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Abstract

Soil moisture or moisture content is a fundamental constituent of the hydrological system of
the Earth and its ecological systems, playing a pivotal role in the productivity of agricultural
produce, climate modeling, and water resource management. This review comprehensively
examines conventional and advanced approaches for estimation or measuring of soil
moisture, including in situ methods, remote sensing technologies, UAV-based monitoring,
and machine learning-driven models. Emphasis is primarily on the evolution of soil
moisture measurement from destructive gravimetric techniques to non-invasive, high-
resolution sensing systems. The paper emphasizes how machine learning modules like
Random Forest models, support vector machines, and AI-based neural networks are
becoming more and more popular for modeling intricate soil moisture dynamics with
data from several sources. A bibliometric analysis further underscores the research trends
and identifies key contributors, regions, and technologies in this domain. The findings
advocate for the integration of physics-based understanding, sensor technologies, and
data-driven approaches to enhance prediction accuracy, spatiotemporal coverage, and
decision-making capabilities.

Keywords: in situ measurement; bibliometric analysis; machine learning; precision
agriculture; random forest; remote sensing; soil moisture; UAV monitoring

1. Introduction
1.1. Overview of SMC (Soil Moisture Content)

The temporary storage of water in the soil’s accessible pores is known as soil moisture
and plays a key role in land–surface–atmosphere feedbacks [1,2]. In addition to supporting
numerous research areas, namely, flood risk analysis and climate predictions, soil moisture
is necessary for managing agricultural water supplies. Effective management of water not
only helps in conserving the valuable resource (i.e., water) but also boosts crop profitability
and helps prevent soil salinization. Additionally, regulators can utilize soil water content
(SWC) data to verify pumping records, promoting accountability among water users, and
enhancing the equilibrium between agricultural and environmental water needs [3].
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In agriculture, increasing crop growth and yield depends critically on the availability
of water or moisture in the soil. Crop development is largely impacted by the levels
of soil moisture, as it aids in nutrient absorption, supports microbial activity, and helps
regulate soil temperature [4]. In agricultural practices, a clearer understanding of soil
moisture content (SMC) distribution plays a pivotal role in improving crop production
and minimizing the risk of water stress in crops [5]. Determining soil moisture content
or moisture content of soil (SMC) offers significant potential to enhance the efficiency
of agricultural water use while safeguarding both the environment and water resources.
Real-time monitoring of water status in agriculture can lead to increased productivity and
improved water use efficiency. Although the carbon-cycle mechanism affects crop water
stress and soil respiration, surface water content patterns can help predict the lowest and
highest temperatures at the regional level [6].

Climate change has increased the challenges by raising temperatures and causing
droughts, which lower vegetation growth and increase plant mortality. This highlights the
necessity for effective soil moisture monitoring since it impacts soil moisture levels and
increases the risk and vulnerability of these ecosystems [7].

Soil moisture estimation can be conducted at various spatial (local and global) scales.
In regard to the local scale, measurement is usually carried out in the field by either a direct
method or indirect method depending upon the measurement methods. Conventionally,
the level of SMC in a soil sample is measured mainly by the direct method or gravimetric
method. The soil sample is properly dried in a hot-air oven and the decrease in the weight
before drying and after drying of the soil sample provides insight into the moisture content.
The standard drying temperature of 105 ◦C in a hot-air oven is used for determining soil
moisture content by the gravimetric method, where the loss in weight due to drying is
expressed as a ratio of water mass to dry soil mass (g/g). In contrast, volumetric moisture
content refers to the volume of water per unit volume of soil (cm3/cm3). These values are
related through the soil bulk density (g/cm3), allowing conversion between gravimetric
and volumetric moisture contents. This method is destructive, laborious, time-consuming,
and measures soil moisture only at discrete locations. However, indirect methods that
integrate automated sensors, such as theta probes, are designed to estimate soil moisture
in real time and on an even broader scale. Theta probes are soil moisture sensors that
directly measure volumetric water content (θ, in cm3/cm3) by detecting changes in the
soil’s dielectric constant. These probes are calibrated prior to use, either using soil-specific
calibration curves or factory settings, to ensure accurate moisture readings under field
conditions. Such indirect methods can estimate the moisture of a soil column at different
depths at various locations.

Synoptic coverage of the Earth’s surface at different temporal and spatial scales is
provided by satellite photographs (e.g., Sentinel-1, Sentinel-2, and Radarsat-2). According
to [8–10] and others, microwaves and observational satellite images within the optical
band have been found to be effective in assessing surface soil moisture on both global and
regional scales. In 2009, the European Space Agency (ESA) launched the Soil Moisture and
Ocean Salinity (SMOS) mission under the ESO-EO project. Later, as part of the Earth System
Science Pathfinder (ESSP) mission, the National Aeronautics and Space Administration
(NASA) deployed the Soil Moisture Active Passive (SMAP) in 2015. With a spatial resolution
ranging from 1 to 50 km, these satellite missions deliver moisture products on a daily to
eight-day revisit period. Particularly in areas with complicated topography and inaccessible
places, the soil moisture data obtained from these satellite missions are lacking [11].

Due to its capacity to penetrate through the soil’s uppermost layer and its sensitivity
to the dielectric characteristics of the material, microwave remote sensing has been widely
used in the field of soil moisture [12,13]. A permittivity gradient is visible in microwave
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signals, with water having a value of around 80 and dry soil having a value of about 2 [14,15].
For measuring soil moisture from microwave imagery, several backscattering models have
been developed, including theoretical, empirical, and semi-empirical approaches [16–24].
Usually, these models need quad-polarized microwave pictures (VV, VH, HH, and HV),
although, in some places, these images are rarely accessible. Machine learning algorithms,
which use backscatter values from various polarizations along with other auxiliary data like
topography and vegetation indices as input features have been developed to get around
and address this restriction. Once trained, these models can forecast soil moisture using the
given input variables, but they first need in situ soil moisture data for training and validation.
Apart from direct soil-moisture sensing methods, modeling approaches also play a crucial
role in estimating antecedent soil moisture (ASM) for applications in areas lacking in situ
observations [25].

In the recent past, machine learning algorithms and deep learning technology have
played a monumental role in the analysis of SM. The coming of these advanced technologies
has enabled the identification of intricate patterns and relationships within data, helping
to uncover correlations and causations between moisture content and other predictive
factors that may not necessarily provide immediate evidence through traditional statis-
tical approaches. These emerging technologies have been incorporated in various areas,
including spatial and temporal SM monitoring, for downscaling and upscaling of SM data,
modeling non-linear interactions between SM and environmental factors, producing global
and regional high-resolution spatially continuous SM datasets, and supporting dataset
testing and dataset validation, among other applications [26,27].

The application of models like machine learning is rapidly increasing across various
applications due to their high computational efficacy. The increasing number of articles on
soil moisture estimation that use machine learning approaches is another indication of this
trend. Between 2000 and 2025, a total of 7035 publications were released, which is similar
to the use of machine learning in agriculture, including 570 reviews articles, which were
recorded in PubMed. Notably, from 2000 to 2022 (up to 24 March 2025), 199 publications
were recorded in the PubMed database that focus solely on machine learning for soil
moisture, including three reviews. A significant portion of these studies has utilized in
situ soil moisture data and satellite imagery to train and validate machine learning models.
It would be valuable to explore the advantages and disadvantages of various methods
and sensors commonly employed for in situ or ground truth measurements, as well as to
discuss approaches related to remote sensing-based machine learning techniques for soil
moisture estimation.

VOSviewer version 1.6.20 (Visualization of Similarities Viewer) was employed, a
software tool designed for creating and visualizing bibliometric networks that is widely
used to map co-occurrence relationships among keywords, authors, and publications. This
tool provides interactive visualizations that reveal clusters, link strengths, and thematic
structures within large datasets.

In VOSviewer, the following three primary types of visualizations are used to explore
bibliometric networks: network visualization, overlay visualization, and density visualiza-
tion. The network visualization represents items (such as keywords, authors, or articles) as
nodes, with lines indicating the strength of relationships like co-occurrence or co-citation.
Items that are closely related are grouped into clusters, each assigned a distinct color, which
helps to visually identify thematic areas within the dataset.

The overlay visualization builds on the network map by adding an additional variable,
such as the average publication year or citation impact, and uses a color gradient (typically
from blue to yellow) to indicate the value of that attribute. This allows researchers to easily
spot emerging topics or high-impact research areas.
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Lastly, the density visualization emphasizes areas of the map where items are densely
packed using a heatmap effect, where regions with a high concentration of items appear
in warm colors (yellow or red), while sparse areas appear in cooler tones (green or blue).
This visualization is particularly useful for identifying research hotspots and thematic
concentrations within the field.

In VOSviewer, a cluster is a group of closely related items (such as keywords, authors,
or publications) that share strong interconnections, representing a specific research theme or
topic. A link refers to a direct relationship between two items—for example, co-authorship,
co-citation, or keyword co-occurrence—while the link strength indicates how strong that
relationship is (e.g., how many times two authors have collaborated or two keywords have
appeared together). The total link strength of an item is the sum of its link strengths with all
other items, reflecting its overall connectivity and influence within the network. Clusters
are visually distinguished by color, and items with stronger links are placed closer together
in the visualization.

Below Figures 1–3 illustrate the bibliometric analysis of machine learning research
in agriculture (2020–2025) using PubMed data. It includes (1) a network visualization
showing 24 items across seven clusters with strong interconnections, (2) an overlay map
highlighting emerging topics, and (3) a density view reflecting research concentration areas.

Figure 1. Total number of articles available on machine learning for agriculture in between the
years 2020 and 2025 (till 24 March 2025) and available in PubMed. Network visualization: items: 24;
clusters: 7; links: 101; total link strength: 365.

Figure 2. Total number of articles available on machine learning for agriculture in between the years
2020 and 2025 (till 24 May 2025) and available in PubMed. Overlay visualization: items: 8; clusters: 3;
links: 14; total link strength: 40. The color bar shows the average publication year.
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Figure 3. Total number of articles available on machine learning for agriculture in between the years
2020 and 2025 (till 24 May 2025) and available in PubMed. Density visualization. (Note: The colors
indicate item density—the warmer color (yellow) shows areas with a high concentration of items,
while the cooler color (green) represents lower density. The round areas correspond to clusters of
related items, and their size reflects the number of items and strength of their connections.)

1.2. Importance of Soil Moisture Measurement

A crucial factor in environmental and agricultural settings is soil moisture. It describes
the quantitative amount of water that is present in the soil and influences several other
processes that are critical to climate modeling, growth of plants, and management of water
resources. In agriculture, understanding soil moisture levels is key to optimizing irrigation
practices, enhancing crop yield, and minimizing water stress. Soil moisture also impacts
nutrient uptake, microbial activity, and the regulation of soil temperature, which are all
essential for plant health.

The total availability of moisture in the soil has a significant impact on how much
energy is exchanged between the Earth’s surface and atmosphere. It has a major impact on
soil fertility, plant health and growth, and the likelihood of soil erosion. It also represents
the water availability of the soil [28,29]. Monitoring soil moisture helps in early detection of
droughts and can assist in disaster risk management. Additionally, soil moisture influences
carbon sequestration, contributing to the global carbon cycle and climate change processes.
One of the most important factors in agriculture for maximizing crop growth and yield
is the total amount of plant-available water stored in the soil. While volumetric water
content provides useful information, it is not sufficient on its own. The plant-available
water within the effective root zone determines how much water is accessible to crops.
Therefore, accurate soil moisture assessment requires both the depth of measurement and a
clear definition of plant-available water.

The development of crops is influenced by the level of soil moisture, which pro-
motes nutrient absorption, supports microbial activity, and helps regulate soil temperature.
Table 1 presents a concise overview of key studies, highlighting the authors, methodologies
employed, and principal findings across various approaches to soil moisture estimation.
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Table 1. Summary of different methods, technology used, key findings, and accuracy by various authors.

Reference Technology Used Calibration Method Soil Depth Key Findings Model/Accuracy

[30]
Soil reflectance in VIS
NIR, portable sensors
equipped with DGPS

Gravimetric method 15 cm Accurate SM prediction
using reflectance R2 = 0.95

[31] Veris-3100 +
geostatistical modeling Laboratory 30 cm

Demonstrated utility of
proximal sensing for SM in
water-stressed conditions

Gaussian smoothing

[32] TDR 300 probe Comparison with SM
probes 20 cm Strong SM–EC correlation

within 5 m computation rings R2 = 0.79

[33] Hyperspectral imagery Gravimetric method 30 cm NIR bands correlated well
with SM

PLSR: MAPE less
than 11%

[34] FieldSpec ASD +
TRIME-PICO/TDR-100

Calibration via
probe comparison 3.7 & 5 cm

Consistent SM image in clay;
variable in sand (surface

more accurate)

SM range image
accuracy of 5%

(surface), 17% (deeper)

[35] VIS-NIR spectrometer Not specified Not specified General model not reported

[36] Optic fibers + Decagon
FDR sensor Not specified 6 cm Cost-effective for continuous

SM in a 0 to 35% range -

[37] Cubert sensor with
TDR probes Sensor comparison 2.5–20 cm Highlights error propagation

from inhomogeneous SM ET model: R2 = 73.1%

[38] ASD AgriSpec
spectrometer Lab - Good results when using mix

soil texture SMLR (R2) = 0.937

[39] Gaia Sorter
Hyperspectral System

Standard oven-dried
at 105 ◦C 0 to 10 cm

Selected wavelengths
(695–796 nm) using

CARS-SPA provided optimal
band filtering

Multiple linear
regression: R2 = 0.83

[40]
Cubert UHD 285

Snapshot
Hyperspectral Camera

Various in situ TDR
sensors 2 to 20 cm

GPR-ML significantly
enhanced prediction of SM

versus PCA, DT, RF, and
Bayesian models

GPR-ML: R2 = 0.97

[41]
Dual UAVs using
bistatic radar for

soil analysis
TDR-150 Sensor Surface layer

Analyzed soil reflection using
Brewster angle for
groundwater and

heterogeneity mapping

Not applicable

[42] UAV along RGB, NIR,
and thermal cameras Field truth data Topsoil

UAV imagery yielded more
actionable moisture insights

than traditional
remote sensing

Relevance vector
machine:

RMSE value 3.04%

[43] DJI Matrice along with
a hyperspectral camera Oven-dried at 105 ◦C 0 to 10 cm

Feature optimization and
XGBoost resulted in highly

accurate moisture estimation

FOD-XGBoost model:
R2 = 0.885

[44] DJI Phantom TZS-ECW-G Probe 10 cm
Aimed to increase UAV

adoption for SM monitoring
in dry regions

MLR: R2 = 0.86 for
stable moisture;

R2 = 0.77 for higher
readings

[45]
Fixed-Wing AggieAir

UAV (RGB, NIR,
and thermal)

TDR sensors 15, 45, and 76 cm
Gaussian process model

outperformed ANN and SVM
for deep-layer soil prediction

GP at 76 cm:
R2 value 0.8

[46] DJI Matrice with
hyperspectral imagery Gravimetric method 0 to 10 cm Random Forest outperformed

ELM in predictive accuracy
PIR model (RF-based):

R2 = 0.907

[47]

DJI S900 along High-res
RGB, RedEdge

multispectral, and TIR
cameras

Gravimetric method 10 and 20 cm
RFR was highly accurate

across growth cycles
irrespective of sensor types

RFR outperformed
KNN (R2 = 0.78)

[48]
Multispectral sensor

MicaSense
RedEdge-MX

Field Scout TDR-350 10 and 20 cm

Multispectral and
multivariate models proved
more effective, especially in

deeper zones

RER >
PLSR/KNN/BPNN: R2

value 0.8
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Table 1. Cont.

Reference Technology Used Calibration Method Soil Depth Key Findings Model/Accuracy

[49] Multispectral with
thermal Camera SMC probes Topsoil

PCA helped dimensionality
reduction; canny edge

detection enhanced thermal
image clarity

RBFNN/PCA-RBFNN:
R2 ≈ 0.93

[50] UAV + PulsOn440
radar Hygrometer Topsoil

CNNR integrating vegetation
indices (NDVI, MSAVI, and

DVI) exceeded SVR and
GRNN in performance

CNNR: R2 = 0.92

[51] Nano-Hyperspec +
SoilNet (55 nodes) Theta probe 5 cm

Canopy complexity was a
limiting factor; VHGPR

model performed well in
water-limited zones

VHGPR: R2 = 0.8

[52] UAV + thermal camera Profile probe 0 to 100 cm

Water stress impacted root
mass and sugar content;

thermal imagery identified
this accurately

ANOVA: R2 = 0.28
(roots),

R2 = 0.94 (sugar)

[53] Landsat-8, Radarsat-2,
ASTER DEM V002, DJI Gravimetric method 5 cm

Developed a regression
model using Landsat-8 height

index with band B5 in
karst terrain

Partial least squares
regression (PLSR):

R2 = 0.36

[54]
UAV mounted with

thermal and
multispectral sensors

Smc probe 15 and 40 cm

A new water dynamics model
linking soil and plant water
status was introduced for

hazelnut orchards

Kalman filter for
continuous tracking

[55] Sentinel-2B
multispectral data METER EC-5 sensors 5–10 cm

Traditional tillage influenced
SM readings more than land
cover, with terrain properties
aiding better SM prediction

XGBoost with terrain
data: R2 value 0.8

[56] Sentinel-1A satellite DM8 Tensiometer +
Penetrometer 15 & 25 cm

Soil moisture and workability
distributions were mapped,

but higher sample diversity is
required for soil
type variability

Multi-polynomial
regression:

83.6% (train), 81.2%
(test) accuracy

[57] SMAP L3 with L-band
radar & MODIS

Three ground station
networks 5 cm

Incorporating surface
temperature, evaporation

efficiency, and topographic
data enhanced model outputs

SVR and FNN
performed best with

Z-score and tanh
normalization

[58] Sentinel-2 remote
sensing

TDR multisensory
probes 15, 30, etc.

Two-way ANOVA showed
improved yield and biomass

with irrigation &
fertigation strategies

Yield increased by
+116.10%,

biomass +119.71%,
drainage losses

decreased by 41.0%

[59] Sentinel-2 imagery Hydra probes 5 and 10 cm
NDVI space enhanced the

OPTRAM model, improving
SM mapping at field scale

OPTRAM with
improved parameter

fitting: R2 between 0.60
and 0.66

[60] Sentinel-2 with
NDVI analysis

EC-5 capacitive
sensor (METER) 15, 35 and 50 cm

Combining NDVI with soil
variables improved irrigation
management in maize crop;
real-time analysis reduced

SM variance

Variance dropped from
85% to <25%

across crop stages

[61]
Digital impedance

analyzer with modified
commercial sensor

Lab-based LCR meter Not Applicable

Introduced a low-cost
FEM-based capacitive sensor

system, not previously
investigated in SM detection

Finite element
modeling (FEM) used

for
sensor simulation

[62] Wireless
underground sensor Not applicable Not Applicable

Wireless link between buried
sensors demonstrated a

communication range of up
to 3 m

Not applicable
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Table 1. Cont.

Reference Technology Used Calibration Method Soil Depth Key Findings Model/Accuracy

[63] Capacitive sensors
insulated with varnish Gravimetric method Not specified

Cu and AGS materials were
most responsive to SM

changes; insulation
improvements are necessary

to ensure long-term use

Regression R2: 0.958
(Cu), 0.953 (AGS)

[64] SM sensor integrated
with WSN and IoT Not specified Not specified

Real-time monitoring system
that tracks SM, humidity, and
air temperature, with image
processing via ThingSpeak

Utilized ANN and
image analysis

[65]
Weather station with
soil moisture sensor

(W-SSS) using SHT-10
Not mentioned 10 & 28 cm

Created a budget-friendly
W-SSS using accurate sensors

and wireless/cloud
infrastructure for

environmental monitoring

Not available

[66] Capacitive sensors
in IoT

Capacitive
hygrometer Not stated

Sensors interface with
microcontrollers and transmit

data through LoRaWAN
communication

Regression modeling
applied

[67] IoT sensors for paddy
environments Laboratory testing Not reported

Designed a cost-efficient and
easy-to-use system combining

various sensors and
communication methods

Not available

2. Different Approaches for Soil Moisture Measurement
2.1. In Situ Method for Soil Moisture Analysis

There are two categories for the in situ approach of measuring soil—the direct ap-
proach and the indirect method. The direct method, which uses thermogravimetric mea-
surement to compare the weight or volume before and after drying, includes the conven-
tional oven drying method, as well as weight-based and volume-based methods. Other
than this, every automated methodology now in use is classified as an indirect method.
By making holes in the Earth, the direct approach—also referred to as the destructive
method—estimates the moisture content of soil. This disturbs the root zone of the soil and
may eventually affect infiltration and drainage properties. Stated differently, the indirect
technique measures soil moisture by establishing a correlation between the physical and
chemical qualities of soil and its moisture content [68].

Several methods, like in situ or ground truth measurements, physically based models,
and remote sensing, are also a way of estimating SMC (presented in Table 2 below) [69].
However, it is still difficult to measure SMC accurately due to the regional heterogeneity
in soil quality, terrain, vegetation cover, and climate, which makes large-scale assess-
ments tough. Single-point measurements at predetermined sites are used in traditional
SMC estimating methods. The gravimetric method, while highly accurate, is destructive,
time-consuming, and costly. Indirect techniques for estimating SMC include gamma-
ray scanners [70]; neutron probes [1]; frequency-domain reflectometry, or FDR [71]; and
time-domain reflectometry (TDR).

Table 2. Conventional methods and their characteristics.

Method Accuracy Major Advantages Major Disadvantages Cost Soil Suitability References

Gravimetric High
- Easy setup and high accuracy
- Direct method
- Used in calibration of

indirect methods

- Time-consuming
- Labor-intensive
- Destructive

Low All [72,73]
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Table 2. Cont.

Method Accuracy Major Advantages Major Disadvantages Cost Soil Suitability References

TDR High
- Highly responsive
- Less destructive
- Automation possible

- Expensive
- Calibration required Medium All except

saline soil [74,75]

FDR High
- Highly responsive
- Less destructive
- Automation possible

- Less performance in
saline and conductive
heavy clay soils

Medium
All except

clayey and silty
soils

[28]

Gamma ray High
- Non-destructive
- Real-time monitoring
- Deep penetration

- Limited spatial
resolution

- Can determine smc
having a thickness of
up to 2.5 cm only

Costly All [28,76]

Tensiometer High
- Cost-effective and

non-destructive
- Continuous reading without

disturbing the soil

- Not suitable for
dry soil

- Constant monitoring
required

Cost-Effective
Not favorable

for dry
condition

[77,78]

Capacitance
sensor

High but
depends

on several
factors

- Non-destructive
- Accurate measurement
- High levels of salinity can

be read

- Proper calibration
required

- High sensor cost
- Accuracy is dependent

of soil type and
temperature

Costly All [77]

2.1.1. Gravimetric Method

A conventional and generally used method for calculating surface soil moisture (SSM),
the gravimetric method is frequently used as the standard for precision. It offers reliable
moisture measurements that are unaffected by variations in soil texture or salinity. Despite
its precision, the method is inherently destructive, as it involves removing soil samples for
oven drying in a laboratory setting. This characteristic makes it unsuitable for repeated
measurements at the same location and limits its ability to provide continuous moisture
data over time [79]. Figure 4 below presents the process of the gravimetric method.

Figure 4. Process of gravimetric method (in situ method) for volumetric water content measurement.
(A): Collection of samples in the field using auger; (B) Extraction of sample at multiple depths;
(C) Weighing of the samples before and after drying; (D) Drying of samples in hot air oven at 105 ◦C
for 24 h.

2.1.2. Time-Domain Reflectometry (TDR)

By timing the passage of an electromagnetic pulse through a waveguide embedded
in the soil, these sensors are able to estimate the smc of the soil (Figure 5). The dielectric
properties of the soil, which change with the moisture content, have an impact on this
transit time. Because of its high temporal resolution, quick data capture (around 28 s), and
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reliable observations, TDR is especially helpful for long-term, in situ monitoring [76]. A
major property of TDR is that it does not require soil-specific calibration, as it remains
largely unaffected by soil texture, salinity, and temperature. Additionally, it offers a non-
destructive, radiation-free method for continuous soil moisture assessment. However, the
system involves a relatively high initial cost and may encounter accuracy issues in highly
saline soils or very wet conditions due to signal loss or increased [80].

Figure 5. Schematic diagram of moisture measurement with time-domain reflectometry (TDR).

2.1.3. Capacitance and Frequency-Domain Reflectometry (FDR) Sensors

By examining how long it takes a capacitor buried in the soil media to be charged, it
calculates the dielectric constant of a medium (Figure 6a,b) [81]. Because this process is
heavily influenced by the specific soil properties, it often necessitates repeated calibration
during deployment. Although the initial setup cost of these systems is relatively low,
frequency-domain techniques are generally considered more promising than time-domain
reflectometry (TDR) methods for assessment of soil moisture content. In a comparative
analysis, it was found that Topp’s equation (developed by Topp, Davis, and Annan in 1980)
remains valid for TDR-based soil moisture measurements up to a volumetric water content
of 50%. This limitation is due to the fact that the equation was derived from experiments
on mineral soils with moisture levels below 50%.

(a) (b) 

Figure 6. Illustration comparing two moisture measurement techniques: (a) frequency-domain
reflectometry (FDR) and (b) capacitive sensing.
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2.1.4. Gamma Ray

Both laboratory and field studies can benefit from the use of gamma-ray attenuation,
which is one method that uses radioactive signals to accurately measure smc, usually up to
a depth of about 25 mm or less (Figure 7). Its non-invasiveness, which permits repeated
measurements of soil physical characteristics at the same site over time without altering the
soil structure, is one of its main advantages. According to [82], this approach has especially
higher sensitivity to changes in soil bulk density and surface soil moisture variations.

Figure 7. Detailed diagram of moisture measurement using the gamma-attenuation technique.

However, compared to neutron-scattering methods, gamma-ray techniques involve
greater safety concerns and come with higher operational expenses due to the use of
radioactive materials.

2.1.5. Tensiometer

Tensiometer—a fundamental device used to measure the matric potential in the soil
(Figure 8), which reflects the soil water tension or suction based on the principle of negative
pressure. This instrument functions effectively only within a limited range of 0 to −1 bar,
which represents a narrow segment of the total soil moisture availability. Due to this
restricted measurement range, it is not suitable for accurately determining the wilting point
for most crops. Tensiometers are most effective in sandy soils, where moisture is typically
found at shallow depths (less than 1 m), but they are generally unsuitable for fine-textured
soils. Although tensiometers, compared to other techniques, have relatively low-cost and
are simple to install, they require constant maintenance and are considered invasive to the
soil environment [68].

2.2. Remote Sensing Approaches

Ground-truth-based soil moisture measurement approaches are useful for obtaining
direct readings at various soil depths. Despite providing useful data, point-based ap-
proaches are limited in their capacity to capture the large-scale spatiotemporal variability
of soil surface moisture (SSM). This limitation arises because of the influence of key compo-
nents, such as topography, climatic conditions, composition of soil dynamics, vegetative
cover, and water table depth, which contribute to significant heterogeneity and variable
distribution patterns.
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Figure 8. Detailed diagram of measurement using a tensiometer to measure the matric potential in
the soil.

To address this challenge, remote sensing technology offers a cost-effective solution
by providing frequent, global-scale updates. Moisture content can be assessed using
thermal and optical satellites, along with a range of sensors, including active, passive, and
microwave technologies [9,76,83,84]. One effective approach for tracking the temporal and
geographical variations in moisture content (SMC) at different scales is the remote sensing
approach. Images from the optical, thermal, and microwave portions of the electromagnetic
spectrum can be obtained by remote sensing. Surface reflectance, or reflected radiation
from the Earth’s surface, is used by optical remote sensing to calculate the smc of the soil on
the surface. This method offers moisture data of soil with better spatial resolution [85]. Soil
spectral reflectance is affected by intrinsic factors as texture, organic matter, and mineral
composition, all of which are influenced by soil moisture [86,87]. The changes in soil
spectral signature caused by varying moisture levels can be analyzed by observing bare
soil under various moisture conditions, where the variation is attributed solely to moisture
content [88–90]. Recent laboratory findings have demonstrated the impact of SMC on
soil reflectance behavior, emphasizing the significance of remote sensing in estimating
SMC [91,92]. Apart from direct retrieval techniques, hydrological modeling approaches
that utilize remote sensing data offer an alternative pathway for indirect soil moisture
estimation. For instance, ref. [93] proposed the AD2 (approximate distributed approach),
which enhances the calibration of lumped hydrological models by integrating spatially
distributed physical information such as land use and topography derived from remote
sensing. Although primarily designed for hydrological simulations, such approaches
contribute to soil moisture estimation by providing improved spatial representation of
surface and sub-surface hydrological processes.

Figure 9 depicts the study of spectral signature and reflectance analysis of a field
using remote-sensing imagery data. The figure illustrates a bare agricultural field (A)
divided into various grids for systematic sampling (B). Point data are collected at the
center of each grid cell as sampling points. These discrete point measurements are then
spatially interpolated using interpolation methods like inverse distance weighting (IDW)
and Kriging in a GIS environment. The resulting map provides a continuous representation
of spectral reflectance across the entire field (C). The color gradient illustrates the spatial
variability in reflectance values, highlighting differences across the field surface.
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(A) (B) (C) 

Figure 9. Study of spectral signature and reflectance analysis using remote sensing images.
(A) Location of a study area (bare soil); (B) Division of study area into various grids for sampling of
point data; (C) Output map with representation of spectral reflectance across the entire field.

However, because of its very limited geographical and temporal resolution, satellite-
based remote-sensing data application has limits. Despite these obstacles, significant
strides have been achieved in recovering SMC through the analysis of its correlations with
land-surface data collected from satellites. The basis for determining SMC using optical
and thermal remote sensing data is the relationship between SMC and vegetation indices
(VI) or surface spectral data. SMC is frequently estimated using the soil line equation,
which combines vegetation cover and soil reflectance. Because spectral reflectance of soil in
these bands typically declines with an increase in SMC, thermal infrared wavelengths are
especially helpful in this situation.

Critical information about a range of agricultural and environmental aspects, such
as growth status of a crop, SMC, evapotranspiration, temperature of land surface, and
even pest infestations, can be assessed from remote sensing data with high geographical
and temporal resolution. Because of these developments, remote sensing is now a highly
effective tool for controlling and monitoring soil moisture. The vegetative index and
analysis of a single spectral signature are the two commonly utilized methods in optical
remote sensing of smc [94]. By using the contrast between the spectral reflectance in the
water-absorption and non-absorption bands, single spectral analysis develops the link
between soil moisture and reflectance from the surface [95]. An overview of remote sensing
methods, including their methods, benefits, and drawbacks, is given in Table 3 below for
estimating soil moisture.

Table 3. Overview of remote sensing techniques for soil moisture estimation with advantages,
limitations, and references.

Category Technique Pros Cons Reference

Optical Method Reflectance-usage
methods

Moderate spatial resolution;
potential with upcoming
hyperspectral missions.

Limited performance over
dense vegetation; low

temporal resolution; sensitive
to cloud cover.

[85]

Thermal Infrared Thermal
infrared-usage methods

Moderate resolution; strong
correlation between soil moisture

and thermal inertia.

Low revisit rates; atmospheric
influence; limited in vegetated

and cloudy conditions.
[96]

Microwave Passive Various methods
Reliable over bare soils; effective
under cloudy skies with higher

temporal frequency.

Coarse resolution; affected by
vegetation and

surface roughness.
[97]

Microwave Active Empirical, semi-empirical,
and physical methods

High spatial resolution; capable in
cloudy and daytime conditions.

Limited revisit frequency;
prominently sensitive to
surface roughness and

vegetative cover.

[98]
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Table 3. Cont.

Category Technique Pros Cons Reference

Synergistic
Methods

Optical and thermal
infrared

Enhanced moisture content retrieval
using multiple sensor data.

Empirical limitations; poor
performance under clouds;

restricted sensing depth.
[99]

Active and passive
microwave

Improved temporal resolution and
soil moisture detection.

Requires careful scaling
and validation. [100]

Optical and Thermal
Thermal sensor,

vegetation index and
spectral reflectance

Strong correlation between soil
moisture and land-surface

temperature (LST) indicates that LST
can serve as an effective tool for early

monitoring of vegetation status.

Coarse spatial resolution may
miss small-scale variations. [101]

2.3. UAV for Moisture Content Estimation

Establishing models that link soil moisture (SM) to quantifiable remote sensing pre-
dictors or indicators like temperature of soil surface and vegetative indices is essential
given the features of SM detection using UAV-based remote sensing [46]. The usefulness of
spatial variability analysis through different vegetation indices has been demonstrated by a
number of studies that have mostly concentrated on the direct assessment of soil moisture
using multispectral images [6,88]. Significant promise exists for developing a dependable
and reasonably priced technique for spatially mapping important soil characteristics, in-
cluding bulk density, hydraulic properties, soil moisture, soil texture, and organic matter,
using UAV-based multispectral imaging. Unlike satellite-based data, UAV data provide
much higher spatial resolution, increasing the potential of better and precise predictions
of soil moisture content and better navigation over temporal resolution. In comparison
to traditional in situ methods of measurements, UAVs can cover larger areas in relatively
lesser time while also providing detailed assessments of spatial variability within fields.

In the agriculture industry, unmanned aerial vehicles (UAVs) have become a more
affordable option than traditional remote sensing platforms [102–105]. While satellite-based
remote sensing offers broad spatial coverage and generally reliable precision for estimation
of moisture content of soil (SMC) on a larger scale, it is less suitable for capturing small-
scale or frequent changes in agricultural environments [106,107]. In contrast, UAV-based
remote sensing is particularly advantageous for estimating SMC at the field level due to its
affordability, high-frequency deployment capability, and ultra-high spatial resolution often
achieving imagery with pixel sizes as small as 1–2 cm [107]. Employing UAVs mounted
with thermal infrared, RGB, and multispectral camera (Figure 10) has provided considerable
promise for precise and frequent SMC monitoring in agricultural contexts, supporting a
wide range of practical applications [47,108–110]. Figure 10 shows the multispectral sensor
mounted in a UAV and the calibration process using a calibration board.

  

Figure 10. UAV-mounted with multispectral camera, sensor components, and calibration process. (In
pic.: Multispectral camera model is MicaSense-RedEdge P and drone is Agribot by IOTech).
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Unmanned aerial vehicles (UAVs) provide a highly effective solution for monitoring
soil moisture, offering advantages, such as precise measurement, rapid data collection,
scalability, and cost efficiency. With benefits including accurate measurement, quick data
collection, scalability, and cost effectiveness, unmanned aerial vehicles (UAVs) provide a
very effective way to monitor soil moisture. Equipped with a range of sensors—including
optical, thermal infrared, and LiDAR—UAVs serve as versatile platforms for remote sensing.
These systems can capture imagery at exceptionally high spatial resolutions, often down to
centimeter or sub-centimeter scales, providing much detailed spatial analysis and accurate
mapping of distribution of soil moisture in agricultural environments [94]. In our analysis,
we discovered the most highly used sensors on UAVs for soil moisture (SM) monitoring,
as follows:

• RGB cameras: These types of sensors are mostly used for mapping vegetation and take
pictures in the visible light spectrum. They are popular because they are inexpensive
and simple to use, and they generate high-resolution color images with red, green,
and blue bands [111].

• Multispectral and hyperspectral cameras: In order to calculate vegetation indices, such
as the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), and Soil-Adjusted Vegetation Index (SAVI), these sensors gather data over a
variety of spectral bands. These indices are instrumental in evaluating vegetation
health, physical soil attributes, and soil moisture levels. The data from these cameras
often require radiometric and atmospheric corrections to ensure accuracy [43].

• Thermal cameras: These sensors detect infrared radiation to create temperature maps
and identify thermal patterns. They are particularly valuable in estimating evapotran-
spiration and detecting variations in temperature in land surface, closely linked to
soil moisture content [112]. In agriculture, thermal imaging is extensively applied for
assessing crop water stress and improving irrigation efficiency [113].

• Shortwave near-infrared (SWIR) cameras: these instruments generate reflectance
indices in the SWIR range that closely relate to the water content in plant tissues,
enabling indirect assessment of soil moisture levels through vegetation analysis.

• LiDAR: This remote sensing technique is widely utilized for constructing high-
resolution 3D terrain models and is essential for applications such as flood detection,
snow depth measurement, and erosion analysis. Despite its effectiveness, LiDAR
is relatively costly and often requires additional processing steps, including ground
filtering, to ensure data accuracy [114]. Table 4 presents different sensors and their
influence due to weather conditions and their calibration process.

Table 4. Weather-induced effects on UAV RGB, NIR, thermal, and LiDAR sensors—data quality
challenges and mitigation approaches.

Sensor Type Influence of Weather
Conditions Impact on Data Quality Calibration Reference

RGB Camera

Cloud cover, variable
sunlight (solar angle),

shadows, and haze reduce
contrast and affect surface
reflectance measurements.

Reflectance inconsistency,
shadow artifacts,

over/under-exposed regions.

Radiometric calibration
using reflectance panels [115]

NIR Sensor

Atmospheric moisture and
haze scatter NIR

wavelengths, altering
vegetation reflectance; sun

angle changes
spectral response.

Errors in vegetation indices
(e.g., NDVI), spatial

inconsistency in reflectance
values.

Calibration with
multi-level

reflectance targets
[116]
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Table 4. Cont.

Sensor Type Influence of Weather
Conditions Impact on Data Quality Calibration Reference

Thermal Camera

Ambient temperature
fluctuations, wind cooling of
surfaces, humidity, and solar

heating drift thermal
readings during flights.

Inaccurate surface temperature
maps; thermal drift; variability

in emissivity assumptions.

Blackbody
calibration targets [117]

LiDAR Sensor

Fog, rain, dust, and humidity
scatter and attenuate laser

pulses, reducing
return strength.

Reduced point density,
increased noise, poorer

vegetation penetration, and
degraded elevation accuracy.

Boresight and
range calibration [118]

The figure below (Figure 11) provides an overview of the key functions and operational
limitations of onboard sensors incorporated in remote sensing applications. A tabular
summary of UAV-based soil moisture estimation studies, including authors, methods, and
key findings (2019–2022), is presented in Table 4 below. Table 5 provides a summary of
UAV based moisture estimation methods and key findings.

 
Figure 11. Overview of the key functions and operational limitations of onboard sensors used in
remote sensing applications [119].

Table 5. Summary of UAV-based moisture content estimation studies, methods, and key findings.

Reference Year Methods Used Key Findings

[120] 2021 UAV multispectral imaging; machine learning
(Random Forest); multiple linear regression

Built models between vegetation indices and
SMC at different crop stages; high accuracy and

model stability.

[47] 2023 UAV RGB, NIR, and thermal infrared sensors;
NDVI analysis; patch trait quantification

Evaluated Green NDVI (GNDVI) and vegetation
patch impacts on soil moisture; showed trait

influence on SMC monitoring accuracy.

[44] 2020 UAV visible-band imagery; brightness analysis;
correlation with ground SMC; statistical modeling

Image brightness strongly correlated with SMC;
combining brightness with vegetation cover

improved estimation accuracy.
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Table 5. Cont.

Reference Year Methods Used Key Findings

[111] 2022 UAV-mounted RGB and thermal sensors; texture
and temperature analysis; regression modeling

Discovered relationships between soil texture,
surface temperature, and SMC in arid regions;

useful for localized water
management strategies.

[69,121] 2017, 2025 UAV with hyperspectral bands
Helps in ground moisture content mapping,

ultimately for risk management during
extreme events

In addition to the above summary of UAV applications and machine learning
method for soil moisture estimation, the following table (Table 6) highlights recent studies
(2023–2025) with a focus on UAV-based data acquisition and model performance.

Table 6. Summary of UAV and machine learning techniques for moisture content estimation.

Reference
Moisture
Content

Data

Remote Sensing
Inputs

Satellite/
Platform

Machine
Learning
Models

Best-
Performing

Model
Performance Metrics Study Area

[122] TDR

NDVI, radar
backscatter (VV,
VH), incidence

angle, DEM

Sentinel-1 &
Sentinel-2

ANN, GRNN,
SVR, RF, RNN,

AutoML
Boosting, EL,

BDT

ANN RMSE = 0.04 m3/m3;
R2 = 0.80

India

[10] TDR NDVI and NTR
reflectance UAV Various ML

models Not specified
RMSE = 0.04 cm3/cm3;

Nash–Sutcliffe
efficiency > 0.90

USA

[123] TDR
Radar

backscatter
(VV, VH)

Sentinel-1 ANN, RF, SBC,
WM, etc. SBC R2 = 0.64;

bias = −0.01 m3/m3 India

[124] TDR
NDWI, radar
backscatter
(VV, VH)

Sentinel-1,
Landsat-7 & -8 ANN, LRM ANN RMSE = 0.04 cm3/cm3;

R2 = 0.73
Ethiopia

[125] TDR Optical
reflectance Landsat-8

ANN, RF,
SVM, Elastic

Net (EN)
RF NS = 0.73 Iran

[126] Oven-dry
method

Spectral
reflectance UAV

ANN, RF,
SVM,

Relevance
Vector

Regression
(RVR), Boosted

RT (BRT)

BRT
R2 = 0.91;

RMSE = 1.48%;
RPD = 3.396%

China

[127] TDR

Radar
backscatter
(VV, VH),

incidence angle

Sentinel-1 Random Forest
(RF) RF R2 = 0.86; RMSE = 3%

New
Zealand

2.4. Approach Using Machine Learning

In recent years, machine learning techniques for estimating soil moisture have drawn
a lot of attention, mainly due to their potential to improve accuracy and efficiency over
conventional methods. Beyond agricultural monitoring, remote sensing and machine
learning techniques are increasingly applied in fields such as energy infrastructure [128].
To create predictive models, these methods usually integrate a variety of different data
sources, such as in situ observations, meteorological data, and remote sensing. For example,
deep learning methods, random forests, and support vector machines (SVMs) have been
incorporated to understand the non-linear interactions between soil moisture and its
influencing elements.
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Furthermore, integrating sensor data and machine learning has enabled real-time
moisture content monitoring, which is essential for the field of precision agriculture and
management of water resource [1]. These advancements enhance the growing importance
of machine learning in environmental monitoring and agricultural practices, paving the way
for future sustainable water management strategies. Table 7 below presents a comparison
of soil moisture assessment methods, their accuracy, cost, and climatic applicability.

Table 7. Comparison of soil moisture assessment methods by accuracy, cost, and climatic applicability.

Method Accuracy Cost Spatial Resolution Temporal Resolution Applicability

In Situ High accuracy High Very fine
Continuous or

scheduled (depends
on instrumentation)

Highly reliable in all
climatic conditions

Satellite Remote
Sensing

Moderate to low
(depends on
resolution)

Low to moderate Coarse to moderate Revisit cycle Effective for large-scale
monitoring

UAV-Based Sensing High accuracy
Moderate to high

(equipment + field
operation costs)

Very high (cm-level
spatial resolution)

Flexible (on-demand
flights, weather

dependent)

Highly effective for
field-to-farm scale;

weather constraints (rain,
wind); requires

site-specific calibration
procedures.

Machine Learning
Models Variable

Moderate
(computational
resources, data

availability)

Dependent on input
data resolution

Can generate
high-frequency

estimates
(model-based)

Scalable to different
climates

Machine learning, a subset of artificial intelligence, allow systems to analyze data
and solve complex problems without the need for explicitly defined rules. Compared to
conventional methods, it often delivers faster and more efficient solutions. One prominent
application of machine learning is in moisture content estimation in soil, where it has
been used to create predictive models that support agricultural practices such as irrigation
management [129,130].

Among machine learning techniques, regression analysis continues to be widely uti-
lized due to its simplicity, long-standing history, and proven effectiveness across many
disciplines. These models can predict diverse outcomes with considerable precision. How-
ever, conventional regression approaches depend on specific statistical assumptions, which
can restrict their applicability. Challenges such as the presence of outliers, non-linear
relationships, heteroscedasticity, and multicollinearity can compromise the validity of the
results. Additionally, standard regression approaches typically incorporate multiple inde-
pendent variables but may overlook interactions or latent effects. When the correlations
among the variables are high, it can lead to distortion of coefficient, leading to biased inter-
pretations and potentially misleading conclusions—a phenomenon sometimes referred to
as “coefficient inflation” [131]. The below table (Table 8) provided presents a compilation
of recent studies focusing on the incorporation of remote sensing technologies and machine
learning models for moisture content estimation.

Table 8. Summary of data used and the ML model/algorithm used and their findings.

Year Input/Data Used Model/Algorithm Key Findings/Outcomes Reference

2017 Oklahoma Mesonet data (65 stations) ROI, IDW, Co-Kriging ROI was more precise than traditional
interpolation methods like IDW [132]

2020 Landsat-8 thermal and optical data Random Forest (RF) RF achieved highest prediction accuracy in
restoration areas of semi-arid Iran [125]
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Table 8. Cont.

Year Input/Data Used Model/Algorithm Key Findings/Outcomes Reference

2020 Soil/environmental variables RF, SVM, MARS, CART Growing preference for RF due to better
performance and interpretability [111]

2021 Coarse-resolution satellite SM
products Random Forest (RF) Increased SM map resolution to 30 m,

enhancing utility for fine-scale applications [133]

2022 Review of ML in SM studies ANN, SVM, CART, RF Concluded RF and CART as more
interpretable than SVM/ANN [134]

2023 Satellite-derived surface variables
(0–5 cm) Random Forest (RF) Provided daily SM estimates at 1 km spatial

resolution incorporating machine learning [26]

2023 Mixed remote sensing inputs Ensemble: KNR + RF +
XGBoost

Ensemble model outperformed others in SM
estimation accuracy [26,40]

2024 Remote sensing hydroclimatic data
Multiscale Extrapolative

Learning Algorithm
(MELA)

Predicted SM at multiple depths monthly in
semi-arid regions [135]

2024 Watershed data (climate, land use) SWAT Simulates the effect of land management on
water, nutrients, and sediments [136]

2024 Land surface, atmospheric data CLM (Community Land
Model)

Integrates biogeophysical processes to
simulate SM accurately [137]

2024 Regional-scale climate and
topography

VIC (Variable Infiltration
Capacity)

Balances water and energy fluxes; captures
spatial SM variation [138]

2024 Soil hydraulic and solute transport
parameters Hydrus-1D Simulates vertical water and solute flow in

variably saturated media [139]

2025 C-band SAR data, Sentinel-2A,
Landsat-8

ANN, MLR,
backscattering coefficients

(σ◦: VV and VH)

ANN models performs better than MLR
models with high R2 and low RMSE [140]

3. Bibliometric Analysis of In Situ or Ground Truth Soil Moisture
Applications and Machine Learning Techniques

Using VOSviewer (Visualization of Similarities), a popular tool for building and
visualizing bibliometric networks, a thorough bibliometric analysis was conducted in order
to methodically identify the current research trends and applications related to in situ
moisture content measurement and machine learning approaches. VOSviewer is an open-
source tool commonly employed for large-scale bibliometric studies and the visualization of
relationships between scientific entities, such as keywords, authors, and publications [123].

3.1. Data Collection and Methodology

This analysis was focused on author-supplied keywords from over one thousand
research articles indexed in the PubMed database, covering the period of 10 years from
January 2015 to May 2025. In addition to restricting the results to include only English-
language publications, we employed a sophisticated Boolean search method within the
PubMed platform, which can be assessed to guarantee a comprehensive dataset at the
following: (https://pubmed.ncbi.nlm.nih.gov/, accessed on 1 June 2025).

The search queries combined the phrase “soil moisture” with specific methods or
sensor types. The primary focus was on commonly used in situ soil moisture measurement
techniques, including the following:

➢ Gravimetric method;
➢ Tensiometer;
➢ Time-domain reflectometry (TDR);
➢ Frequency-domain reflectometry (FDR);
➢ Gamma-ray probe.

https://pubmed.ncbi.nlm.nih.gov/
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The metadata extracted from PubMed was imported into VOSviewer for further pro-
cessing. Specifically, we employed co-keyword burst analysis to explore the frequency and
strength of associations among keywords, alongside their clustering tendencies over time.

3.2. Network Construction and Cluster Analysis

Like mentioned in the introduction section, in VOSviewer, bibliometric maps are
composed of items (e.g., keywords or terms) and links that indicate relationships or co-
occurrence between items. A link is established when two keywords occur together in
a single publication. The link strength measures this connection, with higher values
indicating more frequent co-occurrence. The total link strength reflects the aggregate
number of co-occurrences between a given item and all other items in the dataset.

Clusters are groups of closely related items and are visually represented by distinct
colors in the generated map. These clusters are created using the VOS clustering algorithm,
a widely recognized method for network-based data classification and bibliometric map-
ping [141,142]. Figures 12–16 below provide a visual representation of the overall maps.

 

Figure 12. Gravimetric method for soil moisture estimation (items: 22; clusters: 5; links: 94; total link
strength: 183).

 

Figure 13. Tensiometer method for soil moisture estimation (items: 24; clusters: 4; links: 83).
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Figure 14. TDR method for soil moisture estimation (items: 63; clusters: 10; links: 243; total link
strength: 268).

 

Figure 15. FDR method for soil moisture estimation (items: 11; clusters: 5; links: 123; total link
strengths: 125).

 

Figure 16. Gamma-ray method for soil moisture estimation (items: 24; clusters: 4; links: 91; total link
strength: 98).
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3.3. Comparative Analysis of In Situ Methods

We analyzed each method individually to assess its relative prominence in the litera-
ture. For each method or sensor type, we recorded the size of the clusters, number of links,
and total link strength. These parameters provide insight into the scientific attention and
research connectivity associated with each technique.

The results, as displayed in Figures 12–16 and Table 9, reveal the following:

• The time-domain reflectometry (TDR) was associated with the highest number of clusters
(10), indicating a wide range of application contexts and diverse keyword associations;

• As the most extensively linked and cited tool for in situ moisture content in soil
monitoring, time-domain reflectometry (TDR) showed the most links (243) and the
highest total link strength (268). Interestingly, TDR was commonly associated with
phrases like vegetation, drought, electrical conductivity, and validation;

• With a total link strength of 183, the neutron probe came in second in terms of connec-
tivity, demonstrating its adaptability despite some drawbacks and significance in soil
moisture research;

• In contrast, the use of tensiometer method showed the lowest number of links (83)
and the least total link strength (85), suggesting limited usage in contemporary field
applications, possibly due to its narrow measurement range, high maintenance needs,
and ineffectiveness in dry or deep soils.

Table 9. Bibliometric comparison of leading soil moisture measurement techniques.

Methods Items Clusters Links Total Links Keywords

Gravimetric method 22 5 94 183 Soil moisture

Tensiometer 24 4 83 85 Moisture content

Time-domain reflectometry (TDR) 63 10 243 268 Soil moisture, TDR

Frequency-domain reflectometry (FDR) 11 5 123 125 Soil moisture, FDR

Gamma-ray probe 24 4 91 98 Gamma-ray attenuation

Across all in situ techniques analyzed, commonly associated application-related terms
included field calibration, drought monitoring, and electrical conductivity. These terms
emphasize key themes in current soil moisture research, particularly in relation to climate
variability, irrigation optimization, and sensor performance validation.

The analysis revealed a wide range of key areas where in situ sensors for soil moisture
analysis are prominently utilized. These included the following:

➢ Remote sensing;
➢ Irrigation management;
➢ Control systems;
➢ Hydrological modeling;
➢ Precision agriculture;
➢ Geospatial sensor networks;
➢ Data simulation techniques;
➢ Flood risk monitoring;
➢ Landscape irrigation.

Since in situ sensor data are heavily integrated with satellite or aerial observations for
extensive monitoring of the environment and modeling efforts, remote sensing evolved as
the most commonly associated application among them. The fact that terminology from
agriculture, hydrology, and sensor networks frequently occur together further emphasizes



Water 2025, 17, 2388 23 of 35

how multidisciplinary soil moisture research is and how important it is to managing water
resources and the environment.

3.4. Analysis of Machine Learning Techniques Applied to Soil Moisture Prediction

The analysis was expanded in the study’s second half to correlate the relationship
between machine learning methods and soil moisture research. A refined search was
executed using the query “soil moisture” OR “machine learning” within the PubMed
advanced search interface. This broader query aimed to capture a wider spectrum of
research integrating data-driven approaches with soil moisture estimation and modeling.

The resulting bibliographic dataset was again processed using VOSviewer to conduct
a co-keyword burst analysis. This analysis enabled the identification of machine learning
algorithms that have gained significant traction in soil moisture studies, particularly those
involving in situ measurements.

The results, visualized in the figures below, indicate that the commonly applied
machine learning method in this domain are as follows:

➢ Random Forest (RF);
➢ Artificial neural networks (ANNs);
➢ Support vector machines (SVMs).

These three algorithms consistently demonstrated strong co-occurrence with soil
moisture-related keywords, underscoring their widespread adoption for tasks such as soil
moisture prediction, data imputation, spatial interpolation, and integration with remote
sensing data.

Figure 17 presents a visual map of key research themes related to machine learning
applications in soil moisture estimation, based on 200 PubMed articles published between
2015 and 2025. The size of each circle reflects how often a keyword appears, with “ma-
chine learning”, “soil”, and “remote sensing” being the most frequent and central terms.
Keywords are grouped into clusters using different colors, indicating thematic areas, such
as drought monitoring, crop prediction, environmental monitoring, sensor technology,
and specific machine learning techniques, like random forest, SVM, and XGBoost. The
connections among keywords (lines) show how closely related the topics are, helping to
reveal trends, research focus areas, and interdisciplinary links in the field.

 

Figure 17. Integration of machine learning methods for estimation of soil moisture. PubMed database:
200 articles published during the years 2015–2025 were considered.
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3.4.1. Random Forest Model for Soil Moisture Analysis

A popular machine learning approach for forecasting and analyzing the dynamic of
soil moisture is the Random Forest (RF) model, which can handle complicated interactions,
high-dimensional datasets, and non-linear correlations. RF is an ensemble learning method
that builds many decision trees during training, each based on random subsets of features
and distinct bootstrap samples of the data. For regression tasks like estimating soil moisture,
the final result is produced by combining the predictions from each individual tree, usually
through averaging.

In each tree, a random subset of features is considered at every split, which increases
model diversity and reduces correlation among trees. According to the original formulation,
the default hyperparameters for regression typically involve generating 200 decision trees,
with p/3 features (where p is the total number of input features) evaluated at each split.
However, more recent studies emphasize the importance of hyperparameter optimiza-
tion, as default settings may not yield optimal performance across different datasets or
application domains [10].

In soil moisture analysis, RF models are often trained using a variety of input vari-
ables, including meteorological data (e.g., precipitation and temperature), remote sensing
indices (e.g., NDVI and land-surface temperature), topographic features, soil texture, and
vegetation parameters. This flexibility enables RF to integrate heterogeneous data sources,
improving prediction accuracy across spatial and temporal scales.

Overall, the RF model serves as a powerful tool in modern soil moisture research,
supporting applications in irrigation scheduling, drought monitoring, precision agriculture,
and hydrological modeling. Figure 18a,b illustrates the distribution and relationships
of randomly applied methods for soil moisture estimation across 149 studies from 2015
to 2025.

This VOSviewer visualization illustrates the evolution of research themes over time
based on keyword co-occurrence in scientific publications. Larger nodes such as “machine
learning”, “soil”, and “random forest” indicate topics with a high number of publications.
The color gradient, ranging from blue (earlier years like 2015) to yellow (recent years like
2025), shows how the research focus has shifted. Earlier studies emphasized topics like
“droughts” and “evapotranspiration” (blue–green), while recent publications increasingly
explore areas like “soil moisture”, “ensemble learning”, and “agricultural drought” (yel-
low). The dense network of connections suggests interdisciplinary integration, particularly
in environmental monitoring using machine learning. Overall, the map highlights growing
interest in applying advanced computational methods to soil- and climate-related chal-
lenges. Overall, research is progressing more toward using modern tools like machine
learning to study soil and climate issues.
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(a) 

(b) 

Figure 18. (a,b) Random method used for soil moisture estimation between 2015 and 2025 considering
the available 149 articles during this period (items: 52; clusters: 10; links: 257; total link strength: 513).

3.4.2. Artificial Neural Networks (ANNs)

Artificial neurons are the building blocks of neural networks, often known as artifi-
cial neural networks (ANNs). A feed-forward neural network is frequently utilized for
regression tasks such as determining soil moisture. A neural network is structured with the
following three main layers: the input layer, hidden layers, and the output layer (Figure 19).

The input layer, hidden layers, and output layer are the three primary layers that
make up a neural network. The dataset’s features are transferred to the input layer and
then to the hidden layers. Several neurons in these hidden layers use weights to process
the incoming data. Additionally, each neuron has a bias term that aids in more efficient
output adjustment. The final prediction or response is produced in the output layer. After
each layer, an activation function is applied to determine whether a neuron should pass its
output forward. This function introduces non-linearity, allowing the network to learn and
solve complicated problems that simple linear models cannot handle. Figure 20a,b show
the use of artificial-neural-network (ANN) methods for soil moisture estimation based on
106 research articles from 2015 to 2025.
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Figure 19. Working architect of the ANN model [124].

(a) 

(b) 

Figure 20. (a,b) ANN method used for soil moisture estimation between 2015 and 2025 considering
the available 106 articles during this period (items: 22; clusters: 4; links: 96; total link strength: 249).
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Typically, linear functions (such as purelin) are applied in the input layer and output
layer of the network, while hidden layers use non-linear functions like the hyperbolic
tangent sigmoid (tansig) to better capture complex patterns. In a feed-forward neural
network, each neuron is connected only to neurons in the next layer, ensuring that the
flow of information moves in one direction without forming any loops. To train this type
of network effectively, the backpropagation algorithm is commonly used. This method
involves repeating calculations to adjust the weights and biases, aiming to minimize the
error between the model-predicted value and actual value [142].

3.4.3. Support Vector Machine

Strong supervised learning models for both classification and regression applications
are support vector machines (SVMs), which are frequently employed in soil moisture
analysis. In this regard, SVMs aid in the prediction of soil moisture levels by utilizing input
parameters, including rainfall, temperature, vegetation indices, and satellite data.

They function by determining the appropriate border or hyperplane to maximize the
distance (margin) among various data classes while effectively separating them. The perfor-
mance of generalization is enhanced by this margin maximization. SVMs can handle intri-
cate, non-linear interactions by converting the input information into higher-dimensional
spaces through the use of kernel functions. This enables the model to identify boundaries
more successfully. Due to their strong generalization ability and resistance to overfitting,
SVMs are highly accurate and reliable in a wide range of applications, particularly while
using high-dimensional or limited datasets [143].

The figure (Figure 21a,b) below represents a bibliometric network analysis of the rela-
tionship between different research terms in machine learning and related fields. The nodes
represent keywords, and the size of each node indicates the frequency of publications with
that term. The colors of the edges show the publication years, with yellow indicating earlier
years and green indicating more recent publications. It highlights the increasing focus on
topics like “machine learning”, “soil”, and “remote sensing” in research in recent years.
This visualization can help track the evolution of research trends over time, emphasizing
the rise of machine learning techniques in agriculture and environmental monitoring.

Table 10 below provides a bibliometric comparison of major machine learning methods
used in soil moisture estimation. Random Forest appears as the most widely applied
technique with 52 items and the highest total link strength (513), indicating strong research
connectivity. Support vector machine shows the largest number of items (89) and clusters
(14), reflecting broad application but relatively lower link strength (400). ANN, while
having fewer items (22), demonstrates focused research with four clusters and moderate
link strength (249), suggesting a more specialized but connected usage.

Table 10. Bibliometric comparison of leading machine learning methods for soil moisture measure-
ment techniques.

Methods Items Cluster Links Total Links Strength

Random Forest (RF) 52 10 257 513

Artificial Neural Networks (ANNs) 22 4 96 249

Support Vector Machine 89 14 355 400
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Figure 21. (a,b) SVM method used for soil moisture estimation between 2015 and 2025 considering
the available 37 articles during this period (items: 89; clusters: 14; links: 355; total link strength: 400).

Machine learning models like regression methods are commonly employed to forecast
soil moisture levels. According to a bibliometric study, Random Forest, neural networks,
and support vector machines are leading as the most frequently applied algorithms in
this field (Table 8). The performance of these models is highly influenced by the quality
and relevance of the input features used. These features must effectively represent the
target variable, e.g., moisture content in our case. It is crucial to select input variables that
accurately reflect the physical processes associated with soil moisture. However, including
too many features, even relevant ones, can lead to decreased model performance due to
overfitting or redundancy. Therefore, choosing suitable and informative features is often
more vital than the selection of the machine learning algorithm itself.

Among the algorithms, Random Forest has emerged as the most widely used for
estimating soil moisture. It accounts for 149 publications, spread across 10 clusters, with
257 interconnections and a total link strength of 513. China leads in terms of research
output in this area, particularly in integrating remote sensing inputs with machine learning
for moisture content prediction.
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4. Limitations & Conclusions
4.1. Limitations

Despite the growing capabilities of soil-moisture estimation techniques, several lim-
itations persist across both traditional and modern approaches. Despite their accuracy,
in situ techniques are frequently labor-intensive, spatially constrained, and unsuitable
for extensive monitoring. Although they provide more spatial coverage, remote sensing
technologies have drawbacks include cloud interference, poor resolution, and decreased ac-
curacy in difficult terrain or dense vegetation. UAV-based methods provide high-resolution
data but are constrained by flight duration, weather conditions, and regulatory restrictions.
Machine learning models, although powerful, are mostly dependent on the quality and
representativeness of input features and training data. Overfitting, lack of generalizability,
and the “black-box” nature of some algorithms can reduce their transparency and reliability.
Furthermore, limited access to high-quality, long-term datasets and the lack of standardized
protocols for model validation continue to hinder reproducibility and scalability. Address-
ing these limitations is essential for improving the operational deployment and scientific
rigor of soil moisture monitoring systems.

4.2. Conclusions

Accurate and timely soil moisture estimation is fundamental to advancing sustainable
agriculture, efficient water resource management, and climate resilience. This review has
synthesized the progression of soil moisture measurement techniques—from traditional
gravimetric and sensor-based in situ methods to cutting-edge remote sensing, UAV plat-
forms, and machine learning-driven models. While each approach offers unique benefits,
their limitations underscore the need for integrated systems that combine spatial scale,
temporal frequency, and contextual accuracy.

Machine learning techniques or algorithms particularly Random Forest, artificial
neural networks, and support vector machines have stepped-up as powerful tools for
capturing the non-linear and heterogeneous nature of soil moisture dynamics. However,
their effectiveness is contingent on the quality and relevance of input features, underscoring
that robust feature selection often outweighs algorithm choice in model performance. The
bibliometric analysis further reveals a rapidly growing body of research, with China and
institutions like the Chinese Academy of Sciences leading in scholarly output.

Despite these advancements, challenges such as data inconsistency, sensor limitations,
model generalizability, and the absence of standardized protocols remain. The path forward
lies in fostering interdisciplinary collaboration and embracing hybrid frameworks that
fuse physical models, sensor networks, and artificial intelligence. Such approaches will
enable the development of next-generation soil-moisture monitoring systems—scalable,
adaptive, and capable of informing critical decisions in agriculture, disaster mitigation, and
environmental stewardship.

Author Contributions: Conceptualization, S.C.H.; methodology, Y.A.R., K.V.R.R., S.P.K., A.B.M., and
A.S.; software S.C.H. and Y.A.R.; resources, Y.A.R., K.V.R.R., S.P.K., A.B.M., and A.S.; data curation,
S.C.H. and Y.A.R.; writing—original draft preparation, S.C.H.; writing—review and editing, Y.A.R.,
K.V.R.R., S.P.K., A.B.M., and A.S.; visualization, S.C.H.; supervision, Y.A.R., K.V.R.R., and S.P.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.



Water 2025, 17, 2388 30 of 35

References
1. Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the Luan

River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [CrossRef]
2. Sabater, J.M.; Jarlan, L.; Calvet, J.-C.; Bouyssel, F.; De Rosnay, P. From near-surface to root-zone soil moisture using different

assimilation techniques. J. Hydrometeorol. 2007, 8, 194–206. [CrossRef]
3. Guan, Y.; Grote, K. Assessing the Potential of UAV-Based Multispectral and Thermal Data to Estimate Soil Water Content Using

Geophysical Methods. Remote Sens. 2024, 16, 61. [CrossRef]
4. Li, S.; Pezeshki, S.R.; Goodwin, S. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia). Acta

Oecologica 2004, 25, 17–22. [CrossRef]
5. Sánchez, N.; González-Zamora, Á.; Piles, M.; Martínez-Fernández, J. A new Soil Moisture Agricultural Drought Index (SMADI)

integrating MODIS and SMOS products: A case of study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [CrossRef]
6. Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-

spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [CrossRef]
7. Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt,

R. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. Remote Sens. Environ. 2016,
183, 215–225. [CrossRef]

8. Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [CrossRef]
9. Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017,

16, 1–9. [CrossRef]
10. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of

Soil Moisture. In Reviews of Geophysics; Blackwell Publishing Ltd.: Oxford, UK, 2019; Volume 57, pp. 530–616.
11. Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E.A. Estimating root zone soil moisture across the Eastern United States with

passive microwave satellite data and a simple hydrologic model. Remote Sens. 2019, 11, 2013. [CrossRef]
12. Ahlmer, A.-K.; Cavalli, M.; Hansson, K.; Koutsouris, A.J.; Crema, S.; Kalantari, Z. Soil moisture remote-sensing applications for

identification of flood-prone areas along transport infrastructure. Environ. Earth Sci. 2018, 77, 533. [CrossRef]
13. Li, Y.; Yan, S.; Chen, N.; Gong, J. Performance evaluation of a neural network model and two empirical models for estimating soil

moisture based on sentinel-1 sar data. Prog. Electromagn. Res. C 2020, 105, 85–99. [CrossRef]
14. Altese, E.; Bolognani, O.; Mancini, M.; Troch, P.A. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data:

Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res. 1996, 32, 653–661. [CrossRef]
15. Barrett, B.W.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations: An evaluation of

current techniques. Remote Sens. 2009, 1, 210–242. [CrossRef]
16. Oh, Y.; Sarabandi, K.; Ulaby, F.T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces.

IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [CrossRef]
17. Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave

backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [CrossRef]
18. Oh, Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil

surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 596–601. [CrossRef]
19. Dubois, P.C.; Engman, T. Measuring Soil Moisture with Imaging Radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926.

[CrossRef]
20. Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992,

30, 356–369. [CrossRef]
21. Sahebi, M.R.; Angles, J. An inversion method based on multi-angular approaches for estimating bare soil surface parameters

from RADARSAT-1. Hydrol. Earth Syst. Sci. 2010, 14, 2355–2366. [CrossRef]
22. Kweon, S.K.; Oh, Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural

fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2802–2809. [CrossRef]
23. Svoray, T.; Shoshany, M. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid

zone: A modification of the water-cloud model. Int. J. Remote Sens. 2002, 23, 4089–4100. [CrossRef]
24. Yadav, V.P.; Prasad, R.; Bala, R.; Vishwakarma, A.K. An improved inversion algorithm for spatio-temporal retrieval of soil

moisture through modified water cloud model using C- band Sentinel-1A SAR data. Comput. Electron. Agric. 2020, 173, 105447.
[CrossRef]

25. Lazzari, M.; Piccarreta, M.; Ray, R.L.; Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for
Shallow Landslides Occurrence. In Landslides—Investigation and Monitoring [Internet]; 2020; Available online: https://www.
intechopen.com/chapters/72592 (accessed on 29 July 2025).

26. Han, Q.; Zeng, Y.; Zhang, L.; Wang, C.; Prikaziuk, E.; Niu, Z.; Su, B. Global long term daily 1 km surface soil moisture dataset
with physics informed machine learning. Sci. Data 2023, 10, 101. [CrossRef]

https://doi.org/10.1016/j.rse.2020.111680
https://doi.org/10.1175/JHM571.1
https://doi.org/10.3390/rs16010061
https://doi.org/10.1016/j.actao.2003.10.004
https://doi.org/10.3390/rs8040287
https://doi.org/10.3390/rs70302627
https://doi.org/10.1016/j.rse.2016.05.027
https://doi.org/10.1016/0022-1694(95)02970-2
https://doi.org/10.2136/vzj2016.10.0105
https://doi.org/10.3390/rs11172013
https://doi.org/10.1007/s12665-018-7704-z
https://doi.org/10.2528/PIERC20071601
https://doi.org/10.1029/95WR03638
https://doi.org/10.3390/rs1030210
https://doi.org/10.1109/36.134086
https://doi.org/10.1109/TGRS.2002.800232
https://doi.org/10.1109/TGRS.2003.821065
https://doi.org/10.1109/36.406677
https://doi.org/10.1109/36.134085
https://doi.org/10.5194/hess-14-2355-2010
https://doi.org/10.1109/TGRS.2014.2364914
https://doi.org/10.1080/01431160110115924
https://doi.org/10.1016/j.compag.2020.105447
https://www.intechopen.com/chapters/72592
https://www.intechopen.com/chapters/72592
https://doi.org/10.1038/s41597-023-02011-7


Water 2025, 17, 2388 31 of 35

27. Sungmin, O.; Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data
2021, 8, 170. [CrossRef] [PubMed]

28. Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its
implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [CrossRef]

29. Yuan, H.; Liang, S.; Gao, Y.; Gao, Y.; Lian, X. Experimental study on estimating bare soil moisture content based on UAV
multi-source remote sensing. Geocarto Int. 2025, 40, 2448985. [CrossRef]

30. Kodaira, M.; Shibusawa, S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping.
Geoderma 2013, 199, 64–79. [CrossRef]

31. Landrum, C.; Castrignanò, A.; Mueller, T.; Zourarakis, D.; Zhu, J.; De Benedetto, D. An approach for delineating homogeneous
within-field zones using proximal sensing and multivariate geostatistics. Agric. Water Manag. 2015, 147, 144–153. Available online:
https://www.sciencedirect.com/science/article/pii/S0378377414002121 (accessed on 9 May 2025). [CrossRef]

32. Balla, I.; Milics, G.; Deákvári, J.; Fenyvesi, L.; Smuk, N. Connection Between Soil Moisture Content and Electrical Conductivity in
a Precision Farming Field. 2013. Available online: http://www.epa.hu/03100/03114/00015/pdf/EPA03114_acta_agronomica_
ovariensis_2013_2_021-032.pdf (accessed on 9 May 2025).

33. Lim, H.H.; Lee, S.R.; Cheon, E.; Nam, Y. Soil Water Content Regression Analysis of Measurement Data from Hyperspectral
Camera in Weathered Granite Soils. In E3S Web of Conferences; EDP Science: Les Ulis, France, 2023.

34. Bablet, A.; Viallefont-Robinet, F.; Jacquemoud, S.; Fabre, S.; Briottet, X. High-resolution mapping of in-depth soil moisture content
through a laboratory experiment coupling a spectroradiometer and two hyperspectral cameras. Remote Sens. Environ. 2020,
236, 111533. [CrossRef]

35. Liu, J.; Zhang, D.; Yang, L.; Ma, Y.; Cui, T.; He, X.; Du, Z. Developing a generalized vis-NIR prediction model of soil moisture
content using external parameter orthogonalization to reduce the effect of soil type. Geoderma 2022, 419, 115877. [CrossRef]

36. Leone, M.; Consales, M.; Passeggio, G.; Buontempo, S.; Zaraket, H.; Youssef, A.; Persiano, G.; Cutolo, A.; Cusano, A. Fiber optic
soil water content sensor for precision farming. Opt. Laser Technol. 2022, 149, 107816. [CrossRef]

37. Keller, S.; Riese, F.M.; Stötzer, J.; Maier, P.M.; Hinz, S. Developing a Machine Learning Framework for Estimating Soil Moisture
with Vnir Hyperspectral Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-1, 101–108. [CrossRef]

38. Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J.D. Prediction of soil moisture content and soil salt concentration from
hyperspectral laboratory and field data. Remote Sens. 2016, 8, 42. [CrossRef]

39. Wu, T.; Yu, J.; Lu, J.; Zou, X.; Zhang, W. Research on inversion model of cultivated soil moisture content based on hyperspectral
imaging analysis. Agriculture 2020, 10, 292. [CrossRef]

40. Tang, B.; Xie, W.; Meng, Q.; Moorhead, R.J.; Feng, G. Soil Moisture Estimation Using Hyperspectral Imagery Based on Metric
Learning. In Proceedings of the 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022, The
Bahamas, Caribbean, 12–14 December 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022;
pp. 1392–1396.

41. Linets, G.; Bazhenov, A.; Malygin, S.; Grivennaya, N.; Chernysheva, T.; Melnikov, S. Algorithm for the Joint Flight of Two
Uncrewed Aerial Vehicles Constituting a Bistatic Radar System for the Soil Remote Sensing. Pertanika J. Sci. Technol. 2023,
31, 2031–2045. [CrossRef]

42. Hassan-Esfahani, L.; Torres-Rua, A.; Ticlavilca, A.M.; Jensen, A.; McKee, M. Topsoil moisture estimation for precision agriculture
using unmmaned aerial vehicle multispectral imagery. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium
(IGARSS), Quebec, QC, Canada, 13–18 July 2014; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2014;
pp. 3263–3266.

43. Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV-based
hyperspectral images in the Arid region. Remote Sens. 2021, 13, 1562. [CrossRef]

44. Lu, F.; Sun, Y.; Hou, F. Using UAV visible images to estimate the soil moisture of steppe. Water 2020, 12, 2334. [CrossRef]
45. Aboutalebi, M.; Allen, N.; Torres-Rua, A.F.; McKee, M.; Coopmans, C. Estimation of soil moisture at different soil levels using

machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery. In Autonomous Air and Ground Sensing
Systems for Agricultural Optimization and Phenotyping IV, Proceeding of the SPIE Defense + Commercial Sensing, Baltimore, MD, USA,
2019; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2019; p. 26.

46. Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning
algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [CrossRef]

47. Zhang, J.; Liu, T.; Wang, J.; Li, H.; Wang, Z.; Zhang, F.; Yuan, H. A simple but effective evaluation criterion for parameters
optimization of EPO and its application to moisture insensitive prediction of soil organic matter. Chemom. Intell. Lab. Syst. 2023,
236, 104794. [CrossRef]

48. Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture
content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022,
264, 107530. [CrossRef]

https://doi.org/10.1038/s41597-021-00964-1
https://www.ncbi.nlm.nih.gov/pubmed/34253737
https://doi.org/10.1016/j.jhydrol.2012.06.021
https://doi.org/10.1080/10106049.2024.2448985
https://doi.org/10.1016/j.geoderma.2012.09.007
https://www.sciencedirect.com/science/article/pii/S0378377414002121
https://doi.org/10.1016/j.agwat.2014.07.013
http://www.epa.hu/03100/03114/00015/pdf/EPA03114_acta_agronomica_ovariensis_2013_2_021-032.pdf
http://www.epa.hu/03100/03114/00015/pdf/EPA03114_acta_agronomica_ovariensis_2013_2_021-032.pdf
https://doi.org/10.1016/j.rse.2019.111533
https://doi.org/10.1016/j.geoderma.2022.115877
https://doi.org/10.1016/j.optlastec.2021.107816
https://doi.org/10.5194/isprs-annals-IV-1-101-2018
https://doi.org/10.3390/rs8010042
https://doi.org/10.3390/agriculture10070292
https://doi.org/10.47836/pjst.31.4.25
https://doi.org/10.3390/rs13081562
https://doi.org/10.3390/w12092334
https://doi.org/10.7717/peerj.6926
https://doi.org/10.1016/j.chemolab.2023.104794
https://doi.org/10.1016/j.agwat.2022.107530


Water 2025, 17, 2388 32 of 35

49. Li, W.; Liu, C.; Yang, Y.; Awais, M.; Ying, P.; Ru, W.; Cheema, M.J.M. A UAV-aided prediction system of soil moisture content
relying on thermal infrared remote sensing. Int. J. Environ. Sci. Technol. 2022, 19, 9587–9600. [CrossRef]

50. Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source
sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [CrossRef]

51. Döpper, V.; Rocha, A.D.; Berger, K.; Gränzig, T.; Verrelst, J.; Kleinschmit, B.; Förster, M. Estimating soil moisture content under
grassland with hyperspectral data using radiative transfer modelling and machine learning. Int. J. Appl. Earth Obs. Geoinf. 2022,
110, 102817. [CrossRef]

52. Quebrajo, L.; Perez-Ruiz, M.; Pérez-Urrestarazu, L.; Martínez, G.; Egea, G. Linking thermal imaging and soil remote sensing to
enhance irrigation management of sugar beet. Biosyst. Eng. 2018, 165, 77–87. [CrossRef]

53. Luo, W.; Xu, X.; Liu, W.; Liu, M.; Li, Z.; Peng, T.; Xu, C.; Zhang, Y.; Zhang, R. UAV based soil moisture remote sensing in a karst
mountainous catchment. CATENA 2019, 174, 478–489. [CrossRef]

54. Bono Rossello, N.; Fabrizio Carpio, R.; Gasparri, A.; Garone, E. A novel Observer-based Architecture for Water Management in
Large-Scale (Hazelnut) Orchards. In Proceedings of the IFAC-PapersOnLine, Sydney, Australia, 4–6 December 2019; Elsevier B.V.:
Amsterdam, The Netherlands, 2019; pp. 62–69.

55. Abebrese, D.K.; Biney, J.K.M.; Kara, R.S.; Bát’ková, K.; Houška, J.; Matula, S.; Badreldin, N.; Truneh, L.A.; Shawula, T.A. Estimating
the spatial distribution of soil volumetric water content in an agricultural field employing remote sensing and other auxiliary
data under different tillage management practices. Soil Use Manag. 2024, 40, e12981. [CrossRef]

56. Imantho, H.; Seminar, K.B.; Hermawan, W.; Saptomo, S.K. A Spatial Distribution Empirical Model of Surface Soil Water Content
and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications.
Information 2022, 13, 493. [CrossRef]

57. Sun, H.; Cui, Y. Evaluating downscaling factors of microwave satellite soil moisture based on machine learning method. Remote
Sens. 2021, 13, 133. [CrossRef]

58. Filintas, A. Soil Moisture Depletion Modelling Using a TDR Multi-Sensor System, GIS, Soil Analyzes, Precision Agriculture and
Remote Sensing on Maize for Improved Irrigation-Fertilization Decisions. Eng. Proc. 2021, 9, 36.

59. Ma, C.; Johansen, K.; McCabe, M.F. Combining Sentinel-2 data with an optical-trapezoid approach to infer within-field soil
moisture variability and monitor agricultural production stages. Agric. Water Manag. 2022, 274, 107942. [CrossRef]

60. Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernàndez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic Management Zones for
Irrigation Scheduling. Agric. Water Manag. 2020, 238, 106207. [CrossRef]

61. Placidi, P.; Vergini, C.V.D.; Papini, N.; Cecconi, M.; Mezzanotte, P.; Scorzoni, A. Low-Cost and Low-Frequency Impedance Meter
for Soil Water Content Measurement in the Precision Agriculture Scenario. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [CrossRef]

62. Chinh Pham, X.; Thao Nguyen, T.P.; Le, M.T. Pathloss Modelling and Evaluation for A Wireless Underground Soil Moisture Sensor
Network. In Lecture Notes in Networks and Systems; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg,
Germany, 2023; pp. 335–345.
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