Applied Mathematical Modelling 146 (2025) 116176

Contents lists available at ScienceDirect i

Maﬂﬁ(—:'Arﬁa%Ca\
Modelling

Applied Mathematical Modelling

= S
[.SEVIER journal homepage: www.elsevier.com/locate/apm

L))

Check for

Thermoplastic-virtual integrated model for functionally graded
structure at high temperature

Yuan Feng

School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

ARTICLE INFO ABSTRACT
Keywords: The high temperature induced uncertain nonlinear failure behaviour has been one of the critical
Thermoplastic issues for concurrent composite structures due to the metallic components involved. This paper
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Material nonlinearity
Uncertainty quantification

presents a multivariate coupling framework for combining thermal elastoplastic based mechan-
ical model with efficient virtual modelling technique to investigate the non-deterministic plastic
responses of functionally graded structure subject to varied temperature distributions. The po-
sition and temperature dependent thermoplastic mechanical properties of functionally graded
structure are simulated through the Touloukian and Tamura-Tomota-Ozawa models. The
randomness of effective properties of FG structure is applied as random vector into the mecha-
nism algorithm then follow Jo-plasticity with isotropic hardening to exhibit nonlinear behaviour.
The coupling framework is achieved by incorporating the random nonlinear responses into the
multi-cluster virtual modelling technique and provided with explicit formulation that repre-
senting the inherent correlation between the field inputs and yielding outputs. Such that the
deformed nonlinear deflection, plastic damage zone, and fragility curves could be directly esti-
mated for the FG structure under various temperature distributions. The coupled thermoplastic-
virtual model is validated through two practical numerical applications and the computational
accuracy, efficiency, and versatility of the coupled framework ensured the rapid safety evaluation
of complex composite system in an uncertain thermal environment.

1. Introduction

As advanced composite materials, functionally graded materials (FGMs) have been widely developed for many high-end appli-
cations in various fields, such as aircraft engine blades and piston cylinders in Fig. 1. Most of these devices are often required to operate
in high-temperature environments and are generally of high value, with significant secondary losses caused by failure [1,2]. Many
accident investigation reports reveal that high-temperature-induced ductile failure is one of the main failure modes for these
FGM-made devices [3,4]. When devices are working continuously, the ductile failure of some main parts is difficult to detect due to the
lack of significant symptoms [5]. Once plastic deformation occurs, the deformation can increase violently in a short time in a
high-temperature environment due to the high-temperature-weakened hardening characteristics [6,7]. This extremely limits the
efficient and sufficient intervention of protective measures before failure. Therefore, it is necessary and critical to develop an
early-warning system framework that can accurately simulate the thermomechanical responses of FGM structures in high-temperature
environments and provide early warnings of areas where plastic failure may occur. This framework should effectively address the
following three relevant challenges currently faced.
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Fig. 1. (a) Ductile failure of blade caused by material defects in the No.2 engine of United Flight 1175; (b) Warping failure of cylinder heads caused
by overheating and tremendous pressure.

The first challenge is to develop a thermo-elastic-plastic stability analysis model for complex engineering structures by considering
temperature-dependent material properties [8]. Compared to traditional isotropic and composite materials, many FGM-made devices
are typically subjected to high-temperature loads with a wide range [9]. Considering the temperature-sensitive material properties,
some parts are typically working at their elastic limit and inevitably produce plastic deformation, contributing to a potential ductile
failure risk [10]. Therefore, to make a reliable and appropriate FGM structural safety analysis, sufficient consideration of these un-
avoidable plastic deformations caused by thermomechanical loads and high-temperature-induced material degradation is required
[11]. However, most current analysis procedures mainly focus on the buckling analysis of simple structures [12,13], such as single
plates and shells, in ambient environments based on analytical [14] and numerical [15] approaches. Some studies have extended to
high-temperature environments by simplifying the material properties-temperature relationship, which rarely considers the
temperature-dependent characteristics and contributes to unreliable results [16]. In addition, real FGM-made equipment is generally
composed of multiple irregular parts, which makes the distribution of stress-strain over the whole equipment impacted by many
factors, such as the interaction between each part and the spatiotemporally dependent thermomechanical loads distribution, extremely
complex. Therefore, simply focusing on fundamental FGM elements, such as plates and shells, is not enough to accurately reflect the
real thermomechanical responses of the whole equipment and also has limited contribution to the design and optimization of FGM
structures [17].

In addition, compared with traditional isotropic material-made structures, FGM-made structures generally show more significant
inherent uncertainty due to the complexity of manufacturing procedures. These uncertainties, mainly in material properties, should be
taken into consideration to ensure the reliability of analysis results. Studies on the uncertainty of FGM systems, including material
uncertainties [18], geometrical uncertainties [19], and model uncertainties, are gaining more and more attention. The impact of
uncertainties on multiple structural responses has already been investigated [20,21]. Various approaches, such as interval random
uncertainty model [22,23], stochastic iso-geometric analysis [24,25], random perturbation-based finite element analysis [26],
sampling-based Monte Carlo simulation [27], and first/second order perturbations [28], have been developed to cope with uncertain
system parameters. In these studies, MCS-based buckling and stability of FGM structures are one of the main study focuses because of
the common ductile-induced buckling failure mode. However, to the author’s best knowledge, there are currently no studies focusing
on the probabilistic ductile failure analysis of complex FGM structures at extremely high temperatures by considering the inherent
uncertainties and temperature-dependent material properties.

The third challenge is improving the efficiency in assessing the safety status of FGM structures after upgrading from a deterministic
level to an uncertainty level. Impacted by external environmental factors, the systematic parameters applied to FGM structures,
including thermomechanical loads and material properties, fluctuate randomly, which in turn causes continuously changing structural
responses [29,30]. These uncertain input systematic parameters and corresponding output responses form a dynamic system. The
primary requirements for assessing the safety status of such a dynamic system in real-time are accuracy and efficiency. The safety
assessment framework should rapidly and accurately provide the structural responses according to the given latest input parameters,
based on which the safety status can ultimately be assessed. Currently, there are two main approaches to obtain output responses:
analytical [31] and numerical [32]. The former is only applicable to limited FGM structures with regular shapes, while the latter is
generally used for much more complex structures but is time-consuming for large structures, especially when extending to a
sampling-based uncertainty analysis [33]. Classical sampling-based MCS is widely used for uncertainty scenarios because of its great
applicability and lack of distortion. However, combining numerical and MCS methods to resolve uncertain responses of complex FGM
structures is obviously a solution that works in theory but is extremely limited in practical industrial applications due to the huge
computational cost. Therefore, designing a more efficient framework is necessary.

To address the above three challenges, this study proposes a real-time safety assessment framework for complex FGM structures by
detecting potential ductile failure areas under high-temperature environments. There are three highlights in this framework:
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e The Touloukian model, representing temperature-dependent material properties, is integrated into the classical Tamura-Tomota-
Ozawa model to simulate the temperature, time, and space-dependent material properties over the whole FGM structure. The
randomness of effective properties of the FG structure is applied as a random vector into the mechanism algorithm, then follows J2-
plasticity with isotropic hardening to exhibit nonlinear behaviour.

The inherent uncertainties in temperature-dependent material properties are considered, including Young’s modulus, yield
strength, hardening parameters, and so on. Random variables that follow specific statistical distributions are used to represent the
non-deterministic material properties. Sampling-based MCS is used to obtain the original sample database where the input and
output data pairs of each sample are recorded.

Based on an advanced machine learning algorithm, a virtual model is developed to accelerate the speed of predicting structural
responses. Using the original sample dataset as the initial training database, the well-trained virtual model can obtain the explicit
function representing the relationship between input parameters and output responses. For any updated input values that exist
within the range of the initial training database, this function can always be used to rapidly and accurately predict the corre-
sponding structural responses without any time-consuming numerical simulation procedure. The proposed virtual model has been
verified in multiple complex engineering problems, such as nonlinear geometric-material dynamic analysis [34], low [35,36] and
high [37] velocity impact analysis, wildfire-induced structural fragility assessment [38] and structural dynamic fracture analysis
[39].

To validate the accuracy, efficiency, and robustness of the proposed framework, two practical FGM structures that generally work
in high-temperature environments—aircraft engine blades and piston cylinders—are selected as numerical examples to assess their
safety status using the proposed framework.

This paper is organized as follows: Sections 2 and 3 introduce the theories used in the study, including the thermoplastic behaviours
of functionally graded structures and the variational thermoplastic failure of functionally graded structures. Section 4 demonstrates
the virtual modelling technique used to rapidly predict structural responses. Section 5 presents two numerical examples to validate the
proposed framework. Section 6 concludes with the highlights of the current work and potential future research directions.

2. Thermoplastic behaviours of functionally graded structure

The functionally graded structure is typically made from two or more types of brittle (e.g., ceramic) and ductile (e.g., metal)
materials, with combined mechanical properties transferred continuously along the thickness direction. Such that the volume fractions
of ceramic and metal components are formulated as follows.

() = (§+ %) 5.(6) = 1 — Sm(x) 6]

where & is the volume fraction of component, x is the location of point (— t/2 < x < t/2) along the thickness ¢, n is the power law
exponent determining the varying profile of ceramic and metal components.

As the main working condition of high temperature, the functionally graded structure has been designed to resist thermal effects
under various mechanical loadings. Thus, it is critical to involve temperature dependent material properties for functionally graded
structures to consider more accurate and appropriate structural responses for resilience and reliability evaluation. In this research, the
thermal dependent properties are related with the mechanical properties of functionally graded structure by using the Touloukian
model [40], which has a generalization expression as follows.

B(T) =P (ﬁqTil +1+p,T+p,T? +ﬂ3T3) @

where B(T) is the mechanical properties (e.g., Young’s modulus, Poisson’s ratio, and yield stress etc.) of functionally graded structure
evaluated at temperature T, Bo,f_1,B1,p2,and 3 are the thermal coefficients needed to calculate the temperature dependent prop-
erties, and the values of those coefficients were experimentally tested and could be referred from [41].

Under high temperature working conditions, plastic properties of functionally graded structure are also varied. For a set thermal
environment, the Tamura-Tomota-Ozawa model has been widely used to simulate elastic and plastic material properties of FGM [42].
In this research, considering the inherent thermal effects towards elastoplastic performance of composite, a freshly developed tem-
perature dependent TTO model is reformulated to represent effective thermoplastic properties of functionally graded structure as
follows.

S (X)Ep (T) LED. 4 5 (x)E,(T)

E(x,T) = q+Em(T) 3
LR Tt v
0(x,T) = 8:(x) 0e(T) + S (x) Om(T) 4

g+ En(T) Ec(T)
q +E(T) En(T)

oy(x,T) = UO(T){ém(x) + 1- 6m(x)}} 5)
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(T)
m
k(x,T) = gj;jg; (6)
(T)

where E(x, T) is temperature dependent Young’s modulus at temperature T, g is the stress transfer coefficient that needs to be
experimentally acquired, in this section, the value of q is selected as 4.5 GPa from [43]. Ep¢(T),0mc(T),00(T),and ko(T) are sub-
stitutions of different materials properties Ey, ¢, 0m., 60, and ko into Eq. (2), v(x, T) is the temperature dependent Poisson’s ratio, y(x,T)
is the temperature dependent yield stress, k(x, T) is the temperature dependent hardening parameter for isotropic hardening behaviour
of metallic component. It should be noticed that E(x, T) and v(x, T) are prescribed via mixture rules, and the shear modulus G(x, T) is
not independently assigned, but calculated using the relation of G(x,T) = E(x,T) /[1 — 2 - v(x,T)]. This ensures constitutive behaviour
remains consistent with isotropic elasticity theory.

By acquiring effective thermoplastic material properties of functionally graded structures, the corresponding yielding behaviour of
the composite is needed to calculate to capture accurate elastoplastic loading paths under various temperatures. Following von-Mises
yielding criterion, the critical temperature dependent yielding function of functionally graded structure is defined by:

F(o(T),x(g,T)) = /3J2(T)/2 — 60 (&, T) =0 @

where Jo(T) is the second deviatoric stress invariant at temperature T. Due to the effect of strain hardening the initial yield surface
varies at each stage of plastic deformation and the equation of yield surface for a solid undergoing thermo-elasto-plastic deformation is

F=F(6,xT) (8
After differentiating the F using chain rule of partial differentiation

dF = (g) Tdtr + g—i (;—;) de, + s—f,dT ()]
Thus, the total incremental strain combines the incremental parts of elastic strain Ae,, plastic strain Ag),, and thermal strain Aer as

Ae = Ag, + Agp + Aer (10)
By the virtue of Hooke’s law, the total incremental stress Ac can be written as

Ac = [D]Ae, = [D]{Ae — (Ae, + Aer) } an
The plastic potential function is assumed to be identical to the yield function as

OF
Aey =5 Al (12)

where AM is the plastic multiplier. The component of thermal strains is

Aer = aAT (13)

where a is the thermal expansion coefficient. Now by substituting Eqgs. (12), (13) into Eq. (10), the incremental stress within plastic
deformation is achieved as

Ao =D, (T)Ae 14

where Dg,(T) is the temperature dependent elastoplastic stiffness matrix of functionally graded composite that is expressed as

D,, (T) =

()F(T)] {BF(T)} TD ™) {{@F(T)} TD T {aF(T)} 1 0FT) dT}’l 1s)

o) - o) |0 [5oD 2] °® 3] ~ 22 dom)

where D(T) is the temperature dependent elastic stiffness matrix of functionally graded composite. Therefore, the thermoplastic
behaviour of the concerned structure by using finite element formulation is solved as

B'D,,(T)BdQ|Ad(T) = [ fdQ — [ B'6(T)dQ (16)
[rpampas s [ua - |

where Q is the whole functionally graded structural domain, B is material strain-displacement transformation matrix, f is the external
surface traction or distributed loading vector, Ad(T) is the temperature T affected elastoplastic incremental displacement vector.
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3. Variational thermoplastic failure of functionally graded structure
3.1. Variational thermoplastic deformation

For practical working conditions, the environmental factors that may cause structural failure could be varied. For instance, the
yield strength or hardening parameter of metallic phase of functionally graded structure would be fluctuated with the changing of
operating temperatures, which then affect the initial yielding of material prior to the designed bearing capacity. In this research, it is
determined that all varying mechanical properties are related with the varying temperature T through the Eq. (2), thus, one unified
random vector 6(T), in which 8(T) : [E(T),o(T), 6o(T),«(T), ...]”, can be adopted to describe the variational temperature dependent
properties of functionally graded structure. Therefore, the corresponding temperature dependent variational yielding function is
further defined by:

F{o[0(T)],k[ey,0(T)] } = 1/3J2[6(T)]/2 — 60[,,0(T)] =0 an

where the previous deterministic temperature parameter T is replaced with the variational temperature dependent mechanical random
vector 6(T). Also, the incremental plastic strain and stress are updated with the following.

agyiom)] = Tt s as)
Ac{6(T)} = D, {0(T)}BAU{O(T)} 19)

Subsequently, the variational thermoplastic deformation Ad[6(T)] of functionally graded structure is acquired from:

Ad[O(T { / fdo — / Blolo (T)]dQ} / { /ﬂ B'D,, [H(T)]Bdg} (20)

3.2. Plastic failure state of functionally graded structure

The strategy for predicting the ultimate plastic failure state of FGM plates is based on prior research, where nonlinear finite element
methods (NFEM) were applied to evaluate the ultimate strength of isotropic homogeneous plates with elastic-perfectly plastic or
bilinear elastic-plastic properties [44].

In this research, the FGM plate is subjected to gradually increasing axial compressive loads under different thermal environments.
Initially, the plate exhibits recoverable elastic stresses and strains within the elastic range. Once the load exceeds the yield point,
plastic deformation begins, resulting in both recoverable elastic strains and irreversible plastic strains. As the load continues to in-
crease, plastic deformation intensifies, eventually causing the plate to lose stiffness entirely and become unstable, culminating in its
ultimate failure. The load at this point is referred to as the ultimate plastic failure load and for uncertainties involved cases, variational
thermoplastic failure loads of functionally graded structure would be captured. To accurately simulate the plate’s load-response
behaviour, the analysis is conducted using Newton-Raphson small incremental load steps.

4. S-spline based thermoplastic-virtual model

In this research, the non-deterministic thermoplastic failure analysis of functionally graded structure is achieved by thermoplastic-
virtual model based on S-spline kernel. By using a sampling strategy, limited computational efforts are required to construct meta-
models that can predict reliable nonlinear responses under various temperature effects for the advanced composites in an efficient
manner.

4.1. S-spline polynomial kernel with extended support vector regression

Support Vector Regression (SVR) has demonstrated outstanding capabilities in tackling regression and forecasting tasks [45].
Traditionally, SVR models have relied on Gaussian and polynomial kernel functions. However, these conventional kernels often face
challenges when applied to high-dimensional datasets, leading to less accurate predictions. To address this issue, the B-spline poly-
nomial kernel was introduced, offering improved numerical stability in a variety of simulation scenarios. This advancement paved the
way for further developments, including enhanced polynomial kernels such as T-splines [46] and P-splines [47]. More recently, the
S-spline polynomial kernel has been proposed [48], which offers the advantage of eliminating unwanted control points. The general
form of the polynomial kernel function is expressed as:

xplme §17§} Zl IPB2n+1 (Cz Cj) (21)
i+1 r . .
(-1 i+1)r i+1
B =2 " s (§i+ 2 r>m! (22)
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in which P; is a control point with Cartesian coordinates as:
P; = wi(xi,Yi, %1, 1) (23)

The quantity of control points, denoted as n, plays a crucial role in influencing the overall performance of the kernel method. An
independent Bayesian optimization approach is employed to efficiently identify the optimal number of control points, ensuring that
the kernel function is well-suited for the specific regression task at hand.

As part of the ongoing advancement in SVR methodologies, an innovative variant known as Extended Support Vector Regression
(X-SVR) has been introduced to improve the overall quality of training outcomes. X-SVR is particularly chosen for its demonstrated
effectiveness in managing highly complex and nonlinear physical systems [35]. One of its key advantages lies in its incorporation of a
quadratic e-insensitive loss function, which contributes to enhanced training stability and improved predictive accuracy. At the outset
of the regression procedure, a suitable mapping function is defined to project the input data into a higher-dimensional feature space,
facilitating more accurate modelling of nonlinear relationships:

M(X],xl) M(xl,XZ) nglaxj;
A M(xz, M(xs, o M(x2,X;

Xi = [Xi,17xi.27 "'7xi.n]T P m(x;) = (Xf/XI) (x? x2) - x:2 W = M(x;) (24)
M(xj.,xl) M(xj,xl) M(Xj,Xj)

where M(x;) denotes the mapping function, m(x;) is the empirical kernelized vector. In this transformed space, the regression task is
formulated as an optimization problem as:

, A AT
min 25 (1 pe [+ 1 g 15) + Aot (px+ qx) + 5 (979+ 9 9) (25)

Pr Q@89

NI

where 9, 9 denote the redundant constraint parameters; A, Az denote the tuning variables for feature management; x denotes the
penalty coefficient; py,q, denote the kernelized positive parameters. According to the DrSVR theory, Eq. (25) can then be simplified to
a quadratic programming problem as:

o1 A
min ;5 (TEQure + %) + Aaalcy 26)
s.t. (Ax + I4j><4j)Cx + (a)14j><4j +,}’ﬁx),éx + ,g\x > 04j
1
min : ErxTerx — stz

X

Sx 27)
S.t.Ty > 04j

where the identity matrix is I; . 4j, the detailed explanation of corresponding matrix vector Qx, ;\x, f)x, al, ey, Vy, sT and ry is illustrated
in Appendix A. Since the global minimum solution always exists in the optimization problem and is denoted as 7}, the expression of the
variables can be written as:

~—1, ,~ .
o= Q ((Ax+1Iyuy) 1, — Laay) (28)
y =D, @9

Consequently, the governing expression of X-SVR algorithm can be expressed as:

{PX_Qx :Cx(l ]) *Cx(jJrl : 2])

F() = (px — ¢ (x) — €x Dyt (30)

4.2. S-spline based thermoplastic-virtual modelling of plastic failure

The virtual modelling technique, enhanced by X-SVR with an S-spline polynomial kernel, offers a powerful method for establishing
a direct numerical relationship between system variations and high temperature induced nonlinear outputs. This approach eliminates
the need to solve complex physical equations. The proposed thermoplastic-virtual framework consists of three primary stages: input
setup, virtual model training, and performance evaluation.

In the first stage, system inputs of functionally graded structure are defined, encompassing both deterministic and variational
parameters such as geometric configurations, material properties, and boundary conditions. The variational parameters are designed
based on specified premises. All input data, including deterministic and non-deterministic parameters, are organized and stored in a
database to ensure accessibility for simulations.

In the second stage, repetitive simulations are conducted to generate training data for the virtual model. Thermoplastic nonlinear
responses, such as ultimate failure loads under various temperatures, are meticulously extracted from Abaqus simulation results for
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Fig. 2. Numerical example 1: FGM turbine blade.
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Fig. 3. (a) Adopted mesh condition and (b) mesh convergence study.

each set of input data. These responses, along with the corresponding input variations, are compiled into a comprehensive training
dataset.

In the third stage, the X-SVR model with the S-spline kernel establishes a virtual relationship between the inputs and outputs. Once
the virtual model is trained, it can predict nonlinear responses of functionally graded structure directly, bypassing the need for solving
complex governing equations.

5. Numerical investigation

For the numerical investigations, two cases stem from practical engineering applications are selected to present the random
nonlinear responses under varied temperatures, for which including a functionally graded turbine blade and an engine block. The
thermoplastic model is adopted for the FGM structures, and the uncertain system information is involved as random vector then
analysed by the virtual modelling technique to establish temperature dependent surrogate model. The prediction results of virtual
model are rigorously compared with the deterministic simulation approach by using Monte Carlo simulation method, and a series of
nonlinear responses are presented to show the effectiveness of the coupled framework. All calculations have been finished on the
platform of Intel(R) Xeon(R) Gold 5215 CPU @ 2.5 GHz 10 cores with 192 GB RAM.
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Table 1

Variational system properties of the FGM turbine blade [19-23].
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System phase Material property Distribution type Mean Standard deviation
Metal E,, (GPa) Normal 200 20
Om Lognormal 0.27 0.027
oy (MPa) Logistic 230 23
pm (kg/m®) Beta 8900 890
Km Beta 917.5 91.75
o (1076/°C) Poisson 9.921 0.9921
Ceramic E. (GPa) Normal 150 15
¢ Lognormal 0.26 0.026
pc (kg/m®) Beta 3960 396
o (10°°/°C) Poisson 6.826 0.6826
Temperature T, (°C) Uniform [350, 450]
T>, (°C) Uniform [750, 850]
T; (C) Uniform [1150, 1250]
T:400 C,800 C,1200 C T ; :350 C~450 C
1.8 ‘ ‘ ‘ ‘ s )
—--Deterministic result at 400 C P
1.5 - - -Deterministic result at 800 (3 /_,-—"" 1 1.5+ §\7’/ 1
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Fig. 4. (a) Deterministic FGM load-displacement curves and random load-displacement curves at (b) 350°~450° (c) 750°~850° and (d)
1150°~1250° temperature ranges.

5.1. FGM turbine blade under high temperature

Turbine blade has been considered as essential component in aerospace and aviation engine since last century. However, the failure
rates and consequences of turbine blade have been extremely high since the metallic materials made in used may be very vulnerable
under engine’s frequently encountered high temperature conditions. Thus, in contemporary engineering, FGM made turbine blade has
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Table 2
Convergence study of training samples.
Sample 90 120 150 180 210 240 270 300
R? 0.881 0.912 0.944 0.967 0.983 0.989 0.991 0.992
RMSE 1.356 1.221 1.103 0.887 0.871 0.865 0.861 0.858
T ' 1350 C~450 C T 2: 750 C~850 C T‘: 1150 C~1250 C
‘ 200
700
600 150
3 500 % =
a8 a a
‘% 400 % 100 %
= 200 < 50 .
100
1.1 1.2 1.3 14 1.5 1.6 0.5 0.6 0.7 0.8 0.9 024 026 028 03 032 034 036
Yielding load (kN) Yielding load (kN) Yielding load (kN)

(a) (b) (©)

Fig. 5. The estimated PDFs of yielding load from proposed method and MCS results at temperature ranges of (a) 350°~450°, (b) 750°~850°, and
(c) 1150°~1250*
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2 3
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o o 9]
E g E
04 04 :
0.2 0.2
oL | 0- | L |
1.1 1.2 1.3 14 1.5 1.6 0.5 0.6 0.7 0.8 0.9 024 026 0.28 0.3 032 034 0.36
Yielding load (kN) Yielding load (kN) Yielding load (kN)

(a) (b) (c)

Fig. 6. The estimated CDFs of yielding load from proposed method and MCS results at temperature ranges of (a) 350°~450°, (b) 750°~850°, and
(c) 1150°~1250*

often been implemented in various aerospace, civil, and mechanical fields. In this case, the FGM turbine blade is tested with varied
system conditions to quantify the non-deterministic nonlinear response for better safety and reliability assessment. The adopted ge-
ometry and physical working condition of FGM turbine blade is shown in Fig. 2. The core of blade is made of metal component then
gradually transformed to ceramic component in the outer surface side. The FE mesh convergence study is presented in Fig. 3 and the
total number of 86738 tetrahedron elements is adopted to mesh the geometry. The support of turbine blade is fixed and shown with
black triangle symbols in Fig. 3 and the blade is working against uniform pressure P along the x-direction with high temperature
applied.

In practical engineering, the FGM turbine blade is manufactured with random distributed material properties and working under
continuously changing environment. In Table 1, all relevant uncertain information of material and environment has been summarized
as random vector 6(T) : [E(T),v(T), 60(T),«(T), ...]” and listed with referable distributions. The metal component deforms plastically
with isotropic hardening effects while the ceramic component only considers elastic response. And three uniformly distributed tem-
perature ranges are considered for the FGM blade to simulate varied working temperature scenarios with different structural nonlinear
responses. As reference results, the crude 1000 cycles of MCS running would be calculated simultaneously to provide all deterministic
results for the uncertain events, comparable results can be found in Fig. 4.

In Fig. 4(a), the deterministic nonlinear responses of FGM turbine blade under three different temperatures from low to high level
are shown for understanding purpose and along the curve, the first yielding position representing the structure yields from pure elastic
stage to plastic stage is highlighted with a blue star symbol. Then in Fig. 4(b-d), the random elastoplastic responses of FGM blade
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Fig. 7. The estimated PDFs of yielding displacement from proposed method and MCS results at temperature ranges of (a) 350°~450°, (b)
750°~850°, and (c) 1150°~1250*
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Fig. 8. The estimated PDFs of yielding displacement from proposed method and MCS results at temperature ranges of (a) 350°~450°, (b)
750°~850°, and (c) 1150°~1250*

Table 3
The estimated moments of yielding load at different temperature ranges.
Temperature range Moments Methods Yielding load RE (%)
T; Mean (kN) PM 1.311 -0.152
MCS 1.313 -
Standard deviation PM 2.124e-03 0.141
MCS 2.127e-03 -
Ty Mean (kN) PM 0.733 -0.543
MCS 0.737 -
Standard deviation PM 3.874e-03 0.180
MCS 3.881e-03 -
Ts Mean (kN) PM 0.298 -1.650
MCS 0.303 -
Standard deviation PM 5.141e-03 -0.214
MCS 5.152e-03 -

related to the uncertain information listed in Table 1 are provided, and the corresponding initial yielding points in the load-
displacement curve are also highlighted with symbols. The yielding points of FGM structure are essential figures to consider the
structure has transferred from ‘Safe’ condition to ‘Yield’ condition, and the relevant yielding load and yielding displacement can be
used to determine the safety limit of concerned composite under different conditions.

The virtual model of FGM turbine blade is constructed with various levels of sample size ranging from 90 to 300 as listed in Table 2.
In Table 2, specific mathematical validation figures of R? and the RMSE are used to testify the yielding loads between the predicted
ones from virtual model and the deterministic ones from MCS results. According to the statistical moments, the sample size of optimal
virtual model is selected as 300 for accuracy estimation.

To further illustrate the various yielding conditions of FGM turbine blade under different temperatures, in Figs. 5-8, the relevant
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Table 4
The estimated moments of yielding displacement at different temperature ranges.
Temperature range Moments Methods Yielding displacement RE (%)
T; Mean (cm) PM 0.242 0.415
MCS 0.241 -
Standard deviation PM 6.831e-04 0.0293
MCS 6.833e-04 -
T, Mean (cm) PM 0.153 -1.923
MCS 0.156 -
Standard deviation PM 7.987e-04 1.191
MCS 7.893e-04 -
T3 Mean (cm) PM 0.095 4.396
MCS 0.091 -
Standard deviation PM 9.548e-04 -1.083
MCS 9.554e-04 -
Ty:415°C T,: 824°C T3:1183°C

% Yield point === | ®% Yield point % Yield point

== Yield zone i == Yield zone == Yield zone

L |

Fig. 9. Predicted yield zone of FGM turbine blade at different temperatures.

probabilistic moments (e.g., probabilistic density function (PDF) and cumulative density function (CDF)) of random yielding loads and
yielding displacements have been provided. As shown in Figs. 5-8, with the increment of bearing temperature range, the corre-
sponding yielding capacity of FGM structure is decreased. Specifically, for working temperature around 350°~450°, the mean yielding
load of structure is 1.35kN and the mean yielding displacement is 0.24cm, but for 1150°~1250° case, the load is only 0.3kN with the
displacement of 0.9cm, which is vulnerable of FGM structure against potential mechanical or structural plastic damage. Moreover, the
virtual model established from the proposed method shows great agreement with the deterministic numerical result, however, the
computational efforts for predictions of structural yielding information are significantly reduced. The details are: total of 58.3 hours for
300 random samples running, 0.48 hour for virtual model training and establishment, and 2 minutes for yielding load and
displacement predictions of FGM turbine blade. All of the calculations are finished on the platform of Intel(R) Xeon(R) Gold 5215 CPU
@ 2.5GHz 10 cores with 192GB RAM.

Furthermore, detailed statistical moments about random yielding loads and displacements under three different temperature
ranges are provided in Tables 3, 4. It has been clearly shown in the tables that the proposed method results simulate very close to the
deterministic MCS responses. The maximum absolute relative error of yielding capacity between two approaches is around 0.15% at
temperature range 350°~450°, around 0.5% at temperature range 750°~850°, and around 1.6% at temperature range 1150°~1250°.
Similar relative error trend has also been observed for the estimated yielding displacement between two approaches, and it was caused
due to the greater deviations of structural responses accumulated from temperature dependent plasticity components. Overall, the
accuracy, applicability and efficiency of the proposed framework has been demonstrated through both PDF, CDF plots and statistical
moment figures.

With the accumulation of plastic strain in the FGM body, more and more simulation points would be yielded and clustered as yield
zones as shown in Fig. 9. The yield zone represents the potential failure region of the concerned structure after initiating with plasticity
and could be considered as weak section of advanced structure for further topological optimization and material behaviour

11
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Fig. 10. Deterministic yield zone of FGM turbine blade at different temperatures.
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Fig. 11. Numerical example 2: FGM engine block.

strengthens. As shown in Fig. 9, at different randomly assumed temperature levels of 415°, 824° and 1183°, the corresponding yielding
points at different locations can be directly estimated through the established virtual model, and the yielding points can be collected as
yield zone for FGM turbine blade under different working temperatures. The estimated yield zones have been compared to the
deterministic simulation results as shown in Fig. 10, and it can be observed that the estimated yield zones of FGM turbine blade are
almost identical with the actual yield regions, but can be predicted in an efficient manner. Therefore, critical structural failure
assessment before completely collapse stage can be effectively provided for the designers and engineers to optimize the composite
more resilient ones, which highlights the advantages of the proposed coupling framework.

5.2. FGM engine block under high temperature

The second practical application is engine block that has been frequently used in automobile, mechanical, and manufacturing
fields. The engine block operates under high temperatures primarily because of the internal combustion process that occurs within it.
However, under certain circumstances, factors like the design of the engine block, along with issues of cooling systems, could affect the
stability and safety of engine block under long term high temperature effects. Thus, considering the top-tier performance of composite
components made for FGM engine block, it ensures that these high temperatures are managed safely and effectively. For this numerical
application, the FGM engine block is deformed under various high temperature scenarios, and the nonlinear responses are also
recorded from the pure metal made engine block for better comparison purpose. The adopted geometry and physical working con-
dition of FGM engine block is shown in Fig. 11. The core of block is made of ceramic component then gradually transformed to metal
component in the outer tube side. The FE mesh convergence study is provided in Fig. 12 and the total number of 11472 tetrahedron

12



Y. Feng Applied Mathematical Modelling 146 (2025) 116176

100mm

I
=3
N

0.04

0.02

16208 39598 43454 68734 78846 86738
Number of FE Elements

(b)

Fig. 12. (a) Adopted mesh condition and (b) mesh convergence study.

elements is adopted to mesh the geometry. The support of engine block is fixed and shown with black triangle symbols in Fig. 12 and
the block is working against uniform distributed pressure P along the internal tube layer with high temperature applied.

The FGM engine block operates in a highly uncertain thermal environment. In Table 5, the relevant uncertain information of
material and environment are all considered as random vector 6(T) : [E(T), (T), oo(T), «(T), ..]” with the corresponding distribution
parameters. The metal component deforms plastically with isotropic hardening effects while the ceramic component only considers
elastic response. As comparison, for the second case, both FGM component and pure metal component are analysed with three uni-
formly distributed temperature ranges to investigate different nonlinear behaviours between the traditional homogenous ones and
advanced composite ones. As reference results, the crude 1000 cycles of MCS running for two types of material would be calculated
simultaneously to provide all deterministic results for the uncertain events, comparable results can be found in Fig. 13.

By collecting all random yielding points information as training dataset, the virtual model of both FGM engine block and pure metal
are tested with different levels of sample size as listed in Table 6. In Table 6, at the sizes of 240 and 270, the R? and the RMSE of both
materials present converged trend to develop stable surrogate models, respectively. Thus, the optimal training size for FGM engine
block and pure metal structure is selected as 270 for conservative purpose.

Observed from Fig. 13, it is evident that the high temperature induced nonlinear performance of FGM engine block exhibit clear
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Table 5
Variational system properties of the FGM engine block [19-23].
System phase Material property Distribution type Mean Standard deviation
Metal E,, (GPa) Lognormal 220 22
Om Normal 0.24 0.024
oy (MPa) Beta 210 21
Km Logistic 823.5 82.35
pm (kg/m®) Normal 6500 650
o (107%/°C) Beta 7.642 0.07462
Ceramic E. (GPa) Lognormal 160 16
Ve Normal 0.23 0.023
pc (kg/m®) Normal 3250 325
o (107%/°C) Beta 5.112 0.5112
Temperature T, (°C) Uniform [450, 550]
T>, (°C) Uniform [950, 1050]
T3 (°C) Uniform [1450, 1550]
T 450 €550 C T 1950 C-1050 C
4, — S 3 E—— -
35 - 7
K] — ]
- SRS 2 |
é 2.5 = g e RS
5 of | 15§
u? —.-FGM Deterministic result E —..FGM Deterministic result
= 1.5 FGM Random results - o= FGM Random results
g . FGM Yield point g 1 . FGM Yield point 7
5 1 — -Metal Deterministic result 5 — -Metal Deterministic result
Metal Random results 0.5 Metal Random results 4
0.5 + Metal Yield point + Metal Yield point
0 : ‘ oL |
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Fig. 13. Random load-displacement curves at (a) 450°~550°, (b) 950°~1050°, and (c) 1450°~1550° temperature ranges.
differences with the pure metal block. To better demonstrate the different yielding information of FGM block and metal block under

different temperatures, the PDFs and CDFs of random yielding loads and yielding displacements are provided in Figs. 14-17. From
Figs. 14 to 17, the yielding capacity of FGM engine block shows greater values than pure metal block among three temperature
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Table 6
Convergence study of training samples.
Material Sample size 90 120 150 180 210 240 270
FGM R? 0.932 0.945 0.966 0.987 0.988 0.992 0.992
RMSE 0.423 0.341 0.312 0.272 0.226 0.205 0.203
Metal R? 0.901 0.932 0.954 0.967 0.978 0.989 0.991
RMSE 0.656 0.521 0.403 0.387 0.371 0.365 0.361
T 450 €550 C T 1950 C-1050 € T M50 Co1550 C
3r
..... MCS-FGM weeee MCS-FGM ©eee MCS-FGM
= o PM-FGM = ~-PM-FGM o PM-FGM
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Fig. 14. The estimated PDFs of yielding load from FGM and pure metal at temperature ranges of (a) 450°~550° (b) 950°~1050° and

(c) 1450°~1550*

T :450 C~550 C TZ:‘)SO C~1050 C
1

1 1
0.8 0.8
5 0.6 = 0.6
s} o
E 2
204 £ 04
2 F P L MCS-FGM K N N MCS-FGM
- PM-FGM . o PM-FGM
0z £  F MCS-Metal ] S A MCS-Metal
—o-PM-Metal o PM-Metal
0. 3 0 J
0 4 5 6 1 1.5 2 2.5 3 3.5

Yielding load (kN) Yielding load (kN)

(a) (b)

Estimated CDF

T :1450 C~1550 C
3

0.8
0.6
0.4
..... MCS-FGM
0.2 - PMFGM
..... MCS-Metal
o PM-Metal
0- J
0 0.5 1 1.5 2 2.5 3

Yielding load (kN)

(c)

Fig. 15. The estimated CDFs of yielding load from FGM and pure metal at temperature ranges of (a) 450°~550° (b) 950°~1050° and

(c) 1450°~1550*

intervals. For instance, in temperature range 950°~1050°, the yielding load range of FGM block is from 2.1 kN to 3.4 kN, while for the
pure metal block, the load range is from 1.0 kN to 2.1 kN. Also, the yielding displacement range of FGM block is from 0.04 cm to 0.16
cm, for pure metal is from 0.01 cm to 0.07 cm. From this case, it shows that FGM component has larger bearing load capacity and
higher yielding deformation under high temperature working conditions, which is a significant improvement of mechanical behaviour
compared to traditional homogeneous metallic component. Moreover, by using the virtual modelling technique, the nonlinear re-
sponses of both materials have been efficiently predicted under different thermal cases: total of 52.5 hours for 270 random samples
running, 0.36 hour for virtual model training and establishment, and 2 minutes for yielding load and displacement predictions of both

FGM engine block and pure metal block.

Detailed statistical moments about random yielding loads and displacements under three different temperature ranges for both
materials are provided in Tables 7, 8. It has been clearly shown in the tables that the proposed method generate yielding loads of both
FGM and metal components that simulates very close to the deterministic MCS responses. Accurate prediction results have also been
observed for the estimated yielding displacement between two approaches for both components. Therefore, the accuracy, applicability
and efficiency of the proposed framework has been once again reinforced through both PDF, CDF plots and statistical moment figures

for traditional metallic materials and newly developed FGM structures.

As highlighted, one of the critical advantages of virtual modelling technique is the quick response prediction of structures against
future random information. To illustrate this capability, in Table 9, a total of four groups of arbitrary generated random vectors are
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Fig. 16. The estimated PDFs of yielding displacement from FGM and pure metal at temperature ranges of (a) 450°~550°, (b) 950°~1050°, and
(c) 1450°~1550
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Fig. 17. The estimated CDFs of yielding displacement from FGM and pure metal at temperature ranges of (a) 450°~550°, (b) 950°~1050°, and
(c) 1450°~1550

Table 7
The estimated moments of yielding load at different temperature ranges.
Temperature range Moments Methods Yielding load
FGM Metal
T; Mean (kN) PM 3.843 2.076
MCS 3.841 2.077
Standard deviation PM 1.673 1.739
MCS 1.672 1.736
T, Mean (kN) PM 2.764 1.633
MCS 2.759 1.631
Standard deviation PM 1.883 1.905
MCS 1.879 1.908
T3 Mean (kN) PM 1.865 0.731
MCS 1.860 0.727
Standard deviation PM 2.174 2.269
MCS 2.181 2.261

provided to be considered as structural inputs. By using the already developed virtual models of both FGM engine block and pure metal
block, the deterministic FE simulation process can be avoided and the four groups of random inputs can be directly substituted into the
explicit virtual model formulations to acquire the structural responses. Detailed prediction results of both components have been
provided in Figs. 18, 19. As shown in Figs. 18, 19, it is evident that under different input information, the predicted nonlinear responses
of both FGM and metal blocks from virtual models are almost identical with the actual deterministic results, even considering different
temperature levels. The maximum relative error between these two approaches is smaller than 2%, which is acceptable in practical
engineering field. In the meantime, considering the continuously varied information in real-life thermal environmental working
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Table 8

The estimated moments of yielding displacement at different temperature ranges.

Applied Mathematical Modelling 146 (2025) 116176

Temperature range Moments Methods Yielding displacement
FGM Metal
T Mean (cm) PM 0.127 0.0675
MCS 0.126 0.0673
Standard deviation PM 0.983 1.031
MCS 0.981 1.034
T, Mean (cm) PM 0.0763 0.0421
MCS 0.0760 0.0417
Standard deviation PM 1.258 1.167
MCS 1.262 1.159
T3 Mean (cm) PM 0.0561 0.0272
MCS 0.0558 0.0266
Standard deviation PM 1.573 1.671
MCS 1.568 1.665
Table 9
Arbitrary generated FGM structural random inputs.
System phase Material property Case I Case II Case III Case IV
Metal E,, (GPa) 206 224 218 235
Om 0.23 0.25 0.22 0.28
oy (MPa) 210 215 207 229
Km 810.1 803.5 823.6 800.3
pm (kg/m?) 6340 6295 6488 6216
o (107%/°C) 7.55 8.01 8.12 7.47
Ceramic E. (GPa) 154 163 172 164
e 0.21 0.24 0.26 0.27
pe (kg/m®) 3122 3245 3301 3005
o (107%/°C) 5.06 5.23 5.44 4.99
Temperature T (°C) 468 546 1023 1534
Cases I~IV Yielding Load (kN)
4 3.54 3.56
3.133.15 I mcs-FGM [l PM-FGM
3
[] MCS-Metal  [[T] PM-Metal
223 233
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Fig. 18. Predicted yielding load of FGM engine block at random structural inputs.
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Fig. 19. Predicted yielding displacement of FGM engine block at random structural inputs.

conditions, the proposed virtual modelling technique for advanced FGM structure reduces a significant number of computational
efforts in model analysis, safety/reliability evaluation and component inspection/maintenance disciplines.

6. Conclusion

In this study, the random elastoplastic analysis of functionally graded structures under high-temperature conditions is investigated.
A novel thermal-mechanical coupling framework, termed thermoplastic-virtual model, is proposed by incorporating temperature
dependent performance, hardening plastic behaviour and artificial intelligence technique within one unified system. The Touloukian
and Tamura-Tomota-Ozawa models are employed to simulate the high temperature effects and nonlinear material behaviours of the
FG structure, respectively. In addition, to ensure a robust and physically feasible high temperature induced stochastic elastoplastic
analysis, an extended support vector regression based virtual modelling approach is introduced for multivariate uncertainty quanti-
fication. Such that the deformed nonlinear deflection, plastic damage zone, and fragility curves could be directly estimated through
established surrogate model for FG structure under various temperature distributions. This approach enables the effective estimation
of statistical characteristics of any concerned structural nonlinear responses. Consequently, the performance of the FG structure
against both serviceability and strength limit states under high-temperature conditions can be thoroughly assessed. The effectiveness,
accuracy, and applicability of the proposed thermal-plastic virtual model are fully demonstrated through the detailed investigation of
two practical FG structures, which can be critical and referrable for high temperature involved elastoplastic deformation prediction of
real-life composite structures.

Additionally, Poisson’s ratio in this research is prescribed as a spatially and thermally varying function for analytical convenience.
However, the author acknowledges that Poisson’s ratio enters the constitutive relations nonlinearly and cannot be reliably interpolated
between constituent values using classical mixture rules. To maintain internal consistency for isotropic materials, the shear modulus is
not independently defined but derived using the relation G(x,T) = E(x,T) /[1 — 2-v(x, T)]. While this approach is mathematically
consistent, it may not reflect physically homogenized behaviour. More rigorous treatment using micromechanical models is prepared
for future work.
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Appendix A. Formulations of vectors and matrix defined in the optimization problem

The vectors and matrices of ax, Kx, ﬁx, al, ey, lA(x and ry involved within the X-SVR optimization expression can be presented by:
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