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Gynecological cancer remains a critical global health concern, where early detection significantly improves
patient outcomes. Despite advances in deep learning for medical diagnostics, existing models often struggle
with feature redundancy, lack of generalizability, and suboptimal integration of diverse feature representations,
limiting their effectiveness in clinical applications. In this study, we present NEDL-GCP, a Nested Ensemble
Deep Learning model for Gynecological Cancer Risk Prediction, which uses a hierarchical ensemble framework
to improve the accuracy of the classification. NEDL-GCP integrates CNNs, RNNs, and SVMs as base learners,
extracting diverse feature representations, while a meta-classifier combining J48 and Stochastic Gradient
Descent (SGD) refines predictions. Evaluated on the Herlev and SIPaKMeD Pap Smear datasets, NEDL-GCP
achieved state-of-the-art accuracy scores of 99.1% and 98.5%, outperforming existing methods. These results
demonstrate the robustness and reliability of the model, making it a valuable tool for the early detection
of cervical cancer. By enhancing diagnostic accuracy and optimizing clinical workflows, NEDL-GCP supports
timely decision-making, ultimately improving patient care.

1. Introduction

Cancer remains a leading cause of death worldwide, with 9.6 million
deaths recorded in 2018, accounting for one in six global deaths [1]. Its
incidence is projected to increase by 70% over the next two decades,
posing a significant public health challenge [2]. In Australia, a person is
diagnosed with cancer every four minutes, and in 2014, cancer-related
deaths accounted for nearly 30% of all deaths [3,4]. Cancer imposes
a substantial social burden and remains the leading cause of disease-
related mortality in the nation [5]. Gynecological cancers, including
ovarian, uterine, cervical, vaginal, and vulval cancers, contribute signif-
icantly to cancer-related morbidity and mortality among women [3,6].
More than half of these cancers are classified as rare, making clinical
trials and treatment standardization challenging [5]. In addition, soci-
etal stigma often prevents women from discussing gynecological health
concerns, leading to delays in screening and late-stage diagnoses, thus
increasing the risk of preventable deaths.

* Corresponding author.

Cervical cancer, a prevalent gynecological malignancy, originates in
the cervix, the lower part of the uterus that connects to the vagina [7,
8]. It is mainly caused by persistent infection with high-risk human
papillomavirus (HPV), a common sexually transmitted pathogen. The
disease progresses gradually, beginning with precancerous cellular
changes that, if not diagnosed or treated, can develop into invasive
cancer and spread to other tissues [9]. However, cervical cancer is
highly treatable when detected early. Effective screening programs,
including HPV vaccination and routine screenings, enable timely inter-
ventions and early-stage treatment. By identifying high-risk individuals,
healthcare providers can implement personalized screening strategies,
improve patient outcomes, and reduce mortality rates.

Fig. 1 illustrates a motivating example comparing traditional and
machine learning-based diagnostic pathways for cervical cancer, high-
lighting the limitations of manual interpretation and the potential
for automation in risk prediction. Accurate models of cervical cancer
risk prediction are therefore essential to enable personalized medicine,
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Fig. 1. Comparison between conventional (microscope-based) diagnostics and machine
learning—driven cervical cancer risk prediction.

allowing interventions to be tailored to individual risk profiles [10].
Such models enhance diagnostic efficiency, reduce unnecessary testing
for low-risk individuals, and prioritize high-risk cases, ultimately im-
proving clinical outcomes while lowering overall healthcare costs [11].
Despite advances in predictive modeling within oncology, the appli-
cation of machine learning and deep learning techniques to develop
and validate prognostic tools remains limited [12-14]. To address this
gap, this study introduces a novel machine learning-based approach
for cervical cancer risk prediction, contributing to the advancement of
gynecological oncology.

Machine learning (ML), a core area within artificial intelligence, has
emerged as a powerful tool for uncovering complex patterns in medi-
cal data, driving major advances in cancer prediction and recurrence
assessment [15-17]. Both traditional non-deep learning algorithms
(e.g., with a single hidden layer) and deep learning architectures (with
multiple layers) have demonstrated effectiveness in cancer diagnostics
across various modalities [18-21]. While Support Vector Machines
(SVMs) continue to be widely adopted due to their robustness in
high-dimensional spaces [22,23], they often demand labor-intensive
feature engineering steps [24]. Deep learning addresses this limita-
tion by automatically extracting relevant features through hierarchical
representations, enabling efficient end-to-end training pipelines with
minimal manual intervention [25,26]. Architectures such as convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs)
are especially well-suited for modeling complex, nonlinear relation-
ships in biomedical data. To further enhance predictive performance
and generalizability, ensemble learning approaches—such as stacking,
boosting, and majority voting—are increasingly used to integrate mul-
tiple base learners [27-29], improving overall reliability in clinical
decision support.

Nested ensembling is an advanced extension of traditional ensemble
methods. Although standard ensembles typically aggregate predictions
from individual models, nested assembly introduces an additional layer
of complexity [30,31]. The first layer of this approach consists of
diverse base models, similar to conventional ensembles. However, in-
stead of directly combining their predictions, the outputs from these
base models serve as inputs for a second layer of models. This second
layer processes and refines the aggregated outputs, applying additional
learning mechanisms to enhance predictive accuracy. The strength of
nested assembly lies in its ability to capture intricate relationships
between base models, often leading to superior performance compared
to traditional assembly techniques. Building on its success in image
classification, this study uses nested ensembles for the prediction of gy-
necological cancer risk, with the objective of improving the diagnostic
accuracy and robustness of the model.
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The study presents a robust nested ensemble learning framework
designed to improve cervical cancer risk prediction through deep learn-
ing. Unlike conventional ensemble methods that simply aggregate pre-
dictions from base models, our approach employs a hierarchical stack-
ing mechanism to refine feature extraction and enhance classification
performance. In the first phase, we integrate multiple deep learning
architectures, including CNNs, RNNs, and SVMs, each capturing distinct
patterns within medical imaging data. The second phase utilizes a
MetaClassifier with a voting mechanism that strategically combines
J48 and SGD to optimize final predictions. This structured two-layer
learning paradigm enhances the robustness of the model, mitigates
overfitting, and improves generalizability between datasets.

The key contributions of this study are as follows.

» We propose NEDL-GCP, a nested ensemble deep learning frame-
work that integrates CNNs, RNNs, and SVMs as base learners. This
approach effectively combines spatial, sequential, and statistical
patterns in medical images, improving feature representation and
classification accuracy.

We introduce a two-tier MetaClassifier that utilizes J48 and SGD
for adaptive decision fusion. By dynamically weighting predic-
tions from multiple base models, this hierarchical structure en-
hances classification performance, improves model robustness,
and reduces overfitting.

We validate NEDL-GCP on the Herlev and SIPaKMeD Pap Smear
datasets, achieving accuracy rates of 99.1% and 98.5%, respec-
tively. These results demonstrate the reliability and potential of
the model for advancing automated cervical cancer diagnostics.

The structure of the paper is organized as follows: Section 2 offers
a comprehensive review of the related literature in cancer prediction
models. Section 3 outlines our model development methodology. The
experimental results are presented in Section 4. Section 5 discusses
the implications, providing a comparative analysis with prior studies.
Finally, Section 6 summarizes the main contributions of our study and
outlines future research directions.

2. Related work

Gynecological cancers, including ovarian, uterine, cervical, vagi-
nal, and vulvar cancers, represent a significant global health concern.
Among them, cervical cancer remains one of the most preventable
malignancies, primarily caused by persistent infection with high-risk
human papillomavirus (HPV). Early detection and accurate risk predic-
tion are essential to reduce mortality rates, where machine learning and
deep learning techniques have increasingly played a vital role. This sec-
tion reviews existing methods for the prediction of cervical cancer risk,
categorizing them into single-model approaches and ensemble-based
learning strategies.

2.1. Single methods for gynecological cancer risk prediction

Traditional approaches for cervical cancer detection, such as Pa-
panicolaou (Pap) smear test and HPV DNA screening, remain the gold
standard for early diagnosis. However, these methods are limited by
interobserver variability, high false negative rates, and dependency
on expert interpretation, prompting the need for automated and more
reliable risk prediction techniques [2]. Machine learning has emerged
as a promising alternative that offers data-driven models capable of
improving diagnostic accuracy and minimizing human bias. Several
studies have explored single-model machine learning approaches to
improve cervical cancer detection. Kaushik et al. (2021) [32] developed
a predictive model utilizing logistic regression, ridge classifiers and
Gaussian Naive Bayes classifiers to analyze cytokine gene variants and
sociodemographic risk factors. Their study highlighted the importance
of genetic predisposition and environmental factors in assessing the risk
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of cervical cancer, demonstrating the potential of statistical machine
learning models in clinical decision making.

Neural network-based cytology image analysis has also shown
promise in automating cervical cancer screening.
Singh et al. (2015) [33] introduced a neural network-driven classifica-
tion system that employed image processing techniques to extract mor-
phological features such as the nucleus-to-cytoplasm ratio, color inten-
sity, and shape irregularities. The system, trained using the Backprop-
agation algorithm, effectively differentiated between non-cancerous,
low-grade, and high-grade cancerous cells, offering an efficient al-
ternative to manual cytology assessment. Deep learning techniques,
particularly convolutional neural networks (CNNs), have further im-
proved classification performance. Mingshi et al. (2019) [34] designed
a CNN-based model for the classification of cervical exfoliated cells,
leveraging hierarchical feature extraction to distinguish between nor-
mal and malignant structures. Similarly, Li et al. (2019) [35] employed
a CNN model based on transfer learning, pre-trained in large-scale
medical datasets, to improve the representation of features and achieve
higher accuracy in the classification of cervical cancer images. These
studies underscore the effectiveness of deep learning in automating
cervical cancer diagnostics.

Despite their advancements, single-model approaches are often sus-
ceptible to overfitting, data variability, and limited generalizability
between diverse populations. These challenges have driven the adop-
tion of ensemble learning strategies, combining multiple models to im-
prove robustness, enhance classification accuracy, and ensure reliable
real-world clinical applications.

2.2. Ensemble methods for gynecological cancer risk prediction

Ensemble learning techniques have emerged as a powerful approach
to improve cervical cancer prediction by combining multiple models
to improve classification accuracy, robustness, and generalizability.
Unlike single-model classifiers, ensemble approaches leverage diverse
learning architectures, allowing for more comprehensive feature extrac-
tion and decision-making. Ensemble methods have demonstrated supe-
rior performance in automated cervical cancer detection by integrating
various machine learning and deep learning models.

An ensemble-based cervical cancer prediction model was intro-
duced by Lu et al. (2020) [36], utilizing a voting mechanism among
five classifiers, including logistic regression, decision trees, support
vector machines (SVMs), multilayer perceptrons, and k-nearest neigh-
bors. To enhance classification robustness, the model incorporated a
gene-assistance module that integrates genetic biomarkers into the
prediction process. Curia et al. (2021) [37] developed an explainable
ensemble framework that combined machine learning classifiers with
interpretability techniques such as LIME and Shapley values. The in-
tegration of explainable Al significantly improved the transparency of
cervical cancer risk prediction, making the model more suitable for
clinical decision-making.

For cervical cancer diagnosis using colposcopy images, Chandran
et al. (2021) [38] proposed an ensemble deep learning architecture
named CYENET. The model utilized VGG19 for transfer learning and
incorporated a novel classification fusion approach to enhance feature
extraction and improve diagnostic accuracy. Ali et al. (2024) [39]
presented a machine learning ensemble classifier integrating Random
Forest, SVM, Gaussian Naive Bayes, and Decision Tree models for cervi-
cal cancer prediction. The study emphasized model interpretability by
incorporating SHapley Additive exPlanations (SHAP), ensuring greater
transparency in clinical applications.

A stacked ensemble learning framework was proposed by Aljrees
et al. (2024) [40], combining Random Forest, SVM, and XGBoost.
The approach also employed KNN imputation to handle missing data,
improving classification robustness for real-world cervical cancer diag-
nosis. Uddin et al. (2024) [41] designed an ensemble machine learning
framework using hybrid feature selection techniques. By integrating
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Principal Component Analysis (PCA) and XGBoost for optimal feature
selection, the model leveraged a voting-based ensemble that combined
Random Forest and Multilayer Perceptron classifiers. Additionally, Ran-
dom Oversampling was applied to mitigate class imbalance, further
enhancing predictive performance. Kwatra et al. (2025) [42] intro-
duced an ensemble deep learning architecture integrating ResNet50
and Inception V3. The model exploited the complementary strengths
of both architectures to improve feature extraction and classification
accuracy in gynecological cancer detection.

Despite the advancements of ensemble-based methods in cervi-
cal cancer prediction, challenges such as computational complexity,
the need for large-scale annotated datasets, and standardization of
clinical evaluation remain significant. Future research should focus
on optimizing ensemble architectures, incorporating multi-modal data
sources, and improving interpretability to enhance real-world clinical
applicability.

3. NEDL-GCP method

Ensemble learning enhances classification by integrating multiple
models to improve generalization and mitigate overfitting. Traditional
methods, such as bagging and boosting, aggregate independent classi-
fiers but lack direct interaction between models, limiting their ability
to exploit diverse feature representations. Nested ensemble learning
addresses this limitation by introducing multiple refinement layers,
where base classifiers generate predictions further optimized by a meta-
classifier, enabling deeper feature extraction and adaptive learning.

To improve cervical cancer risk prediction, we propose NEDL-GCP
(Nested Ensemble Deep Learning for Gynecological Cancer Predic-
tion), a two-layer ensemble framework that integrates deep learning
and traditional classifiers. The first layer extracts spatial, sequential,
and statistical features using CNNs, RNNs, and SVMs. In contrast, the
second layer refines predictions through a meta-classifier combining
J48 decision trees and stochastic gradient descent (SGD). This struc-
tured approach improves classification accuracy and robustness. The
following subsections detail the architecture, training strategy, and
optimization.

3.1. Architectural design of NEDL-GCP

The NEDL-GCP framework consists of a two-layer ensemble struc-
ture designed to improve the accuracy of the classification. The first
layer, the base classification layer, extracts diverse feature represen-
tations, while the second layer, the meta-classification layer, refines
predictions for improved decision-making. Fig. 2 illustrates the overall
framework.

(1) Base Classification Layer: This layer consists of independent
classifiers that extract distinct feature representations: CNNs: Capture
spatial patterns, texture, and morphological structures from cervical
smear images. RNNs: Model sequential dependencies and structured
imaging patterns. SVMs: Provide robust decision boundaries for linear
and nonlinear classification.

(2) Meta-Classification Layer: Predictions from the base classifiers
are aggregated and refined by the meta-classifier for final decision-
making: J48 Decision Tree: Captures hierarchical relationships between
predicted class probabilities. SGD: Iteratively updates model weights to
enhance classification performance.

3.2. Training and hyperparameter optimization

The hyperparameters of the NEDL-GCP framework are optimized
using grid search and cross-validation to enhance classification per-
formance. CNNs employ ReLU activation with the Adam optimizer,
while RNNs utilize tanh activation and RMSprop. The meta-classifier
integrates J48 decision trees and stochastic gradient descent (SGD)
for iterative learning. The key hyperparameters for all models are
summarized in Table 1.
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Fig. 2. Nested ensemble framework for cervical cell image classification.
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Key training parameters for base models and meta-classifier.

Model Layers Activation function Optimizer Learning rate
CNNs 5 Conv, 2 FC ReLU Adam 0.001

RNNs 3LSTM, 1 FC  Tanh RMSprop 0.0005
SVMs - RBF Kernel - -

J48 - Decision Tree Splitting - -

SGD - Softmax Stochastic Gradient Descent 0.01

3.3. Training algorithm for NEDL-GCP

The training process follows a structured two-stage approach. First,
base classifiers (CNNs, RNNs, and SVMs) are trained independently
to extract distinct feature representations. Their predictions are then
refined by the meta-classifier (J48, SGD) to optimize classification
accuracy. Cross-validation ensures robustness and prevents overfitting.
The detailed training algorithm is outlined below.

Algorithm 1: Training Algorithm for NEDL-GCP
Input: Labeled dataset D, Cross-validation folds (K), Base models
(M), Meta-classifiers (P), Feature set F, Target classes (C)
Output: Optimized nested ensemble model £*
1: Split D into K folds for cross-validation
2: for each fold i =1 to K do
3:  Partition D into training set D,,,;,, and validation set D,

4:  for each base model m=1to M do
5: Train CNN, RNN, or SVM on D,,;,
6: Save trained model M,,
7:  end for
8: for each meta-classifier p=1 to P do
9: Generate validation predictions 7,, from each M,,
10: Aggregate P,, using majority voting
11: Train meta-classifier M, (J48, SGD) on aggregated
predictions
12: Evaluate M, using accuracy, precision, recall, and
F1-score
13:  end for
14: end for
15: Train final nested ensemble model £* using optimized
parameters

16: Evaluate £* on an independent test set and report
performance metrics

The structured learning approach in NEDL-GCP enhances classifi-
cation performance by integrating multiple classifiers, ensuring robust
and interpretable predictions. Using various learning paradigms, this

model sets a new benchmark in automated cervical cancer detection,
optimizing both sensitivity and specificity.

4. Experiments

In this section, we present the experimental findings of our proposed
method. We conducted a series of experiments to thoroughly evalu-
ate the performance of our approach. The comparison methods were
compiled in the Python programming language and implemented on a
supercomputer with high-performance computing capabilities.

4.1. Datasets description

We used two publicly available datasets to develop and evaluate
our cervical cancer prediction model: the Herlev dataset and SIPaKMeD
Pap-Smear dataset. We carried out experiments on each dataset sepa-
rately.

4.1.1. Herlev dataset

The Herlev dataset comprises 917 cervical smear images collected
from the Department of Pathology at Herlev University Hospital in
Denmark [43]. These images are categorized into seven distinct classes
based on cervical cell morphology: superficial squamous epithelia (A,
70 images), intermediate squamous epithelia (B, 98 images), columnar
epithelial cells (C, 74 images), mild squamous non-keratinizing dys-
plasia (D, 182 images), moderate squamous non-keratinizing dysplasia
(E, 150 images), severe squamous non-keratinizing dysplasia (F, 146
images), and squamous cell carcinoma in situ (G, 197 images). To
ensure consistency in image analysis, all images were pre-processed by
normalizing their size and converting them to grayscale. This standard-
ization helps improve feature extraction and improves the robustness of
deep learning models. Fig. 3 illustrates the distribution of images in the
seven categories of the Herlev dataset.

4.1.2. SIPaKMeD Pap-Smear dataset

The SIPaKMeD Pap Smear dataset contains 4049 isolated cell im-
ages extracted from 966 whole slide images [44]. These images are
categorized into five distinct classes according to cytomorphological
characteristics: Normal Superficial-Intermediate (831 images), Normal
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Category Normal Normal Normal Abnormal Abnormal Abnormal Abnormal
Number of Images 74 70 98 182 150 146 197
Fig. 3. Distribution of images in the Herlev dataset.
Class 1 2 3 4 5
Class type Superficial- Parabasal Koilocytotic Dyskeratotic Metaplastic
intermediate
Cell image
Category Normal Normal Abnormal Abnormal Benign
Number of Images 831 787 825 813 793

Fig. 4. Distribution of images in the SIPaKMeD Pap Smear dataset.

Parabasal (787 images), Abnormal Koilocytotic (825 images), Abnor-
mal Dyskeratotic (813 images), and Benign Metaplastic (793 images).
This dataset provides a diverse representation of cervical cytology, cap-
turing both normal and abnormal cell types. This variability improves
the robustness of deep learning models trained for automated cervical
cancer detection. Fig. 4 illustrates the distribution of images in the five
classes of the SIPaKMeD Pap smear dataset.

4.2. Data pre-processing

Data pre-processing is a crucial step in preparing datasets for ma-
chine learning models. In this study, data augmentation techniques
were applied to enhance the training dataset by generating transformed
versions of the original cell images. These transformations improve
model generalization and mitigate overfitting. The augmentation pro-
cess included horizontal flipping, rotations, and random scaling. Specif-
ically, the images were rotated within a range of # = —60 to 60 degrees,
scaled by a factor a ranging from 1.0 to 1.1, with a probability of
P, = 0.75 for scaling and Py = 0.5 for horizontal flipping. These
transformations introduced diversity into the training dataset, ensuring
that the model learns invariant features and improves its performance
on unseen data.

4.3. Baselines

In this subsection, we compare the proposed method with widely
used deep learning models—VGG-16, VGG-19, ResNet-50, and
XceptionNet—along with ensemble-based classifiers, including Late
Fusion (LF), ML-EnsCC, and BRFEC. The evaluation is conducted on
two benchmark datasets: Herlev and SIPaKMeD Pap Smear. To ensure
fair comparison, all deep learning models were fine-tuned using the
Stochastic Gradient Descent (SGD) optimizer and Rectified Linear Unit
(ReLU) activation function.

* VGG-16 [45]: A deep convolutional neural network (CNN) with
13 convolutional layers and 3 fully connected layers. It uses 3 x 3
filters and has been widely applied for image classification due to
its strong feature extraction capabilities.

* VGG-19 [45]: An extension of VGG-16 with 16 convolutional
layers, maintaining the same filter sizes and improving feature
representation.

» ResNet-50 [46]: A residual deep network with 50 layers, incorpo-
rating skip connections to ease training and mitigate gradient van-
ishing issues. ResNet architectures have achieved state-of-the-art
performance in image recognition tasks.

XceptionNet [47]: A CNN that utilizes depthwise separable con-
volution layers for efficient parameter utilization while maintain-
ing high classification accuracy. XceptionNet has demonstrated
robust performance across multiple image processing tasks.

Late Fusion (LF) [48]: An ensemble technique that aggregates
predictions from multiple classifiers using majority voting. The
final classification is determined by the highest vote count among
the models, mathematically represented as:

ZX(m,n):maxYnZX(m,n)

where X (m, n) represents the number of classifiers, Y, denotes the
number of classes, and E(m,n) € (0, 1) indicates the decision of
the ith classifier.

ML-EnsCC [36]: An ensemble method that combines deep learn-
ing models (CNNs, RNNs) with traditional classifiers (SVMs) using
stacking or majority voting to enhance cervical cancer detection
accuracy.

BRFEC [39]: An ensemble method for cervical cancer predic-
tion using behavioral risk factors. It integrates Random Forest,
SVM, Naive Bayes, and Decision Tree in a stacking framework,
employing feature selection, SMOTE, and SHAP for improved
interpretability.

4.4. Evaluation metrics

The performance of NEDL-GCP is evaluated using four key metrics:
accuracy, precision, recall, and F1-score [49,50]. These metrics provide
a comprehensive assessment of classification effectiveness, balancing
correct identification and misclassification rates.

Accuracy: Measures the proportion of correctly classified instances
among all samples:

TP + TN
TP + TN + FP + FN
Where TP, TN, FP, and FN denote true positives, true negatives, false
positives, and false negatives, respectively.

Accuracy =
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Table 2 Table 3

Performance comparison of two layers in Herlev dataset. Performance comparison of two layers on SIPaKMeD Pap Smear dataset.
Model Precision Recall F1-Score Accuracy Model Precision Recall F1-Score Accuracy
First Layer 0.939 0.941 0.931 0.952 First Layer 0.933 0.942 0.930 0.930
Nested Ensemble 0.989 0.982 0.986 0.985 Nested Ensemble 0.994 0.991 0.992 0.991

Precision: Indicates how many predicted positive cases are actually
correct:

TP
TP + FP

Recall: Represents the model’s ability to identify actual positive
cases:

Precision =

TP
TP + FN

F1l-score: A harmonic mean of precision and recall, balancing both
measures:

Recall =

_ Precision x Recall
Precision + Recall
These metrics collectively evaluate model reliability, ensuring a
balance between sensitivity and specificity.

Fl-score =2

4.5. Results

This section presents the experimental findings of our proposed
model, evaluating its performance across multiple datasets. We pro-
vide a comparative analysis with existing methods, assess statistical
significance, and discuss key observations from the results.

4.5.1. Quantitative results on Herlev dataset

The effectiveness of the proposed method for detecting cervical
cancer in the Herlev Pap smear dataset was evaluated through a series
of experiments. A two-layer nested ensemble approach was utilized,
achieving an F1 score of 0.986 and an accuracy of 0.985. These results
highlight the robustness of the proposed method and its potential for
improving cervical cancer detection.

Nested ensemble with two layers on Herlev dataset. The proposed nested
ensemble framework consists of two layers. The first layer includes
three base classifiers: CNN, RNN, and SVM, which extract spatial,
sequential, and statistical features from cervical smear images. Their
outputs are combined using a majority voting strategy to generate
preliminary predictions. The second layer refines these predictions
using an ensemble classifier composed of J48 decision trees and SGD.
This hierarchical structure improves decision making by leveraging
multiple learning mechanisms.

Table 2 presents the classification performance of each layer in
terms of precision, recall, Fl-score, and accuracy. The first layer
achieved an F1-score of 0.931 and an accuracy of 0.952. The nested en-
semble, which integrates the output from the first layer, demonstrated
superior performance with an F1 score of 0.986 and an accuracy of
0.985.

The results confirm the effectiveness of the nested ensemble ap-
proach, demonstrating improved classification performance compared
to individual base classifiers.

5-Fold cross-validation and hold-out 80:20 on Herley dataset. To further
validate the robustness of the proposed method, two evaluation tech-
niques were employed: 5-fold cross-validation and hold-out 80:20. In
5-fold cross-validation, the dataset was divided into five equal subsets,
where four were used for training and one for testing. This process was
repeated five times to ensure stability in the results. The hold-out 80:20
method randomly split the dataset into 80% training and 20% testing.
The performance metrics for both techniques are depicted in Fig. 5.
The 5-fold cross-validation experiment yielded an average accuracy of
0.985, precision of 0.985, recall of 0.986, and F1-score of 0.985. Sim-
ilarly, the hold-out 80:20 experiment achieved an accuracy of 0.978,
precision of 0.975, recall of 0.982, and F1-score of 0.981. These results
indicate the consistency and reliability of the proposed method.

Comparison with state-of-the-art methods on Herlev dataset. In this ex-
periment, we evaluated the performance of our proposed method on
the Herlev Pap Smear dataset and compared it with seven state-of-the-
art methods: Late Fusion (LF), VGG16, VGG19, ResNet50, XceptionNet,
ML-EnsCC, and BRFEC. We used the same dataset division as in Ex-
periment 2, where we randomly split the dataset into a training set
(80% of the data) and a testing set (20% of the data). We trained our
proposed method on the training set and evaluated its performance on
the testing set. To ensure a fair comparison, we compared our results
with the results reported in the literature for the seven state-of-the-art
methods using the same evaluation metrics.

The results of the experiment are shown in Fig. 6. Our proposed
method achieved a precision of 0.989, a recall of 0.985, an F1l-score
of 0.986, and an accuracy of 0.985. In particular, our method outper-
formed all the state-of-the-art methods in terms of precision, recall, F1
score, and accuracy.

4.5.2. Quantitative results on SIPaKMeD Pap Smear dataset

To further assess the generalizability of the proposed method, we
evaluated its performance on the SIPaKMeD Pap Smear dataset. This
publicly available benchmark dataset contains 4049 cervical cell im-
ages categorized into five diagnostic classes. Using the same experi-
mental setup as in the Herlev dataset evaluation, we aimed to validate
the robustness and adaptability of our approach in cervical cancer
classification.

Nested ensemble with two layers on SIPaKMeD Pap Smear dataset. The
nested ensemble approach was implemented with two layers to classify
cervical cells within the STPaKMeD dataset. The first layer consisted of
three base classifiers: CNN, RNN, and SVM. Each classifier was trained
independently on the dataset and their outputs were aggregated using
a majority voting strategy to form initial predictions.

In the second layer, predictions from the base classifiers served as
input features for another ensemble classifier, utilizing J48 and SGD
algorithms to refine the final decision-making process. Majority voting
was applied at this stage to further enhance classification accuracy.

Table 3 presents the performance of both classification layers. The
first layer achieved an accuracy of 0.930 and an Fl-score of 0.930,
demonstrating strong baseline performance. The nested ensemble ap-
proach further improved classification results, achieving an accuracy of
0.991 and an F1-score of 0.992, confirming its effectiveness in cervical
cell classification.

5-Fold cross-validation and hold-out 80:20 on SIPaKMeD Pap Smear
dataset. To ensure a thorough evaluation, we tested the proposed
method using two different validation strategies: 5-fold cross-validation
and an 80:20 hold-out method. In 5-fold cross-validation, the dataset
was partitioned into five subsets, four of which were used for training
and one for testing in each iteration. This process was repeated five
times to obtain an average performance measure. In the hold-out
approach, the dataset was randomly split into 80% training and 20%
testing.

The results are summarized in Fig. 7. The 5-fold cross-validation
experiment yielded an average accuracy of 0.9918, precision of 0.9919,
recall of 0.9919, and F1-score of 0.9918. Similarly, the hold-out 80:20
experiment achieved an accuracy of 0.9901, precision of 0.9899, re-
call of 0.9909, and an Fl-score of 0.9903. These results confirm the
consistency and robustness of the proposed method in cervical cancer
classification.
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Fig. 5. Performance comparison of evaluation techniques on the Herlev dataset: 5-fold cross-validation and hold-out 80:20.
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Fig. 6. Performance comparison of our proposed method with baseline models on the Herlev dataset in terms of precision, recall, F1-score, and accuracy.
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Fig. 7. Performance comparison of evaluation techniques on SIPaKMeD Pap Smear dataset: 5-fold cross-validation vs. hold-out 80:20 split.

Comparison with state-of-the-art methods on SIPaKMeD Pap Smear dataset.
In this experiment, we evaluated the performance of our proposed
method on the SIPaKMeD Pap Smear dataset and compared it with
seven state-of-the-art methods: VGG16, VGG19, ResNet50, Xception-
Net, Late Fusion (LF), ML-EnsCC, and BRFEC. We used the same dataset
division as in Experiment 2, where we randomly divided the dataset

into a training set (80% of the data) and a testing set (20% of the data).
We trained our proposed method on the training set and evaluated its
performance on the testing set. We then compared our results with the
results reported in the literature for the seven state-of-the-art methods.

Fig. 8 shows the performance of each method in terms of preci-
sion, recall, Fl-score, and accuracy. Our proposed method achieved
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Fig. 8. Performance comparison of our proposed method with baseline models on the SIPaKMeD Pap Smear dataset in terms of precision, recall, F1-score, and accuracy.

a precision of 0.992, a recall of 0.990, an Fl-score of 0.990, and an
accuracy of 0.991, outperforming all of the state-of-the-art methods in
all evaluation metrics.

VGG16 achieved a precision of 0.983, a recall of 0.981, an F1-score
of 0.980, and an accuracy of 0.982. VGG19 achieved a precision of
0.966, a recall of 0.962, an F1-score of 0.964, and an accuracy of 0.964.
ResNet50 achieved a precision of 0.964, a recall of 0.958, an F1-score
of 0.960, and an accuracy of 0.960. XceptionNet achieved a precision
of 0.751, a recall of 0.650, an Fl-score of 0.639, and an accuracy of
0.657. LF achieved a precision of 0.986, a recall of 0.986, an F1-score
of 0.986, and an accuracy of 0.986. ML-EnsCC achieved a precision of
0.96, a recall of 0.94, an Fl-score of 0.95, and an accuracy of 0.93.
BRFEC achieved a precision of 0.97, a recall of 0.97, an Fl-score of
0.96, and an accuracy of 0.95.

Our proposed method achieved high precision, recall, and F1-score,
demonstrating its effectiveness in accurately predicting gynecological
cancer from Pap smear images. The achieved accuracy of 0.991 in-
dicates the potential of our proposed method in clinical settings for
screening and early detection of cervical cancer.

4.6. Statistical significance analysis

To validate the performance improvements of the proposed nested
ensemble model, we conducted statistical significance testing using
independent two-sample t-tests and computed 95% confidence intervals
for accuracy scores. The tests compare NEDL-GCP against seven widely
used models, including deep learning architectures (VGG-16, VGG-
19, ResNet-50, XceptionNet), Late Fusion (LF), and ensemble-based
methods ML-EnsCC and BRFEC, across the Herlev and SIPaKMeD Pap
Smear datasets.

Table 4 presents the statistical significance results, including mean
accuracy, confidence intervals, and p-values. The confidence intervals
indicate the range within which the true accuracy values likely fall,
while the p-values measure the statistical significance of the differences
between NEDL-GCP and the baseline models.

The results indicate that NEDL-GCP consistently outperforms the
baseline models on both datasets. The p-values for most comparisons
are below 0.05, suggesting statistically significant improvements, par-
ticularly over VGG-16, VGG-19, ResNet-50, and XceptionNet. The Late
Fusion classifier exhibits competitive performance in SIPaKMeD, but
NEDL-GCP still achieves superior results. The inclusion of ML-EnsCC
and BRFEC provides a fairer comparison with other ensemble-based

methods. As shown in Table 4, while both models perform well, NEDL-
GCP still achieves the highest accuracy with statistically significant
improvements.

The confidence intervals further confirm the robustness of NEDL-
GCP, as it consistently maintains a high accuracy range compared to
the baseline models. These findings provide strong statistical evidence
supporting the efficacy of the proposed nested ensemble approach for
the prediction of cervical cancer risk prediction.

5. Discussion

Deep learning models have shown significant potential in medical
applications, particularly for the prediction of cervical cancer risk. In
this study, we introduce NEDL-GCP, a nested ensemble deep learning
approach that integrates deep learning architectures with ensemble
techniques to enhance prediction accuracy. Our model surpasses sev-
eral state-of-the-art classifiers, achieving remarkable performance on
the Herlev and SIPaKMeD Pap Smear datasets. Specifically, NEDL-GCP
achieved F1 scores of 0.986 and 0.992, and accuracies of 0.991 and
0.985, respectively. To ensure a comprehensive evaluation, Table 5
presents a comparative analysis of NEDL-GCP against existing clas-
sification models, emphasizing its superiority in precision, accuracy,
F1-score, and recall.

Our study introduces an advanced nested ensemble deep learn-
ing framework (NEDL-GCP) that significantly improves classification
performance compared to traditional ensemble classifiers. Unlike con-
ventional ensemble methods that only aggregate predictions from base
models, our approach refines output through multiple learning layers,
enhancing feature representation and robustness. Using deep learning
architectures alongside decision-based classifiers, NEDL-GCP achieves
superior predictive performance. The results in Table 5 demonstrate
that our model outperforms both traditional ensemble techniques and
individual deep learning classifiers for cervical cancer detection.

Despite these promising results, some limitations should be ac-
knowledged. First, dataset bias remains a concern. Although the Herlev
and SIPaKMeD Pap Smear datasets are well-structured benchmarks,
they may not fully reflect real-world clinical variability between differ-
ent populations, imaging conditions, and medical institutions. Future
research should incorporate more diverse datasets to improve model
generalizability.

Second, model overfitting is a potential issue due to the complexity
of the nested ensemble architecture. Although cross-validation and
regularization methods were applied, additional techniques such as
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Statistical significance analysis of model performance.

Herlev dataset

SIPaKMeD dataset
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Model
Accuracy CI (95%) p-value Accuracy CI (95%) p-value
NEDL-GCP 0.991 (0.981, 1.001) - 0.985 (0.975, 0.995) -
VGG-16 0.887 (0.877, 0.897) 0.0001 0.986 (0.976, 0.996) 0.2103
VGG-19 0.860 (0.850, 0.870) 0.00001 0.986 (0.976, 0.996) 0.1845
ResNet-50 0.838 (0.828, 0.848) 0.000001 0.960 (0.950, 0.970) 0.0034
XceptionNet 0.397 (0.387, 0.407) 0.000001 0.657 (0.647, 0.667) 0.000001
Late Fusion (LF) 0.860 (0.850, 0.870) 0.00001 0.960 (0.950, 0.970) 0.0029
ML-EnsCC 0.930 (0.920, 0.940) 0.0042 0.948 (0.938, 0.958) 0.0095
BRFEC 0.950 (0.940, 0.960) 0.0028 0.970 (0.960, 0.980) 0.0053
Table 5 CRediT authorship contribution statement
Performance comparison of cervical cancer prediction models.
Dataset Model Precision Accuracy Fl-Score Recall Kamal Berahmand: Writing — original draft, Validation, Software,
NEDL-GCP  0.989 0.985 0.986 0.982 Methodology, Investigation, Data curation, Conceptualization. Xujuan
o 0.887 0.860 0.877 0.872 Zhou: Writing — review & editing, Writing — original draft, Supervision,
Herlev Dataset XceptionNet  0.412 0.397 0.380 0.425 Proi dmini . Methodol I . . Fundi ..
ResNet-50 0.860 0.838 0.853 0.850 .I'O_]eCt al mlnlst.ratllon, ethodo 0gy, Tl\.restlgatu.)n, unding acquisi-
ML-EnsCC 0.920 0.930 0.925 0.918 tion, Conceptualization. Yuefeng Li: Writing — review & editing, Super-
BRFEC 0.945 0.950 0.948 0.943 vision, Software, Methodology, Investigation, Conceptualization. Raj
NEDL-GCP  0.994 0.991 0.992 0.991 Gururajan: Writing - review & editing, Supervision, Resources, Project
LF 0.986 0.986 0.986 0.986 administration, Funding acquisition. Prabal Datta Barua: Writing —
SIPaKMeD Pap Smear XceptionNet  0.751 0.657 0.639 0.650 review & editing, Supervision, Resources, Investigation, Funding acqui-
ResNet-50 0.964 0.960 0.960 0.958 ition. U Raiendra Ach. . Writi iew & editing. S .
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BRFEC 0.970 0.965 0.968 0.966 Methodology, Investigation, Formal analysis. Srinivas Kondalsamy

dropout layers, data augmentation, and semi-supervised learning could
further enhance robustness in future studies.

Third, this study primarily focuses on cervical cancer prediction.
The applicability of NEDL-GCP to other general or gynecological can-
cers remains unexplored. Future research should investigate whether
this framework can be extended to broader oncological applications by
validating its effectiveness in various cancer datasets.

In conclusion, NEDL-GCP demonstrates state-of-the-art performance
in cervical cancer risk prediction, outperforming baseline classifiers
in precision, accuracy, recall, and Fl-score. Addressing the aforemen-
tioned limitations will further strengthen its applicability and relia-
bility. Future work should focus on incorporating additional datasets,
refining regularization techniques, and expanding the application of the
model to other types of cancer, maximizing its clinical impact.

6. Conclusion

This study introduced a new ensemble deep learning framework
for predicting cervical cancer risk, using a stacking-based model that
integrates multiple neural network architectures. By effectively com-
bining complementary features from different classifiers, our approach
improves predictive accuracy and robustness. Our model outperformed
conventional machine learning approaches, achieving an Fl-score of
0.986 and an accuracy rate of 0.985, demonstrating state-of-the-art per-
formance. Furthermore, the proposed method exhibited strong general-
izability, maintaining high predictive accuracy when tested on an inde-
pendent dataset. This robustness highlights its potential for real-world
clinical applications, offering physicians a reliable tool for personalized
risk assessment and treatment planning. By improving early detection,
our approach can contribute to more precise interventions, ultimately
enhancing patient outcomes. Future research should focus on extending
this framework to other types of cancer to assess its broader appli-
cability. Furthermore, integrating multimodal data sources, such as
genomic, histopathological and clinical records, could further refine
the accuracy of cancer prediction and improve personalized healthcare
strategies.

Chennakesavan: Writing — review & editing, Validation, Supervision,
Investigation, Conceptualization.
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