
Computers in Biology and Medicine 200 (2026) 111378 

A
0

 

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed  

Transformer-based hybrid systems to combat BCI illiteracy
Maximilian Achim Pfeffer a , Johnny Kwok Wai Wong b, Sai Ho Ling a ,∗

a Faculty of Engineering and Information Technology, University of Technology Sydney, New South Wales, Australia
b Faculty of Design, Architecture and Building, University of Technology Sydney, New South Wales, Australia

A R T I C L E  I N F O

Dataset link: https://physionet.org/content/ee
gmmidb/1.0.0/, https://www.bbci.de/competi
tion/iv/

Keywords:
Transformers
Neural networks
Brain–computer-interface
Electroencephalography
Artificial intelligence
Convolutional neural networks
Hybrid-models
Biomedical engineering
BCI illiteracy
Signal processing

 A B S T R A C T

This study addresses the challenge of enhancing Brain–Computer Interfaces (BCIs), focusing on low Signal-to-
Noise Ratios and ‘‘BCI illiteracy’’ often affecting up to 20% of users. Transformer-based models show promise 
but remain underexplored. Three experiments were conducted. Experiment A assessed the performance of 
architectures combining Convolutional and Transformer Blocks for binary Motor Imagery (MI) classification. 
Experiment B introduced a hybrid system, refining both block types and adding a Noise Focus Block to 
infuse Stochastic Noise, enhancing multi-class classification robustness. Experiment C evaluated the emerging 
architectures on 106 subjects, focusing on robustness across weak and strong learners. In Experiment A, 
the best networks achieved a validation accuracy of 0.914 and a loss of 0.146 (p=0.000967, F=12.675). 
In Experiment B, the proposed architecture improved multi-class MI classification to 84.5% on Dataset II, 
significantly improving performance for BCI-illiterate users. Experiment C showed a Kappa >83%, reduced 
standard deviation, and a highest validation accuracy of 88.69% across all individuals. The hybrid integration 
of Transformers, CNNs, and Noise-Resonance-based layers significantly enhances classification performance, 
particularly for weak BCI learners. Further research is recommended to optimize hybrid system architectures 
and hyperparameter settings to overcome current limitations in BCI performance.
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• SNR: Signal-to-Noise Ratio
• STF: Stochastic Transformer Focus
• t-SNE: t-distributed Stochastic Neighbor Embedding
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1. Introduction

Electroencephalography (EEG) captures brain activity by recording 
postsynaptic potentials generated by neurons in the cerebral cortex [1]. 
These electrical potentials, which occur perpendicular to the cortical 
surface, can be detected non-invasively through electrodes placed on 
the scalp [2]. The EEG signals represent the summation of all local 
field potentials, offering a cost-effective method to monitor and analyze 
brain activity with high temporal resolution. This capability has paved 
the way for the development, and deployment of Brain–Computer 
Interfaces (BCIs), which translate neural signals into commands that 
can control external devices or software applications. BCIs have become 
a critical area of research due to their potential to provide communi-
cation and control pathways for individuals with motor disabilities and 
to enhance human–computer interaction in general [3].
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However, despite the promising applications of BCIs, there remain 
significant challenges that hinder their widespread adoption and effec-
tiveness [4]. One of the primary challenges is the low Signal-to-Noise 
Ratio (SNR) inherent in EEG data [5,6]. The scalp-recorded signals are 
often contaminated with noise from various sources, including muscle 
activity, eye movements, and external electrical interference [4,6]. This 
noise makes it difficult to isolate the brain’s electrical activity related 
to specific tasks or commands, reducing the accuracy and reliability of 
BCIs. Researchers have employed various signal processing techniques 
to mitigate noise and improve the SNR, but achieving consistently high 
performance remains elusive [3–5,7,8].

Another critical challenge in BCI research is the phenomenon known 
as ‘‘BCI illiteracy’’ or ‘‘weak learners’’, which refers to the inability 
of some individuals to use BCI systems effectively. Studies estimate 
that approximately 15%–20% of the population struggles to achieve 
proficiency with BCIs, regardless of the specific approach or technology 
used [9,10]. The underlying reasons for BCI illiteracy are not fully 
understood, but it is believed that individual variations in brain struc-
ture and function play a significant role [11–13]. Some users may not 
produce detectable patterns of brain activity necessary for the BCI to 
interpret their intentions accurately [14]. Additionally, other factors 
such as excessive muscle artifacts, misunderstanding of instructions, 
or environmental noise can contribute to poor BCI performance. While 
these latter issues are often surmountable, the individual variations in 
brain structure present a more intractable problem, which was observed 
in this study as well.

In response to these challenges, the exploration of novel BCI ap-
proaches has gained momentum. One such promising development 
is the application of Transformer-based models to BCI tasks. Trans-
formers, originally developed for natural language processing (NLP), 
have demonstrated remarkable success in various tasks by capturing 
long-range dependencies in data through self-attention mechanisms, 
and are currently being investigated in many AI research fields such 
as image analysis, medical image segmentation, and time-series fore-
casting [15–19]. This capability is particularly relevant to EEG data, 
where temporal dependencies across multiple time points can provide 
crucial information for interpreting neural signals [20]. By applying 
Transformers to BCIs, researchers aim to enhance the robustness and ac-
curacy of these systems, potentially overcoming some of the limitations 
associated with traditional methods. Several hybrid approaches have 
already explored this potential. EEG-TCNet integrates temporal convo-
lutional modules with self-attention to capture sequential dependencies 
efficiently, while EEG-ITNet combines inception-style convolutional 
blocks with Transformer layers to strengthen multi-scale feature ex-
traction [21,22]. Conformer-based variants have also been adapted 
for EEG decoding, blending convolutional front-ends with Transformer 
encoders to leverage both local spectral patterns and global temporal 
context [18,23]. Similarly, DRDA introduces dual residual attention 
modules to refine spatiotemporal representations [24], and time-series 
Transformer frameworks have been adapted to EEG for cross-subject 
generalization [17,25]. While these studies report improved classifica-
tion accuracy and robustness compared to traditional CNN-only models, 
they generally focus on optimizing average-case learners and do not 
explicitly address variance reduction or weak-learner performance. This 
gap motivates our design of STFNet, which embeds stochastic reso-
nance directly within a CNN-Transformer backbone to enhance both 
mean accuracy and stability across heterogeneous subject populations.

Recent studies have shown that Transformer-based models can 
achieve improved performance in BCI tasks, particularly in terms of 
classification accuracy and robustness to noise. These models have 
outperformed conventional approaches in several benchmark datasets, 
demonstrating their potential to enhance BCI performance for a broader 
range of users. However, despite these promising results, the applica-
tion of Transformers in BCI research is still in its infancy, with only a 
handful of studies exploring this area [18,26]. This knowledge gap was 
recently highlighted as a call to action to further assess the capability 
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of Transformers in improving multi-class classification performance 
and robustness in EEG-based BCI, particularly in overcoming the ex-
isting limitations related to signal-to-noise ratio (SNR) and overall 
accuracy [26]. The limited research thus far suggests that Transformers 
could be particularly beneficial for users who struggle with traditional 
BCI approaches, including those affected by BCI illiteracy.

To further investigate the potential of Transformers in BCIs, this 
study conducted two experiments focused on Motor Imagery (MI) 
classification, a common BCI task in which users imagine specific 
movements to control external devices. In the first experiment, vari-
ous network architectures combining Convolutional and Transformer 
Blocks were assessed under different settings to determine their ef-
fectiveness in MI classification. The results indicate that networks 
incorporating both spatial convolution and transformer attention blocks 
achieved high validation accuracies, with the best-performing model 
reaching a validation accuracy of up to 91.4% with a loss of 0.146. 
The findings were statistically significant, highlighting the potential of 
combining these architectural elements to improve BCI performance.

In the second experiment, a novel combinatory approach is pro-
posed, integrating Transformer Blocks, Self-Attention, Convolutional 
Blocks, and a Noise Focus Block designed to introduce stochastic noise 
within the network during both training and classification. This archi-
tecture aimed to enhance the model’s robustness to noise, a critical 
factor in real-world BCI applications by leveraging properties of all 
aforementioned building blocks. The results from this experiment were 
particularly noteworthy, as the proposed model not only improved the 
overall accuracy of MI classification but also significantly enhanced 
performance for a subject previously deemed BCI illiterate. Lastly, a 
third experiment was conducted to investigate the performance of the 
developed hybrid models on Dataset I as well, confirming the superior 
robustness of the feature extraction and noise resistance of all model 
architectures put forward.

For multi-class classification, the proposed models achieved average 
accuracies of up to 83.3% and 90.6% on Dataset I and Dataset II, re-
spectively. Hence, this set a new benchmark for multi-class MI tasks and 
demonstrates the superior robustness of the proposed approach across 
different subjects by utilizing transformer-based and noise-inducing 
layers in conjunction with traditional deep-learning methodologies.

These findings suggest that the integration of Transformers with 
Convolutional Neural Networks (CNNs) and noise-resonance mecha-
nisms offers a promising pathway to address some of the most persistent 
challenges in BCI research. By leveraging the strengths of these dif-
ferent architectural components, it was hypothesized to enable the 
development of more universally effective BCIs that can accommodate 
a wider range of users, including those who have previously struggled 
with traditional systems. As the field continues to evolve, further 
exploration of Transformer-based models and their application to BCIs 
could lead to significant advancements in both the robustness and 
accessibility of these technologies.

In this study, the potential of combining Transformers, CNNs, and 
noise-resonance-based layers to improve BCI classification performance 
is investigated, particularly for weak BCI learners. This approach rep-
resents a significant step toward overcoming the current limitations of 
BCI technology and achieving more reliable and universally applicable 
systems. As research in this area progresses, the integration of these 
advanced computational techniques may ultimately lead to the devel-
opment of BCIs that can truly work for all users, regardless of individual 
variability in brain function or external factors [26–28].

2. Background

2.1. Event-related potentials and event-related desynchronization in brain–
computer interfaces

Event-Related Potentials (ERPs) and Event-Related Desynchroniza-
tion (ERD) as exemplary displayed in Fig.  1 (subplots a, c) are foun-
dational concepts in the realm of BCI applications [29]. ERPs are 
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Fig. 1. Overview of event-related Desynchronization and stochastic resonance using sample data from Dataset II. (a) Epoched from MI-related channel (C3) of 
Subject 3, showing archetypal ERD around left-hand movement cue onset, averaged across all generated epochs. (b) Visualization of Stochastic Resonance. (i): A 
clean sinusoidal signal that does not independently surpass the preset detection thresholds (Threshold 1 and Threshold 2). (ii): Gaussian noise, which oscillates 
around zero and fails to cross the thresholds on its own. (iii): The combined signal (original signal + noise), demonstrating the phenomenon of stochastic resonance. 
The added noise allows the signal to exceed both thresholds intermittently. (c) GFP for all four tasks of Dataset II for the best-performing subject (Subject 3), the 
worst-performing subject (Subject 2), and the subject with the biggest improvement using STFNet (Subject 5).
time-locked EEG responses elicited by specific sensory, cognitive, or 
motor events, reflecting the brain’s processing of these stimuli. Notably, 
the P300 component, a positive deflection occurring approximately 
300 ms after stimulus presentation, is widely used in BCI applica-
tions for its robustness and reliability in signal detection [5,30,31]. 
ERDs, conversely, represent a decrease in power within specific fre-
quency bands, typically the Mu (8–13 Hz) and Beta (13–30 Hz) bands, 
associated with motor imagery or execution tasks [31].

In BCI systems, ERPs are often utilized in paradigms like the P300 
speller, where the user’s focus on a target stimulus generates detectable 
ERP components [30,32]. ERD-based BCIs capitalize on the modulation 
of sensorimotor rhythms during imagined movements, enabling users 
to control external devices through motor imagery [30,31,33,34]. The 
differentiation between imagined movements such as left-hand, right-
hand, or foot movement generates distinct ERD patterns that the BCI 
can classify [2,33,35].

However, the efficacy of ERD-BCIs relies heavily on the user’s ability 
to produce consistent and distinguishable EEG patterns. Some users 
struggle to generate sufficient ERD signals, necessitating alternative 
approaches that encourage users to explore different mental strategies 
to enhance signal generation [36].

2.2. Limitations of EEG-based BCIs

Despite significant advancements, a considerable subset of individ-
uals cannot achieve effective control over BCI systems, a challenge 
often referred to as ‘‘BCI illiteracy’’ [37–39]. This phenomenon, gen-
erally assumed to affect up to 20%–30% of potential users [9,17,
38,40] (and which was further substantiated by our investigation as 
delineated in Fig.  2, arises from a combination of neurophysiolog-
ical differences [41,42], cognitive and attentional factors [43], and 
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psychological influences such as motivation, fatigue, and stress [44]. 
These user-specific attributes shape the generation and stability of EEG 
features such as ERD/ERS patterns, leading to pronounced variability in 
BCI performance. Throughout this paper, we use the term ‘‘weak learn-
ers’’ to denote subjects who consistently achieve low motor imagery 
classification accuracy across runs and models, reflecting unstable or 
weak ERD/ERS patterns. Conversely, ‘‘strong learners’’ are subjects 
with consistently high classification accuracy and clear ERD/ERS ex-
pression. These terms are descriptive rather than formal categories, and 
are used to differentiate subject-level performance variability in line 
with prior reports of BCI illiteracy.

Fig.  2 presents a comparative analysis of motor imagery decoding 
performance across nine participants and illustrates the manifestation 
of BCI illiteracy within the analyzed datasets. In panel (a), two individ-
uals (S2 and S5) fall below the predefined weak-learner threshold of 
35% classification accuracy, thereby confirming their limited capacity 
for generating reliably classifiable neural representations. However, 
when examining the broader cohort, it becomes evident that reduced 
classification performance cannot be attributed to a single neurophys-
iological marker. Panels (b)–(d) reveal pronounced variability in the 
spectral characteristics of the mu (8–13 Hz), beta (13–30 Hz), and 
SMR (12–14 Hz) bands, indicating that the mechanisms underlying 
low BCI performance are not uniform across individuals. For instance, 
S2 exhibits moderate beta activity yet markedly lower mu and SMR 
power, while S5 demonstrates comparatively stronger mu modula-
tion but remains within the weak-learner range. Conversely, several 
participants with weaker oscillatory amplitudes in specific bands still 
achieve substantially higher decoding accuracies. These observations 
emphasize that motor imagery classifiability arises from an interplay 
of multiple spectral and spatiotemporal factors rather than from any 
single dominant frequency component.
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Fig. 2. Dataset characteristics using metrics designed to highlight weak BCI learners. Top row: (a) PhysioNet Dataset subjects for multi-class classification, with 
by-chance threshold (gray dotted line) and weak-learner threshold (red dotted line). (b, c, d) Mu, Beta, and SMR Band Power, respectively, highlighting weak 
learners based on the criteria as per subplot (a) within the bands, showing lower overall Band Power strengths for most weak learners. Bottom row: (e, f, g, d): 
Same as top row for Dataset II.
This variability supports the interpretation that ‘‘weak learner’’ 
should be understood as a general descriptor encompassing individuals 
whose EEG features deviate from population-level discriminability, 
rather than as a neurophysiologically distinct subgroup. The herein 
employed 35% threshold serves primarily as an operational reference 
point based on the per-chance threshold of 25%, to ultimately enable 
to exemplify below-average performers; it does not imply a discrete 
boundary or underlying homogeneity in neural mechanisms. Weak 
learners may therefore reflect diverse underlying causes, including 
diminished event-related desynchronization, inconsistent task engage-
ment, atypical spatial patterns of cortical activation, or suboptimal 
signal-to-noise characteristics. The overlap observed between weak and 
non-weak learners across frequency bands reinforces the view that poor 
BCI performance cannot be reliably predicted by any single spectral 
measure. The variability is further exemplified in Fig.  1 subplot (c), 
which displays the global field power (GFP) across motor imagery 
tasks for three representative subjects [45]. GFP enables simultaneous 
visualization of all electrodes, offering a measure of overall neural 
activity. Subject 3 illustrates a strong learner with consistent ERD/ERS 
responses, Subject 2 a weak learner with variable and indistinct pat-
terns, and Subject 5 an intermediate case. Such contrasts highlight how 
neurophysiological and cognitive differences directly contribute to BCI 
illiteracy and performance variability.

Beyond individual differences, EEG recordings are inherently low 
in signal-to-noise ratio (SNR) and sensitive to artifacts. Physiological 
contamination arises from EOG, EMG, and cardiac activity [46,47], 
while environmental interference such as electromagnetic sources fur-
ther degrades data quality [48]. To mitigate these effects, numerous 
preprocessing approaches have been proposed, including band-pass 
and notch filtering, regression techniques, and Independent Component 
Analysis (ICA) and its variants [6,47,49]. However, while such methods 
can attenuate artifacts, they risk discarding subtle but task-relevant 
neural signals, and their performance is highly sensitive to electrode 
placement, scalp conductivity, and inter-individual brain anatomy [50,
51]. Consequently, extensive calibration and individualized models 
remain necessary, and weak or subthreshold features often remain 
undetectable. The delicate balance between noise suppression and sig-
nal preservation continues to pose a central challenge in EEG signal 
processing.
4 
Consequently, the weak-learner classification should be regarded as 
an integrative performance descriptor, summarizing individuals whose 
EEG-based representations yield below-average decoding performance 
despite adequate training and calibration conditions. This perspec-
tive underscores the necessity of adaptive, individualized modeling 
approaches that account for inter-subject variability and promote in-
clusive and reliable BCI operation across diverse user populations.

2.3. Stochastic resonance

Stochastic resonance, as shown in Fig.  1, is a counterintuitive phe-
nomenon wherein the addition of a specific level of noise to a nonlinear 
system enhances the detection and transmission of weak signals [52]. 
Initially introduced to explain periodic climate changes, this concept 
has since found applications across various fields, including neuro-
science, molecular systems, and mechanical oscillating systems. In 
molecular interactions, for instance, intrinsic noise can amplify subtle 
periodic signals, enhancing the precision of detection [53]. Similarly, 
in mechanical systems, controlled noise introduction can optimize the 
response to periodic forces, leading to improved accuracy in measure-
ments [54]. These examples illustrate how noise, rather than being a 
detrimental factor, can be strategically leveraged to bring weak signals 
to the forefront.

In the realm of BCI development, stochastic resonance offers a 
novel strategy to address the perennial challenge of low SNR in EEG 
data. EEG signals, recorded from the scalp, are inherently weak and 
often buried in a sea of noise, making the extraction of meaningful 
neural patterns particularly challenging. Traditional noise reduction 
methods, such as filtering and ICA, focus on attenuating artifacts but 
may inadvertently eliminate subtle neural signals crucial for accurate 
interpretation. This delicate balance between noise suppression and 
signal preservation has limited the efficacy of BCI systems, especially 
in multiclass classification tasks where robustness and sensitivity to 
minute signal variations are critical.

Stochastic resonance presents a promising alternative by turning 
this challenge on its head: instead of attempting to eradicate noise, 
it introduces controlled noise to enhance the system’s sensitivity to 
subthreshold signals that would otherwise remain undetected [55,56]. 
This approach allows for a resonance effect, where weak EEG signals 
become more pronounced against the noisy background, improving 
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their detectability. Unlike conventional methods that risk filtering out 
essential neural information, stochastic resonance modulates the noise 
level to achieve an optimal state, amplifying the weak neural signals of 
interest.

Studies have demonstrated the efficacy of this approach in enhanc-
ing neural signal detection. For example, [57] showed that the addition 
of noise could improve tactile sensation in humans, suggesting that 
stochastic resonance can be harnessed to augment sensory perception. 
In EEG analysis, McDonnell and Ward (2011) discussed how this phe-
nomenon might be leveraged to improve neural signal processing [58]. 
By optimizing the noise level within the system, weak EEG signals that 
are typically obscured can emerge more distinctly, thereby enhancing 
the system’s robustness and accuracy in translating neural activity into 
user intent.

In the context of BCI development, incorporating stochastic reso-
nance into neural networks and deep learning models, such as CNNs 
and Transformers, holds the potential to circumvent existing limita-
tions. By introducing noise not only to the input EEG data but also 
within the layers of these models, the phenomenon of stochastic reso-
nance can be exploited to improve signal processing and classification 
performance. This paradigm shift offers a pathway to more resilient BCI 
systems, capable of detecting and interpreting weak neural signals with 
higher accuracy, even in the presence of significant noise. Therefore, 
applying stochastic resonance to BCI systems could mitigate the effects 
of BCI illiteracy by amplifying the neural signals of users who struggle 
to produce strong ERD patterns. This enhancement could lead to more 
reliable detection of user intent, thereby improving BCI performance 
and user experience.

Subplot (b) of Fig.  1 illustrates how noise can conceptually enhance 
the detectability of a weak signal, a principle that can be leveraged 
in neural signal processing, sensory systems, and other scientific fields 
where signal detection is challenged by low signal-to-noise ratios. This 
concept is particularly relevant in the context of this EEG signal-
processing study: In panel A, a clean sinusoidal signal represents a weak 
neural component in EEG data. This signal, despite its importance, fails 
to independently surpass the preset detection thresholds (Threshold 1 
and Threshold 2) due to its low amplitude. Such weak signals are often 
characteristic of subtle neural activity, like motor imagery or cognitive 
processing, which can be difficult to isolate in EEG recordings. Panel B 
introduces Gaussian noise, analogous to the inherent background noise 
present in EEG measurements. This noise fluctuates around zero and, 
on its own, does not cross the detection thresholds. In EEG recordings, 
this noise could stem from various sources, including muscle artifacts, 
electrical interference, or sensor noise. While this noise is typically con-
sidered detrimental, it can be harnessed constructively. Panel C shows 
the result of combining the original signal with the noise, demonstrat-
ing the phenomenon of stochastic resonance. With the added noise, the 
composite signal intermittently exceeds both thresholds. This enhanced 
detectability suggests that introducing controlled noise can amplify 
weak but meaningful EEG signals, making them more recognizable by 
neural network models. In the context of EEG processing with CNNs 
and transformers, this principle can be exploited by adding noise to 
both the input data and within neural network layers. This approach 
may improve the model’s ability to detect and classify neural patterns, 
thereby enhancing the overall accuracy of EEG-based neural signal 
decoding. Note that EEG waveforms are not inherently sinusoidal; they 
are complex and vary with neural processes. The sinusoidal signal 
in Fig.  1 subplot (b) serves as a simplified model to illustrate how 
stochastic resonance can augment and hence, improve the detectability 
of weak neural signals.

2.4. Integrating transformers and self-attention mechanisms

Transformers and self-attention mechanisms have revolutionized 
deep learning, particularly in natural language processing, due to their 
ability to model long-range dependencies and focus on relevant input 
5 
features [15]. In EEG signal processing, these architectures can cap-
ture complex temporal and spatial patterns, offering advantages over 
traditional convolutional and recurrent neural networks [26].

By integrating stochastic resonance with transformer-based models, 
it is possible to further enhance BCI performance. The self-attention 
mechanism allows the model to weigh the importance of different parts 
of the EEG signal, effectively filtering out irrelevant information while 
emphasizing critical neural patterns. When combined with stochas-
tic resonance, which amplifies weak but relevant signals, the model 
becomes more adept at discerning user intent even in noisy conditions.

Recent studies have begun exploring transformer architectures in 
EEG-based BCIs. For instance, Song et al. (2021) proposed a transformer-
based model for EEG classification, demonstrating improved perfor-
mance over traditional methods [59]. However, as recently put forward 
in [26], transformer-based architectures for EEG-BCI signal processing 
in human–computer interactions have only begun to be explored, high-
lighting the need for further assessment and meticulous comparison of 
network architectures given the promising outcomes of the few existing 
studies.

3. Material and methods

3.1. Dataset

For the experiments, two datasets have been utilized: The first 
dataset utilized in this study was obtained from the Physionet Motor 
Imagery (MI) database [60], herein referred to as Dataset I. This dataset 
comprises over 1500 EEG recordings from 109 subjects, each recorded 
using a 64-channel EEG system with the BCI2000 platform. The ex-
perimental protocol included 14 runs for each subject, consisting of 
two baseline runs (one with eyes open and one with eyes closed) and 
three runs for each of the motor/imagery tasks. Each task run lasted 
two minutes, during which the subjects alternated between performing 
the designated motor or imagery task and relaxing. This comprehensive 
dataset offers a diverse range of motor and imagery tasks, providing 
a rich resource for the development and evaluation of EEG-based BCI 
systems.

Exclusion criteria were applied throughout all experiments and 
model training, resulting in a few subjects being excluded due to 
intrinsical errors or data structure abnormalities. In particular, subjects 
with IDs of 88, 92, and 100 were excluded for all runs due to formatting 
errors, resulting in a slightly reduced sample size of 106 subjects in 
total.

Additionally, four-class classification performance was assessed us-
ing Dataset II, which was taken from the Berlin Brain–Computer Inter-
face Competition IV, Subset 2a [61]. Dataset II includes EEG recordings 
from 9 subjects engaged in a cue-based BCI experiment, featuring four 
different motor imagery tasks: imagining movements of the left hand 
(class 1), right hand (class 2), both feet (class 3), and tongue (class 4). 
Each participant underwent two recording sessions on separate days. 
Each session comprised 6 runs, with each run containing 48 trials, 
divided equally among the four tasks (12 trials per class). In total, 
each session provided 288 trials per subject. This structured protocol 
facilitated the assessment of multi-class motor imagery classification in 
a well-controlled experimental setting.

3.2. Experimental setup

Code was implemented using Python 3.11, PyTorch (Version 2.4.0), 
on MacOS Tahoe 26.0.1 using Apple’s M1 Max Silicon Chip and Metal 
Performance Shaders for GPU training acceleration [62]. Training of 
the subject-dependent benchmarking of all models, UTS iHPC [63] 
(Saturn Shard) was used with Linux RedHatEnterprise (Ootpa 8.10) 
to enable 2 CUDA GPUs (Tesla V100-PCIE-32GB) and Python 3.11 
inclusive PyTorch. Statistical analysis was implemented using both 
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the statistical programming language R (Version 2023.06.2+561) and 
Python3.

For Experiment A, a total of 7 (seven) model architectures were 
implemented using Dataset I to assess cross-subject (or inter-subject) 
model performance and feature extraction capabilities of all denoted 
subjects, and a total of 756 (seven hundred and fifty six) models were 
developed using only individual subject’s data only. Model architec-
tures were built by combining different modifications and quantities 
of building blocks, mainly a) convolutional blocks and b) transformer 
blocks. In this paper, references to Model IDs such as C3 will de-
note three convolutional blocks, T2C2 denote a combination of two 
transformer blocks and two convolutional blocks, and so on.

For Experiment B, we repurposed the building blocks of Experiment 
A and added additional model complexity by introducing additional 
self-attention layers, noise layers, Frequency-Domain Augmentation, 
and more, to assess multi-class classification performance against the 
established architectures in Experiment A.

Lastly, in Experiment C, we utilize the proposed network archi-
tecture to test model performance on Dataset II, which is more ex-
tensively studied, hence providing a direct and evident comparison 
of model robustness, loss metrics and individual validation accuracy 
performance.

For all experiments and models, validation loss metrics were used 
as early stopping criteria as opposed to validation accuracy, to allow 
a more nuanced assessment of model convergence and prevent overfit-
ting, particularly in cases where accuracy may not fully reflect subtle 
improvements in the model’s learning process.

3.3. Experimental workflow

For reproducibility, we summarize the complete experimental
pipeline applied across all datasets and experiments. Raw EEG data 
were first band-pass filtered between 0.5–40 Hz and resampled to 
250 Hz. Trials were epoched relative to the cue onset (–0.5 s to 4.0 s) 
and baseline-corrected. Each epoch was standardized channel-wise, and 
only the 22 motor-related electrodes (10–20 montage) were retained 
for analysis.

The data splits were organized as follows. In Experiment A, within-
subject training was performed using three runs for training and one 
run for testing, to evaluate the effect of transformer block depth. 
In Experiment B, subject-specific analyses emphasized weak learners, 
again using held-out runs for evaluation. In Experiment C, large-scale 
validation was performed on 106 subjects using a leave-one-subject-out 
strategy, where one subject served as the test set while all others were 
used for training. This design ensured that no data leakage occurred 
across train and test partitions.

Data augmentation was applied during training, including Gaussian 
noise infusion, temporal jittering, and frequency-domain dropout. The 
models were trained for 200 epochs using the Adam optimizer (learning 
rate 1×10−3, weight decay 1×10−4) with a batch size of 64. Evaluation 
metrics included mean accuracy and Cohen’s Kappa, computed per 
subject and averaged across runs or folds as appropriate. Statistical 
significance of ablation results was assessed using repeated-measures 
ANOVA.

This workflow was applied consistently across all experimental 
conditions, with task-specific variations (e.g., number of transformer 
blocks, noise level 𝛥) described in the corresponding subsections of the 
Results.

3.4. Data augmentation and class balancing

During training we applied three complementary augmentations 
aimed at improving generalization under low SNR and class imbalance. 
(1) Temporal jittering: each trial was circularly shifted by a random 
offset drawn uniformly from ±50ms (bounded so cues remained within 
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the analysis window). (2) Frequency-domain dropout: after FFT, we ze-
roed randomly selected narrowbands (1–3 bins per trial; non-adjacent) 
before inverse FFT, simulating nonstationary spectral perturbations 
without destroying phase structure. (3) Mixup: we linearly combined 
pairs of trials and their one-hot labels with 𝜆 ∼ Beta(𝛼, 𝛼), 𝛼 =
0.2 [64], which encourages smoother decision boundaries. In addition, 
we injected Gaussian noise (𝛥 ∈ {0.1,0.2} as reported in Tables  5 and
7) to exploit stochastic resonance while regularizing the encoder.

To address imbalance in the four-class setting (Dataset II), we used 
per-class oversampling within each mini-batch to equalize class priors 
seen by the optimizer, with stratified train/validation splits to prevent 
leakage. All summary metrics (Accuracy, Kappa) are reported alongside 
macro-averaged F1 and macro-Recall to reflect minority-class behavior 
independent of class frequency.

3.5. Classification of illiteracy

Classification performance and statistical significance were assessed 
using a Random Forest classifier with 50 estimators and maximum 
depth of 10, coupled with standard scaling preprocessing in a scikit-
learn pipeline. Each subject’s motor imagery data was evaluated through
5-fold stratified cross-validation to ensure robust performance estimates 
while maintaining class balance across folds. Statistical significance 
of classification performance was determined through permutation 
testing with 100 label randomizations, where null distributions were 
generated by shuffling class labels and re-computing cross-validation 
accuracy to establish chance-level baselines. Subjects were classified as 
weak learners if their accuracy fell below 35% (10% above the 25% 
chance level for 4-class motor imagery) or below the 50% mark for 
3-class motor imagery (where chance level would be around 33.33%), 
with additional significance testing at 𝛼 = 0.05 to control for multi-
ple comparisons. Frequency band analysis focused on motor-relevant 
oscillations extracted from sensorimotor channels (C3, Cz, C4) us-
ing 4th-order Butterworth bandpass filters for mu (8–13 Hz), beta 
(13–30 Hz), and sensorimotor rhythm (12–14 Hz) bands, with spectral 
power quantified as the temporal variance of filtered signals averaged 
across trials and channels. Cohen’s kappa was computed alongside 
accuracy to account for class imbalance, providing a chance-corrected 
measure of classification performance that ranges from 0 (chance level) 
to 1 (perfect agreement).

3.6. Analysis

For all models, cross-entropy loss was implemented using PyTorch 
using Theorem 1 for all binary classification models: 

binary(𝑦, 𝑦̂) = − 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)
]

(1)

• binary: Binary cross-entropy loss.
• 𝑁 : Number of samples.
• 𝑦𝑖: True label for the 𝑖th sample (0 or 1).
• 𝑦̂𝑖: Predicted probability for the 𝑖th sample.

Likewise, all multi-class model’s loss was implemented as per The-
orem 2: 

multi-class(𝑦, 𝑦̂) = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑦𝑖,𝑐 log(𝑦̂𝑖,𝑐 ) (2)

• multi-class: Multi-class cross-entropy loss.
• 𝑁 : Number of samples.
• 𝐶: Number of classes.
• 𝑦𝑖,𝑐 : True label for the 𝑖th sample and 𝑐th class (one-hot encoded).
• 𝑦̂ : Predicted probability for the 𝑖th sample and 𝑐th class.
𝑖,𝑐
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For all models, ANOVA was conducted to compare the validation 
accuracies across different numbers of transformer blocks using the 
following theorem: 

𝐹 =
MSbetween
MSwithin

(3)

• 𝐹 : F-statistic for the ANOVA test.
• MSbetween: Mean square between the groups.
• MSwithin: Mean square within the groups.
Following the ANOVA, Tukey HSD post-hoc test was performed to 

identify which specific groups differ: 

HSD = 𝑞𝛼

√

MSwithin
𝑛

(4)

• HSD: Honestly Significant Difference.
• 𝑞𝛼 : Critical value from the Studentized range distribution.
• MSwithin: Mean square within the groups.
• 𝑛: Number of observations per group.

3.7. Model architecture and building blocks

For this study’s development of network architectures for EEG signal 
processing, a series of models were designed, varying in the number 
and arrangement of convolutional and transformer blocks. These net-
works, referred to as C2, C3, and C4, incorporate either two, three, 
or four convolutional layers, respectively. Additionally, networks la-
beled T1C2, T2C2, T3C2, and T4C2 combine up to four additional 
transformer blocks with convolutional layers. For simplicity, these 
architectures will be referred to as ‘n’ transformer blocks and ‘m’ 
convolutional modules, e.g., T1C2 as one transformer block with two 
convolutional modules.

The convolutional layers apply one-dimensional convolutions across 
the EEG channels to capture local spatial dependencies within the data. 
Each convolutional block consists of a convolution operation, followed 
by batch normalization, a rectified linear unit (ReLU) activation func-
tion, and dropout for regularization. This structure allows the network 
to learn hierarchical feature representations of the EEG data.

Transformer blocks, which are incorporated into the T1C2, T2C2, 
and T3C2 models, leverage multi-head self-attention mechanisms to 
capture long-range dependencies in the EEG signals. These blocks are 
particularly effective in modeling the temporal dynamics of EEG data, 
which is crucial for the accurate classification of neural signals. Each 
transformer block includes a multi-head attention layer, followed by 
a multi-layer perceptron (MLP), with layer normalization and dropout 
applied for regularization as shown in Fig.  3.

Gaussian noise layers are introduced during the training phase to 
simulate the effect of stochastic resonance and enhance the model’s 
robustness. Noise is added to the input data and within intermediary 
layers, aiming to improve the model’s ability to detect weak signals 
embedded in noise, a common characteristic of EEG data.

For classification, the output from the convolutional and trans-
former layers is flattened and passed through a fully connected MLP 
layer. This final layer produces predictions for three-class classification 
tasks, enabling the assessment of motor imagery performance.

The training process employs early stopping, guided by validation 
loss metrics, to prevent overfitting. The models are trained on aug-
mented and balanced EEG data, utilizing techniques such as jittering, 
frequency-domain augmentation, and mixup. This ensures that the 
networks are exposed to a diverse set of training examples, promoting 
robustness and generalizability. By systematically varying the number 
and combination of convolutional and transformer blocks, this study 
aims to evaluate the impact of these architectural components on the 
classification of motor imagery tasks in EEG data.

The EEG data were preprocessed and structured as multi-dimensiona
arrays to be fed into the neural network models. The data preparation 
involved several key steps:
7 
1. Data Loading and Structuring: EEG data for each subject were 
loaded using the MNE library, resulting in arrays with the shape 
(num_trials, channels, timepoints). Each trial represents a seg-
ment of EEG recording, where channels refers to the number 
of EEG electrodes (22 in this case), and timepoints refers to the 
temporal resolution of the signal. This structure maintains the 
spatial and temporal characteristics of the EEG signal.

2. Normalization and Conversion: The raw EEG data were con-
verted to microvolts to standardize the values across different 
subjects and sessions. The data were then transformed into 
NumPy arrays to facilitate efficient numerical operations and 
further processing.

3. Data Augmentation: To enhance the model’s ability to gen-
eralize, various data augmentation techniques were applied, 
including:

• Time-Domain Jittering: Random shifts were applied to the 
EEG data along the temporal axis to simulate variability in 
signal timing.

• Frequency-Domain Augmentation: Noise was introduced in 
the frequency domain by adding random noise to the FFT-
transformed signals and subsequently applying the inverse 
FFT to obtain time-domain signals.

• Mixup: This technique involved linearly combining pairs 
of EEG trials and their corresponding labels, creating syn-
thetic examples to augment the training data.

This multi-modal augmentation strategy is designed to enhance 
performance by increasing training data diversity rather than 
addressing inherent class imbalances, as motor imagery datasets 
typically contain equal trial distributions across classes by de-
sign. Time-domain jittering specifically targets the temporal 
variability that naturally occurs in self-paced motor imagery 
tasks, where subjects exhibit trial-to-trial variations in imagery 
timing and duration. Frequency-domain augmentation enhances 
model robustness against the spectral noise commonly present 
in EEG recordings, particularly important for preserving the mu 
and beta rhythm modulations that are fundamental to motor 
imagery classification. The mixup technique’s linear interpola-
tion between trials creates decision boundaries that are more 
robust to the subtle inter-class differences often observed in 
motor imagery patterns. The subsequent class balancing step 
ensures that the augmentation process does not inadvertently 
create class distribution skews, maintaining equal representation 
across all motor imagery conditions and preventing classifier 
bias that could artificially inflate performance metrics. This 
systematic approach to data integrity ensures that performance 
improvements stem from enhanced model robustness rather than 
dataset artifacts.

4. Balancing the Dataset: Class balancing is achieved by identify-
ing the maximum class count across all motor imagery categories 
and iteratively augmenting underrepresented classes through 
concatenated application of jittering, frequency-domain noise 
injection, and mixup operations until reaching the target sample 
size. For each class requiring augmentation, the three augmenta-
tion techniques are applied simultaneously to the existing class 
samples, quadrupling the available data per iteration (original 
+ jittered + frequency-augmented + mixup), with this process 
repeated until the target count is reached and subsequently 
truncated to the exact maximum class size. This approach en-
sures deterministic class balance while maximizing data diver-
sity through combined augmentation modalities applied in par-
allel rather than sequentially.

5. Splitting Data into Training and Testing Sets: The prepro-
cessed data were split into training and testing sets, ensuring that 
the test set remained unseen during the model training process. 
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Fig. 3. High-level overview of experimental setup and technical methodology. (a) High-Level Visualization of Architectural Combination of Network Building 
Blocks. I.e., for Model T1C2 n=2 and m=1. (b) High-level architecture of the proposed Stochastic Transformer Focus Network with Transformer-Based Self 
Attention Modules and Noise Resonance Imputation Layer. Right: Dataset use and validation logic.
Stratified splitting was used to maintain the class distribution in 
Dataset I. For Dataset II, the competition provides a pre-defined 
test split dataset, which was adopted accordingly.

6. Data Format for Model Input: The EEG data were then con-
verted into PyTorch tensors and loaded into the model in the 
form of 3D arrays with the shape (batch_size, channels,
sequence_length). Here, batch_size refers to the number of sam-
ples in each training iteration, channels corresponds to the EEG 
electrodes, and sequence_length denotes the temporal dimension. 
The data were passed through convolutional layers and trans-
former blocks to extract both spatial and temporal features of 
the EEG signal.

7. Gaussian Noise Injection: During the training phase, Gaussian 
noise was added to the input data as a form of regularization, 
aiming to improve the model’s robustness to variations in EEG 
signals.

Noise augmentation layer
The NoiseLayer is a critical component designed to increase the 

robustness of the model by introducing Gaussian noise during training. 
This is mathematically represented as: 

𝑋′ = 𝑋 + (0, 𝜎2) (5)

where 𝑋 is the input data,  (0, 𝜎2) denotes the Gaussian noise with 
zero mean and variance 𝜎2. Here, 𝜎 is a hyperparameter representing 
the standard deviation of the noise, which can be adjusted based on 
validation performance. This technique simulates potential real-world 
environmental noise, thus preparing the model to handle unseen noisy 
data effectively.

Convolutional layers
The convolutional layers are designed to extract spatial and tempo-

ral features from the EEG signals. The architecture employs a sequence 
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of convolutional operations, each followed by batch normalization and 
activation functions: 
𝑍1 = ELU(BN(𝑊1*𝑋′ + 𝑏1)) (6)

where 𝑊1 and 𝑏1 are the weights and biases of the convolutional layer, 
respectively, and BN represents batch normalization. The choice of ELU 
(Exponential Linear Unit) as an activation function helps in capturing 
nonlinearities and maintaining robustness against vanishing gradients.

Integration of multi-head self-attention
The standard multi-head self-attention (MHA) as described by

Vaswani et al.[15] is used to process temporally-structured convolu-
tional feature embeddings 𝐗 ∈ R𝑁×𝑑model  through parallel attention 
heads. For each head 𝑖 ∈ {1,… , ℎ}, linear projections generate queries, 
keys, and values: 𝐐𝑖 = 𝐗𝐖𝑄

𝑖 , 𝐊𝑖 = 𝐗𝐖𝐾
𝑖 , 𝐕𝑖 = 𝐗𝐖𝑉

𝑖 , where 
𝐖𝑄

𝑖 ,𝐖
𝐾
𝑖 ,𝐖

𝑉
𝑖 ∈ R𝑑model×𝑑𝑘  with 𝑑𝑘 = 𝑑model∕ℎ. Scaled dot-product 

attention computes: 

Attention𝑖(𝐐𝑖,𝐊𝑖,𝐕𝑖) = softmax
(

𝐐𝑖𝐊𝑇
𝑖

√

𝑑𝑘

)

𝐕𝑖 (7)

Head outputs are concatenated and projected: MultiHead(𝐗) =
Concat(head1,… ,headℎ)𝐖𝑂. This mechanism establishes global tem-
poral dependencies complementing the CNN’s local receptive fields, 
where convolutional layers extract hierarchical spatial–temporal fea-
tures through localized kernels while self-attention captures long-range 
sequence relationships. Integration occurs via residual connections: 
𝐘 = LayerNorm(𝐗 + MultiHead(𝐗)), enabling selective fusion of local 
convolutional representations with global attention-weighted features 
for enhanced motor imagery pattern discrimination across temporal 
sequences.

In contrast, configuration studies (non-STFNet models such as T1C2, 
T3C2, etc. as per Table  1 employ a fixed 4-head attention mechanism 
rather than the variable multi-head configurations used in the main 
STFNet ablation study, providing a controlled baseline for evaluat-
ing the impact of convolutional versus transformer layer depth while 
maintaining consistent attention head count.
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3.8. Stochastic transformer focus network

During this study, the Stochastic Transformer Focus Network
(STFNet) eventually emerged by combining various layer architectures 
to enhance the robustness and adaptability of EEG signal processing 
models for BCIs as shown in Fig.  3 by incorporating all features of the 
previous building blocks and concepts, such as:

• Stochastic Noise Layer
• Transformer Blocks
• Convolutional Blocks (spatial resolution)
• Convolutional Blocks (temporal resolution)
Following the initial convolutional layers, STFNet utilizes depthwise 

separable convolutions, which are efficient both computationally and in 
terms of model parameters. These layers perform a depthwise spatial 
convolution followed by a pointwise convolution: 
𝑍2 = ELU(BN(𝑊2*(DWConv(𝑍1)))) (8)

This configuration allows the model to learn spatial hierarchies 
more effectively and is particularly suited for handling high-dimensional
EEG data.

To focus on the most relevant features across time series sequences, 
STFNet incorporates an attention mechanism: 
𝐴 = softmax(𝑊𝑎𝑍2) (9)

where 𝑊𝑎 are the trainable parameters of the attention module. This 
mechanism allows the network to dynamically weigh the importance 
of different features at each time step, which is crucial for tasks such 
as event-related potential detection.

The final layer of the STFNet is a fully connected layer followed by 
a softmax activation function, mapping the extracted features to the 
output classes: 
𝑃 = softmax(𝑊𝑓𝐴) (10)

where 𝑊𝑓  are the weights of the final dense layer. This setup ensures 
that the network outputs probabilities for each class, making it suitable 
for multi-class classification tasks.

Compared to state-of-the-art methodologies like the EEG Conformer 
as put forward by textitSong et al. [18], STFNet has an analytical 
advantage by incorporating stochastic resonance mechanisms and en-
hanced temporal processing to improve multi-class classification in EEG 
signals. While the EEG Conformer effectively merges convolutional and 
transformer layers to capture spatial and temporal features, STFNet in-
troduces controlled noise to facilitate stochastic resonance. This added 
noise amplifies weak EEG signals, enhancing their detectability and 
interoperability. In parallel, STFNet incorporates an advanced tempo-
ral processing module, which further refines the network’s ability to 
capture complex time-domain patterns, crucial for differentiating subtle 
neural activity.

To reiterate, the key features of the emerging model are:

• Controlled Gaussian noise injection during training to enhance 
weak EEG signals through stochastic resonance.

• Multi-stage feature extraction with convolutional layers and trans-
former encoders to capture spatial and temporal EEG features.

• Transformer encoders leverage multi-head self-attention to model 
long-range dependencies in EEG data.

• Time-domain jittering and mixup augmentation improve gener-
alization and robustness by exposing the model to varied signal 
patterns.

• Dropout and Adam optimizer with weight decay prevent overfit-
ting and ensure convergence.

• Optimization for Apple Silicon MPS hardware acceleration, en-
abling efficient training on large EEG datasets.
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3.8.1. Ablation study and hyperparameter tuning
To investigate the implicit effects of hyperparameters and noise in-

fusion modalities, an ablation study employed a controlled one-factor-
at-a-time (OFAT) framework centered on a fixed baseline configuration 
(noise = 0.1, TCN = 1, embedding = 70, transformer depth = 2, heads 
= 10, forward expansion = 4), the results of which are presented 
in Table  6. Each architectural or stochastic variable was independently 
perturbed across multiple levels while all others remained constant, 
and key configurations were repeated to capture intra-condition vari-
ance. This 30-run design balances interpretability and reproducibility, 
allowing clear attribution of observed performance shifts to individual 
factors. Unlike brute-force factorial search, which scales exponentially 
and demands thousands of evaluations, the OFAT approach yields 
statistically analyzable results with a fraction of the computational 
load. The inclusion of repeated runs per factor further supports variance 
estimation and non-parametric testing, enabling reliable identification 
of influential parameters without prohibitive resource expenditure.

By employing a structured one-factor-at-a-time and sensitivity-
oriented design rather than a full combinatorial sweep, the compu-
tational complexity was reduced by several orders of magnitude. A 
complete factorial exploration of six parameters would require over 
ten thousand distinct model trainings, equating to multiple years of 
computation given the 0.5–2-hour training time per subject across 
nine participants. In contrast, the selected 30 unique configurations 
strategically probe both individual parameter effects and key multi-
factor sensitivities, reducing total runtime to approximately 15–60 
GPU-hours while preserving interpretability, parameter coverage, and 
statistical tractability. To further deepen the analysis, we added manual 
adjustments strategically as to enable a more complex assessment of all 
hyperparameters, resulting in a total of 50 unique OFAT runs for the 
herein presented STFNet-centric ablation study. 

4. Results

As shown in Table  1, the final validation accuracies for CNNs in Ex-
periment A reached up to 77.0%±6.3%. In contrast, transformer-infused 
models achieved a higher maximum validation accuracy of 91.4%±2.5%
and exhibited lower standard deviation across all validation metrics.

An initial one-way ANOVA was conducted to compare the mean 
validation accuracies across different groups defined by the number of 
T-blocks. The results indicated a significant effect of T-block number 
on validation accuracy, with an F-statistic of 12.675 and a 𝑝-value 
of 0.000967, suggesting that at least one group’s mean validation 
accuracy is significantly different from the others.

The one-way ANOVA test was conducted to compare the effect of 
the number of transformer blocks on validation accuracy. The analy-
sis revealed a statistically significant difference between the groups, 
𝐹 (4,9) = 12.675, 𝑝 = 0.000967.

To further identify which specific groups differed, a post-hoc anal-
ysis using Tukey’s Honest Significant Difference (HSD) test was per-
formed. Results are summarized Table  2.

The analysis reveals significant differences between models with 
zero transformer blocks and those with one or more transformer blocks. 
Specifically, the group comparisons indicate that models without trans-
former blocks (group1=0) differ significantly from models with trans-
former blocks (group2=1, 2, 3, 4). This finding confirms that incorpo-
rating transformer blocks into the network architecture leads to sta-
tistically significant improvements in validation accuracy. The positive 
mean differences (meandiff ) across these comparisons further suggest 
that models utilizing transformer blocks consistently outperform their 
CNN-only counterparts.

In contrast, comparisons among models that already include trans-
former blocks (e.g., group1=1 vs. group2=2) do not show statistically 
significant differences. This suggests that while the introduction of 
transformer blocks enhances performance over CNN-only models, in-
creasing the number of transformer blocks beyond one or two does 
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Fig. 4. Training and validation performance for cross-subject training of the T3C2-architecture using Dataset I.
Table 1
Training and validation performances of Experiment A for various combinations and epoch settings with 
bold highlights of the two best-performing validation loss and accuracies.
 max_epochs T-blocks CNN-blocks Parameters Training Validation

 Accuracy Loss Accuracy Loss  
 100 0 2 139,000 0.722 0.71 0.714 0.54  
 100 0 3 504,000 0.752 0.438 0.735 0.5  
 100 0 4 2,000,000 0.753 0.344 0.743 0.483 
 200 0 2 139,000 0.741 0.449 0.738 0.505 
 200 0 3 504,000 0.78 0.269 0.757 0.452 
 200 0 4 2,000,000 0.783 0.0752 0.77 0.422 
 100 1 2 208,000 0.827 0.279 0.84 0.306 
 200 1 2 208,000 0.875 0.103 0.914 0.146 
 100 2 2 277,000 0.823 0.0715 0.828 0.309 
 200 2 2 277,000 0.874 0.0136 0.896 0.144 
 100 3 2 345,000 0.841 0.638 0.857 0.285 
 200 3 2 345,000 0.888 0.296 0.912 0.09  
 100 4 2 414,000 0.824 0.206 0.834 0.279 
 200 4 2 414,000 0.878 0.0267 0.911 0.103 
Table 2
Tukey HSD post-hoc test results for pairwise comparisons of validation ac-
curacy across different numbers of transformer blocks in the cross-subject 
classification performance of Experiment A.
 group1 group2 meandiff p-adj lower upper reject 
 0 1 0.1252 0.0092 0.0327 0.2176 True  
 0 2 0.1192 0.0124 0.0267 0.2116 True  
 0 3 0.1417 0.0041 0.0492 0.2341 True  
 0 4 0.1297 0.0073 0.0372 0.2221 True  
 1 2 −0.006 0.9997 −0.1193 0.1073 False  
 1 3 0.0165 0.9864 −0.0968 0.1298 False  
 1 4 0.0045 0.9999 −0.1088 0.1178 False  
 2 3 0.0225 0.9586 −0.0908 0.1358 False  
 2 4 0.0105 0.9975 −0.1028 0.1238 False  
 3 4 −0.012 0.9959 −0.1253 0.1013 False  

not lead to further significant improvements. The lack of statistically 
significant differences between models with one or more transformer 
blocks implies the presence of a potential threshold effect. This ob-
servation is also reflected in the validation accuracies presented in 
Table  1 where models with two and three transformer blocks exhibit 
comparable performance levels.

Performance metrics during training of the network model T3C2
of Table  1 are displayed in Fig.  9. The findings indicate that not only 
does the low loss metric indicate good generalization of the model, 
but rather unexpectedly, validation performance is better than training 
performance (see Fig.  4).

In Experiment B, the 4-class classification performance of STFNet 
notably surpasses previously reported models on Dataset II. As shown 
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Table 3
Individual performance of STFNet in Experiment B using Dataset II.
 Subject ID Test Accuracy F1 Score Recall Kappa 𝜅  
 A01 0.8648 0.8652 0.8644 0.8197  
 A02 0.6749 0.6705 0.6773 0.5671  
 A03 0.9391 0.9344 0.9339 0.9121  
 A04 0.8465 0.8461 0.8461 0.7952  
 A05 0.8261 0.8261 0.8262 0.7680  
 A06 0.6837 0.6819 0.6831 0.5782  
 A07 0.9314 0.9313 0.9329 0.9086  
 A08 0.8598 0.8608 0.8601 0.8130  
 A09 0.8712 0.8710 0.8706 0.8281  
 Average 0.8330 ± 0.095 0.8319 ± 0.095 0.8327 ± 0.094 0.7767 ± 0.125 

in Table  3, validation accuracies exceed 83.3% for 7 out of 9 sub-
jects, resulting in an average accuracy of 84.5% ± 7.3% across the 
entire dataset. Furthermore, Cohen’s Kappa statistic, with an average 
of 0.75 ± 0.13, indicates a substantial level of agreement between the 
model’s predictions and the actual class labels. The elevated kappa 
value underscores the robustness of STFNet in distinguishing between 
the four motor imagery tasks, reflecting not only accuracy but also the 
model’s consistency in performance across different subjects, including 
weak learners.

As per Table  4, the performance of STFNet on Dataset II demon-
strates a significant improvement over previous models in 4-class clas-
sification tasks. STFNet achieves an average accuracy of 84.5% with 
a standard deviation of 0.075 and a Cohen’s Kappa of 0.75. Notably, 
this performance is superior to other models like FBCSP, ConvNet, and 
EEGNet, especially in the context of subjects traditionally considered as 
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Table 4
4-class performances across historical and cutting-edge models, sorted alphabetically. The best values for each column are highlighted in 
bold, STFNet stands out with high confidence Kappa scores and improved standard deviation, indicating the robustness of the model across 
weaker learners, whose validation accuracy is strongly increased using STFNet.
 Model A01 A02 A03 A04 A05 A06 A07 A08 A09 Average SD 𝜎 Kappa 𝜅 
 C2CM [65] 0.875 0.652 0.903 0.667 0.625 0.455 0.896 0.833 0.795 0.744 0.153 0.6595  
 Conformer [18] 0.881 0.614 0.934 0.781 0.520 0.652 0.923 0.881 0.888 0.786 0.153 0.7155  
 ConvNet [66] 0.763 0.552 0.892 0.747 0.569 0.542 0.927 0.771 0.764 0.725 0.142 0.6337  
 DRDA [24] 0.838 0.551 0.874 0.753 0.623 0.572 0.862 0.753 0.820 0.747 0.126 0.6632  
 EEGNet [67] 0.857 0.615 0.885 0.670 0.559 0.521 0.896 0.833 0.868 0.745 0.152 0.6600  
 EEG-TCNet [68] 0.857 0.65 0.945 0.649 0.754 0.614 0.873 0.837 0.78 0.774 0.116 0.7  
 FBCSP [69] 0.760 0.565 0.813 0.610 0.550 0.453 0.828 0.813 0.708 0.678 0.137 0.570  
 FBCNet [70] 0.854 0.604 0.906 0.764 0.743 0.538 0.844 0.795 0.809 0.762 0.12 0.6827  
 Proposed [Table  6] 0.883 0.724 0.963 0.847 0.837 0.74 0.856 0.882 0.875 0.845 0.073 0.75  
weak learners or BCI illiterate (e.g., A02 and A05). For instance, subject 
A02, which historically presented poor performance with models like 
ConvNet and FBCSP (accuracies of 55.2% and 56.5% respectively, and 
with low MI-related band-power strengths as per Fig.  2), achieved a 
significantly higher accuracy of 72.4% with STFNet. Similarly, subject 
A05, previously considered a weak learner with accuracies around 
55%–62% in earlier models, reached an accuracy of 83.7% using the 
proposed model. This remarkable improvement in accuracy, alongside 
a higher Kappa score, indicates not only better classification perfor-
mance but also suggests increased consistency and robustness across 
subjects. Moreover, the lower standard deviation observed with STFNet 
implies a reduction in performance variability, indicating that the 
model’s architecture is more stable across diverse EEG signal patterns 
and varying subject-specific challenges.

The confusion matrices and task-specific metrics for false positives 
and false negatives in Fig.  5 provide insight into the model’s perfor-
mance and robustness across different subjects and tasks. For Subject 
3, who is considered a high-performing learner, the confusion matrix 
shows high true positive rates across all tasks (left hand, right hand, 
feet, and tongue), with only minimal misclassifications. This subject 
serves as a gold standard for model performance, indicating the model’s 
capacity to classify motor imagery tasks with high accuracy when the 
EEG signals are clear and distinct.

In contrast, Subjects 2 and 5, previously categorized as weak learn-
ers or BCI illiterate, exhibit more substantial improvements in classifi-
cation performance using STFNet. For Subject 5, the confusion matrix 
shows significant improvements, especially in tasks like ‘right hand’ 
and ‘feet’, where previous models struggled. While there are still 
noticeable false negatives in the ‘feet’ task, the overall distribution of 
true positives indicates that STFNet has successfully captured relevant 
features in these weaker learners’ EEG signals. Subject 2’s confusion 
matrix shows similar improvements, with fewer false positives and 
false negatives across tasks compared to earlier results. Notably, the 
false positive/false negative graph indicates a general reduction in 
false positives and negatives for both Subjects 2 and 5, suggesting 
that STFNet has increased the robustness of classification in weaker 
learners.

The decline in false positives and false negatives, particularly in 
challenging tasks like ‘feet’ and ‘tongue’ for Subjects 2 and 5, 
signifies a more balanced model performance. This reduction implies 
that STFNet can generalize better across subjects with varying levels of 
BCI proficiency. Additionally, the comparison with Subject 3 confirms 
that while weaker learners do not reach the same level of accuracy, 
the performance gap has been significantly reduced, indicating en-
hanced robustness and reliability in multi-class motor imagery EEG 
classification.

As for Experiment C, the results presented in Table  5 provide a 
comprehensive comparison of the performance metrics for different 
model architectures across 106 subjects. These models include various 
combinations of convolutional and transformer blocks (C3, C4, T1C2, 
T2C2, T3C2) as well as the more complex STFNet. The metrics pre-
sented — Accuracy, Loss, F1 Score, Recall, and Kappa — offer a detailed 
11 
insight into each model’s capability to handle EEG signal classification 
tasks under similar hyperparameter settings.

STFNet shows a marked improvement across nearly all performance 
metrics compared to the other models. With an accuracy of 0.8869 ±
0.0725, STFNet outperforms the simpler convolutional and transformer 
combinations such as C3 (0.6849 ± 0.1474) and C4 (0.5523 ± 0.1621). 
Even when compared to more sophisticated transformer-integrated 
architectures like T1C2 and T3C2, STFNet still maintains a higher 
accuracy, showcasing its enhanced capability in managing the complex-
ities of EEG data. The F1 Score and Recall metrics further corroborate 
this, with STFNet achieving 0.8856 ± 0.0741 and 0.8869 ± 0.0725
respectively, indicating not only the model’s precision in classification 
but also its effectiveness in correctly identifying relevant EEG signals 
across the dataset.

Another critical observation is the model’s Kappa statistic, which 
measures the agreement between predicted and actual labels. STFNet 
achieves a Kappa value of 0.8304±0.1088, significantly higher than the 
values recorded for models like C3 (0.5274 ± 0.2211) and C4 (0.328 ±
0.2431). This elevated Kappa score suggests that STFNet’s predictions 
align more consistently with the true classifications, implying better 
generalization across different subjects. Moreover, the standard devi-
ation in STFNet’s performance metrics is generally lower compared to 
other models, reflecting greater stability and robustness in its learning 
process across a diverse cohort of 106 subjects.

The hyperparameter settings, particularly the consistent application 
of noise (𝛥 = 0.1), jitter augmentation (J-Aug), frequency-domain 
augmentation (FD-Aug), and mixup augmentation (MU-Aug), were 
uniform across all models, providing a controlled environment to as-
sess the models’ inherent capabilities. Despite the added complexity 
and parameter count in STFNet, it demonstrates superior performance 
with relatively balanced computational trade-offs, as evidenced by its 
maintained low loss value (0.0124 ± 0.009) similar to that of T1C2
and T3C2 models. Future implementation may explore NP-optimized 
implementation of such hyperparameter optimization as proposed by 
our foregoing work [26,71,72].

Table  7 presents the validation metrics for the same models under 
modified hyperparameter settings, specifically with increased noise 
infusion (𝛥 = 0.2) and reduced data augmentations (𝐽 -Aug, FD-Aug
set to 0.05, and MU-Aug to 0.1). STFNet continues to outperform the 
other models, achieving an accuracy of 0.906 ± 0.0596, which is an 
improvement from its performance in Table  5 (0.8869 ± 0.0725). This 
increase in accuracy, alongside an elevated F1 Score (0.9045±0.0614) 
and Kappa (0.859 ± 0.0895), indicates that STFNet benefits from the 
adjusted noise and augmentation settings. The performance stability 
across subjects is also reflected in the reduced standard deviation, 
suggesting that STFNet remains robust even under different noise levels 
and augmentation strategies.

Comparing these results with those in Table  5, it is evident that 
the increased noise infusion and reduced data augmentation have a 
generally positive effect on STFNet, as well as on models like T1C2 and 
T3C2, which also show slight improvements in accuracy and F1 Score. 
For instance, T1C2’s accuracy increased from 0.8443±0.1482 in Table  5 
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Fig. 5. Final model performance analysis for selected subjects 3, 5, and 2. (a) Confusion matrices for each subject’s model performance. (b) Task-specific False 
Positive and False Negative Rates, respectively.
Table 5
Validation metrics for selected models of Experiment C (Configuration 𝛼).
 Parameters C3 C4 T1C2 T2C2 T3C2 STFNet  
 Noise [𝛥] 0.1 0.1 0.1 0.1 0.1 0.1  
 J-Aug [𝛥] 0.1 0.1 0.1 0.1 0.1 0.1  
 FD-Aug [𝛥] 0.1 0.1 0.1 0.1 0.1 0  
 MU-Aug [𝛼] 0.2 0.2 0.2 0.2 0.2 0.2  
 Max Epochs 200 200 200 200 200 200  
 Accuracy 0.6849 ± 0.1474 0.5523 ± 0.1621 0.8443 ± 0.1482 0.8071 ± 0.1270 0.8489 ± 0.1414 0.8869 ± 0.0725 
 Loss 0.0151 ± 0.0044 0.0175 ± 0.0035 0.0122 ± 0.0081 0.0147 ± 0.0081 0.0124 ± 0.0084 0.0124 ± 0.009  
 F1 Score 0.6717 ± 0.1627 0.4922 ± 0.2119 0.8356 ± 0.1738 0.8039 ± 0.1307 0.8408 ± 0.1618 0.8856 ± 0.0741 
 Recall 0.685 ± 0.1474 0.5523 ± 0.1620 0.8443 ± 0.1482 0.8071 ± 0.1270 0.8489 ± 0.1412 0.8869 ± 0.0725 
 Kappa 0.5274 ± 0.2211 0.328 ± 0.2431 0.7665 ± 0.2223 0.7107 ± 0.1904 0.7733 ± 0.2118 0.8304 ± 0.1088 
to 0.8763±0.1219 in Table  7. This suggests that a higher noise level can 
aid in enhancing the generalizability of these models, likely due to the 
stochastic resonance effect. However, simpler models like C3 and C4
exhibit less improvement, indicating that while these modifications can 
benefit complex models, they may not suffice to significantly enhance 
the performance of less sophisticated architectures. Overall, the results 
imply that STFNet, with its inherent complexity and noise-handling 
capabilities, is more adept at leveraging increased noise levels and 
reduced augmentations to further improve classification performance.

As per Fig.  6 the inclusion of stochastic noise infusion (𝛿 = 0.3)
overall yielded consistent gains in classification stability and perfor-
mance across the evaluated motor-imagery classes. As illustrated in 
subplots (a) and (b), the mean class accuracies during validation test-
ing were notably higher when the noise infusion layer was active 
compared to the 𝛿 = 0.0 baseline, with the largest improvement 
observed for the left-hand class. This enhancement was accompanied 
by a narrower accuracy distribution for the left hand, right hand, and 
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feet classes, indicating a reduction in variance and more stable class-
specific predictions. Importantly, subplot (d) shows that for Subject 
2 (the weakest learner) the validation loss remained comparable to 
that of the non-noise condition shown in (c), while validation accuracy 
improved, reflecting better generalization under noisy training. The 
higher training loss observed in the 𝛿 = 0.0 configuration compared to 
the noise-infused case further supports this interpretation: the addition 
of stochastic perturbation during training likely mitigates overfitting by 
regularizing internal representations. Consequently, the model trained 
with 𝛿 = 0.3 demonstrates improved robustness, more balanced class 
performance, and enhanced learning dynamics, particularly benefiting 
subjects and classes with weaker baseline performance. The corre-
sponding training curves and confusion matrices are presented in Fig. 
7.

Enhancing the previous analysis, the subplots (a) and (b) of Fig.  9 
offer a more nuanced perspective on STFNet’s robustness and general-
izability through the distribution of Cohen’s Kappa scores across 106 
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Table 6
Configuration-wise test scores for multi-classification performances during ablation study on STFNet hyperparameters: 𝛿=noise infusion layer setting, nC=number 
of convolutional layers, emb=embedding size, nT=number of transformer layers, H=number of self-attention heads within the T layers, FW=forward expansion 
dimension for final embeddings. The best (ID=av) and worst (ID=b) performing architectures are highlighted in bold.
 ID 𝛿 nC emb nT H FW A01 A02 A03 A04 A05 A06 A07 A08 A09 Avg SD

 a 0.0 1 32 1 6 2 88.25 72.08 95.97 82.89 78.62 72.55 90.61 85.61 85.23 83.53 7.99 
 b 0.0 1 96 2 6 4 87.18 61.83 92.67 86.84 80.79 69.30 92.77 85.97 85.98 82.59 10.48 
 c 0.0 1 72 2 8 4 87.19 66.43 91.94 83.77 82.25 71.16 91.69 88.92 87.12 83.39 8.94 
 d 0.0 1 70 2 10 2 87.54 65.72 94.13 83.77 80.07 71.16 90.97 88.19 86.74 83.14 9.33 
 e 0.0 1 70 2 10 4 87.90 68.55 93.41 82.46 80.80 73.95 90.61 89.30 87.50 83.83 8.21 
 f 0.0 1 72 2 12 4 89.32 70.31 91.57 82.89 79.71 69.30 91.33 87.72 87.87 83.34 8.57 
 g 0.0 1 70 3 10 4 87.62 71.02 93.13 85.96 82.22 69.30 90.07 90.41 85.60 83.93 8.43 
 h 0.0 1 70 4 10 4 88.25 62.54 92.67 85.08 80.79 68.83 90.97 87.82 84.84 82.42 10.23 
 i 0.0 1 70 4 10 6 88.95 63.95 93.04 86.40 78.98 69.76 91.69 88.19 87.12 83.12 10.13 
 j 0.0 2 70 2 10 4 85.76 65.72 92.30 85.52 79.71 68.83 90.61 87.82 85.22 82.39 9.31 
 k 0.0 2 70 2 10 4 85.05 62.54 92.31 85.52 80.43 68.37 90.02 88.19 85.22 81.96 10.05 
 l 0.0 2 72 3 8 6 85.76 70.31 93.40 85.08 83.69 67.44 91.69 88.19 84.46 83.34 8.86 
 m 0.0 3 128 2 8 6 83.62 62.54 92.67 84.21 78.98 66.97 89.89 85.97 85.22 81.12 10.10 
 n 0.0 3 70 2 10 4 87.18 64.31 93.04 82.01 80.07 65.58 90.09 85.23 87.12 81.63 10.22 
 o 0.1 1 70 1 10 4 84.69 68.10 92.30 83.77 81.52 68.37 90.97 87.45 84.46 82.40 8.74 
 p 0.1 1 72 2 6 2 83.98 66.07 91.57 86.84 79.34 70.23 89.89 87.45 86.74 82.46 8.88 
 q 0.1 1 96 2 6 4 86.12 65.37 91.57 81.57 79.34 66.05 90.25 89.67 85.98 81.77 9.93 
 r 0.1 1 48 2 8 4 88.61 69.61 94.13 85.52 81.52 70.23 90.97 89.29 88.26 84.24 8.83 
 s 0.1 1 72 2 8 4 86.47 70.67 93.77 86.40 81.52 71.16 91.33 88.56 86.74 84.07 8.20 
 t 0.1 1 96 2 8 4 86.83 64.66 93.04 85.08 78.62 68.37 90.61 87.82 86.36 82.38 9.86 
 u 0.1 1 128 2 8 4 84.34 66.43 91.21 84.21 97.71 69.30 90.97 87.45 86.36 84.22 10.19 
 v 0.1 1 70 2 10 4 87.54 68.90 93.77 84.65 79.38 75.81 89.89 88.93 87.87 84.08 7.90 
 w 0.1 1 70 2 10 6 88.61 69.61 93.40 82.41 79.71 68.83 92.41 87.45 86.74 83.24 9.03 
 x 0.1 1 72 2 12 4 88.26 69.25 95.24 84.21 80.43 67.90 88.08 87.45 85.22 82.89 9.04 
 y 0.1 1 48 2 12 6 88.61 69.25 94.87 83.33 82.60 69.76 90.25 88.19 86.36 83.69 8.83 
 z 0.1 1 70 3 10 4 87.18 70.67 93.04 87.72 82.25 68.83 90.61 89.29 85.98 83.95 8.60 
 aa 0.1 1 70 4 10 4 87.54 63.95 93.41 86.40 79.34 71.16 91.69 87.45 85.23 82.91 9.73 
 ab 0.1 1 96 4 12 6 88.26 64.66 93.04 81.14 82.97 70.23 90.97 88.93 87.12 83.04 9.66 
 ac 0.1 2 96 2 8 4 84.69 63.60 93.77 80.70 80.79 67.90 90.97 86.34 84.84 81.51 9.95 
 ad 0.1 2 70 2 10 4 86.47 65.37 92.31 85.53 80.79 66.98 90.61 88.19 85.22 82.39 9.77 
 ae 0.1 3 128 2 8 6 83.27 65.72 92.67 83.33 78.98 68.37 88.44 85.97 84.46 81.25 8.91 
 af 0.1 3 70 2 10 4 88.61 64.66 93.41 85.09 81.51 66.04 92.06 84.50 86.36 82.47 10.39 
 ag 0.2 1 96 2 6 4 86.12 70.31 91.94 82.01 80.07 67.91 89.53 88.92 85.98 82.53 8.46 
 ah 0.2 1 72 2 8 4 87.54 67.49 93.04 82.46 81.15 72.09 90.61 88.56 87.50 83.38 8.61 
 ai 0.2 1 70 2 10 4 88.26 66.08 90.84 83.77 80.07 67.91 90.97 87.45 86.36 82.41 9.38 
 aj 0.2 1 72 2 12 4 88.26 67.49 93.77 84.21 81.88 71.63 92.06 89.67 88.64 84.18 9.10 
 ak 0.2 1 70 3 10 4 87.90 68.90 93.40 87.71 83.33 70.23 90.97 89.29 85.22 84.11 8.76 
 al 0.2 1 100 3 10 4 87.90 66.78 93.04 85.96 78.98 68.83 90.61 89.66 87.12 83.21 9.57 
 am 0.2 1 70 4 10 4 87.19 66.78 93.04 85.53 80.07 68.84 90.97 86.34 84.09 82.54 9.16 
 an 0.2 1 96 4 12 6 87.54 66.78 94.87 81.57 81.52 67.90 91.33 88.19 87.87 83.06 9.85 
 ao 0.2 1 96 4 12 6 87.90 66.79 94.14 81.14 81.15 68.38 92.42 87.83 87.88 83.07 9.79 
 ap 0.2 2 70 2 10 4 87.18 67.13 93.77 85.96 79.71 68.37 91.69 87.45 84.47 82.86 9.46 
 aq 0.2 2 70 2 10 4 85.76 69.25 95.23 85.96 79.34 68.83 88.08 86.34 84.46 82.58 8.71 
 ar 0.2 3 128 2 8 6 83.27 64.31 92.67 84.21 80.79 64.18 87.72 84.87 84.84 80.76 9.92 
 as 0.2 3 70 2 10 4 87.90 67.13 93.04 85.08 81.88 68.83 92.41 85.97 84.46 82.97 9.24 
 at 0.2 3 120 4 12 6 85.40 62.19 90.84 85.08 80.07 66.97 88.08 87.45 85.22 81.26 9.96 
 au 0.3 1 30 1 6 2 85.77 66.43 95.24 87.28 82.97 75.81 90.25 88.57 86.74 84.34 8.54 
 av 0.3 1 30 1 10 10 88.26 72.44 96.33 84.64 83.69 73.95 85.56 88.19 87.50 84.51 7.38 
 aw 0.3 1 70 2 10 4 87.90 68.19 94.87 83.77 80.79 73.49 87.36 88.56 88.63 83.73 8.34 
 ax 0.3 1 72 3 12 6 89.32 70.31 95.23 83.77 79.34 67.44 92.06 85.97 86.36 83.31 9.41 
subjects. Fig.  9 subplot (a), STFNet demonstrates a pronounced peak 
towards the upper end of the Kappa scale, indicating a consistently high 
agreement between predicted and true labels across the subject pool. 
Notably, this distribution is not only centered at higher Kappa values 
but is also narrower compared to other models like C2, C3, and T2C2. 
The narrowness of this distribution suggests that STFNet achieves 
consistent performance across subjects, highlighting its resilience to 
inter-subject variability. In contrast, models such as C2 and C3 exhibit 
a broader spread with lower peaks, indicating greater variability in 
performance and reduced reliability in classification across different 
subjects.

Subplot (c) and (d) further substantiate these findings under mod-
ified hyperparameter conditions, specifically increased noise infusion 
and reduced data augmentation. STFNet continues to display a con-
centrated distribution near the higher Kappa values, even more promi-
nently than in Fig.  9 subplot (b). This enhanced concentration under-
lines the model’s robustness and stability when subjected to varying 
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experimental conditions. Although models like T1C2 and T3C2 show 
some degree of improvement, their Kappa distributions remain wider 
and skewed toward lower scores, underscoring STFNet’s superior ca-
pacity to generalize across diverse conditions. These results collectively 
reinforce the notion that STFNet not only excels in classification per-
formance but also exhibits enhanced robustness and stability in its 
predictive capabilities, particularly when dealing with the complexities 
and noise inherent in EEG data.

The two noise settings evaluated (𝛥=0.1 vs. 𝛥 = 0.2; Table  5 and Ta-
ble  7) allow us to quantify the impact of the noise layer. Increasing 
𝛥 from 0.1 to 0.2 improved average accuracy (0.8869 → 0.9060) 
and Cohen’s Kappa (0.8304 → 0.8590). Importantly, the inter-subject 
variability was reduced (accuracy SD 0.0725 → 0.0596, Kappa SD 
0.1088 → 0.0895), suggesting that higher levels of noise infusion not 
only increase mean performance but also stabilize performance across 
a heterogeneous subject pool. This supports the interpretation that the 
noise layer contributes to robustness by amplifying weak neural signals 
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Fig. 6. Performance metrics for the ablation study using Dataset II. (a) and (b) show the distribution of the class-specific accuracy performances across the dataset 
for both cases without noise infusion and those with noise infusion, respectively. (c) and (d) show per-subject performance metrics for no-noise and noise-infused 
architectures during the ablation study, respectively.
Table 7
Validation metrics for selected models of experiment C with increased noise infusion and reduced data augmentation (Configuration 𝛽).
 Parameters C3 C4 T1C2 T2C2 T3C2 STFNet  
 Noise [𝛥] 0.2 0.2 0.2 0.2 0.2 0.2  
 J-Aug [𝛥] 0.05 0.05 0.05 0.05 0.05 0.05  
 FD-Aug [𝛥] 0.05 0.05 0.05 0.05 0.05 0  
 MU-Aug [𝛼] 0.1 0.1 0.1 0.1 0.1 0.1  
 Epochs 200 200 200 200 200 200  
 Accuracy 0.7231 ± 0.1491 0.5585 ± 0.1646 0.8763 ± 0.1219 0.8059 ± 0.1249 0.8773 ± 0.1281 0.906 ± 0.0596  
 Loss 0.0137 ± 0.0047 0.0174 ± 0.0036 0.0105 ± 0.0069 0.0144 ± 0.0081 0.0111 ± 0.0084 0.0112 ± 0.008  
 F1 Score 0.7082 ± 0.17 0.5004 ± 0.2125 0.8717 ± 0.1372 0.8034 ± 0.1269 0.8724 ± 0.1456 0.9045 ± 0.0614 
 Recall 0.7231 ± 0.1491 0.5585 ± 0.1646 0.8763 ± 0.1219 0.8059 ± 0.1249 0.8773 ± 0.1281 0.906 ± 0.0596  
 Kappa 0.5846 ± 0.2237 0.3377 ± 0.2468 0.8145 ± 0.1829 0.7088 ± 0.1877 0.816 ± 0.1921 0.859 ± 0.0895  
while regularizing against subject-specific variability. These results are 
further underpinned by the findings of the STFNet hyperparameter and 
layer ablation study as presented in Table  6.

Overall, the results of Experiment C in conjunction with the results 
of Experiment B highlight the superiority of transformer-based models, 
in particular STFNet, which is able to effectively capture nuanced 
patterns within EEG signals. Its ability to deliver consistently high ac-
curacy, precision, and stability across a large subject pool and different 
datasets demonstrates its potential as a more robust model for EEG 
classification tasks, particularly in scenarios involving complex and 
diverse datasets.

The boxplots in Fig.  8 illustrate the spatial distribution of normal-
ized channel importance across EEG electrodes for the two ablation 
configurations: (a) without noise infusion 𝛿 = 0 and (b) with moderate 
noise infusion (𝛿 = 0.3), which outlines how the overall topographic 
distribution of relevant channels remains consistent across both set-
tings, indicating that noise infusion does not substantially alter the 
model’s spatial feature weighting pattern. However, in the 𝛿 = 0
condition, stronger emphasis is observed over the central motor re-
gions, particularly C3, Cz, and CP2, reflecting the network’s reliance 
on canonical motor-imagery–related areas [73–75] when no stochastic 
perturbation is introduced.

When moderate noise 𝛿 = 0.3 is infused, the distribution becomes 
slightly more uniform, with a marginally increased importance of pari-
etal and centro-parietal electrodes such as CP1, CP2, and POz. This 
suggests that controlled noise promotes more distributed feature utiliza-
tion and enhances generalization by reducing overreliance on a small 
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subset of dominant motor channels [76,77]. Despite these shifts, no 
statistically significant differences were observed in the overall channel 
importance distributions between the two conditions, confirming that 
the network’s learned spatial focus remains physiologically stable while 
benefiting from improved robustness and feature integration under 
noise-infused training.

5. Discussion

The results of this study offer key insights into the effectiveness 
of STFNet in improving EEG-based BCI classification performance, 
particularly among subjects previously categorized as BCI illiterate.

In Experiment A, the analysis through ANOVA and the subsequent 
Tukey HSD tests demonstrates that incorporating transformer blocks 
into the model architecture significantly enhances validation accuracy. 
However, the data also indicate that merely increasing the number of 
transformer blocks does not necessarily translate to additional perfor-
mance improvements. This finding suggests a limit to the benefits of 
simply adding architectural depth, indicating that the optimal number 
of transformer blocks for this dataset may be as few as one. Both Table 
1 and Table  2 emphasize that while transformer blocks do contribute 
to enhanced performance, there is a threshold beyond which additional 
complexity yields diminishing returns.

These results highlight the need for more research into the fine-
tuning and optimization of such hybrid systems. Rather than focusing 
solely on increasing the depth of the architecture, future investigations 
should explore how to better configure and optimize the interaction 
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Fig. 7. Training and validation performance metrics for each subject of Dataset II during the STFNet hyperparameter ablation study. (a) and (c) show subject-
specific training and validation accuracies and loss curves for the proposed architecture with noise infusion layers 𝛿 = 0 and 𝛿 = 0.3, respectively. (b) and (d) 
depict the final (best) validation metrics as confusion matrices for the resulting classifiers with the proposed architecture with noise infusion layers 𝛿 = 0 and 
𝛿 = 0.3, respectively. (c) shows improved continuous learning rate and less stagnation across individuals when compared to (a), with clearer confusion matrices 
in (d) demonstrating superior classification performance not only for weak learners but across subjects (average) when compared to (b).
between convolutional layers, transformer blocks, and noise-handling 
strategies. This exploration could involve experimenting with different 
hyperparameters, layer types, or even self-organizing methods like 
evolutionary algorithms. A more nuanced understanding of how to 
optimize these hybrid systems will be crucial in pushing the bound-
aries of EEG-based BCI performance, particularly in applications where 
computational efficiency and adaptability are paramount.

As for Experiment B and C, STFNet not only enhanced the classifi-
cation accuracy of weaker learners, such as Subjects A02 and A05, but 
also showed substantial improvements across the entire cohort. Fig.  9 
(subplot c and d) display t-SNE plots illustrating the clustering of MI 
tasks for different models. STFNet achieves more distinct clusters for 
left hand, right hand, and feet tasks, indicating superior feature sepa-
ration compared to earlier models like C2 and T2C2. This improved task 
differentiation suggests that STFNet’s feature extraction capabilities, 
coupled with the benefits of stochastic resonance, enhance the model’s 
ability to handle EEG data, particularly for challenging subjects.

For Subject 3 (the weakest learner of Dataset I as per Table  8), 
STFNet exhibits well-separated and compact clusters for each MI task 
as shown in Fig.  9, which indicates that STFNet’s feature extraction pro-
cess yields high-dimensional representations that are more discernible 
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when reduced to a two-dimensional space using t-SNE, capturing com-
plex patterns in the EEG data more effectively. In contrast, the t-SNE 
plots for models like C2 and C3 show significant overlap between task 
clusters, especially for left-hand and feet-movement tasks. This overlap 
suggests that these models struggle to extract distinct features, leading 
to less reliable classifications. Even for weak learners, such as Subject 2, 
STFNet maintains relatively distinct clusters, albeit with more overlap 
than seen in Subject 3. This further emphasizes STFNet’s robustness and 
its ability to enhance the performance of subjects previously deemed 
BCI illiterate.

STFNet’s architecture plays a critical role in amplifying subtle neural 
signals through noise infusion and enhanced feature extraction. Unlike 
other models that show scattered and intermingled clusters, STFNet’s 
t-SNE plots indicate a higher degree of organization and separation 
between classes, underscoring the model’s capability to manage inter-
subject variability. This is particularly important for motor imagery 
tasks, where neural patterns vary widely among subjects. STFNet’s 
ability to generate well-separated clusters across tasks suggests that 
it not only captures the relevant features more effectively but also 
leverages stochastic resonance to enhance the discriminability of these 
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Fig. 8. Normalized channel importances across all subjects for the proposed 
architecture with noise infusion layers 𝛿 = 0 (a) and 𝛿 = 0.3 (b). The top 5 
most important channels are highlighted in red.

features, leading to improved classification performance. Thus, the 
t-SNE analysis in Fig.  9 subplots (a,b) provide compelling visual con-
firmation of STFNet’s superior feature extraction capabilities and its 
potential to improve BCI usability across diverse subject groups.

As shown in Figs.  10 and 11., the representational dynamics of 
the weak learner (Subject 2) and nono-weak learner (Subject 3)re-
veal how stochastic noise infusion interacts with the convolutional 
and transformer stages to restructure the learned feature space and 
enhance separability between motor imagery classes. Notably, under 
the 𝛿 = 0 condition for the weak learner, activations across layers 
remain poorly differentiated, with feature trajectories displaying diffuse 
and overlapping distributions. The temporal convolution layer, though 
effective in extracting localized temporal features, fails to stabilize the 
representations sufficiently for downstream separation. Even after the 
transformer layer, which in principle integrates contextual and cross-
channel dependencies, the features remain entangled, indicating that 
the model has not converged toward distinct task-related manifolds. 
This behavior is characteristic of weak learners whose EEG signals 
exhibit low discriminability and unstable spatial–temporal synchroniza-
tion, leading the network to overfit transient signal noise rather than 
capturing consistent neural dynamics.

When noise infusion is introduced (𝛿 = 0.3), the network’s rep-
resentational structure evolves in a markedly different manner. The 
injected stochastic perturbation acts as an implicit regularizer, pro-
moting broader exploration of the feature space during training and 
preventing early convergence to narrow, non-generalizable filters. The 
temporal convolution layer now contributes more effectively to shaping 
temporally coherent activations, as reflected in the greater intra-class 
compactness and inter-class separation seen in the later layers. Cru-
cially, the transformer stage benefits most from this enhanced input di-
versity. By attending over richer, noise-stabilized temporal embeddings, 
the transformer can more effectively capture long-range dependencies 
and context-sensitive spectral patterns associated with motor imagery. 
This synergy between noise-conditioned convolutional encoding and 
transformer-based contextual refinement leads to a more disentangled 
and geometrically stable latent space in the final embeddings.

The contrast between 𝛿 = 0 and 𝛿 = 0.3 highlights how stochastic 
conditioning improves both the internal consistency and class-specific 
organization of the learned representations. While convolutional layers 
provide the initial temporal discrimination, the transformer layer re-
fines these representations by aligning them across time and feature 
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Table 8
Strongest and weakest learners of Dataset I, across all model runs and archi-
tectures as per Experiment C, ranked by average validation accuracy.
 Subject ID Accuracy [%] SD 𝜎 [%] 
 

Best Learnable

S_55 92.59 5.45  
 S_36 91.05 7.59  
 S_20 91.05 7.36  
 S_76 90.12 8.73  
 S_2 90.12 7.69  
 

Least Learnable

S_13 73.46 14.57  
 S_91 71.91 22.99  
 S_35 70.99 21.95  
 S_19 70.37 18.33  
 S_3 69.75 22.16  

dimensions, producing embeddings that are not only less redundant 
but also more resilient to inter-trial variability. The joint effect is 
particularly beneficial for weak learners, where signal reliability is low: 
rather than amplifying noise, the network learns to exploit structured 
perturbations to reveal latent regularities that remain hidden in uncon-
ditioned training. In this context, noise infusion does not merely act 
as an auxiliary defense against overfitting but becomes a functional 
component that enhances the transformer’s capacity to model and 
stabilize weak, low-SNR EEG representations.

In relation to state-of-the-art methods, Table  4 places STFNet along-
side classical pipelines, CNN-based models, and more recent hybrid 
or attention-driven approaches for a direct comparison of the pro-
posed model performance on this benchmarking dataset. Classical 
pipelines such as filter-bank common spatial patterns (FBCSP) [78] 
remain useful due to their interpretability and well-defined spatial–
spectral priors, but they degrade considerably under low signal-to-noise 
conditions and show limited scalability to multiclass paradigms. CNN-
based models, including ConvNet [79], EEGNet [80], and FBCNet [81], 
improved performance by automatically learning spatial and temporal 
features, yet they often rely on local receptive fields and assump-
tions of stationarity. These limitations reduce their effectiveness in 
capturing long-range dependencies, particularly for weak learners. 
Hybrid and attention-based architectures, such as EEG-TCNet [82], 
DRDA [83], and Conformer [84], incorporate temporal context and 
dynamic weighting to improve robustness. Nevertheless, these models 
generally depend on explicit artifact removal or heavy preprocessing, 
leaving residual variability across users and sessions. Compared with 
these approaches, STFNet leverages multi-head self-attention to capture 
long-range temporal–spatial dependencies while integrating controlled 
Gaussian noise infusion to exploit stochastic resonance, which enhances 
subthreshold neural components rather than discarding them. This 
design yields clear advantages: STFNet achieved the highest mean 
accuracy and Kappa with reduced standard deviation across subjects (as 
shown in Table  3), and demonstrated particular improvements in weak 
learners (e.g., A02 and A05). In Experiment C, involving 106 subjects, 
STFNet maintained high accuracy and Kappa while also proving robust 
to variations in noise infusion and data augmentation settings (Tables 
5–7). These results indicate that STFNet not only surpasses classical 
and CNN-based pipelines but also addresses limitations of attention-
based hybrids by explicitly enhancing weak neural patterns through 
stochastic resonance. 

An important aspect of STFNet is the complementary interaction 
between its convolutional and Transformer modules. The convolutional 
front-end extracts local spatiotemporal features, such as ERD/ERS dy-
namics within mu, beta, and alpha bands localized to motor-related 
electrodes, providing robust short-range representations that are less 
sensitive to noise. The Transformer layers then operate on these rep-
resentations to capture long-range temporal context and cross-channel 
dependencies, integrating distributed activity patterns that CNN filters 
alone cannot resolve. This division of labor explains why CNN-only 
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Fig. 9. (a, b) Distribution of Cohen’s Kappa 𝜅 across all individuals of Dataset I (cross-subject ablation study) for configurations as per Tables  5 and 7, respectively.
(c, d) t-SNE representation for MI-classification ablation study as per Table  7 for Subject 3 of Dataset I for during model training and validation, respectively.
models perform competitively but show higher variance, whereas aug-
menting them with Transformer blocks significantly improves mean 
accuracy and stability (ANOVA 𝐹 = 12.675, 𝑝 = 0.000967; Tables  5 and
7). Notably, subjects previously identified as weak learners (e.g., A02, 
A05) benefit most, indicating that global attention mechanisms can 
amplify subtle local features extracted by the convolutional layers, 
leading to more robust classification across heterogeneous populations.

The enhanced performance of STFNet is further supported by the 
lower standard deviations and higher Kappa scores, pointing to greater 
robustness across varying subjects. While traditional models like C2
and C3 struggle to consistently differentiate between MI tasks for 
weaker learners, as seen in the broader spread of points in Fig.  2, 
STFNet significantly narrows this spread, reflecting more reliable clas-
sification results. This robustness, achieved through the combination 
of convolutional and transformer layers with controlled noise infusion, 
mitigates the inter-subject variability that has historically been a major 
challenge in EEG-based BCI systems. The tight clustering of task-specific 
data points for STFNet indicates that the model is better able to gener-
alize across subjects, including those previously deemed less learnable, 
supporting its application in real-world BCI settings.

Additionally, the integration of stochastic resonance plays a crucial 
role in amplifying weak EEG signals, impacting both the overall ac-
curacy and consistency of STFNet’s performance. The use of controlled 
noise, particularly for traditionally challenging subjects, allows the sys-
tem to enhance the detection of weak or faint signals that other models 
struggle to classify accurately. This technique is especially useful in 
scenarios involving low signal-to-noise ratio (SNR) EEG data, which is 
a common characteristic in BCI illiterate users. The results from Table  7 
confirm that STFNet continues to outperform other models, even under 
modified noise infusion and reduced data augmentation conditions, 
demonstrating that the model maintains its superior performance in a 
variety of experimental setups.

Fig.  12 presents layer-wise activation heatmaps for a representative 
non-weak learner (Subject A03) and a weak learner (Subject A02), 
illustrating the effect of the stochastic noise infusion mechanism 𝛿 =
17 
0.3 on feature representations across the model’s hierarchical stages. 
Each column pair compares activations without noise (left) and with 
noise infusion (right), spanning the initial input projection layer, the 
temporal convolution stage, and the final embedding space after the 
transformer encoder. The visualization provides insight into how noise 
conditioning affects representational diversity, activation stability, and 
inter-class separability across different model depths.

For the non-weak learner (A03), activation patterns in the noise-free 
condition already exhibit moderate class-specific differentiation, par-
ticularly at the temporal convolution and transformer levels. However, 
under the 𝛿 = 0.3 condition, a clearer spatial structuring of activations 
emerges across both early and late layers, with increased contrast 
and distributed feature engagement across channels and embedding 
dimensions. This indicates that controlled stochastic perturbation en-
hances representational richness without degrading class-dependent 
organization, effectively regularizing the feature space and mitigating 
over-reliance on dominant spatial sources. The result is a more bal-
anced and discriminative embedding, which aligns with the improved 
classification stability observed in noise-infused configurations.

In contrast, the weak learner (A02) exhibits more uniform and 
less distinct activation patterns in the absence of noise, suggesting 
limited neural feature variability and insufficient separability across 
motor imagery classes. Following noise infusion, the activations display 
greater heterogeneity, particularly within the transformer embeddings, 
where feature contrast between classes becomes more pronounced. This 
transformation implies that the stochastic noise acts as a representa-
tional catalyst, stimulating the network to explore a broader feature 
manifold rather than converging to narrow, suboptimal activation sub-
spaces. The improvement is most evident in the final embedding layer, 
where the enhanced dispersion of activations likely contributes to 
better generalization and reduced overfitting to spurious low-level 
correlations.

Overall, these findings support the hypothesis that noise infusion 
promotes more robust and adaptive feature learning across hierarchical 
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Fig. 10. Feature evolution and t-SNE representations after different network layers with strong discriminative power of STFNet (here: Subject A02, weak learner). 
(a) Feature evolution for configuration without and with noise infusion layer, respectively. (b) t-SNE evolution over layers for no noise infusion and active noise 
infusion, respectively.
layers, particularly benefitting weaker subjects whose baseline activa-
tions lack discriminative structure. The transformer layer, in particular, 
appears to capitalize on the noise-induced variability by refining and 
amplifying relevant task-specific components, thereby improving signal 
utility for downstream classification.

Overall, the results support the conclusion that STFNet offers a 
robust and reliable solution for EEG-based BCI systems. The model’s 
ability to consistently outperform traditional approaches, even in sub-
jects considered less learnable, highlights its potential for widespread 
use in clinical and private applications. Furthermore, its adaptability 
to various hyperparameter settings and reliance on Apple Silicon chip 
architecture for efficient processing underscore STFNet’s viability for 
use in environments where computational resources are limited. Us-
ing the best inter-subject performances as per the ablation study as 
presented in Table  6, the proposed method can achieve validation 
accuracies of up to 0.879 ± 0.085 on the BCI Competition IV 2a 
dataset, firmly outperforming existing approaches not only in terms 
of validation accuracy but also kappa metrics and lower standard 
deviations. Future research could explore further refinements to the 
STFNet architecture, potentially incorporating evolutionary algorithms 
as recently introduced [72] to enhance its robustness and performance 
across an even broader range of users, including those with more severe 
BCI illiteracy.

6. Conclusion

This study presents a comprehensive evaluation of various neural 
network architectures for EEG-based BCI systems, emphasizing the 
significance of integrating transformer blocks and enhanced noise-
handling mechanisms. Through systematic experimentation across two 
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datasets with a total of 115 subjects, the proposed hybrid systems and 
STFNet demonstrated superior classification accuracy and robustness, 
notably improving the performance of traditionally weak learners or 
‘‘BCI illiterate’’ subjects. By leveraging stochastic resonance and ad-
vanced temporal processing modules, STFNet achieved higher Kappa 
scores and reduced variability across subjects, highlighting its capacity 
to generalize more effectively than existing models like Conformer and 
EEG-TCNet.

The analysis of the presented results indicates that introducing 
transformer blocks yields statistically significant improvements in BCI 
performance, with diminishing returns beyond a certain number of 
blocks. STFNet, with its optimal integration of transformers, convo-
lutional layers, and noise infusion techniques, consistently exhibited 
a concentrated distribution of high Kappa values, reinforcing its sta-
bility and reliability across varying experimental conditions. Further-
more, the model’s resilience under different hyperparameter configu-
rations underscores its adaptability in handling complex, noisy EEG 
data, particularly in subjects previously considered challenging for BCI 
applications.

Additionally, the feasibility of implementing the proposed approach 
in both clinical and private settings where extensive GPU resources 
may not be available has been successfully demonstrated. By utilizing 
Apple Silicon chips with Metal programming, we have shown that 
high-performance BCI systems can be effectively deployed on more 
accessible hardware platforms, paving the way for broader adoption 
in various real-world applications.

In summary, the proposed STFNet architecture marks a substantial 
advancement in EEG-based BCI systems, demonstrating that with the 
right combination of architectural enhancements and noise-handling 



M.A. Pfeffer et al. Computers in Biology and Medicine 200 (2026) 111378 
Fig. 11. Feature evolution and t-SNE representations after different network layers with strong discriminative power of STFNet (here: Subject 3 of Dataset II). 
(a) Feature evolution for configuration without and with noise infusion layer, respectively. (b) t-SNE evolution over layers for no noise infusion and active noise 
infusion, respectively.
Fig. 12. Class-wise mean activation of features via feature heatmaps during different stages while converging through the proposed network architecture (Dataset 
II). (a) Ablation study results for A03 (non-weak learner) with different noise level configurations. (b) Same metrics as per (a) for Subject A02 (weak learner). 
Top row: Initial layer. Center row: post temporal convolution. (c) Bottom row: post transformer layer.
strategies, it is possible to improve the usability of BCIs across a broader 
range of individuals.

In the future, it is paramount to investigate the settings of such 
hybrid systems, as there remains room for improvement through the ad-
justment of layer types, hyperparameters, and other configurations. Fu-
ture work may involve employing generative or self-organizing method-
ologies, such as evolutionary algorithms, to enhance the robustness of 
transformer-based hybrid systems even further, particularly for weak 
learners or BCI-illiterate subjects.
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