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 A B S T R A C T

Gynecological cancer remains a critical global health concern, where early detection significantly improves 
patient outcomes. Despite advances in deep learning for medical diagnostics, existing models often struggle 
with feature redundancy, lack of generalizability, and suboptimal integration of diverse feature representations, 
limiting their effectiveness in clinical applications. In this study, we present NEDL-GCP, a Nested Ensemble 
Deep Learning model for Gynecological Cancer Risk Prediction, which uses a hierarchical ensemble framework 
to improve the accuracy of the classification. NEDL-GCP integrates CNNs, RNNs, and SVMs as base learners, 
extracting diverse feature representations, while a meta-classifier combining J48 and Stochastic Gradient 
Descent (SGD) refines predictions. Evaluated on the Herlev and SIPaKMeD Pap Smear datasets, NEDL-GCP 
achieved state-of-the-art accuracy scores of 99.1% and 98.5%, outperforming existing methods. These results 
demonstrate the robustness and reliability of the model, making it a valuable tool for the early detection 
of cervical cancer. By enhancing diagnostic accuracy and optimizing clinical workflows, NEDL-GCP supports 
timely decision-making, ultimately improving patient care.
1. Introduction

Cancer remains a leading cause of death worldwide, with 9.6 million 
deaths recorded in 2018, accounting for one in six global deaths [1]. Its 
incidence is projected to increase by 70% over the next two decades, 
posing a significant public health challenge [2]. In Australia, a person is 
diagnosed with cancer every four minutes, and in 2014, cancer-related 
deaths accounted for nearly 30% of all deaths [3,4]. Cancer imposes 
a substantial social burden and remains the leading cause of disease-
related mortality in the nation [5]. Gynecological cancers, including 
ovarian, uterine, cervical, vaginal, and vulval cancers, contribute signif-
icantly to cancer-related morbidity and mortality among women [3,6]. 
More than half of these cancers are classified as rare, making clinical 
trials and treatment standardization challenging [5]. In addition, soci-
etal stigma often prevents women from discussing gynecological health 
concerns, leading to delays in screening and late-stage diagnoses, thus 
increasing the risk of preventable deaths.
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Cervical cancer, a prevalent gynecological malignancy, originates in 
the cervix, the lower part of the uterus that connects to the vagina [7,
8]. It is mainly caused by persistent infection with high-risk human 
papillomavirus (HPV), a common sexually transmitted pathogen. The 
disease progresses gradually, beginning with precancerous cellular 
changes that, if not diagnosed or treated, can develop into invasive 
cancer and spread to other tissues [9]. However, cervical cancer is 
highly treatable when detected early. Effective screening programs, 
including HPV vaccination and routine screenings, enable timely inter-
ventions and early-stage treatment. By identifying high-risk individuals, 
healthcare providers can implement personalized screening strategies, 
improve patient outcomes, and reduce mortality rates.

Fig.  1 illustrates a motivating example comparing traditional and 
machine learning-based diagnostic pathways for cervical cancer, high-
lighting the limitations of manual interpretation and the potential 
for automation in risk prediction. Accurate models of cervical cancer 
risk prediction are therefore essential to enable personalized medicine, 
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Fig. 1. Comparison between conventional (microscope-based) diagnostics and machine 
learning–driven cervical cancer risk prediction.

allowing interventions to be tailored to individual risk profiles [10]. 
Such models enhance diagnostic efficiency, reduce unnecessary testing 
for low-risk individuals, and prioritize high-risk cases, ultimately im-
proving clinical outcomes while lowering overall healthcare costs [11]. 
Despite advances in predictive modeling within oncology, the appli-
cation of machine learning and deep learning techniques to develop 
and validate prognostic tools remains limited [12–14]. To address this 
gap, this study introduces a novel machine learning–based approach 
for cervical cancer risk prediction, contributing to the advancement of 
gynecological oncology.

Machine learning (ML), a core area within artificial intelligence, has 
emerged as a powerful tool for uncovering complex patterns in medi-
cal data, driving major advances in cancer prediction and recurrence 
assessment [15–17]. Both traditional non-deep learning algorithms 
(e.g., with a single hidden layer) and deep learning architectures (with 
multiple layers) have demonstrated effectiveness in cancer diagnostics 
across various modalities [18–21]. While Support Vector Machines 
(SVMs) continue to be widely adopted due to their robustness in 
high-dimensional spaces [22,23], they often demand labor-intensive 
feature engineering steps [24]. Deep learning addresses this limita-
tion by automatically extracting relevant features through hierarchical 
representations, enabling efficient end-to-end training pipelines with 
minimal manual intervention [25,26]. Architectures such as convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs) 
are especially well-suited for modeling complex, nonlinear relation-
ships in biomedical data. To further enhance predictive performance 
and generalizability, ensemble learning approaches—such as stacking, 
boosting, and majority voting—are increasingly used to integrate mul-
tiple base learners [27–29], improving overall reliability in clinical 
decision support.

Nested ensembling is an advanced extension of traditional ensemble 
methods. Although standard ensembles typically aggregate predictions 
from individual models, nested assembly introduces an additional layer 
of complexity [30,31]. The first layer of this approach consists of 
diverse base models, similar to conventional ensembles. However, in-
stead of directly combining their predictions, the outputs from these 
base models serve as inputs for a second layer of models. This second 
layer processes and refines the aggregated outputs, applying additional 
learning mechanisms to enhance predictive accuracy. The strength of 
nested assembly lies in its ability to capture intricate relationships 
between base models, often leading to superior performance compared 
to traditional assembly techniques. Building on its success in image 
classification, this study uses nested ensembles for the prediction of gy-
necological cancer risk, with the objective of improving the diagnostic 
accuracy and robustness of the model.
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The study presents a robust nested ensemble learning framework 
designed to improve cervical cancer risk prediction through deep learn-
ing. Unlike conventional ensemble methods that simply aggregate pre-
dictions from base models, our approach employs a hierarchical stack-
ing mechanism to refine feature extraction and enhance classification 
performance. In the first phase, we integrate multiple deep learning 
architectures, including CNNs, RNNs, and SVMs, each capturing distinct 
patterns within medical imaging data. The second phase utilizes a 
MetaClassifier with a voting mechanism that strategically combines 
J48 and SGD to optimize final predictions. This structured two-layer 
learning paradigm enhances the robustness of the model, mitigates 
overfitting, and improves generalizability between datasets.

The key contributions of this study are as follows.

• We propose NEDL-GCP, a nested ensemble deep learning frame-
work that integrates CNNs, RNNs, and SVMs as base learners. This 
approach effectively combines spatial, sequential, and statistical 
patterns in medical images, improving feature representation and 
classification accuracy.

• We introduce a two-tier MetaClassifier that utilizes J48 and SGD 
for adaptive decision fusion. By dynamically weighting predic-
tions from multiple base models, this hierarchical structure en-
hances classification performance, improves model robustness, 
and reduces overfitting.

• We validate NEDL-GCP on the Herlev and SIPaKMeD Pap Smear 
datasets, achieving accuracy rates of 99.1% and 98.5%, respec-
tively. These results demonstrate the reliability and potential of 
the model for advancing automated cervical cancer diagnostics.

The structure of the paper is organized as follows: Section 2 offers 
a comprehensive review of the related literature in cancer prediction 
models. Section 3 outlines our model development methodology. The 
experimental results are presented in Section 4. Section 5 discusses 
the implications, providing a comparative analysis with prior studies. 
Finally, Section 6 summarizes the main contributions of our study and 
outlines future research directions.

2. Related work

Gynecological cancers, including ovarian, uterine, cervical, vagi-
nal, and vulvar cancers, represent a significant global health concern. 
Among them, cervical cancer remains one of the most preventable 
malignancies, primarily caused by persistent infection with high-risk 
human papillomavirus (HPV). Early detection and accurate risk predic-
tion are essential to reduce mortality rates, where machine learning and 
deep learning techniques have increasingly played a vital role. This sec-
tion reviews existing methods for the prediction of cervical cancer risk, 
categorizing them into single-model approaches and ensemble-based 
learning strategies.

2.1. Single methods for gynecological cancer risk prediction

Traditional approaches for cervical cancer detection, such as Pa-
panicolaou (Pap) smear test and HPV DNA screening, remain the gold 
standard for early diagnosis. However, these methods are limited by 
interobserver variability, high false negative rates, and dependency 
on expert interpretation, prompting the need for automated and more 
reliable risk prediction techniques [2]. Machine learning has emerged 
as a promising alternative that offers data-driven models capable of 
improving diagnostic accuracy and minimizing human bias. Several 
studies have explored single-model machine learning approaches to 
improve cervical cancer detection. Kaushik et al. (2021) [32] developed 
a predictive model utilizing logistic regression, ridge classifiers and 
Gaussian Naive Bayes classifiers to analyze cytokine gene variants and 
sociodemographic risk factors. Their study highlighted the importance 
of genetic predisposition and environmental factors in assessing the risk 
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of cervical cancer, demonstrating the potential of statistical machine 
learning models in clinical decision making.

Neural network-based cytology image analysis has also shown
promise in automating cervical cancer screening.
Singh et al. (2015) [33] introduced a neural network-driven classifica-
tion system that employed image processing techniques to extract mor-
phological features such as the nucleus-to-cytoplasm ratio, color inten-
sity, and shape irregularities. The system, trained using the Backprop-
agation algorithm, effectively differentiated between non-cancerous, 
low-grade, and high-grade cancerous cells, offering an efficient al-
ternative to manual cytology assessment. Deep learning techniques, 
particularly convolutional neural networks (CNNs), have further im-
proved classification performance. Mingshi et al. (2019) [34] designed 
a CNN-based model for the classification of cervical exfoliated cells, 
leveraging hierarchical feature extraction to distinguish between nor-
mal and malignant structures. Similarly, Li et al. (2019) [35] employed 
a CNN model based on transfer learning, pre-trained in large-scale 
medical datasets, to improve the representation of features and achieve 
higher accuracy in the classification of cervical cancer images. These 
studies underscore the effectiveness of deep learning in automating 
cervical cancer diagnostics.

Despite their advancements, single-model approaches are often sus-
ceptible to overfitting, data variability, and limited generalizability 
between diverse populations. These challenges have driven the adop-
tion of ensemble learning strategies, combining multiple models to im-
prove robustness, enhance classification accuracy, and ensure reliable 
real-world clinical applications.

2.2. Ensemble methods for gynecological cancer risk prediction

Ensemble learning techniques have emerged as a powerful approach 
to improve cervical cancer prediction by combining multiple models 
to improve classification accuracy, robustness, and generalizability. 
Unlike single-model classifiers, ensemble approaches leverage diverse 
learning architectures, allowing for more comprehensive feature extrac-
tion and decision-making. Ensemble methods have demonstrated supe-
rior performance in automated cervical cancer detection by integrating 
various machine learning and deep learning models.

An ensemble-based cervical cancer prediction model was intro-
duced by Lu et al. (2020) [36], utilizing a voting mechanism among 
five classifiers, including logistic regression, decision trees, support 
vector machines (SVMs), multilayer perceptrons, and k-nearest neigh-
bors. To enhance classification robustness, the model incorporated a 
gene-assistance module that integrates genetic biomarkers into the 
prediction process. Curia et al. (2021) [37] developed an explainable 
ensemble framework that combined machine learning classifiers with 
interpretability techniques such as LIME and Shapley values. The in-
tegration of explainable AI significantly improved the transparency of 
cervical cancer risk prediction, making the model more suitable for 
clinical decision-making.

For cervical cancer diagnosis using colposcopy images, Chandran 
et al. (2021) [38] proposed an ensemble deep learning architecture 
named CYENET. The model utilized VGG19 for transfer learning and 
incorporated a novel classification fusion approach to enhance feature 
extraction and improve diagnostic accuracy. Ali et al. (2024) [39] 
presented a machine learning ensemble classifier integrating Random 
Forest, SVM, Gaussian Naïve Bayes, and Decision Tree models for cervi-
cal cancer prediction. The study emphasized model interpretability by 
incorporating SHapley Additive exPlanations (SHAP), ensuring greater 
transparency in clinical applications.

A stacked ensemble learning framework was proposed by Aljrees 
et al. (2024) [40], combining Random Forest, SVM, and XGBoost. 
The approach also employed KNN imputation to handle missing data, 
improving classification robustness for real-world cervical cancer diag-
nosis. Uddin et al. (2024) [41] designed an ensemble machine learning 
framework using hybrid feature selection techniques. By integrating 
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Principal Component Analysis (PCA) and XGBoost for optimal feature 
selection, the model leveraged a voting-based ensemble that combined 
Random Forest and Multilayer Perceptron classifiers. Additionally, Ran-
dom Oversampling was applied to mitigate class imbalance, further 
enhancing predictive performance. Kwatra et al. (2025) [42] intro-
duced an ensemble deep learning architecture integrating ResNet50 
and Inception V3. The model exploited the complementary strengths 
of both architectures to improve feature extraction and classification 
accuracy in gynecological cancer detection.

Despite the advancements of ensemble-based methods in cervi-
cal cancer prediction, challenges such as computational complexity, 
the need for large-scale annotated datasets, and standardization of 
clinical evaluation remain significant. Future research should focus 
on optimizing ensemble architectures, incorporating multi-modal data 
sources, and improving interpretability to enhance real-world clinical 
applicability.

3. NEDL-GCP method

Ensemble learning enhances classification by integrating multiple 
models to improve generalization and mitigate overfitting. Traditional 
methods, such as bagging and boosting, aggregate independent classi-
fiers but lack direct interaction between models, limiting their ability 
to exploit diverse feature representations. Nested ensemble learning 
addresses this limitation by introducing multiple refinement layers, 
where base classifiers generate predictions further optimized by a meta-
classifier, enabling deeper feature extraction and adaptive learning.

To improve cervical cancer risk prediction, we propose NEDL-GCP 
(Nested Ensemble Deep Learning for Gynecological Cancer Predic-
tion), a two-layer ensemble framework that integrates deep learning 
and traditional classifiers. The first layer extracts spatial, sequential, 
and statistical features using CNNs, RNNs, and SVMs. In contrast, the 
second layer refines predictions through a meta-classifier combining 
J48 decision trees and stochastic gradient descent (SGD). This struc-
tured approach improves classification accuracy and robustness. The 
following subsections detail the architecture, training strategy, and 
optimization.

3.1. Architectural design of NEDL-GCP

The NEDL-GCP framework consists of a two-layer ensemble struc-
ture designed to improve the accuracy of the classification. The first 
layer, the base classification layer, extracts diverse feature represen-
tations, while the second layer, the meta-classification layer, refines 
predictions for improved decision-making. Fig.  2 illustrates the overall 
framework.

(1) Base Classification Layer: This layer consists of independent 
classifiers that extract distinct feature representations: CNNs: Capture 
spatial patterns, texture, and morphological structures from cervical 
smear images. RNNs: Model sequential dependencies and structured 
imaging patterns. SVMs: Provide robust decision boundaries for linear 
and nonlinear classification.

(2) Meta-Classification Layer: Predictions from the base classifiers 
are aggregated and refined by the meta-classifier for final decision-
making: J48 Decision Tree: Captures hierarchical relationships between 
predicted class probabilities. SGD: Iteratively updates model weights to 
enhance classification performance.

3.2. Training and hyperparameter optimization

The hyperparameters of the NEDL-GCP framework are optimized 
using grid search and cross-validation to enhance classification per-
formance. CNNs employ ReLU activation with the Adam optimizer, 
while RNNs utilize tanh activation and RMSprop. The meta-classifier 
integrates J48 decision trees and stochastic gradient descent (SGD) 
for iterative learning. The key hyperparameters for all models are 
summarized in Table  1. 
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Fig. 2. Nested ensemble framework for cervical cell image classification.
Table 1
Key training parameters for base models and meta-classifier.
 Model Layers Activation function Optimizer Learning rate 
 CNNs 5 Conv, 2 FC ReLU Adam 0.001  
 RNNs 3 LSTM, 1 FC Tanh RMSprop 0.0005  
 SVMs – RBF Kernel – –  
 J48 – Decision Tree Splitting – –  
 SGD – Softmax Stochastic Gradient Descent 0.01  
3.3. Training algorithm for NEDL-GCP

The training process follows a structured two-stage approach. First, 
base classifiers (CNNs, RNNs, and SVMs) are trained independently 
to extract distinct feature representations. Their predictions are then 
refined by the meta-classifier (J48, SGD) to optimize classification 
accuracy. Cross-validation ensures robustness and prevents overfitting. 
The detailed training algorithm is outlined below.

Algorithm 1:  Training Algorithm for NEDL-GCP
Input: Labeled dataset , Cross-validation folds (𝐾), Base models 

(𝑀), Meta-classifiers (𝑃 ), Feature set  , Target classes (𝐶)
Output: Optimized nested ensemble model ∗

1: Split  into 𝐾 folds for cross-validation 
2: for each fold 𝑖 = 1 to 𝐾 do 
3: Partition  into training set 𝑡𝑟𝑎𝑖𝑛 and validation set 𝑣𝑎𝑙
4: for each base model 𝑚 = 1 to 𝑀 do 
5: Train CNN, RNN, or SVM on 𝑡𝑟𝑎𝑖𝑛
6: Save trained model 𝑚
7: end for
8: for each meta-classifier 𝑝 = 1 to 𝑃  do 
9: Generate validation predictions 𝑚 from each 𝑚
10: Aggregate 𝑚 using majority voting 
11: Train meta-classifier 𝑝 (J48, SGD) on aggregated 

predictions 
12: Evaluate 𝑝 using accuracy, precision, recall, and

F1-score
13: end for
14: end for
15: Train final nested ensemble model ∗ using optimized

parameters 
16: Evaluate ∗ on an independent test set and report

performance metrics

The structured learning approach in NEDL-GCP enhances classifi-
cation performance by integrating multiple classifiers, ensuring robust 
and interpretable predictions. Using various learning paradigms, this 
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model sets a new benchmark in automated cervical cancer detection, 
optimizing both sensitivity and specificity.

4. Experiments

In this section, we present the experimental findings of our proposed 
method. We conducted a series of experiments to thoroughly evalu-
ate the performance of our approach. The comparison methods were 
compiled in the Python programming language and implemented on a 
supercomputer with high-performance computing capabilities.

4.1. Datasets description

We used two publicly available datasets to develop and evaluate 
our cervical cancer prediction model: the Herlev dataset and SIPaKMeD 
Pap-Smear dataset. We carried out experiments on each dataset sepa-
rately.

4.1.1. Herlev dataset
The Herlev dataset comprises 917 cervical smear images collected 

from the Department of Pathology at Herlev University Hospital in 
Denmark [43]. These images are categorized into seven distinct classes 
based on cervical cell morphology: superficial squamous epithelia (A, 
70 images), intermediate squamous epithelia (B, 98 images), columnar 
epithelial cells (C, 74 images), mild squamous non-keratinizing dys-
plasia (D, 182 images), moderate squamous non-keratinizing dysplasia 
(E, 150 images), severe squamous non-keratinizing dysplasia (F, 146 
images), and squamous cell carcinoma in situ (G, 197 images). To 
ensure consistency in image analysis, all images were pre-processed by 
normalizing their size and converting them to grayscale. This standard-
ization helps improve feature extraction and improves the robustness of 
deep learning models. Fig.  3 illustrates the distribution of images in the 
seven categories of the Herlev dataset.

4.1.2. SIPaKMeD Pap-Smear dataset
The SIPaKMeD Pap Smear dataset contains 4049 isolated cell im-

ages extracted from 966 whole slide images [44]. These images are 
categorized into five distinct classes according to cytomorphological 
characteristics: Normal Superficial-Intermediate (831 images), Normal 
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Fig. 3. Distribution of images in the Herlev dataset.
Fig. 4. Distribution of images in the SIPaKMeD Pap Smear dataset.
Parabasal (787 images), Abnormal Koilocytotic (825 images), Abnor-
mal Dyskeratotic (813 images), and Benign Metaplastic (793 images). 
This dataset provides a diverse representation of cervical cytology, cap-
turing both normal and abnormal cell types. This variability improves 
the robustness of deep learning models trained for automated cervical 
cancer detection. Fig.  4 illustrates the distribution of images in the five 
classes of the SIPaKMeD Pap smear dataset.

4.2. Data pre-processing

Data pre-processing is a crucial step in preparing datasets for ma-
chine learning models. In this study, data augmentation techniques 
were applied to enhance the training dataset by generating transformed 
versions of the original cell images. These transformations improve 
model generalization and mitigate overfitting. The augmentation pro-
cess included horizontal flipping, rotations, and random scaling. Specif-
ically, the images were rotated within a range of 𝜃 = −60 to 60 degrees, 
scaled by a factor 𝛼 ranging from 1.0 to 1.1, with a probability of 
𝑃𝐴 = 0.75 for scaling and 𝑃𝐵 = 0.5 for horizontal flipping. These 
transformations introduced diversity into the training dataset, ensuring 
that the model learns invariant features and improves its performance 
on unseen data.

4.3. Baselines

In this subsection, we compare the proposed method with widely 
used deep learning models—VGG-16, VGG-19, ResNet-50, and
XceptionNet—along with ensemble-based classifiers, including Late 
Fusion (LF), ML-EnsCC, and BRFEC. The evaluation is conducted on 
two benchmark datasets: Herlev and SIPaKMeD Pap Smear. To ensure 
fair comparison, all deep learning models were fine-tuned using the 
Stochastic Gradient Descent (SGD) optimizer and Rectified Linear Unit 
(ReLU) activation function.

• VGG-16 [45]: A deep convolutional neural network (CNN) with 
13 convolutional layers and 3 fully connected layers. It uses 3 × 3 
filters and has been widely applied for image classification due to 
its strong feature extraction capabilities.

• VGG-19 [45]: An extension of VGG-16 with 16 convolutional 
layers, maintaining the same filter sizes and improving feature 
representation.
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• ResNet-50 [46]: A residual deep network with 50 layers, incorpo-
rating skip connections to ease training and mitigate gradient van-
ishing issues. ResNet architectures have achieved state-of-the-art 
performance in image recognition tasks.

• XceptionNet [47]: A CNN that utilizes depthwise separable con-
volution layers for efficient parameter utilization while maintain-
ing high classification accuracy. XceptionNet has demonstrated 
robust performance across multiple image processing tasks.

• Late Fusion (LF) [48]: An ensemble technique that aggregates 
predictions from multiple classifiers using majority voting. The 
final classification is determined by the highest vote count among 
the models, mathematically represented as:
∑

𝑋(𝑚, 𝑛) = max 𝑌𝑛
∑

𝑋(𝑚, 𝑛)

where 𝑋(𝑚, 𝑛) represents the number of classifiers, 𝑌𝑛 denotes the 
number of classes, and 𝐸(𝑚, 𝑛) ∈ (0, 1) indicates the decision of 
the 𝑖th classifier.

• ML-EnsCC [36]: An ensemble method that combines deep learn-
ing models (CNNs, RNNs) with traditional classifiers (SVMs) using 
stacking or majority voting to enhance cervical cancer detection 
accuracy.

• BRFEC [39]: An ensemble method for cervical cancer predic-
tion using behavioral risk factors. It integrates Random Forest, 
SVM, Naïve Bayes, and Decision Tree in a stacking framework, 
employing feature selection, SMOTE, and SHAP for improved 
interpretability.

4.4. Evaluation metrics

The performance of NEDL-GCP is evaluated using four key metrics: 
accuracy, precision, recall, and F1-score [49,50]. These metrics provide 
a comprehensive assessment of classification effectiveness, balancing 
correct identification and misclassification rates.

Accuracy: Measures the proportion of correctly classified instances 
among all samples:

Accuracy = TP + TN
TP + TN + FP + FN

Where TP, TN, FP, and FN denote true positives, true negatives, false 
positives, and false negatives, respectively.
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Table 2
Performance comparison of two layers in Herlev dataset.
 Model Precision Recall F1-Score Accuracy 
 First Layer 0.939 0.941 0.931 0.952  
 Nested Ensemble 0.989 0.982 0.986 0.985  

Precision: Indicates how many predicted positive cases are actually 
correct:

Precision = TP
TP + FP

Recall: Represents the model’s ability to identify actual positive 
cases:

Recall = TP
TP + FN

F1-score: A harmonic mean of precision and recall, balancing both 
measures:

F1-score = 2 ⋅ Precision × RecallPrecision + Recall
These metrics collectively evaluate model reliability, ensuring a 

balance between sensitivity and specificity.

4.5. Results

This section presents the experimental findings of our proposed 
model, evaluating its performance across multiple datasets. We pro-
vide a comparative analysis with existing methods, assess statistical 
significance, and discuss key observations from the results.

4.5.1. Quantitative results on Herlev dataset
The effectiveness of the proposed method for detecting cervical 

cancer in the Herlev Pap smear dataset was evaluated through a series 
of experiments. A two-layer nested ensemble approach was utilized, 
achieving an F1 score of 0.986 and an accuracy of 0.985. These results 
highlight the robustness of the proposed method and its potential for 
improving cervical cancer detection.
Nested ensemble with two layers on Herlev dataset. The proposed nested 
ensemble framework consists of two layers. The first layer includes 
three base classifiers: CNN, RNN, and SVM, which extract spatial, 
sequential, and statistical features from cervical smear images. Their 
outputs are combined using a majority voting strategy to generate 
preliminary predictions. The second layer refines these predictions 
using an ensemble classifier composed of J48 decision trees and SGD. 
This hierarchical structure improves decision making by leveraging 
multiple learning mechanisms.

Table  2 presents the classification performance of each layer in 
terms of precision, recall, F1-score, and accuracy. The first layer
achieved an F1-score of 0.931 and an accuracy of 0.952. The nested en-
semble, which integrates the output from the first layer, demonstrated 
superior performance with an F1 score of 0.986 and an accuracy of 
0.985. 

The results confirm the effectiveness of the nested ensemble ap-
proach, demonstrating improved classification performance compared 
to individual base classifiers.
5-Fold cross-validation and hold-out 80:20 on Herlev dataset. To further 
validate the robustness of the proposed method, two evaluation tech-
niques were employed: 5-fold cross-validation and hold-out 80:20. In 
5-fold cross-validation, the dataset was divided into five equal subsets, 
where four were used for training and one for testing. This process was 
repeated five times to ensure stability in the results. The hold-out 80:20 
method randomly split the dataset into 80% training and 20% testing.

The performance metrics for both techniques are depicted in Fig.  5. 
The 5-fold cross-validation experiment yielded an average accuracy of 
0.985, precision of 0.985, recall of 0.986, and F1-score of 0.985. Sim-
ilarly, the hold-out 80:20 experiment achieved an accuracy of 0.978, 
precision of 0.975, recall of 0.982, and F1-score of 0.981. These results 
indicate the consistency and reliability of the proposed method.
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Table 3
Performance comparison of two layers on SIPaKMeD Pap Smear dataset.
 Model Precision Recall F1-Score Accuracy 
 First Layer 0.933 0.942 0.930 0.930  
 Nested Ensemble 0.994 0.991 0.992 0.991  

Comparison with state-of-the-art methods on Herlev dataset. In this ex-
periment, we evaluated the performance of our proposed method on 
the Herlev Pap Smear dataset and compared it with seven state-of-the-
art methods: Late Fusion (LF), VGG16, VGG19, ResNet50, XceptionNet, 
ML-EnsCC, and BRFEC. We used the same dataset division as in Ex-
periment 2, where we randomly split the dataset into a training set 
(80% of the data) and a testing set (20% of the data). We trained our 
proposed method on the training set and evaluated its performance on 
the testing set. To ensure a fair comparison, we compared our results 
with the results reported in the literature for the seven state-of-the-art 
methods using the same evaluation metrics.

The results of the experiment are shown in Fig.  6. Our proposed 
method achieved a precision of 0.989, a recall of 0.985, an F1-score 
of 0.986, and an accuracy of 0.985. In particular, our method outper-
formed all the state-of-the-art methods in terms of precision, recall, F1 
score, and accuracy.

4.5.2. Quantitative results on SIPaKMeD Pap Smear dataset
To further assess the generalizability of the proposed method, we 

evaluated its performance on the SIPaKMeD Pap Smear dataset. This 
publicly available benchmark dataset contains 4049 cervical cell im-
ages categorized into five diagnostic classes. Using the same experi-
mental setup as in the Herlev dataset evaluation, we aimed to validate 
the robustness and adaptability of our approach in cervical cancer 
classification.

Nested ensemble with two layers on SIPaKMeD Pap Smear dataset. The 
nested ensemble approach was implemented with two layers to classify 
cervical cells within the SIPaKMeD dataset. The first layer consisted of 
three base classifiers: CNN, RNN, and SVM. Each classifier was trained 
independently on the dataset and their outputs were aggregated using 
a majority voting strategy to form initial predictions.

In the second layer, predictions from the base classifiers served as 
input features for another ensemble classifier, utilizing J48 and SGD 
algorithms to refine the final decision-making process. Majority voting 
was applied at this stage to further enhance classification accuracy.

Table  3 presents the performance of both classification layers. The 
first layer achieved an accuracy of 0.930 and an F1-score of 0.930, 
demonstrating strong baseline performance. The nested ensemble ap-
proach further improved classification results, achieving an accuracy of 
0.991 and an F1-score of 0.992, confirming its effectiveness in cervical 
cell classification. 
5-Fold cross-validation and hold-out 80:20 on SIPaKMeD Pap Smear 
dataset. To ensure a thorough evaluation, we tested the proposed 
method using two different validation strategies: 5-fold cross-validation 
and an 80:20 hold-out method. In 5-fold cross-validation, the dataset 
was partitioned into five subsets, four of which were used for training 
and one for testing in each iteration. This process was repeated five 
times to obtain an average performance measure. In the hold-out 
approach, the dataset was randomly split into 80% training and 20% 
testing.

The results are summarized in Fig.  7. The 5-fold cross-validation 
experiment yielded an average accuracy of 0.9918, precision of 0.9919, 
recall of 0.9919, and F1-score of 0.9918. Similarly, the hold-out 80:20 
experiment achieved an accuracy of 0.9901, precision of 0.9899, re-
call of 0.9909, and an F1-score of 0.9903. These results confirm the 
consistency and robustness of the proposed method in cervical cancer 
classification.
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Fig. 5. Performance comparison of evaluation techniques on the Herlev dataset: 5-fold cross-validation and hold-out 80:20.
Fig. 6. Performance comparison of our proposed method with baseline models on the Herlev dataset in terms of precision, recall, F1-score, and accuracy.
Fig. 7. Performance comparison of evaluation techniques on SIPaKMeD Pap Smear dataset: 5-fold cross-validation vs. hold-out 80:20 split.
Comparison with state-of-the-art methods on SIPaKMeD Pap Smear dataset. 
In this experiment, we evaluated the performance of our proposed 
method on the SIPaKMeD Pap Smear dataset and compared it with 
seven state-of-the-art methods: VGG16, VGG19, ResNet50, Xception-
Net, Late Fusion (LF), ML-EnsCC, and BRFEC. We used the same dataset 
division as in Experiment 2, where we randomly divided the dataset 
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into a training set (80% of the data) and a testing set (20% of the data). 
We trained our proposed method on the training set and evaluated its 
performance on the testing set. We then compared our results with the 
results reported in the literature for the seven state-of-the-art methods.

Fig.  8 shows the performance of each method in terms of preci-
sion, recall, F1-score, and accuracy. Our proposed method achieved 
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Fig. 8. Performance comparison of our proposed method with baseline models on the SIPaKMeD Pap Smear dataset in terms of precision, recall, F1-score, and accuracy.
a precision of 0.992, a recall of 0.990, an F1-score of 0.990, and an 
accuracy of 0.991, outperforming all of the state-of-the-art methods in 
all evaluation metrics.

VGG16 achieved a precision of 0.983, a recall of 0.981, an F1-score 
of 0.980, and an accuracy of 0.982. VGG19 achieved a precision of 
0.966, a recall of 0.962, an F1-score of 0.964, and an accuracy of 0.964. 
ResNet50 achieved a precision of 0.964, a recall of 0.958, an F1-score 
of 0.960, and an accuracy of 0.960. XceptionNet achieved a precision 
of 0.751, a recall of 0.650, an F1-score of 0.639, and an accuracy of 
0.657. LF achieved a precision of 0.986, a recall of 0.986, an F1-score 
of 0.986, and an accuracy of 0.986. ML-EnsCC achieved a precision of 
0.96, a recall of 0.94, an F1-score of 0.95, and an accuracy of 0.93. 
BRFEC achieved a precision of 0.97, a recall of 0.97, an F1-score of 
0.96, and an accuracy of 0.95.

Our proposed method achieved high precision, recall, and F1-score, 
demonstrating its effectiveness in accurately predicting gynecological 
cancer from Pap smear images. The achieved accuracy of 0.991 in-
dicates the potential of our proposed method in clinical settings for 
screening and early detection of cervical cancer.

4.6. Statistical significance analysis

To validate the performance improvements of the proposed nested 
ensemble model, we conducted statistical significance testing using 
independent two-sample t-tests and computed 95% confidence intervals 
for accuracy scores. The tests compare NEDL-GCP against seven widely 
used models, including deep learning architectures (VGG-16, VGG-
19, ResNet-50, XceptionNet), Late Fusion (LF), and ensemble-based 
methods ML-EnsCC and BRFEC, across the Herlev and SIPaKMeD Pap 
Smear datasets.

Table  4 presents the statistical significance results, including mean 
accuracy, confidence intervals, and p-values. The confidence intervals 
indicate the range within which the true accuracy values likely fall, 
while the p-values measure the statistical significance of the differences 
between NEDL-GCP and the baseline models. 

The results indicate that NEDL-GCP consistently outperforms the 
baseline models on both datasets. The p-values for most comparisons 
are below 0.05, suggesting statistically significant improvements, par-
ticularly over VGG-16, VGG-19, ResNet-50, and XceptionNet. The Late 
Fusion classifier exhibits competitive performance in SIPaKMeD, but 
NEDL-GCP still achieves superior results. The inclusion of ML-EnsCC 
and BRFEC provides a fairer comparison with other ensemble-based 
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methods. As shown in Table  4, while both models perform well, NEDL-
GCP still achieves the highest accuracy with statistically significant 
improvements.

The confidence intervals further confirm the robustness of NEDL-
GCP, as it consistently maintains a high accuracy range compared to 
the baseline models. These findings provide strong statistical evidence 
supporting the efficacy of the proposed nested ensemble approach for 
the prediction of cervical cancer risk prediction.

5. Discussion

Deep learning models have shown significant potential in medical 
applications, particularly for the prediction of cervical cancer risk. In 
this study, we introduce NEDL-GCP, a nested ensemble deep learning 
approach that integrates deep learning architectures with ensemble 
techniques to enhance prediction accuracy. Our model surpasses sev-
eral state-of-the-art classifiers, achieving remarkable performance on 
the Herlev and SIPaKMeD Pap Smear datasets. Specifically, NEDL-GCP 
achieved F1 scores of 0.986 and 0.992, and accuracies of 0.991 and 
0.985, respectively. To ensure a comprehensive evaluation, Table  5 
presents a comparative analysis of NEDL-GCP against existing clas-
sification models, emphasizing its superiority in precision, accuracy, 
F1-score, and recall. 

Our study introduces an advanced nested ensemble deep learn-
ing framework (NEDL-GCP) that significantly improves classification 
performance compared to traditional ensemble classifiers. Unlike con-
ventional ensemble methods that only aggregate predictions from base 
models, our approach refines output through multiple learning layers, 
enhancing feature representation and robustness. Using deep learning 
architectures alongside decision-based classifiers, NEDL-GCP achieves 
superior predictive performance. The results in Table  5 demonstrate 
that our model outperforms both traditional ensemble techniques and 
individual deep learning classifiers for cervical cancer detection.

Despite these promising results, some limitations should be ac-
knowledged. First, dataset bias remains a concern. Although the Herlev 
and SIPaKMeD Pap Smear datasets are well-structured benchmarks, 
they may not fully reflect real-world clinical variability between differ-
ent populations, imaging conditions, and medical institutions. Future 
research should incorporate more diverse datasets to improve model 
generalizability.

Second, model overfitting is a potential issue due to the complexity 
of the nested ensemble architecture. Although cross-validation and 
regularization methods were applied, additional techniques such as 
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Table 4
Statistical significance analysis of model performance.
 Model Herlev dataset SIPaKMeD dataset
 Accuracy CI (95%) 𝑝-value Accuracy CI (95%) 𝑝-value  
 NEDL-GCP 0.991 (0.981, 1.001) – 0.985 (0.975, 0.995) –  
 VGG-16 0.887 (0.877, 0.897) 0.0001 0.986 (0.976, 0.996) 0.2103  
 VGG-19 0.860 (0.850, 0.870) 0.00001 0.986 (0.976, 0.996) 0.1845  
 ResNet-50 0.838 (0.828, 0.848) 0.000001 0.960 (0.950, 0.970) 0.0034  
 XceptionNet 0.397 (0.387, 0.407) 0.000001 0.657 (0.647, 0.667) 0.000001 
 Late Fusion (LF) 0.860 (0.850, 0.870) 0.00001 0.960 (0.950, 0.970) 0.0029  
 ML-EnsCC 0.930 (0.920, 0.940) 0.0042 0.948 (0.938, 0.958) 0.0095  
 BRFEC 0.950 (0.940, 0.960) 0.0028 0.970 (0.960, 0.980) 0.0053  
Table 5
Performance comparison of cervical cancer prediction models.
 Dataset Model Precision Accuracy F1-Score Recall 
 

Herlev Dataset

NEDL-GCP 0.989 0.985 0.986 0.982 
 LF 0.887 0.860 0.877 0.872  
 XceptionNet 0.412 0.397 0.380 0.425  
 ResNet-50 0.860 0.838 0.853 0.850  
 ML-EnsCC 0.920 0.930 0.925 0.918  
 BRFEC 0.945 0.950 0.948 0.943  
 

SIPaKMeD Pap Smear

NEDL-GCP 0.994 0.991 0.992 0.991 
 LF 0.986 0.986 0.986 0.986  
 XceptionNet 0.751 0.657 0.639 0.650  
 ResNet-50 0.964 0.960 0.960 0.958  
 ML-EnsCC 0.950 0.948 0.949 0.947  
 BRFEC 0.970 0.965 0.968 0.966  

dropout layers, data augmentation, and semi-supervised learning could 
further enhance robustness in future studies.

Third, this study primarily focuses on cervical cancer prediction. 
The applicability of NEDL-GCP to other general or gynecological can-
cers remains unexplored. Future research should investigate whether 
this framework can be extended to broader oncological applications by 
validating its effectiveness in various cancer datasets.

In conclusion, NEDL-GCP demonstrates state-of-the-art performance 
in cervical cancer risk prediction, outperforming baseline classifiers 
in precision, accuracy, recall, and F1-score. Addressing the aforemen-
tioned limitations will further strengthen its applicability and relia-
bility. Future work should focus on incorporating additional datasets, 
refining regularization techniques, and expanding the application of the 
model to other types of cancer, maximizing its clinical impact.

6. Conclusion

This study introduced a new ensemble deep learning framework 
for predicting cervical cancer risk, using a stacking-based model that 
integrates multiple neural network architectures. By effectively com-
bining complementary features from different classifiers, our approach 
improves predictive accuracy and robustness. Our model outperformed 
conventional machine learning approaches, achieving an F1-score of 
0.986 and an accuracy rate of 0.985, demonstrating state-of-the-art per-
formance. Furthermore, the proposed method exhibited strong general-
izability, maintaining high predictive accuracy when tested on an inde-
pendent dataset. This robustness highlights its potential for real-world 
clinical applications, offering physicians a reliable tool for personalized 
risk assessment and treatment planning. By improving early detection, 
our approach can contribute to more precise interventions, ultimately 
enhancing patient outcomes. Future research should focus on extending 
this framework to other types of cancer to assess its broader appli-
cability. Furthermore, integrating multimodal data sources, such as 
genomic, histopathological and clinical records, could further refine 
the accuracy of cancer prediction and improve personalized healthcare 
strategies.
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