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Compare the pair: Rotated versus unrotated surface codes at equal logical error rates
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Practical quantum computers will require resource-efficient error-correcting codes. The rotated surface code
uses approximately half the number of qubits as the unrotated surface code to create a logical qubit with the
same error-correcting distance. However, instead of distance, a more useful qubit-saving metric would be based
on logical error rates. In this work we find the well-below-threshold scaling of logical to physical error rates
under circuit-level noise for both codes at high odd and even distances and then compare the number of qubits
used by each code to achieve equal logical error rates. We perform Monte Carlo sampling of memory experiment
circuits with all valid CNOT orders using the stabilizer simulator Stim and the uncorrelated minimum-weight
perfect matching decoder PyMatching 2. We find that the rotated code uses about 74% the number of qubits
used by the unrotated code to achieve a logical error rate of pL = 10−12 at the operational physical error rate of
p = 10−3. The ratio remains ≈75% for p values within a factor of two of p = 10−3 for all useful pL . Our work
finds the low-pL scaling of the surface code and clarifies the qubit savings provided by the rotated surface code,
providing numerical justification for its use in future implementations of the surface code.

DOI: 10.1103/PhysRevResearch.7.033074

I. INTRODUCTION

Certain algorithms can be run on quantum computers
with far lower processing time and resource requirements
than on classical computers [1,2]. Noise processes impeding
this quantum advantage can come from unwanted envi-
ronmental interactions and the analog nature of quantum
operations. To reliably implement a quantum algorithm re-
quires fault-tolerant [3,4] quantum operations and a quantum
error-correcting code (QECC), which is a set of quantum
states that enable the detection and correction of errors [5].
This involves encoding a qubit as a logical qubit of the QECC.

Minimizing the resources required by a QECC will help
realize a fault-tolerant quantum computer, which is theoret-
ically achievable if the physical qubits which make up its
logical qubits experience only finitely correlated errors that
occur below some probability threshold, pth.

The surface code [6] is a stabilizer code [3] which has one
of the highest thresholds of any QECC and which was used
in an experiment demonstrating that increasing the size of a
logical qubit decreases its logical error rate (pL) [7]. This ex-
periment used the rotated surface code [8,9], which uses about
half the number of physical qubits as the unrotated surface
code [10] to create a logical qubit of the same error-correcting
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distance, d . However, while the distance achieved is equal,
the rate of logical error suppression is not. At the same d and
under uniform depolarizing noise the unrotated code outper-
forms the rotated, achieving a lower pL [11,12] and slightly
higher threshold, likely because it has fewer minimum-weight
paths that form logical errors (as Sec. II D) [13].

The aim of our work is to provide numerical justification
for the use of either the rotated or unrotated surface code
by comparing the scaling of their respective pL values under
two circuit-level noise models, which assume every quantum
operation can be faulty, and a minimum-weight perfect
matching decoder [14]. We quantify the qubit saving that
the rotated code provides not in achieving the same d as
the unrotated code but in achieving the same pL. Due to its
relevance to circuit-level noise, our work also investigates
the effect of varying the CNOT orders in the stabilizer
measurement circuits.

In Sec. II we provide a background to quantum error cor-
rection, the rotated and unrotated surface codes, the order
of two-qubit gates in stabilizer measurement circuits, and a
review of prior work leading to ours. Section III describes our
methods. We present and discuss our results in Sec. IV before
concluding in Sec. V.

II. BACKGROUND

A. The surface code

The surface code is a topological stabilizer QECC [3].
It was first introduced as the toric code [6], then with
boundaries as the unrotated (planar) surface code [10], and
finally reformulated as the rotated surface code [8,9], which
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FIG. 1. The stabilizer generators of a d = 5, unrotated surface code logical qubit and its conceptual rotation to a d = 5 rotated code.
X (Z)-type stabilizer generators are tensor products of up to four Pauli X (Z) operations on neighboring data qubits. Stabilizer measurements
are performed using auxiliary qubits. A single qubit error is visualized as a chain linking the two auxiliary qubits of stabilizers it anticommutes
with and hence cause to give −1 measurements results. Multiple errors form chains anticommute with stabilizers at their end points, unless
the end point is at a boundary. A logical operator XL (ZL) is any chain that links boundaries of X (Z)-type boundaries. This requires at least d
X (Z) operations.

requires about half the number of qubits as the unrotated code
for the same d , as shown in Table I.

The basis states of the surface code’s logical qubit are su-
perpositions of entangled data qubits. The minimum number
of single-qubit operations to transform from one logical basis
state to the other is the distance d . This transformation is a
logical operation, or error if unintended, and the code cannot
detect it. Continuous noise on qubits is discretized in stabilizer
codes by projective measurements of the code stabilizers [3].
These are usually tensor products of the Pauli operators, 1,
X , Y , and Z , and are unitary and Hermitian operators whose
±1 eigenvalues or measurement outcomes, the combination
of which is called a syndrome, do not depend on the state
itself but on which errors have occurred. Hence, measuring
the stabilizers, also referred to as syndrome extraction, does
not destroy information in the logical state but discretizes
the noise and projects the state to a stabilizer eigenstate. The
error-free logical qubit state is a superposition of the joint +1
stabilizer eigenstates.

Figure 1 depicts a d = 5 unrotated surface code logical
qubit and its conceptual rotation to its rotated equivalent.
X (Z)-type stabilizer generators are tensor products of up to
four X (Z) operators on neighboring data qubits. Products of
generators form the stabilizer group. Z (X ) errors anticom-
mute with X (Z)-type stabilizers to cause −1 measurement
outcomes. Auxiliary qubits are used to perform and report
the outcomes of stabilizer measurements. We visualize single-
qubit errors as linking auxiliary qubits of the stabilizers they
anticommute with. Multiple errors form chains that anticom-
mute with stabilizers at their end points, unless an end point is
at a boundary. Logical Pauli operations, XL and ZL, mutually

TABLE I. A distance-d logical qubit’s physical qubit count.

Rotated Unrotated

Data qubits d2 d2 + (d − 1)2

Auxiliaries d2 − 1 d2 + (d − 1)2 − 1
Total qubits 2d2 − 1 (2d − 1)2

anticommute but commute with the stabilizer group. XL (ZL)
is a chain of at least d X (Z) operations joining opposite
boundaries of X (Z)-type stabilizers.

B. Errors and decoding

QECCs aim to protect the information stored in their log-
ical qubits even as their physical qubits experience noise.
In stabilizer codes, continuous noise acting on data qubits
is projected to discrete Pauli noise by measuring the sta-
bilizer generators. The circuits in Fig. 2(a) perform these
measurements in the surface code. Including initialization and
measurement of the auxiliary, the X (Z)-type stabilizer circuit
is depth-eight(six).

Different noise models vary in how they model errors in
the stabilizer measurement circuits. In a code capacity noise

FIG. 2. Representations of X -type (upper diagrams) and Z-type
(lower diagrams) stabilizer measurement circuits. The uppermost
qubit in each circuit in (a) is the auxiliary. Data qubits are numbered
from 0 to 3 depending on their position relative to the auxiliary in
the surface code lattice, as depicted in (b) and (c) where the auxiliary
is at the center of the stabilizer it measures. We refer to the depicted
CNOT order as 10231203, quoting X then Z-type order.
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model, it is assumed stabilizer measurement is perfect. Noise
on data qubits is modelled as an error, chosen uniformly
chosen from {1, X,Y, Z}, occurring with probability p. It
precedes perfect stabilizer measurements. Circuit-level noise,
on the other hand, models all the operations as faulty. In
addition, it features idling errors. These apply to any qubit not
being operated on while another qubit is, that is in a particular
time step. The measurement circuits can consequently cause
errors to spread between data and auxiliary qubits, report an
incorrect eigenvalue or both. Additionally, if idling errors are
inserted in the Z-type circuit at the same time step and p value
as the H gates in the X -type circuit, then the circuits become
equivalent in terms of applied noise, as if they were both of
depth eight.

Table II shows two circuit-level noise models. Standard (or
uniform) depolarizing (SD) noise assumes that errors after
a gate are uniformly distributed among Pauli operators and
assumes that each operation is equally likely to be faulty.
The superconducting-inspired (SI) noise model [15,16] also
assumes uniform error distributions after each gate but as-
signs different relative failure probabilities to each operation,
reflecting their varying durations and consequent error rates in
superconductors.

Performing multiple repetitions, also referred to as rounds
or cycles, of stabilizer measurements increases the reliability
of the reported measurement outcomes, i.e., the syndrome. In
the absence of noise, the syndrome should not change between
rounds. When looking at a single stabilizer’s measurement
outcome, this implies that its parity from one round to the
next should be consistent. To formalize this, a detector is
a parity constraint on a set of measurement outcomes [17].
A detector’s set could contain one stabilizer’s measurement
outcome in the previous and current round. If the parity is not
as expected (given a noiseless circuit), then this is a detection
event and indicates that an error has occurred. Note when
calculating parity we refer to the +1 (−1) outcome as 0 (1).

Detectors are useful in solving the problem of decoding,
which is identifying the most likely set of errors given a set of
detection events. A decoder must solve this problem “fast”
enough to avoid an exponentially growing backlog of out-
put and ensure subsequent logical operations are performed
correctly [18,19]. Some decoders prioritize accuracy [20–22],
while others prioritize speed [14,23–28]. For a review of de-
coders used in the surface code, see Ref. [29].

To solve the decoding problem a detector graph is first
created where detection events are nodes and edges are
mechanisms that would trigger them, weighted by their prob-
ability of occurring. A syndrome graph could be constructed
similarly, namely with stabilizer measurements (rather than
detection events) as nodes and edges being errors that would
cause them to report −1 eigenvalues. Figure 4 shows the
X -error syndrome graphs for the rotated and unrotated surface
codes. For the X (Z)-error syndrome graph the edges are X
(Z) errors and nodes are the auxiliary qubits of Z(X )-type
stabilizers. Syndrome graphs can be used for decoding under
a code capacity noise model because only spatial errors occur
and each round can be considered independently. However
detector graphs, which track changes in the syndrome graph,
are usually less dense and aid decoding when also considering
temporal errors. This is especially necessary under circuit-

level noise where an error in one round may not trigger a
change in a stabilizer’s eigenvalue until the following [30].
A detector graph is consequently the choice of graph given to
the decoder and we subsequently refer to it as the matching
graph.

In graph theory, a perfect matching is a set of edges
where each node is connected to exactly one edge. If the
edges are weighted, then a minimum-weight perfect match-
ing (MWPM) is a subset with the minimum weight. When
performing MWPM on a detector graph from a surface code,
the MWPM is a set of errors that is most probable considering
uncorrelated noise. In stabilizer codes, this matching can be
equal to the set that actually occurred up to multiplication
by stabilizers. This set of topologically equivalent errors is
a class. Picking the most likely class is maximum likelihood
decoding and is optimal [31]. However, it takes much longer
than MWPM, which simply picks the most likely, or one of
the most likely, patterns of errors without considering classes.

One way to test the error-correcting performance of a
QECC and decoder is by Monte Carlo sampling of memory
experiments, as in Refs. [11,15,32]. A memory experiment
is also applicable to performing logical operations on logi-
cal qubits when using lattice surgery [8], as lattice surgery
requires preserving a logical qubit in memory but changing
the order of stabilizer measurements along its boundaries. A
memory experiment in the surface code in the ZL (XL) basis
requires encoding the |0〉L (|+〉L )) state by initializing all data
qubits to |0〉 (|+〉) and then performing the first round of
stabilizer measurements. After preserving the state through
more rounds of stabilizer measurements, usually d [32] or 3d
[7,15,33], the logical qubit is measured by measuring the data
qubits in the Z (X ) basis and then checking their parity under
ZL (XL). The detection events and measurement outcomes
are decoded and the necessary corrections decide whether
the measurement outcome should be flipped to interpret the
correct result. We refer to this experiment as memory Z (X ).
If XL or ZL is formed an odd number of times during a
memory experiment, be it from single-qubit errors on data
qubits connecting opposite boundaries or the decoder failing
and its suggested corrections forming a logical operator, then
a logical error has occurred.

As long as the physical error rate (p) affecting the faulty
gates and qubits in the QECC is below a certain probability
threshold (pth), increasing the distance of the code decreases
the logical error rate pL [34]. Memory experiments over
various d and p values reveal a code’s threshold for the
noise model and decoder. When judging the performance of
a QECC it is better to have a higher pth but a lower pL.

When p < pth, pL is said to scale with p as:

pL = α1

(
p

pth0

)de

+ α2

(
p

pth1

)de+1

+ α3

(
p

pth2

)de+2

+ . . .

(1)

where the error dimension is de = d/2 for even code distances
and de = (d + 1)/2 for odd [23,35]. The reasoning behind
this is that de errors aligned along a logical minimum-weight
chain will cause the decoder’s corrections to complete the
chain, forming a logical error.

The pL of a memory experiment is usually reported per
d rounds of stabilizer measurements as reporting per round
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would result in an overestimate of the threshold [32] and d
rounds is the number required for fault-tolerant merge and
split operations when using lattice surgery for logical quantum
operations [8].

Although the |0〉L (|+〉L) state is a +1 eigenstate of ZL

(XL) and in the surface code is unaffected by single-qubit Z
(X ) errors, both types of stabilizers must be measured in a
memory experiment to estimate the code’s performance for an
unknown state and realistically simulate the error-mixing they
introduce. For example, the measurement of X -type stabilizers
to detect Z errors can copy a single X error to multiple data
qubits. While the Z errors would not affect the |0〉L state, the
copied X errors would. Furthermore, if a Y error occurs, then
it creates correlations in the separate X and Z detector graphs.
Uncorrelated decoders [14] treat these as separate X and Z
errors and incorrectly assume if a single-qubit error occurs
with probability p, then a Y error occurs with probability p2,
because Y = iXZ . Correlated decoders hence boost perfor-
mance [11,15].

C. CNOT order and hook errors

The order of the CNOT gates in the stabilizer measurement
circuits must be chosen carefully so the stabilizer circuits can
be performed in parallel and do not unnecessarily introduce
errors. This can be summarized into three criteria. Any CNOT
order which satisfies these criteria we refer to as a valid CNOT
order. To explain the criteria we will use CNOT labeling de-
picted in Fig. 2, in which the data qubits are numbered clock-
wise from 0 as per their position relative to the auxiliary qubit.

(1) The CNOT order must ensure stabilizers mutually
commute so give deterministic measurement outcomes in the
absence of errors [36]. Practically, shared data qubits between
two or more stabilizers must be interacted with in the same
relative order by their shared stabilizers. That is, if one stabi-
lizer’s interaction precedes another for any shared qubit, then
it must do so for all shared qubits.

(2) Unnecessary idling errors can be avoided by ensuring
that all CNOTs in a particular time step are physically parallel
(aligned along the same axis). Using the labeling of Fig. 2,
this implies that while all the X -type stabilizers are interacting
with data qubits 0 or 2 (1 or 3), the Z-type stabilizers must
also interact with either 0 or 2 (1 or 3), but not necessarily
respectively.

(3) In the rotated surface code, CNOT order should avoid
hook errors [23,37] (see explanation below).

A hook error, or horizontal hook error [23], is the copying
of a single physical error to two data qubits that align with
a logical operator. As shown in Fig. 3(a), the X (Z)-type sta-
bilizer measurement circuits can copy X (Z) errors onto data
qubits. Copying to four data qubits is equivalent to applying
the stabilizer (a logical identity gate) while to three is only
a single error up to multiplication by a stabilizer. Copying to
two data qubits which align with a logical operator of the same
type causes a hook error as the logical operator can now be
formed with half as many physical errors as the code distance
implies. Figure 3(b) depicts which two CNOTs result in a
hook error for each stabilizer type if they are the final two
CNOTs in the stabilizer’s measurement circuit. Assuming a
surface code oriented as per Fig. 1, X hook error occurs if the

FIG. 3. (a) CNOTs copying an error which precedes them in the
stabilizer measurement circuits. Up to multiplication by a stabilizer,
copying to four data qubits is the identity, whereas to three is equiva-
lent to a single error. If the error precedes, then the two final CNOTs
it is copied to two data qubits. The possible orientations of these
two qubits are shown in (b). If these align with a logical operator of
the same type as the error, then the logical operator can be formed
with half as many single-qubit errors as expected. This is a hook
error [23,37].

last two CNOTs for the X-type stabilizers are 12, 21, 03, or 30,
whereas a Z hook error occurs if the last two CNOTs for the
Z-type stabilizers are 01, 10, 23, or 32, using the numbering
system from Fig. 2. Figure 17 shows the effect of hook errors
on the relation between pL and p for the rotated surface code.

In the unrotated code, the copied error cannot align with
a logical operator so does not have the same effect. We in-
vestigated this as an aside and found half the unrotated orders
performed marginally better than the other half, but this had
no correspondence with hook-error orders in the rotated code
(see Fig. 18).

D. Prior work

In this section we review prior work which led to ours,
outlining prior threshold values, pth, for the rotated and un-
rotated surface code as well as previous work comparing the
scaling of their logical error rates. All quoted results below
used uncorrelated MWPM decoders.

We first consider investigations which implemented code
capacity noise models. Criger and Ashraf [13] found the ro-
tated code had a slightly lower threshold than the unrotated.
It was suggested that this is because any nonoptimal decoder
will be affected by the different number of minimum-weight
paths that can cause logical errors in the two codes. These
paths are depicted in Fig. 4 for XL. To form a particular logical
operator, a distance-d unrotated code has only d minimum-
weight paths because any diversion from a straight path
joining opposite boundaries is no longer a minimum-weight
path. For the rotated surface code however, all of the edges can
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FIG. 4. Graphs for which paths between the two colored nodes
correspond to an XL operator on d = 5 unrotated (left) and rotated
(right) surface codes. Edges correspond to Pauli X errors, nodes
to each Z-type stabilizer. Figure adapted from Ref. [13]. Form-
ing a minimum-weight path in the unrotated surface code cannot
be done using horizontal edges meaning only d (5 in this case)
minimum-weight paths. In the rotated code all the edges can be used,
resulting in a lower bound of

( d
�d/2�

)
minimum-weight paths (in this

case 52) [13].

contribute to a minimum-weight path, implying the number of
minimum-weight paths is greater than the unrotated code and
lower bounded by

( d
�d/2�

)
[13].

Beverland et al. [12] found that the unrotated code has a
higher (worse) pL than the rotated code when compared at
the same number of qubits. This was except for one regime
at p very close to threshold. Here the unrotated code achieves
a lower pL than the rotated code, even though at equal qubit
numbers it has a lower distance. Like in Ref. [13], the rea-
son suggested for this is that unrotated code has a smaller
proportion of possible minimum-weight paths that cause a
logical error than the rotated code or, in other words, a higher
entropy.

We now consider previous investigations of just the un-
rotated surface code using SD circuit-level noise. Fowler
et al. [35] simulated the unrotated code for odd distances.
They investigated down to a pL per round of, at the lowest,
pL ≈ 10−5 and found logical to physical error scaling pL ≈
0.03(p/pth )de , where de = (d − 1)/2. They state that for even
distances de = d/2. Stephens [32] clarified using numerical
simulations how estimates of the unrotated code’s threshold
depend on noise model, the stabilizer measurement circuits,
and the decoder. X -type measurement circuits detect Z errors
and are of greater depth than the Z-type circuits. Without
idling errors, the logical error suppression will hence be worse
and pth consequently lower (worse) for memory X as it pre-
serves |+〉L, which is sensitve to Z errors. Reporting pL per
d rounds Stephens found pth ≈ 5 × 10−3 (pth ≈ 5.4 × 10−3)
for memory X (Z). Paler and Fowler [11] simulated odd code
distances from d = 3 to d = 9 with pL reported for memory
X and showed the unrotated code achieves a lower (better)
pL per round than the rotated surface code for distance 5, 7,
and 9, as simulated for p values corresponding to a pL per
round of approximately 10−7. Distance 3 was an exception,
but due to being a very low-distance code it suffers edge effects
in space. That is, the proportion of low-weight stabilizers

(weight-2 in the rotated code, weight-3 in the unrotated) on
the boundaries of a surface code lattice as compared to the
weight-4 stabilizers in the bulk of the lattice is higher for
lower-distance codes which have a consequent reduction in
performance.

Finally, we consider the investigation of the rotated surface
code using SD and SI noise. Gidney et al. [15] compared
the rotated surface code to another QECC [38] to estimate
the number of qubits required by each to reach the teraquop
regime, which is a pL per d rounds of one in a trillion. This
implies that a trillion logical operations (each requiring d
stabilizer measurement rounds) can be performed before, on
average, one logical error occurs. Plotting pL per d rounds
they showed the rotated code has pth ≈ 0.005, for both noise
models, with a slightly lower (worse) pth for SI noise than SD
noise.

Prior work shows the unrotated code has a slightly higher
threshold than the rotated code and achieves a lower pL at
equal distances, as simulated for relatively high logical error
rates. We next present our methods investigating higher code
distances, both odd and even, achieving lower pL under SD
and SI circuit-level noise.

III. METHODS

In this work we simulated memory experiments in the
rotated and unrotated surface code using both odd and even
distances, low physical error rates, and circuit-level noise. Our
aim was to compare the scaling of logical to physical error
rates in the rotated and unrotated code, quantifying the latter’s
advantage in terms of the number of qubits used to achieve
the same pL values and provide evidence that this persists for
high d and low p.

In this comparative study we implemented SD and SI [15]
circuit-level noise, as applied to circuits compiled with CNOT
gates, and used the MWPM decoder PyMatching 2 [14]. De-
tails of these noise models are in Table II.

We performed Monte Carlo sampling of trillions of runs
of memory experiments in both codes under both memory
types and noise models. This took approximately 12 CPU
core years. Our generated data, as well as the Python code
used to generate the circuits, run simulations, and render plots,
is available at our GitHub repository [39]. We used Stim
[40], a tool for simulation and analysis of stabilizer circuits;
PyMatching 2 [14], a fast MWPM decoder; and Sinter [41],
which uses Python multiprocessing for bulk sampling and
decoding of Stim circuits.

We generated a Stim circuit file [42] to simulate a memory
experiment stabilizer circuit for each code, physical error rate,
noise model, memory type, and CNOT order. It contains an-
notations to assert that the parity of certain measurement sets,
i.e., detectors, are deterministic in the absence of noise and
to assert which final measurements are combined to calculate
the logical observable’s measurement outcome. The detection
events are converted to a detector graph for PyMatching to
decode.

To generate the Stim circuits, we modified a Python trans-
lation [43] of Stim’s in-built circuit generator. To reduce
simulation time we enabled the option to exclude detectors in
the opposite basis to that of the measured logical observable
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TABLE II. Standard depolarizing and superconducting-inspired [15] noise, as applied to the gates in our circuits.

Qubit operation Error SD SI

CNOT Perform CNOT then choose an error uniformly from {1, X,Y, Z}⊗2 \ {11} p p
Hadamard (H ) Perform H then choose an error uniformly from {X , Y , Z} p p/10
Reset to |0〉 (|+〉) Instead resets to |1〉 (|−〉) p 2p
Measurement Report incorrect result and project to orthogonal eigenstate p 5p
Idle during gates on other qubits Choose an error uniformly from {X , Y , Z} p p/10
Idle during reset or measurement of other qubits Choose an error uniformly from {X , Y , Z} p 2p

because PyMatching, being an uncorrelated decoder, does
not use these detection events. We added modifications that
enabled the reordering of CNOT gates, suggested as the ex-
planation for the difference in the unrotated surface code’s
pL between memory X and Z [44], and added idling errors
on any qubits not being operated on while operations were
being applied to other qubits. This included adding idling
errors on Z-type stabilizer auxiliaries at the same error rate
and time step as the H gates in the X -type stabilizer circuit.
From a noise perspective this renders both the circuits equiv-
alent to the depth-eight circuits in Ref. [32]. Though they are
not technically both of depth eight, the noise model renders
them effectively of equal depth. For an example of a circuit
displaying our modifications see Fig. 10.

To minimize uncertainty in the results we incrementally
scaled the maximum number of samples taken of each mem-
ory experiment while correspondingly reducing the maximum
number of logical errors seen before sampling would stop. We
initiated our simulations with a ceiling of one million shots
and one hundred thousand errors, incrementally increasing the
shot count to a trillion and tapering down the maximum errors
to 20. This was performed on two 64-core computers.

We calculated pL per d rounds but ran 3d rounds of sta-
bilizer measurements to reduce time-boundary edge effects,
which arise because the first and last round have less logical
errors [33]. The pL per d rounds is hence the XOR of three
independent Bernoulli distributions.

IV. RESULTS AND DISCUSSION

A. Affect of CNOT order

Figure 5 (11) displays pL per d rounds versus p results
implementing SD (SI) noise. Before discussing our main
result, in this section we address the noticeable separation
between the unrotated code’s memory X and Z performance.
This occurred despite idling errors meaning both stabilizer
measurement circuits (Fig. 2) behave as though they are of
depth 8 (see Sec. III).

First considering the rotated code, it had indistinguishable
pL vs p for memory X and Z up to uncertainty, as depicted
by the overlaid “X” and pentagonal markers in Figs. 5 and 11.
This is because, from the perspective of the noise model, the
stabilizer measurement circuits are of equivalent depth. This

FIG. 5. Logical error rate per d rounds (cycles) of stabilizer measurements vs p, the rate of SD circuit-level noise (see Fig. 11 for SI noise).
Memory X (Z) preserves the |+〉L (|0〉L) state. The threshold (pth) is the p value where the curves intersect. Insets show a region close to pth

with additional data points. The split between memory types in the unrotated code is discussed in Sec. IV A. For subsequent comparisons we
take its worst case. Displayed results are from CNOT order 10231203, numbering as per Fig. 2, but for all valid CNOT orders these results
generalize (see Sec. IV A). With k logical errors observed, highlighted regions show pL values for which the conditional probabilities P(pL|k)
are within a factor of 1000 of the maximum likelihood estimate (MLE) pL = k/n, assuming a binomial distribution and converted to per d
rounds. We ran 3d rounds, with the per d rounds being the XOR of three independent Bernoulli distributions.
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reproduced for all valid CNOT orders (see Fig. 17), which
avoided hook errors. (Results with hook errors also in Fig. 17.)

Contrastingly, the unrotated code had differing memory
X and Z performance depending on its CNOT order. To be
a valid order in the unrotated code the first and last of the
four CNOTs align with one minimum-weight logical operator,
while the second and third (“inner”) CNOTs align with the
other. Labelling the data qubits as per Fig. 2, if the inner
CNOTs act on qubits 1 and 3 (0 and 2), then they align with
ZL (XL) and we see a higher pL for memory X (Z). This was
observed for all valid unrotated orders, with an additional,
seemingly unrelated marginal increase in performance ob-
served for half the orders. Results showing this are in Fig. 19.
This affect was not artificially introduced from the orientation
of the matching graph given to the decoder, as shown in
Fig. 20 which swapped X and Z-type stabilizers.

This alignment of the inner CNOTs correlates with a split
in performance but is not causative. If the inner CNOTs in-
creased the occurrence of the logical operator they align with,
then increasing total circuit depth to enable interspersing of
the alignment of all four gates should symmetrize the unro-
tated code’s performance. This did not occur, as shown in
Fig. 21. Further investigation was outside the scope of this
paper, especially as the unrotated code did not outperform the
rotated even when leveraging this effect (see Sec. IV C).

Usually the worst-case code sets the overall threshold
[32], and unless preserving a known Pauli eigenstate, which
has limited utility, the CNOT order cannot be chosen to
achieve the best-case performance of the unrotated code. Sub-
sequent comparisons hence use an ordering which shows the
aforementioned marginal increase in performance but is a
worst-case unrotated code for the memory type, featuring a
CNOT ordering unfavorable to the preserved state. We will
refer to this simply as the unrotated code. For specificity we
are reporting pL results for memory Z and the CNOT order is
10231203 for both codes (creating XL-aligned inner CNOTs
for the unrotated, implying a poorer memory Z performance).
However, these results reproduce for memory X when also
using a worst-case unrotated order (see Figs. 17 and 18), so
any valid CNOT order can be chosen.

B. Thresholds and pL to p scaling

In this section we present calculated threshold values and
pL to p scaling. Figure 5 (11) depicts plots of our simu-
lated data under SD (SI) noise. We used d � 6 (8) for the
unrotated (rotated) code, corresponding to a qubit count of
n � 121 (127) for our threshold and scaling calculations. We
excluded lower d values which do not follow the same scaling
as higher d (see Fig. 22) due to edge effects. Hereafter we re-
fer to the worst-case (see Sec. IV A) unrotated code (memory
Z for the depicted CNOT order) simply as the unrotated code.

We first present values for pth, calculated by fitting
the near-threshold p values in the insets of Figs. 5 and
11 to the near-threshold scaling ansatz of Refs. [32]
and [45]:

pL = A + B(p − pth)d1/ν + C(p − pth )2d2/ν . (2)

Table III presents our results, which are comparable
to pth ≈ 5 × 10−3 and ν = 1.05 ± 0.01 in Ref. [32] for

TABLE III. Fits to Eq. (2) for pth and scaling exponent (ν).

Noise Code pth ν

SD Rotated (5.637 ± 0.004) × 10−3 1.09 ± 0.03
Unrotated (5.652 ± 0.003) × 10−3 1.05 ± 0.03

SI Rotated (5.092 ± 0.007) × 10−3 1.09 ± 0.06
Unrotated (5.077 ± 0.008) × 10−3 1.06 ± 0.07

the unrotated code. It also used SD noise and depth-eight
stabilizer circuits but a different MWPM decoder.

More applicable to useful quantum computing is p well
below threshold, which we now consider. Our results show
that for a given d , the unrotated code achieves a lower pL than
the rotated code. This was previously shown [11] using odd
d from 5 to 9 inclusive down to a pL per round of 10−7. We
confirm this pattern continues for higher odd d down to a pL

per round of ≈10−12 (a pL per d rounds ≈10−11) and we add
results for even d .

We now present our results for pL to p scaling. Previous
results [35] fit to Eq. (1) with de = (d + 1)/2 (de = d/2) for
odd (even) distances, but this was at low d and consequently
higher pL values. Even when including the higher-order terms
in Eq. (1), this de failed to fit our data. We hence fit to

pL = α(p/β )γ d−δ, (3)

where the error dimension can be defined as de = γ d − δ.
Our fits used p � 0.004 because p values closer to pth were

not indicative of subthreshold scaling. For this reason and to
avoid confusion we label the term in the denominator β rather
than pth as it reflects the region of intersection of line fits
based on subthreshold scaling rather than on simulated data
close to pth.

The performance for odd-distance codes scales better than
even-distance codes at low distances (see Fig. 22); however,
when fitting to high distances, their de was identical up to
uncertainty (see Table IV). We hence combined odd and even
d in the fits. We found for SD noise:

pL,ro = 0.08(p/0.0053)0.58d−0.28, (4)

pL,unro = 0.08(p/0.0054)0.71d−0.70, (5)

and for SI [15] noise:

pL,ro = 0.05(p/0.0049)0.63d−0.67, (6)

pL,unro = 0.05(p/0.0049)0.75d−0.89. (7)

Plots displaying these fits superimposed on sampled data can
be found in Fig. 16, while the parameters and their uncer-
tainties for odd, even, and combined (odd and even) d are in
Table IV. While previous results and theory find de ≈ 0.5d ,
we instead saw de values between 0.6d and 0.75d .

C. Logical error rate vs total qubit count

We now present our main result, which, in short, is that the
rotated surface code requires ≈75% the total number of qubits
used by the unrotated code to achieve the same pL. We next
detail how we arrived at this value and note that the exact ratio
depends on p and pL.
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FIG. 6. Reformulation of data in Fig. 5 to show pL vs qubit count
under SD noise (see Fig. 12 for SI noise). We fit to d � 8 (6) for
the rotated (unrotated) code to minimize edge effects. The points of
intersection between these least-squares line fits and pL = 10−12 are
used to generate the “teraquop” plot in Fig. 8. Highlighted regions
show pL values for which the conditional probabilities P(pL|k) are
within a factor of 1000 of the MLE pL = k/n, assuming a binomial
distribution. These results report memory Z but reproduce for mem-
ory X (see Sec. IV A).

Figure 6 (Fig. 12) plots pL vs n for the rotated and unro-
tated surface codes under SD (SI) noise. This plot shows that
the rotated code achieves a lower pL at the same n.

The ratio of the number of qubits used by each code to
achieve the same pL is displayed in Fig. 7 (Fig. 13) for SD
(SI) noise, with ratios calculated using the line fits from Fig. 6
(Fig. 12). The ratio limit as pL → 0 (and hence n → ∞) is
indicated with an arrowhead for each p. These projections
indicate that there is never a point for which the unrotated
code’s qubit count becomes less than the rotated code for
equal pL. At the operational p = 10−3 the rotated code uses
about 74% the number of qubits used by the unrotated code
to achieve the same pL. Exact qubit numbers for the choice
pL = 10−12 are presented in the next section. While we do
not foresee a mechanism by which this ratio would drastically
change by using a different decoder from Ref. [29], we note
that our results are for our choice of decoder [14] and SD/SI
circuit-level noise models.

D. Teraquops

A pL per d rounds of pL = 10−12 is known as the teraquop
regime, as it implies a trillion logical operations (each requir-
ing d rounds of stabilizer measurements) can be performed
before, on average, one logical error occurs [15]. Projecting
the least-squares line fits from Fig. 6 (Fig. 12) to pL = 10−12

reveals the teraquop qubit counts for SD (SI) noise, as dis-
played in Fig. 8 (Fig. 14). Under SD noise and at p = 10−3,
the rotated code uses 1398 ± 19 qubits while the unrotated
code uses 1880 ± 33 qubits. That is, the rotated code requires
74.4 ± 1.7% the number of qubits as the unrotated. Under SI

FIG. 7. The ratio of the total number of qubits used by the rotated
and unrotated surface code to achieve the same pL per d rounds for
a selection of p values under SD noise (see Fig. 13 for SI noise).
Qubit counts are calculated from the line fits of Fig. 6, with pro-
jected qubit counts indicated by dashed lines. Colored arrowheads
on the y axis indicate the limit as pL → 0. Highlighted regions
indicate uncertainty propagated from the standard error (SE) of the
line-fit parameters of Fig. 6. Simulations ran CNOT order 10231203
and memory Z but reproduce for other orders and memory (see
Sec. IV A).

noise the counts are very similar at 1350 ± 16 and 1864 ± 20,
respectively, for a ratio of 72.4 ± 1.2%.

These qubit counts do not correspond to an exact d . The
inset in Figs. 8 and 14 display teraquop qubit counts rounded
up to the next d . Using these, the teraquop regime at p = 10−3

under either noise model requires 1457 qubits in the rotated
code (d = 27) or 2025 (d = 23) in the unrotated code: a ratio
of 72%.

Very close to pth the codes approach equal qubit counts.
This is corresponds to the regime found by Beverland et al.
[12] but under a code capacity noise model where the un-
rotated code used less qubits than the rotated at the same
pL when very close to pth. We found that under circuit-level
noise this only occurs for the best-case unrotated code and at
p extremely close to pth (see Figs. 23–26). However, using a
best-case unrotated code requires knowledge of the state being
preserved and, furthermore, this region is too close to pth to be
practical as its teraquop qubit count is over 106.

E. Memory times

We can compare the length of time a quantum memory
employing either the rotated or unrotated surface code would
last before the probability of a logical error is equal to that
of a physical error. This is calculated using the number of
rounds nr that can be performed before pL per nr equals to
p. We assume each round of stabilizer measurement takes
1 µs, the characteristic time in a superconducting quantum
computer [46].

Figure 9 (Fig. 15) displays the results for a selection of
p values under SD (SI) noise. The rotated code achieves a
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FIG. 8. Number of qubits needed to reach the teraquop regime
(pL = 10−12) under SD noise (see Fig. 14 for SI noise), calculated
using the weighted line fits from Fig. 6, with weights based on the
root-mean-square error (RMSE) of the MLEs for pL , assuming a bi-
nomial distribution. Line thickness indicates uncertainty, propagated
from the SEs of the line-fit parameters using these weights. Inset
shows n rounded up to the next code distance. Memory Z results are
displayed but are equivalent to memory X (see Sec. II C).

higher memory time than the unrotated code for the same
qubit count and is hence more suitable for preserving quantum
states such as when performing lattice surgery [8] or using
quantum memories to perform quantum communication with
a quantum “sneakernet” [47].

V. CONCLUSION AND FURTHER WORK

Our work quantified the low-pL scaling of pL to p for
the rotated and unrotated surface codes under circuit-level
noise using a MWPM decoder [14] for both odd and even
distances. Under standard depolarizing (superconducting-
inspired) noise, we found the rotated code scales with 0.58d
(0.63d) and the unrotated code with 0.71d (0.75d), as per
Eqs. (4)–(7). We showed that the rotated code uses ≈74%
the number of qubits used by the unrotated code to achieve
pL = 10−12 at p = 10−3, as per Figs. 7 and 13. For all other
p < pth, the ratio remains ≈75%, with the rotated code contin-
uing to outperform the unrotated code as pL → 0. We tested
the assumption that because the rotated code uses less qubits
to achieve the same distance as the unrotated, it should also
use less qubits to achieve the same pL. We confirmed this,
confirmed that it continues to do so for high distances and
low pL. We also quantified the saving, with the exact ratio
depending on the exact p and pL. Our findings justify using
the rotated code for future applications of the surface code.

Finding a more precise qubit-saving ratio for particular
hardware such as superconductors would require more inves-
tigation, such as with circuits compiled with iSWAP gates.
These are native to superconductors and compiling circuits
with them has been shown to reduce hardware overheads [30].
A further hardware overhead reduction could also be achieved

FIG. 9. The achievable memory time versus total qubit count in
the rotated and unrotated surface code for a selection of p values
under SD noise (see Fig. 15 for SI noise). This is the length of time
before a logical error is equally as likely as a physical error and as-
suming one round takes 1 µs. This figure presents memory Z results,
which reproduce up to uncertainty for memory X (see Sec. IV A).
Line thickness indicates uncertainty, calculated as the propagated
RMSE of the MLEs for pL , assuming a binomial distribution.

in different realizations of quantum computers by reducing
stabilizer measurement circuits to a single step rather than
having them comprise numerous gates [48].

The mechanism which led to a best-case and worst-case
unrotated code could be useful to explore if it also affects the
rotated code in some way not revealed by our investigation.
For the unrotated code, we did not see enough of an advantage
gained from exploiting this effect to warrant its use over
the rotated, especially when considering other noise models
such as biased noise. Biased noise is a notable case in which
the rotated code outperforms the unrotated, even at the same
distance, as shown by Tuckett et al. using the code capacity
[49] and phenomenological [50] noise models.

While our work suggests a binary choice between the ro-
tated or unrotated code, future work could explore surface
codes with qubit numbers somewhere between these choices.
While adding more qubits to a rotated code’s lattice until it
forms an unrotated code reduces the resulting pL even with-
out increasing the distance, it could follow that adding more
qubits, even without adding enough to form the equivalent
unrotated code, would also reduce pL. The inverse has already
been shown, namely that using less qubits slightly increases
pL, specifically when reusing auxiliaries to measure boundary
stabilizers [37]. We could expect then that adding slightly
more qubits would slightly decrease pL, and future work could
look at quantifying the advantage of doing so. This would
be relevant when considering that the number of qubits on
a fabricated quantum device would usually not exactly corre-
spond to a precise d for the surface code. The caveat to this
is that if the noise is highly biased, then adding more qubits
until the rotated code more closely resembles the unrotated
could decrease performance, because under biased noise an
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unrotated code performs worse than a rotated for the same
distance [49].

The effect of different decoders on the rotated and un-
rotated surface code could also be investigated. While there
does not seem to be a strong cause to believe that a different
decoder from Ref. [29] would ever render the rotated code less
efficient than the unrotated code in terms of qubit count, we
stress that our results are true for our chosen noise models and
MWPM decoder [14]. For instance, while Ref. [11] showed
that a correlated decoder reduces pL for both surface codes
when compared to an uncorrelated one, well-below-threshold
scaling or the relative reduction for both codes was not quan-
tified. In our work we did not implement a correlated decoder.
Future work could look at the affect of a correlated decoder,
as well as other types of decoders from Ref. [29] such as
maximum likelihood [23] or neural network decoders.

Our work was a comparative study to provided numerical
justification for the use of the rotated rather than the unrotated
surface code by investigating their low-pL scaling and and the
assumption that the rotated code is advantageous for very low
pL at high odd and even code distances. We ran numerical
simulations to test its qubit saving when compared to the unro-

tated code not in achieving the same distance, but in achieving
the same logical error rate, and showed using projections
that this saving continues for arbitrarily high distances and
consequently low pL. We did so using circuit-level SD and SI
[15] noise and the MWPM decoder PyMatching 2 [14] and
can conclude that under these conditions and at an operational
physical error rate of p = 10−3 the rotated surface code uses
≈74% the number of qubits used by the unrotated code.
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APPENDIX: SUPPLEMENTARY FIGURES

FIG. 10. (a) Two possible logical operators and the stabilizer arrangement for a distance 2, unrotated surface code. (b) The “timeline-svg”
generated by Stim [40] of our circuit file realizing a memory Z experiment on the distance-2 unrotated surface code. It uses 21302130 CNOT
order. All gates are faulty as per Sec. III. Time steps are indicated with horizontal square brackets. The repeated section is indicated with
vertical square brackets. R implies reset to |0〉, I is the identity gate (an idling error), and CNOT gates are marked as usual from control to
target. MR is a sequential combination of a measure and reset gate in the Z basis. Both the measurement and the reset can be faulty. Detectors
create the matching graph from stabilizer measurement outcomes to be given to PyMatching [14], and the included observable is a calculation
of the state of the measured logical observable based on the measurement outcomes of the data qubits.
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FIG. 11. SI noise: Logical error rate per d rounds (cycles) of stabilizer measurements vs physical error rate under SI noise. Memory X (Z)
preserves the |+〉L (|0〉L) state. The threshold (pth) is the p value where the curves intersect. Insets show a zoomed-in region close to pth with
additional data points. The split between memory types in the unrotated code is discussed in Sec. IV A. Displayed results are from CNOT order
10231203, numbering as per Fig. 2, but for all valid CNOT orders these results generalize (see Sec. IV A). With k logical errors observed,
highlighted regions show pL values for which the conditional probabilities P(pL|k) are within a factor of 1000 of the MLE pL = k/n, assuming
a binomial distribution and converted to per d rounds. We ran 3d rounds, with the per d rounds being the XOR of three independent Bernoulli
distributions.

FIG. 12. SI noise: Reformulation of the data if Fig. 11 to show pL as a function of qubit count under SI noise (see Fig. 6 for SD noise). We
fit to d � 8 for the rotated and d � 6 for the unrotated code to minimize edge effects. The points of intersection between these least-squares
line fits and pL = 10−12 are used to generate the “teraquop” plot in Fig. 14. Highlighted regions show pL values for which the conditional
probabilities P(pL|k) are within a factor of 1000 of the MLE pL = k/n, assuming a binomial distribution. These results report memory Z but
reproduce up to uncertainty for memory X (see Sec. IV A).
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FIG. 13. SI noise: The ratio of the number of qubits used by the rotated versus the unrotated surface code to achieve the same logical error
rate (pL) per d rounds for a selection of p values under SI noise (see Fig. 7 for SD noise). Qubit counts are calculated from the line fits of
Fig. 12, with projected qubit counts indicated by dashed lines. Colored arrowheads on the y axis indicate the limit as pL → 0. Simulations
implemented an uncorrelated MWPM decoder [14]. Highlighted regions indicate uncertainty propagated from the standard error of the line-fit
parameters of Fig. 12.

FIG. 14. SI noise: Number of qubits needed to reach the teraquop regime (pL = 10−12) under SI noise (see Fig. 8 for SD noise), calculated
using the weighted least-squares line fits from Fig. 12, with weights based on the root-mean-square error of the maximum likelihood estimates
for pL , assuming a binomial distribution. Line thickness indicates uncertainty, propagated from the standard errors of the line-fit parameters
using these weights. Inset shows n rounded up to the next code distance. Memory Z results are displayed but are equivalent to memory X (see
Sec. II C).
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FIG. 15. SI noise: The achievable memory times versus qubit count (n) in the rotated and unrotated surface code for a selection of p values
under SI noise (see Fig. 9 for SD noise). This is the length of time before a logical error is equally as likely as a physical error. Calculations
of memory time assume one round of stabilizer measurements takes 1 µs. This figure presents memory Z results, which reproduce up to
uncertainty for memory X (see Sec. IV A). Line thickness indicates uncertainty, calculated as the propagated RMSE of the MLEs for pL ,
assuming a binomial distribution.

FIG. 16. Function fit plots showing the fitted function pL = α(p/β )γ d−δ as gray dashed lines with parameters for combined odd and even
distances as per Table IV. These plots display the same data as Fig. 5 for SD noise and Fig. 11 for SI noise but with the function fits overlaid
for physical error rates p < 0.004 and with the highlighted uncertainty regions instead being the RMSE of the maximum likelihood estimate
for pL . As in Figs. 5 and 11, displayed results are for memory Z and worst-case unrotated surface code but these are identical up to uncertainty
for memory X (see Sec. IV A).
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TABLE IV. Fits to pL = α(p/β )γ d−δ [Eq. (3)] using d � 6 (8) for the unrotated (rotated) code and physical error rates p � 0.004, based
on memory Z results but these are equivalent up to uncertainty to memory X (see Sec. II C). The parameters for the combined (both odd and
even) fits are quoted in the main text (Sec. IV B) because the scaling with d for odd and even distances overlap up to uncertainty. Plots with
these fits overlaid on the simulated data are shown in Fig. 16. Line fits were performed on each distance’s pL versus p curve for p � 0.004
and β is the p value of the closest point to all the lines, with its uncertainty being the maximum of the perpendicular distance to each line. The
standard errors in the line-fit parameters for each distance were used to perform a weighted average to calculate α and its uncertainty. The best
γ and δ were calculated using each distance’s line-fit gradient (on a log-log plot), m, and fitting to m = γ d + δ. The standard error in these
parameters is the square root of the sum of the residual variance and the mean of the variance of each m.

Fits to pL = α(p/β )γ d−δ

Noise model Code Distances α β γ δ

Rotated Odd 0.079 ± 0.011 0.00530 ± 0.00001 0.577 ± 0.009 0.27 ± 0.14
Even 0.077 ± 0.010 0.00529 ± 0.00003 0.579 ± 0.008 0.28 ± 0.13

Combined 0.078 ± 0.008 0.00529 ± 0.00003 0.578 ± 0.006 0.28 ± 0.09
SD Unrotated Odd 0.082 ± 0.011 0.00540 ± 0.00001 0.707 ± 0.016 0.72 ± 0.20

Even 0.079 ± 0.009 0.00538 ± 0.00002 0.704 ± 0.013 0.69 ± 0.15
Combined 0.081 ± 0.007 0.00539 ± 0.00002 0.706 ± 0.010 0.70 ± 0.11

Rotated Odd 0.050 ± 0.009 0.00484 ± 0.00001 0.619 ± 0.011 0.51 ± 0.17
Even 0.050 ± 0.009 0.00485 ± 0.00004 0.632 ± 0.015 0.77 ± 0.24

Combined 0.050 ± 0.006 0.00485 ± 0.00004 0.627 ± 0.010 0.67 ± 0.15
SI Unrotated Odd 0.056 ± 0.015 0.00495 ± 0.00002 0.743 ± 0.021 0.86 ± 0.26

Even 0.053 ± 0.013 0.00489 ± 0.00001 0.756 ± 0.019 0.94 ± 0.22
Combined 0.054 ± 0.010 0.00492 ± 0.00003 0.748 ± 0.014 0.89 ± 0.16
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FIG. 17. Rotated surface code plots of pL versus p from Monte Carlo sampling of simulated memory experiments implementing SD noise
using all valid (see Sec. II C) CNOT orders, as well as orders with hook errors. Lower plots show zoomed-in regions of the upper plots with
additional data points. The numbering used to designate CNOT order is explained in Fig. 2. Listed CNOT orders give identical plots up to
uncertainty so are grouped. X (Z) hook errors (Sec. II C) reduce the number of single physical errors required to form an XL (ZL) logical operator
so increase the pL and decrease the threshold when preserving the |0〉L (|+〉L) state, corresponding to memory Z (X ).
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FIG. 18. Unrotated surface code plots of pL versus p from Monte Carlo sampling of simulated memory experiments implementing SD
noise using all valid (see Sec. II C) CNOT orders. Lower plots show zoomed-in regions of the upper plots with additional data points. The
numbering used to designate CNOT order is explained in Fig. 2. Listed CNOT orders give identical plots up to uncertainty so are grouped.
The second and third CNOT gates aligning with ZL (XL) correlates with reduced performance in memory X (Z) (see Sec. IV A). Additionally,
(a) CNOT orders slightly outperform (b) CNOT orders, having a marginally higher threshold and lower pL . These do not correspond to
hook-error orders in the rotated code.
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FIG. 19. Comparing the XL-aligned inner CNOT unrotated surface code to the ZL-aligned inner CNOT unrotated surface code. We see that
their memory X and Z results invert and that the worst-case and best-case codes in each memory type are identical up to uncertainty. The
ZL-aligned plot is a repeat of the plot in the main text (Fig. 5) included for comparison. These graphs plot logical error rate (pL) per d rounds of
stabilizer measurements versus physical error rate (p) from Monte Carlo sampling of numerical simulations in unrotated surface code. Memory
X (Z) preserves the |+〉L (|0〉L) state. The threshold (pth) is the p value below which increasing the code distance decreases pL , i.e., where the
curves intersect. Lower plots show a zoomed-in region close to pth with additional simulated data points. The unrotated code shows a split
in pL between memory types depending on CNOT gate order. This was despite simulations for both codes having noise-model-equivalent X
and Z-type stabilizer measurement circuits due to idling errors. If the second and third CNOT gates (from the four per stabilizer measurement
circuit) were aligned with ZL (XL), then the pL for memory X (Z) increased. This reproduced in all valid CNOT orders (see Fig. 18). Highlighted
regions show pL values for which the conditional probabilities P(pL|k) are within a factor of 1000 of the MLE pL = k/n, assuming a binomial
distribution. These simulations were under SD noise. While the results from these CNOT orders generalize (see Sec. IV A), for specificity they
are 10231203 for XL-aligned and 23102130 for ZL aligned, using the numbering described in Fig. 2.
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FIG. 20. Investigation of the effect on the unrotated code of inverting the stabilizers. This was to rule out the observed CNOT order affect
on the unrotated code, discussed in Sec. IV A, being artificially introduced by Stim or PyMatching from the way we chose to orientate our code,
namely with XL being a vertical chain and ZL a horizontal. Inverting the stabilizers effectively rotates the matching graph given to PyMatching
by ninety degrees. The graphs on the left show the usual orientations, the graphs on the right show the orientations with the stabilizers swapped.
XL-aligned inner CNOTs become ZL-aligned inner CNOTs and vice versa when the stabilizers are swapped, and this is reflected in the perfect
inversion (up to uncertainty) between the memory X and memory Z performance. This indicates that it is not an artificial affect from, for
example, a possible bias in decoding in matching along a particular orientation. Note that to isolate the effect of CNOT alignment on the
unrotated code these simulations were run without errors on the Hadamard gates and without idling errors, which is inconsistent with the other
results in this paper. Consequently, the exact quantities for p and pL can be compared between plots in this figure but should not be compared
to other plots in the paper which do simulate idling errors. These simulations implemented SD noise.
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FIG. 21. Investigation of the effect on the unrotated code of using CNOT orders in the stabilizer measurement circuits which intersperse
CNOT alignment between XL and ZL (and as a consequence feature nonparallel alignment of CNOTs; see Sec. II C). The top two graphs feature
usual CNOT orders so are just for comparison. They show the inversion noted in the main text (Sec. IV A) in performance between memory
X and memory Z which correlates with the inner CNOTs of the stabilizer extraction circuits being aligned with ZL and XL , respectively. If
this inner CNOT alignment was a causative effect, then we would expect interspersing the CNOT alignments, as was done in the lower two
plots, to balance out the effect. However, we see an overall increase in pL when we do this, as shown in the lower two figures. Additionally,
memory Z then consistently had a higher pL for these CNOT orders. The CNOT orders which we refer to as “type 1” resulted in the plot in the
lower left. These were 01321023, 01231032, 10230132, and 10320123. The lower right plot was for “type 2” orders 02131302 and 13020213.
Note that to isolate the effect of CNOT alignment on the unrotated code these simulations were run using equal depth stabilizer-extraction
circuits but without idling errors, which is inconsistent with the other results in this paper. Consequently, the exact quantities for p and pL

can be compared between plots in this figure but should not be compared to other plots in the paper which do simulate idling errors. These
simulations implemented SD noise.
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FIG. 22. Plots showing the pL vs p (SD noise) for the rotated and unrotated surface codes including lower distance codes than presented
in the main text. Plots present the same data as Fig. 5 but for d = 2 to d = 17 for both codes. We note that low-distance codes do not fit the
scaling relationships of higher-distance codes and that there is a marked difference between the scaling relationship of odd and even codes
at low distances but this diminishes at higher distances. With k logical errors observed, highlighted regions show pL values for which the
conditional probabilities P(pL|k) are within a factor of 1000 of the MLE pL = k/n, assuming a binomial distribution and converted to per d
rounds. We ran 3d rounds, with the per d rounds being the XOR of three independent Bernoulli distributions.

FIG. 23. Best-case unrotated code (mem. X for 10231203 order): Line-fit plot projecting pL as a function of qubit count at various physical
error rates for the rotated and best-case unrotated surface code under SD noise. We see that the best-case unrotated surface code uses less qubits
than the rotated for high p very close to threshold, but at this p the qubit numbers are intractable. We fit to d � 8 for the rotated and d � 6
for the unrotated code to minimize edge effects. The points of intersection between these least-squares line fits and pL = 10−12 are used to
generate the teraquop plot in Fig. 25. Highlighted regions show pL values for which the conditional probabilities P(pL|k) are within a factor of
1000 of the MLE pL = k/n, assuming a binomial distribution. Figure presents memory X results but is identical up to uncertainty to memory
Z results when also using a best-case unrotated code CNOT ordering.
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FIG. 24. Best-case unrotated code (memory X for 10231203 CNOT order): The ratio of the number of qubits used by the rotated versus
the unrotated surface code to achieve the same logical error rate (pL) per d rounds for a selection of p values. Qubit counts are calculated from
the line fits of Fig. 23, with projected qubit counts indicated by dashed lines. Colored arrowheads on the y axis indicate the limit as pL → 0.
Simulations implemented an uncorrelated MWPM decoder [14]. Highlighted regions indicate uncertainty propagated from the standard error
of the line-fit parameters of Fig. 6. Figure presents memory X results but generalize to best-case memory Z .

FIG. 25. Best-case unrotated code (memory X for 10231203 CNOT order): Number of qubits required to reach the teraquop regime (a pL

per d rounds of 10−12) as a function of p for the rotated and best-case unrotated surface code under SD noise. The inset displays qubit counts
rounded up to the next achievable code distance and has some discretization effects. Memory X results are displayed but generalize to best-case
memory Z (see Sec. II C). Teraquop qubit counts are calculated using weighted least-squares line fits from from Fig. 23, with weights based
on the RMSE of the MLEs for pL , assuming a binomial distribution. Line thickness indicates uncertainty, propagated from the standard errors
of the line-fit parameters using these weights.
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FIG. 26. Best-case unrotated code: The achievable memory times versus qubit count in the rotated and best-case unrotated surface code
under SD noise. This is the length of time a state can be encoded before a logical error is equally as likely as a physical error. Calculations of
memory time assume one round of stabilizer measurements takes 1 µs. Figure presents memory X results but generalize to best-case memory
Z . Line thickness indicates uncertainty, calculated as the propagated RMSE of the MLEs for pL , assuming a binomial distribution.
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