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ABSTRACT

This study addresses the challenge of enhancing Brain—-Computer Interfaces (BCIs), focusing on low Signal-to-
Noise Ratios and “BCI illiteracy” often affecting up to 20% of users. Transformer-based models show promise
but remain underexplored. Three experiments were conducted. Experiment A assessed the performance of
architectures combining Convolutional and Transformer Blocks for binary Motor Imagery (MI) classification.
Experiment B introduced a hybrid system, refining both block types and adding a Noise Focus Block to
infuse Stochastic Noise, enhancing multi-class classification robustness. Experiment C evaluated the emerging
architectures on 106 subjects, focusing on robustness across weak and strong learners. In Experiment A,
the best networks achieved a validation accuracy of 0.914 and a loss of 0.146 (p=0.000967, F=12.675).
In Experiment B, the proposed architecture improved multi-class MI classification to 84.5% on Dataset II,
significantly improving performance for BCl-illiterate users. Experiment C showed a Kappa >83%, reduced
standard deviation, and a highest validation accuracy of 88.69% across all individuals. The hybrid integration
of Transformers, CNNs, and Noise-Resonance-based layers significantly enhances classification performance,
particularly for weak BCI learners. Further research is recommended to optimize hybrid system architectures
and hyperparameter settings to overcome current limitations in BCI performance.
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1. Introduction

Electroencephalography (EEG) captures brain activity by recording
postsynaptic potentials generated by neurons in the cerebral cortex [1].
These electrical potentials, which occur perpendicular to the cortical
surface, can be detected non-invasively through electrodes placed on
the scalp [2]. The EEG signals represent the summation of all local
field potentials, offering a cost-effective method to monitor and analyze
brain activity with high temporal resolution. This capability has paved
the way for the development, and deployment of Brain—-Computer
Interfaces (BCIs), which translate neural signals into commands that
can control external devices or software applications. BCIs have become
a critical area of research due to their potential to provide communi-
cation and control pathways for individuals with motor disabilities and
to enhance human-computer interaction in general [3].
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However, despite the promising applications of BCIs, there remain
significant challenges that hinder their widespread adoption and effec-
tiveness [4]. One of the primary challenges is the low Signal-to-Noise
Ratio (SNR) inherent in EEG data [5,6]. The scalp-recorded signals are
often contaminated with noise from various sources, including muscle
activity, eye movements, and external electrical interference [4,6]. This
noise makes it difficult to isolate the brain’s electrical activity related
to specific tasks or commands, reducing the accuracy and reliability of
BCIs. Researchers have employed various signal processing techniques
to mitigate noise and improve the SNR, but achieving consistently high
performance remains elusive [3-5,7,8].

Another critical challenge in BCI research is the phenomenon known
as “BCI illiteracy” or “weak learners”, which refers to the inability
of some individuals to use BCI systems effectively. Studies estimate
that approximately 15%-20% of the population struggles to achieve
proficiency with BCIs, regardless of the specific approach or technology
used [9,10]. The underlying reasons for BCI illiteracy are not fully
understood, but it is believed that individual variations in brain struc-
ture and function play a significant role [11-13]. Some users may not
produce detectable patterns of brain activity necessary for the BCI to
interpret their intentions accurately [14]. Additionally, other factors
such as excessive muscle artifacts, misunderstanding of instructions,
or environmental noise can contribute to poor BCI performance. While
these latter issues are often surmountable, the individual variations in
brain structure present a more intractable problem, which was observed
in this study as well.

In response to these challenges, the exploration of novel BCI ap-
proaches has gained momentum. One such promising development
is the application of Transformer-based models to BCI tasks. Trans-
formers, originally developed for natural language processing (NLP),
have demonstrated remarkable success in various tasks by capturing
long-range dependencies in data through self-attention mechanisms,
and are currently being investigated in many AI research fields such
as image analysis, medical image segmentation, and time-series fore-
casting [15-19]. This capability is particularly relevant to EEG data,
where temporal dependencies across multiple time points can provide
crucial information for interpreting neural signals [20]. By applying
Transformers to BCIs, researchers aim to enhance the robustness and ac-
curacy of these systems, potentially overcoming some of the limitations
associated with traditional methods. Several hybrid approaches have
already explored this potential. EEG-TCNet integrates temporal convo-
lutional modules with self-attention to capture sequential dependencies
efficiently, while EEG-ITNet combines inception-style convolutional
blocks with Transformer layers to strengthen multi-scale feature ex-
traction [21,22]. Conformer-based variants have also been adapted
for EEG decoding, blending convolutional front-ends with Transformer
encoders to leverage both local spectral patterns and global temporal
context [18,23]. Similarly, DRDA introduces dual residual attention
modules to refine spatiotemporal representations [24], and time-series
Transformer frameworks have been adapted to EEG for cross-subject
generalization [17,25]. While these studies report improved classifica-
tion accuracy and robustness compared to traditional CNN-only models,
they generally focus on optimizing average-case learners and do not
explicitly address variance reduction or weak-learner performance. This
gap motivates our design of STFNet, which embeds stochastic reso-
nance directly within a CNN-Transformer backbone to enhance both
mean accuracy and stability across heterogeneous subject populations.

Recent studies have shown that Transformer-based models can
achieve improved performance in BCI tasks, particularly in terms of
classification accuracy and robustness to noise. These models have
outperformed conventional approaches in several benchmark datasets,
demonstrating their potential to enhance BCI performance for a broader
range of users. However, despite these promising results, the applica-
tion of Transformers in BCI research is still in its infancy, with only a
handful of studies exploring this area [18,26]. This knowledge gap was
recently highlighted as a call to action to further assess the capability
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of Transformers in improving multi-class classification performance
and robustness in EEG-based BCI, particularly in overcoming the ex-
isting limitations related to signal-to-noise ratio (SNR) and overall
accuracy [26]. The limited research thus far suggests that Transformers
could be particularly beneficial for users who struggle with traditional
BCI approaches, including those affected by BCI illiteracy.

To further investigate the potential of Transformers in BClIs, this
study conducted two experiments focused on Motor Imagery (MI)
classification, a common BCI task in which users imagine specific
movements to control external devices. In the first experiment, vari-
ous network architectures combining Convolutional and Transformer
Blocks were assessed under different settings to determine their ef-
fectiveness in MI classification. The results indicate that networks
incorporating both spatial convolution and transformer attention blocks
achieved high validation accuracies, with the best-performing model
reaching a validation accuracy of up to 91.4% with a loss of 0.146.
The findings were statistically significant, highlighting the potential of
combining these architectural elements to improve BCI performance.

In the second experiment, a novel combinatory approach is pro-
posed, integrating Transformer Blocks, Self-Attention, Convolutional
Blocks, and a Noise Focus Block designed to introduce stochastic noise
within the network during both training and classification. This archi-
tecture aimed to enhance the model’s robustness to noise, a critical
factor in real-world BCI applications by leveraging properties of all
aforementioned building blocks. The results from this experiment were
particularly noteworthy, as the proposed model not only improved the
overall accuracy of MI classification but also significantly enhanced
performance for a subject previously deemed BCI illiterate. Lastly, a
third experiment was conducted to investigate the performance of the
developed hybrid models on Dataset I as well, confirming the superior
robustness of the feature extraction and noise resistance of all model
architectures put forward.

For multi-class classification, the proposed models achieved average
accuracies of up to 83.3% and 90.6% on Dataset I and Dataset II, re-
spectively. Hence, this set a new benchmark for multi-class MI tasks and
demonstrates the superior robustness of the proposed approach across
different subjects by utilizing transformer-based and noise-inducing
layers in conjunction with traditional deep-learning methodologies.

These findings suggest that the integration of Transformers with
Convolutional Neural Networks (CNNs) and noise-resonance mecha-
nisms offers a promising pathway to address some of the most persistent
challenges in BCI research. By leveraging the strengths of these dif-
ferent architectural components, it was hypothesized to enable the
development of more universally effective BCIs that can accommodate
a wider range of users, including those who have previously struggled
with traditional systems. As the field continues to evolve, further
exploration of Transformer-based models and their application to BCIs
could lead to significant advancements in both the robustness and
accessibility of these technologies.

In this study, the potential of combining Transformers, CNNs, and
noise-resonance-based layers to improve BCI classification performance
is investigated, particularly for weak BCI learners. This approach rep-
resents a significant step toward overcoming the current limitations of
BCI technology and achieving more reliable and universally applicable
systems. As research in this area progresses, the integration of these
advanced computational techniques may ultimately lead to the devel-
opment of BCIs that can truly work for all users, regardless of individual
variability in brain function or external factors [26-28].

2. Background

2.1. Event-related potentials and event-related desynchronization in brain—
computer interfaces

Event-Related Potentials (ERPs) and Event-Related Desynchroniza-
tion (ERD) as exemplary displayed in Fig. 1 (subplots a, c¢) are foun-
dational concepts in the realm of BCI applications [29]. ERPs are
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Fig. 1. Overview of event-related Desynchronization and stochastic resonance using sample data from Dataset II. (a) Epoched from MI-related channel (C3) of
Subject 3, showing archetypal ERD around left-hand movement cue onset, averaged across all generated epochs. (b) Visualization of Stochastic Resonance. (i): A
clean sinusoidal signal that does not independently surpass the preset detection thresholds (Threshold 1 and Threshold 2). (ii): Gaussian noise, which oscillates
around zero and fails to cross the thresholds on its own. (iii): The combined signal (original signal + noise), demonstrating the phenomenon of stochastic resonance.
The added noise allows the signal to exceed both thresholds intermittently. (c) GFP for all four tasks of Dataset II for the best-performing subject (Subject 3), the
worst-performing subject (Subject 2), and the subject with the biggest improvement using STFNet (Subject 5).

time-locked EEG responses elicited by specific sensory, cognitive, or
motor events, reflecting the brain’s processing of these stimuli. Notably,
the P300 component, a positive deflection occurring approximately
300 ms after stimulus presentation, is widely used in BCI applica-
tions for its robustness and reliability in signal detection [5,30,31].
ERDs, conversely, represent a decrease in power within specific fre-
quency bands, typically the Mu (8-13 Hz) and Beta (13-30 Hz) bands,
associated with motor imagery or execution tasks [31].

In BCI systems, ERPs are often utilized in paradigms like the P300
speller, where the user’s focus on a target stimulus generates detectable
ERP components [30,32]. ERD-based BClIs capitalize on the modulation
of sensorimotor rhythms during imagined movements, enabling users
to control external devices through motor imagery [30,31,33,34]. The
differentiation between imagined movements such as left-hand, right-
hand, or foot movement generates distinct ERD patterns that the BCI
can classify [2,33,35].

However, the efficacy of ERD-BCIs relies heavily on the user’s ability
to produce consistent and distinguishable EEG patterns. Some users
struggle to generate sufficient ERD signals, necessitating alternative
approaches that encourage users to explore different mental strategies
to enhance signal generation [36].

2.2. Limitations of EEG-based BCIs

Despite significant advancements, a considerable subset of individ-
uals cannot achieve effective control over BCI systems, a challenge
often referred to as “BCI illiteracy” [37-39]. This phenomenon, gen-
erally assumed to affect up to 20%-30% of potential users [9,17,
38,40] (and which was further substantiated by our investigation as
delineated in Fig. 2, arises from a combination of neurophysiolog-
ical differences [41,42], cognitive and attentional factors [43], and

psychological influences such as motivation, fatigue, and stress [44].
These user-specific attributes shape the generation and stability of EEG
features such as ERD/ERS patterns, leading to pronounced variability in
BCI performance. Throughout this paper, we use the term “weak learn-
ers” to denote subjects who consistently achieve low motor imagery
classification accuracy across runs and models, reflecting unstable or
weak ERD/ERS patterns. Conversely, “strong learners” are subjects
with consistently high classification accuracy and clear ERD/ERS ex-
pression. These terms are descriptive rather than formal categories, and
are used to differentiate subject-level performance variability in line
with prior reports of BCI illiteracy.

Fig. 2 presents a comparative analysis of motor imagery decoding
performance across nine participants and illustrates the manifestation
of BCI illiteracy within the analyzed datasets. In panel (a), two individ-
uals (S2 and S5) fall below the predefined weak-learner threshold of
35% classification accuracy, thereby confirming their limited capacity
for generating reliably classifiable neural representations. However,
when examining the broader cohort, it becomes evident that reduced
classification performance cannot be attributed to a single neurophys-
iological marker. Panels (b)-(d) reveal pronounced variability in the
spectral characteristics of the mu (8-13 Hz), beta (13-30 Hz), and
SMR (12-14 Hz) bands, indicating that the mechanisms underlying
low BCI performance are not uniform across individuals. For instance,
S2 exhibits moderate beta activity yet markedly lower mu and SMR
power, while S5 demonstrates comparatively stronger mu modula-
tion but remains within the weak-learner range. Conversely, several
participants with weaker oscillatory amplitudes in specific bands still
achieve substantially higher decoding accuracies. These observations
emphasize that motor imagery classifiability arises from an interplay
of multiple spectral and spatiotemporal factors rather than from any
single dominant frequency component.
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Fig. 2. Dataset characteristics using metrics designed to highlight weak BCI learners. Top row: (a) PhysioNet Dataset subjects for multi-class classification, with
by-chance threshold (gray dotted line) and weak-learner threshold (red dotted line). (b, ¢, d) Mu, Beta, and SMR Band Power, respectively, highlighting weak
learners based on the criteria as per subplot (a) within the bands, showing lower overall Band Power strengths for most weak learners. Bottom row: (e, f, g, d):

Same as top row for Dataset II.

This variability supports the interpretation that “weak learner”
should be understood as a general descriptor encompassing individuals
whose EEG features deviate from population-level discriminability,
rather than as a neurophysiologically distinct subgroup. The herein
employed 35% threshold serves primarily as an operational reference
point based on the per-chance threshold of 25%, to ultimately enable
to exemplify below-average performers; it does not imply a discrete
boundary or underlying homogeneity in neural mechanisms. Weak
learners may therefore reflect diverse underlying causes, including
diminished event-related desynchronization, inconsistent task engage-
ment, atypical spatial patterns of cortical activation, or suboptimal
signal-to-noise characteristics. The overlap observed between weak and
non-weak learners across frequency bands reinforces the view that poor
BCI performance cannot be reliably predicted by any single spectral
measure. The variability is further exemplified in Fig. 1 subplot (c),
which displays the global field power (GFP) across motor imagery
tasks for three representative subjects [45]. GFP enables simultaneous
visualization of all electrodes, offering a measure of overall neural
activity. Subject 3 illustrates a strong learner with consistent ERD/ERS
responses, Subject 2 a weak learner with variable and indistinct pat-
terns, and Subject 5 an intermediate case. Such contrasts highlight how
neurophysiological and cognitive differences directly contribute to BCI
illiteracy and performance variability.

Beyond individual differences, EEG recordings are inherently low
in signal-to-noise ratio (SNR) and sensitive to artifacts. Physiological
contamination arises from EOG, EMG, and cardiac activity [46,47],
while environmental interference such as electromagnetic sources fur-
ther degrades data quality [48]. To mitigate these effects, numerous
preprocessing approaches have been proposed, including band-pass
and notch filtering, regression techniques, and Independent Component
Analysis (ICA) and its variants [6,47,49]. However, while such methods
can attenuate artifacts, they risk discarding subtle but task-relevant
neural signals, and their performance is highly sensitive to electrode
placement, scalp conductivity, and inter-individual brain anatomy [50,
51]. Consequently, extensive calibration and individualized models
remain necessary, and weak or subthreshold features often remain
undetectable. The delicate balance between noise suppression and sig-
nal preservation continues to pose a central challenge in EEG signal
processing.

Consequently, the weak-learner classification should be regarded as
an integrative performance descriptor, summarizing individuals whose
EEG-based representations yield below-average decoding performance
despite adequate training and calibration conditions. This perspec-
tive underscores the necessity of adaptive, individualized modeling
approaches that account for inter-subject variability and promote in-
clusive and reliable BCI operation across diverse user populations.

2.3. Stochastic resonance

Stochastic resonance, as shown in Fig. 1, is a counterintuitive phe-
nomenon wherein the addition of a specific level of noise to a nonlinear
system enhances the detection and transmission of weak signals [52].
Initially introduced to explain periodic climate changes, this concept
has since found applications across various fields, including neuro-
science, molecular systems, and mechanical oscillating systems. In
molecular interactions, for instance, intrinsic noise can amplify subtle
periodic signals, enhancing the precision of detection [53]. Similarly,
in mechanical systems, controlled noise introduction can optimize the
response to periodic forces, leading to improved accuracy in measure-
ments [54]. These examples illustrate how noise, rather than being a
detrimental factor, can be strategically leveraged to bring weak signals
to the forefront.

In the realm of BCI development, stochastic resonance offers a
novel strategy to address the perennial challenge of low SNR in EEG
data. EEG signals, recorded from the scalp, are inherently weak and
often buried in a sea of noise, making the extraction of meaningful
neural patterns particularly challenging. Traditional noise reduction
methods, such as filtering and ICA, focus on attenuating artifacts but
may inadvertently eliminate subtle neural signals crucial for accurate
interpretation. This delicate balance between noise suppression and
signal preservation has limited the efficacy of BCI systems, especially
in multiclass classification tasks where robustness and sensitivity to
minute signal variations are critical.

Stochastic resonance presents a promising alternative by turning
this challenge on its head: instead of attempting to eradicate noise,
it introduces controlled noise to enhance the system’s sensitivity to
subthreshold signals that would otherwise remain undetected [55,56].
This approach allows for a resonance effect, where weak EEG signals
become more pronounced against the noisy background, improving
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their detectability. Unlike conventional methods that risk filtering out
essential neural information, stochastic resonance modulates the noise
level to achieve an optimal state, amplifying the weak neural signals of
interest.

Studies have demonstrated the efficacy of this approach in enhanc-
ing neural signal detection. For example, [57] showed that the addition
of noise could improve tactile sensation in humans, suggesting that
stochastic resonance can be harnessed to augment sensory perception.
In EEG analysis, McDonnell and Ward (2011) discussed how this phe-
nomenon might be leveraged to improve neural signal processing [58].
By optimizing the noise level within the system, weak EEG signals that
are typically obscured can emerge more distinctly, thereby enhancing
the system’s robustness and accuracy in translating neural activity into
user intent.

In the context of BCI development, incorporating stochastic reso-
nance into neural networks and deep learning models, such as CNNs
and Transformers, holds the potential to circumvent existing limita-
tions. By introducing noise not only to the input EEG data but also
within the layers of these models, the phenomenon of stochastic reso-
nance can be exploited to improve signal processing and classification
performance. This paradigm shift offers a pathway to more resilient BCI
systems, capable of detecting and interpreting weak neural signals with
higher accuracy, even in the presence of significant noise. Therefore,
applying stochastic resonance to BCI systems could mitigate the effects
of BCI illiteracy by amplifying the neural signals of users who struggle
to produce strong ERD patterns. This enhancement could lead to more
reliable detection of user intent, thereby improving BCI performance
and user experience.

Subplot (b) of Fig. 1 illustrates how noise can conceptually enhance
the detectability of a weak signal, a principle that can be leveraged
in neural signal processing, sensory systems, and other scientific fields
where signal detection is challenged by low signal-to-noise ratios. This
concept is particularly relevant in the context of this EEG signal-
processing study: In panel A, a clean sinusoidal signal represents a weak
neural component in EEG data. This signal, despite its importance, fails
to independently surpass the preset detection thresholds (Threshold 1
and Threshold 2) due to its low amplitude. Such weak signals are often
characteristic of subtle neural activity, like motor imagery or cognitive
processing, which can be difficult to isolate in EEG recordings. Panel B
introduces Gaussian noise, analogous to the inherent background noise
present in EEG measurements. This noise fluctuates around zero and,
on its own, does not cross the detection thresholds. In EEG recordings,
this noise could stem from various sources, including muscle artifacts,
electrical interference, or sensor noise. While this noise is typically con-
sidered detrimental, it can be harnessed constructively. Panel C shows
the result of combining the original signal with the noise, demonstrat-
ing the phenomenon of stochastic resonance. With the added noise, the
composite signal intermittently exceeds both thresholds. This enhanced
detectability suggests that introducing controlled noise can amplify
weak but meaningful EEG signals, making them more recognizable by
neural network models. In the context of EEG processing with CNNs
and transformers, this principle can be exploited by adding noise to
both the input data and within neural network layers. This approach
may improve the model’s ability to detect and classify neural patterns,
thereby enhancing the overall accuracy of EEG-based neural signal
decoding. Note that EEG waveforms are not inherently sinusoidal; they
are complex and vary with neural processes. The sinusoidal signal
in Fig. 1 subplot (b) serves as a simplified model to illustrate how
stochastic resonance can augment and hence, improve the detectability
of weak neural signals.

2.4. Integrating transformers and self-attention mechanisms
Transformers and self-attention mechanisms have revolutionized

deep learning, particularly in natural language processing, due to their
ability to model long-range dependencies and focus on relevant input
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features [15]. In EEG signal processing, these architectures can cap-
ture complex temporal and spatial patterns, offering advantages over
traditional convolutional and recurrent neural networks [26].

By integrating stochastic resonance with transformer-based models,
it is possible to further enhance BCI performance. The self-attention
mechanism allows the model to weigh the importance of different parts
of the EEG signal, effectively filtering out irrelevant information while
emphasizing critical neural patterns. When combined with stochas-
tic resonance, which amplifies weak but relevant signals, the model
becomes more adept at discerning user intent even in noisy conditions.

Recent studies have begun exploring transformer architectures in
EEG-based BCIs. For instance, Song et al. (2021) proposed a transformer-
based model for EEG classification, demonstrating improved perfor-
mance over traditional methods [59]. However, as recently put forward
in [26], transformer-based architectures for EEG-BCI signal processing
in human-computer interactions have only begun to be explored, high-
lighting the need for further assessment and meticulous comparison of
network architectures given the promising outcomes of the few existing
studies.

3. Material and methods
3.1. Dataset

For the experiments, two datasets have been utilized: The first
dataset utilized in this study was obtained from the Physionet Motor
Imagery (MI) database [60], herein referred to as Dataset I. This dataset
comprises over 1500 EEG recordings from 109 subjects, each recorded
using a 64-channel EEG system with the BCI2000 platform. The ex-
perimental protocol included 14 runs for each subject, consisting of
two baseline runs (one with eyes open and one with eyes closed) and
three runs for each of the motor/imagery tasks. Each task run lasted
two minutes, during which the subjects alternated between performing
the designated motor or imagery task and relaxing. This comprehensive
dataset offers a diverse range of motor and imagery tasks, providing
a rich resource for the development and evaluation of EEG-based BCI
systems.

Exclusion criteria were applied throughout all experiments and
model training, resulting in a few subjects being excluded due to
intrinsical errors or data structure abnormalities. In particular, subjects
with IDs of 88, 92, and 100 were excluded for all runs due to formatting
errors, resulting in a slightly reduced sample size of 106 subjects in
total.

Additionally, four-class classification performance was assessed us-
ing Dataset II, which was taken from the Berlin Brain—-Computer Inter-
face Competition IV, Subset 2a [61]. Dataset II includes EEG recordings
from 9 subjects engaged in a cue-based BCI experiment, featuring four
different motor imagery tasks: imagining movements of the left hand
(class 1), right hand (class 2), both feet (class 3), and tongue (class 4).
Each participant underwent two recording sessions on separate days.
Each session comprised 6 runs, with each run containing 48 trials,
divided equally among the four tasks (12 trials per class). In total,
each session provided 288 trials per subject. This structured protocol
facilitated the assessment of multi-class motor imagery classification in
a well-controlled experimental setting.

3.2. Experimental setup

Code was implemented using Python 3.11, PyTorch (Version 2.4.0),
on MacOS Tahoe 26.0.1 using Apple’s M1 Max Silicon Chip and Metal
Performance Shaders for GPU training acceleration [62]. Training of
the subject-dependent benchmarking of all models, UTS iHPC [63]
(Saturn Shard) was used with Linux RedHatEnterprise (Ootpa 8.10)
to enable 2 CUDA GPUs (Tesla V100-PCIE-32GB) and Python 3.11
inclusive PyTorch. Statistical analysis was implemented using both
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the statistical programming language R (Version 2023.06.24+561) and
Python3.

For Experiment A, a total of 7 (seven) model architectures were
implemented using Dataset I to assess cross-subject (or inter-subject)
model performance and feature extraction capabilities of all denoted
subjects, and a total of 756 (seven hundred and fifty six) models were
developed using only individual subject’s data only. Model architec-
tures were built by combining different modifications and quantities
of building blocks, mainly a) convolutional blocks and b) transformer
blocks. In this paper, references to Model IDs such as C3 will de-
note three convolutional blocks, T2C2 denote a combination of two
transformer blocks and two convolutional blocks, and so on.

For Experiment B, we repurposed the building blocks of Experiment
A and added additional model complexity by introducing additional
self-attention layers, noise layers, Frequency-Domain Augmentation,
and more, to assess multi-class classification performance against the
established architectures in Experiment A.

Lastly, in Experiment C, we utilize the proposed network archi-
tecture to test model performance on Dataset II, which is more ex-
tensively studied, hence providing a direct and evident comparison
of model robustness, loss metrics and individual validation accuracy
performance.

For all experiments and models, validation loss metrics were used
as early stopping criteria as opposed to validation accuracy, to allow
a more nuanced assessment of model convergence and prevent overfit-
ting, particularly in cases where accuracy may not fully reflect subtle
improvements in the model’s learning process.

3.3. Experimental workflow

For reproducibility, we summarize the complete experimental
pipeline applied across all datasets and experiments. Raw EEG data
were first band-pass filtered between 0.5-40 Hz and resampled to
250 Hz. Trials were epoched relative to the cue onset (0.5 s to 4.0 s)
and baseline-corrected. Each epoch was standardized channel-wise, and
only the 22 motor-related electrodes (10-20 montage) were retained
for analysis.

The data splits were organized as follows. In Experiment A, within-
subject training was performed using three runs for training and one
run for testing, to evaluate the effect of transformer block depth.
In Experiment B, subject-specific analyses emphasized weak learners,
again using held-out runs for evaluation. In Experiment C, large-scale
validation was performed on 106 subjects using a leave-one-subject-out
strategy, where one subject served as the test set while all others were
used for training. This design ensured that no data leakage occurred
across train and test partitions.

Data augmentation was applied during training, including Gaussian
noise infusion, temporal jittering, and frequency-domain dropout. The
models were trained for 200 epochs using the Adam optimizer (learning
rate 1x1073, weight decay 1x10~%) with a batch size of 64. Evaluation
metrics included mean accuracy and Cohen’s Kappa, computed per
subject and averaged across runs or folds as appropriate. Statistical
significance of ablation results was assessed using repeated-measures
ANOVA.

This workflow was applied consistently across all experimental
conditions, with task-specific variations (e.g., number of transformer
blocks, noise level 4) described in the corresponding subsections of the
Results.

3.4. Data augmentation and class balancing

During training we applied three complementary augmentations
aimed at improving generalization under low SNR and class imbalance.
(1) Temporal jittering: each trial was circularly shifted by a random
offset drawn uniformly from +50 ms (bounded so cues remained within
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the analysis window). (2) Frequency-domain dropout: after FFT, we ze-
roed randomly selected narrowbands (1-3 bins per trial; non-adjacent)
before inverse FFT, simulating nonstationary spectral perturbations
without destroying phase structure. (3) Mixup: we linearly combined
pairs of trials and their one-hot labels with 4 ~ Beta(a,a), a =
0.2 [64], which encourages smoother decision boundaries. In addition,
we injected Gaussian noise (4 € {0.1,0.2} as reported in Tables 5 and
7) to exploit stochastic resonance while regularizing the encoder.

To address imbalance in the four-class setting (Dataset II), we used
per-class oversampling within each mini-batch to equalize class priors
seen by the optimizer, with stratified train/validation splits to prevent
leakage. All summary metrics (Accuracy, Kappa) are reported alongside
macro-averaged F1 and macro-Recall to reflect minority-class behavior
independent of class frequency.

3.5. Classification of illiteracy

Classification performance and statistical significance were assessed
using a Random Forest classifier with 50 estimators and maximum
depth of 10, coupled with standard scaling preprocessing in a scikit-
learn pipeline. Each subject’s motor imagery data was evaluated through
5-fold stratified cross-validation to ensure robust performance estimates
while maintaining class balance across folds. Statistical significance
of classification performance was determined through permutation
testing with 100 label randomizations, where null distributions were
generated by shuffling class labels and re-computing cross-validation
accuracy to establish chance-level baselines. Subjects were classified as
weak learners if their accuracy fell below 35% (10% above the 25%
chance level for 4-class motor imagery) or below the 50% mark for
3-class motor imagery (where chance level would be around 33.33%),
with additional significance testing at « = 0.05 to control for multi-
ple comparisons. Frequency band analysis focused on motor-relevant
oscillations extracted from sensorimotor channels (C3, Cz, C4) us-
ing 4th-order Butterworth bandpass filters for mu (8-13 Hz), beta
(13-30 Hz), and sensorimotor rhythm (12-14 Hz) bands, with spectral
power quantified as the temporal variance of filtered signals averaged
across trials and channels. Cohen’s kappa was computed alongside
accuracy to account for class imbalance, providing a chance-corrected
measure of classification performance that ranges from 0 (chance level)
to 1 (perfect agreement).

3.6. Analysis

For all models, cross-entropy loss was implemented using PyTorch
using Theorem 1 for all binary classification models:

N

Chinary 0 9) = — (i log(9) + (1 = y) log( — 5,)] €

1l

N =
* Lpinary: Binary cross-entropy loss.

* N: Number of samples.

+ y;: True label for the ith sample (0 or 1).

* ;: Predicted probability for the ith sample.

Likewise, all multi-class model’s loss was implemented as per The-
orem 2:
c

Y Vi logi) @

c=1
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1
£ P = ——
multi-class (V> §) N 4

i
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—

* Loulti-class: Multi-class cross-entropy loss.

» N: Number of samples.

+ C: Number of classes.

* ¥;.: True label for the ith sample and cth class (one-hot encoded).
* 9;.: Predicted probability for the ith sample and cth class.
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For all models, ANOVA was conducted to compare the validation
accuracies across different numbers of transformer blocks using the
following theorem:

F= Msbetween 3)
MSwithin

« F: F-statistic for the ANOVA test.

* MSpetween: Mean square between the groups.

* MSithin: Mean square within the groups.

Following the ANOVA, Tukey HSD post-hoc test was performed to
identify which specific groups differ:

HSD = u / V::thm 4)

» HSD: Honestly Significant Difference.

* g,: Critical value from the Studentized range distribution.
* MSithin: Mean square within the groups.

» n: Number of observations per group.

3.7. Model architecture and building blocks

For this study’s development of network architectures for EEG signal
processing, a series of models were designed, varying in the number
and arrangement of convolutional and transformer blocks. These net-
works, referred to as C2, C3, and C4, incorporate either two, three,
or four convolutional layers, respectively. Additionally, networks la-
beled T1C2, T2C2, T3C2, and T4C2 combine up to four additional
transformer blocks with convolutional layers. For simplicity, these
architectures will be referred to as ‘n’ transformer blocks and ‘m’
convolutional modules, e.g., T1C2 as one transformer block with two
convolutional modules.

The convolutional layers apply one-dimensional convolutions across
the EEG channels to capture local spatial dependencies within the data.
Each convolutional block consists of a convolution operation, followed
by batch normalization, a rectified linear unit (ReLU) activation func-
tion, and dropout for regularization. This structure allows the network
to learn hierarchical feature representations of the EEG data.

Transformer blocks, which are incorporated into the T1C2, T2C2,
and T3C2 models, leverage multi-head self-attention mechanisms to
capture long-range dependencies in the EEG signals. These blocks are
particularly effective in modeling the temporal dynamics of EEG data,
which is crucial for the accurate classification of neural signals. Each
transformer block includes a multi-head attention layer, followed by
a multi-layer perceptron (MLP), with layer normalization and dropout
applied for regularization as shown in Fig. 3.

Gaussian noise layers are introduced during the training phase to
simulate the effect of stochastic resonance and enhance the model’s
robustness. Noise is added to the input data and within intermediary
layers, aiming to improve the model’s ability to detect weak signals
embedded in noise, a common characteristic of EEG data.

For classification, the output from the convolutional and trans-
former layers is flattened and passed through a fully connected MLP
layer. This final layer produces predictions for three-class classification
tasks, enabling the assessment of motor imagery performance.

The training process employs early stopping, guided by validation
loss metrics, to prevent overfitting. The models are trained on aug-
mented and balanced EEG data, utilizing techniques such as jittering,
frequency-domain augmentation, and mixup. This ensures that the
networks are exposed to a diverse set of training examples, promoting
robustness and generalizability. By systematically varying the number
and combination of convolutional and transformer blocks, this study
aims to evaluate the impact of these architectural components on the
classification of motor imagery tasks in EEG data.

The EEG data were preprocessed and structured as multi-dimensional
arrays to be fed into the neural network models. The data preparation
involved several key steps:
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1. Data Loading and Structuring: EEG data for each subject were

loaded using the MNE library, resulting in arrays with the shape
(num_trials, channels, timepoints). Each trial represents a seg-
ment of EEG recording, where channels refers to the number
of EEG electrodes (22 in this case), and timepoints refers to the
temporal resolution of the signal. This structure maintains the
spatial and temporal characteristics of the EEG signal.

. Normalization and Conversion: The raw EEG data were con-

verted to microvolts to standardize the values across different
subjects and sessions. The data were then transformed into
NumPy arrays to facilitate efficient numerical operations and
further processing.

. Data Augmentation: To enhance the model’s ability to gen-

eralize, various data augmentation techniques were applied,
including:

+ Time-Domain Jittering: Random shifts were applied to the

EEG data along the temporal axis to simulate variability in

signal timing.

Frequency-Domain Augmentation: Noise was introduced in

the frequency domain by adding random noise to the FFT-

transformed signals and subsequently applying the inverse

FFT to obtain time-domain signals.

» Mixup: This technique involved linearly combining pairs
of EEG trials and their corresponding labels, creating syn-
thetic examples to augment the training data.

This multi-modal augmentation strategy is designed to enhance
performance by increasing training data diversity rather than
addressing inherent class imbalances, as motor imagery datasets
typically contain equal trial distributions across classes by de-
sign. Time-domain jittering specifically targets the temporal
variability that naturally occurs in self-paced motor imagery
tasks, where subjects exhibit trial-to-trial variations in imagery
timing and duration. Frequency-domain augmentation enhances
model robustness against the spectral noise commonly present
in EEG recordings, particularly important for preserving the mu
and beta rhythm modulations that are fundamental to motor
imagery classification. The mixup technique’s linear interpola-
tion between trials creates decision boundaries that are more
robust to the subtle inter-class differences often observed in
motor imagery patterns. The subsequent class balancing step
ensures that the augmentation process does not inadvertently
create class distribution skews, maintaining equal representation
across all motor imagery conditions and preventing classifier
bias that could artificially inflate performance metrics. This
systematic approach to data integrity ensures that performance
improvements stem from enhanced model robustness rather than
dataset artifacts.

. Balancing the Dataset: Class balancing is achieved by identify-

ing the maximum class count across all motor imagery categories
and iteratively augmenting underrepresented classes through
concatenated application of jittering, frequency-domain noise
injection, and mixup operations until reaching the target sample
size. For each class requiring augmentation, the three augmenta-
tion techniques are applied simultaneously to the existing class
samples, quadrupling the available data per iteration (original
+ jittered + frequency-augmented + mixup), with this process
repeated until the target count is reached and subsequently
truncated to the exact maximum class size. This approach en-
sures deterministic class balance while maximizing data diver-
sity through combined augmentation modalities applied in par-
allel rather than sequentially.

. Splitting Data into Training and Testing Sets: The prepro-

cessed data were split into training and testing sets, ensuring that
the test set remained unseen during the model training process.
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Fig. 3. High-level overview of experimental setup and technical methodology. (a) High-Level Visualization of Architectural Combination of Network Building
Blocks. I.e., for Model T1C2 n=2 and m=1. (b) High-level architecture of the proposed Stochastic Transformer Focus Network with Transformer-Based Self
Attention Modules and Noise Resonance Imputation Layer. Right: Dataset use and validation logic.

Stratified splitting was used to maintain the class distribution in
Dataset L. For Dataset II, the competition provides a pre-defined
test split dataset, which was adopted accordingly.

6. Data Format for Model Input: The EEG data were then con-
verted into PyTorch tensors and loaded into the model in the
form of 3D arrays with the shape (batch_size, channels,
sequence_length). Here, batch _size refers to the number of sam-
ples in each training iteration, channels corresponds to the EEG
electrodes, and sequence_length denotes the temporal dimension.
The data were passed through convolutional layers and trans-
former blocks to extract both spatial and temporal features of
the EEG signal.

7. Gaussian Noise Injection: During the training phase, Gaussian
noise was added to the input data as a form of regularization,
aiming to improve the model’s robustness to variations in EEG
signals.

Noise augmentation layer

The NoiseLayer is a critical component designed to increase the
robustness of the model by introducing Gaussian noise during training.
This is mathematically represented as:

X' =X +N(,6% (5)

where X is the input data, N'(0,c2) denotes the Gaussian noise with
zero mean and variance o2. Here, ¢ is a hyperparameter representing
the standard deviation of the noise, which can be adjusted based on
validation performance. This technique simulates potential real-world
environmental noise, thus preparing the model to handle unseen noisy
data effectively.

Convolutional layers
The convolutional layers are designed to extract spatial and tempo-
ral features from the EEG signals. The architecture employs a sequence

of convolutional operations, each followed by batch normalization and
activation functions:

Z, = ELUBN(W;*X' + b)) (6)

where W, and b, are the weights and biases of the convolutional layer,
respectively, and BN represents batch normalization. The choice of ELU
(Exponential Linear Unit) as an activation function helps in capturing
nonlinearities and maintaining robustness against vanishing gradients.

Integration of multi-head self-attention

The standard multi-head self-attention (MHA) as described by
Vaswani et al.[15] is used to process temporally-structured convolu-
tional feature embeddings X € RM*4model through parallel attention
heads. For each head i € {1, ..., h}, linear projections generate queries,
keys, and values: Q; = XW?, K, = XWK, V, = XW/, where
W2 WK WY e Rimoded with d) = dpoge/h. Scaled dot-product

attention computes:
QK"
— L)V, %)
\/dk

Head outputs are concatenated and projected: MultiHead(X) =
Concat(head,, ... ,headh)WO. This mechanism establishes global tem-
poral dependencies complementing the CNN’s local receptive fields,
where convolutional layers extract hierarchical spatial-temporal fea-
tures through localized kernels while self-attention captures long-range
sequence relationships. Integration occurs via residual connections:
Y = LayerNorm(X + MultiHead(X)), enabling selective fusion of local
convolutional representations with global attention-weighted features
for enhanced motor imagery pattern discrimination across temporal
sequences.

In contrast, configuration studies (non-STFNet models such as T1C2,
T3C2, etc. as per Table 1 employ a fixed 4-head attention mechanism
rather than the variable multi-head configurations used in the main
STFNet ablation study, providing a controlled baseline for evaluat-
ing the impact of convolutional versus transformer layer depth while
maintaining consistent attention head count.

Attention;(Q;, K;, V;) = softmax (
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3.8. Stochastic transformer focus network

During this study, the Stochastic Transformer Focus Network
(STFNet) eventually emerged by combining various layer architectures
to enhance the robustness and adaptability of EEG signal processing
models for BCIs as shown in Fig. 3 by incorporating all features of the
previous building blocks and concepts, such as:

+ Stochastic Noise Layer

» Transformer Blocks

+ Convolutional Blocks (spatial resolution)

« Convolutional Blocks (temporal resolution)

Following the initial convolutional layers, STFNet utilizes depthwise
separable convolutions, which are efficient both computationally and in
terms of model parameters. These layers perform a depthwise spatial
convolution followed by a pointwise convolution:

Z, = ELUBN(W,*(DWConv(Z,)))) )

This configuration allows the model to learn spatial hierarchies
more effectively and is particularly suited for handling high-dimensional
EEG data.

To focus on the most relevant features across time series sequences,
STFNet incorporates an attention mechanism:

A = softmax(W,Z,) 9)

where W, are the trainable parameters of the attention module. This
mechanism allows the network to dynamically weigh the importance
of different features at each time step, which is crucial for tasks such
as event-related potential detection.

The final layer of the STFNet is a fully connected layer followed by
a softmax activation function, mapping the extracted features to the
output classes:

P = softmax(W; A) 10)

where W, are the weights of the final dense layer. This setup ensures
that the network outputs probabilities for each class, making it suitable
for multi-class classification tasks.

Compared to state-of-the-art methodologies like the EEG Conformer
as put forward by textitSong et al. [18], STFNet has an analytical
advantage by incorporating stochastic resonance mechanisms and en-
hanced temporal processing to improve multi-class classification in EEG
signals. While the EEG Conformer effectively merges convolutional and
transformer layers to capture spatial and temporal features, STFNet in-
troduces controlled noise to facilitate stochastic resonance. This added
noise amplifies weak EEG signals, enhancing their detectability and
interoperability. In parallel, STFNet incorporates an advanced tempo-
ral processing module, which further refines the network’s ability to
capture complex time-domain patterns, crucial for differentiating subtle
neural activity.

To reiterate, the key features of the emerging model are:

Controlled Gaussian noise injection during training to enhance
weak EEG signals through stochastic resonance.

Multi-stage feature extraction with convolutional layers and trans-
former encoders to capture spatial and temporal EEG features.
Transformer encoders leverage multi-head self-attention to model
long-range dependencies in EEG data.

Time-domain jittering and mixup augmentation improve gener-
alization and robustness by exposing the model to varied signal
patterns.

Dropout and Adam optimizer with weight decay prevent overfit-
ting and ensure convergence.

Optimization for Apple Silicon MPS hardware acceleration, en-
abling efficient training on large EEG datasets.
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3.8.1. Ablation study and hyperparameter tuning

To investigate the implicit effects of hyperparameters and noise in-
fusion modalities, an ablation study employed a controlled one-factor-
at-a-time (OFAT) framework centered on a fixed baseline configuration
(noise = 0.1, TCN = 1, embedding = 70, transformer depth = 2, heads
= 10, forward expansion = 4), the results of which are presented
in Table 6. Each architectural or stochastic variable was independently
perturbed across multiple levels while all others remained constant,
and key configurations were repeated to capture intra-condition vari-
ance. This 30-run design balances interpretability and reproducibility,
allowing clear attribution of observed performance shifts to individual
factors. Unlike brute-force factorial search, which scales exponentially
and demands thousands of evaluations, the OFAT approach yields
statistically analyzable results with a fraction of the computational
load. The inclusion of repeated runs per factor further supports variance
estimation and non-parametric testing, enabling reliable identification
of influential parameters without prohibitive resource expenditure.

By employing a structured one-factor-at-a-time and sensitivity-
oriented design rather than a full combinatorial sweep, the compu-
tational complexity was reduced by several orders of magnitude. A
complete factorial exploration of six parameters would require over
ten thousand distinct model trainings, equating to multiple years of
computation given the 0.5-2-hour training time per subject across
nine participants. In contrast, the selected 30 unique configurations
strategically probe both individual parameter effects and key multi-
factor sensitivities, reducing total runtime to approximately 15-60
GPU-hours while preserving interpretability, parameter coverage, and
statistical tractability. To further deepen the analysis, we added manual
adjustments strategically as to enable a more complex assessment of all
hyperparameters, resulting in a total of 50 unique OFAT runs for the
herein presented STFNet-centric ablation study.

4. Results

As shown in Table 1, the final validation accuracies for CNNs in Ex-
periment A reached up to 77.0%+6.3%. In contrast, transformer-infused
models achieved a higher maximum validation accuracy of 91.4%+2.5%
and exhibited lower standard deviation across all validation metrics.

An initial one-way ANOVA was conducted to compare the mean
validation accuracies across different groups defined by the number of
T-blocks. The results indicated a significant effect of T-block number
on validation accuracy, with an F-statistic of 12.675 and a p-value
of 0.000967, suggesting that at least one group’s mean validation
accuracy is significantly different from the others.

The one-way ANOVA test was conducted to compare the effect of
the number of transformer blocks on validation accuracy. The analy-
sis revealed a statistically significant difference between the groups,
F(4,9) =12.675, p = 0.000967.

To further identify which specific groups differed, a post-hoc anal-
ysis using Tukey’s Honest Significant Difference (HSD) test was per-
formed. Results are summarized Table 2.

The analysis reveals significant differences between models with
zero transformer blocks and those with one or more transformer blocks.
Specifically, the group comparisons indicate that models without trans-
former blocks (groupl1=0) differ significantly from models with trans-
former blocks (group2=1, 2, 3, 4). This finding confirms that incorpo-
rating transformer blocks into the network architecture leads to sta-
tistically significant improvements in validation accuracy. The positive
mean differences (meandiff) across these comparisons further suggest
that models utilizing transformer blocks consistently outperform their
CNN-only counterparts.

In contrast, comparisons among models that already include trans-
former blocks (e.g., groupl=1 vs. group2=2) do not show statistically
significant differences. This suggests that while the introduction of
transformer blocks enhances performance over CNN-only models, in-
creasing the number of transformer blocks beyond one or two does
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Fig. 4. Training and validation performance for cross-subject training of the T3C2-architecture using Dataset I.

Table 1
Training and validation performances of Experiment A
bold highlights of the two best-performing validation 1

for various combinations and epoch settings with
oss and accuracies.

max_epochs T-blocks CNN-blocks Parameters Training Validation
Accuracy Loss Accuracy Loss
100 0 2 139,000 0.722 0.71 0.714 0.54
100 0 3 504,000 0.752 0.438 0.735 0.5
100 0 4 2,000,000 0.753 0.344 0.743 0.483
200 0 2 139,000 0.741 0.449 0.738 0.505
200 0 3 504,000 0.78 0.269 0.757 0.452
200 0 4 2,000,000 0.783 0.0752 0.77 0.422
100 1 2 208,000 0.827 0.279 0.84 0.306
200 1 2 208,000 0.875 0.103 0.914 0.146
100 2 2 277,000 0.823 0.0715 0.828 0.309
200 2 2 277,000 0.874 0.0136 0.896 0.144
100 3 2 345,000 0.841 0.638 0.857 0.285
200 3 2 345,000 0.888 0.296 0.912 0.09
100 4 2 414,000 0.824 0.206 0.834 0.279
200 4 2 414,000 0.878 0.0267 0.911 0.103
Table 2 Table 3
Tukey HSD post-hoc test results for pairwise comparisons of validation ac- Individual performance of STFNet in Experiment B using Dataset II.
curacy across different numbers of transformer blocks in the cross-subject Subject ID Test Accuracy ~ F1 Score Recall Kappa &
classification performance of Experiment A. AOL 0.8648 0.8652 0.8644 0.8197
groupl group2 meandiff p-adj lower upper reject A02 0.6749 0.6705 0.6773 0.5671
0 1 0.1252 0.0092 0.0327 0.2176 True A03 0.9391 0.9344 0.9339 0.9121
0 2 0.1192 0.0124 0.0267 0.2116 True A04 0.8465 0.8461 0.8461 0.7952
0 3 0.1417 0.0041 0.0492 0.2341 True A0S 0.8261 0.8261 0.8262 0.7680
0 4 0.1297 0.0073 0.0372 0.2221 True A06 0.6837 0.6819 0.6831 0.5782
1 2 -0.006 0.9997 -0.1193 0.1073 False A07 0.9314 0.9313 0.9329 0.9086
1 3 0.0165 0.9864 —0.0968 0.1298 False A08 0.8598 0.8608 0.8601 0.8130
1 4 0.0045 0.9999 -0.1088 0.1178 False A09 0.8712 0.8710 0.8706 0.8281
2 3 0.0225 0.9586 —0.0908 0.1358 False Average 0.8330 + 0.095 0.8319 + 0.095 0.8327 + 0.094 0.7767 + 0.125
2 4 0.0105 0.9975 -0.1028 0.1238 False
3 4 -0.012 0.9959 -0.1253 0.1013 False

not lead to further significant improvements. The lack of statistically
significant differences between models with one or more transformer
blocks implies the presence of a potential threshold effect. This ob-
servation is also reflected in the validation accuracies presented in
Table 1 where models with two and three transformer blocks exhibit
comparable performance levels.

Performance metrics during training of the network model T3C2
of Table 1 are displayed in Fig. 9. The findings indicate that not only
does the low loss metric indicate good generalization of the model,
but rather unexpectedly, validation performance is better than training
performance (see Fig. 4).

In Experiment B, the 4-class classification performance of STFNet
notably surpasses previously reported models on Dataset II. As shown
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in Table 3, validation accuracies exceed 83.3% for 7 out of 9 sub-
jects, resulting in an average accuracy of 84.5% + 7.3% across the
entire dataset. Furthermore, Cohen’s Kappa statistic, with an average
of 0.75 + 0.13, indicates a substantial level of agreement between the
model’s predictions and the actual class labels. The elevated kappa
value underscores the robustness of STFNet in distinguishing between
the four motor imagery tasks, reflecting not only accuracy but also the
model’s consistency in performance across different subjects, including
weak learners.

As per Table 4, the performance of STFNet on Dataset II demon-
strates a significant improvement over previous models in 4-class clas-
sification tasks. STFNet achieves an average accuracy of 84.5% with
a standard deviation of 0.075 and a Cohen’s Kappa of 0.75. Notably,
this performance is superior to other models like FBCSP, ConvNet, and
EEGNet, especially in the context of subjects traditionally considered as
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4-class performances across historical and cutting-edge models, sorted alphabetically. The best values for each column are highlighted in
bold, STFNet stands out with high confidence Kappa scores and improved standard deviation, indicating the robustness of the model across
weaker learners, whose validation accuracy is strongly increased using STFNet.

Model A01 A02 A03 A04 A0S A06 A07 A08 A09 Average SD o Kappa «
C2CM [65] 0.875 0.652 0.903 0.667 0.625 0.455 0.896 0.833 0.795 0.744 0.153 0.6595
Conformer [18] 0.881 0.614 0.934 0.781 0.520 0.652 0.923 0.881 0.888 0.786 0.153 0.7155
ConvNet [66] 0.763 0.552 0.892 0.747 0.569 0.542 0.927 0.771 0.764 0.725 0.142 0.6337
DRDA [24] 0.838 0.551 0.874 0.753 0.623 0.572 0.862 0.753 0.820 0.747 0.126 0.6632
EEGNet [67] 0.857 0.615 0.885 0.670 0.559 0.521 0.896 0.833 0.868 0.745 0.152 0.6600
EEG-TCNet [68] 0.857 0.65 0.945 0.649 0.754 0.614 0.873 0.837 0.78 0.774 0.116 0.7
FBCSP [69] 0.760 0.565 0.813 0.610 0.550 0.453 0.828 0.813 0.708 0.678 0.137 0.570
FBCNet [70] 0.854 0.604 0.906 0.764 0.743 0.538 0.844 0.795 0.809 0.762 0.12 0.6827
Proposed [Table 6] 0.883 0.724 0.963 0.847 0.837 0.74 0.856 0.882 0.875 0.845 0.073 0.75

weak learners or BCI illiterate (e.g., AO2 and A05). For instance, subject
A02, which historically presented poor performance with models like
ConvNet and FBCSP (accuracies of 55.2% and 56.5% respectively, and
with low MI-related band-power strengths as per Fig. 2), achieved a
significantly higher accuracy of 72.4% with STFNet. Similarly, subject
A05, previously considered a weak learner with accuracies around
55%—-62% in earlier models, reached an accuracy of 83.7% using the
proposed model. This remarkable improvement in accuracy, alongside
a higher Kappa score, indicates not only better classification perfor-
mance but also suggests increased consistency and robustness across
subjects. Moreover, the lower standard deviation observed with STFNet
implies a reduction in performance variability, indicating that the
model’s architecture is more stable across diverse EEG signal patterns
and varying subject-specific challenges.

The confusion matrices and task-specific metrics for false positives
and false negatives in Fig. 5 provide insight into the model’s perfor-
mance and robustness across different subjects and tasks. For Subject
3, who is considered a high-performing learner, the confusion matrix
shows high true positive rates across all tasks (left hand, right hand,
feet, and tongue), with only minimal misclassifications. This subject
serves as a gold standard for model performance, indicating the model’s
capacity to classify motor imagery tasks with high accuracy when the
EEG signals are clear and distinct.

In contrast, Subjects 2 and 5, previously categorized as weak learn-
ers or BCI illiterate, exhibit more substantial improvements in classifi-
cation performance using STFNet. For Subject 5, the confusion matrix
shows significant improvements, especially in tasks like ‘right hand’
and ‘feet’, where previous models struggled. While there are still
noticeable false negatives in the ‘feet’ task, the overall distribution of
true positives indicates that STFNet has successfully captured relevant
features in these weaker learners’ EEG signals. Subject 2’s confusion
matrix shows similar improvements, with fewer false positives and
false negatives across tasks compared to earlier results. Notably, the
false positive/false negative graph indicates a general reduction in
false positives and negatives for both Subjects 2 and 5, suggesting
that STFNet has increased the robustness of classification in weaker
learners.

The decline in false positives and false negatives, particularly in
challenging tasks like ‘feet’ and ‘tongue’ for Subjects 2 and 5,
signifies a more balanced model performance. This reduction implies
that STFNet can generalize better across subjects with varying levels of
BCI proficiency. Additionally, the comparison with Subject 3 confirms
that while weaker learners do not reach the same level of accuracy,
the performance gap has been significantly reduced, indicating en-
hanced robustness and reliability in multi-class motor imagery EEG
classification.

As for Experiment C, the results presented in Table 5 provide a
comprehensive comparison of the performance metrics for different
model architectures across 106 subjects. These models include various
combinations of convolutional and transformer blocks (C3, C4, T1C2,
T2C2, T3C2) as well as the more complex STFNet. The metrics pre-
sented — Accuracy, Loss, F1 Score, Recall, and Kappa — offer a detailed
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insight into each model’s capability to handle EEG signal classification
tasks under similar hyperparameter settings.

STFNet shows a marked improvement across nearly all performance
metrics compared to the other models. With an accuracy of 0.8869 +
0.0725, STFNet outperforms the simpler convolutional and transformer
combinations such as C3 (0.6849 + 0.1474) and C4 (0.5523 + 0.1621).
Even when compared to more sophisticated transformer-integrated
architectures like T1C2 and T3C2, STFNet still maintains a higher
accuracy, showcasing its enhanced capability in managing the complex-
ities of EEG data. The F1 Score and Recall metrics further corroborate
this, with STFNet achieving 0.8856 + 0.0741 and 0.8869 + 0.0725
respectively, indicating not only the model’s precision in classification
but also its effectiveness in correctly identifying relevant EEG signals
across the dataset.

Another critical observation is the model’s Kappa statistic, which
measures the agreement between predicted and actual labels. STFNet
achieves a Kappa value of 0.8304+0.1088, significantly higher than the
values recorded for models like C3 (0.5274 + 0.2211) and C4 (0.328 +
0.2431). This elevated Kappa score suggests that STFNet’s predictions
align more consistently with the true classifications, implying better
generalization across different subjects. Moreover, the standard devi-
ation in STFNet’s performance metrics is generally lower compared to
other models, reflecting greater stability and robustness in its learning
process across a diverse cohort of 106 subjects.

The hyperparameter settings, particularly the consistent application
of noise (4 0.1), jitter augmentation (J-Aug), frequency-domain
augmentation (FD-Aug), and mixup augmentation (MU-Aug), were
uniform across all models, providing a controlled environment to as-
sess the models’ inherent capabilities. Despite the added complexity
and parameter count in STFNet, it demonstrates superior performance
with relatively balanced computational trade-offs, as evidenced by its
maintained low loss value (0.0124 + 0.009) similar to that of T1C2
and T3C2 models. Future implementation may explore NP-optimized
implementation of such hyperparameter optimization as proposed by
our foregoing work [26,71,72].

Table 7 presents the validation metrics for the same models under
modified hyperparameter settings, specifically with increased noise
infusion (4 = 0.2) and reduced data augmentations (J-Aug, FD-Aug
set to 0.05, and MU-Aug to 0.1). STFNet continues to outperform the
other models, achieving an accuracy of 0.906 + 0.0596, which is an
improvement from its performance in Table 5 (0.8869 + 0.0725). This
increase in accuracy, alongside an elevated F1 Score (0.9045+0.0614)
and Kappa (0.859 + 0.0895), indicates that STFNet benefits from the
adjusted noise and augmentation settings. The performance stability
across subjects is also reflected in the reduced standard deviation,
suggesting that STFNet remains robust even under different noise levels
and augmentation strategies.

Comparing these results with those in Table 5, it is evident that
the increased noise infusion and reduced data augmentation have a
generally positive effect on STFNet, as well as on models like T1C2 and
T3C2, which also show slight improvements in accuracy and F1 Score.
For instance, T1C2’s accuracy increased from 0.8443+0.1482 in Table 5
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Fig. 5. Final model performance analysis for selected subjects 3, 5, and 2. (a) Confusion matrices for each subject’s model performance. (b) Task-specific False

Positive and False Negative Rates, respectively.

Table 5

Validation metrics for selected models of Experiment C (Configuration a).
Parameters C3 C4 T1C2 T2C2 T3C2 STFNet
Noise [4] 0.1 0.1 0.1 0.1 0.1 0.1
J-Aug [4] 0.1 0.1 0.1 0.1 0.1 0.1
FD-Aug [4] 0.1 0.1 0.1 0.1 0.1 0
MU-Aug [«] 0.2 0.2 0.2 0.2 0.2 0.2
Max Epochs 200 200 200 200 200 200
Accuracy 0.6849 + 0.1474 0.5523 +0.1621 0.8443 +0.1482 0.8071 +0.1270 0.8489 +0.1414 0.8869 + 0.0725
Loss 0.0151 +0.0044 0.0175 + 0.0035 0.0122 +0.0081 0.0147 +0.0081 0.0124 +0.0084 0.0124 +0.009
F1 Score 0.6717 +0.1627 0.4922 +0.2119 0.8356 +0.1738 0.8039 +0.1307 0.8408 +0.1618 0.8856 +0.0741
Recall 0.685+0.1474 0.5523 +0.1620 0.8443 +0.1482 0.8071 +0.1270 0.8489 + 0.1412 0.8869 + 0.0725
Kappa 0.5274 +0.2211 0.328 + 0.2431 0.7665 + 0.2223 0.7107 + 0.1904 0.7733 +£0.2118 0.8304 +0.1088

to 0.8763+0.1219 in Table 7. This suggests that a higher noise level can
aid in enhancing the generalizability of these models, likely due to the
stochastic resonance effect. However, simpler models like C3 and C4
exhibit less improvement, indicating that while these modifications can
benefit complex models, they may not suffice to significantly enhance
the performance of less sophisticated architectures. Overall, the results
imply that STFNet, with its inherent complexity and noise-handling
capabilities, is more adept at leveraging increased noise levels and
reduced augmentations to further improve classification performance.

As per Fig. 6 the inclusion of stochastic noise infusion (6 = 0.3)
overall yielded consistent gains in classification stability and perfor-
mance across the evaluated motor-imagery classes. As illustrated in
subplots (a) and (b), the mean class accuracies during validation test-
ing were notably higher when the noise infusion layer was active
compared to the § 0.0 baseline, with the largest improvement
observed for the left-hand class. This enhancement was accompanied
by a narrower accuracy distribution for the left hand, right hand, and
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feet classes, indicating a reduction in variance and more stable class-
specific predictions. Importantly, subplot (d) shows that for Subject
2 (the weakest learner) the validation loss remained comparable to
that of the non-noise condition shown in (c), while validation accuracy
improved, reflecting better generalization under noisy training. The
higher training loss observed in the § = 0.0 configuration compared to
the noise-infused case further supports this interpretation: the addition
of stochastic perturbation during training likely mitigates overfitting by
regularizing internal representations. Consequently, the model trained
with 6 = 0.3 demonstrates improved robustness, more balanced class
performance, and enhanced learning dynamics, particularly benefiting
subjects and classes with weaker baseline performance. The corre-
sponding training curves and confusion matrices are presented in Fig.
7.

Enhancing the previous analysis, the subplots (a) and (b) of Fig. 9
offer a more nuanced perspective on STFNet’s robustness and general-
izability through the distribution of Cohen’s Kappa scores across 106



M.A. Pfeffer et al.

Table 6

Computers in Biology and Medicine 200 (2026) 111378

Configuration-wise test scores for multi-classification performances during ablation study on STFNet hyperparameters: 6=noise infusion layer setting, nC=number
of convolutional layers, emb=embedding size, nT=number of transformer layers, H=number of self-attention heads within the T layers, FW=forward expansion
dimension for final embeddings. The best (ID=av) and worst (ID=b) performing architectures are highlighted in bold.

D 6 nC emb nT H FW A01 A02 A03 A04 A0S A06 A07 A08 A09 Avg SD

a 0.0 1 32 1 6 2 88.25 72.08 95.97 82.89 78.62 72.55 90.61 85.61 85.23 83.53 7.99
b 0.0 1 96 2 6 4 87.18 61.83 92.67 86.84 80.79 69.30 92.77 85.97 85.98 82.59 10.48
c 0.0 1 72 2 8 4 87.19 66.43 91.94 83.77 82.25 71.16 91.69 88.92 87.12 83.39 8.94
d 0.0 1 70 2 10 2 87.54 65.72 94.13 83.77 80.07 71.16 90.97 88.19 86.74 83.14 9.33
e 0.0 1 70 2 10 4 87.90 68.55 93.41 82.46 80.80 73.95 90.61 89.30 87.50 83.83 8.21
f 0.0 1 72 2 12 4 89.32 70.31 91.57 82.89 79.71 69.30 91.33 87.72 87.87 83.34 8.57
g 0.0 1 70 3 10 4 87.62 71.02 93.13 85.96 82.22 69.30 90.07 90.41 85.60 83.93 8.43
h 0.0 1 70 4 10 4 88.25 62.54 92.67 85.08 80.79 68.83 90.97 87.82 84.84 82.42 10.23
i 0.0 1 70 4 10 6 88.95 63.95 93.04 86.40 78.98 69.76 91.69 88.19 87.12 83.12 10.13
] 0.0 2 70 2 10 4 85.76 65.72 92.30 85.52 79.71 68.83 90.61 87.82 85.22 82.39 9.31
k 0.0 2 70 2 10 4 85.05 62.54 92.31 85.52 80.43 68.37 90.02 88.19 85.22 81.96 10.05
1 0.0 2 72 3 8 6 85.76 70.31 93.40 85.08 83.69 67.44 91.69 88.19 84.46 83.34 8.86
m 0.0 3 128 2 8 6 83.62 62.54 92.67 84.21 78.98 66.97 89.89 85.97 85.22 81.12 10.10
n 0.0 3 70 2 10 4 87.18 64.31 93.04 82.01 80.07 65.58 90.09 85.23 87.12 81.63 10.22
o 0.1 1 70 1 10 4 84.69 68.10 92.30 83.77 81.52 68.37 90.97 87.45 84.46 82.40 8.74
p 0.1 1 72 2 6 2 83.98 66.07 91.57 86.84 79.34 70.23 89.89 87.45 86.74 82.46 8.88
q 0.1 1 96 2 6 4 86.12 65.37 91.57 81.57 79.34 66.05 90.25 89.67 85.98 81.77 9.93
r 0.1 1 48 2 8 4 88.61 69.61 94.13 85.52 81.52 70.23 90.97 89.29 88.26 84.24 8.83
s 0.1 1 72 2 8 4 86.47 70.67 93.77 86.40 81.52 71.16 91.33 88.56 86.74 84.07 8.20
t 0.1 1 96 2 8 4 86.83 64.66 93.04 85.08 78.62 68.37 90.61 87.82 86.36 82.38 9.86
u 0.1 1 128 2 8 4 84.34 66.43 91.21 84.21 97.71 69.30 90.97 87.45 86.36 84.22 10.19
v 0.1 1 70 2 10 4 87.54 68.90 93.77 84.65 79.38 75.81 89.89 88.93 87.87 84.08 7.90
w 0.1 1 70 2 10 6 88.61 69.61 93.40 82.41 79.71 68.83 92.41 87.45 86.74 83.24 9.03
X 0.1 1 72 2 12 4 88.26 69.25 95.24 84.21 80.43 67.90 88.08 87.45 85.22 82.89 9.04
y 0.1 1 48 2 12 6 88.61 69.25 94.87 83.33 82.60 69.76 90.25 88.19 86.36 83.69 8.83
z 0.1 1 70 3 10 4 87.18 70.67 93.04 87.72 82.25 68.83 90.61 89.29 85.98 83.95 8.60
aa 0.1 1 70 4 10 4 87.54 63.95 93.41 86.40 79.34 71.16 91.69 87.45 85.23 82.91 9.73
ab 0.1 1 96 4 12 6 88.26 64.66 93.04 81.14 82.97 70.23 90.97 88.93 87.12 83.04 9.66
ac 0.1 2 96 2 8 4 84.69 63.60 93.77 80.70 80.79 67.90 90.97 86.34 84.84 81.51 9.95
ad 0.1 2 70 2 10 4 86.47 65.37 92.31 85.53 80.79 66.98 90.61 88.19 85.22 82.39 9.77
ae 0.1 3 128 2 8 6 83.27 65.72 92.67 83.33 78.98 68.37 88.44 85.97 84.46 81.25 8.91
af 0.1 3 70 2 10 4 88.61 64.66 93.41 85.09 81.51 66.04 92.06 84.50 86.36 82.47 10.39
ag 0.2 1 96 2 6 4 86.12 70.31 91.94 82.01 80.07 67.91 89.53 88.92 85.98 82.53 8.46
ah 0.2 1 72 2 8 4 87.54 67.49 93.04 82.46 81.15 72.09 90.61 88.56 87.50 83.38 8.61
ai 0.2 1 70 2 10 4 88.26 66.08 90.84 83.77 80.07 67.91 90.97 87.45 86.36 82.41 9.38
aj 0.2 1 72 2 12 4 88.26 67.49 93.77 84.21 81.88 71.63 92.06 89.67 88.64 84.18 9.10
ak 0.2 1 70 3 10 4 87.90 68.90 93.40 87.71 83.33 70.23 90.97 89.29 85.22 84.11 8.76
al 0.2 1 100 3 10 4 87.90 66.78 93.04 85.96 78.98 68.83 90.61 89.66 87.12 83.21 9.57
am 0.2 1 70 4 10 4 87.19 66.78 93.04 85.53 80.07 68.84 90.97 86.34 84.09 82.54 9.16
an 0.2 1 96 4 12 6 87.54 66.78 94.87 81.57 81.52 67.90 91.33 88.19 87.87 83.06 9.85
ao 0.2 1 96 4 12 6 87.90 66.79 94.14 81.14 81.15 68.38 92.42 87.83 87.88 83.07 9.79
ap 0.2 2 70 2 10 4 87.18 67.13 93.77 85.96 79.71 68.37 91.69 87.45 84.47 82.86 9.46
aq 0.2 2 70 2 10 4 85.76 69.25 95.23 85.96 79.34 68.83 88.08 86.34 84.46 82.58 8.71
ar 0.2 3 128 2 8 6 83.27 64.31 92.67 84.21 80.79 64.18 87.72 84.87 84.84 80.76 9.92
as 0.2 3 70 2 10 4 87.90 67.13 93.04 85.08 81.88 68.83 92.41 85.97 84.46 82.97 9.24
at 0.2 3 120 4 12 6 85.40 62.19 90.84 85.08 80.07 66.97 88.08 87.45 85.22 81.26 9.96
au 0.3 1 30 1 6 2 85.77 66.43 95.24 87.28 82.97 75.81 90.25 88.57 86.74 84.34 8.54
av 0.3 1 30 1 10 10 88.26 72.44 96.33 84.64 83.69 73.95 85.56 88.19 87.50 84.51 7.38
aw 0.3 1 70 2 10 4 87.90 68.19 94.87 83.77 80.79 73.49 87.36 88.56 88.63 83.73 8.34
ax 0.3 1 72 3 12 6 89.32 70.31 95.23 83.77 79.34 67.44 92.06 85.97 86.36 83.31 9.41

subjects. Fig. 9 subplot (a), STFNet demonstrates a pronounced peak
towards the upper end of the Kappa scale, indicating a consistently high
agreement between predicted and true labels across the subject pool.
Notably, this distribution is not only centered at higher Kappa values
but is also narrower compared to other models like C2, C3, and T2C2.
The narrowness of this distribution suggests that STFNet achieves
consistent performance across subjects, highlighting its resilience to
inter-subject variability. In contrast, models such as C2 and C3 exhibit
a broader spread with lower peaks, indicating greater variability in
performance and reduced reliability in classification across different
subjects.

Subplot (c) and (d) further substantiate these findings under mod-
ified hyperparameter conditions, specifically increased noise infusion
and reduced data augmentation. STFNet continues to display a con-
centrated distribution near the higher Kappa values, even more promi-
nently than in Fig. 9 subplot (b). This enhanced concentration under-
lines the model’s robustness and stability when subjected to varying
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experimental conditions. Although models like T1C2 and T3C2 show
some degree of improvement, their Kappa distributions remain wider
and skewed toward lower scores, underscoring STFNet’s superior ca-
pacity to generalize across diverse conditions. These results collectively
reinforce the notion that STFNet not only excels in classification per-
formance but also exhibits enhanced robustness and stability in its
predictive capabilities, particularly when dealing with the complexities
and noise inherent in EEG data.

The two noise settings evaluated (4=0.1 vs. A = 0.2; Table 5 and Ta-
ble 7) allow us to quantify the impact of the noise layer. Increasing
A from 0.1 to 0.2 improved average accuracy (0.8869 — 0.9060)
and Cohen’s Kappa (0.8304 — 0.8590). Importantly, the inter-subject
variability was reduced (accuracy SD 0.0725 — 0.0596, Kappa SD
0.1088 — 0.0895), suggesting that higher levels of noise infusion not
only increase mean performance but also stabilize performance across
a heterogeneous subject pool. This supports the interpretation that the
noise layer contributes to robustness by amplifying weak neural signals
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Fig. 6. Performance metrics for the ablation study using Dataset II. (a) and (b) show the distribution of the class-specific accuracy performances across the dataset
for both cases without noise infusion and those with noise infusion, respectively. (c) and (d) show per-subject performance metrics for no-noise and noise-infused

architectures during the ablation study, respectively.

Table 7

Validation metrics for selected models of experiment C with increased noise infusion and reduced data augmentation (Configuration f).
Parameters C3 C4 T1C2 T2C2 T3C2 STFNet
Noise [4] 0.2 0.2 0.2 0.2 0.2 0.2
J-Aug [4] 0.05 0.05 0.05 0.05 0.05 0.05
FD-Aug [4] 0.05 0.05 0.05 0.05 0.05 0
MU-Aug [«] 0.1 0.1 0.1 0.1 0.1 0.1
Epochs 200 200 200 200 200 200
Accuracy 0.7231 +0.1491 0.5585 + 0.1646 0.8763 +£0.1219 0.8059 +0.1249 0.8773 +0.1281 0.906 + 0.0596
Loss 0.0137 +0.0047 0.0174 + 0.0036 0.0105 + 0.0069 0.0144 +0.0081 0.0111 +0.0084 0.0112 +0.008
F1 Score 0.7082 +0.17 0.5004 +0.2125 0.8717 +0.1372 0.8034 +0.1269 0.8724 +0.1456 0.9045 +0.0614
Recall 0.7231 +0.1491 0.5585 +0.1646 0.8763 +£0.1219 0.8059 +0.1249 0.8773 +£0.1281 0.906 + 0.0596
Kappa 0.5846 + 0.2237 0.3377 + 0.2468 0.8145 +0.1829 0.7088 + 0.1877 0.816 + 0.1921 0.859 + 0.0895

while regularizing against subject-specific variability. These results are
further underpinned by the findings of the STFNet hyperparameter and
layer ablation study as presented in Table 6.

Overall, the results of Experiment C in conjunction with the results
of Experiment B highlight the superiority of transformer-based models,
in particular STFNet, which is able to effectively capture nuanced
patterns within EEG signals. Its ability to deliver consistently high ac-
curacy, precision, and stability across a large subject pool and different
datasets demonstrates its potential as a more robust model for EEG
classification tasks, particularly in scenarios involving complex and
diverse datasets.

The boxplots in Fig. 8 illustrate the spatial distribution of normal-
ized channel importance across EEG electrodes for the two ablation
configurations: (a) without noise infusion § = 0 and (b) with moderate
noise infusion (6 = 0.3), which outlines how the overall topographic
distribution of relevant channels remains consistent across both set-
tings, indicating that noise infusion does not substantially alter the
model’s spatial feature weighting pattern. However, in the § = 0
condition, stronger emphasis is observed over the central motor re-
gions, particularly C3, Cz, and CP2, reflecting the network’s reliance
on canonical motor-imagery-related areas [73-75] when no stochastic
perturbation is introduced.

When moderate noise 5§ = 0.3 is infused, the distribution becomes
slightly more uniform, with a marginally increased importance of pari-
etal and centro-parietal electrodes such as CP1, CP2, and POz. This
suggests that controlled noise promotes more distributed feature utiliza-
tion and enhances generalization by reducing overreliance on a small
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subset of dominant motor channels [76,77]. Despite these shifts, no
statistically significant differences were observed in the overall channel
importance distributions between the two conditions, confirming that
the network’s learned spatial focus remains physiologically stable while
benefiting from improved robustness and feature integration under
noise-infused training.

5. Discussion

The results of this study offer key insights into the effectiveness
of STFNet in improving EEG-based BCI classification performance,
particularly among subjects previously categorized as BCI illiterate.

In Experiment A, the analysis through ANOVA and the subsequent
Tukey HSD tests demonstrates that incorporating transformer blocks
into the model architecture significantly enhances validation accuracy.
However, the data also indicate that merely increasing the number of
transformer blocks does not necessarily translate to additional perfor-
mance improvements. This finding suggests a limit to the benefits of
simply adding architectural depth, indicating that the optimal number
of transformer blocks for this dataset may be as few as one. Both Table
1 and Table 2 emphasize that while transformer blocks do contribute
to enhanced performance, there is a threshold beyond which additional
complexity yields diminishing returns.

These results highlight the need for more research into the fine-
tuning and optimization of such hybrid systems. Rather than focusing
solely on increasing the depth of the architecture, future investigations
should explore how to better configure and optimize the interaction
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Fig. 7. Training and validation performance metrics for each subject of Dataset II during the STFNet hyperparameter ablation study. (a) and (c) show subject-
specific training and validation accuracies and loss curves for the proposed architecture with noise infusion layers 6 = 0 and § = 0.3, respectively. (b) and (d)
depict the final (best) validation metrics as confusion matrices for the resulting classifiers with the proposed architecture with noise infusion layers 6 = 0 and
& = 0.3, respectively. (c) shows improved continuous learning rate and less stagnation across individuals when compared to (a), with clearer confusion matrices
in (d) demonstrating superior classification performance not only for weak learners but across subjects (average) when compared to (b).

between convolutional layers, transformer blocks, and noise-handling
strategies. This exploration could involve experimenting with different
hyperparameters, layer types, or even self-organizing methods like
evolutionary algorithms. A more nuanced understanding of how to
optimize these hybrid systems will be crucial in pushing the bound-
aries of EEG-based BCI performance, particularly in applications where
computational efficiency and adaptability are paramount.

As for Experiment B and C, STFNet not only enhanced the classifi-
cation accuracy of weaker learners, such as Subjects A02 and A05, but
also showed substantial improvements across the entire cohort. Fig. 9
(subplot ¢ and d) display t-SNE plots illustrating the clustering of MI
tasks for different models. STFNet achieves more distinct clusters for
left hand, right hand, and feet tasks, indicating superior feature sepa-
ration compared to earlier models like C2 and T2C2. This improved task
differentiation suggests that STFNet’s feature extraction capabilities,
coupled with the benefits of stochastic resonance, enhance the model’s
ability to handle EEG data, particularly for challenging subjects.

For Subject 3 (the weakest learner of Dataset I as per Table 8),
STFNet exhibits well-separated and compact clusters for each MI task
as shown in Fig. 9, which indicates that STFNet’s feature extraction pro-
cess yields high-dimensional representations that are more discernible
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when reduced to a two-dimensional space using t-SNE, capturing com-
plex patterns in the EEG data more effectively. In contrast, the t-SNE
plots for models like C2 and C3 show significant overlap between task
clusters, especially for left-hand and feet-movement tasks. This overlap
suggests that these models struggle to extract distinct features, leading
to less reliable classifications. Even for weak learners, such as Subject 2,
STFNet maintains relatively distinct clusters, albeit with more overlap
than seen in Subject 3. This further emphasizes STFNet’s robustness and
its ability to enhance the performance of subjects previously deemed
BCI illiterate.

STFNet’s architecture plays a critical role in amplifying subtle neural
signals through noise infusion and enhanced feature extraction. Unlike
other models that show scattered and intermingled clusters, STFNet’s
t-SNE plots indicate a higher degree of organization and separation
between classes, underscoring the model’s capability to manage inter-
subject variability. This is particularly important for motor imagery
tasks, where neural patterns vary widely among subjects. STFNet’s
ability to generate well-separated clusters across tasks suggests that
it not only captures the relevant features more effectively but also
leverages stochastic resonance to enhance the discriminability of these
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features, leading to improved classification performance. Thus, the
t-SNE analysis in Fig. 9 subplots (a,b) provide compelling visual con-
firmation of STFNet’s superior feature extraction capabilities and its
potential to improve BCI usability across diverse subject groups.

As shown in Figs. 10 and 11., the representational dynamics of
the weak learner (Subject 2) and nono-weak learner (Subject 3)re-
veal how stochastic noise infusion interacts with the convolutional
and transformer stages to restructure the learned feature space and
enhance separability between motor imagery classes. Notably, under
the 6 = 0 condition for the weak learner, activations across layers
remain poorly differentiated, with feature trajectories displaying diffuse
and overlapping distributions. The temporal convolution layer, though
effective in extracting localized temporal features, fails to stabilize the
representations sufficiently for downstream separation. Even after the
transformer layer, which in principle integrates contextual and cross-
channel dependencies, the features remain entangled, indicating that
the model has not converged toward distinct task-related manifolds.
This behavior is characteristic of weak learners whose EEG signals
exhibit low discriminability and unstable spatial-temporal synchroniza-
tion, leading the network to overfit transient signal noise rather than
capturing consistent neural dynamics.

When noise infusion is introduced (6§ = 0.3), the network’s rep-
resentational structure evolves in a markedly different manner. The
injected stochastic perturbation acts as an implicit regularizer, pro-
moting broader exploration of the feature space during training and
preventing early convergence to narrow, non-generalizable filters. The
temporal convolution layer now contributes more effectively to shaping
temporally coherent activations, as reflected in the greater intra-class
compactness and inter-class separation seen in the later layers. Cru-
cially, the transformer stage benefits most from this enhanced input di-
versity. By attending over richer, noise-stabilized temporal embeddings,
the transformer can more effectively capture long-range dependencies
and context-sensitive spectral patterns associated with motor imagery.
This synergy between noise-conditioned convolutional encoding and
transformer-based contextual refinement leads to a more disentangled
and geometrically stable latent space in the final embeddings.

The contrast between § = 0 and 6 = 0.3 highlights how stochastic
conditioning improves both the internal consistency and class-specific
organization of the learned representations. While convolutional layers
provide the initial temporal discrimination, the transformer layer re-
fines these representations by aligning them across time and feature
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Table 8
Strongest and weakest learners of Dataset I, across all model runs and archi-
tectures as per Experiment C, ranked by average validation accuracy.

Subject ID Accuracy [%] SD ¢ [%]
S.55 92.59 5.45
S_36 91.05 7.59
Best Learnable S 20 91.05 7.36
S.76 90.12 8.73
S2 90.12 7.69
S13 73.46 14.57
S.91 71.91 22.99
Least Learnable S 35 70.99 21.95
S.19 70.37 18.33
S3 69.75 22.16

dimensions, producing embeddings that are not only less redundant
but also more resilient to inter-trial variability. The joint effect is
particularly beneficial for weak learners, where signal reliability is low:
rather than amplifying noise, the network learns to exploit structured
perturbations to reveal latent regularities that remain hidden in uncon-
ditioned training. In this context, noise infusion does not merely act
as an auxiliary defense against overfitting but becomes a functional
component that enhances the transformer’s capacity to model and
stabilize weak, low-SNR EEG representations.

In relation to state-of-the-art methods, Table 4 places STFNet along-
side classical pipelines, CNN-based models, and more recent hybrid
or attention-driven approaches for a direct comparison of the pro-
posed model performance on this benchmarking dataset. Classical
pipelines such as filter-bank common spatial patterns (FBCSP) [78]
remain useful due to their interpretability and well-defined spatial—
spectral priors, but they degrade considerably under low signal-to-noise
conditions and show limited scalability to multiclass paradigms. CNN-
based models, including ConvNet [79], EEGNet [80], and FBCNet [81],
improved performance by automatically learning spatial and temporal
features, yet they often rely on local receptive fields and assump-
tions of stationarity. These limitations reduce their effectiveness in
capturing long-range dependencies, particularly for weak learners.
Hybrid and attention-based architectures, such as EEG-TCNet [82],
DRDA [83], and Conformer [84], incorporate temporal context and
dynamic weighting to improve robustness. Nevertheless, these models
generally depend on explicit artifact removal or heavy preprocessing,
leaving residual variability across users and sessions. Compared with
these approaches, STFNet leverages multi-head self-attention to capture
long-range temporal-spatial dependencies while integrating controlled
Gaussian noise infusion to exploit stochastic resonance, which enhances
subthreshold neural components rather than discarding them. This
design yields clear advantages: STFNet achieved the highest mean
accuracy and Kappa with reduced standard deviation across subjects (as
shown in Table 3), and demonstrated particular improvements in weak
learners (e.g., AO2 and A05). In Experiment C, involving 106 subjects,
STFNet maintained high accuracy and Kappa while also proving robust
to variations in noise infusion and data augmentation settings (Tables
5-7). These results indicate that STFNet not only surpasses classical
and CNN-based pipelines but also addresses limitations of attention-
based hybrids by explicitly enhancing weak neural patterns through
stochastic resonance.

An important aspect of STFNet is the complementary interaction
between its convolutional and Transformer modules. The convolutional
front-end extracts local spatiotemporal features, such as ERD/ERS dy-
namics within mu, beta, and alpha bands localized to motor-related
electrodes, providing robust short-range representations that are less
sensitive to noise. The Transformer layers then operate on these rep-
resentations to capture long-range temporal context and cross-channel
dependencies, integrating distributed activity patterns that CNN filters
alone cannot resolve. This division of labor explains why CNN-only
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models perform competitively but show higher variance, whereas aug-
menting them with Transformer blocks significantly improves mean
accuracy and stability (ANOVA F = 12.675, p = 0.000967; Tables 5 and
7). Notably, subjects previously identified as weak learners (e.g., A02,
AO05) benefit most, indicating that global attention mechanisms can
amplify subtle local features extracted by the convolutional layers,
leading to more robust classification across heterogeneous populations.

The enhanced performance of STFNet is further supported by the
lower standard deviations and higher Kappa scores, pointing to greater
robustness across varying subjects. While traditional models like C2
and C3 struggle to consistently differentiate between MI tasks for
weaker learners, as seen in the broader spread of points in Fig. 2,
STFNet significantly narrows this spread, reflecting more reliable clas-
sification results. This robustness, achieved through the combination
of convolutional and transformer layers with controlled noise infusion,
mitigates the inter-subject variability that has historically been a major
challenge in EEG-based BCI systems. The tight clustering of task-specific
data points for STFNet indicates that the model is better able to gener-
alize across subjects, including those previously deemed less learnable,
supporting its application in real-world BCI settings.

Additionally, the integration of stochastic resonance plays a crucial
role in amplifying weak EEG signals, impacting both the overall ac-
curacy and consistency of STFNet’s performance. The use of controlled
noise, particularly for traditionally challenging subjects, allows the sys-
tem to enhance the detection of weak or faint signals that other models
struggle to classify accurately. This technique is especially useful in
scenarios involving low signal-to-noise ratio (SNR) EEG data, which is
a common characteristic in BCI illiterate users. The results from Table 7
confirm that STFNet continues to outperform other models, even under
modified noise infusion and reduced data augmentation conditions,
demonstrating that the model maintains its superior performance in a
variety of experimental setups.

Fig. 12 presents layer-wise activation heatmaps for a representative
non-weak learner (Subject A0O3) and a weak learner (Subject A02),
illustrating the effect of the stochastic noise infusion mechanism 6 =
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0.3 on feature representations across the model’s hierarchical stages.
Each column pair compares activations without noise (left) and with
noise infusion (right), spanning the initial input projection layer, the
temporal convolution stage, and the final embedding space after the
transformer encoder. The visualization provides insight into how noise
conditioning affects representational diversity, activation stability, and
inter-class separability across different model depths.

For the non-weak learner (A03), activation patterns in the noise-free
condition already exhibit moderate class-specific differentiation, par-
ticularly at the temporal convolution and transformer levels. However,
under the § = 0.3 condition, a clearer spatial structuring of activations
emerges across both early and late layers, with increased contrast
and distributed feature engagement across channels and embedding
dimensions. This indicates that controlled stochastic perturbation en-
hances representational richness without degrading class-dependent
organization, effectively regularizing the feature space and mitigating
over-reliance on dominant spatial sources. The result is a more bal-
anced and discriminative embedding, which aligns with the improved
classification stability observed in noise-infused configurations.

In contrast, the weak learner (A02) exhibits more uniform and
less distinct activation patterns in the absence of noise, suggesting
limited neural feature variability and insufficient separability across
motor imagery classes. Following noise infusion, the activations display
greater heterogeneity, particularly within the transformer embeddings,
where feature contrast between classes becomes more pronounced. This
transformation implies that the stochastic noise acts as a representa-
tional catalyst, stimulating the network to explore a broader feature
manifold rather than converging to narrow, suboptimal activation sub-
spaces. The improvement is most evident in the final embedding layer,
where the enhanced dispersion of activations likely contributes to
better generalization and reduced overfitting to spurious low-level
correlations.

Overall, these findings support the hypothesis that noise infusion
promotes more robust and adaptive feature learning across hierarchical
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layers, particularly benefitting weaker subjects whose baseline activa-
tions lack discriminative structure. The transformer layer, in particular,
appears to capitalize on the noise-induced variability by refining and
amplifying relevant task-specific components, thereby improving signal
utility for downstream classification.

Overall, the results support the conclusion that STFNet offers a
robust and reliable solution for EEG-based BCI systems. The model’s
ability to consistently outperform traditional approaches, even in sub-
jects considered less learnable, highlights its potential for widespread
use in clinical and private applications. Furthermore, its adaptability
to various hyperparameter settings and reliance on Apple Silicon chip
architecture for efficient processing underscore STFNet’s viability for
use in environments where computational resources are limited. Us-
ing the best inter-subject performances as per the ablation study as
presented in Table 6, the proposed method can achieve validation
accuracies of up to 0.879 + 0.085 on the BCI Competition IV 2a
dataset, firmly outperforming existing approaches not only in terms
of validation accuracy but also kappa metrics and lower standard
deviations. Future research could explore further refinements to the
STFNet architecture, potentially incorporating evolutionary algorithms
as recently introduced [72] to enhance its robustness and performance
across an even broader range of users, including those with more severe
BCI illiteracy.

6. Conclusion

This study presents a comprehensive evaluation of various neural
network architectures for EEG-based BCI systems, emphasizing the
significance of integrating transformer blocks and enhanced noise-
handling mechanisms. Through systematic experimentation across two
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datasets with a total of 115 subjects, the proposed hybrid systems and
STFNet demonstrated superior classification accuracy and robustness,
notably improving the performance of traditionally weak learners or
“BCI illiterate” subjects. By leveraging stochastic resonance and ad-
vanced temporal processing modules, STFNet achieved higher Kappa
scores and reduced variability across subjects, highlighting its capacity
to generalize more effectively than existing models like Conformer and
EEG-TCNet.

The analysis of the presented results indicates that introducing
transformer blocks yields statistically significant improvements in BCI
performance, with diminishing returns beyond a certain number of
blocks. STFNet, with its optimal integration of transformers, convo-
lutional layers, and noise infusion techniques, consistently exhibited
a concentrated distribution of high Kappa values, reinforcing its sta-
bility and reliability across varying experimental conditions. Further-
more, the model’s resilience under different hyperparameter configu-
rations underscores its adaptability in handling complex, noisy EEG
data, particularly in subjects previously considered challenging for BCI
applications.

Additionally, the feasibility of implementing the proposed approach
in both clinical and private settings where extensive GPU resources
may not be available has been successfully demonstrated. By utilizing
Apple Silicon chips with Metal programming, we have shown that
high-performance BCI systems can be effectively deployed on more
accessible hardware platforms, paving the way for broader adoption
in various real-world applications.

In summary, the proposed STFNet architecture marks a substantial
advancement in EEG-based BCI systems, demonstrating that with the
right combination of architectural enhancements and noise-handling
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Fig. 12. Class-wise mean activation of features via feature heatmaps during different stages while converging through the proposed network architecture (Dataset
11). (a) Ablation study results for AO3 (non-weak learner) with different noise level configurations. (b) Same metrics as per (a) for Subject AO2 (weak learner).
Top row: Initial layer. Center row: post temporal convolution. (c) Bottom row: post transformer layer.

strategies, it is possible to improve the usability of BCIs across a broader
range of individuals.

In the future, it is paramount to investigate the settings of such
hybrid systems, as there remains room for improvement through the ad-
justment of layer types, hyperparameters, and other configurations. Fu-
ture work may involve employing generative or self-organizing method-
ologies, such as evolutionary algorithms, to enhance the robustness of
transformer-based hybrid systems even further, particularly for weak
learners or BCl-illiterate subjects.
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