IL-17A.[128]

Neutrophils are strongly linked to corticosteroid insen-
sitivity and severe asthma; thus, dyslipidemia may affect 
asthma treatment response and severity via neutrophils. 
IL-6 and IL-8 are inflammatory cytokines associated 
with both neutrophilic asthma (NA) and dyslipidemia.[86] 
Dyslipidemia may amplify neutrophilic inflammation in 
asthma by increasing IL-6 and IL-8 levels. In addition, 
neutrophil extracellular traps (NETs) play an important 
role in NA.[129] Hypercholesterolemia can impair the 
clearance of NETs and promote inflammation, ultimately 
exacerbating asthma.[130]

Macrophages play a pivotal role in the pathogenesis of 
asthma. When exposed to local micro-environments, 
recruited macrophages undergo polarization and trans-
form into either classically activated (M1) or alternatively 
activated (M2) phenotypes.[131] Macrophage polarization 
has been linked to the pathogenesis of asthma. Lipopol-
ysaccharide (LPS), IFN-γ, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) are potent activators 
that promote the polarization of macrophages towards 
the M1 phenotype.[132] Conversely, M2 macrophages are 
induced by cytokines, such as IL-4, IL-13, and IL-10. M1 
polarization leads to increased expression of Th1 and 
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Th17 cells, whereas M2 polarization predominantly elicits 
a Th2 cell response.[131] Oxidized LDL is also involved 
in macrophage polarization towards M2 phenotype,[133] 
thereby contributing to T2 inflammation. While the 
accumulation of cholesterol esters triggers a shift in the 
polarity of murine macrophages, directing them toward 
classically activated inflammatory phenotypes (M 1),[134] 
contributing to non-T2 inflammation. Thus, dyslipidemia 
can affect asthma by regulating macrophage polarization, 
triggering T2 or non-T2 inflammation. In addition, group 
2 innate lymphoid cells (ILC2) also play a significant role 
in asthma.[135] HDL-C decreases the levels of ILC2 and 
Th2 cytokines, demonstrating a protective role in asthma 
inflammation.[136]

Potential Therapeutic Drugs Targeting Asthma with 
Dyslipidemia

Statins

Statins are lipid-lowering agents widely prescribed for 
the management of hyperlipidemia and cardiovascular 
diseases. Statins exhibit lipid-lowering activity by inhibiting 
3-hydroxymethyl-3-glutaryl coenzyme A reductase, a pivotal 

enzyme involved in cholesterol production. Recently, 
statins have been found to exhibit pleiotropic effects, 
including anti-inflammatory, anti-fibroproliferative, and 
immunomodulatory effects, independent of their choles-
terol-lowering abilities.[137,138] The pleiotropic effects of 
statins suggest that they may be effective against asthma.

Cellular and animal experiments using statins to treat 
asthma have been well studied. Several cellular exper-
iments have shown that statins have inhibitory effects 
on cytokine and chemokine production,[139–141] as well 
as bronchial wall remodeling.[142–144] These effects have 
also been confirmed in mouse asthma models. As shown 
in Table 1,[98,99,145–170] most studies have used ovalbumin 
(OVA)-induced murine models of allergic asthma to 
explore the effects of statins. Statin treatment has been 
shown to decrease airway inflammation, reduce Th2 
cytokines such as IL-4, IL-5, and IL-13, and improve air-
way remodeling and airway hyperresponsiveness (AHR). 
A few studies have used obese- or hyperlipidemic mouse 
models of asthma. In a mouse model of obesity and asthma 
induced by a high-fat diet and OVA, simvastatin treatment 
effectively reduced glucose, lipid, leptin, and neutrophil 
percentages, while also improving airway inflammation 

Figure 2: Immunology in asthma with dyslipidemia. The immunology of asthma involves an intricate cascade of immune cells, cytokines, and chemokines. Dyslipidemia can induce 
pro-inflammatory cytokines such as IL-1β and IL-6, which could damage airway epithelium and initiate cascade reactions of asthma. Further, dyslipidemia can affect the cascade reaction 
of asthma via Th2, Th17, ILCs, and macrophage cells. Created with BioRender.com. APC: Antigen-presenting cell; IL: Interleukin; GM-CSF: Granulocyte-macrophage colony-stimulating 
factor; HDL: High-density lipoprotein; IFN-γ: Interferon-gamma; IL: Interleukin; ILC2: Group 2 innate lymphoid cell; LDL: Low-density lipoprotein; Th: T helper; LPS: Lipopolysaccharide; 
TNF-α: Tumor necrosis factor-α; NETs: Neutrophil extracellular traps; TSLP: Thymic stromal lymphopoietin.
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Table 1: Effects of statins on asthma in animal models.

Study Disease model Pharmacological agent Outcome

McKay et al[145] OVA-induced murine model of 
allergic asthma

Simvastatin ↓ The total inflammatory cell infiltrate and eosinophilia in the BALF

↓ BALF IL-4, IL-5

↓ IL-4, IL-5, IL-6, and IFN-γ in thoracic lymph node cultures from simvastatin-treated 
mice

Xu et al[146] OVA-induced murine model of 
asthma

Simvastatin ↓ Airway remodeling and hyperresponsiveness

↓ BALF eosinophils, lymphocytes, macrophagocytes and neutrophils

↓ BALF CCL-11, IL-4, and IL-5

↑ BALF IFN-γ

↓ Eosinophil infiltration, mucus production and collagen deposition in the lung tissues
Ahmad et al[147] OVA-induced murine model of 

asthma
Simvastatin ↓ BALF total cell count, macrophage, and eosinophil

↓ Mucus hypersecretion, airway remodeling, and AHR
Zeki et al[148] OVA-induced murine model of 

asthma
Simvastatin ↓ Total lung lavage leukocytes, eosinophils, and macrophages

↓ BALF IL-4, IL-13, and TNF-α

↑ Lung compliance

↓ Airway hyperreactivity
Kim et al[149] OVA-induced mouse allergic 

asthma model
Simvastatin ↓ OVA-specific IgE level, BALF total inflammatory cells, macrophages, neutrophils, and 

eosinophils

↓CD40, CD40L, and VCAM-1 expression, mRNA and protein levels of IL-4, IL-13 and 
TNF-α, goblet cells, activities of MMPs, small G proteins, MAP kinases, and  
NF-κB

Liu et al[150] OVA-specific asthma model 
in mice

Simvastatin ↓ Airway responsiveness, BALF IL-4, IL-5, IL-13

↓ CD4+ cells; CD4+/CD8+ T-cell ratio

↓ VCAM-1 and ICAM-1 proteins
Gu et al[151] OVA-induced asthma mouse 

model
Simvastatin ↑ Autophagy-related protein Atg5, LC3B, and Beclin1 expression and autophagosome 

formation in lung tissue

↑ IFN-γ

↓ IL-4, IL-5 and IL-13; extracellular matrix deposition
Mohammadian  

et al[152]

OVA-induced asthma model 
in mouse

Simvastatin ↓ WBC counts, neutrophils, and eosinophils

Jha et al[153] House dust mite challenged 
murine model of allergic 
asthma

Simvastatin ↓ TNF-α, CXCL1, IL-6, IL-4, IL-1β, and IFN-γ

↓ Goblet cell hyperplasia, neutrophil, and eosinophil influx

Zeki et al[154] OVA-induced mouse model of 
allergic asthma

Simvastatin ↓ Goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme 
activity

Han et al[155] High-fat diet and OVA 
sensitization and challenge 
to establish a mouse model 
of obesity and asthma

Simvastatin ↓ Glucose, lipid, leptin, neutrophil percentage, airway inflammation, and remodeling

Chen et al[156] A mouse model of severe 
asthma with neutrophil-pre-
dominant inflammation 
(OVA+LPS mice)

Simvastatin ↓ BALF total cell, neutrophil counts, IL-4, IL-1β, IFN-γ, and IL-17A, perivascular and 
peribronchial leukocyte infiltration, mucus production; proportions of Th2 and Th17, 
AHR

↓ NET formation in BALF and lung tissue

↑ Treg cells
Sharif-Askari  

et al[157]

OVA-induced mouse model of 
asthma

Simvastatin ↓ Infiltration of both effector memory T and central memory T memory subtypes, IL-4, 
IL-13

↓ ICAM-1 and VCAM-1 levels in the lung homogenate
Saadat et al[98,99,158] Asthmatic, hyperlipidemic,

and asthmatic-hyperlipidemic 
rat models

(asthmatic animals were 
sensitized with OVA)

Rosuvastatin ↓ WBC counts, neutrophilia, eosinophilia, and monocytes, IL-6, IL-10

↓ Tracheal responsiveness to methacholine, muscle hypertrophy, and emphysema

↓ Oxidative stress by decreasing nitrite and malondialdehyde concentrations

↑ Th1/Th2 balance

↑ Total thiol content, superoxide dismutase, and catalase activities
Zhu et al[159] OVA-induced murine model of 

chronic asthma
Rosuvastatin ↓ BALF total inflammatory cells, lymphocytes, macrophages, neutrophils, and eosino-

phils

↓ BALF IL-4, IL-5, IL-13, and TNF-α

↓ Histological mucus index and gamma-aminobutyric acid type A receptor β2 expression

(continued)
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Study Disease model Pharmacological agent Outcome

Liu et al[160] OVA-exposed mice model of 
asthma

Atorvastatin ↓ Tissue transglutaminase and triggering receptor expressed on myeloid cells-1 in lung 
tissue, lymphocytes and eosinophils, AHR, lung collagen deposition, airway wall area, 
airway smooth muscle thickness, and pathological changes in the lung

↓ TNF-α, IL-8, IL-13, and IL-17 in serum
Blanquiceth et al[161] OVA-induced model of allergic 

asthma
Atorvastatin ↑ Tregs in mediastinal lymph nodes and IL-10 in lungs

No significant changes were observed in the number of inflammatory cells in the BALF, 
OVA-specific immunoglobulin E in the serum, and Th2 cytokines in the lungs

Fırıncı et al[162] OVA-induced murine model of 
chronic asthma

Atorvastatin ↓ Thicknesses of basement membrane and subepithelial smooth muscle layer, height of 
epithelium, number of mast and goblet cells

↓ IL-4 and IL-5 levels of the lung tissue
Lee et al[163] Obesity-related asthma mouse 

model:

C57BL/6 mice were fed a 
high-fat diet to induce 
obesity with or without 
OVA sensitization and 
challenge

Pravastatin ↓ BALF IL-4, IL-5, and IL-17

↓ Serum leptin and adiponectin ratio

↓ Airway inflammation of lung tissues and AHR

Wu et al[164] An asthma mouse model:

Mice were sensitized and 
challenged with OVA to 
establish the asthma model

Pravastatin ↓ Airway resistance, bronchial tube thickness, and goblet cell hyperplasia in lung tissues

↓ BALF eosinophil counts and total inflammatory cell counts, IL-4, IL-17

↑ BALF CD4+ CD25+ Foxp3+ Treg, IFN-γ

Yeh et al[165] Male C57BL/6 mice were 
fed either a control diet 
or a diet supplemented 
with 2% cholesterol after 
sensitization and inhalation 
exposure to OVA

Pravastatin ↓ Eosinophil infiltration

↓ BALF IL-5, PGE2, and MCP-1

↑ IL-12

Zeki et al[166] OVA-induced murine allergic 
asthma

Pravastatin ↓ Airway goblet cell hyperplasia/metaplasia; airway hypersensitivity

↓ BALF TNF-α and keratinocyte-derived chemokine
Imamura et al[167] OVA-induced mouse model of 

asthma
Pravastatin ↓ BALF eosinophilia

↓ Serum total IgE, OVA-specific IgE, and OVA-specific IgG1 levels

↓ IL-17, Th17 response
Huang et al[168] OVA-induced mice model of 

asthma
Pravastatin/Atorvastatin ↓ AHR

↓ Th1- and Th2-mediated antibody responses, reducing serum specific IgE, IgG, IgG1, 
and IgG2a levels

↓ BALF IL-4, IL-5, and IFN-γ

↑ BALF IL-10
Chiba et al[169] Rats with experimental 

asthma:

Rats were sensitized and 
repeatedly challenged with 
2,4-dinitrophenylated 
Ascaris suum antigen

Lovastatin ↓ Total cholesterol levels

↓ Bronchial smooth muscle hyperresponsiveness

↓ BALF cell counts

Chiba et al[170] OVA-induced mouse model of 
asthma

Lovastatin ↓ Airway eosinophilia

AHR: Airway hyperresponsiveness; Atg5: Autophagy protein 5; BALF: Bronchoalveolar lavage fluid; CCL: Chemokine (C-C motif) ligand; 
CD40L: CD40 ligand; CXCL: C-X-C motif chemokine ligand; Foxp3: Forkhead box protein P3; ICAM: Intercellular adhesion molecule; IFN-γ: 
Interferon-gamma; IgE: Immunoglobulin E; IgG: Immunoglobulin G; IL: Interleukin; LC3B: Microtubule-associated protein 1 light chain 3 beta; 
LPS: Lipopolysaccharide; MAP: Mitogen activated protein; MCP: Monocyte chemoattractant protein; MMP: Matrix metalloproteinase; mRNA: 
Messenger RNA; NET: Neutrophil extracellular trap; NF-κB: Nuclear factor-kappa B; OVA: Ovalbumin; PGE2: Prostaglandin E2; Th: T helper; 
TNF: Tumor necrosis factor; VCAM: Vascular cell adhesion molecule; WBC: White blood cell. ↑: Increase; ↓: Decrease.

(continued)

Table 1

and remodeling, suggesting a therapeutic effect of  
simvastatin on obesity-associated asthma.[155] Pravasta-
tin treatment in obese asthmatic mice alleviates allergic 
airway inflammation and AHR through the inhibition 
of Th2- and Th17-associated signaling pathways.[163] In 
asthmatic-hyperlipidemic animals, rosuvastatin treatment 
modulates the Th1/Th2 balance and reduces AHR, lung 

inflammation, and oxidative stress.[98,99,158] Pravasta-
tin has also been shown to inhibit allergic pulmonary 
inflammation in OVA-induced asthmatic mice fed with 
2% cholesterol.[165] Furthermore, simvastatin, while 
inhibiting Th2 inflammation, suppresses Th17-mediated 
neutrophilic inflammation and airway hyperreactivity by 
reducing peptidyl arginine deiminase 4 (PAD4) expression 
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and inhibiting NETosis in a mouse model of severe asthma 
with neutrophil-predominant inflammation induced by 
OVA and LPS.[156]

Despite promising results from preclinical studies, 
clinical studies using statins to protect against asthma 
have produced underwhelming or contradictory results 
[Table 2].[171–186] Several studies with case-control or 
retrospective cohort designs, have reported that statins 
have protective effects on asthma clinical outcomes, such 
as asthma-related emergency department visits,[176,178] 
or hospitalizations.[179,185] In contrast, a number of ran-
domized clinical trials found that statins did not affect 
inflammation or clinical asthma outcomes.[171–175] The 
reasons for these heterogeneous results can be explained 
by several potential contributing factors such as short-term 
treatment duration, small sample size, type of statin used, 
and variations in asthma endotypes.[121] Previous clinical 
trials on human asthma have all used approved oral 
statin administration, which may hinder lung bioavaila-
bility because of extensive liver metabolism, potentially 
reducing the bioactive dose in the lungs.[187] Rodent 
studies have suggested that inhaled statins might be a 
superior choice,[146,166] but this route of administration 
has not yet been approved for human use. Therefore, the 
measurement of drug concentration in the lungs in future 
studies is prudent. In addition, almost all current clinical 
studies have been conducted among patients with mild, 
moderate, or severe asthma without specific phenotypic 
classification, which may lead to an inability to properly 
assess the effects of an intervention on different asthma 
phenotypes. Furthermore, none of these clinical studies 
have characterized blood lipid levels or identified patients 
with asthma and dyslipidemia. Meanwhile, it is unclear 
whether statins influence asthma through lipid-lowering, 
anti-inflammatory effects, or both. Thus, the effects of 
statins on specific phenotypes of asthmatic patients with 
dyslipidemia require further research.

Other promising therapeutic drugs

Additional cholesterol-targeting agents, including liver X 
receptor (LXR) agonists and apolipoprotein mimetic pep-
tides, have been investigated in asthma models. Activation 
of LXR can inhibit the expression of proinflammatory 
mediators in human airway smooth muscle cells,[188] and 
attenuate IgE production and airway remodeling in a 
mouse model of chronic asthma,[189] indicating that the 
modulation of LXR activity may be a new therapeutic 
approach for asthma. However, other studies reported 
contradictory results. LXR agonists increase airway 
inflammation, AHR, and airway remodeling in animal 
models.[190–192] Hence, further investigation of the effects 
of these drugs on asthma is required.

Apolipoproteins, such as apoA-I and apolipoprotein E 
(apoE), are crucial constituents of lipoprotein particles 
that facilitate the efficient transportation of cholesterol, 
TGs, and phospholipids between plasma and cells. The 
pivotal roles of apolipoproteins in lung disease pathogenesis 
and therapy are gaining increasing recognition due to 
their ability to alleviate inflammation, oxidative stress, 
and tissue remodeling while improving adaptive immunity 
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management of asthma. Several underlying mechanisms 
have been identified to explain asthma with dyslipidemia; 
however, the underlying pathological pathways remain 
unclear. Importantly, dyslipidemia is a significant TT for 
asthma [Figure 3]. Identifying new potential therapeutic 
targets for asthma with dyslipidemia may improve the 
prognosis of patients with asthma, including those with 
severe and steroid-insensitive asthma. Finally, we provide 
some suggestions for future research. The development 
and utilization of animal models of asthma with dys-
lipidemia will help better understand the phenotype of 
dyslipidemia-associated asthma. Future clinical trials 
should not generalize asthma phenotypes and should iso-
late this phenotype for specific research. With advances in 
biotechnology, the application of multi-omics technolo-
gies, including single-cell transcriptomics, microbiomics, 
and metabolomics, can comprehensively explore this 
phenotype.
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and host defense.[193] In animal models of asthma, apoA-I 
mimetic peptides such as 5A and D-4F can attenuate the 
development of airway inflammation and AHR.[194,195] 
The action of 5A in reducing airway inflammation was 
mediated by the reduction of Th2 and Th17 cytokines 
as well as C–C chemokines. Intranasal administration 
of 5A also inhibited neutrophilic airway inflammation 
in OVA-challenged ApoA-I-deficient mice.[196] Taken 
together, the 5A and D-4F apoA-I mimetic peptides 
may be a novel therapeutic approach for asthma. ApoE 
mimetic peptides inhibited airway inflammation, AHR, 
goblet cell hyperplasia, IgE production, and the expression 
of Th2 and Th17 cytokines in a house dust mite-induced 
model of murine asthma via an LDL receptor-dependent 
mechanism,[197] suggesting a potential treatment option 
for asthma. In addition, whether other novel lipid-lower-
ing drugs, such as proprotein convertase subtilisin/kexin 
type 9 and inclisran, can be applied for the treatment 
of asthma patients with dyslipidemia requires further  
research.

Conclusion

A thorough understanding of asthma and dyslipidemia 
is clinically significant. Asthma with dyslipidemia would 
be a specific phenotype of asthma, with an increasing 
prevalence worldwide. Asthma with dyslipidemia is 
characterized by older age, elevated BMI, female pre-
dominance, worse lung function, airway obstruction, 
severe asthma, and worse asthma control. Dyslipidemia 
can influence asthma inflammation via both the T2 and 
non-T2 pathways. Finding surrogate or complementary 
signature biomarkers that can accurately identify asthma 
with dyslipidemia phenotypes is a pivotal direction 
for future research and may contribute to the effective 

Figure 3: Clinical characteristics, possible mechanisms and potential therapeutic drugs for asthma with dyslipidemia. Dyslipidemia can act as a treatable trait in asthma management 
with precision medicine. Targeted lipid-lowering drugs including statins, liver X receptor agonists, and apolipoprotein mimetic peptides may improve asthma outcomes, such as asthma 
control, asthma exacerbation, lung function, and clinical remission.
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