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ABSTRACT

Generative artificial intelligence (AI) models, such as natural language processing
(NLP) and computer vision (CV) models, have demonstrated remarkable progress
in recent years, enabling significant advancements in applications such as ques-

tion answering, summarization, and image captioning. However, recent studies highlight
the vulnerability of these models to adversarial attacks, raising critical concerns about
AI system reliability and real-world deployment challenges. This thesis investigates
the vulnerabilities of three widely used models: question answering, summarization,
and image captioning models, and it introduces innovative techniques for generating
highly effective yet imperceptible adversarial examples. The research presents three
novel attack methodologies. First, the Paraphrasing-Based Summarization Attack (SAP)
addresses abstractive summarization models by ranking sentences based on their impor-
tance to the summarization outcome. This approach employs sophisticated paraphrasing
mechanisms to craft adversarial examples that preserve semantic coherence while in-
ducing incorrect summaries. Second, AICAttack (Attention-Based Image Captioning
Attack) introduces a novel black-box adversarial attack for image captioning models. The
method leverages an attention-based mechanism to identify critical image regions. It
employs customized differential evolution algorithms to optimize pixel perturbations,
achieving highly effective adversarial captions while maintaining minimal visual pertur-
bation. Finally, the QA-Attack method presents a comprehensive approach to crafting
practical adversarial examples for question answering models, addressing both boolean
and informative queries. The method adopts a Hybrid Ranking Fusion algorithm that
combines attention-based and removal-based ranking mechanisms, demonstrating high
success rates across diverse question answering systems. This thesis advances the field
of AI security through these three innovative attack methodologies, each demonstrating
superior effectiveness while maintaining imperceptibility and revealing critical vulnera-
bilities in today’s generative AI landscape. These innovative approaches not only expose
fundamental limitations across diverse AI applications but also establish a crucial foun-
dation for developing more robust and interpretable next-generation systems, ultimately
fostering greater trust in AI technologies increasingly deployed in sensitive real-world
contexts.
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INTRODUCTION

I
n recent years, deep learning models have achieved remarkable success across

a variety of generative tasks in Computer Vision (CV) and Natural Language

Processing (NLP), such as abstractive summarization, image captioning, and

question answering. These tasks require models to classify or retrieve information and

generate coherent and contextually appropriate outputs. Transformer-based architec-

tures, which often combine self-attention mechanisms and encoder-decoder frameworks,

have replaced earlier Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) as the dominant approach, producing state-of-the-art results across

these domains. Despite these advances, deep learning models remain vulnerable to

adversarial attacks, which introduce subtle perturbations to the input data. Such per-

turbations can lead to misleading or incorrect outputs while remaining imperceptible to

human observers, posing significant risks to the reliability and robustness of AI systems

deployed in real-world applications [2].
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CHAPTER 1. INTRODUCTION

1.1 Background

As AI systems spread throughout language and image processing, growing concerns

about how well they hold up against attacks and unexpected situations have become a

key focus for the field. While state-of-the-art neural architectures, such as transformers

and convolutional neural networks (CNNs), have achieved groundbreaking performance

across a wide range of tasks, they remain susceptible to adversarial attacks-carefully

crafted perturbations designed to deceive models while remaining imperceptible to

humans [2]. These vulnerabilities pose significant risks, particularly as AI systems are

integrated into critical real-world applications such as healthcare, autonomous driving,

and financial decision-making. Understanding and addressing these weaknesses is

essential for building trustworthy and reliable AI systems.

Adversarial attacks are generally categorized as white-box or black-box. White-box

attacks assume complete knowledge of the target model, including its architecture, para-

meters, and gradients, enabling attackers to craft precise perturbations that maximize

the likelihood of misclassification [9]. In contrast, black-box attacks assume a more prac-

tical setting where the attacker lacks access to the model’s internal mechanics. Instead,

they rely on query-based strategies or heuristic methods to infer vulnerabilities [10].

Both attacks present unique challenges in NLP and CV due to the discrete nature of

textual inputs and the complex, generative behavior of modern deep learning models.

In NLP, adversarial attacks have been extensively studied in classification tasks,

where small modifications, such as synonym substitutions, character-level changes, or

paraphrasing, can drastically alter model predictions [11]. For example, replacing the

word “excellent” with “outstanding” in a product review might cause a sentiment analysis

model to misclassify a positive review as negative. However, attacking generative models,

such as those used for abstractive summarization or question answering, presents

additional challenges. In these tasks, adversarial perturbations must not only alter the
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output but also ensure that the generated text remains fluent, coherent, and semantically

consistent. This complexity makes generative models particularly difficult to attack

effectively.

Similarly, adversarial attacks on image classification models have been widely ex-

plored in CV. For instance, adding imperceptible noise to an image of a stop sign can cause

a model to misclassify it as a yield sign, with potentially catastrophic consequences in

autonomous driving systems. However, the adversarial vulnerability of image captioning

systems, which generate textual descriptions of images, remains a relatively underex-

plored area. These systems rely on both visual and linguistic components, making them

susceptible to attacks that manipulate either modality or both simultaneously.

This thesis investigates adversarial attacks on three critical tasks at the intersection

of NLP and CV: abstractive summarization, image captioning, and question answering

(QA). Unlike traditional classification tasks, these involve complex sequence generation,

where adversarial perturbations must not only mislead the model but also preserve the

naturalness and coherence of the output. Existing adversarial methods for these tasks

often struggle to balance attack effectiveness with semantic integrity, highlighting the

need for more advanced and targeted strategies.

To address these challenges, this research introduces novel adversarial attack method-

ologies tailored to each domain:

• Summarization Attack via Paraphrasing (SAP): A paraphrasing-based adver-

sarial attack to deceive abstractive summarization models by subtly rewriting key

sentences in the input text. SAP ensures that the generated summary is signifi-

cantly altered while maintaining fluency and coherence, making it a stealthy and

effective attack strategy.

• Attention-based Image Captioning Attack (AICAttack): A black-box adver-

sarial attack targeting image captioning models by perturbing critical regions of
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the input image based on attention mechanisms. By focusing on areas that the

model relies on most heavily, AICAttack can mislead the captioning process without

significantly altering the image’s overall appearance.

• QA-Attack: A hybrid ranking-based adversarial attack that exploits attention

mechanisms to mislead question answering models. By identifying and perturbing

high-impact tokens in the input text, QA-Attack effectively fools QA models while

preserving the semantic integrity of the text.

1.1.1 Attacks for Summarization Models

Abstractive summarization has emerged as a pivotal task in natural language processing

(NLP), addressing the increasing demand for condensing extensive textual information

into concise, informative summaries [12]. The field has witnessed remarkable progress

with the advent of deep learning techniques, particularly in abstractive summarization,

which generates summaries using novel phrases and sentences rather than merely

extracting existing text [13]. Modern abstractive summarization models predominantly

employ encoder-decoder architectures, often based on transformer networks, which excel

at capturing long-range dependencies and producing coherent summaries [14]. Previous

advanced models such as BART [14], Pegasus [15], and T5 [16] have demonstrated

exceptional performance on benchmark datasets, showcasing their ability to generate

summaries that closely resemble human-written content [15].

Despite these advancements, abstractive summarization models grapple with several

persistent challenges. These include ensuring factual consistency, mitigating hallucina-

tions (i.e., generating content not present in the source text), and effectively processing

long documents [17]. Additionally, evaluating the quality of generated summaries re-

mains a complex endeavor, as traditional metrics like ROUGE often fail to capture

nuanced aspects such as coherence, relevance, and fluency [18]. While these issues have
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been extensively studied, a critical yet underexplored area is the vulnerability of abstrac-

tive summarization models to adversarial attacks. Such attacks can subtly manipulate

input text to induce significant deviations in the generated summaries, posing a threat

to the reliability of these systems [19].

Existing adversarial attack methods for summarization typically rely on word-level

perturbations or sentence-level manipulations [6]. However, these approaches often

struggle to maintain semantic coherence or produce substantial changes in the generated

summaries, particularly in transformer-based models that leverage broader contextual

understanding [20]. Given the generative nature of abstractive summarization, simple

word substitutions may not suffice to meaningfully alter model outputs, necessitating

more sophisticated and targeted attack strategies.

In this thesis, we address this research gap by introducing Summarization Attack

via Paraphrasing (SAP), a novel adversarial attack framework specifically designed

for abstractive summarization models. SAP employs a paraphrasing-based approach

to identify and strategically modify key sentences in the input text, ensuring that the

generated summary is significantly altered while preserving fluency and semantic coher-

ence. Unlike traditional adversarial attacks, which often compromise text readability or

rely on unnatural modifications, SAP replaces high-impact sentences with semantically

equivalent paraphrases. This approach effectively misleads the summarization model

without introducing detectable distortions, making it a more subtle and potent attack

strategy.

SAP is designed to overcome the unique challenges posed by abstractive summa-

rization models, offering a more effective and targeted method compared to existing

techniques. By leveraging advanced paraphrasing mechanisms, SAP highlights critical

vulnerabilities in state-of-the-art summarization systems and underscores the need for

enhanced robustness in NLP applications. This work not only advances the understand-
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ing of adversarial threats in abstractive summarization but also provides a foundation

for developing more secure and reliable summarization systems capable of maintaining

high performance even in adversarial settings. Ultimately, this research aims to con-

tribute to the creation of NLP systems that are both accurate and resilient, ensuring

their trustworthiness in real-world applications.

1.1.2 Attacks for Image Captioning Models

Adversarial attacks on image captioning models present unique challenges due to the

inherent complexity of generating coherent and semantically meaningful textual de-

scriptions from visual inputs. Unlike traditional image classification tasks, where the

model outputs a single label [21], image captioning models must generate a sequence of

words that accurately describe the content of an image [22]. This sequential nature of the

output makes it significantly more challenging to craft effective adversarial examples,

as the attacker must manipulate the input in a way that disrupts the entire generated

caption rather than just a single classification decision. The encoder-decoder architecture

commonly used in image captioning models further complicates the attack process. In

such frameworks, the encoder processes the input image to extract visual features, while

the decoder generates the corresponding caption based on these features [23]. The gradi-

ents necessary for optimizing adversarial perturbations in this setting are often difficult

to compute or unavailable, particularly when attackers face black-box scenarios where

can not obtain models’ internal parameters or architecture [24]. Additionally, the textual

output of captioning models must be evaluated not only for its semantic relevance to the

image but also for its syntactic correctness, adding another layer of complexity to the

attack evaluation process [25].

Most existing research on adversarial attacks for image captioning models has focused

on white-box scenarios. For example, the “Show-and-Fool” attack [22] leverages gradient
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information to craft perturbations that influence the generated captions. While effective

in controlled settings, this approach is impractical in real-world applications where such

detailed knowledge of the target model is rarely available. Another line of research has

explored black-box attacks using generative adversarial networks (GANs) to generate

perturbations [25]. However, these methods often suffer from instability during training

and are not specifically tailored for image captioning tasks, as they fail to account for the

precise pixel-level manipulations required to effectively fool captioning models [23].

We introduce AICAttack (Attention-based Image Captioning Attack), a novel ad-

versarial method designed to target image captioning models and address existing

challenges. Our approach operates in a black-box setting, meaning it does not require

access to the target model’s architecture, parameters, or gradients. Instead, we leverage

an attention-based mechanism to identify the most critical pixels in an image for adver-

sarial manipulation. By focusing on these high-attention areas-regions that captioning

models inherently prioritize during caption generation-we maximize the impact of the

perturbations while minimizing their visibility to human observers. Additionally, we

introduce a differential evolution algorithm to optimize the perturbation values applied

to the selected pixels, ensuring that the generated adversarial examples are both effec-

tive and imperceptible. This combination of attention-guided targeting and evolutionary

optimization allows AICAttack to circumvent the limitations of gradient-dependent

white-box methods and unstable GAN-based approaches.

1.1.3 Attacks for Question Answering Models

Deep learning breakthroughs have substantially enhanced question answering (QA)

models’ capabilities, allowing them to interpret contexts and questions with remark-

able precision [26, 27]. State-of-the-art models, including BERT-based architectures

and transformer variants, have demonstrated strong results across fact-based retrieval
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and reasoning tasks [28, 29]. These models leverage large-scale pre-training on diverse

corpora and fine-tuning on specific QA datasets, allowing them to capture intricate lin-

guistic patterns and contextual relationships. However, despite these achievements, QA

models remain vulnerable to adversarial attacks, which manipulate input text to mislead

predictions while maintaining linguistic coherence [30, 31]. Such weaknesses cast doubt

on QA systems’ dependability in practical settings, where deliberately manipulated

inputs might trigger inaccurate or potentially dangerous responses.

Existing adversarial attacks on QA models primarily fall into three categories: token-

level perturbations, sentence insertion, and contextual misalignment. Token-level at-

tacks, such as HotFlip [32] and TextFooler [11], modify critical words through synonym

replacement or character-level changes. These methods aim to alter the semantic mean-

ing of key tokens in the input text, causing the model to produce incorrect answers.

Sentence insertion attacks, including AddSent [30], introduce misleading content into

the context or question to confuse extractive QA models. These attacks exploit the

model’s reliance on specific patterns or keywords in the input. Contextual misalignment

approaches, on the other hand, manipulate answer positions or alter the structure of the

context to cause incorrect extractions [33]. While these methods have proven effective in

degrading model performance, most existing attacks assume white-box access to model

gradients, limiting their applicability in real-world black-box settings where the internal

parameters of the model are inaccessible.

To address this gap, this thesis introduces QA-Attack, a novel black-box adversar-

ial strategy targeting QA models. Our approach leverages a Hybrid Ranking Fusion

(HRF) algorithm that combines attention-based and removal-based ranking techniques

to identify and perturb critical words. The attention-based ranking identifies tokens

that significantly influence the model’s predictions by analyzing the attention weights

assigned to each token. The removal-based ranking, on the other hand, evaluates the
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impact of removing individual tokens on the model’s output. By fusing these two rank-

ings, HRF effectively identifies the most vulnerable tokens in the input text. Once these

tokens are identified, QA-Attack replaces them with contextually appropriate synonyms

generated through a masked language model, ensuring that the perturbed text remains

linguistically coherent and semantically plausible. This approach allows QA-Attack to

effectively fool QA models without requiring access to their internal parameters, making

it applicable in real-world black-box scenarios.
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1.2 Aims and Objectives

The research of my PhD candidature focuses on developing and evaluating novel adver-

sarial attack methods for three key areas of natural language processing and computer

vision: abstractive summarization, image captioning, and question-answering systems.

The overarching goal is to identify vulnerabilities in state-of-the-art models and con-

tribute to improving their robustness and reliability. The aims are as follows:

1. To develop and evaluate novel adversarial attack methods for abstractive sum-

marization models, identifying specific vulnerabilities and providing insights into

improving their robustness against adversarial attacks.

2. To design and implement AICAttack, a new adversarial attack strategy for im-

age captioning models, focusing on identifying critical pixels influencing caption

generation while ensuring imperceptibility to human observers.

3. To create and assess a question-answering adversarial attack approach that com-

bines hybrid ranking techniques to identify vulnerable tokens, particularly under

black-box scenarios.

4. To analyze the experimental results from the proposed attacks across diverse

datasets and leading models, contributing to the understanding of vulnerabilities

and providing recommendations for enhancing the security and reliability of these

technologies.

The objectives are as follows:

1. Develop and evaluate a novel adversarial attack method for abstractive summa-

rization models. This research will focus on creating attacks with high success rates

while minimally altering the input text. We will establish a comprehensive evalua-

tion metric to measure attack effectiveness, implement our proposed method, and
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test it against leading abstractive summarization models. Through extensive exper-

iments on diverse datasets, we aim to demonstrate the attack’s broad applicability

and robustness. By analyzing the results, we will uncover specific weaknesses in

current summarization models, especially in challenging scenarios. These insights

will guide recommendations for improving the resilience of summarization systems

against adversarial attacks, ultimately advancing our understanding of how these

models function and how they can be made more robust.

2. Design and evaluate AICAttack, a novel adversarial attack method for image

captioning models. This research will focus on developing an attention-based

mechanism to precisely identify and manipulate critical pixels that influence

caption generation while ensuring the alterations remain imperceptible to human

observers. We will implement a customized differential evolution algorithm to

optimize these adversarial modifications, aiming for high attack success rates

with minimal image perturbation. The study will assess AICAttack’s performance

across various state-of-the-art image captioning models and diverse real-world

datasets, demonstrating its effectiveness and generalizability. By analyzing the

results, we will gain insights into the vulnerabilities of current image captioning

systems, particularly in challenging scenarios. These findings will contribute to

our understanding of multimodal learning models and guide future improvements

in their robustness against adversarial attacks, ultimately enhancing the security

and reliability of image captioning technologies.

3. Develop and evaluate a question-answering (QA) attack, an innovative attack

method for question-answering models. This research will focus on creating a

Hybrid Ranking Fusion algorithm that combines Attention-based Ranking and

Removal-based Ranking to identify vulnerable tokens in input texts. We will design

the attack to operate in black-box scenarios, requiring no access to the target
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model’s architecture or parameters, and make it adaptable to various question

types, including informative and boolean queries. The study will implement this

method and assess its effectiveness across multiple datasets and victim models,

comparing its performance against existing adversarial techniques. Through com-

prehensive analysis of the results, we aim to uncover specific weaknesses in current

question-answering systems, especially in challenging cases. These insights will

deepen our understanding of the vulnerabilities in QA models and guide future

improvements in their robustness, ultimately contributing to the development of

more secure and reliable question-answering technologies.

1.3 Research Significance

Our research holds significant importance in the rapidly evolving fields of natural lan-

guage processing and computer vision. By developing novel adversarial attack methods

for abstractive summarization, image captioning, and question-answering systems, this

study addresses critical gaps in our understanding of the vulnerabilities and limitations

of state-of-the-art models.

The significance of this research is multifaceted:

• Enhancing AI Security: By exposing weaknesses in current models, this research

contributes directly to improving the security and reliability of AI systems in

real-world applications. This is crucial as these technologies become increasingly

integrated into various sectors, including healthcare, finance, and information

systems.

• Advancing Model Robustness: The insights gained from these adversarial attacks

will guide the development of more robust models, leading to AI systems that are
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less susceptible to manipulation and more trustworthy in critical decision-making

processes.

• Cross-Domain Insights: By addressing three distinct but related areas (summariza-

tion, image captioning, and question-answering), this research offers the potential

for cross-pollination of ideas and techniques across different domains of AI.

• Ethical AI Development: Understanding and mitigating vulnerabilities in AI sys-

tems is crucial for ensuring their ethical deployment, particularly in sensitive

applications where misinformation or misinterpretation could have serious conse-

quences.

• Stimulating Future Research: The methodologies and findings from this study

will likely spark new research directions in adversarial machine learning, model

interpretability, and robust AI design.

1.4 Research Contribution

This thesis presents the following key research contributions:

1. Summarization Attack (SAP): This attack targets abstractive summarization mod-

els by identifying critical sentences within input articles. Using a ranking mecha-

nism based on their impact on generated summaries, measured by ROUGE score

differences, the vital sentences are replaced with semantically equivalent para-

phrases. This preserves the original meaning while deceiving the summarization

model. The contribution of this approach, as presented in the paper, lies in its inno-

vative ranking strategy and paraphrasing technique, which outperform baseline

methods on real-world datasets, achieving the highest success rate and minimal

semantic drift.
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2. Attention-based Image Captioning Attack (AICAttack): AICAttack introduces a

novel black-box adversarial framework for attacking image captioning models. It

employs an attention-based mechanism to identify critical image regions, enabling

selective perturbation of influential pixels. Through a differential evolution opti-

mization process, the framework determines optimal perturbations that maximize

impact on caption generation while maintaining visual imperceptibility. The pa-

per’s significant contribution includes leveraging attention mechanisms to identify

susceptible regions and customizing the differential evolution algorithm, achieving

superior success rates against state-of-the-art models across diverse datasets.

3. Question Answering Attack (QA-Attack): QA-Attack is a word-level adversarial

strategy designed for deceiving QA models. It introduces the Hybrid Ranking

Fusion (HRF) algorithm, combining Attention-Based Ranking (ABR) and Removal-

Based Ranking (RBR) to identify critical tokens within the context. These tokens

are replaced with contextually appropriate synonyms generated by a masked

language model. The method ensures adversarial examples maintain semantic

coherence and grammatical correctness while effectively fooling QA models. The

study contributes to adversarial research by presenting a unified attack strategy

applicable to both Informative and Boolean queries, with extensive experiments

demonstrating its robustness and effectiveness across multiple QA models and

datasets.
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1.5 Thesis Organization

This thesis is organized as follows:

• Chapter 2: Literature Review

This chapter presents a comprehensive survey of adversarial learning in both

natural language processing (NLP) and computer vision (CV).

• Chapter 3: Summarization Attack via Paraphrasing

This chapter introduces a summarization attack with a paraphrasing technique

(SAP) and presents experimental results.

• Chapter 4: AICAttack: Adversarial Image Captioning Attack with Attention-Based

Optimization

This chapter introduces an adversarial image captioning attack with attention-

based optimization (AICAttack) and experimental analysis.

• Chapter 5: Deceiving Question-Answering Models: A Hybrid Word-Level Adversar-

ial Approach

This chapter introduces a hybrid word-level adversarial approach for deceiving

textual question answering models (QA-Attack) and experimental analysis.

• Chapter 6: Conclusion and Future Works

This chapter concludes the thesis and presents directions for future work.
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LITERATURE REVIEW

Adversarial attacks have emerged as a significant vulnerability in machine learning

systems, exploiting inherent weaknesses in models to deceive and mislead them. As

machine learning is increasingly deployed in sensitive domains, understanding and

mitigating these vulnerabilities has become a crucial challenge. This chapter provides a

comprehensive overview of adversarial attacks, with a focus on their implications in two

key areas: Natural Language Processing (NLP) and Computer Vision (CV). By examining

some of the most popular tasks in these domains, we delve into the fundamentals of

adversarial attacks and their specialized applications, discussing both traditional and

state-of-the-art attack methodologies along with their strengths and limitations.

In this chapter, we organize the review by: the overview of adversarial attack (Sec-

tion 2.1), adversarial attack for NLP (Section 2.2), adversarial attack for CV (Section 2.3),

discussion and challenges (Section 2.4).
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2.1 Overview of Adversarial Attack

In general, adversarial attacks aim to exploit vulnerabilities in systems, algorithms, or

processes. by dividing it into different mechanisms, adversarial attacks present with

perturbation-based attacks, poisoning-based attacks, and other real-world attacks [34].

Perturbation-based attacks represent a significant vulnerability in machine learning

systems, operating through subtle modifications to input data that can dramatically

affect model predictions while remaining virtually imperceptible to human observers [35].

These attacks are particularly prominent in computer vision, where minimal pixel-level

alterations can successfully mislead classifiers, and in Natural Language Processing

(NLP), where subtle text modifications such as strategic synonym substitutions can

fundamentally alter model outputs. The effectiveness of these attacks stems from ex-

ploiting models’ inherent sensitivity to input variations, revealing critical weaknesses in

systems that rely on learned decision boundaries. The practical significance and cross-

model transferability of perturbation-based techniques, including the Fast Gradient

Sign Method (FGSM) [2] and Projected Gradient Descent (PGD) [36], have made them a

central focus in adversarial machine learning research.

Poisoning-based attacks target the training process of machine learning models by

injecting malicious or biased data into the training dataset [37–40]. By compromising

the quality or integrity of the data, these attacks aim to influence the model’s learning

process, leading to suboptimal or harmful behavior during inference. Examples include

flipping labels in a classification dataset, introducing outliers to distort regression

models, or biasing pre-trained models through carefully crafted data samples. Poisoning

attacks are particularly dangerous because they exploit the foundational training step,

potentially affecting models deployed across multiple applications. They are also difficult

to detect, as the injected data can be designed to blend seamlessly with the original

dataset, making robust data curation and sanitation critical defenses.
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Physical adversarial attacks extend beyond the digital space, exploiting physical

systems, environments, and infrastructure [41–45]. These attacks often manipulate

real-world inputs to deceive AI systems in situ, such as altering road signs to mislead

autonomous vehicles, spoofing GPS signals to misdirect navigation systems, or overload-

ing sensors with noise. Unlike digital perturbation or poisoning attacks, these real-world

attacks often require careful engineering to ensure they remain effective under varying

physical conditions, such as changes in lighting or perspective. They emphasize the chal-

lenge of bridging the gap between theoretical adversarial vulnerabilities and practical,

real-world scenarios, raising significant concerns for the deployment of AI in critical

fields like transportation, healthcare and security.

In this thesis, we investigate perturbation-based attacks against Deep Neural Net-

works (DNN) in machine learning systems. In the following sections, we review attack

baselines for both Natural Language Processing (NLP) (Section. 2.2) and Computer

Vision (CV) (Section. 2.3) models, addressing the unique characteristics of textual and

visual inputs.

2.2 Adversarial Attack for NLP

This section reviews adversarial attacks in NLP, where vulnerabilities in models are

exploited to induce errors in various textual tasks. We focus on four categories of NLP sys-

tems: textual classification models, translation models, abstract summarization models,

and question answering models. Each subsequent subsection provides a broad analysis of

the unique challenges posed by adversarial attacks in these domains, examines notable

attack strategies, and explores their contributions to enhancing model robustness.
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2.2.1 Textual Classification Models

Textual classification stands as a fundamental task in natural language processing

(NLP), with widespread applications ranging from sentiment analysis [46] and spam

detection [47] to topic categorization [48]. While the field has evolved from traditional

machine learning approaches with handcrafted features to sophisticated deep learning

architectures powered by pre-trained language models, a critical vulnerability persists:

these classification models remain susceptible to adversarial attacks. Through subtle

modifications to input text, these attacks can manipulate models into making incorrect

predictions. The attack methodologies operate at multiple linguistic levels, encompassing

character-level, word-level, and sentence-level approaches.

Traditional textual classification relied on machine learning methods like Naive

Bayes [49], Support Vector Machines (SVMs) [50], and logistic regression [51]. These

models employed handcrafted features such as bag-of-words, tf-idf, and n-grams, which

captured shallow statistical properties of text but failed to model complex semantic

relationships.

The development of deep learning networks like Recurrent Neural Networks (RNNs) [52],

Long Short-Term Memory (LSTM) [53] networks, and Gated Recurrent Units (GRUs) [54],

which captured sequential dependencies in text. Attention-based models, such as Hierar-

chical Attention Networks (HAN) [55], further improved the ability to focus on relevant

input portions for classification tasks.

Pre-trained language models revolutionized textual classification by leveraging trans-

formers. BERT (Bidirectional Encoder Representations from Transformers) [28], GPT

(Generative Pre-trained Transformer) [56], and Roberta [57] achieved state-of-the-art

results by generating contextualized embeddings that captured both local and global

semantic information. These models fine-tuned on specific classification tasks, are now

standard for achieving high performance across diverse NLP benchmarks.
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Attacks against these models can be categorized into three distinct levels: character-

level, word-level, and sentence-level modifications. Character-level adversarial attacks

focus on modifying individual characters within the input text. These modifications can

include typos, misspellings, or character substitutions using visually or semantically

similar alternatives. For instance, Ebrahimi et al. [32] proposed HotFlip, a gradient-

based method that identifies the most influential characters in a text and replaces

them to maximize the likelihood of misclassification. Examples include changing “great”

to “gr8” or “movie” to “m0vie”. These attacks highlight the sensitivity of models to

small perturbations in the text, especially in tasks such as spam detection or sentiment

analysis. TextBugger [58] further demonstrated that combining character-level changes

with heuristic-based rules can achieve high attack success rates in both white-box and

black-box settings.

Word-level attacks target individual words in the text, replacing, inserting, or deleting

them to mislead the model. Synonym substitution is one of the most common techniques,

where keywords in a sentence are replaced with semantically similar alternatives.

TextFooler [11] uses gradient information to identify the most important words in a text

and substitutes them with synonyms from embedding spaces or lexical databases, ensur-

ing minimal change to the input’s semantics. Zang et al. [59] extended this approach with

a particle swarm optimization (PSO) algorithm to optimize word substitutions and maxi-

mize attack effectiveness. Other methods, such as deletion-based attacks [60], remove

specific words from the text to disrupt the classifier’s decision-making process. These

attacks demonstrate that even minor changes at the word level can significantly affect

the model’s predictions. Embedding-based attacks also fall under word-level methods.

Michel et al. [61] showed that small perturbations in word embeddings, which represent

words in a continuous vector space, can lead to misclassifications. These attacks exploit

the semantic relationships captured by embeddings, revealing vulnerabilities in models
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that rely heavily on these representations.

Sentence-level adversarial attacks involve more extensive modifications, such as

rephrasing or restructuring sentences while preserving their semantic meaning. Sentence-

level attacks, such as the ISPED algorithm proposed by Dong et al. [62], perturb key

sentences within a text to mislead classifiers while maintaining semantic similarity.

ISPED utilizes a semantic-aware similarity function to ensure that the adversarial

examples remain imperceptible to human readers while effectively degrading model per-

formance. This approach highlights the challenges of sentence-level attacks, particularly

in tasks that rely heavily on context and linguistic structure. Syntax-aware attacks, pro-

posed by Zhou et al. [63], focus on altering the grammatical structure of sentences, such

as switching from active to passive voice or changing word order, to mislead classifiers.

Another category of sentence-level attacks involves combining multiple perturbations at

the character and word levels to create adversarial examples that affect entire sentences.

Black-box attacks, such as TextBugger [58], leverage heuristic-based rules and query

models to identify sentences that can be perturbed to maximize misclassification rates.

These methods are particularly effective in real-world applications, where attackers lack

access to model internals.

2.2.2 Translation Models

Machine translation aims to convert text from one language to another. Over the years,

translation systems have evolved significantly, from rule-based approaches to modern

neural network-based architectures [64]. Neural machine translation (NMT) has become

the standard for high-quality translations, but it remains vulnerable to adversarial

attacks that exploit its reliance on linguistic patterns and context [65].

Early translation systems, such as rule-based machine translation (RBMT), relied

on predefined grammatical rules and dictionaries, which limited their flexibility and
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scalability. The introduction of Statistical Machine Translation (SMT), exemplified by

systems like Moses [66], marked a major advancement by leveraging probabilistic models

trained on bilingual corpora. However, SMT struggled with long-range dependencies and

reordering issues in languages with significant syntactic differences.

Neural Machine Translation (NMT) revolutionized the field with sequence-to-sequence

(Seq2Seq) architectures [67], which encode input sentences into a latent representation

and decode them into the target language. Attention mechanisms [68] enhanced trans-

lation quality by dynamically focusing on relevant input tokens during decoding. More

recently, transformer-based architectures [69], such as MarianMT [67] and mBART [70],

have pushed the boundaries of translation quality with their scalability and ability to

model long-range dependencies.

Despite these advancements, translation models are highly susceptible to adversarial

attacks that introduce subtle modifications to the input or exploit model weaknesses to

degrade translation quality.

Character-level attacks, such as HotFlip [32], modify individual characters in the

source text to mislead translation models. For example, changing “hello” to “helo” can

cause significant translation errors, especially in models reliant on subword tokenization

methods like Byte Pair Encoding (BPE). These seemingly minor typographical errors

can propagate into substantial semantic inconsistencies in the output.

Word-level perturbations are another common form of attack. Seq2Sick [71] generates

adversarial examples by replacing or inserting words in the source sentence, aiming

to create misleading translations while preserving semantic similarity in the source

language. For instance, substituting “president” with “leader” might lead to a translation

that alters the intended meaning subtly but effectively.

Sentence-level attacks focus on rephrasing or restructuring the input sentence to

confuse translation systems. Belinkov and Bisk [72] showed that syntactic variations,

38



CHAPTER 2. LITERATURE REVIEW

such as converting “The cat is on the mat” to “On the mat is the cat,” can disrupt the

coherence and accuracy of the translated output.

Context manipulation attacks exploit the dependency of translation models on the

surrounding textual context. Zhao et al. [73] demonstrated that appending misleading

or ambiguous clauses to the input sentence, such as “according to rumors” can severely

affect the quality and accuracy of the translation.

Cross-lingual adversarial attacks, as described by Chen et al. [74], target multilin-

gual translation models by introducing adversarial examples in one language to degrade

performance across multiple target languages. For instance, a perturbation in an En-

glish sentence might result in errors in translations to French, German, and Spanish

simultaneously, revealing systemic vulnerabilities in multilingual models.

These adversarial attacks expose critical weaknesses in translation models, from

their reliance on tokenization and context to their sensitivity to linguistic variations.

They highlight the need for robust defenses and improved architectures that can handle

adversarial perturbations effectively.

2.2.3 Abstract Summarization Models

The increasing prevalence of network information in modern society has led to an explo-

sion of textual content across various formats, including academic articles, novels, books,

and reviews. This exponential growth in text length has created a significant challenge

for readers who need to quickly access and understand relevant information [75]. For

long articles, in particular, the traditional approach of manual summarization has be-

come increasingly impractical and time-consuming. This challenge has sparked renewed

interest in automated approaches to text summarization, especially in recent years.

Abstractive summarization has emerged as a promising solution within the field

of natural language processing (NLP). Unlike extractive summarization, which simply
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selects and copies existing segments from the source text, abstractive summarization

aims to generate concise and coherent summaries by paraphrasing and rephrasing the

original content. This approach allows for more flexible and natural summaries that can

effectively capture the essential meaning of the source document while presenting it in a

new form.

Early abstractive summarization systems were largely based on templates and

manually designed linguistic rules, which limited their flexibility and scalability. For

example, Radev et al. (2004) [76] introduced centroid-based multi-document summa-

rization methods, but these approaches primarily focused on extractive techniques with

limited abstractive capabilities.

The introduction of neural networks revolutionized abstractive summarization.

Chopra [77] developed a convolutional attention-based conditional recurrent neural

network (RNN) model for the same problem of abstractive sentence summarization. The

framework consists of CNN [78] with an attention mechanism for the encoder and LSTM

for the decoder. Sequence-to-sequence (Seq2Seq) models, originally designed for machine

translation, were adapted for summarization. Sutskever et al. (2014) [67] demonstrated

the potential of Seq2Seq architectures in text generation tasks. Further improvements

were made by incorporating attention mechanisms, as proposed by Bahdanau et al.

(2015) [68], enabling models to focus on relevant parts of the input text during decoding.

Despite their success, Seq2Seq models often faced issues such as repetition and lack

of factual accuracy. To address these challenges, Paulus et al. (2018) [79] employed

reinforcement learning to optimize models for non-differentiable objectives, such as

ROUGE scores, which improved the fluency and relevance of generated summaries.

The advent of transformer architectures further advanced abstractive summarization.

Pre-trained models such as BERT [28] and GPT [80] significantly improved the quality of

text generation by leveraging self-attention mechanisms [77], as shown in Figure 2.1, and
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large-scale pre-training. Transformer-based models like BART [14] and PEGASUS [15]

introduced specialized pre-training objectives tailored for summarization. For instance,

PEGASUS utilized a gap-sentence generation task to enhance its ability to identify and

rephrase key information.

However, abstractive summarization still faces critical challenges. One major issue is

factual inconsistency: models may hallucinate content that does not exist in the source

text. Cao et al. (2018) [81] highlighted this problem and proposed fact-aware summariza-

tion methods to improve the fidelity of generated summaries. Another challenge lies in

evaluation metrics. Commonly used metrics like ROUGE focus on surface-level overlap

and fail to capture semantic correctness. Sellam et al. (2020) [82] proposed BLEURT, a

learned metric designed to provide a more robust evaluation of text generation quality.

Future research aims to enhance factual consistency, improve evaluation methods,

and address domain-specific summarization challenges. Additionally, extending abstrac-

tive summarization to multimodal content, such as combining text with images or videos,

represents a promising frontier for the field.

In parallel, researchers have begun to investigate the robustness of abstractive

summarization systems by applying adversarial attack strategies. These attacks aim

to subtly perturb the input text in ways that mislead the summarization model while

preserving human-level coherence and semantics.

A variety of attack frameworks have emerged based on token or sentence-level impor-

tance ranking. TextFooler [11] utilized gradient-based scoring to identify high-impact

words for adversarial replacement, while PWWS [83] introduced genetic algorithms that

balance attack strength and semantic similarity. Particle swarm optimization (PSO)-

based methods [59] have also been used to guide word substitution by maximizing

prediction divergence.

Wallace et al. [31] proposed universal adversarial triggers‚Äîshort token sequences
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that can consistently fool models regardless of the input‚Äîdemonstrating the potential for

highly transferable attacks. In BERT-Attack [60], contextual embeddings were leveraged

to rank and substitute tokens, whereas BAE [84] combined word- and sentence-level

transformations in a hierarchical manner.

To enhance fluency and semantic preservation, recent efforts have integrated para-

phrasing into attack pipelines. Methods such as those by Iyyer et al. [85], Kassem et

al. [86], and Ter Hoeve et al. [87] use transformer-based generators (e.g., T5, PEGASUS)

to rewrite sentences in ways that maintain meaning while altering model behavior.

These methods reveal significant vulnerabilities in summarization models, particularly

their sensitivity to surface-level variation and their limited understanding of factual

grounding.

Figure 2.1: Attention Based Summarization by [1]
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2.2.4 Question Answering Models

Question answering represents a complex interplay of NLP, information retrieval, and

reasoning capabilities [88, 89]. These models are designed to process an input question

and a context passage, extracting or generating an appropriate answer through elab-

orate analysis of the semantic relationships between these elements [90]. Modern QA

systems typically rely on deep learning models with transformer-based architectures

like BERT [28] and its variants [91–93] being particularly prevalent. These models excel

at capturing contextual information and understanding nuanced relationships in the

text with transformers, allowing them to perform impressively on QA tasks. In addition

to these transformer models, encoder-decoder architectures such as T5 [16, 94] and

BART [14], GPT [56] and PEGASUS [15] have also become prominent in QA models.

These models utilize an encoder to process the input question and context, transforming

them into a rich, context-aware representation, and the decoder is then used to generate

a coherent and contextually appropriate answer.

With the development of NLP techniques, recent research has increasingly focused on

developing sophisticated textual adversarial examples for QA systems [4]. The inherent

differences between “informative queries” and “boolean queries” necessitate distinct

attacking diversities due to their unique answer structures [31]. Attacks on boolean

QA pairs closely resemble methods used to mislead textual classifiers. These attacks

primarily operate at the word level, aiming to manipulate the model’s binary (yes/no)

output [60, 84]. In contrast, informative queries present a more complex challenge. These

attacks frequently target the sentence level, requiring an approach to disrupt the model’s

comprehensive understanding [95].

Boolean queries are similar to classification tasks in NLP, while the answer is

based on two-way input: question and context. They are vulnerable to attacks designed

for NLP classifiers when question and context are simply encoded and concatenated.
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Approaches such as [11, 36, 59, 60, 83, 84] concentrate on altering individual words

based on their influence on model predictions. These methods typically employ carefully

selected synonyms for word substitution. The process of word replacement is guided

either by the direct use of BERT Masked Language Model (MLM) [28] or by leveraging

gradient information to determine optimal substitution candidates. While effectively fool

classifiers (boolean queries), these attacks were initially designed for classification tasks

and have shown limited efficacy when applied to the question-and-context format of QA

systems. To address this limitation, some attack methods for Seq2Seq models have been

adapted for QA models. UAT [31], which averages gradients and modifies input data

to maximize the model’s loss, has been adapted for QA but still struggles with boolean

queries due to their simplicity. Similarly, TextBugger [58], which focuses on character-

level perturbations, also faces challenges in handling the deeper semantic understanding

required in QA, especially for multi-sentence reasoning. Liang’s approach [96], relying on

confidence-based manipulations, has difficulty reducing the model’s certainty in boolean

queries where the binary answers leave less room for variation in confidence. Although

these approaches offer improved accuracy in attacking informative questions with minor

modifications, they struggle with boolean queries. We argue that these methods face

challenges in identifying the most vulnerable words when dealing with concatenated

question-context input relationships. The MLQA attack [97] attempts to bridge this

gap by utilizing attention weights to identify and alter influential words. However, this

method, developed specifically for multi-language BERT models, may not fully address

QA-specific vulnerabilities.

In contrast to boolean queries, adversarial attacks on informative queries within

QA systems share fundamental similarities with attacks on other Seq2Seq models [24,

33, 68, 71, 98, 99], concentrating more on the inter-relationship between question and

context. Mechanisms like RobustQA [5] have been developed to enhance model resilience
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through improved training methods, and sophisticated attacks continue to successfully

compromise these systems, especially when employing subtle manipulations of key input

elements. Character-level attack methods, notably HotFlip [32], have demonstrated

significant success by strategically flipping critical characters based on gradient in-

formation, leading to misinterpreting informative inputs. In the multilingual domain,

MLQA [100] leverages attention weights to identify and target crucial words, though its

attention mechanism, primarily designed for multilingual functionality, may not fully

exploit the intricate vulnerabilities within the model’s attention architecture. Advanced

techniques have emerged to target the influence that answers have on QA systems. Posi-

tion Bias and Entropy Maximization methods exploit model weaknesses by manipulating

contextual patterns and answer positioning, particularly effective in scenarios involving

complex, lengthy responses. Syntactically Controlled Paraphrase Networks (SCPNs) [85]

generate adversarial examples through strategic syntactic alterations while preserving

semantic meaning. TASA (Targeted Adversarial Sentence Analysis) [3] primarily relies

on manipulating the answer sentences to mislead QA models, making it particularly

effective for informative queries where complex responses provide more opportunities for

subtle modifications. However, this approach is not suitable for boolean queries, as the

simplicity of yes/no answers limits the sentence-level manipulations that TASA depends

on.

2.3 Adversarial Attack for CV

Computer vision (CV) is a popular field of machine learning that leverages deep neural

networks (DNNs) to interpret and analyze visual data such as images and videos [101].

Its applications span diverse domains, from autonomous driving [102] and health-

care [103] to security [104] and entertainment [105], where robust and accurate inter-

pretation of visual information is paramount. While DNNs have revolutionized modern
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Figure 2.2: The figure illustration for Fast Gradient Sign Method [2]. It demonstrates
adversarial attack generation on ImageNet. The attack modifies the original image
by adding a minimal perturbation vector, computed as the sign of the cost function’s
gradient.

computer vision systems through their exceptional ability to learn hierarchical repre-

sentations from raw data, their vulnerability to adversarial attacks presents a critical

security concern, particularly in safety-sensitive applications.

According to different tasks in computer vision, such as image classification, object

detection, and image segmentation, image captioning. This task-based organization

provides insights into the unique challenges and vulnerabilities associated with each

application, offering a comprehensive view of adversarial attacks in CV.

2.3.1 Image Classification Models

Image classification differs from text classification as it processes visual data rather

than textual input, requiring models to extract and interpret features directly from

pixel-based representations. Deep learning approaches, particularly convolutional neural

networks (CNNs) [106–109], have transformed this field by achieving unprecedented

accuracy on benchmark datasets like ImageNet [110] and CIFAR-10 [111].

Despite their impressive capabilities, these powerful models have a critical vulner-

ability: they are susceptible to adversarial attacks. In these attacks, minute and often

imperceptible changes to pixel values can cause the models to dramatically misclassify
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inputs. These attack strategies can be categorized into two main types: black-box at-

tacks, where the attacker has no access to model’s internal parameters (gradients), and

white-box attacks, where the attacker has part or full access to these parameters.

xadv = x−ε · sign(
h

x
J(x, ytarget))

xadv
0 = x, xadv

N+1 = clipx,ϵ

{
xadv

t +α · sign(
h

x
J(xadv

t , y))

}(2.1)

The representative method of white-box attacks is FGSM, as illustrated in Figure 2.2,

a carefully crafted noise pattern added to an image of a panda can cause the model to

misclassify it as a gibbon with high confidence [2]. This vulnerability arises from funda-

mental properties of neural networks: their locally linear behavior in high-dimensional

feature spaces makes them susceptible to adversarial manipulation. Building on this

insight, the Basic Iterative Method (BIM) [112] enhanced the attack effectiveness by

applying FGSM iteratively, generating stronger adversarial examples through cumula-

tive perturbations. Projected Gradient Descent (PGD) [36], widely considered one of the

most potent attack methods, further refined this approach by projecting perturbations

into a constrained space after each iteration, ensuring bounded modifications while

maximizing attack success. The comparison of the two methods is shown in Equation 2.1.

The experiment showed that FGSM outperformed BIM in the white-box attack, while

BIM had a higher success rate than FGSM in the black-box attack. The potential reason

is that iterative methods could cause overfitting to a specific model. The Momentum

Iterative Method (MIM) [113] boosts gradient-based attacks by adding momentum, which

helps accumulate gradients across iterations, avoids getting stuck in local maxima, and

ultimately improves upon standard FGSM techniques.

The collection of white-box attacks has expanded to include increasingly sophisti-

cated methods. The DeepFool attack [24] generates minimal adversarial perturbations

by iteratively projecting inputs toward the nearest decision boundary. Taking a different

approach, the Jacobian-based saliency Map Attack (JSMA) [114] achieves targeted mis-
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classification by identifying and modifying the most influential pixels through saliency

maps. Universal Adversarial Perturbations [115] demonstrate a particularly concern-

ing capability: generating a single perturbation pattern that can successfully mislead

multiple inputs across different datasets and models. The One Pixel Attack [116] re-

veals the extreme brittleness of neural networks by achieving misclassification through

the modification of just a single pixel. Combining different optimization objectives, the

Elastic-Net Attack (EAD) [117] employs both “L1” and “L2” regularization to craft

adversarial examples that balance effectiveness with imperceptibility.

Beyond white-box or gradient-based approaches, the field has evolved to encompass

more sophisticated attack methodologies. The Carlini-Wagner (CW) attack [9] represents

a significant advancement through its optimization-based approach, which carefully

balances attack effectiveness with perturbation imperceptibility using a custom loss

function. Its notable ability to circumvent many defensive measures has established it

as a benchmark for evaluating model robustness. The development of black-box attacks

has further expanded the threat landscape. Zeroth-Order Optimization (ZOO) [118]

demonstrates that attackers can craft adversarial examples without access to model

architecture or gradients, relying solely on input-output queries to approximate gradients.

This capability makes such attacks particularly relevant for real-world systems deployed

as APIs or cloud services. GenAttack [119] harnesses evolutionary algorithms for efficient

adversarial example generation, while Boundary Attack [10] employs decision boundary

exploration through iterative refinement. Transfer-based techniques [120] exploit a

crucial vulnerability: adversarial examples crafted for one model often successfully

deceive other models trained on similar tasks.
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2.3.2 Objective Detection Models

Object detection is a branch of computer vision that involves identifying and localiz-

ing multiple objects within an image. Modern object detection models, such as Faster

R-CNN [121], YOLO (You Only Look Once) [122], and SSD (Single Shot MultiBox Detec-

tor) [123], have achieved remarkable success. Despite these advancements, adversarial

attacks pose a critical threat to the robustness and reliability of these systems. Unlike

image classification, adversarial attacks on object detection must not only manipulate

class predictions but also disrupt bounding-box coordinates, making them more complex

and challenging.

Early research on adversarial attacks adapted gradient-based techniques from image

classification to object detection. Liu et al. [124] demonstrated that gradient-based meth-

ods like FGSM and BIM could be extended to disrupt classification and localization in

detection models. These attacks typically generate perturbations to misclassify objects,

remove detected objects, or create false positives. For example, an adversarial pertur-

bation could make a detection model fail to recognize a stop sign or falsely identify an

object in the scene, compromising the system’s functionality. Zhao et al. [125] introduced

targeted adversarial attacks for object detection, where perturbations are crafted to

make the model predict specific incorrect labels and bounding box coordinates for objects.

These targeted attacks require precise optimization to achieve the desired outcomes while

maintaining imperceptibility. More recent research has focused on developing black-box

attack methods that do not require access to the model’s architecture or parameters.

Duan et al. [126] proposed a transfer-based approach, leveraging the transferability

property of adversarial examples. By generating adversarial perturbations on surrogate

models, these attacks can deceive target detection models with limited knowledge of

their internals.

Optimization-based black-box attacks, such as those using zeroth-order optimiza-
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tion, have also been explored for object detection. These methods estimate gradients

by querying the model and iteratively refining the perturbations to achieve the desired

adversarial effect. Cheng et al. [127] introduced a query-efficient black-box attack specif-

ically designed for detection models, reducing the number of queries needed to craft

successful adversarial examples.

Adversarial patch attacks represent a unique category of attacks on object detection

models. These attacks involve creating small, localized perturbations, often patches,

that can be physically placed in the environment to fool detection systems. Eykholt et

al. [41] demonstrated the effectiveness of adversarial patches in causing object detection

models to ignore or misclassify objects in real-world settings. Unlike traditional pixel-

level perturbations, adversarial patches are designed to work under various physical

conditions, such as changes in lighting and perspective.

2.3.3 Image Captioning Models

Image captioning serves as a vital bridge between computer vision (CV) and natural

language processing (NLP). It involves generating descriptive sentences in natural

language that accurately reflect the visual content of an image. This task requires a deep

understanding of both the objects and the relationships within the image, as well as the

ability to articulate these observations into coherent sentences.

Early models for image captioning primarily relied on encoder-decoder architectures,

where convolutional neural networks (CNNs) serve as encoders to extract features from

the image, and recurrent neural networks (RNNs) function as decoders to generate the

caption as a sequence of words. One of the foundational models in this domain is the

“Show and Tell” model, introduced by Vinyals et al. [128], which uses a CNN to encode

image features and an RNN to decode these features into a sentence.

In recent years, attention mechanisms have dramatically improved the quality of
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image captioning models. Attention mechanisms allow models to focus on different parts

of the image while generating each word in the caption, enhancing the model’s ability to

capture fine-grained details and contextual information. One prominent example is the

“Show, Attend, and Tell” model [129], which introduced an attention-based approach that

enabled the model to selectively focus on different image regions during the generation

process, resulting in more accurate and contextually relevant captions. This attention-

based approach has since become a standard in many modern image captioning models,

with extensions that further improve the precision of caption generation by incorporating

hierarchical attention [130] and semantic scene graphs [131].

Other advancements in image captioning have included models that incorporate

reinforcement learning [132], which optimize the generated captions based on reward

functions like BLEU or CIDEr scores, leading to captions that are more semantically

meaningful and aligned with human preferences. Additionally, transformer-based models,

such as the Vision Transformer (ViT) [133], have been applied to image captioning tasks,

leveraging the transformer’s ability to model long-range dependencies and complex

relationships between visual elements in images.

Adversarial attacks in image captioning represent a more complex challenge than

attacks in traditional image classification or NLP tasks. Image captioning models, which

generate descriptive sentences from images, are vulnerable to adversarial examples that

can manipulate both the visual input and the textual output. These attacks can lead to

the generation of captions that either misdescribe the image or fail to capture its critical

details.

Early research in this area focused on adapting existing adversarial attack techniques

from image classification to image captioning. With the advent of the fast gradient sign

method (FGSM) [2], deep neural network models (DNNs) have exhibited vulnerabil-

ities to adversarial examples. A multitude of gradient-based attack techniques have
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emerged, such as the Basic Iterative Method (BIM) [112] and Projected Gradient Descent

(PGD) [36], which enhanced FGSM by iteratively updating perturbations, resulting in

more potent attacks. The “Show-and-Fool” method [134] is one of the first approaches

specifically targeting image captioning models by applying these gradient-based at-

tacks to modify pixel values in the input image, thereby altering the generated caption.

However, like many early approaches, Show-and-Fool operates in a white-box setting,

assuming full access to the model’s architecture and parameters, which is often impracti-

cal in real-world scenarios. Moreover, these white-box attacks only target specific models

and have relatively weak transferability [135].

To transcend this constraint, black-box attacks based on generative adversarial

networks (GANs) have been developed [136, 137]. These attacks deploy GANs to generate

perturbations that can mislead the model. However, training GANs is often fraught with

instability, and tasks that target an image, such as image captioning, cannot meet the

requirement of modifying pixels. More recent research has aimed to develop alternative

black-box attack methods for image captioning that are more applicable to real-world

scenarios. Optimization-based attacks [24, 115] offer a potential solution by casting the

creation of adversarial examples as an optimization problem to identify the minimal

perturbation that induces misclassification [116]. For example, the work by Aafaq et

al. [138] introduces a grey-box adversarial attack on image captioning that manipulates

attention mechanisms within the model. Similar strategies have also been applied in

domains like road sign recognition [139] and Stackelberg adversarial games [140, 141].

Visual attention also plays a pivotal role in adversarial attacks. By identifying regions

of interest within an image, attackers can precisely target critical areas for perturbation,

ensuring maximum impact while keeping the modifications imperceptible to the human

eye [142–146]. This guided perturbation approach is particularly effective in crafting

adversarial examples for models that rely on spatial and contextual information, such as
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image captioning systems. These mechanisms, initially introduced to enhance caption

generation, have been successfully repurposed to increase the efficiency and stealth of

adversarial attacks.

The differential evolution (DE) algorithm [147] has emerged as a powerful black-box

optimization technique for adversarial example generation. DE is especially useful in sce-

narios involving non-differentiable, high-dimensional objective functions‚Äîcharacteristics

commonly found in image-based attacks. It works by maintaining a population of candi-

date solutions and iteratively refining them through mutation, crossover, and selection

operations. In the context of image captioning, DE can optimize perturbations over

attention-highlighted regions, allowing attacks to focus on areas most influential to

caption generation. Prior work has demonstrated that DE-based methods can effec-

tively balance attack success and imperceptibility, without requiring access to model

gradients [116].

Despite these advances, attacking image captioning models remains inherently diffi-

cult due to their generative nature and sequential outputs [148, 149]. Unlike classifica-

tion tasks, where a single label is the output, captioning models produce word sequences,

introducing dependencies among tokens and complicating loss function computation.

One proposed solution is to treat the entire sentence as a single unit when computing

adversarial loss [150], simplifying the optimization process.

Recent approaches have also explored targeted attacks that attempt to force the

model to generate specific vocabulary within the caption [151, 152]. These attacks

are formulated as constrained optimization problems and have shown success under

white-box assumptions. However, such methods often require access to internal model

parameters, limiting their applicability in real-world black-box scenarios.

Another significant challenge lies in evaluating the effectiveness of adversarial

attacks in captioning tasks. Unlike classification, where accuracy drop is a clear metric,
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evaluating sequence generation is less straightforward. Commonly used metrics like

BLEU and ROUGE capture surface-level overlap but fail to reflect semantic shifts or

factual inconsistencies caused by perturbations. Consequently, there is growing interest

in developing more robust, semantically-aware evaluation metrics tailored to the nature

of generative models [153].

2.4 Discussion and Challenges

In this section, we summarize our findings and discuss the main challenges in attacking

three types of models spanning both Natural Language Processing (NLP) and Computer

Vision (CV): abstractive summarization, image captioning, and question answering

systems.

Abstractive summarization poses perhaps the most complex challenges for adversar-

ial attacks due to its document-level nature. While most existing adversarial methods

excel at word-level or sentence-level tasks, they struggle when applied to document-

level summarization. The fundamental challenge lies in the need to manipulate entire

sections of text rather than isolated tokens while maintaining coherence throughout

the document. This creates a delicate balance between perturbation extent and attack

effectiveness - too much perturbation makes the attack detectable, while too little fails to

deceive the model. Current paraphrasing approaches, while promising, face significant

limitations in ensuring semantically correct but contextually inconsistent replacements,

reducing the attack’s quality and impactally inconsistent, reducing both the quality and

impact of the attack.

In image captioning attacks, the primary limitations stem from both white-box and

black-box approaches. Traditional gradient-based attacks like FGSM, BIM, and PGD

were originally designed for classification tasks and heavily depend on white-box access

to model parameters, significantly limiting their real-world applicability. These methods
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also demonstrate poor transferability across different models, further restricting their

effectiveness. When attempting black-box approaches, GAN-based attacks offer potential

solutions but face significant challenges in training stability and direct application to cap-

tioning tasks. The fundamental difficulty lies in handling discrete sequence outputs and

the reduced effectiveness of pixel-level perturbations in generative contexts. The complex

relationships between words in generated sequences make it particularly challenging to

apply conventional adversarial methods while maintaining semantic coherence.

Question answering systems present their own unique set of challenges for adver-

sarial attacks. Traditional classification-based attacks like BERT-based approaches,

TextBugger, and UAT struggle to address the specific requirements of QA tasks. However,

the heavy reliance on question-context relationships presents distinct vulnerabilities

that classification-centric methods do not address effectively. The challenge becomes even

more complex with informative queries, which depend on intricate interrelations between

questions and contexts. Cross-language applications add another layer of complexity,

as existing methods like MLQA and RobustQA struggle to address vulnerabilities in

multilingual settings comprehensively. The heavy reliance on attention mechanisms

in multilingual QA models creates specific vulnerabilities, yet current attack methods

often fail to combine gradient-based perturbations with attention-weight exploitation

effectively.

The practical implementation of these attacks faces additional challenges in real-

world scenarios. While adversarial attacks are typically evaluated on benchmark datasets,

their effectiveness in real-world applications remains largely unexplored. This is par-

ticularly crucial in domains like news summarization, legal document processing, and

research article generation, where model robustness against adversarial inputs is crit-

ical. The lack of comprehensive evaluation methods for real-world scenarios and the

need for domain-specific validation approaches create significant barriers to practical
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implementation. Furthermore, the development of effective black-box attack methods

remains an open challenge across all these tasks, as most current strategies rely heavily

on access to model gradients or internal parameters.

Common across all these tasks is the fundamental challenge of balancing attack

effectiveness with semantic preservation. As the complexity increases from basic classifi-

cation tasks to sophisticated sequence generation, the need for more nuanced approaches

becomes apparent. The development of attack methods must consider not only the

technical aspects of model deception but also the maintenance of output quality and

coherence. This becomes particularly crucial in long-form content generation, where

maintaining consistent semantic relationships and logical flow throughout the sequence

poses significant challenges for current attack methodologies.

56



C
H

A
P

T
E

R

3
SUMMARIZATION ATTACK VIA PARAPHRASING

M
any natural language processing models are perceived to be fragile in ad-

versarial attacks. Recent work on adversarial attacks has demonstrated a

high success rate in sentiment analysis and classification models. However,

attacks on summarization models have not been well-studied. Summarization tasks

are rarely influenced by word substitution since advanced abstractive summary models

utilize sentence-level information. In this chapter, we propose a paraphrasing-based

attack method called Summarization Attack via Paraphrasing (SAP) aiming at abstrac-

tive summarization models. We first rank the sentences in the document according to

their impacts on summarization. Then, we apply the paraphrasing procedure to generate

adversarial samples. Finally, we test our algorithm on benchmark datasets against

other methods. Our approach achieved the highest success rate and the lowest sentence

substitution rate. In addition, the adversarial samples have high semantic similarity

with the original sentences.
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3.1 Introduction

Abstractive summarization, which generates concise summaries by synthesizing new

sentences from source documents, represents a complex challenge in natural language

processing (NLP). While models have achieved remarkable progress in this domain, they

remain vulnerable to adversarial attacks - subtle manipulations of input text that can in-

duce the generation of inaccurate or misleading summaries. Although adversarial attacks

have been extensively studied for tasks like text classification [60, 154] and machine

translation [95, 99], document-level abstractive summarization presents unique chal-

lenges that remain underexplored. State-of-the-art abstractive summarization models,

such as T5 [16] and Bart [14], leverage sophisticated encoder-decoder architectures with

attention mechanisms to generate summaries that capture key information while poten-

tially differing lexically from the source text. These systems have found widespread ap-

plication across diverse domains, including news [155], legal document processing [156],

education [157], social media content analysis [158], and healthcare records summa-

rization [159]. However, these advanced models exhibit high sensitivity to adversarial

perturbations, which can significantly disrupt their sequence-level generation process.

Earlier attempts to study adversarial attacks in summarization relied primarily on

handcrafted or heuristic approaches, but these methods proved limited in both scalability

and efficiency [4, 160]. Traditional NLP adversarial attacks have predominantly focused

on word-level perturbations, including synonym substitution and token-level replace-

ments [32, 60]. While these approaches prove effective for shorter texts like sentence

classification, they face significant limitations when applied to document-level summa-

rization, where perturbations must account for broader context and complex sequence

relationships. The challenge lies in maintaining a delicate balance: perturbations must

be substantial enough to mislead the model while preserving semantic integrity and

remaining imperceptible to human readers. Additionally, identifying optimal target sen-
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tences within lengthy documents adds another layer of complexity to the attack strategy.

To address these challenges, we propose a novel adversarial attack framework specifically

designed for abstractive summarization models. Our approach employs paraphrasing

techniques to generate subtle, contextually coherent perturbations while preserving

the document’s overall meaning. The framework incorporates a ranking mechanism

to identify and target the most influential sentences, ensuring that generated adver-

sarial examples effectively deceive the model while remaining undetectable to human

evaluators. The key innovation of our framework lies in its sentence-level operation,

moving beyond traditional token-level substitutions or gradient-based perturbations. By

leveraging advanced paraphrasing techniques, our method maintains textual fluency

and coherence while manipulating key elements to mislead the summarization model.

This approach is well-suited for document-level summarization tasks, where preserv-

ing context and sequence relationships is crucial for generating effective adversarial

examples.

In summary, the contribution of this work is:

• We propose a novel adversarial attack system Summarization Attack via Para-

phrasing (SAP) for document-level abstractive summarization models, utilizing

sentence-level paraphrasing to generate adversarial examples.

• SAP introduces a ranking mechanism to identify and target the most influential

sentences in the input document, enabling precise and effective perturbations.

• We conduct extensive experiments on real-world datasets and state-of-the-art

summarization models, demonstrating the efficacy of our method in generating

imperceptible yet impactful adversarial examples.

The subsequent sections of this chapter are structured as follows. In Section 3.2,

we introduce the background on importance ranking and paraphrasing. Section 3.3

59



CHAPTER 3. SUMMARIZATION ATTACK VIA PARAPHRASING

details the methodology of the proposed framework. We present experimental results

and analysis in Section 3.4. Finally, we conclude the chapter and discuss potential future

directions in Section 3.5.

3.2 Preliminary

In this section, we introduce the foundational concepts that support our adversarial

summarization framework, specifically focusing on importance-based ranking and para-

phrasing as the core components.

3.2.1 Importance Ranking

Importance ranking is a fundamental strategy in textual adversarial attacks to iden-

tify the most influential components within a document. This involves evaluating the

importance of sentences, phrases, or tokens based on their contribution to model pre-

dictions. Traditional approaches often use metrics like model’s loss for classification

tasks, ROUGE [25] or BLEU [161] scores for Seq2Seq tasks, which measure the overlap

between generated outputs and reference data, to assess the significance of each sentence

in a summarization task.

Advanced strategies further leverage gradient-based techniques, semantic similarity

metrics, or prediction probabilities to refine the ranking process. This ranking procedure

serves as the basis for selecting candidate regions in the input to be perturbed, guiding

the design of effective and minimal adversarial attacks.

3.2.2 Paraphrasing Models

Paraphrasing involves crafting alternative textual formulations that maintain the origi-

nal semantic content [162]. In the context of adversarial NLP tasks, it is particularly

60



CHAPTER 3. SUMMARIZATION ATTACK VIA PARAPHRASING

useful for generating input perturbations that preserve human readability and fluency

while challenging model robustness.

Modern paraphrasing techniques span from rule-based and statistical methods to

deep neural models and large-scale transformer-based architectures. Neural sequence-

to-sequence (Seq2Seq) models encode an input and decode a semantically equivalent

variant, often through techniques such as back-translation [163]. Recent transformer-

based models like T5 [164] and Pegasus [15] achieve state-of-the-art performance in

generating high-quality paraphrases that preserve contextual meaning.

In adversarial contexts, these paraphrasing tools allow controlled, semantics-preserving

modifications to the input that exploit model vulnerabilities without introducing unnatu-

ral or noisy text.

3.2.3 Potential Social Impact

The deployment of adversarial summarization attacks represents a significant threat to

information integrity across critical sectors. In financial markets, algorithmic trading sys-

tems increasingly depend on automated news summarization for decision-making [165].

Malicious actors could exploit this dependency by subtly modifying earnings report

summaries—transforming “strong growth ahead” into “moderate progress expected”—

thereby manipulating market sentiment without detection. Such seemingly minor alter-

ations could trigger algorithmic trading cascades, potentially destabilizing markets and

impacting institutional portfolios and individual retirement accounts.

Healthcare systems face comparable vulnerabilities as medical professionals increas-

ingly utilize AI-powered summarization tools to synthesize clinical literature [166].

Adversarial manipulation of research summaries concerning vaccine efficacy or drug

interactions could compromise clinical decision-making while maintaining semantic

plausibility. The COVID-19 pandemic demonstrated how information distortion can

61



CHAPTER 3. SUMMARIZATION ATTACK VIA PARAPHRASING

rapidly influence public health outcomes [167]. Sophisticated paraphrasing attacks could

systematically erode confidence in evidence-based medicine precisely when accurate

information dissemination is most critical.

Political communication systems exhibit particular susceptibility to such attacks.

Evidence indicates that social media users predominantly engage with headlines and

automated summaries rather than full articles [168]. This behavior pattern creates

opportunities for adversaries to manipulate public discourse through systematic para-

phrasing of political content, subtly altering the perceived positions of candidates or

the implications of policies. Unlike conventional disinformation campaigns that rely on

fabrication, paraphrasing attacks preserve factual accuracy while modifying rhetorical

emphasis—a characteristic that renders them resistant to traditional fact-checking mech-

anisms. Given the established influence of framing effects on electoral behavior [169],

coordinated paraphrasing campaigns could potentially influence democratic processes

while evading existing content moderation frameworks.

These vulnerabilities are amplified by the expanding integration of large language

models into information infrastructure, encompassing applications from legal docu-

ment analysis to academic peer review [170]. As automated summarization becomes

increasingly embedded in knowledge dissemination systems, the potential for adversarial

manipulation to influence collective decision-making processes escalates correspond-

ingly. This emerging threat landscape necessitates the development of robust detection

mechanisms and defensive strategies to preserve information integrity in AI-mediated

communication systems.

3.3 Proposed Method

In this section, we introduce the SAP algorithm. The algorithm can be divided into

two steps: importance ranking and sentence replacement. The completion steps of our
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Figure 3.1: The brief workflow of SAP approach. For each target document, we rank out
the sentences in reverse order and rebuild them by replacing the top−k sentences with
sentences produced with the paraphrasing model.

proposed method are shown in Algorithm 1.

3.3.1 Importance Ranking

The first step of our method involves sentence-level importance ranking, which identifies

sentences that significantly influence summarization outputs. Evaluation in summa-

rization predominantly depends on the ROUGE score [25], which quantifies similarity

between machine-generated and reference summaries. Building upon this widely adopted

metric, we propose a ranking procedure integral to enhancing the effectiveness of our

summarization attack via paraphrasing.

Our ranking procedure systematically evaluates the importance of individual sen-

tences within a document by examining the impact of their removal on the summariza-

tion model’s performance. Specifically, sentences are deleted one at a time to generate

modified versions of the input document. These modified documents are then fed into

the summarization model to produce summaries. The importance of each sentence is

quantified by analyzing the change in the ROUGE score before and after the deletion of

the target sentence.

Let a = [s1, . . . , si, . . . ] represent the input document, where each si is a sentence. Let
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Fs denote the summarization model employed in the ranking process, R represent the

ROUGE score function, and D0 and D i denote the original document and the document

with sentence si removed, respectively. The importance of a sentence, G i, is calculated

as:

(3.1) G i = R(Fs(D i))−R(Fs(D0))

In this formulation, G i captures the impact of removing sentence si on the quality of

the generated summary. A higher G i value indicates that sentence si is more critical to

the summarization output.

3.3.2 Sentence Replacement

The next step is Sentence Replacement. Previous text attack methods obtain substitutes

from the prediction of Masked Language Model. It requires a sophisticated selection

strategy from predicted words. However, summarization models mine the semantic

relationship between sentences and substituting words has a low effect on misleading

summary models. Therefore, a hypothesis to build an adversary document is to simply

remove influential sequences, but lacking a bunch of topic sentences would also mislead

human readers. Hence, in our approach, we tested top−k from 10% to 30% of document

length to balance the attack cost and semantics of documents. The chosen paraphrasing

model uses hierarchical sketches to build semantically preserved sentences with vari-

ous vocabulary and grammar. It is known that the paraphrasing approach maintains

the grammatical and semantic features of each sentence with a combination sentence

structure.
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Algorithm 1: Summarization Attack with Paraphrasing
1 Input: Dataset D with article inputs a; Pegasus model (victim model F); ROUGE

score for output F(a) is R0; K is the percentage of attacked sentences in a
document; α is the maximum number of sentences to perturb; Function to get
adversarial sample Fadv. ;

2 Input: Adversarial samples adv ;
3 // Sentence Importance Ranking;
4 Initialize sentence importance ranking list: sentence_rank ← [ ];
5 for each si in a do
6 Build document without sentence si;
7 Calculate ROUGE score Ri without si;
8 Append ROUGE difference to ranking: sentence_rank.append(R0 −Ri);
9 end

10 Compute dataset size: size ← len(D);
11 Initialize total length: length ← 0;
12 for each a in D do
13 length ← length+ len(a);
14 end
15 Compute average document length: ave_length ← length/size;
16 Compute threshold: threshold ←min(ave_length ·K ,α);
17 Select top-ranked sentences: ranked ← sentence_rank[: threshold];
18 // Generating Adversarial Example;
19 Initialize adversarial samples: adv ← [ ];
20 for each si in ranked do
21 Generate adversarial sentence: sadv ← Fadv(si);
22 Construct adversarial document: aadv ← [s1, . . . , sadv, . . . , sn];
23 Append adversarial document to adv;
24 end
25 return adv

3.4 Experiment Results and Analysis

This section presents a comprehensive evaluation of our SAP performance compared to

baselines. Our analysis encompasses multiple dimensions, utilizing diverse metrics to

thoroughly understand the method’s effectiveness and robustness across various con-

texts. We begin by introducing the datasets and victim models used in our experiments

(Sec. 3.4.1). Next, we analyze the experimental outcomes (Sec. 3.4.4). Then, we conduct

ablation studies (Sec. 3.4.6) to analyze the contribution of individual components and
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assess the computational efficiency of our attack strategy. We then examine the trans-

ferability of attacks (Sec. 3.4.7) to demonstrate SAP’s performance on other Seq2Seq

tasks. Finally, we explore how adversarial retraining helps deepen our understanding of

summarization models (Sec. 4.4.7).

3.4.1 Datasets

We evaluate our SAP method on five real-world abstractive summarization datasets, each

presenting distinct summarization challenges. The XSum [171] dataset consists of BBC

news articles paired with highly abstractive single-sentence summaries, aiming to test

the model’s ability to produce focused and concise outputs. The CNN/Daily Mail [172]

dataset includes news articles accompanied by multi-sentence summaries written by

human annotators, providing a large-scale benchmark for document-level summarization.

WikiHow [173] contains instructional articles and their concise summaries, designed to

evaluate the summarization of procedural and step-by-step content. Multi-News [174]

offers a multi-document summarization setting in which each instance contains multiple

news articles and a single reference summary, challenging models to synthesize informa-

tion from diverse sources. Reddit TIFU [175] is constructed from user-generated posts

on Reddit, featuring informal and conversational language that tests model robustness

in handling noisy and colloquial input.

3.4.2 Victim Models

We evaluate our approach on three stunning abstractive summarization models: Pega-

sus [15], T5 [16], and Bart [14]. Pegasus is specifically designed for abstractive summa-

rization, employing a gap-sentence pretraining objective that predicts masked sentences.

T5 approaches summarization as a text-to-text task, offering enhanced flexibility, while

Bart leverages a denoising autoencoder architecture to handle noisy inputs and gener-
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Table 3.1: Dataset distribution and corresponding baseline performance (ROUGE-1).

Datasets
Data Distribution Model Performance

Total Train Validation Test Pegasus T5 Bart

XSum 226,711 204,045 11,332 11,334 47.60 49.83 51.21
CNN/Daily Mail 311,971 287,227 13,368 11,376 64.16 61.56 62.11

WikiHow 230,843 200,000 15,000 15,843 66.39 67.12 65.82
Multi-News 56,216 44,972 5,622 5,622 67.65 68.75 64.13
Reddit TIFU 120,000 95,000 12,500 12,500 57.99 59.81 57.33

ate coherent summaries. Table 3.1 presents the dataset distributions and performance

results across all models. To assess the effectiveness of paraphrasing attacks, we imple-

ment both translation and deletion methods for generating candidate adversaries. For

the translation approach, we employ the T5 [16] transformer encoder-decoder model to

translate input sentences to German and back to English. In the deletion method, we

remove the top−k candidates from the input text.

3.4.3 Experiment Settings and Evaluation Metrics

In the base setting for our experiment, 1000 samples were randomly selected from the

train split of the dataset; the top−k was finally set to 20% sentences with 5 sentences

as an upper bound. We provide our code for reproducibility of the experiments1.

We measure attack success by the decrease in ROUGE-1 scores when summarizing

the modified documents. We also report ROUGE-2 and BLEU-1,2 scores, with their

equations shown in Equation 3.2, where:

• pn represents the ratio of matching n-grams between the generated and reference

summaries to the total n-gram count in the generated summary.

• wn = 1
N is the weight for each n-gram order, typically used to give equal weight to

both unigram and bigram.

1https://github.com/UTSJiyaoLi/Summarization-Attack-via-Paraphrasing
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• The brevity penalty ((BP)) penalizes summaries that are shorter than the reference

summary. It is defined as:

BP=


1 if c > r

exp(1− r/c) if c ≤ r

where c is the length of generated summary and r is the length of reference

summary.

Additionally, the semantic similarity (sim) between original and adversarial sentences is

evaluated using BERT [28] word vector comparisons.

ROUGE-N=
∑

s in reference
∑

n-grams in s count of common n-grams∑
s in reference

∑
n-grams in s count of all n-grams

BLEU=BP ·exp

(
N∑

n=1
wn · log pn

)

BP=


1 if c > r

exp(1− r/c) if c ≤ r

(3.2)

3.4.4 Experiment Analysis

The comparative analysis across Pegasus, T5, and Bart demonstrates SAP’s (ours) consis-

tent superiority over other attack methods (AdSent, UAT, HotFlip, and TextFooler) across

all datasets (XSum, CNN & Daily Mail, WikiHow, Multi-News, and Reddit TIFU), shown

in Tables 3.2, 3.3, 3.4. SAP achieves the highest BLEU and ROUGE scores, indicating its

effectiveness in generating adversarial samples that maintain high summarization qual-

ity while minimizing semantic deviation, as evidenced by its superior SIM scores. While

TextFooler occasionally outperforms other baselines like AdSent and UAT, particularly

on Pegasus and T5, it consistently falls short of SAP’s performance. T5 shows higher

vulnerability to UAT and HotFlip attacks, while Bart demonstrates greater resilience,

yet SAP maintains robust performance across all models. These results confirm that
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Table 3.2: Comparative analysis of attack effectiveness across datasets and baselines
targeting Pegasus, where higher values indicate stronger performance.

Dataset Attack Method BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 SIM

XSum

AdSent 17.87 16.21 23.95 24.63 65.46
UAT 23.14 19.50 19.12 23.81 68.38

HotFlip 19.08 17.48 19.08 14.77 66.22
Textfooler 25.92 23.35 27.89 26.59 70.01

SAP (ours) 27.38 24.62 31.61 28.09 72.80

CNN & Daily Mail

AdSent 19.87 18.31 20.45 17.62 65.54
UAT 21.12 19.23 21.15 18.41 67.29

HotFlip 20.03 18.72 20.58 17.89 66.43
Textfooler 23.56 20.87 22.15 19.12 68.74

SAP (ours) 24.33 21.67 22.71 19.34 69.31

WikiHow

AdSent 18.54 16.87 22.11 20.45 64.35
UAT 20.12 17.92 23.45 21.08 66.14

HotFlip 19.83 17.65 22.98 20.78 65.76
Textfooler 22.45 19.87 25.12 23.54 68.21

SAP (ours) 23.89 21.12 26.34 24.12 69.89

Multi-news

AdSent 20.23 18.45 24.12 22.03 65.87
UAT 21.78 19.65 25.45 23.12 67.54

HotFlip 21.03 18.92 24.56 22.65 66.89
Textfooler 23.56 20.45 26.89 24.89 68.90

SAP (ours) 25.14 21.87 28.34 26.12 70.54

Reddit TIFU

AdSent 17.45 15.89 21.78 20.21 63.21
UAT 19.12 17.34 23.45 21.89 65.67

HotFlip 18.76 16.98 22.89 21.45 64.89
Textfooler 21.56 19.45 25.34 23.67 67.23

SAP (ours) 23.34 20.89 27.12 24.89 69.45

SAP not only generates more effective adversarial samples but also better preserves

semantic alignment with the original text compared to other methods. We listed two

pairs of visualised examples in Table 3.5 that were generated by Pegasus. In Table 3.5,

the attacked summary in the second sample introduces the phrase “it could be cursed ” - a

new word from both the original document and our adversarial input. This demonstrates

a critical vulnerability: our paraphrasing attack not only degrades summarization qual-

ity but actively induces the model to fabricate emotionally charged content. Such an

unrelated generation of vocabulary that adversarial perturbations can fool the model’s
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Table 3.3: Comparative analysis of attack effectiveness across datasets and baselines
targeting T5, where higher values indicate stronger performance.

Dataset Attack Method BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 SIM

XSum

AdSent 22.13 21.10 24.07 17.99 69.05
UAT 24.92 21.43 30.97 21.93 72.49

HotFlip 19.78 23.13 24.15 15.42 72.44
Textfooler 20.74 22.47 28.51 21.49 70.06

SAP (ours) 26.34 25.37 32.01 24.15 74.96

CNN & Daily Mail

AdSent 21.08 19.56 22.13 16.87 66.24
UAT 22.41 20.12 24.59 18.75 67.89

HotFlip 20.53 19.92 23.17 16.22 66.71
Textfooler 23.42 21.06 25.12 19.98 69.21

SAP (ours) 24.76 22.11 27.43 21.51 71.38

WikiHow

AdSent 19.87 18.12 21.49 19.06 65.45
UAT 21.21 19.34 23.15 20.42 66.83

HotFlip 20.14 18.89 22.51 19.56 65.92
Textfooler 22.34 20.15 24.78 21.07 68.34

SAP (ours) 24.01 21.67 26.93 23.15 70.82

Multi-news

AdSent 20.23 19.11 23.59 20.45 66.15
UAT 21.76 20.14 24.61 22.11 67.53

HotFlip 20.87 19.54 23.78 21.23 66.89
Textfooler 23.03 21.12 25.92 23.09 69.24

SAP (ours) 25.54 22.34 28.13 25.02 71.65

Reddit TIFU

AdSent 17.98 16.52 20.34 19.05 63.94
UAT 19.45 17.89 22.11 20.21 65.62

HotFlip 18.76 17.31 21.45 19.98 64.83
Textfooler 21.15 19.14 24.31 22.45 67.32

SAP (ours) 23.67 21.41 26.92 24.58 69.94

semantic understanding, causing it to project interpretations that diverge from any

textual evidence while maintaining the source document’s surface-level coherence.

3.4.5 Parameter Study

In this section, we analyze how the parameter top-k influences attack performance. We

conduct experiments across five datasets with varying top-k settings and report the

ROUGE-1 scores decreases in Figure 3.2. The results demonstrate that larger top-k

values (representing the number of sentences attacked) more effectively expose model
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Table 3.4: Comparative analysis of attack effectiveness across datasets and baselines
targeting Bart, where higher values indicate stronger performance.

Dataset Attack Method BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 SIM

XSum

AdSent 17.15 14.92 20.47 16.03 61.74
UAT 21.76 16.45 24.03 19.92 63.92

HotFlip 19.13 15.98 21.34 18.65 64.21
Textfooler 20.89 18.42 25.48 22.12 65.84

SAP (ours) 28.56 23.87 33.14 29.92 72.45

CNN & Daily Mail

AdSent 18.54 15.78 21.19 16.42 62.33
UAT 19.97 16.85 23.14 18.74 63.21

HotFlip 18.92 15.34 22.08 17.54 62.54
Textfooler 22.13 19.45 24.58 20.96 65.11

SAP (ours) 27.43 23.12 30.87 27.45 71.02

WikiHow

AdSent 17.34 15.09 20.12 17.13 60.84
UAT 19.04 16.45 22.37 19.24 62.41

HotFlip 18.23 14.87 21.12 18.03 61.39
Textfooler 21.15 18.31 24.75 21.36 64.12

SAP (ours) 26.87 22.49 29.43 26.12 69.87

Multi-news

AdSent 19.87 16.24 23.12 20.03 61.93
UAT 20.34 17.14 24.05 21.34 63.04

HotFlip 19.41 16.03 22.89 20.15 62.38
Textfooler 22.18 19.41 25.34 23.07 65.87

SAP (ours) 28.45 23.76 31.78 28.12 72.23

Reddit TIFU

AdSent 16.89 14.87 19.78 16.89 60.23
UAT 18.15 16.12 21.54 18.94 61.92

HotFlip 17.42 15.34 20.23 17.98 60.85
Textfooler 20.09 18.23 23.67 21.42 63.74

SAP (ours) 25.93 21.54 28.78 26.24 69.42

vulnerabilities. However, the ROUGE-1 score stabilizes when top-k exceeds 20% of the

document length. Based on this observation, we select 20% as our baseline setting to

optimize both attack effectiveness and computational cost.

3.4.6 Ablation Study

This section presents a comprehensive ablation study examining different ranking

strategies and attack methods, validating each component’s contribution to our attack

framework. We evaluate our importance ranking procedure against tf-idf and Textrank
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Table 3.5: Comparison of original and adversarial contexts. The table highlights the
differences between the original and adversarial contexts, as well as the corresponding
abstractive summaries provided by the model before and after the attack.

Context Scientists have made a groundbreaking discovery in Antarctica. A vast subglacial
lake, named Lake Enigma, has been detected beneath 2 miles of ice, spanning
100 square miles, thought to be isolated from the surface for over 15 million
years, is expected to harbor ancient microbial life. This finding could shed light
on extraterrestrial life forms, as similar conditions exist on Jupiter’s moon
Europa. Researchers used radar imaging to confirm the lake’s existence, and an
expedition is planned to drill into the ice to study its contents.

Adversary Scientists have made a groundbreaking discovery in Antarctica. Lake Enigma, a
massive subglacial body of water spanning 100 square miles, has been discovered
under 2 miles of ice and is believed to contain ancient microbial organisms. This
finding could shed light on extraterrestrial life forms, as similar conditions exist
on Jupiter’s moon Europa. Researchers used radar imaging to confirm the lake’s
existence, and an expedition is planned to drill into the ice to study its contents.

Original
Output

Scientists have discovered a massive subglacial lake in Antarctica, which could
offer insights into ancient microbial life.

Attacked
Output

Scientists discovered a subglacial lake in Antarctica but warned of risks in
studying it due to contamination and unknown dangers.

Context A historical treasure trove has been unearthed in the Scottish Highlands. Ar-
chaeologists discovered a Viking burial site containing weapons, jewelry, and a
preserved longship, believed to date back to the 10th century. The burial site is
thought to belong to a Viking chieftain and offers new insights into the Norse
influence in Scotland. The artifacts, including a golden brooch and an elaborately
decorated sword, are in remarkably good condition. Researchers hope this find
will deepen understanding of Viking migration and cultural integration.

Adversary A historical treasure trove has been unearthed in the Scottish Highlands. A
Viking burial site, featuring weapons, jewelry, and a well-preserved longship,
has been uncovered by archaeologists and is thought to originate from the 10th
century. The burial site is thought to belong to a Viking chieftain and offers new
insights into the Norse influence in Scotland. The artifacts, including a golden
brooch and an elaborately decorated sword, are in remarkably good condition.
Researchers hope this find will deepen understanding of Viking migration and
cultural integration.

Original
Output

Archaeologists have discovered a Viking burial site in Scotland, offering insights
into Norse history.

Attacked
Output

Archaeologists have discovered a Viking burial site in Scotland, with some
researchers warning it could be cursed.
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Figure 3.2: Impact of top− k parameter settings on ROUGE-1 scores when attacking
Pegasus model across five datasets.

baselines, while also comparing various approaches for generating substitution sentences.

The evaluation uses Pegasus [15] on 1000 samples from the XSum test set under our

base experimental configuration. As shown in Table 3.6, our approach which combines

paraphrasing with the Pegasus ranking procedure yields optimal attack performance.

3.4.7 Transferability of Attacks

In this section, we evaluate the transferability of our attack scenarios across differ-

ent Neural Machine Translation (NMT) models. We compare our SAP attack scheme

against four baseline methods, testing their effectiveness on T5 [16], MarianNMT [176],

and Bart [14], each specifically trained on the Commentary translation dataset for

English-to-Arabic translation. As demonstrated in Figure 3.3, our SAP consistently

outperforms other attack methods across all three translation models, indicating the

strong transferability of our approach.
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Table 3.6: Comparison of different importance ranking methods (tf-idf, Textrank, and
Pegasus) across three attack strategies: translation, deleting, and paraphrasing. Higher
values indicate better performance. “N/A” indicates metrics not applicable for the deletion
attack method.

Attack Method Ranking Method Similarity (sim) ROUGE

Translation
tf-idf 68.2 10.3

Texrank 76.5 11.3

Pegasus (ours) 75.8 14.3

Deleting
tf-idf N/A 13.2

Texrank N/A 12.9

Pegasus (ours) N/A 17.8

Paraphrasing
tf-idf 67.8 13.3

Texrank 71.5 12.0

Pegasus (ours) 72.8 18.4

AdSent UAT HotFlip Textfooler SAP (ours)
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Figure 3.3: Outcomes of attacking NMT models (T5 Marian MT and Bart) across different
attack methods. A higher ROUGE score indicates better performance.

3.4.8 Adversarial Retraining

This section explores how SAP can be leveraged to improve the performance of down-

stream models. We generate adversarial examples from Xsum training sets and integrate
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them into the training data as augmentation. By reconstructing the training set with var-

ious proportions of adversarial examples combined with the original data, we investigate

the relationship between test accuracy and adversarial content. Figure 3.4 reveals that

incorporating adversarial examples moderately enhances model performance when they

constitute less than 30% of the training data, beyond which performance deteriorates.

This observation suggests that determining the optimal ratio of adversarial examples

requires empirical validation, consistent with findings from prior attack methods. To

assess the defensive benefits of adversarial training, we evaluate the robustness of

Pegasus models trained with different proportions of adversarial examples (ranging from

0% to 40%) generated by various attack methods, as depicted in Figure 3.5. Using F1

score as an inverse indicator of model vulnerability to adversarial attacks, our results

demonstrate that adversarial training consistently strengthens model robustness across

all attack methods. SAP proves particularly effective in this context, achieving superior

performance compared to alternative approaches, with its advantages becoming more

pronounced as the proportion of adversarial training data increases.

3.5 Summary and Discussion

This chapter introduced Summarization Attack via Paraphrasing (SAP), a novel frame-

work for adversarial attacks on document-level abstractive summarization models. Using

sentence-level paraphrasing, we can craft adversarial examples that effectively mislead

models while preserving semantic integrity and coherence. Our key contributions include

introducing a ranking mechanism to identify critical sentences that influence summa-

rization outputs, developing a paraphrasing-based attack strategy that generates fluent

and semantically aligned adversarial samples, and demonstrating SAP‚Äôs effectiveness

through extensive evaluations of multiple datasets and models. Additionally, we showed

SAP’s strong transferability across NMT tasks and its ability to improve model robust-
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Figure 3.4: Pegasus model performance after retraining on Xsum dataset incorporating
diverse adversarial examples from AdSent, UAT, HotFlip, Textfooler, and our novel SAP
approach.
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Figure 3.5: ROUGE score of attacking Pegasus models retrained with increasing pro-
portions of adversarial examples generated by baseline methods (AdSent, UAT, HotFlip,
Textfooler, and our SAP.
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ness through adversarial retraining. These contributions provide new insights into the

vulnerabilities of summarization models and offer valuable tools for enhancing their

resilience. While SAP advances the state-of-the-art in summarization attacks, future

work can address scalability, metric optimization, and real-world applicability, further

solidifying its impact on developing robust NLP systems.
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AICATTACK: ADVERSARIAL IMAGE CAPTIONING

ATTACK WITH ATTENTION-BASED OPTIMIZATION

R
ecent advances in deep learning research have shown remarkable achieve-

ments across many tasks in computer vision (CV) and natural language pro-

cessing (NLP). At the intersection of CV and NLP is the problem of image

captioning, where the related models’ robustness against adversarial attacks has not

been well studied. This section presents a novel adversarial attack strategy, AICAttack

(Attention-based Image Captioning Attack), designed to attack image captioning models

through subtle perturbations on images. Operating within a black-box attack scenario,

our algorithm requires no access to the target model’s architecture, parameters, or gradi-

ent information. We introduce an attention-based candidate selection mechanism that

identifies the optimal pixels to attack, followed by a customized differential evolution

method to optimize the perturbations of pixels’ RGB values. We demonstrate AICAttack’s

effectiveness through extensive experiments on benchmark datasets against multiple

victim models. The experimental results demonstrate that our method outperforms

current leading-edge techniques by achieving consistently higher attack success rates.
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4.1 Introduction

In recent years, deep learning models, particularly Convolutional Neural Networks

(CNNs), have showcased remarkable achievements across diverse computer vision tasks,

notably image classification. These models have attained human-level or surpassed

human performance [21], thus opening avenues for their practical integration into real-

world applications. Nevertheless, this swift advancement has brought to light a critical

vulnerability inherent in these models - their susceptibility to adversarial attacks.

In computer vision tasks, adversarial attacks aim to introduce meticulously crafted

perturbations to input images, thereby causing models to yield erroneous or misleading

predictions [107]. These perturbations can profoundly influence model outputs despite

being imperceptible to human observers. Adversarial image attacks predominantly target

tasks rooted in CNNs, with image classification as common examples [106, 107, 110].

In practice, attackers can use these methods to fool content filters by making violent

or sexual images appear harmless to AI systems [177]. Self-driving cars face similar

risks-small changes to camera inputs could make the AI misread stop signs or pedes-

trians, leading to dangerous driving decisions [178]. These vulnerabilities underscore

the imperative of developing robust image captioning architectures for safety-critical

deployments, where model failures translate directly to human harm [179].

Examining attacks in image classification tasks from an input perspective, the con-

ventional approach involves injecting perturbations into the original image to prompt

the model to generate an incorrect classification label. Computations involving gradients

often play a crucial part in directing attacks aimed at image classification problems.

In the context of white-box attacks, access to the model’s gradient is feasible, allowing

researchers to derive perturbations by minimizing the redefined objective function [2].

Image captioning represents a closely related domain, encompassing the generation of

coherent and intelligible captions for images through meticulous analysis. The predom-
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inant attacking methodology to captioning entails the deployment of CNNs to extract

image features and RNNs (Recurrent Neural Networks) to formulate descriptive cap-

tions [22, 180–182], which is commonly denoted as an Encoder-Decoder architecture.

Crafting adversarial attacks against image captioning models poses unique chal-

lenges that surpass those in image classification attacks. These difficulties primarily

arise from the complexities of leveraging gradients within the Encoder-Decoder frame-

work [152]. The field’s main hurdles can be distilled into two key issues: the impracti-

cality of using internal model information for attacks, and the intricacy of accurately

evaluating attack effectiveness on generated text [138, 183]. Most existing studies on

adversarial attacks targeting image captioning systems have concentrated on white-box

scenarios [184], assuming complete attacker knowledge of the model’s architecture and

parameters. However, this assumption often proves unrealistic in practical settings,

where attackers rarely have comprehensive access to the target model’s inner workings.

To address this disconnect between theoretical assumptions and real-world applications,

we introduce a novel approach that better reflects authentic adversarial conditions.

Our proposed methodology, AICAttack, integrates an attention mechanism to pre-

cisely identify and target the most susceptible pixels in an image for adversarial ma-

nipulation. We then utilize a differential evolution algorithm to optimize the attack’s

effectiveness, ensuring that the generated adversarial samples are impactful and plausi-

ble. This strategy not only tackles the practical constraints of previous methods but also

enhances the viability and applicability of adversarial attacks in image captioning.

Our work presents the following major contributions:

• We present AICAttack, an adversarial attack method employing an attention

mechanism to accurately locate the pixels most critical to caption generation. This

strategy enables us to target our efforts on areas with the greatest potential to

influence captions, thus enhancing attack efficiency without relying on gradient
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computations.

• A differential evolution algorithm further refines our approach. This algorithm

is customized to precisely adjust adversarial modifications on the identified key

pixels, ensuring the alterations are both imperceptible and highly effective.

• We perform extensive testing across diverse real-world datasets, targeting various

image captioning models as potential victims. These comprehensive experiments

demonstrate the efficacy of our approach in creating adversarial examples that

effectively undermine the reliability of image captioning systems.

The subsequent sections of this chapter are structured as follows. Section 4.2 reviews

the fundamental concepts of visual attention and the differential evolution algorithm.

Section 4.3 presents our proposed AICAttack methodology in detail. We then evaluate

AICAttack’s performance through well-structured experiments in Section 4.4. Finally,

Section 4.5 concludes the chapter by discussing our findings and future works.

4.2 Preliminary

In this section, we present the foundational concepts and methodologies that are inte-

gral to understanding the AICAttack framework. Specifically, we introduce the visual

attention mechanism, which guides our region selection strategy, and the differential evo-

lution algorithm, which serves as the core optimization engine for generating adversarial

examples.

4.2.1 Visual Attention

Visual attention mechanisms have emerged as a critical component in modern computer

vision systems, enabling models to dynamically prioritize relevant spatial or semantic
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regions in input images. Inspired by the human visual system, these mechanisms

simulate the way humans focus selectively on important visual stimuli while ignoring less

relevant background information. This capacity is particularly advantageous in dense

visual scenes where salient information may be distributed across multiple locations.

In the context of image captioning, attention mechanisms enhance the quality of

generated captions by assigning weights to different spatial regions of the image at

each decoding time step. This allows the model to focus sequentially on different objects

or areas when generating each word, resulting in more descriptive and contextually

appropriate captions. Typical implementations include spatial attention, where attention

weights are applied over feature maps, and channel-wise attention, which re-weights

feature channels to emphasize specific semantic patterns. Hybrid attention strategies

combine these dimensions to simultaneously model spatial and feature-level importance.

Transformer-based architectures, such as the Vision Transformer (ViT), further gen-

eralize attention by treating image patches as sequences, allowing global dependencies

to be captured across the entire visual field. These attention-based designs have been

widely adopted in state-of-the-art image captioning models due to their superior ability

to generate semantically rich and fluent sentences.

In adversarial settings, visual attention provides a principled way to identify vulner-

able and semantically critical regions for targeted perturbation. Rather than applying

random or uniform noise across the image, attacks guided by attention can inject pertur-

bations into areas most influential to the model‚Äôs decision-making process, thereby

enhancing attack success while maintaining imperceptibility. In AICAttack, we utilize

pre-extracted attention maps from the captioning model to locate these sensitive regions.

By doing so, our attack framework narrows the search space and amplifies perturbation

impact without significantly altering benign image perception.
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4.2.2 Differential Evolution Algorithm

Differential Evolution (DE) is a population-based stochastic optimization algorithm in-

troduced by Storn and Price [147], designed to solve complex optimization problems over

continuous, high-dimensional, and multimodal landscapes. DE has gained popularity

in adversarial machine learning due to its strong global search capabilities, simplicity,

and gradient-free nature, making it suitable for both white-box and black-box attack

scenarios.

The algorithm maintains a population of candidate solutions, each represented as

a vector in the search space. During each iteration, DE applies three core operations:

mutation, crossover, and selection. In the mutation phase, new candidate solutions are

generated by adding the weighted difference of two randomly chosen vectors to a third

vector. The crossover step combines the mutated vector with the original one to introduce

diversity. In the selection phase, the candidate with better fitness-defined by an objective

function-is retained for the next generation. This process continues until convergence or

a predefined stopping criterion is met.

In adversarial attack settings, DE is particularly effective when the loss landscape is

non-smooth or when gradient information is unavailable, such as in black-box models

or models with non-differentiable components. Its population-based design allows for

parallel exploration of multiple perturbation trajectories, increasing the likelihood of

discovering successful adversarial examples with minimal perturbation.

AICAttack leverages DE to search for optimal perturbations constrained to selected

high-attention regions of the image. Each candidate solution corresponds to a set of pixel-

level modifications localized to these regions. The fitness function incorporates both the

deviation between the original and adversarial captions and a perceptual distance metric

to ensure visual similarity. Compared to gradient-based methods, DE offers greater

flexibility and robustness, especially when targeting sequence generation tasks like
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image captioning, where gradient computation is complicated by discrete output spaces

and attention alignment.

By integrating visual attention with differential evolution, AICAttack constructs a

guided and efficient adversarial pipeline that selectively perturbs semantically mean-

ingful image regions through a powerful optimization strategy, yielding effective and

imperceptible attacks against state-of-the-art image captioning models.

4.3 Proposed Method

This section elaborates on our proposed image captioning attack method, AICAttack

(Attention-based Image Captioning Attack).

4.3.1 Problem Setting

Given a pre-trained image captioning model F(·) : X → Y , where X represents the

image feature space and Y represents the textual space, an attacker seeks to generate

an adversarial image x′ by manipulating an existing image x= (x1, . . . , xi, . . . , xP ), where

x ∈X , xi ∈R, and P is the number of pixels. The objective is to deceive the performance

of F(·) such that F(x′) does not match the ground truth y ∈Y .

To craft an adversarial example, a perturbation ∆x is added to the image x, resulting

in the construction of the adversarial example x′ as follows:

x′ = x+∆x,

where ∆x= (∆x1, . . . ,∆xi, . . . ,∆xP ).
(4.1)

In the above context, attacking the victim model F involves the process of searching

for ∆x. To construct such a perturbation ∆x, the attacker first identifies m (where m ≤ P)

pixels using indices I = {
I j

}m
j=1, and then optimizes the corresponding perturbation
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Figure 4.1: The Workflow of our AICAttack Algorithm for Image Captioning Attacks.
The process begins by feeding the input image into the attention block, which generates
attention scores. These scores are then used for attention pixel selection. During the
attack optimization phase, the Differential Evolution (DE) algorithm searches for the
most effective adversarial sample.

values
{
∆xI j

}
I j∈I. Additionally, for the unaltered pixels, their perturbation values are set

to 0 (∆xh = 0 for h ∉ I).

In the following sections, we introduce our AICAttack algorithm in detail. An illustra-

tion figure of the AICAttack process is shown in Figure 4.1. An input image goes through

an attention layer to generate attention scores. Based on that, an attack optimization

step is implemented to generate the optimal adversarial example. Diverging from con-

ventional algorithms, we transform this task into a problem of discovering the optimal

solution within a specified region. Therefore, we have two main tasks to accomplish: (1)
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Figure 4.2: Attention Mechanism Illustration in a Small Cat Image Example. Highlighted
regions denote attention concentration guiding the encoder-decoder network during word
generation processes.

select the optimal locations of pixels to be attacked. (which we detail in Sec. 4.3.2), and

(2) determine the optimal perturbation values for the selected pixels. (which we discuss

in Sec. 4.3.3).

4.3.2 Attention for Candidate Selection

Attention-based networks enable models to choose only the parts of the encoded variables

relevant to the task encountered. Bahdanau [68] used it to address the challenge of

handling long-range dependencies in lengthy textual sequences within natural language

processing. As a type of soft attention, it uses a learned attention function to compute

attention weights for each element in the input sequence. The same mechanism can be

used in other models where the encoder’s output has multiple points in space or time. In

image captioning, specific pixels are usually assigned higher importance than others. We

consider these high-importance pixels as potential candidate regions to be attacked.

In this research, we extracted the attention score α derived from an image captioning

network, such as Show, attend and tell (SAT) [129]. For each pair of input images and

generated captions with a length of l, we derive attention mappings for each individual

word in the caption. Figure 4.2 shows a visual example of the attention mapping for each

word. Given our use of soft attention, where there are P pixels, and the pixel weights
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Figure 4.3: Examples of “Sentence-based Attack" (our proposed method) and “Word-based
Attack" approaches for computing attention scores. The highlighted red areas represent
the region for pixel selections.

sum up to 1, for each word token t, we have:
∑P

1 αp,t = 1, where αp,t is the attention score

of pixel p for the word token t.

Two methodologies were used to utilise the attention scores we obtained. As an

example displayed in Figure 4.3, “Sentence-based Attack" involves aggregating attention

scores for all pixels of all words. This results in attention mapping that matches the

dimensions of the original image. Subsequently, scores are ranked, and the pixel coordi-

nates of the top k, where k ≤ P, attention values are selected to form the candidate region.

Our AICAttack algorithm is shown in Alg. 2, while the candidate region formulation

is shown in line 6 of the algorithm. The second approach is referred to as “Word-based

Attack", which can be considered a baseline approach. In this case, we only focus on the

top k pixels ranked by attention scores for each word and then join these regions to form

candidate regions.

4.3.3 Differential Evolution Optimization

After selecting the targeted pixels, our next step is to derive the best magnitudes of

attacks on the pixels. We want the magnitude of the attack to be as small as possible

while its impacts on the generation of captions as much as possible. To do so, we optimize

the pixel perturbation values to decrease the caption’s quality measured by BLEU. To

this end, we apply Differential Evolution (DE) [116], a robust evolutionary algorithm,

to solve this optimisation problem. This optimisation method maintains a population of
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Algorithm 2: AICAttack: Adversarial Image Captioning Attack
1 Input: Captioning model F(·), image x, attention network A, number of pixels P,

attention region size k, population size popsize, iteration time T, attacking
strength s, BLEU score calculation function B. ;

2 Output: Optimal adversarial sample x′. ;
3 // Attention for Candidate Selection;
4 Compute attention scores: α← A(I), α∗ ← [ ];
5 foreach x in α do
6 α∗ ←α∗+ x;
7 end
8 Pick top-k pixels from α∗;
9 // Differential Evolution Optimization;

10 for i = 1 to popsize do
11 Construct xi where pixel locations and changes are determined by attention

weights and attack strength, respectively;
12 end
13 x0 ← x, x′ ← x0;
14 for g = 1 to T do
15 for j = 1 to popsize do
16 Build xg

j from the previous generation xg−1 using mutation;
17 if B(F(xg

j ))< B(F(x′)) then
18 if B(F(xg

j ))< B(F(xg−1
j )) then

19 x′ ← xg
j ;

20 end
21 end
22 end
23 end
24 return The best attack example x′;

candidate solutions, often called individuals. The key idea behind DE is the differential

mutation operator, which involves creating new candidate solutions by perturbing the

difference between two other solutions from the population. New solutions are generated

through mutation operation, and their fitness is evaluated. If a new solution outperforms

its parent, it replaces the parent in the population.

In this research, we customize DE to obtain an optimal solution by finding the

best pixel coordinates and RGB values to attack a given input image. Each candidate

solution’s perturbation encompasses the coordinates/locations of pixels and the changes
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in the pixels’ RGB values. In our configuration, the initial count of candidate solutions

(population) is set to popsize (which is a parameter that can be changed to adapt

to different applications and scenarios). Accordingly, by the DE algorithm, every new

iteration generates popsize new candidate solutions (children candidates) according to

Equation 4.2:

xg
j ← xg−1

r1 +λ · (xg−1
r2 −xg−1

r3 )

where r1 ̸= r2 ̸= r3

(4.2)

where xg
j is the candidate solution, g and j represent the indices of generation and the

mutant in population, respectively. λ is a parameter for candidates weight balancing and

r1, r2, r3 are random positive integers.

After the attention-based candidate selection (lines 3 to 7 of Alg. 2), the algorithm

initializes a population of candidate solutions (lines 9 to 13 of Alg. 2), where each solution

represents a perturbed image. The DE algorithm then iteratively updates these solutions

by performing differential mutation and crossover operations (lines 14 to 23 of Alg. 2).

For each generation, the algorithm evaluates the fitness of candidate solutions using

the BLEU score calculated with its predicted caption and compares it to the previous

generation. If a candidate solution yields a lower captioning BLEU score (indicating

success in fooling the victim model), it is selected as the new adversarial example.

4.4 Experiment Results and Analysis

In this section, we comprehensively evaluate the performance of our method against

the current state of the art. Besides the main results of attack performance and im-

perceptibility (Sec. 4.4.4), we also conduct experiments on ablation studies (Sec. 4.4.5),

transferability (Sec. 4.4.6), adversarial retraining (Sec. 4.4.7). We provide code for repro-
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ductivity of our experiments1.

4.4.1 Datasets

Our experiment was conducted on the COCO [185] and Flickr8k [186] datasets. Each

image in the COCO dataset is accompanied by five human-generated captions, providing

rich linguistic annotations that describe the visual content with varying levels of detail

and perspectives.

The Flickr8k dataset is sourced from the Flickr image-sharing platform. It includes

8,000 images, each accompanied by five distinct captions, resulting in 40,000 captions.

4.4.2 Victim Models and Baselines

We use two victim image captioning models with leading-edge performance to examine

our attacking algorithm. They are “Show, Attend, and Tell" (abbreviated as “SAT" ) [129]

and “BLIP" [22]. For image captioning attack baselines, we chose “Show and Fool" [151]

and “GEM" [152]. We also finetuned “One Pixel Attack" [116], initially designed for

fooling image classification models to generate adversarial images for comparison to our

approach.

4.4.3 Metrics

To examine and measure the performance of the attacks, we reported the attack perfor-

mance of different methods using several metrics.

4.4.3.1 BLEU Score

BLEU (Bilingual Evaluation Understudy) score [161] is a commonly used metric in the

evaluation of natural language processing systems, including image captioning. In our
1We provide our code in an anonymous setting for review: https://github.com/UTSJiyaoLi/

Adversarial-Image-Captioning-Attack.
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Table 4.1: The performance of two baseline victim models tested on COCO and Flickr8k
datasets.

BLEU1 BLEU2 BLEU3 BLEU4

SAT
COCO 71.8 50.4 36.7 25.0

Flickr8k 67.0 45.7 31.4 21.3

BLIP
COCO 73.1 48.9 38.2 26.6

Flickr8k 70.1 47.2 32.5 22.8

experiment, we used BLEU-1 and BLEU-2 (unigram- and bigram-based BLEU scores)

and BLEU-4 to deal with four-word phrases for longer captions. The equation of BLEU-4

is shown in Equation 4.3:

BLEU-4=BP×exp

(
1
4

4∑
n=1

log
(
precisionn

))
,(4.3)

where precision= Number of correct word tokens generated
Number of total word tokens generated . Sometimes, candidates might be

very small for longer captions and missing important information relative to the reference.

So we include the Brevity Penalty (BP) to penalize predicted captions that are too short

compared to the reference captions. The BP is defined as following:

BP=


1 if c > r

e(1−r/c) if c ≤ r

, where r refers to the length of the original caption, and c refers to the length of the

generated caption.

4.4.3.2 ROUGE Score

By using BLEU only, it may not fully capture human language’s semantic and contextual

nuances, and it might not always correlate perfectly with human judgment. Hence, we

also report ROUGE-n [25], which measures the number of matching n-grams between

the model-generated captions and human-produced/ground-truth reference captions. Our
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experiments used unigram and bigram ROUGE scores (i.e., ROUGE-1 and ROUGE-2).

(4.4) ROUGE-n=
∑

S∈ReferenceCaptions
∑

n-gram∈S Countmatch(n-gram)∑
S∈ReferenceCaptions

∑
n-gram∈S Count(n-gram)

4.4.3.3 BR-measure

Besides reporting BLEU and ROUGE individually to comprehensively represent the

results, we introduced a new measure to simplify the process of evaluating attack results,

which integrates the ROUGE and BLEU scores in a way similar to driving F-measure

from precision and recall, which we call BR-measure:

(4.5) BR-measure= BLEU ∗ROUGE
BLEU +ROUGE

The BR-measure has a desirable property where the value of the BR-measure is high if

only both BLUE and ROUGE values are high. The BR-measure will be low if the BLUE

or the ROUGE value is low.

Before examining our AICAttack, we present the baseline captioning performance of

two target models evaluated on both COCO and Flickr8k datasets in Table 4.1.

4.4.4 Experiment Analysis

Our experiments were conducted by the following settings (the evaluation of the tuning

of these parameters is studied in the later part of this section): attention region k at 50%

(attacking pixels whose attention weight is above the median of all weights), with ±50

range for s (i.e., modify at most 50-pixel intensity values for each attack pixel), parameter

λ is set to be 0.5 and targeting 500 to 1000 random image-caption pairs from the test

dataset. For the “SAT" model, we attack 500 pixels. Considering the larger image size in

the “BLIP" model, we extended the attack to 1000 pixels.

We demonstrate some attack outcomes in Figure 4.4. The results in Tables 4.2 and 4.3

highlight our attack strategies’ effectiveness across models. Notably, our “AICAttack" (i.e.,
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Figure 4.4: Visual examples illustrating different attack strategies, accompanied by
captions.

the “Sentence-based Attack") method outperformed baseline approaches. Particularly,

our AICAttack outperformed GEM and Show and Fool, which revealed the effectiveness

of our “Sentence-based Attack" work. The comparison between “Sentence-based Attack"

and “Word-based Attack" methods exposed a more pronounced decidable in the former.

This distinction arises from the “Word-based Attack" approach’s attention selection, con-

trasting the more focused nature of “Sentence-based" selection. The sentence exemplifies

this distinction “a cat is sitting in a bathroom sink," wherein “Word-based Attack" at-
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tends to “a", “in" and “is". Consequently, a broader region from the image, encompassing

non-significant elements, was incorporated into the candidate region. As visualisation in

Figure 4.2, Word-based selection indicates a broader scope, incorporating boundary pixels.

Conversely, the attention region depicted in Figure 4.3 for Sentence-based selection is

more confined, centering exclusively on pertinent entities.

4.4.5 Ablation and Hyperparameters Studies

We introduce ablation experiments to validate the effectiveness of our AICAttack method,

apart from employing baselines to substantiate attention. As shown in Figure 4.5. The

figure displays the variation in BLEU2 scores under five attack methods across different

pixel counts. Firstly, compared to other baselines, it can be observed that our approach

consistently maintains the optimal performance under extreme conditions (attack fewer

pixels), our method consistently maintains the optimal performance. This is attributed to

attention and weight selection capabilities that facilitate the choice of the most optimal

pixels for attack. Furthermore, we can observe that the attention method combined with

weight outperforms the attention-only approach.

4.4.5.1 Number of iterations in genetics optimization versus attacking

performance

To examine the impact of iteration numbers on performance, we subject 1000 samples

from the COCO test set to our AICAttack method under various iteration configurations.

The results are shown in Figure 4.6. The attack performance notably improves when

increasing from three to five iterations. However, beyond five iterations, up to ten, the

BLEU 2 score fluctuates, indicating that our methodology achieves stable performance

with iterations exceeding five.
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4.4.5.2 Candidate Region Analysis

We examined the impact of varying candidate region k sizes on experimental outcomes,

shown in Figure 4.7. Note that this consideration differs from pixel count.
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Figure 4.5: Drops of BLEU2 scores before and after five attack scenarios across different
pixel counts.

Figure 4.6: Drops in BLEU2 scores across varying iteration counts in the differential
evolution algorithm.

The value of k determines the initial size of the candidate region, while the number of

pixels dictates how many are selected for attacks within this area. As shown in the graph,

fluctuations in both directions occur as k varies, but the overall trend is predominantly

98



CHAPTER 4. AICATTACK: ADVERSARIAL IMAGE CAPTIONING ATTACK WITH
ATTENTION-BASED OPTIMIZATION

Figure 4.7: Drops of BLEU2 scores before and after attack when applying multiple
attention regions k.

Figure 4.8: Drops of BLEU2 scores before and after attack when applying multiple attack
strengths s.

99



CHAPTER 4. AICATTACK: ADVERSARIAL IMAGE CAPTIONING ATTACK WITH
ATTENTION-BASED OPTIMIZATION

Figure 4.9: Drops in BLEU2 scores across varying λ counts in the differential evolution
algorithm.

upward. This suggests that when the attention region is too narrow, the pixels targeted

for attack may miss critical information. The candidate region must expand to a critical

threshold before effectively capturing relevant sensitive data. This pattern underscores

the importance of selecting an appropriate range for k to ensure comprehensive coverage

of vulnerable areas in the input.

4.4.5.3 Attack Strength Analysis

On the other hand, we explore the impact of different attack intensities (strength s)

on the results. It can be observed in Figure 4.8 that in our proposed method, larger

intensities lead to more noticeable changes in BLEU scores. This can be attributed to a

significant alteration in pixel coloration, which impacts the model’s capacity to interpret

the contents of the image accurately.
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Figure 4.10: Drops of BLEU2 scores reported on multiple baseline captioning models
with COCO datasets.

4.4.5.4 Scale Factor Analysis

Finally, we conduct scale factor λ experiments in the differential evolution algorithm.

The result is shown in Figure 4.9. A larger value of λ enables the algorithm to conduct

a wider search across the solution space. This can help avoid local minima, although it

carries the risk of instability or not achieving accurate solutions. Conversely, a smaller λ

value fosters exploitation, concentrating the search in a more confined area. This can be

advantageous for detailed adjustments but may lead to the algorithm becoming trapped

in local optima. Hence, in our AICAttack, we pick 0.5 between 0 to 1 as the λ value.

4.4.6 Transferability of Attacks

To test our model’s reaction to unknown captioning models F ′, we conducted a set of ex-

periments with three baseline captioning works mPLUG[187], BLIP2[23], ExpansionNet

v2 [188](denote as ENet). Specifically, we selected adversarial examples designed for SAT

to attack baselines across different attack methods. As results shown in Figures 4.10
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Figure 4.11: Drops of BLEU2 scores reported on multiple baseline captioning models
with Flickr8k datasets.

Data BLEU1 BLEU2 BLEU4

Train

100% training data 71.824 50.381 25.033
+ 1000 adversarial -0.013 -0.017 -0.06

5% training data 56.333 51.387 23.667
+ 100 adversarial +3.251 +1.33 -0.216

Attack

attacking 1000 training data -59.124 -31.581 -11.533
attacking 1000 adversarial -58.273 -30.333 -9.175
attacking 100 training data -21.592 -19.033 -13.833
attacking 100 adversarial -4.261 -5.012 -1.417

Table 4.4: Adversarial Retraining and attacking results on two different scenarios. All
the increases and decreases are based on training results with 100% or 5% training data,
respectively.

and 4.11, our AICAttack generates adversarial examples with higher transferability

among five attacking approaches.
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4.4.7 Adversarial Retraining

This section discussed AICAttack’s potential improvement to victim models on the BLEU

score. The basic experiment setting is to generate adversarial samples with AICAttack

and data from COCO and include them in additional training data. The retraining was

conducted in two scenarios: training SAT with (1) full training data and 1000 adversarial

data, and (2) 5% training data and 100 adversarial data to simulate low-resource cases.

4.4.7.1 The Accuracy of Retrained Model

As shown in Table 4.4, when training with all training data and 1000 adversarial samples,

the BLEU scores decrease by 0.013, 0.017 and 0.06, respectively. This result shows that

adding new adversarial examples to the original training data leads to worse outcomes.

This indicates that adversarial examples can negatively affect how models are trained.

However, the SAT model performs better under low-data scenarios with adversarial

samples. This shows that adversarial examples may influence model retraining and are

more likely to affect small data sets.

4.4.7.2 The Robustness Confronting Adversarial Attacks

To measure the effectiveness of the model’s robustness after adversarial retraining, we

use our AICAttack to foul the SAT trained with or without adversarial samples for

comparison. In Table 4.4, the change in the BLEU score shows that adversarial training

makes the attack less effective, with fewer BLEU scores dropping. This phenomenon is

more significant in the low-resource scenario due to training with little data.

These results suggest that AICAttack can be used to improve retrained captioning

models’ robustness with a considerable BLEU score drop.
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4.5 Summary and Discussion

In this chapter, we introduced AICAttack, a robust and versatile adversarial learning

strategy for the attack of image captioning models. Our black-box approach harnesses the

power of an attention mechanism and differential evolution optimization to orchestrate

subtle yet effective pixel perturbations. It avoids the complex extraction of parameters

from encoder-decoder models while keeping the attack cost within a minimal range.

Another critical innovation of AICAttack is its attention-based candidate selection mech-

anism, which identifies optimal pixels for perturbation, enhancing the precision of our

attacks. Through extensive experimentation on benchmark datasets and captioning

models, we have demonstrated the superiority of AICAttack in achieving significantly

higher attack success rates compared to state-of-the-art methods. In future, we plan to

develop defensive strategies against image captioning attacks by designing more robust

learning algorithms for image captioning models.
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DECEIVING QUESTION-ANSWERING MODELS: A HYBRID

WORD-LEVEL ADVERSARIAL APPROACH

Deep learning underpins most of the currently advanced natural language processing

(NLP) tasks such as textual classification, neural machine translation (NMT), abstractive

summarization and question-answering (QA). However, the robustness of the models,

particularly QA models, against adversarial attacks is a critical concern that remains

insufficiently explored. This chapter introduces QA-Attack (Question Answering Attack),

a novel word-level adversarial strategy that fools QA models. It demonstrates versatility

across various question types, particularly when dealing with extensive long textual

inputs. Extensive experiments on multiple benchmark datasets demonstrate that QA-

Attack successfully deceives baseline QA models and surpasses existing adversarial

techniques regarding success rate, semantics changes, BLEU score, fluency and grammar

error rate.
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5.1 Introduction

Question-answering (QA) models, a key task within Sequence-to-Sequence (Seq2Seq)

frameworks, aim to enhance computers’ ability to process and respond to natural lan-

guage queries. As these models have evolved, they have been widely adopted in real-world

applications such as customer service chatbots[189], search engines [190], and informa-

tion retrieval in fields like medicine [191] and law [192]. However, despite the significant

progress in deep learning and natural language processing (NLP), these models remain

vulnerable to adversarial examples, leading to misinformation, privacy breaches, and

flawed decision-making in critical areas [193–196].

Beyond technical effectiveness, QA-Attack poses significant societal risks in safety-

critical applications. In healthcare systems, malicious actors could subtly alter input

contexts to elicit harmful treatment recommendations. For instance, changing “The

patient shows no signs of allergic reaction to penicillin” to “The patient shows known

signs of allergic reaction to penicillin” through word substitution could cause the system

to contraindicate a life-saving antibiotic. Research confirms such vulnerabilities, showing

that medical QA systems like Med-PaLM produce clinically unsafe responses under

adversarial prompts [197]. Similarity, legal advice systems exhibit similar weaknesses.

An attacker could transform “The defendant must not have intended harm” to “The

defendant must have intended harm” by removing a single word, potentially reversing

the interpretation of criminal liability standards [198]. In financial advisory contexts,

altering “investments with high risk typically yield lower returns” to “investments with

low risk typically yield lower returns” could mislead users into dangerous investment

strategies.

QA models are expected to comprehend given texts and questions, providing accurate

and contextually relevant answers [88]. These models primarily address two types of

questions: Informative Queries and Boolean Queries. The Informative Queries typically

106



CHAPTER 5. DECEIVING QUESTION-ANSWERING MODELS: A HYBRID
WORD-LEVEL ADVERSARIAL APPROACH

begin with interrogative words such as “who,” “what,” “where,” “when,” “why,” or “how,”

requiring detailed and specific information from the provided context. Although models

like T5 [16], LongT5 [199], and BART [14], which follow an encoder-decoder structure,

have demonstrated strong performance, they still suffer from the maliciously crafted

adversarial examples. Initially, studies like “Trick Me If You Can” [4] primarily relied

on human annotators to construct effective adversarial question-answering examples.

This methodology, however, inherently constrained scalability and increased resource

demands. Automated approaches for attacking textual classifiers in QA models emerged

as research progressed. Gradient-based methods, as employed in Fast Gradient Sign

Method (FGSM) [2], RobustQA [5], UAT [31], and HotFlip [32], were developed to identify

and modify the most influential words affecting model answers. Building upon a deeper

understanding of QA tasks, subsequent studies explored more targeted strategies. For

instance, Position Bias [200], TASA [3], and Entropy Maximization [201] investigated

the manipulation of sentence locations and the analysis of answer sentences to identify

vulnerable parts of the context. These approaches refined the attack methods by applying

modifications through paraphrasing or replacing original sentences, thus enhancing the

effectiveness of adversarial examples. However, these methods encounter two primary

challenges: 1) None of these attack methods is suitable for both “informative queries”

and “boolean queries”. 2) Constraining the search space for optimal vulnerable words to

answer-related sentences compromises attack effectiveness; meanwhile, targeting entire

sentences proves inefficient [30].

In addition, Boolean Queries seek a simple binary “Yes” or “No” answer. Models like

BERT [28], RoBERTa [92], and GPT variants [202–205], which excel at sentence-level

understanding and token classification, are widely used for Boolean QA tasks. These

models leverage their deep contextual understanding of language to accurately determine

whether a given statement is true or false, making them state-of-the-art baselines for
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the task. Researchers have proposed various approaches to target boolean classifiers in

the context of Boolean Queries attacks. Attacks like [11, 59, 60, 83, 84], which involve

adding, relocating, or replacing words, are based on the influence that each word has on

the prediction. They retrieve word importance by the output confidence to the level or

with gradient. However, gradient calculation is computationally intensive and ineffective

when dealing with long context input, and knowing victim models’ internal information

is unrealistic in practice.

We present QA-Attack, an adversarial attack framework tailored for both Informa-

tive Queries and Boolean Queries in QA models. QA-Attack uses a Hybrid Ranking

Fusion (HRF) algorithm that integrates two methods: Attention-based Ranking (ABR)

and Removal-based Ranking (RBR). ABR identifies important words by analyzing the

attention weights during question processing, while RBR evaluates word significance

by observing changes in the model’s output when specific words are removed. The HRF

algorithm combines these insights to locate vulnerable tokens, replaced with carefully

selected synonyms to generate adversarial examples. These examples mislead the QA

system while preserving the input’s meaning. This unified attack method improves

performance and stealth, ensuring realistic applicability for both queries. In summary,

our work makes the following key contributions:

• We present QA-Attack with a Hybrid Ranking Fusion (HRF) algorithm designed to

target question-answering models. This novel approach integrates attention and

removal ranking techniques, accurately locating vulnerable words and fooling the

QA model with a high success rate.

• Our QA-Attack can effectively target multiple types of questions. This adaptability

allows our method to exploit vulnerabilities across diverse question formats, which

significantly broadens the scope of potential attacks in various real-world scenarios.

• QA-Attack generates adversarial examples by implementing subtle word-level
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changes that preserve both linguistic and semantic integrity while minimizing the

extent of alterations, and we conduct extensive experiments on multiple datasets

and victim models to thoroughly evaluate our method’s effectiveness in attacking

QA models.

The rest of this section is structured as follows. We first review attention for Seq2Seq

models and synonym generation in Section 5.2. Then, we detail our proposed method

in Section 5.3. We evaluate the performance of the proposed method through extensive

empirical analysis in Section 5.4. We conclude the chapter with suggestions for future

work in Section 5.5.

5.2 Preliminary

This section provides an overview of attention mechanism for Seq2Seq models and the

existing synonym generation methods.

5.2.1 Attention Mechanism

The attention mechanisms also revolutionized textual input tasks by enabling models

to selectively focus on relevant tokens during decoding, significantly enhancing both

performance and the ability to process longer texts [206]. These advances proved partic-

ularly transformative for sequence-to-sequence (Seq2Seq) models, which convert textual

inputs into textual outputs for tasks ranging from machine translation and text sum-

marization to interactive dialogue systems. While early Seq2Seq architectures suffered

from a fundamental limitation-compressing entire input sequences into fixed-length

vectors-attention mechanisms elegantly solved this bottleneck by enabling dynamic focus

on input elements throughout the processing pipeline. The field has developed three

primary attention variants for textual processing: Bahdanau attention, Luong attention,
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and self-attention, each offering distinct approaches to the challenge of context-aware

text processing.

Bahdanau Attention (Additive Attention): Proposed by Bahdanau et al. [68], calcu-

lates a weighted sum of encoder hidden states, where the weights (attention scores) are

determined by the relevance of each encoder state to the current decoder state. This

relevance is computed using an additive scoring function shown in Equation 5.1. By

aligning the decoder’s focus with specific parts of the input, this mechanism improved

the performance of neural machine translation systems, especially for languages with

long or syntactically complex sentences. The mechanism’s ability to explicitly model

input-output alignment makes it particularly useful for tasks like translation, where

individual input tokens correspond closely to output tokens. However, additive attention

is computationally expensive for long sequences due to its use of additional parameters

and matrix operations.

(5.1) e i j = vT tanh
(
W1hi +W2s j

)
where in the scoring function e i j:

• hi: Hidden state of the encoder at time step i.

• s j: Hidden state of the decoder at time step j.

• W1 and W2: Trainable weight matrices to transform the hidden states.

• vT : A trainable weight vector.

• This function scores the relevance of the encoder’s hidden state (hi) to the decoder’s

current state (s j).

Luong Attention (Multiplicative Attention): Luong et al. [99] introduced multiplicative

attention as a simpler and more computationally efficient alternative to additive atten-

tion. To compute attention weights, this method uses a dot-product scoring function, as
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shown in Equation 5.2, between encoder and decoder states. While it lacks the flexibility

of learnable parameters found in additive attention, its efficiency makes it ideal for tasks

requiring real-time inference, such as speech-to-text systems.

(5.2) e i j = hT
i Ws j

where:

• hi: Encoder hidden state at time step i.

• s j: Decoder hidden state at time step j.

• W : Trainable weight matrix.

The dot product computes the similarity between hi and s j. This method is computation-

ally efficient and suitable for tasks with large input sequences.

Self-Attention (Transformer Attention): Self-attention, introduced in Transformer

models by Vaswani et al. [69], solved Seq2Seq architectures by allowing all tokens in the

input sequence to attend to each other, irrespective of their positions. Unlike Bahdanau or

Luong attention, which only operates between encoder and decoder states, self-attention

captures global dependencies within the input sequence. This mechanism is potent for

tasks like summarization, where long-range dependencies across a document must be

preserved. Self-attention also enables parallel computation, making it highly scalable for

large datasets and longer sequences.

(5.3) Attention(Q,K ,V )= softmax

(
QKT√

dk

)
V

where:

• Q (Query): A representation of the current token or position in the sequence.

• K (Key): A representation of all tokens in the sequence, used to compute the

relevance to Q.
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• V (Value): A representation of all tokens in the sequence, used to generate the

output.

• dk: The dimensionality of the key vectors, used to scale the dot product to prevent

excessively large values.

• Scaled Dot Product**: The relevance between Q (query) and K (key) is calculated

using their dot product:
QK⊤√

dk
,

√
dk is a scaling factor to avoid overly large dot-product values when dk is large.

5.2.2 Attention-related Attacks

Although attention mechanisms have enhanced the capabilities of Seq2Seq models, they

also introduce distinct security vulnerabilities that adversaries can exploit. The attention

mechanism’s core strength-its ability to focus on specific input elements-becomes a

potential weakness when malicious adversaries target either the attention scores directly

or manipulate the input tokens that influence these scores. Such adversarial attacks can

subtly or dramatically alter the model’s output.

Token substitution exemplifies how attackers can exploit attention mechanisms by

identifying and replacing high-importance tokens with synonyms or contextually similar

terms. This sophisticated manipulation disrupts the crucial alignment between input

and output sequences by shifting attention weights in predictable ways. Consider how

replacing “bank” with “shore” in financial text can completely redirect a translation

model’s interpretation, fundamentally altering its output. Alzantot et al. demonstrated

the elegance of this attack vector, showing how adversarial examples could preserve

perfect grammatical structure while exploiting attention mechanisms’ structured focus

to deceive models into generating incorrect outputs.
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Zhou et al. improved this with their attention-guided genetic algorithm (AGA), an

innovative approach that harnesses attention scores for precise attack targeting. The

method systematically identifies high-impact regions in input sequences by analyzing

attention weights, then employs genetic algorithms to optimize perturbations iteratively.

This sophisticated optimization process maximizes output disruption while maintaining

minimal input changes. What makes AGA particularly powerful is its ability to leverage

attention patterns for efficient targeting, even in black-box scenarios where model

architectures remain hidden.

Ni et al. further refined adversarial techniques through their work on neural machine

translation (NMT) systems, developing a hybrid attention learning method that exploits

attention distributions with unprecedented precision. Their approach systematically

identifies vulnerable points in translation systems by analyzing both language-specific

patterns and sequence-sensitive tokens, using attention distributions to pinpoint optimal

targets for manipulation. By precisely disrupting tokens that receive the highest atten-

tion weights, their method effectively degrades translation quality while maintaining

the appearance of legitimate input.

The HackAttend technique developed by Liong et al. introduces a direct assault

on attention mechanisms by manipulating adversarial attention masks. Rather than

modifying input tokens, this sophisticated approach targets the self-attention weights

fundamental to Transformer-based architectures, forcing models to misallocate focus to

irrelevant or deceptive tokens. Their research demonstrates how subtle perturbations to

attention distributions can trigger cascading errors throughout the model’s prediction

process.

Wallace et al.’s research on adversarial triggers revealed a powerful exploitation

of attention mechanisms through strategically crafted trigger phrases. These carefully

designed sequences exploit the model’s attention patterns, drawing disproportionate focus
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away from contextually relevant tokens. The technique’s power lies in its universality:

by understanding how attention mechanisms prioritize certain patterns, attackers can

craft trigger phrases that consistently derail model outputs across diverse tasks, from

machine translation to text summarization.

Finally, Shen et al. (2023) explored dynamic attention mechanisms as a countermea-

sure to adversarial attacks, highlighting how attackers often exploit the static nature

of traditional attention systems. While this study focuses on defense, it illustrates how

static attention distributions provide adversaries with predictable targets for disrup-

tion. By introducing attention rectification and dynamic modeling, Shen et al. aim to

mitigate the impact of adversarial inputs. This work highlights the critical interplay

between attack strategies and attention mechanisms, underscoring the need for adaptive

approaches to address the inherent vulnerabilities of static attention.

5.3 Our Proposed Attack Method

In this section, we introduce the QA-Attack algorithm. It can be summarized into

three main steps. First, the method effectively captures important words in context

by processing pairs of questions and corresponding context using attention-based and

removal-based ranking approaches. Then, attention and removal scores are combined,

allowing the identification of the most influential words. At last, a masked language

model [28] is utilized to identify potential synonyms that could replace the targeted words.

The overall workflow of QA-Attack is shown in Figure 5.1. In the following sections, we

explain our model in detail.

5.3.1 Problem Setting

Given a pre-trained question-answering model F, which receives an input of context C,

question q, and outputs answer a, such that F(q,C)= a. The objective is to deceive the
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Figure 5.1: The workflow of our QA-Attack algorithm for QA models. It processes
question-context pairs through two parallel modules: Attention-based Ranking (ABR)
and Removal-based Ranking (RBR). These modules generate attention and removal
scores respectively for each word using customized attention mechanisms and removal
ranking strategies. The scores are then aggregated, and the topk highest-scoring words
are selected as candidates. Finally, these candidates are replaced with BERT-generated
synonyms to create adversarial examples that can effectively mislead the QA model.

performance of F with perturbed context C′ such that F(q,C′) ̸= a. To craft C′, a certain

number of perturbation cadv is added to the context C by replacing some of its original

tokens {c1, c2, ..., cn}.

5.3.2 Attention-based Ranking (ABR)

Attention mechanisms were first used in image feature extraction in the computer

vision field [129, 139, 207, 208]. However, they were later employed by [68, 209] to solve

machine translation problems. In translation tasks, attention mechanisms enable models
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Algorithm 3: QA-Attack Algorithm (Adversarial Generation)
1 Input: QA victim model F(·), logits L, question q, context C, words in the context

c, reference answer a, attention network A, top k words to attack topk, number
of synonyms d, BERT MLM model BERT for generating synonyms. ;

2 Output:Optimal adversarial sample C′ ;
3 // Attention-based Ranking;
4 Compute attention scores: α← [(c, A(q+C))];
5 Initialize attention score list: attention_scores ← [ ];
6 for each score in α do
7 if score ∈ C then
8 Append score to attention_scores;
9 end

10 end
11 // Removal-based Ranking;
12 Initialize importance score list: importance_scores ← [ ];
13 for each c in C do
14 Generate modified context: C∗ ← C excluding c;
15 Compute importance score: importance_scores.append(|F(q,C∗)−F(q,C)|);
16 end
17 // Hybrid Ranking Fusion;
18 Combine attention and importance scores:

combined_scores ← attention_scores∪ importance_scores;
19 Select topk words: top_k_l ist ← sort(combined_scores)[ : topk];
20 Initialize adversarial examples list: Adv_l ist ← [ ];
21 for each t in top_k_list do
22 Generate adversarial token from d potential synonyms: cadv ← BERT(t);
23 Create adversarial context: ∆C ← [c1, . . . , cadv, . . . , cn];
24 Append ∆C to Adv_l ist;
25 end

to prioritize and focus on the most relevant parts of the input data [99]. In question-

answering tasks, attention scores are imported to examine the relationships between

question and context, allowing the model to determine which words or phrases are most

relevant to answering the question [210]. Hence, we leverage the attention score to

identify target words for our attack. We employ the attention mechanism from T5 [16]

that has been specifically optimized for question-answering tasks in UnifiedQA [94]. As

shown in Fig. 5.1, the “Attention-based Ranking” begins by encoding the input context
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Algorithm 4: QA-Attack Algorithm (Optimization)
1 Initialize maximum gap: max_gap←−∞;
2 Initialize optimal adversarial context: C′ ←;;
3 for each adv in Adv_list do
4 if F(adv) ̸= a then
5 Compute gap: gap← L(F(adv))−L(F(C));
6 if gap>max_gap then
7 Update maximum gap: max_gap← gap;
8 Update optimal adversarial context: C′ ← adv;
9 end

10 end
11 end
12 return Optimal adversarial sample C′

and question through an encoder. During the encoding process, self-attention allows the

model to analyze how each word in the input relates to every other word, effectively

highlighting the words that carry the most weight in understanding both question and

context. In the decoding process, cross-attention further refines this by focusing on the

parts of the input most relevant to generating the correct output. By averaging the

attention scores of all layers and heads, we match them to each input word.

The implement details are shown in Algorithm 3. The question & context pair is

fitted into attention network A, and we filter out the attention scores for context (lines

3 to 10 of Algorithm 3). Then, the attention score of each word corresponding to each

layer is summed up. After averaging and normalization, the word-level attention score is

obtained.

5.3.3 Removal-based Ranking (RBR)

Previous studies on adversarial attacks in the text have shown that each word’s signifi-

cance can be quantified using an importance score [3, 11, 60, 98]. This score is largely

determined by how directly the word influences the final answer. To enhance the efficacy

of ranking progress, we rank each word in the context to obtain the removal importance
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score (lines 11 to 16 of Algorithm 3). Given the input context C containing n words from

c1 to cn and question q, the importance score (removal score) of the i th (1≤ i ≤ n) word

ci is:

(5.4) I i = LF (a | q,C)−LF (a | q,C \ ci),

where C \ ci represents the context after deleting ci, and LF = logP(a | q,C) refers to the

probability (logits) of the label, respectively.

5.3.4 Hybrid Ranking Fusion (HRF)

The attention-based and removal-based word selection techniques offer complementary

perspectives on token significance, each highlighting different aspects of word importance.

Consequently, we tend to choose words that both methods consider significant. This is

achieved by adding the scores from each method for every word to create a fusion score.

When generating a fusion score, we address several key factors. First, we indepen-

dently normalize the attention and removal scores before adding them together. Then,

to balance attack effectiveness and efficiency, we introduce a topk parameter, a pos-

itive integer that controls the number of words targeted. Finally, we select the topk

highest-scoring words for modification (lines 17 to 20 of Algorithm 3).

5.3.5 Synonym Selection

Various synonym generation methods exist, including Word2Vec [211], Hownet [212], and

WordNet [212]. We adopt BERT [28] for synonym selection due to its textual capabilities,

which enable it to generate synonyms based on the complete sentence structure. Unlike

Word2Vec’s static embeddings or WordNet’s fixed synonym lists, BERT’s context-sensitive

approach allows for dynamic synonym selection that preserves both semantic meaning

and grammatical correctness. This contextual awareness makes BERT particularly

effective for crafting natural and semantically coherent adversarial examples.
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We process each selected word in the context by replacing it with the “[MASK]”

token. This modified context is then input into the BERT Masked Language Model

(MLM) to predict the most likely substitutions for the masked word. To expand the

range of potential samples, we introduce a parameter d that controls the number of

synonym substitutions considered (lines 21 to 25 of Algorithm 3). This approach allows

us to generate a diverse set of imperceptible replacements while maintaining contextual

relevance.

5.3.6 Candidate Selection

We define an optimal adversary as one that maximizes the divergence between the pre-

dicted and attacked answers. For boolean queries (yes/no), we follow previous successful

textual classifier approaches by comparing the logits of output labels. For informative

queries, we aggregate the logits across individual words in the response. The optimal

adversary C′ is identified from the “Adv_list” using the logits derivation function L, as

detailed in Algorithm 4.

5.4 Experiment and Analysis

In this section, we present a comprehensive evaluation of QA-Attack’s outcomes com-

pared to current high-performance baselines. Our analysis covers several key aspects

with various metrics, providing a thorough understanding of our method’s capabilities,

limitations, and performance across diverse scenarios. We provide a detailed analysis of

attack performance and imperceptibility (Sec. 5.4.4). Besides, to gain deeper insights,

we conduct Ablation Studies (Sec. 5.4.5) and assess attacking efficiency (Sec. 5.4.6). In

addition, we examine QA-Attack’s response to defense strategies (Sec. 5.4.8), exploring

the effects of Adversarial Retraining (Sec. 5.4.7) and investigating the Transferability

of Attacks (Sec. 5.4.9). Finally, we report the preference of our attack by investigating
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Table 5.1: Dataset distribution and corresponding baseline performance (F1).

Dataset
Data Distribution Model Performance (F1)

Total Train Validation Test T5 LongT5 BERTbase

SQuAD 1.1 100k 87,600 10,570 N/A 88.9 89.5 88.5
SQuAD V2.0 150k 130,319 11,873 N/A 81.3 83.2 74.8

NewsQA 119k 92,549 5,165 5,126 66.8 67.2 60.1
BoolQ 16k 9,427 3,270 3,245 85.2 86.1 80.4

NarrativeQA 45k 32,747 3,461 10,557 67.5 68.9 62.1

parts of speech preference (Sec. 5.4.10) and analyzing its robustness versus the scale of

pre-trained models

5.4.1 Datasets and Victim Models

We assess QA-Attack using four informative queries datasets: SQuAD 1.1 [27], SQuAD

V2.0 [213], NarrativeQA [214], and NewsQA [215], along with the boolean queries

dataset BoolQ [216].

• SQuAD 1.1: Questions formulated by crowd workers based on Wikipedia articles.

Answers are extracted as continuous text spans from the corresponding passages.

• SQuAD 2.0: Extension of SQuAD 1.1 incorporating unanswerable questions. These

questions are designed such that no valid answer can be located within the provided

passage, adding complexity to the task.

• NarrativeQA: Questions based on entire books or movie scripts. Answers are

typically short and abstractive, demanding deeper comprehension and synthesis of

narrative elements.

• NewsQA: Questions based on CNN news articles designed to test reading compre-

hension in the context of current events and journalistic writing.
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• BoolQ: Dataset of boolean (yes/no) questions derived from anonymized, aggregated

queries submitted to the Google search engine, reflecting real-world information-

seeking behaviour.

Our experiment includes three question-answering models for comparison. They are

T5[94], LongT5 [199], and BERTbase [28]. The LongT5 is an extension of T5 with an

encoder-decoder specifically for long contextual inputs. The BERT-based models are

structured with bidirectional attention, meaning each word in the input sequence con-

tributes to and receives context from both its left and right sides. Table 5.1 presents the

distribution of dataset splits and F1 scores reported on each QA baseline.

5.4.2 Baseline Attacks

For our experimental baselines, we employ five leading attack methods: TASA [3],

RobustQA [5], Tick Me If You Can (TMYC) [4], T3 [6], and TextFooler [11]. We utilize the

official implementation of T3 in its black-box setting, while TASA, TMYC, and RobustQA

are employed with their standard configurations. TextFooler, originally not designed for

question-answering tasks, was adapted for our experiments. We modified it to process

the context only (questions are removed).

5.4.3 Experiment Settings and Evaluation Metrics

The base setting of our experiments is to let topk = 5, d = 2, and use a BERT-base-

uncased1 with 12 Transformer encoder layer (L) and 768 hidden layers (H) as the

synonym generation model. Some visualized examples are shown in Table 5.2 and 5.3.

Tables 5.4, 5.5, and 5.6 summarize the experimental results on informative queries

datasets, offering a comparative analysis of our QA-Attack method against five state-of-

the-art QA baselines. For boolean queries, we present the attacking results on the BoolQ
1https://github.com/google-research/bert/?tab=readme-ov-file.
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dataset in Table 5.7. Besides, we provide code for the reproductivity of our experiments2.

The metrics used in our experiment are:

• F1: The F1 score balances precision and recall, providing a nuanced view of how

much the attacked answers match reference answers.

• ROUGE and BLEU: A higher BLEU [161] or ROUGE [25] score in context indi-

cates that the adversarial context retains more of the exact phrasing, contributing

to better linguistic fluency and coherence.

• Exact Match (EM) Measures the percentage of model predictions that exactly

match the correct answers in both content and format.

• Similarity (SIM): Evaluates the semantic similarity between original and adver-

sarial context using BERT [28] embeddings. (Note: In our following experiments,

EM and SIM are not only measured answers but also reflect the quality of the

generated context in Sec. 5.4.5.3).

• Modification Rate (Mod): Mod measures the proportion of altered tokens in the

text. This metric considers each instance of replacement, insertion, or deletion as a

single token modification.

• Grammar Error (GErr): GErr measures the increase in grammatical inaccu-

racies within successful adversarial examples relative to the original text. This

measurement employs LanguageTool [217] to enumerate grammatical errors.

• Perplexity (PPL): PPL serves as an indicator of linguistic fluency in adversarial

examples [59, 218]. The perplexity calculation utilizes a GPT-2 model with a

restricted vocabulary [80].

2Our code is available at https://github.com/UTSJiyaoLi/QA-Attack.
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5.4.4 Experiment Analysis

Table 5.2: Comparison of original and adversarial contexts for boolean queries. The table
highlights the differences between the original and adversarial contexts, as well as the
corresponding answers provided by the model before and after the attack.

Question Was the movie "The Strangers" based on a true story?
Context The Strangers is a 2008 American slasher film written and directed

by Bryan Bertino. Kristen (Liv Tyler) and James (Scott Speedman) are
expecting a relaxing weekend at a family vacation home, but their stay
turns out to be anything but peaceful as three masked torturers leave
Kristen and James struggling for survival. Writer-director Bertino was
inspired by real-life events: the Manson family Tate murders, a multiple
homicide; the Keddie Cabin Murders, that occurred in California in 1981;
and a series of break-ins that occurred in his own neighborhood as a
child.

Adversary The Strangers is a 2008 American slasher thriller written and directed
by Bryan Bertino. Kristen (Liv Tyler) and James (Scott Speedman) are
spending a relaxing weekend at a family vacation home, but their stay
turns out to be anything but peaceful as three masked torturers leave
Kristen and James struggling for survival. Writer-director Bertino was
influenced by real-life incidents: the Manson family Tate murders, a mul-
tiple homicide; the Keddie Cabin Murders, that occurred in California in
1981; and a series of break-ins that occurred in his own home as a child.

Original Answer Yes
Attacked Answer No

Our experimental results in Table 5.4, 5.5, 5.6 demonstrate that QA-Attack con-

sistently outperforms baseline methods across all informative datasets. As shown in

Table 5.7, our method achieves superior performance on the boolean dataset, surpass-

ing all baseline approaches in degrading victim models’ accuracy (note that TASA is

designed only for informative queries; it is incompatible with boolean query attacks).

For informative queries, comparing performance on attacking LongT5 with SQuAD 1.1

and NarrativeQA datasets (representing shortest and longest contexts) in Table 5.6, we

observe that while F1 and EM scores decrease for longer contexts, QA-Attack maintains

superiority over baselines. This indicates our approach’s robustness and adaptability to

varying context lengths, particularly in long text. The improved performance in longer
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Table 5.3: Comparison of original and adversarial contexts for informative queries. The
table highlights the differences between the original and adversarial contexts, as well as
the corresponding answers provided by the model before and after the attack.

Question Who ruled the Duchy of Normandy?
Context The Normans were famed for their martial spirit ... The Duchy of Nor-

mandy, which they formed by treaty with the French crown, was a great
fief of medieval France, and under Richard I of Normandy was forged
into a cohesive and formidable principality in feudal tenure ... Norman
adventurers founded the Kingdom of Sicily ... an expedition on behalf
of their duke, William the Conqueror, led to the Norman conquest of
England at the Battle of Hastings in 1066.

Adversary The Normans were famed for their warrior spirit ... The Duchy of Nor-
mandy, which they formed by treaty with the French crown, was a great
fief of medieval France, and under William I of Normandy was forged
into a cohesive and formidable principality in feudal tenure ... Norman
adventurers invaded the Kingdom of Sicily ... an invasion on behalf
of their duke, William the Conqueror, led to the Norman conquest of
England at the siege of Hastings in 1066.

Original Answer The French crown
Attacked Answer William I of Normandy

contexts suggests our HRF approach effectively identifies and targets vulnerable tokens.

Regarding semantic consistency, QA-Attack achieves lower similarity scores compared to

baseline methods, indicating that the answers generated after the attack deviate more

in meaning from the ground truth responses.

Additionally, the quality of the generated adversarial samples is evident from the

ROUGE and BLEU scores. Our method consistently achieves higher ROUGE and BLEU

scores compared to the baselines, which suggests that the adversarial examples generated

by QA-Attack are not only effective in terms of altering the model’s output but also

maintain a high degree of contextual and linguistic coherence. This is largely due to our

synonym selection method, which ensures the replacements are contextually appropriate

and semantically relevant. Moreover, the token-level replacement strategy, which only

mods fewer words (typically five in the base setting), further ensures that the adversarial

examples remain similar to the original context while fooling the model.
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Table 5.4: Comparative analysis of QA-Attack and baseline models on T5. Drops of BLEU
and ROUGE scores (uni-gram) on contexts are reported in the table, with higher values
indicating better performance. For F1, EM, and SIM (i.e., similarity) metrics on answers,
lower values indicate better performance.

Datasets Methods F1↓ EM↓ ROUGE↑ BLEU↑ SIM↓

SQuAD
1.1

TASA [3] 9.21 7.49 89.12 82.88 6.38
TMYC [4] 7.28 8.21 81.91 78.72 8.22

RobustQA [5] 5.89 7.52 84.23 77.41 6.03
TextFooler [11] 10.6 10.49 83.11 76.05 6.29

T3 [6] 5.41 6.29 86.83 73.82 7.23
QA-Attack (ours) 4.67 5.68 90.51 84.11 5.91

SQuAD
V2.0

TASA [3] 20.09 19.31 70.21 76.06 7.29
TMYC [4] 17.23 20.68 65.19 69.82 9.05

RobustQA [5] 16.37 18.73 67.71 63.19 8.14
TextFooler [11] 21.69 24.5 65.33 65.01 9.32

T3 [6] 11.19 19.68 69.71 73.53 8.82
QA-Attack (ours) 9.13 15.41 72.76 77.28 6.33

Narrative
QA

TASA [3] 11.79 15.25 68.11 70.36 6.11
TMYC [4] 12.73 9.32 65.91 67.22 7.61

RobustQA [5] 10.01 13.91 67.19 64.11 6.81
TextFooler [11] 14.72 18.61 63.85 62.82 11.74

T3 [6] 11.74 11.37 62.34 60.17 6.28
QA-Attack (ours) 5.61 7.23 69.18 75.73 5.23

NewsQA

TASA [3] 8.56 29.44 77.28 69.44 7.11
TMYC [4] 6.12 31.23 77.96 72.49 9.22

RobustQA [5] 5.12 29.48 83.81 79.82 10.84
TextFooler [11] 9.01 30.86 74.21 57.44 27.91

T3 [6] 6.21 28.52 75.22 72.56 14.27
QA-Attack (ours) 3.61 24.42 78.85 82.83 8.92

5.4.5 Ablation and Hyperparameters Studies

To comprehensively validate the efficacy of the proposed QA-Attack method, this section

conducts a detailed ablation study, dissecting each component to assess its individual

impact and overall contribution to the method‚Äôs performance.
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Table 5.5: Comparative analysis of QA-Attack and baseline models on Bertbase. Drops of
BLEU and ROUGE scores (uni-gram) on contexts are reported in the table, with higher
values indicating better performance. For F1, EM, and SIM (i.e., similarity) metrics on
answers, lower values indicate better performance.

Datasets Methods F1↓ EM↓ ROUGE↑ BLEU↑ SIM↓

SQuAD
1.1

TASA [3] 15.27 34.33 82.87 67.22 8.19
TMYC [4] 12.89 28.63 81.51 76.39 10.24

RobustQA [5] 15.72 25.38 79.28 73.27 15.81
TextFooler [11] 23.04 37.28 67.28 49.49 14.11

T3 [6] 8.79 16.11 57.19 63.81 16.92
QA-Attack (ours) 6.42 13.31 91.22 77.16 7.43

SQuAD
V2.0

TASA [3] 31.22 28.9 77.06 69.05 8.22
TMYC [4] 29.38 27.77 73.81 67.23 10.34

RobustQA [5] 27.64 31.82 75.67 71.42 11.23
TextFooler [11] 36.8 29.49 67.14 62.67 13.28

T3 [6] 26.16 27.47 74.94 70.14 7.24
QA-Attack (ours) 22.18 21.5 80.12 75.23 4.11

Narrative
QA

TASA [3] 12.11 14.51 61.15 63.04 7.32
TMYC [4] 8.41 10.23 52.89 69.82 10.72

RobustQA [5] 7.24 9.43 63.81 67.43 9.53
TextFooler [11] 13.74 18.79 56.11 56.82 14.21

T3 [6] 8.49 15.35 65.48 67.09 7.83
QA-Attack (ours) 3.86 9.34 69.44 71.15 5.61

NewsQA

TASA [3] 16.85 20.95 68.74 69.12 15.22
TMYC [4] 15.86 31.23 77.96 72.49 9.22

RobustQA [5] 17.72 29.48 83.81 79.82 10.84
TextFooler [11] 24.13 22.63 59.17 61.22 31.07

T3 [6] 21.22 22.57 65.14 67.11 18.27
QA-Attack (ours) 14.91 20.20 70.04 74.87 9.22

5.4.5.1 Effectiveness of Hybrid Fusion Ranking on Multiple Question Types

We test how HRF, ABR, and RBR methods perform across different topk values on the

SQuAD and BoolQ datasets, with d remaining, shown in Fig. 5.2. HRF consistently

outperforms ABR and RBR for all topk values on both datasets. This suggests combining

attention-based and removal-based ranking in HRF is more effective at generating

robust adversarial examples than using either method alone. The graph also shows that

as topk increases, all methods improve, indicating that higher topk values help identify
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Table 5.6: Comparative analysis of QA-Attack and baseline models on LongT5. Drops of
BLEU and ROUGE scores (uni-gram) on contexts are reported in the table, with higher
values indicating better performance. For F1, EM, and SIM (i.e., similarity) metrics on
answers, lower values indicate better performance.

Datasets Methods F1↓ EM↓ ROUGE↑ BLEU↑ SIM↓

SQuAD
1.1

TASA [3] 10.61 22.45 80.67 70.41 11.88
TMYC [4] 12.43 29.81 75.37 63.83 13.22

RobustQA [5] 17.22 31.11 73.11 68.29 17.64
TextFooler [11] 35.31 44.09 57.77 49.49 25.33

T3 [6] 9.33 24.52 49.23 60.33 20.87
QA-Attack (ours) 7.38 18.78 84.22 72.67 9.67

SQuAD
V2.0

TASA [3] 30.71 30.11 64.71 67.28 9.32
TMYC [4] 34.11 33.88 64.21 65.11 14.82

RobustQA [5] 29.01 39.59 62.91 68.22 13.09
TextFooler [11] 38.25 34.67 60.47 64.16 15.44

T3 [6] 30.44 30.13 65.81 63.72 8.29
QA-Attack (ours) 27.11 24.73 77.37 70.32 5.29

Narrative
QA

TASA [3] 8.22 10.67 69.83 65.77 9.53
TMYC [4] 9.36 11.33 63.15 64.27 14.72

RobustQA [5] 15.83 12.03 64.28 63.12 12.77
TextFooler [11] 12.77 14.82 62.99 54.21 17.33

T3 [6] 8.38 8.26 63.92 66.32 8.92
QA-Attack (ours) 4.62 5.33 70.33 68.32 7.44

NewsQA

TASA [3] 16.85 24.54 64.83 66.81 14.82
TMYC [4] 19.28 29.01 62.88 68.67 11.43

RobustQA [5] 17.23 27.42 58.32 57.22 13.37
TextFooler [11] 27.22 26.39 53.33 53.01 25.82

T3 [6] 17.83 25.87 63.25 65.43 19.27
QA-Attack (ours) 15.32 24.12 68.23 70.55 10.48

vulnerable tokens better and lead to more effective attacks.

Despite the better performance at higher topk values, the study uses topk = 5 as a

base setting. This choice balances effectiveness with minimal text modification, ensuring

that adversarial examples remain close to the original context while still being effective.

The consistent trend across both SQuAD and BoolQ datasets demonstrates that HRF’s su-

perior performance holds for different question types, showing its versatility in attacking

various question-answering models. This analysis highlights the practical effectiveness
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Table 5.7: Attack performance comparison on baseline models using the BoolQ dataset,
with top results highlighted in bold. Note that TASA [3] is not applicable to boolean
questions.

Victim
Models

Methods F1↓ EM↓ ROUGE↑ BLEU↑ SIM↓

UnifiedQA

TASA [3] N/A N/A N/A N/A N/A
TMYC [4] 17.43 19.36 82.09 77.23 21.83

RobustQA [5] 14.33 18.92 79.15 80.33 13.22
TextFooler [11] 20.11 19.07 80.91 83.25 33.82

T3 [6] 15.16 14.74 71.32 68.79 15.82
QA-Attack (ours) 8.64 13.9 87.31 86.57 11.42

Bertbase

TASA [3] N/A N/A N/A N/A N/A
TMYC [4] 21.35 13.28 63.21 70.57 7.34

RobustQA [5] 24.81 9.21 69.22 76.01 6.67
TextFooler [11] 33.02 11.57 65.11 67.81 8.17

T3 [6] 22.06 11.02 76.17 74.62 6.23
QA-Attack (ours) 18.39 6.51 77.21 78.11 4.66

LongT5

TASA [3] N/A N/A N/A N/A N/A
TMYC [4] 29.77 9.82 67.04 73.22 7.43

RobustQA [5] 24.56 8.21 70.49 71.83 9.33
TextFooler [11] 33.02 11.57 65.11 67.81 8.17

T3 [6] 22.06 11.02 76.17 74.62 6.23
QA-Attack (ours) 18.39 6.51 77.21 78.11 4.66

of the HRF method and its ability to generate impactful adversarial examples across

different QA tasks.

5.4.5.2 Effectiveness of Synonyms Selection

To evaluate our Synonyms Selection approach, we conduct comparisons in two aspects.

We first compare our BERT-based synonym generation against two alternative methods:

WordNet [219], an online database that contains sets of synonyms, and HowNet [212],

which produces semantically similar words using its network structure. Using the base

configuration, we evaluate the EM scores when attacking T5 and BERTbase models across

three datasets: SQuAD 1.1, NarrativeQA, and BoolQ. The results in Table 5.8 demon-

strate that our QA-Attack with BERTbase consistently achieved superior performance
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Figure 5.2: F1 score analysis for HFR, ABR, and RBR variants of QA-Attack using
different topk values, tested on datasets SQuAD 1.1 and BoolQ.

Table 5.8: EM scores for attacks on T5 and BERTbase models using three distinct synonym
generation methods. Lower scores indicate more effective attacks.

Methods Victim Models
Datasets

SQuAD 1.1 NarrativeQA BoolQ

HowNet
T5 14.22 7.25 29.08

BERTbase 7.66 4.52 26.91

WordNet
T5 5.31 3.99 21.63

BERTbase 7.23 5.67 19.35

BERTbase (ours)
T5 4.67 5.61 8.64

BERTbase 6.42 3.86 18.39

compared to other methods across all datasets and victim models.

On the other hand, we also examine the impact of parameter d in Synonym Selection,

which determines the number of synonyms obtained from the Masked Language Model

(MLM). Table 5.9 illustrates that as d increases from 1 to 3, F1 scores consistently

decrease across all datasets, indicating improved attack performance. This trend suggests

that a more aggressive setting (higher d) is more effective in compromising model

accuracy across various datasets.
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Table 5.9: F1 scores demonstrating QA-Attack’s performance across five datasets under
different d values (i.e., number of synonym candidates for substitutions).

SQuAD
1.1

SQuAD
V2.0

BoolQ
Narrative

QA
NewQA

d = 1 8.52 14.72 19.22 7.63 10.66
d = 2 4.67 9.13 15.16 5.61 3.61
d = 3 2.17 7.26 11.43 3.71 3.27

Table 5.10: Performance metrics for different word candidate selection strategies against
T5 model on SQuAD 1.1 dataset.

Methods EM↓ SIM↑ Mod↓ PPL↓ GErr↓
TASA [3] 9.21 6.38 8.15 143 0.13
TMYC [4] 7.28 8.22 9.21 151 0.14
RobustQA [5] 5.89 6.03 8.35 147 0.15
T3 [6] 5.41 7.23 7.93 133 0.13
TextFooler [11] 10.60 6.29 8.17 136 0.14
QA-Attack (ours) 5.68 5.91 7.24 125 0.12

5.4.5.3 Texual Quality of Word Candidates

In our ablation study, detailed in Table 5.10, we investigate the quality of adversarial

examples generated by various attack methods on the T5 model using the SQuAD 1.1

dataset. We evaluate our word replacement technique with encoder-decoder candidate

generation (T3), as well as sentence-level modification methods (TASA, TMYC). The

results indicate that our word-level synonym selection approach outperformed all other

baselines. Notably, our word-level attack maintains a lower grammar error rate and

higher linguistic fluency than alternative methods. Although RobustQA employs the

same synonym selection strategy, it requires more word modifications to successfully

attack the model and tends to produce more adventurous alterations.
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Table 5.11: Time consumption (seconds per sample) for various methods and datasets. A
lower value indicates better performance.

Narrative
QA

SQuAD
1.1

SQuAD
V2.0

NewsQA BoolQ

TASA [3] 28.77 15.82 18.25 10.72 –
TMYC [4] 25.61 12.75 16.33 9.21 7.42
RobustQA [5] 25.82 24.46 22.15 12.81 15.82
T3 [6] 26.52 21.37 28.38 14.74 7.93
QA-Attack (ours) 23.51 10.61 12.38 8.32 7.22

5.4.6 Platform and Efficiency Analysis

In this section, we evaluate QA-Attack’s computational efficiency under base settings.

We measure efficiency using time consumption per sample, expressed in seconds, where a

lower value indicates superior performance. As shown in Table 5.11, the outcomes reveal

that QA-Attack exhibits remarkable time efficiency, consistently outperforming baseline

methods across both long-text (NarrativeQA) and short-text (SQuAD 1.1) datasets. This

superior performance can be attributed to QA-Attack’s innovative Hybrid Ranking Fusion

(HRF) strategy, which effectively identifies vulnerable words within the text, significantly

enhancing the speed of the attack process.

5.4.7 Adversarial Retraining

In this section, we investigate QA-Attack’s potential for enhancing downstream models’

accuracy. We employ QA-Attack to generate adversarial examples from SQuAD 1.1

training sets and incorporate them as supplementary training data. We reconstruct

the training set with varying proportions of adversarial examples added to the raw

training set. The retraining process with this augmented data aims to examine how test

accuracy changes in response to the inclusion of adversarial examples. As illustrated

in Fig. 5.3, re-training with adversarial examples slightly improves model performance

when less than 30% of the training data consists of adversaries. However, performance
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Figure 5.3: T5 model performance after retraining on SQuAD 1.1 dataset using diverse
adversarial examples created by TASA [3], TMYC [4], RobustQA [5], T3 [6], and our
QA-Attack method.

decreases when the proportion of adversaries exceeds 30%. This finding indicates that the

optimal ratio of adversarial examples in training data needs to be determined empirically,

which aligns with conclusions from previous attacking methods. To evaluate how re-

training helps defend against adversarial attacks, we analyze the robustness of T5 models

trained with varying proportions of adversarial examples (0%, 10%, 20%, 30%, 40%) from

different attack methods, as shown in Fig. 5.3. A lower F1 score indicates higher model

susceptibility to adversarial attacks. The attack performance of the re-trained model

is shown in Fig. 5.4. It demonstrates that incorporating adversarial examples during

training consistently improves model robustness, as evidenced by increasing F1 scores

across all attack methods. Notably, QA-Attack emerges as the most effective approach,

consistently outperforming other methods, with its advantage becoming particularly

pronounced at higher percentages of adversarial training data.
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Figure 5.4: F1 scores of attacking T5 models retrained with increasing proportions of
adversarial examples generated by baseline methods (TASA [3], TMYC [4], RobustQA [5],
T3 [6]) and our QA-Attack.

5.4.8 Attacking Models with Defense Mechanism

Defending NLP models against adversarial attacks is crucial for maintaining the re-

liability of language processing systems in real-world applications [220]. To further

analyze how attacks are performed under defense systems, we deploy two distinct de-

fense mechanisms to investigate our attack performance under defense systems. The

first is Frequency-Guided Word Substitutions (FGWS) approach [7], which excels at de-

tecting adversarial examples. The second is Random Masking Training (RanMASK) [8],

a technique that enhances model robustness through specialized training procedures. We

perform the adversarial attack on T5 on datasets SQuAD 1.1, NarrativeQA and BoolQ,

and the outcomes are collected in Table 5.12. The outcomes indicate that QA-Attack

demonstrates superior adversarial robustness across multiple benchmark datasets, con-

sistently outperforming existing methods against state-of-the-art defenses.
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Table 5.12: Effectiveness of defense mechanisms (FGWS [7] and RanMASK [8]) against
QA-Attack: EM scores of T5 model output answers across SQuAD 1.1, NarrativeQA, and
BoolQ datasets. Lower scores indicate higher attack success against defenses.

Datasets Defense TASA RobustQA TMYC T3 QA-Attack

SQuAD
1.1

FGWS [7] 34.71 39.42 28.51 24.11 21.03
RanMASK [8] 32.17 39.78 44.81 41.09 30.26

Narrative
QA

FGWS [7] 49.28 44.62 37.21 45.17 38.33
RanMASK [8] 38.41 37.14 41.62 43.81 34.47

BoolQ
FGWS [7] 45.71 47.37 38.97 45.33 38.34
RanMASK [8] 41.63 42.88 47.25 42.17 40.51

5.4.9 Transferability of Attacks

To evaluate our model’s transferability, we test the adversarial samples generated for

T5 on three distinct question-answering models: RoBERTa [92], DistilBERT [91], and

MultiQA [100]. We also compare the transferability of three baseline methods: TASA,

TextFooler, and T3, under identical experimental conditions. As shown in Fig. 5.5, QA-

Attack effectively degrades other QA models’ performance on both the NarrativeQA and

BoolQ datasets. This suggests that the transferring attack performance of our QA-Attack

consistently outperforms the baselines.

5.4.10 Parts of Speech Preference

To further understand the candidate words’ distribution of our word-level attack, we

examine its attacking preference in terms of Parts of Speech (POS), highlighting vul-

nerable areas within the input context. We use the Stanford POS tagger [221] to label

each attacked word, categorizing them as noun, verb, adjective (Adj.), adverb (Adv.), and

others (e.g., pronoun, preposition, conjunction). Table 5.13 illustrates the POS preference

of our QA-Attack compared to baseline methods in the base setting. For “informative

queries” on SQuAD dataset, most attacking methods predominantly target nouns, while

TASA shows a slight preference for adverbs. In the case of “boolean queries” on BoolQ
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Figure 5.5: F1 scores for transfer attacks on three other QA models using adversarial
samples generated for UnifiedQA. A lower value indicates better performance.

dataset, all methods frequently focus on adjectives and adverbs. Notably, our QA-Attack

demonstrates a higher preference for the “others” category. Given that these parts of

speech (pronouns, prepositions, and conjunctions) carry limited semantic content, we

suggest that altering them may not significantly affect the linguistic or semantic aspects

of prediction. However, such modifications could disrupt sequential dependencies, poten-

tially compromising the contextual understanding of QA models and misleading their

answers.

5.4.11 Robustness versus the Scale of Pre-trained Models

From the attacking results in Table 5.5 discussed in Sec 5.4.4, we recognize the limitation

of our QA-Attack on BERTbase, with L = 12 and H = 768, which does not sufficiently

support robust experimental outcomes. To address this issue and gain more comprehen-

sive insights, we conducted experiments with four different sizes of BERT [28] models3:

3Different sizes of BERT models can be obtained from https://github.com/google-research/
bert/
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Table 5.13: POS preference with respect to choices of victim words among attacking
methods. (TASA is incompatible with Boolean queries.)

Datasets Methods Noun Verb Adj. Adv. Others

SQuAD 1.1

TASA [3] 35% 12% 13% 36% 4%
TMYC [4] 47% 21% 11% 5% 17%
RobustQA [5] 34% 13% 22% 16% 15%
TextFooler [11] 44% 13% 23% 8% 12%
T3 [6] 60% 17% 6% 7% 10%
QA-Attack (ours) 34% 9% 18% 3% 36%

BoolQ

TASA [3] N/A N/A N/A N/A N/A
TMYC [4] 14% 19% 12% 35% 20%
RobustQA [5] 19% 14% 27% 23% 17%
TextFooler [11] 41% 15% 27% 7% 10%
T3 [6] 42% 13% 20% 16% 9%
QA-Attack (ours) 10% 19% 25% 18% 28%

Table 5.14: A comparative analysis to attacking various sizes of BERT model on SQuAD
1.1 dataset. A lower value indicates better attack performance.

Versions BERT tiny BERT mini BERT medium BERT large

Size
L = 2

H = 128
L = 4

H = 256
L = 4

H = 256
L = 24

H = 1024

EM ↓ 11.82 13.26 13.31 14.25
F1 ↓ 5.67 6.35 6.42 7.24

SIM ↓ 6.23 7.12 7.43 8.38

BERTtiny, BERTmini, BERTmedium, and BERTlarge. Our findings, detailed in Table 5.14,

demonstrate a positive correlation between model size and experimental robustness.

The effectiveness of adversarial attacks decreases as the complexity and capacity of the

BERT model increase, suggesting that deeper architectures provide better protection

against adversarial perturbations.

5.5 Summary and Discussion

In this chapter, we presented QA-Attack, a novel approach that employs Hybrid Ranking

Fusion (HRF) to conduct effective attacks by identifying and modifying critical tokens
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in input text. By combining attention-based and removal-based ranking strategies, QA-

Attack successfully disrupts model predictions while preserving semantic and linguistic

coherence. Comprehensive experiments demonstrate that our method surpasses existing

attack techniques in terms of attack success, fluency, and computational efficiency

across multiple datasets, validating its effectiveness in compromising the robustness

of state-of-the-art QA models. While QA-Attack reveals vulnerabilities in question-

answering systems, these findings also provide valuable insights for enhancing model

robustness. Future work will focus on developing defense mechanisms to mitigate these

vulnerabilities. Additionally, we plan to extend QA-Attack to address more complex

scenarios, including multiple-choice questions and multi-hop reasoning [222], ensuring

our method remains effective for evaluating and improving QA system robustness in an

evolving landscape of adversarial threats.
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CONCLUSION AND FUTURE WORK

This chapter concludes with a summary of our key findings in Section 6.1, followed by

proposed directions for future research in Section 6.2.

6.1 Conclusion

This thesis investigates the vulnerabilities of Natural Language Processing (NLP) and

Computer Vision models, specifically focusing on adversarial attacks against abstractive

summarization, image captioning, and question answering systems. Our research reveals

critical insights into model weaknesses and introduces novel methodologies that both

expose and enhance the robustness of contemporary deep learning systems. The key

contributions are as follows:

1. First, we introduce an innovative paraphrasing-based attack framework for ab-

stractive summarization models. Our approach addresses the challenge of attacking

long-form text inputs by incorporating a sentence importance ranking mechanism

based on ROUGE score differentials. By identifying and paraphrasing the most
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influential sentences, our method generates adversarial examples that effectively

deceive summarization models while maintaining semantic coherence. Experimen-

tal results demonstrate superior attack success rates compared to existing methods

across multiple datasets.

2. Second, we propose a novel attention-based adversarial attack targeting image

captioning systems. The method leverages an attention score to identify salient

image regions and employs differential evolution to optimize perturbations, all

within a black-box setting that requires no access to model gradients or archi-

tecture details. Through comprehensive evaluation, we show that our approach

achieves state-of-the-art attack success rates while ensuring perturbations remain

imperceptible to human observers.

3. Finally, we develop a hybrid word-level adversarial framework for question-answering

systems that handle both boolean and informative queries. Our method combines

attention-based and removal-based ranking strategies to identify vulnerable words,

which are then replaced with contextually appropriate synonyms generated by a

masked language model. This approach preserves linguistic fluency and semantic

meaning while successfully misleading modern QA models, including T5 and BERT,

achieving high attack success rates with minimal semantic distortion.

This research advances our understanding of adversarial vulnerabilities in textual

and visual models, revealing their susceptibility to subtle, imperceptible attacks. Through

innovative strategies that balance attack effectiveness with semantic and perceptual

coherence, this work establishes new benchmarks for evaluating and enhancing AI sys-

tem robustness. The methodological contributions offer practical insights for improving

the security and reliability of AI applications in real-world contexts, such as automated

services and accessibility tools.
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6.2 Future Work

Building upon the findings presented in this thesis, several promising directions for

future research emerge. These directions seek to expand the scope of adversarial attacks,

deepen our understanding of model vulnerabilities, and enhance the robustness of AI sys-

tems across Natural Language Processing and Computer Vision tasks. By investigating

emerging AI paradigms such as large language models, exploring attack transferability

across diverse tasks, and developing innovative defense mechanisms, future studies can

address both theoretical challenges and practical applications. Furthermore, leveraging

insights from adversarial attacks to refine model architectures and training methodolo-

gies presents significant opportunities for advancing the reliability and security of AI

systems in real-world deployments. The key areas for future investigation are outlined

below:

• Adversarial Attacks on Large Language Models: Future research could extend

adversarial attack strategies to large language models like GPT [56], T5 [16], and

PaLM [223], focusing on their unique architectural vulnerabilities. This includes

investigating how attacks on LLMs differ from traditional NLP models due to

their scale, few-shot learning capabilities, and extensive pre-training. Exploring

attacks in conversational, generative, and multi-turn dialogue contexts could reveal

novel insights into model robustness. Additionally, testing adversarial strategies on

LLM-based APIs deployed in real-world applications would bridge the gap between

theoretical findings and practical implications.

• Transferability Across Modalities and Tasks: Building on current findings, future

work could investigate the transferability of adversarial examples across various

architectures and tasks. For NLP, this could include testing attacks on multi-modal

systems, translation models, and domain-specific applications in legal and medical
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contexts. In Computer Vision, transfer attacks could target advanced tasks like

video captioning [224], 3D vision [225], and generative models such as GANs [226].

Understanding how adversarial examples generalize across different architectures,

datasets, and training conditions would provide valuable insights into AI system

robustness.

• Potential Defense Systems: The findings from this thesis can inform the devel-

opment of innovative defense mechanisms. This includes designing adversarial

training approaches specifically tailored to vulnerabilities identified in summa-

rization, image captioning, and QA models. Hybrid defense systems that combine

adversarial detection with robust optimization techniques could provide compre-

hensive protection. Furthermore, incorporating explainable AI techniques and

uncertainty quantification could enhance model resistance to adversarial perturba-

tions. Collaboration with industry partners to deploy and validate these defenses

in operational settings would demonstrate their practical effectiveness.

• Improvements to CV and NLP Models Based on Attack Results: Insights from

these adversarial attacks could guide improvements in model architectures and

training methodologies. For NLP, this involves developing models with enhanced

contextual understanding and redundant decision-making pathways. In Com-

puter Vision, incorporating adaptive attention mechanisms could help models

resist adversarial perturbations. Cross-task learning approaches, where models

are trained to identify and counter adversarial patterns across multiple tasks,

could provide breakthrough advances. Additionally, attack insights could inspire

novel pretraining objectives and regularization techniques that simultaneously

enhance performance and robustness.

• Societal Threat Quantification: While this thesis evaluates attacks using seman-

tic similarity and NLP metrics, these technical measures inadequately capture
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real-world consequences. Future work should develop frameworks mapping at-

tack characteristics to domain-specific risks-including market volatility in finance,

treatment errors in healthcare, and electoral influence in politics. Targeted demon-

stration experiments could strengthen these frameworks by simulating real-world

failures, such as compromised content moderation systems or autonomous vehicles

misinterpreting adversarial captions. By establishing quantitative relationships

between attack metrics and societal harm indicators, researchers could better

prioritize defenses for high-stakes applications and guide deployment decisions in

sensitive domains.
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