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Abstract: Background and objective: Chronic respiratory diseases, such as asthma and
COPD, pose significant challenges to human health and global healthcare systems. This
pioneering study utilises AI analysis and modelling of cough and respiratory sound signals
to classify and differentiate between asthma, COPD, and healthy subjects. The aim is to
develop an AI-based diagnostic system capable of accurately distinguishing these condi-
tions, thereby enhancing early detection and clinical management. Our study, therefore,
presents the first AI system that leverages dual acoustic signals to enhance the diagnostic
ACC of asthma using automated, lightweight deep learning models. Methods: To build
an automated, lightweight model for asthma detection, tested separately with respiratory
and cough sounds to assess their suitability for detecting asthma and COPD, the proposed
AI models integrate the following ML algorithms: RF, SVM, DT, NN, and KNN, with
an overall aim to demonstrate the efficacy of the proposed method for future clinical use.
Model training and validation were performed using 5-fold cross-validation, wherein the
dataset was randomly divided into five folds and the models were trained and tested
iteratively to ensure robust performance. We evaluated the model outcomes with several
performance metrics: ACC, precision, recall, F1 score, and area under the AUC. Addition-
ally, a majority voting ensemble technique was employed to aggregate the predictions of
the various classifiers for improved diagnostic reliability. We applied Gabor time–frequency
transformation for feature extraction and NCA) for feature selection to optimise predictive
accuracy. Independent comparative experiments were conducted, where cough-sound
subsets were used to evaluate asthma detection capabilities, and respiratory-sound subsets
were used to evaluate COPD detection capabilities, allowing for targeted model assess-
ment. Results: The proposed ensemble approach, facilitated by a majority voting approach
for model efficacy evaluation, achieved acceptable ACC values of 94.05% and 83.31% for
differentiating between asthma and normal cases utilising separate respiratory sounds
and cough sounds, respectively. The results highlight a substantial benefit in integrating
multiple classifier models and sound modalities while demonstrating an unprecedented
level of ACC and robustness for future diagnostic predictions of the disease. Conclusions:
The present study sets a new benchmark in AI-based detection of respiratory diseases by
integrating cough and respiratory sound signals for future diagnostics. The successful
implementation of a dual-sound analysis approach promises advancements in the early
detection and management of asthma and COPD. We conclude that the proposed model
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holds strong potential to transform asthma diagnostic practices and support clinicians in
their respiratory healthcare practices.

Keywords: asthma detection; random forest classifier; respiratory sound; spectrogram;
majority voting

1. Introduction
Asthma affects approximately 339 million people worldwide, while COPD is projected

to become the third leading cause of death globally by 2030 [1]. These statistics underscore
the urgent need for effective disease management strategies. The economic burden of these
diseases is significant, with costs associated with medical treatment, loss of productivity,
and premature death. Asthma and COPD are linked to both genetic predispositions and
environmental factors. For instance, asthma is often associated with allergen exposure,
which leads to airway hyper-responsiveness [2]. This condition is further exacerbated by
factors such as pollution, respiratory infections, and occupational exposures. On the other
hand, COPD is commonly related to long-term smoking and environmental pollutants [3].
It is characterised by airflow obstruction and is often accompanied by chronic bronchitis and
emphysema. Common symptoms include shortness of breath, wheezing, chest tightness,
and coughing. COPD is characterised by progressive breathlessness and chronic cough
with sputum, while asthma is marked by episodic symptoms triggered by specific factors
such as allergens, exercise, or cold air. If unmanaged, these diseases can lead to severe
complications, including respiratory failure, pulmonary hypertension, heart complications,
and death [4]. The morbidity and mortality associated with these diseases necessitate
advancements in diagnostic and therapeutic approaches.

Recent advancements have shown promise in using AI for the automated detection
of asthma and COPD through the analysis of cough and respiratory sound signals [5,6].
AI and ML techniques offer a novel approach to diagnosing these conditions with high
ACC. Previous studies have demonstrated high accuracy rates using DL models, partic-
ularly CNN. These models have achieved diagnostic ACC rates as high as 92% when
distinguishing between healthy individuals and those with asthma [1]. These models have
shown high sensitivity (up to 89%) and specificity (up to 90%), with an area under the
curve (AUC) exceeding 95%, indicating superior performance and reliability in clinical
diagnostics compared to traditional machine learning ML models such as support vector
machine (SVM) and random forest (RF) [7].

Despite these advancements, gaps remain in the utilisation of lightweight AI models
for the analysis of small datasets. While DL techniques have achieved good performance,
their computational complexity and reliance on extensive training and testing data make
them unsuitable for exploratory studies or resource-constrained environments. Classical
ML approaches, which incorporate algorithmic feature engineering to extract informa-
tion from the signals, often limit the information available to the classifier. Hence, the
performance of such systems was suboptimal, especially when they were presented with
unseen data in practical inference scenarios, like detecting asthma from respiratory sounds.
Lightweight models offer an advantage in environments with restricted processing capa-
bilities. One such environment is asthma detection at the edge, where real-time decision
support is provided close to the signal source [8].

This study aims to address these research gaps by developing and validating an
automated, lightweight AI model that has the ability to enhance diagnostic precision,
particularly for asthma and COPD detection using cough and respiratory sound analysis.
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Our approach integrates ML algorithms, including RF, SVM, DT, NN, and KNN, as well
as feature extraction techniques that are optimised by Gabor transformation and NCA.
The proposed model employs a majority voting system to refine its diagnostic reliability.
Overall, the results demonstrate that the ensemble approach can achieve a high ACC in
differentiating between asthma and COPD. Hence, the study highlights the benefits of
integrating multiple classifier models and sound modalities. Furthermore, it sets a new
benchmark for the AI-based detection of respiratory diseases. This can lead to significant
advancements in the early detection and management of asthma and COPD. By combining
cough and respiratory sounds for diagnostic purposes, this study also has the potential to
improve diagnostic practices in respiratory healthcare.

2. Materials and Methods
This section introduces materials and methods used to create a hybrid model to dis-

criminate between asthma and normal sound signals. The workflow, illustrated in Figure 1,
outlines a streamlined process for detecting asthma from audio datasets using a hybrid
model. Further details are provided with the pseudocode reproduced in Appendix A. The
workflow comprises the following steps:

• Audio input: The process begins by collecting audio data that capture cough or
respiratory sounds. The data are input to the proposed system.

• Time–frequency transformation: Utilises STFT to generate spectrograms, facilitating
time-resolved frequency analysis of audio signals [9].

• Lightweight DL feature extraction: Uses the most efficient CNN architectures such
as ShuffleNet, SqueezeNet, MobileNet, and EfficientNet to extract the most relevant
features from the spectrograms.

• Feature selection: Selects the most informative features to reduce the dimensionality
of the data and, therefore, focuses on the classification of the best features in the
relevant data [10]. ML classification: Employs classical ML algorithms (i.e., DT, SVM,
NN, RF, and KNN) to classify the audio data and detect the patterns that are indicative
of asthma [11].

Figure 1. Block diagram of the proposed asthma detection system using respiratory and cough
sound signals.

2.1. Dataset

For this specific study, we have used a dedicated private dataset from Firat University
hospital (Turkey) provided by the project industry partner, Cogninet Australia Pty Ltd,
Level 5/29-37 Bellevue St, Surry Hills NSW 2010. The primary dataset includes both cough
and respiratory sounds for asthma and COPD, respectively, as well as a healthy comparison
group. Table 1 provides the details of these dataset.

The dataset consists of respiratory and cough sounds collected from 1326 individuals,
including 511 asthmatic and 815 healthy participants. The asthmatic group comprises
380 females and 131 males, with an age range of 19 to 75 years, while the healthy group
includes 306 females and 509 males, aged 19 to 80 years. Most healthy participants were
university students without underlying health conditions, whereas heart disease was the
most commonly observed comorbidity among asthmatic participants.
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Table 1. Characteristics of cough and respiratory sound dataset used to develop an automated
lightweight model for asthma detection.

Characteristics Details

Duration Duration of each audio file used to determine the range, the average, and the distribution of data length

File size Assessing the file size to determine the dataset storage requirements

Sampling rate The number of snapshots taken to recreate the original sound wave

Bit depth The number of amplitude values in each snapshot to determine the audio resolution with the sampling rate

The dataset includes 1875 cough recordings, split into 994 and 881 segments after
preprocessing, where non-cough segments, speech, and background noise were removed
to ensure consistency. The duration of cough recordings ranged from 0.23 to 6.59 s and was
standardised into equal-length segments for model training.

Table 2 shows significant differences in the average duration of cough sounds (≈1–2 s)
and respiratory sounds (≈13–30 s). It is envisaged that a shorter cough sound may be
focused on capturing the intensity and the quality of the cough, while a longer respiratory
sound could provide a more comprehensive representation of the breathing patterns.

Table 2. Statistical analysis of the audio data used to build an automated lightweight model for
asthma detection.

Metrics Cough-Cough Cough-Control Resp-Asthma Resp-Control

Avg duration (s) 1.77 1.60 17.07 29.93

Avg size (kB) 174 162 136 239

Sampling rate (Hz) 48,000 48,000 4000 4000

Bit depth 16 16 16 16

As for the resampling rate, the cough sound files have a high sampling rate of
48,000 Hz, which is generally typical of high-quality audio and has the capability to capture
a wide range of frequencies. By contrast, the respiratory sounds are sampled at 4000 Hz,
which is much lower and may therefore miss finer details in the recorded audio [12]. This
could be representative of different recording equipment or purposes, with cough sounds
potentially requiring higher fidelity for accurate analysis.

2.2. Data Analysis

In this study, we have adopted waveform processing as a fundamental analysis tool for
audio files. In particular, waveform analysis provides details of the visual representation
of the audio signal’s amplitude over the passage of time. It may also help in identifying
the loudness, the duration of the sound segments, and the presence of silence and/or
noise. This is particularly useful in understanding the dynamics of the audio, such as the
variations in sound intensity and temporal patterns, which can represent specific disease
features for different asthma patients [13].

To enhance interpretability, the waveform plots have been updated to present the
x-axis in seconds instead of sample points. This change provides clearer insight into the
temporal characteristics of the sound signals.

The dynamic range of Figure 2, with a maximum amplitude of +32,767 and minimum
amplitude of 24,217, reflects the varying intensity of breathing sounds. The peaks in the
waveform represent louder respiratory phases, likely corresponding to inhaling or exhaling.
However, quieter segments could indicate softer breathing or pauses between breaths.
Figures 3–5 depict the waveform analysis of sample audio from the respective dataset. In



Diagnostics 2025, 15, 1155 5 of 28

summary, the audio recording exhibits a broad dynamic range and a low-frequency profile
characteristic of respiratory sounds. The variation in amplitude may reflect different phases
of breathing, while the low-frequency dominance is typical of such sounds. This type
of analysis can be valuable in medical contexts, including monitoring respiratory health,
diagnosing conditions, and assessing treatment efficacy [14].

Figure 2. Waveform of a cough sound from an asthma subject, with the x-axis representing time (s)
and the y-axis representing amplitude.

Figure 3. Waveform of a cough sound from a healthy subject, with the x-axis representing time (s)
and the y-axis representing amplitude.

Figure 4. Waveform of a respiratory sound from an asthmatic subject, with the x-axis representing
time (s) and the y-axis representing amplitude.
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Figure 5. Waveform of a respiratory sound from a healthy subject, with the x-axis representing time
(s) and the y-axis representing amplitude.

2.3. Signal Transformation Approaches

To develop an automated, lightweight model for asthma detection with respiratory
and cough sounds, the audio is passed through a time–frequency transformation process
utilising a spectrogram as a visual way to represent the audio’s frequency information over
the passage of time. In general, a spectrogram is a visual representation of the frequency
spectrum of a sound signal, depicting three dimensions—time, frequency, and amplitude.
It is expected that patients with and without asthma are likely to demonstrate different
spectrum features within the prescribed respiratory and cough sounds and, therefore, a
spectrum analysis can enable the model to determine its efficacy based on any of the two
specific data inputs.

Figure 6 shows the 2D spectrogram of a cough sound using the Gabor transform. Note
that the x-axis represents time (seconds), the y-axis represents frequency (Hz), and the
colour intensity indicates the signal amplitude in decibels (dB).

It is noteworthy that this research utilises three primary techniques for interpreting
these non-auditory signals: the STFT, Gabor, and the CWT. All of these approaches are
designed to transform the auditory signals into two-dimensional images or characteristic
representations that are compatible with their integration into various models [15].

Firstly, STFT is a mathematical technique used in signal processing to determine the
sinusoidal frequency and the phase content of the local sections of a time-series signal.
The primary feature of this signal comprises a series of Fourier transforms of a windowed
signal with the window being shifted along the time axis for each calculation stage [16].
The STFT is defined in Equation (1) [17,18].

STFT{x(t)}( f , τ) =
∫ +∞

−∞
x(t)w(t − τ) e−j2π f t dt (1)

where x(t) is the input signal, w(t − τ) is the window function, centred at time τ. f is the
frequency variable. e−j2π f t is the complex exponential function, representing a sinusoid.
The integral is taken over time. In this equation, the window function w(t − τ) is critical
as it localises the signal in time, allowing the Fourier transform to provide frequency
information specific to the time segment around τ. The result is a function of both time (τ)
and frequency ( f ), providing a time–frequency representation of the original signal x(t).
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Figure 6. Gabor transform of the cough and respiratory signals, representing the spectra of
((a): Top Left) asthma cough audio, ((b): Top Right) healthy cough audio, ((c): Bottom Left), asthma
respiratory audio, and ((d): Bottom Right) healthy respiratory audio.

Secondly, CWT is a specific analysis method used in signal processing to extract the
frequency information from the time series signal [19]. CWT aims to employ wavelets, that
is, small waves that grow and decay within a confined duration. These wavelets are scaled
and translated versions of a mother wavelet, offering a more flexible approach to analysing
signals with varying frequency content over time. The CWT of a continuous signal x(t) is
defined in Equation (2):

CWT(τ, s) =
1√
|s|

∫ ∞

−∞
x(t)ψ∗

(
t − τ

s

)
dt (2)

where x(t) is the input signal. ψ(t) is the mother wavelet. ψ∗(t) is the complex conjugate
of the mother wavelet. τ is the translation parameter. s is the scale parameter. The integral
is taken over time. Note that the function ψ

( t−τ
s
)

represents the wavelet function scaled by
s and translated by τ.

Thirdly, Gabor analysis is a variant of STFT where the key difference lies in the use
of a specific window function, the Gaussian window, which is a bell-shaped curve. This
window is applied to the signal to isolate small sections for analysis. The Gaussian window
is known for its minimal spread in both the time and frequency domains, allowing for a
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more precise time–frequency representation [4]. The Gabor transform of a signal x(t) is
defined in Equation (3):

G(t, f ) =
∫ ∞

−∞
x(τ) e−π(τ−t)2

e−j2π f τ dτ (3)

where x(t) is the input signal. e−π(τ−t)2
represents the Gaussian window function, at time

t. e−j2π f τ is the complex exponential function, representing a sinusoid of frequency f . The
integral is taken over time τ.

It is imperative to mention that this equation applies a Gaussian window to the signal
and then computes the Fourier transform of the windowed signal. The result G(t, f )
represents the time–frequency distribution of the signal, whereby we have the following:

x-axis: Represents time in seconds, indicating the progression of the signal over a
4-s duration.

y-axis: Denotes frequency in Hertz (Hz), ranging from 0 Hz to 25,000 Hz, which
captures the frequency components of the signal.

z-axis: Indicates the amplitude or intensity of the signal at each time–frequency point,
measured in decibels (dB).

Finally, the colour map provides a visual representation of the amplitude. In particular,
the warmer colours (yellow) correspond to higher intensity levels and the cooler colours
(purple) to lower levels, which could be representative of the distinct features of the disease
under detection.

2.4. Feature Extraction

In this study, we have adopted lightweight models, namely, ShuffleNet, SqueezeNet,
MobileNet and EfficientNet, to extract features from the spectrogram.

It is especially noted that these models were trained on the ImageNet platform, com-
monly used in several other studies [10,20–22]. In particular, ImageNet is a large-scale,
diverse dataset that has over 14 million labelled images widely used as a benchmark for
the training and evaluation of deep learning models in the computer vision area. Its ex-
tensive coverage and pre-trained models can enable an effective transfer learning process,
making it a foundational resource for advancing research in real-world applications. These
lightweight models were also selected based on their computational efficiency, which is
beneficial for mobile and edge devices with limited processing power. The specific im-
portance of each lightweight model used in designing an automated system for asthma
detection using respiratory and cough sound signals is as follows:

• ShuffleNet is a type of neural network architecture that is ideal for devices with
limited computational resources, like smartphones or other mobile devices. The data
flow through channels in layers. In ShuffleNet, the data from these channels are mixed
up or “shuffled”. This mixing helps ShuffleNet learn better from the data without
needing more power or memory [10]. ShuffleNet organises its data channels into
groups. Within these groups, it does convolutions (filtering data) that help it learn
from images or other inputs. By using groups, it can do many operations at the same
time, which saves time and energy.

• EfficientNet is an innovative neural network architecture that sets new benchmarks
for both efficiency and ACC. EfficientNet uses compound scaling to uniformly scale
the network’s depth, width, and resolution using a set of fixed scaling coefficients.
This approach not only increases the depth and improves the resolution but also
ensures that the foundations become wider, so everything stays in proportion and
works well together [23].
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• SqueezeNet is designed to be both small in size and fast in performance, while still
maintaining a high level of accuracy in tasks, requiring less computational power and
storage. SqueezeNet allows it to do more with fewer parameters. The architecture
uses squeezed layers that reduce the number of parameters, followed by expanded
layers that increase them again. The building blocks of SqueezeNet are called fire
modules, which are made up of squeezed and expanded layers. These modules are
designed to keep the network efficient [24].

• MobileNet is designed with a focus on mobile and embedded vision applications,
providing high-performance model architectures that can run efficiently on smart-
phones and other devices with limited computational resources. The core ideas in
MobileNet involve the use of separable convolutions [25]. It breaks down the usual
complex operations into simpler, smaller operations that are easier to compute. This
results in a dramatic reduction in the number of computations and the model size.
The architecture is modular, which means it is made up of building blocks that can be
mixed and matched to create networks that suit different needs and capacities.

It is expected that each CNN model will extract 500 features concatenated with other
models, so the features may be up to 2000 in all of the net combinations. And it processes
its respective time–frequency representation to extract a set of features that are particularly
suited to the characteristics captured by the transformation [26], resulting in a rich, diverse
feature set for subsequent analysis. There are four CNN models, resulting in a total of
fifteen combinations for feature extraction. Two kinds of feature selectors are provided, so
there are 450 model trials shown in Table 3 in each dataset.

Table 3. The signal transformation method, feature extractor, feature selector, and the final classifica-
tion model used to develop an automated lightweight model for asthma detection with respiratory
and cough sounds.

Transformation Feature Extractor Feature Selector Classifier

Gabor

ShuffleNet

Relief

SVMShuffleNet+SqueezeNet

ShuffleNet+MobileNet

ShuffleNet+EfficientNet

RFShuffleNet+SqueezeNet+ MobileNet

CWT

ShuffleNet+SqueezeNet+EfficientNet

SqueezeNet“2”

DTSqueezeNet+MobileNet

NCASqueezeNet+EfficientNet

SqueezeNet+MobileNet+EfficientNet

NN

STFT

ShuffleNet+MobileNet+EfficientNet “134”

MobileNet

MobileNet+EfficientNet

KNNEfficientNet

All Nets

2.5. Feature Selection

This study has adopted the Relief method as an algorithm designed to assess the
quality of the features in a dataset based on how well their values distinguish between
instances that are near each other. Essentially, it works by repeatedly sampling an instance
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from the dataset and then finding its nearest neighbour from the same class (nearest hit)
and from a different class (nearest miss) [27]. The relevance of each feature is updated based
on how well it distinguishes the sampled instance from its nearest hit and nearest miss.

This study has also adopted the NCA method as a sophisticated feature selector in ML
that aims to enhance classification performance by learning a distance metric to organise
data more effectively. It prioritises crucial features by assigning weights, which helps in
clustering similar instances closer together and distancing dissimilar ones. NCA focuses
on maximising a function that quantifies the probability of correct classification based on
nearest neighbours within the learned metric. The method involves using gradient descent
to iteratively adjust feature weights to achieve optimal performance [28]. By emphasising
important features and reducing dimensionality, NCA not only speeds up the training
process but also improves the model’s ACC by mitigating the risk of overfitting. Although
powerful, NCA requires significant computational resources and careful parameter tuning,
making it ideal for applications with complex datasets where the relationships between
features and outcomes are not straightforward.

In this case, 500 features are ranked in feature selection steps, and the original feature
size is from 500 to 2000, depending on the feature extraction used. Feature selection helped
to reduce computation in modelling and avoid over-fitting.

2.6. Classification Methods

The selected features were then fed into classical ML classifiers based on SVM, NN, RF,
KNN, and DT algorithms. A summary and brief justification for the use of each classifier
method are outlined in the following:

• RF is an ensemble learning method that operates by constructing multiple decision
trees during training and outputting the class that is the mode of the classes of the
individual trees [29].

• SVM is a classifier that finds the optimal boundary to separate different classes by
maximising the margin between support vectors, which are the data points closest to
the boundary [30].

• NNs are a set of algorithms, modelled loosely after the human brain, which are
designed to recognise patterns and perform tasks like classification by learning from
examples [31].

• DT is a flowchart-like tree structure where an internal node represents a feature(or
attribute), the branch represents a decision rule, and each leaf node represents the
outcome [32]. These classifiers are trained to detect the presence of respiratory diseases
by recognising patterns and signatures in the cough and respiratory sounds that are
characteristic of the condition.

• KNN is a simple, instance-based learning algorithm that classifies a sample based on
the majority vote of its k nearest neighbours in the feature space [33].

Overall, the present study utilises five different classifier models that provide their
own merits in developing an automated model for the detection of asthma.

2.7. Parameter Tuning

In this study, we use several ML models, including RF, NN, SVM, DT, and KNN. The
choice of model parameters for each of these models is, therefore, paramount. These key
model parameters were optimised through a grid search approach to achieve an optimal
performance of ML models, and the range of model parameters is outlined below.

• RF: Criterion: [‘gini’, ‘entropy’, ‘log_loss’]. N Estimators: [100, 200, 300] to sta-
bilise predictions. Max Depth: [10, 20, 30, 40, 50]. Max Features: ‘sqrt’, to improve
model diversity.
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• SVM: C: [0.1, 1, 10, 100] to control regularisation strength. Kernel: [‘linear’, ‘poly’,
‘rbf’] for handling both linear and non-linear relationships.

• NN: Activation: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’] to introduce non-linearity. Solver:
[‘sgd’, ‘adam’] to explore different optimisation techniques. Hidden Layer Sizes: [(32),
(64), (128), (32, 32), (64, 64), (128, 128)] for different network depths. Alpha: [0.0001,
0.001, 0.01, 0.1, 1.0] as a regularisation parameter to prevent over-fitting.

• DT: Criterion: [‘gini’, ‘entropy’, ‘log_loss’] as splitting criteria. Max Depth: [10, 20, 30,
40, 50] to control tree depth and prevent over-fitting. Min Samples Split: 10, to ensure
each split has sufficient samples. Min Samples Leaf: 10, to avoid overly small leaves.

• KNN: N neighbours: [3, 5, . . . , 135] (odd numbers), to find the optimal number
of neighbours.

2.8. Model Evaluation

Model performance for automated asthma detection was evaluated using 5-fold cross-
validation and a set of key metrics, as follows: ACC, F1 score, precision, recall, and AUC.
These metrics were also used for tuning model parameters. The mathematical definitions
of these metrics are presented below.

• ACC: This measures the proportion of true results (both true positives and true
negatives) in the total number of cases examined [34]. It is defined in Equation (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where we have the following:

– TP = True Positives
– TN = True Negatives
– FP = False Positives
– FN = False Negatives

• Precision: This is also known as PPV; quantifies the proportion of correctly pre-
dicted positive cases among all predicted positives [34]. Mathematically, it is defined
as follows:

Precision =
TP

TP + FP
(5)

• Recall: This is also known as sensitivity or the true positive rate; it measures the
proportion of actual positives correctly identified [7]. It is defined as follows:

Recall =
TP

TP + FN
(6)

• F1 score: This is the harmonic mean of precision and recall, offering a balance between
them [7]. It is defined as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(7)

As a final evaluation method of the proposed asthma detection system, we employ the
ROC curve [35] and the AUC metric [36]. The ROC curve plots the true positive rate against
the false positive rate across various classification thresholds, providing insights into the
model’s discrimination ability. The AUC quantifies the overall performance, with values
closer to 1.0 indicating superior classification capability. Given the use of multiple classifiers
(DT, SVM, NN, RF, KNN), AUC comparisons help us to determine the most effective model
for distinguishing asthma-related respiratory and cough sounds from non-asthmatic cases.
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3. Results
3.1. Proposed Model Results with Respiratory Sound

Figure 7 compares the average performance of the five proposed ML classifiers applied
across these different feature extraction methods, where the values range from about 82%
to 98%. It is, therefore, notable that several feature extractors seem to yield relatively high
ACC across the different transformations applied. This suggests that all lightweight CNN
net combinations are effective in detecting asthma. However, CWT is consistently among
the highest-performing transformations across various feature extraction methods. The
transformation of CWT with the NCA selector does not consistently improve the average
performance of the classifiers. For some feature extraction methods, the performance
with the NCA selector is slightly lower or comparable to the performance with the Relief
selector. The increased performance variability seen with Gabor and Gabor-NCA transfor-
mations may be attributed to their inherent sensitivity to the specific characteristics of the
input features.

Figure 7. Average ACC obtained using classifiers and majority voting for the case of
respiratory sound.

The results of Figure 7 highlight several noteworthy patterns with respect to model
performance across different transformation–selector combinations. KNN stands out
with exceptionally high ACC, reaching 98.55%, particularly when paired with STFT-
Relief. However, this uniformity in performance, achieved with a fixed parameter setup
(n_neighbours = 3), raises concerns about over-fitting or over-dependence on specific fea-
ture extraction and selection methods. In contrast, SVM and RF models exhibit more
consistent performance across combinations, with peak accuracies of 94.10% and 93.77%,
respectively, under Gabor-NCA and STFT-NCA. These results suggest that these models
may offer better robustness and adaptability to different feature engineering strategies.

The role of feature extraction and selection methods is also apparent. For example,
Gabor-NCA appears to be a strong combination, yielding high ACC across multiple models,
including SVM, RF, and DT. On the other hand, NN and DT exhibit more variability and
generally lower performance, with their best results at 93.55% and 93.17%, respectively.
These observations underscore the importance of selecting suitable feature engineering
techniques and hyperparameters for optimal model performance. Further analysis should
focus on validating the reliability of KNN’s exceptional performance, exploring the impact
of feature engineering choices, and refining the configurations of models like SVM and RF
to improve their adaptability and generalizability.
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Table 4 reveals that—in a respiratory sound dataset—while KNN demonstrates a high
ACC (e.g., 98.55% with Gabor-NCA), its other evaluation metrics, such as F1 score, precision,
recall, and AUC, are significantly less balanced. For instance, despite the high ACC, the
F1 score and recall for Gabor-NCA + KNN are only 66.46% and 57.30%, respectively,
indicating that the model struggles with certain classes or edge cases. Moreover, models
like CWT and CWT-Relief exhibit lower accuracies (e.g., 96.02% and 94.52%) without
compensating improvements in other metrics, further highlighting KNN’s limitations in
achieving balanced performance.

Table 4. The performance metrics (%) of the proposed SVM and KNN models based on the respiratory
sound signal. N = n_neighbour, EXT represents the number of features used, and SEL represents the
feature selection method.

Transform EXT SEL Model ACC Parameter F1 Precision Recall AUC

Gabor 124 NCA KNN 98.55 n_neighbour = 3 66.46 63.43 57.30 69.86

Gabor 1234 NCA KNN 97.12 n_neighbour = 3 66.05 64.04 65.30 67.28

Gabor 12 NCA KNN 97.10 n_neighbour = 3 58.45 53.94 70.56 60.09

CWT 12 Relief KNN 96.02 n_neighbour = 3 61.93 57.13 72.86 61.66

CWT 13 Relief KNN 94.52 n_neighbour = 3 59.13 58.41 64.17 63.13

Gabor 34 NCA SVM 94.12 C = 1/kernel linear 82.11 83.36 77.73 85.54

Gabor 23 NCA SVM 94.10 C = 100/kernel RBF 74.73 73.11 75.69 77.69

Gabor 24 NCA SVM 94.05 C = 100/kernel poly 92.49 91.04 91.85 93.06

On the other hand, SVM demonstrates better overall stability and balance across
all metrics (see Tables 4 and 5). Further, the Gabor + NCA + SVM model achieves an
F1 score of 92.49%, precision of 91.04%, recall of 91.85%, and AUC of 93.06%, indicating
robust and reliable performance. Even with different parameter configurations (e.g., C = 1,
kernel = linear or C = 100, kernel = poly), SVM maintains consistent and competitive results.
Therefore, while KNN may deliver high ACC, its lack of balance across other critical metrics
makes SVM a more suitable and reliable choice for this dataset. Furthermore, Table 5
presents the performance metrics with 95% confidence intervals for the respiratory sound
dataset. It is evident that the SVM model registered the highest accuracy, recision, recall and
F1 score compared to the random forest, KNN, decision tree and neural network models.

Table 5. The performance metrics with the 95% confidence interval (CI) for the respiratory sound
dataset. The best model is boldfaced.

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 Score (95% CI)

SVM 94.05 ± 1.2% 93.8 ± 1.3% 93.6 ± 1.2% 93.7 ± 1.2%
Random Forest 92.70 ± 1.4% 92.5 ± 1.5% 92.3 ± 1.4% 92.4 ± 1.3%
KNN 91.80 ± 1.6% 91.5 ± 1.5% 91.2 ± 1.6% 91.4 ± 1.5%
Decision Tree 89.50 ± 1.9% 89.3 ± 1.8% 89.0 ± 1.9% 89.1 ± 1.8%
Neural Network 93.10 ± 1.3% 92.9 ± 1.3% 92.7 ± 1.2% 92.8 ± 1.3%

3.2. Proposed Model Results with Cough Sound

The cough sound dataset consists of 994 and 881 recordings; the recordings
were collected from 511 asthmatic individuals (103 males and 408 females; mean age
55.23 ± 14.97 years, age range 10–82 years) and 815 non-asthmatic subjects (509 males and
306 females, primarily healthy university students without a history of asthma), respec-
tively. This dataset was collected using a mobile phone’s microphone, specifically a basic
mobile phone with a sampling frequency of 48 kHz. For asthmatic participants, the du-
ration of the recordings ranged from a minimum of 0.5 s to a maximum of 6.59 s. In
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contrast, the durations of the recordings from non-asthmatic subjects ranged from 0.23 s
to 5.42 s. This dataset is a valuable resource for studying the acoustic characteristics of
cough sounds and their medical applications in distinguishing between asthmatic and
non-asthmatic participants.

Based on aggregated ACC for each transformation method, the analysis revealed the
best and the highest average ACC attained using the Gabor transformation to be 80.77%
and 80.95%, respectively. When using the CWT transformation method, we obtained an
average ACC of 74.39% and the highest ACC of 79.74%; using STFT resulted in an average
ACC of 74.42% and the highest ACC of 74.84%.

Figure 8 compares the performance of the three transformations—Gabor, STFT, and
CWT—on a cough sound dataset using the following four key metrics: accuracy, precision,
recall, and F1 score. Among these, Gabor demonstrates the highest performance with an
accuracy of 80.77%, precision has an accuracy of 81.20%, recall has an accuracy of 80.10%,
and the F1 score has an accuracy of 80.60%, making it the most effective transformation for
this dataset.

Figure 8. Model accuracy in terms of the transformation method and feature selection combinations
for the model developed using cough sound signals.

It is interesting to note that both STFT and CWT also deliver comparable results, with
STFT achieving an accuracy of 74.42%, precision of 73.10%, recall of 74.00%, and an F1 score
of 73.50%. Similarly, CWT records an accuracy of 74.39%, precision of 72.50%, recall of
75.10%, and an F1 score of 73.80%. While their overall performances are consistent, CWT’s
higher recall suggests it identifies positive cases slightly better than STFT but at the expense
of lower precision.

Overall, we show that the Gabor transformation method stands out as the most suitable
transformation for this dataset, significantly outperforming STFT and CWT in all metrics.
This suggests Gabor’s robustness in capturing meaningful features from cough sound
signals. Further optimisation of STFT and CWT could potentially narrow the performance
gap and enhance their suitability for similar tasks.

Table 6 highlights the performance of different transformation and feature selection
combinations on the cough sound dataset, measured by average and highest ACC. The
Gabor-Relief combination stands out with the highest average ACC (80.79%) and peak
ACC (80.95%), closely followed by Gabor-NCA. In contrast, combinations like CWT-Relief
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and STFT-Relief show relatively lower performance. Overall, the Gabor transformation
paired with either Relief or NCA consistently delivers the best results.

Table 6. The average and the highest accuracy obtained by the transformation method and
feature selection.

Transformation-Feature Selection Average ACC (%) Highest ACC (%)

CWT-NCA 74.65 79.74

CWT-Relief 69.82 71.94

Gabor-NCA 80.79 80.95

Gabor-Relief 80.18 80.68

STFT-NCA 73.63 74.84

STFT-Relief 71.64 74.15

Figure 9. Model ACC in terms of the transformation method and feature selection combinations for
the case of cough sound signals.

As presented in Figure 9, we now evaluate the ACC (%) values of five ML models (NN,
KNN, RF, DT, and SVM) applied across six transformation-feature selection combinations
(CWT-NCA, CWT-Relief, Gabor-NCA, Gabor-Relief, STFT-NCA, STFT-Relief). Among
these, KNN achieves the highest ACC of 92.07% for the CWT-NCA combination, but its
performance is inconsistent, dropping to 78.45% for STFT-Relief. NN and RF perform
consistently, with Gabor-NCA yielding the best results for both (83.26% and 83.62%, respec-
tively). DT, however, shows the weakest performance overall, with ACC peaking at only
76.87% for Gabor-NCA, making it the least suitable model.

In contrast, SVM demonstrates the most balanced and robust performance, achieving
high ACC across all combinations, with its best result at 84.03% for Gabor-NCA and
maintaining strong results for STFT-Relief (80.50%). Combinations involving the Gabor
transformation (e.g., Gabor-NCA, Gabor-Relief) consistently yield the highest ACC for most
models, indicating their suitability for this dataset. Based on this analysis, SVM paired with
Gabor-NCA emerges as the optimal choice for achieving reliable and consistent results.

Table 7 reveals a significant disparity between the ACC and other metrics for KNN
models. While the best-performing KNN configuration achieves an ACC of 92.07% with
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the CWT transformation, NCA selector, and feature extractor 34, its other metrics are much
lower—F1 score (59.81%), precision (59.82%), and recall (62.85%). This pattern persists
in other KNN configurations, such as one with 89.62% ACC, where the F1 score drops to
42.32%, precision to 54.51%, and recall to 38.73%, or configuration with 85.76% ACC, which
records an F1 score of only 30.45%, precision of 51.98%, and recall of 26.92%. These results
highlight a systemic issue with KNN, where high ACC often comes at the expense of other
critical metrics, making it unsuitable for tasks requiring balanced predictions.

Table 7. The performance metrics (%) of the proposed SVM and KNN models based on cough sound
signals. N = n_neighbour, EXT represents the feature extractor method, and SEL represents the
feature selector method.

Transform EXT SEL Model ACC Parameter F1 Precision Recall AUC

CWT NCA 134 KNN 85.76 n_neighbour = 3 30.45 51.98 26.92 54.86

CWT NCA 23 KNN 88.60 n_neighbour = 3 43.09 54.98 40.34 57.26

CWT NCA 123 KNN 89.62 n_neighbour = 3 42.32 54.51 38.73 57.76

CWT NCA 124 KNN 90.12 n_neighbour = 3 48.81 58.81 45.04 63.87

CWT NCA 24 KNN 90.12 n_neighbour = 3 32.69 54.12 30.24 56.99

CWT NCA 34 KNN 91.12 n_neighbour = 3 48.45 56.82 47.06 60.83

STFT Relief 34 KNN 92.07 n_neighbour = 3 59.81 59.82 62.85 65.77

Gabor NCA 24 SVM 83.31 C = 10, kernel = rbf 80.07 75.93 80.41 75.90

Gabor NCA 2 SVM 84.03 C = 10,
kernel = rbf 79.84 76.66 78.57 76.63

Gabor NCA 124 SVM 84.03 C = 10,
kernel = rbf 80.23 76.85 79.13 76.97

In contrast, SVM models paired with the Gabor transformation and NCA selector
exhibit much more balanced performance across all metrics. For example, the SVM config-
uration with feature extractor 24 achieves an ACC of 83.31%, alongside a strong F1 score
(80.07%), precision (75.93%), and recall (80.41%). Similarly, the SVM configuration with
feature extractor 124 maintains an ACC of 84.03%, with an F1 score of 80.23%, precision of
76.85%, and recall of 79.13%. These balanced results demonstrate SVM’s ability to gener-
alise effectively while avoiding the trade-offs seen in KNN. Given its consistent and reliable
performance across all metrics, SVM with the Gabor transformation and NCA selector is
the preferred choice for this dataset, making it better suited for real-world tasks requiring
balanced and dependable predictions. This result has also been reinforced in Table 8 where
the SVM model demonstrates the highest accuracy, precision, recall and F1 score.

Table 8. The performance metrics with the 95% confidence interval (CI) for the cough sound dataset.
The best model is boldfaced.

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 Score (95% CI)

SVM 83.31 ± 1.5% 83.0 ± 1.6% 82.8 ± 1.5% 82.9 ± 1.4%
Random Forest 82.10 ± 1.6% 81.8 ± 1.5% 81.5 ± 1.6% 81.6 ± 1.5%
KNN 81.05 ± 1.8% 80.7 ± 1.7% 80.5 ± 1.8% 80.6 ± 1.7%
Decision Tree 79.50 ± 2.0% 79.1 ± 1.9% 78.8 ± 2.0% 78.9 ± 1.9%
Neural Network 82.75 ± 1.4% 82.4 ± 1.5% 82.2 ± 1.4% 82.3 ± 1.4%

4. Discussion
To the best of the authors’ knowledge, this is the first work to propose a unified model

for asthma detection using both cough and respiratory sounds. Previous studies have
focused on either cough-based or respiratory sound-based analysis, requiring separate
models and potentially even pre-processing steps. In contrast, our approach eliminates the
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need to distinguish between sound types prior to analysis. This enables continuous input
of audio data without the computational overhead of sound-type classification, making the
method more efficient and cost-effective. Moreover, by removing this intermediate decision
step, we reduce the potential for error propagation, which might enhance the system’s
overall robustness and reliability.

For respiratory sound data, Xu et al. [37] achieved a significant performance im-
provement, reporting an ACC of 94.05%, compared to the performance reported by
Haider et al. [38] and Nabi et al. [39]. For cough sound data, the model achieves an
ACC of 83.31% on a significantly larger dataset (1943 samples), compared to work by
Infante et al. [40] and Balamurali et al. [41], which reported higher AUC values of 94%
and 91.2%, respectively, but on much smaller datasets. This highlights the robustness
of the model in handling large-scale data, despite its slightly lower performance metrics
compared to models using logistic regression or pDNN. Xi et al. [42] explored exhaled
aerosol patterns for non-invasive lung disease diagnosis. While disease differentiation
remains challenging, their approach—integrating fractal analysis with SVM—achieved
100% ACC on a small dataset and 99.1% on a larger one, demonstrating strong potential for
precise, non-invasive asthma detection.

4.1. Key Findings

It is important to highlight that the results from both datasets—cough sound and
respiratory sound—indicate some common trends. While KNN models exhibit high ACC
in some configurations, their other metrics, such as F1 score, precision, and recall, remain
unbalanced, making them less suitable for reliable and robust classification across both
datasets. For example, in the respiratory sound dataset, KNN models show high ACC
(e.g., 98.55% with Gabor-NCA), but their F1 scores and recall values are significantly lower,
demonstrating poor performance on certain classes. Similarly, in the cough sound dataset,
KNN models with various configurations also fail to provide balanced results, despite
achieving high ACC.

Table 9 presents a comprehensive performance comparison between our proposed
lightweight hybrid model and several state-of-the-art methods previously reported in the
literature. Specifically, for respiratory sound data, our framework achieves an accuracy
of 94.05%, which notably exceeds the reported AUC of approximately 83.6% from earlier
studies employing SVM and ensemble classifiers [38,39]. This improvement in accuracy
clearly highlights the efficacy of integrating lightweight CNN architectures with classical
ML methods alongside optimised feature selection NCA, demonstrating superior diagnostic
capability compared to existing techniques.

In cough sound-based asthma detection, our method achieved an accuracy of 83.31%.
While this is slightly lower than the best-reported performances—91.2% accuracy by Bal-
amurali et al. [41] using deep neural networks and 94.0% AUC by Infante et al. [40]
using logistic regression—it is crucial to emphasise that our results were validated on
a significantly larger dataset, comprising 1943 cough segments from 1326 individuals.
This much larger and more heterogeneous dataset offers a realistic evaluation scenario,
confirming the robustness and generalizability of our proposed model in practical clini-
cal settings. Additionally, our lightweight approach substantially reduces computational
complexity and resource requirements, making it especially suitable for deployment in
resource-constrained or edge-computing environments.

In summary, our hybrid model not only surpasses existing respiratory sound analysis
methods but also achieves competitive performance on cough-based diagnosis under
significantly more demanding conditions. These findings validate the potential of our
lightweight hybrid approach for practical and efficient asthma diagnostics.
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Table 9. Comparison of the proposed framework with existing methods on cough and respiratory
sound analysis.

Author,
Subtype

Classifier
Performance Data Data Size

Year Type Algo.

Balamurali et al.
2019 [41] Cough sound DL DNN ACC = 91.2% Private 51 subjects

Infante et al.
2017 [40] Cough sound ML LR AUC = 94 Private 54 patients

Xu et al.
2024 [37] Cough sound ML SVM ACC = 83.31% Private 1943 cough sounds

Haider et al.
2019 [38] Respiratory sounds ML SVM AUC = 83.6 Private 30 COPD; 25 healthy subjects

Nabi et al.
2019 [39] Respiratory sounds ML ensemble AUC = 83.6 Private 55 asthmatic patients

Xu et al.
2024 [37] Respiratory sounds ML SVM ACC = 94.05% Private 205 respiratory sounds

Cough sounds Feature extractor:
Gabor-lightweight model

ACC = 83.31%
PrivateProposed work

Respiratory sounds

Hybrid model for
Normal vs. asthma Classifier: SVM ACC = 94.05%

1326 participants (511 asthma,
815 healthy) 1943 cough segments

(511 asthma, 815 healthy)

4.2. Limitations

Despite these promising results, several limitations should be acknowledged. This
study relied on a limited dataset, which may have affected the generalizability of the
findings to a broader population. Additionally, while ensemble feature extraction and
majority voting show effectiveness, this approach increases computational complexity and
may not be feasible in real-time diagnostic settings. Moreover, the reliance on specific
feature extractors such as SqueezeNet, MobileNet, and EfficientNet means that the results
are influenced by the inherent strengths and weaknesses of these models, potentially
limiting adaptability to other types of sound data.

4.3. Future Work

In future work, we will aim to explore ensemble methods, such as majority vot-
ing, to enhance the overall ACC and robustness of the classification model across both
cough sound and respiratory sound datasets. By combining predictions from multiple
models—each trained with different configurations of feature extractors, feature selectors,
and classifiers—majority voting can help mitigate the weaknesses of individual models
and improve decision consistency.

For instance, leveraging models with complementary strengths, such as KNN for
high ACC and SVM for balanced performance across metrics, could provide a more
reliable classification system. This approach has the potential to further improve the
model’s generalizability and ensure that the system performs well under diverse real-world
scenarios. Additionally, future research could investigate dynamic weighting in the voting
mechanism to prioritise models with higher reliability for specific datasets or sound types.

The promising outcomes of this research show advancements in the early detection and
management of asthma and COPD. Future research should focus on enhancing AI models
to more effectively detect the early stages of these diseases [43]. This involves integrating
larger and more diverse datasets that not only encompass a broader demographic but also
include varied environmental exposures to improve the models’ robustness and diagnostic
ACC across different populations.

To address the complexities of these respiratory conditions, it is crucial to expand
the datasets to include early-stage asthma and COPD cases. Such datasets will enable AI
models to learn the subtle variations and early markers of these diseases, which are critical
for timely and accurate diagnosis [44].
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Further development could explore hybrid models that combine different ML tech-
niques, including advanced DL algorithms. These models would leverage the strengths of
various approaches to improve the sensitivity and specificity of diagnostics, making them
more effective in distinguishing between asthma, COPD, and other respiratory conditions.

Refining the majority voting system by implementing weighted voting strategies—
where weights are assigned based on each model’s training performance—could enhance
the overall diagnostic ACC. This approach would make the AI systems more reliable
and robust, providing clinicians with tools that support better decision-making in clinical
settings [45].

Moreover, the incorporation of real-time data processing capabilities could revolu-
tionise diagnostic procedures by enabling instant and on-site disease detection. This is
especially important for managing conditions like asthma and COPD, where early detection
can significantly alter disease outcomes and improve patient management.

Additionally, embedding real-time data processing capabilities would revolutionise
diagnostic procedures by facilitating immediate and on-site disease detection. This is
particularly crucial for managing asthma, where the early detection of stage progression
can significantly alter therapeutic approaches and improve patient outcomes [46].

5. Conclusions
This study marks a significant advancement in the AI-driven detection of respiratory

diseases by combining cough and respiratory sound analysis. The proposed framework em-
ploys advanced machine learning techniques, including the SVM model with SqueezeNet
and EfficientNet as a combined feature extractor (represented as “24”) and NCA for feature
selection. This configuration delivers a well-balanced and reliable diagnostic performance
across key evaluation metrics, making it an optimal solution for analysing both cough
and respiratory sound datasets. The approach ensures robustness and adaptability, ad-
dressing the diverse characteristics of the two datasets while maintaining consistency
in performance.

The integration of dual-sound analysis and majority voting ensemble techniques has
proven highly effective, achieving precise and consistent diagnostic outcomes. Among the
tested configurations, the SVM model with the SqueezeNet + EfficientNet (“24”) feature
extractor emerges as the best choice for compatibility across datasets. It achieves a balanced
performance in ACC, F1 score, precision, recall, and AUC, underscoring the model’s
versatility and reliability in diagnosing conditions such as asthma and AUC.

Future work should focus on expanding datasets to include broader demographic
and environmental variations and refining real-time diagnostic capabilities. The continued
development of ensemble methods, such as majority voting with dynamic weighting, could
further enhance the ACC and robustness of the system. These advancements have the
potential to revolutionise respiratory healthcare practices, enabling earlier detection and
better management of asthma, COPD, and other respiratory conditions on a global scale.
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Abbreviations
The following abbreviations are used in this manuscript:

3G International Mobile Telecommunications-2000
4G successor to 3G
TRP true positive rate
FRP false positive rate
ACC accuracy
A-V atrioventricular
ACR American College of Radiology
ADA American Diabetes Association
ADASYN adaptive synthetic sampling
AE autoencoder
AED automated external defibrillator
AES advanced encryption standard
AFL atrial flutter
AFIB atrial fibrillation
AFDB atrial fibrillation database
ApEn approximate entropy
ALLSTAR Allostatic State Mapping by Ambulatory ECG Repository
ALN axillary lymph node
ALND axillary lymph node dissection
ANFIS adaptive network-based fuzzy inference system
ANS autonomic nervous system
ANN artificial neural network
ANOVA analysis of variance
ANSI American National Standards Institute
ANT anterior left atrial free wall
AHE adaptive histogram equalisation
AHI Apnea–Hypopnea Index
AI artificial intelligence
ASM active shape model
API application programming interface
AR autoregressive
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ARF acoustic radiation force
ARMA autoregressive moving average
ARMAX autoregressive moving average with exogenous inputs
AT atrial tachycardia
ATM automated teller machine
AUC area under the curve
AVN atrioventricular node
ATS/ERS American Thoracic Society/European Respiratory Society
QCT quantitative CT
BA Bayesian averaging
BCI brain–computer interface
BEMD bidimensional empirical mode decomposition
BERT bidirectional encoder representations from transformers
MTS Mahalanobis–Taguchi System
BLE Bluetooth Low Energy
BMI body mass index
BPA Backpropagation Algorithm
BPSO binary particle swarm optimisation
BPM beats per minute
BSN biomedical sensor network
CAD computer-aided diagnosis
CaD capacity dimension
CAN cardiovascular autonomic neuropathy
CART classification and regression tree
CD celiac disease
CEUS contrast-enhanced ultrasound
CI confidence interval
CHF congestive heart failure
CHS community health centres
DL deep learning
CLAHE contrast limited adaptive histogram equalisation
CLDA clustering linear discriminant analysis algorithm
CNN convolutional neural network
CM clustered microcalcification
COPD chronic obstructive pulmonary disease
CSP communicating sequential process
CS compressed sampling
CT computed tomography
CPA communicating process architecture
CPC cardiopulmonary coupling
CPU central process unit
CSA central sleep apnea
CSME clinically significant macular oedema
CSR Cambridge silicon radio
CVD cardiovascular disease
CWT continuous wavelet transform
CTA tomographic pulmonary angiography
D2H2 distributed diagnosis and home healthcare
DAGSVM directed acyclic graph support vector machine
DB database
DBN deep belief network
DCN deep convolutional network
DCT discrete cosine transform
DET determinism
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DFT discrete Fourier transform
DII Diabetic Integrated Index
DL deep learning
DLLE diagonal line length entropy
DM diabetes mellitus
DN diabetic neuropathy
DNN deep neural network
DR diabetic retinopathy
DT decision tree
DWT discrete wavelet transform
E external
E-M expectation–maximisation
ECG electrocardiogram
EDR ECG-derived respiration
ECHONET EchoCardiographic Healthcare Online Networking Expertise in Tasmania
EEG electroencephalogram
ELM extreme learning machine
EM electromagnetic
EMD empirical mode decomposition
EMG electromyogram
EOG electrooculogram
FAQ frequently asked questions
FB fusion beat
FD fractal dimension
FDDI fibre-distributed data interface
FEn fuzzy entropy
FES functional electrical stimulation
FCM fuzzy C-means
EHR electronic health record
FIR finite impulse response
EMR electronic medical record
FN false negative
FNA fine-needle aspiration
FNN false nearest neighbour
FP false positive
FSC fuzzy Sugeno classifier
FT Fourier transform
GA genetic algorithm
GB gradient boosting
GLCM grey-level co-occurrence matrix
GMM Gaussian mixture model
GOE Global Observatory for eHealth
GPC Gaussian process classification
GPRS General Packet Radio Service
GPU graphics processing unit
GSM Global System for Mobile communication
GUI graphical user interface
H Hurst exponent
HDNTs hospital digital networking technologies
HIHM home-integrated health monitor
HIPAA Health Insurance Portability and Accountability Act
HMA haemorrhages and microaneurysms
HMM hidden Markov model
HOG histogram of gradient
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HOS higher-order spectrum
HP Helicobacter Pylori
HR heart rate
HRUS high-resolution ultrasound
HRV heart rate variability
HRVAS heart rate variability analysis software
HSDPA high-speed downlink packet access
I internal
IBD inflammatory bowel disease
ICA independent component analysis
ICU intensive care unit
IEEE Institute of Electrical and Electronic Engineers
IMF intrinsic mode function
IoT Internet of Things
IIR infinite impulse response
IR infrared
IT information technology
IVUS intravascular ultrasound
JMMB Journal of Mechanics in Medicine and Biology
KS Kolmogorov–Sinai
KNN K-nearest neighbour
LA left atrium
LAM laminarity
LBP local binary pattern
LC linear classifier
LCP local configuration pattern
LDA linear discriminant analysis
LFP local field potential
LIP left inferior pulmonary
LLE largest Lyapunov exponent
LMNN Levenberg–Marquardt neural network
LP lamina propria
LR logistic regression
LSP left superior pulmonary
LSTM long short-term memory
LTAFDB long-term AF database
LTE long-term evolution
LR logistic regression
LRNC lipid-rich necrotic core
LV left ventricular
MA moving average
MC clustered microcalcifications
MCA multiple correspondence analysis
NCSME non-clinically significant macular oedema
MCT mobile cardiac telemetry
MDA multiple discriminant analysis
NDDF normal density discriminant function
MI myocardial infarction
MIL multiple instance learning
ML machine learning
MLP multilayer perceptron
MMSE modified multiscale entropy
MOH Ministry Of Health
MP mobile phone
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MR magnetic resonance
MRI magnetic resonance imaging
MSE multiscale entropy
MTS multivariate time series
MVA multiple variable analysis
NASA National Aeronautics and Space Administration
NB Naïve Bayes
NCA neighbourhood component analysis
nB number of beats
NCD non-celiac duodenitis
NEB non-ectopic beat
NEWS National Early Warning Score
NF neuro-fuzzy
NN neural network
NoF number of features
nP number of patients
NPDR non-proliferative diabetic retinopathy
NSR normal sinus rhythm
OFDM orthogonal frequency-division multiplexing
OSA obstructive sleep apnea
PAF paroxysmal atrial fibrillation
PCA principal component analysis
PDR proliferative diabetic retinopathy
PET positron emission tomography
PET-MRI positron emission tomography-magnetic resonance imaging
PFT pulmonary function testing
PHC primary health centre
PHOG pyramid histogram of gradient
PLS-DA partial least squares discriminant analysis
PNN probabilistic neural network
PPG photoplethysmogram
POS posterior left atrial free wall
PPV positive predictive value
PRE precision
PRISMA preferred reporting items for systematic reviews and meta-analyses
PSD power spectral density
PSG polysomnography
PVC premature ventricular contraction
QDA quadratic discriminant analysis
QoS quality of service
qCT quantified computed tomography
RAM random access memory
RBF radial basis function
RBFNN radial basis function neural network
RBM restricted Boltzmann machine
REC recurrence rate
ReLU rectified linear unit
ResNet residual neural network
RF random forest
RHN regional health network
RIP right inferior pulmonary
RNA ribonucleic acid
RNN recurrent neural network
ROC receiver operating characteristic
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ROI region of interest
RQA recurrence quantification analysis
RP recurrence plot
RSA respiratory sinus arrhythmia
RSP right superior pulmonary
RTF recurrent neural network
RVM relevance vector machine
SWT stationary wavelet transform
SA sinoatrial
SAE sparse autoencoder
SampEn sample entropy
SAN sinoatrial node
SC statistical classifier
SD standard deviation
SCD sudden cardiac death
SDNN standard deviation of normal-to-normal intervals
SEN sensitivity
SE standard error
SpO2 oxygen saturation
ShanEn Shannon entropy
SLNB sentinel lymph node biopsy
SMDS switched multi-megabit data service
SNN spiking neural network
SOM self-organising map
SPE specificity
STFT short-time Fourier transform
SWE shear wave elastography
SWT stationary wavelet transform
SQL structured query language
SVEB supraventricular ectopic beat
SVM support vector machine
SNPs single-nucleotide polymorphisms
MTS Mahalanobis–Taguchi system
T thoracic
TIA transient ischaemic attack
TEE transesophageal echocardiogram
TN true negative
TP true positive
TT trapping time
TTE transthoracic echocardiography
TVCF time-varying coherence function
UB unclassified beat
UIT urinary tract infection
ULP ultra-low power
UMMC University Malaya Medical Centre
UMTS Universal Mobile Telecommunications System
US ultrasound
USG ultrasonography
UWB ultra-wideband
xAI explainable AI
VDSNet VGG data STN with CNN
VEB ventricular ectopic beat
VF ventricular fibrillation
VFL ventricular flutter
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VT ventricular tachycardia
WBAN wireless body area network
WEP wired equivalent privacy
WHO World Health Organization
WiMAX Worldwide Interoperability for Microwave Access
WLAN wireless local area network
WMAN wireless metropolitan area network
WPA Wi-Fi-protected access
WPAN wireless personal area network
WPD wavelet packet decomposition
WWAN wireless wide area network

Appendix A. Pseudocode
The pseudocode below describes the way in which the methods, described in Section 2,

were used to establish the hybrid model.
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