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A B S T R A C T

The high temperature induced uncertain nonlinear failure behaviour has been one of the critical 
issues for concurrent composite structures due to the metallic components involved. This paper 
presents a multivariate coupling framework for combining thermal elastoplastic based mechan
ical model with efficient virtual modelling technique to investigate the non-deterministic plastic 
responses of functionally graded structure subject to varied temperature distributions. The po
sition and temperature dependent thermoplastic mechanical properties of functionally graded 
structure are simulated through the Touloukian and Tamura-Tomota-Ozawa models. The 
randomness of effective properties of FG structure is applied as random vector into the mecha
nism algorithm then follow J2-plasticity with isotropic hardening to exhibit nonlinear behaviour. 
The coupling framework is achieved by incorporating the random nonlinear responses into the 
multi-cluster virtual modelling technique and provided with explicit formulation that repre
senting the inherent correlation between the field inputs and yielding outputs. Such that the 
deformed nonlinear deflection, plastic damage zone, and fragility curves could be directly esti
mated for the FG structure under various temperature distributions. The coupled thermoplastic- 
virtual model is validated through two practical numerical applications and the computational 
accuracy, efficiency, and versatility of the coupled framework ensured the rapid safety evaluation 
of complex composite system in an uncertain thermal environment.

1. Introduction

As advanced composite materials, functionally graded materials (FGMs) have been widely developed for many high-end appli
cations in various fields, such as aircraft engine blades and piston cylinders in Fig. 1. Most of these devices are often required to operate 
in high-temperature environments and are generally of high value, with significant secondary losses caused by failure [1,2]. Many 
accident investigation reports reveal that high-temperature-induced ductile failure is one of the main failure modes for these 
FGM-made devices [3,4]. When devices are working continuously, the ductile failure of some main parts is difficult to detect due to the 
lack of significant symptoms [5]. Once plastic deformation occurs, the deformation can increase violently in a short time in a 
high-temperature environment due to the high-temperature-weakened hardening characteristics [6,7]. This extremely limits the 
efficient and sufficient intervention of protective measures before failure. Therefore, it is necessary and critical to develop an 
early-warning system framework that can accurately simulate the thermomechanical responses of FGM structures in high-temperature 
environments and provide early warnings of areas where plastic failure may occur. This framework should effectively address the 
following three relevant challenges currently faced.
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The first challenge is to develop a thermo-elastic-plastic stability analysis model for complex engineering structures by considering 
temperature-dependent material properties [8]. Compared to traditional isotropic and composite materials, many FGM-made devices 
are typically subjected to high-temperature loads with a wide range [9]. Considering the temperature-sensitive material properties, 
some parts are typically working at their elastic limit and inevitably produce plastic deformation, contributing to a potential ductile 
failure risk [10]. Therefore, to make a reliable and appropriate FGM structural safety analysis, sufficient consideration of these un
avoidable plastic deformations caused by thermomechanical loads and high-temperature-induced material degradation is required 
[11]. However, most current analysis procedures mainly focus on the buckling analysis of simple structures [12,13], such as single 
plates and shells, in ambient environments based on analytical [14] and numerical [15] approaches. Some studies have extended to 
high-temperature environments by simplifying the material properties-temperature relationship, which rarely considers the 
temperature-dependent characteristics and contributes to unreliable results [16]. In addition, real FGM-made equipment is generally 
composed of multiple irregular parts, which makes the distribution of stress-strain over the whole equipment impacted by many 
factors, such as the interaction between each part and the spatiotemporally dependent thermomechanical loads distribution, extremely 
complex. Therefore, simply focusing on fundamental FGM elements, such as plates and shells, is not enough to accurately reflect the 
real thermomechanical responses of the whole equipment and also has limited contribution to the design and optimization of FGM 
structures [17].

In addition, compared with traditional isotropic material-made structures, FGM-made structures generally show more significant 
inherent uncertainty due to the complexity of manufacturing procedures. These uncertainties, mainly in material properties, should be 
taken into consideration to ensure the reliability of analysis results. Studies on the uncertainty of FGM systems, including material 
uncertainties [18], geometrical uncertainties [19], and model uncertainties, are gaining more and more attention. The impact of 
uncertainties on multiple structural responses has already been investigated [20,21]. Various approaches, such as interval random 
uncertainty model [22,23], stochastic iso-geometric analysis [24,25], random perturbation-based finite element analysis [26], 
sampling-based Monte Carlo simulation [27], and first/second order perturbations [28], have been developed to cope with uncertain 
system parameters. In these studies, MCS-based buckling and stability of FGM structures are one of the main study focuses because of 
the common ductile-induced buckling failure mode. However, to the author’s best knowledge, there are currently no studies focusing 
on the probabilistic ductile failure analysis of complex FGM structures at extremely high temperatures by considering the inherent 
uncertainties and temperature-dependent material properties.

The third challenge is improving the efficiency in assessing the safety status of FGM structures after upgrading from a deterministic 
level to an uncertainty level. Impacted by external environmental factors, the systematic parameters applied to FGM structures, 
including thermomechanical loads and material properties, fluctuate randomly, which in turn causes continuously changing structural 
responses [29,30]. These uncertain input systematic parameters and corresponding output responses form a dynamic system. The 
primary requirements for assessing the safety status of such a dynamic system in real-time are accuracy and efficiency. The safety 
assessment framework should rapidly and accurately provide the structural responses according to the given latest input parameters, 
based on which the safety status can ultimately be assessed. Currently, there are two main approaches to obtain output responses: 
analytical [31] and numerical [32]. The former is only applicable to limited FGM structures with regular shapes, while the latter is 
generally used for much more complex structures but is time-consuming for large structures, especially when extending to a 
sampling-based uncertainty analysis [33]. Classical sampling-based MCS is widely used for uncertainty scenarios because of its great 
applicability and lack of distortion. However, combining numerical and MCS methods to resolve uncertain responses of complex FGM 
structures is obviously a solution that works in theory but is extremely limited in practical industrial applications due to the huge 
computational cost. Therefore, designing a more efficient framework is necessary.

To address the above three challenges, this study proposes a real-time safety assessment framework for complex FGM structures by 
detecting potential ductile failure areas under high-temperature environments. There are three highlights in this framework: 

Fig. 1. (a) Ductile failure of blade caused by material defects in the No.2 engine of United Flight 1175; (b) Warping failure of cylinder heads caused 
by overheating and tremendous pressure.
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• The Touloukian model, representing temperature-dependent material properties, is integrated into the classical Tamura-Tomota- 
Ozawa model to simulate the temperature, time, and space-dependent material properties over the whole FGM structure. The 
randomness of effective properties of the FG structure is applied as a random vector into the mechanism algorithm, then follows J2- 
plasticity with isotropic hardening to exhibit nonlinear behaviour.

• The inherent uncertainties in temperature-dependent material properties are considered, including Young’s modulus, yield 
strength, hardening parameters, and so on. Random variables that follow specific statistical distributions are used to represent the 
non-deterministic material properties. Sampling-based MCS is used to obtain the original sample database where the input and 
output data pairs of each sample are recorded.

• Based on an advanced machine learning algorithm, a virtual model is developed to accelerate the speed of predicting structural 
responses. Using the original sample dataset as the initial training database, the well-trained virtual model can obtain the explicit 
function representing the relationship between input parameters and output responses. For any updated input values that exist 
within the range of the initial training database, this function can always be used to rapidly and accurately predict the corre
sponding structural responses without any time-consuming numerical simulation procedure. The proposed virtual model has been 
verified in multiple complex engineering problems, such as nonlinear geometric-material dynamic analysis [34], low [35,36] and 
high [37] velocity impact analysis, wildfire-induced structural fragility assessment [38] and structural dynamic fracture analysis 
[39].

To validate the accuracy, efficiency, and robustness of the proposed framework, two practical FGM structures that generally work 
in high-temperature environments—aircraft engine blades and piston cylinders—are selected as numerical examples to assess their 
safety status using the proposed framework.

This paper is organized as follows: Sections 2 and 3 introduce the theories used in the study, including the thermoplastic behaviours 
of functionally graded structures and the variational thermoplastic failure of functionally graded structures. Section 4 demonstrates 
the virtual modelling technique used to rapidly predict structural responses. Section 5 presents two numerical examples to validate the 
proposed framework. Section 6 concludes with the highlights of the current work and potential future research directions.

2. Thermoplastic behaviours of functionally graded structure

The functionally graded structure is typically made from two or more types of brittle (e.g., ceramic) and ductile (e.g., metal) 
materials, with combined mechanical properties transferred continuously along the thickness direction. Such that the volume fractions 
of ceramic and metal components are formulated as follows. 

δm(x) =
(

x
t
+

1
2

)n

, δc(x) = 1 − δm(x) (1) 

where δ is the volume fraction of component, x is the location of point (− t/2 ≤ x ≤ t/2) along the thickness t, n is the power law 
exponent determining the varying profile of ceramic and metal components.

As the main working condition of high temperature, the functionally graded structure has been designed to resist thermal effects 
under various mechanical loadings. Thus, it is critical to involve temperature dependent material properties for functionally graded 
structures to consider more accurate and appropriate structural responses for resilience and reliability evaluation. In this research, the 
thermal dependent properties are related with the mechanical properties of functionally graded structure by using the Touloukian 
model [40], which has a generalization expression as follows. 

β(T) = β0
(
β− 1T− 1 +1+ β1T+ β2T2 + β3T3) (2) 

where β(T) is the mechanical properties (e.g., Young’s modulus, Poisson’s ratio, and yield stress etc.) of functionally graded structure 
evaluated at temperature T, β0,β− 1,β1,β2,and β3 are the thermal coefficients needed to calculate the temperature dependent prop
erties, and the values of those coefficients were experimentally tested and could be referred from [41].

Under high temperature working conditions, plastic properties of functionally graded structure are also varied. For a set thermal 
environment, the Tamura-Tomota-Ozawa model has been widely used to simulate elastic and plastic material properties of FGM [42]. 
In this research, considering the inherent thermal effects towards elastoplastic performance of composite, a freshly developed tem
perature dependent TTO model is reformulated to represent effective thermoplastic properties of functionally graded structure as 
follows. 

E(x,T) =
δm(x)Em(T) q+Ec(T)

q+Em(T) + δc(x)Ec(T)

δm(x) q+Ec(T)
q+Em(T) + δc(x)

(3) 

υ(x,T) = δc(x) υc(T) + δm(x) υm(T) (4) 

σY(x,T) = σ0(T)
{

δm(x)+
q + Em(T)
q + Ec(T)

Ec(T)
Em(T)

[1 − δm(x)]
}

(5) 
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κ(x,T) =
δm(x)κ0(T) q+Ec(T)

q+κ0(T)
+ δc(x)Ec(T)

δm(x) q+Ec(T)
q+κ0(T)

+ δc(x)
(6) 

where E(x, T) is temperature dependent Young’s modulus at temperature T, q is the stress transfer coefficient that needs to be 
experimentally acquired, in this section, the value of q is selected as 4.5 GPa from [43]. Em,c(T), υm,c(T), σ0(T), and κ0(T) are sub
stitutions of different materials properties Em,c, υm,c, σ0, and κ0 into Eq. (2), υ(x,T) is the temperature dependent Poisson’s ratio, σY(x,T) 
is the temperature dependent yield stress, κ(x, T) is the temperature dependent hardening parameter for isotropic hardening behaviour 
of metallic component. It should be noticed that E(x, T) and υ(x,T) are prescribed via mixture rules, and the shear modulus G(x, T) is 
not independently assigned, but calculated using the relation of G(x,T) = E(x,T) /[1 − 2 ⋅ υ(x,T)]. This ensures constitutive behaviour 
remains consistent with isotropic elasticity theory.

By acquiring effective thermoplastic material properties of functionally graded structures, the corresponding yielding behaviour of 
the composite is needed to calculate to capture accurate elastoplastic loading paths under various temperatures. Following von-Mises 
yielding criterion, the critical temperature dependent yielding function of functionally graded structure is defined by: 

F
(
σ(T), κ

(
εp,T

))
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3J2(T)/2

√
− σ0

(
εp,T

)
= 0 (7) 

where J2(T) is the second deviatoric stress invariant at temperature T. Due to the effect of strain hardening the initial yield surface 
varies at each stage of plastic deformation and the equation of yield surface for a solid undergoing thermo-elasto-plastic deformation is 

F = F(σ, κ,T) (8) 

After differentiating the F using chain rule of partial differentiation 

dF =

(
∂F
∂σ

)T

dσ +
∂F
∂κ

(
∂κ
∂εp

)

dεp +
∂F
∂T

dT (9) 

Thus, the total incremental strain combines the incremental parts of elastic strain Δεe, plastic strain Δεp, and thermal strain ΔεT as 

Δε = Δεe + Δεp + ΔεT (10) 

By the virtue of Hooke’s law, the total incremental stress Δσ can be written as 

Δσ = [D]Δεe = [D]
{

Δε −
(
Δεp +ΔεT

)}
(11) 

The plastic potential function is assumed to be identical to the yield function as 

Δεp =
∂F
∂σ Δλ (12) 

where Δλ is the plastic multiplier. The component of thermal strains is 

ΔεT = αΔT (13) 

where α is the thermal expansion coefficient. Now by substituting Eqs. (12), (13) into Eq. (10), the incremental stress within plastic 
deformation is achieved as 

Δσ = Dep(T)Δε (14) 

where Dep(T) is the temperature dependent elastoplastic stiffness matrix of functionally graded composite that is expressed as 

Dep(T) =

D(T) − D(T)
[

∂F(T)
∂σ(T)

][
∂F(T)
∂σ(T)

]T

D(T)
{[

∂F(T)
∂σ(T)

]T

D(T)
[

∂F(T)
∂σ(T)

]

−
1

Δλ
∂F(T)
∂σ(T) dκ − αdT

}− 1 (15) 

where D(T) is the temperature dependent elastic stiffness matrix of functionally graded composite. Therefore, the thermoplastic 
behaviour of the concerned structure by using finite element formulation is solved as 

[∫

Ω
BTDep(T)BdΩ

]

Δd(T) =
∫

Ω
fdΩ −

∫

Ω
BTσ(T)dΩ (16) 

where Ω is the whole functionally graded structural domain, B is material strain-displacement transformation matrix, f is the external 
surface traction or distributed loading vector, Δd(T) is the temperature T affected elastoplastic incremental displacement vector.

Y. Feng                                                                                                                                                                                                                   Applied Mathematical Modelling 146 (2025) 116176 

4 



3. Variational thermoplastic failure of functionally graded structure

3.1. Variational thermoplastic deformation

For practical working conditions, the environmental factors that may cause structural failure could be varied. For instance, the 
yield strength or hardening parameter of metallic phase of functionally graded structure would be fluctuated with the changing of 
operating temperatures, which then affect the initial yielding of material prior to the designed bearing capacity. In this research, it is 
determined that all varying mechanical properties are related with the varying temperature T through the Eq. (2), thus, one unified 
random vector θ(T), in which θ(T) : [E(T), υ(T), σ0(T), κ(T), ...]T, can be adopted to describe the variational temperature dependent 
properties of functionally graded structure. Therefore, the corresponding temperature dependent variational yielding function is 
further defined by: 

F
{

σ[θ(T)], κ
[
εp, θ(T)

]}
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3J2[θ(T)]/2

√
− σ0

[
εp, θ(T)

]
= 0 (17) 

where the previous deterministic temperature parameter T is replaced with the variational temperature dependent mechanical random 
vector θ(T). Also, the incremental plastic strain and stress are updated with the following. 

Δεp[θ(T)] =
∂F[σ, κ, θ(T)]

∂σ[θ(T)] Δλ (18) 

Δσ{θ(T)} = Dep{θ(T)}BΔu{θ(T)} (19) 

Subsequently, the variational thermoplastic deformation Δd[θ(T)] of functionally graded structure is acquired from: 

Δd[θ(T)] =
{∫

Ω
fdΩ −

∫

Ω
BTσ[θ(T)]dΩ

}/{∫

Ω
BTDep[θ(T)]BdΩ

}

(20) 

3.2. Plastic failure state of functionally graded structure

The strategy for predicting the ultimate plastic failure state of FGM plates is based on prior research, where nonlinear finite element 
methods (NFEM) were applied to evaluate the ultimate strength of isotropic homogeneous plates with elastic-perfectly plastic or 
bilinear elastic-plastic properties [44].

In this research, the FGM plate is subjected to gradually increasing axial compressive loads under different thermal environments. 
Initially, the plate exhibits recoverable elastic stresses and strains within the elastic range. Once the load exceeds the yield point, 
plastic deformation begins, resulting in both recoverable elastic strains and irreversible plastic strains. As the load continues to in
crease, plastic deformation intensifies, eventually causing the plate to lose stiffness entirely and become unstable, culminating in its 
ultimate failure. The load at this point is referred to as the ultimate plastic failure load and for uncertainties involved cases, variational 
thermoplastic failure loads of functionally graded structure would be captured. To accurately simulate the plate’s load-response 
behaviour, the analysis is conducted using Newton-Raphson small incremental load steps.

4. S-spline based thermoplastic-virtual model

In this research, the non-deterministic thermoplastic failure analysis of functionally graded structure is achieved by thermoplastic- 
virtual model based on S-spline kernel. By using a sampling strategy, limited computational efforts are required to construct meta- 
models that can predict reliable nonlinear responses under various temperature effects for the advanced composites in an efficient 
manner.

4.1. S-spline polynomial kernel with extended support vector regression

Support Vector Regression (SVR) has demonstrated outstanding capabilities in tackling regression and forecasting tasks [45]. 
Traditionally, SVR models have relied on Gaussian and polynomial kernel functions. However, these conventional kernels often face 
challenges when applied to high-dimensional datasets, leading to less accurate predictions. To address this issue, the B-spline poly
nomial kernel was introduced, offering improved numerical stability in a variety of simulation scenarios. This advancement paved the 
way for further developments, including enhanced polynomial kernels such as T-splines [46] and P-splines [47]. More recently, the 
S-spline polynomial kernel has been proposed [48], which offers the advantage of eliminating unwanted control points. The general 
form of the polynomial kernel function is expressed as: 

Sspline
(
ζi, ζj

)
=

∑n

i=1
PiB2n+1

(
ζi − ζj

)
(21) 

Bn(ζi) =
∑i+1

r=0

( − 1)r

i!
⋅

(i + 1)!
r!(i + 1 − r)!

⋅
(

ζi +
i + 1

2
− r

)

max
! (22) 
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in which Pi is a control point with Cartesian coordinates as: 

Pi = ϖi(xi, yi, zi,1) (23) 

The quantity of control points, denoted as n, plays a crucial role in influencing the overall performance of the kernel method. An 
independent Bayesian optimization approach is employed to efficiently identify the optimal number of control points, ensuring that 
the kernel function is well-suited for the specific regression task at hand.

As part of the ongoing advancement in SVR methodologies, an innovative variant known as Extended Support Vector Regression 
(X-SVR) has been introduced to improve the overall quality of training outcomes. X-SVR is particularly chosen for its demonstrated 
effectiveness in managing highly complex and nonlinear physical systems [35]. One of its key advantages lies in its incorporation of a 
quadratic ε-insensitive loss function, which contributes to enhanced training stability and improved predictive accuracy. At the outset 
of the regression procedure, a suitable mapping function is defined to project the input data into a higher-dimensional feature space, 
facilitating more accurate modelling of nonlinear relationships: 

xi =
[
xi,1, xi,2,⋯, xi,n

]T ↦ m̂(xi) =

⎡

⎢
⎢
⎣

M(x1, x1) M(x1, x2) ⋯ M
(
x1, xj

)

M(x2, x1) M(x2, x2) ⋯ M
(
x2, xj

)

⋮ ⋮ ⋱ ⋮
M
(
xj, x1

)
M
(
xj, x1

)
⋯ M

(
xj, xj

)

⎤

⎥
⎥
⎦ = M(xi) (24) 

where M(xi) denotes the mapping function, m̂(xi) is the empirical kernelized vector. In this transformed space, the regression task is 
formulated as an optimization problem as: 

min
px ,qx ,α,ϑ,ϑ̂

:
ƛ1

2
(
‖ px ‖

2
2 +‖ qx ‖

2
2
)
+ ƛ2eT

j (px + qx) +
χ
2
(
ϑTϑ+ ϑ̂

T
ϑ̂
)

(25) 

where ϑ, ϑ̂ denote the redundant constraint parameters; ƛ1, ƛ2 denote the tuning variables for feature management; χ denotes the 
penalty coefficient; px,qx denote the kernelized positive parameters. According to the DrSVR theory, Eq. (25) can then be simplified to 
a quadratic programming problem as: 

min :
yx ,λ

1
2
(
rT
x Q̂xrx + α2)+ ƛ2aT

xcx

s.t.
(
Âx + I4j×4j

)
cx +

(
ωI4j×4j + χD̂x

)
êx + ĝx ≥ 04j

(26) 

min
ςx

:
1
2

τT
x
Vxτx − sT

x τx

s.t.τx ≥ 04j

(27) 

where the identity matrix is I4j × 4j, the detailed explanation of corresponding matrix vector Q̂x, Âx, D̂x, aT
x , ̂ex, Vx, sT

x and rx is illustrated 
in Appendix A. Since the global minimum solution always exists in the optimization problem and is denoted as τ*

x, the expression of the 
variables can be written as: 

cx = Q̂
− 1
x
( (

Âx + I4j×4j
)Tτ*

x − ζ2ax
)

(28) 

χ = êT
x D̂xτ*

x (29) 

Consequently, the governing expression of X-SVR algorithm can be expressed as: 
{

px − qx = cx(1 : j) − cx(j + 1 : 2j)

f̂ (x) = (px − qx)
T m̂(x) − êT

x D̂xτ*
x

(30) 

4.2. S-spline based thermoplastic-virtual modelling of plastic failure

The virtual modelling technique, enhanced by X-SVR with an S-spline polynomial kernel, offers a powerful method for establishing 
a direct numerical relationship between system variations and high temperature induced nonlinear outputs. This approach eliminates 
the need to solve complex physical equations. The proposed thermoplastic-virtual framework consists of three primary stages: input 
setup, virtual model training, and performance evaluation.

In the first stage, system inputs of functionally graded structure are defined, encompassing both deterministic and variational 
parameters such as geometric configurations, material properties, and boundary conditions. The variational parameters are designed 
based on specified premises. All input data, including deterministic and non-deterministic parameters, are organized and stored in a 
database to ensure accessibility for simulations.

In the second stage, repetitive simulations are conducted to generate training data for the virtual model. Thermoplastic nonlinear 
responses, such as ultimate failure loads under various temperatures, are meticulously extracted from Abaqus simulation results for 
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each set of input data. These responses, along with the corresponding input variations, are compiled into a comprehensive training 
dataset.

In the third stage, the X-SVR model with the S-spline kernel establishes a virtual relationship between the inputs and outputs. Once 
the virtual model is trained, it can predict nonlinear responses of functionally graded structure directly, bypassing the need for solving 
complex governing equations.

5. Numerical investigation

For the numerical investigations, two cases stem from practical engineering applications are selected to present the random 
nonlinear responses under varied temperatures, for which including a functionally graded turbine blade and an engine block. The 
thermoplastic model is adopted for the FGM structures, and the uncertain system information is involved as random vector then 
analysed by the virtual modelling technique to establish temperature dependent surrogate model. The prediction results of virtual 
model are rigorously compared with the deterministic simulation approach by using Monte Carlo simulation method, and a series of 
nonlinear responses are presented to show the effectiveness of the coupled framework. All calculations have been finished on the 
platform of Intel(R) Xeon(R) Gold 5215 CPU @ 2.5 GHz 10 cores with 192 GB RAM.

Fig. 2. Numerical example 1: FGM turbine blade.

Fig. 3. (a) Adopted mesh condition and (b) mesh convergence study.
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5.1. FGM turbine blade under high temperature

Turbine blade has been considered as essential component in aerospace and aviation engine since last century. However, the failure 
rates and consequences of turbine blade have been extremely high since the metallic materials made in used may be very vulnerable 
under engine’s frequently encountered high temperature conditions. Thus, in contemporary engineering, FGM made turbine blade has 

Table 1 
Variational system properties of the FGM turbine blade [19–23].

System phase Material property Distribution type Mean Standard deviation

Metal Em (GPa) Normal 200 20
υm Lognormal 0.27 0.027
σY (MPa) Logistic 230 23
ρm (kg/m3) Beta 8900 890
κm Beta 917.5 91.75
αm (10− 6/○C) Poisson 9.921 0.9921

Ceramic Ec (GPa) Normal 150 15
υc Lognormal 0.26 0.026
ρc (kg/m3) Beta 3960 396
αc (10− 6/○C) Poisson 6.826 0.6826

Temperature T1 (○C) Uniform [350, 450]
T2 (○C) Uniform [750, 850]
T3 (○C) Uniform [1150, 1250]

Fig. 4. (a) Deterministic FGM load-displacement curves and random load-displacement curves at (b) 350o~450o, (c) 750o~850o, and (d) 
1150o~1250o temperature ranges.

Y. Feng                                                                                                                                                                                                                   Applied Mathematical Modelling 146 (2025) 116176 

8 



often been implemented in various aerospace, civil, and mechanical fields. In this case, the FGM turbine blade is tested with varied 
system conditions to quantify the non-deterministic nonlinear response for better safety and reliability assessment. The adopted ge
ometry and physical working condition of FGM turbine blade is shown in Fig. 2. The core of blade is made of metal component then 
gradually transformed to ceramic component in the outer surface side. The FE mesh convergence study is presented in Fig. 3 and the 
total number of 86738 tetrahedron elements is adopted to mesh the geometry. The support of turbine blade is fixed and shown with 
black triangle symbols in Fig. 3 and the blade is working against uniform pressure P along the x-direction with high temperature 
applied.

In practical engineering, the FGM turbine blade is manufactured with random distributed material properties and working under 
continuously changing environment. In Table 1, all relevant uncertain information of material and environment has been summarized 
as random vector θ(T) : [E(T), υ(T), σ0(T), κ(T), ...]T and listed with referable distributions. The metal component deforms plastically 
with isotropic hardening effects while the ceramic component only considers elastic response. And three uniformly distributed tem
perature ranges are considered for the FGM blade to simulate varied working temperature scenarios with different structural nonlinear 
responses. As reference results, the crude 1000 cycles of MCS running would be calculated simultaneously to provide all deterministic 
results for the uncertain events, comparable results can be found in Fig. 4.

In Fig. 4(a), the deterministic nonlinear responses of FGM turbine blade under three different temperatures from low to high level 
are shown for understanding purpose and along the curve, the first yielding position representing the structure yields from pure elastic 
stage to plastic stage is highlighted with a blue star symbol. Then in Fig. 4(b-d), the random elastoplastic responses of FGM blade 

Table 2 
Convergence study of training samples.

Sample 90 120 150 180 210 240 270 300

R2 0.881 0.912 0.944 0.967 0.983 0.989 0.991 0.992
RMSE 1.356 1.221 1.103 0.887 0.871 0.865 0.861 0.858

Fig. 5. The estimated PDFs of yielding load from proposed method and MCS results at temperature ranges of (a) 350o~450o, (b) 750o~850o, and 
(c) 1150o~1250o.

Fig. 6. The estimated CDFs of yielding load from proposed method and MCS results at temperature ranges of (a) 350o~450o, (b) 750o~850o, and 
(c) 1150o~1250o.
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related to the uncertain information listed in Table 1 are provided, and the corresponding initial yielding points in the load- 
displacement curve are also highlighted with symbols. The yielding points of FGM structure are essential figures to consider the 
structure has transferred from ‘Safe’ condition to ‘Yield’ condition, and the relevant yielding load and yielding displacement can be 
used to determine the safety limit of concerned composite under different conditions.

The virtual model of FGM turbine blade is constructed with various levels of sample size ranging from 90 to 300 as listed in Table 2. 
In Table 2, specific mathematical validation figures of R2 and the RMSE are used to testify the yielding loads between the predicted 
ones from virtual model and the deterministic ones from MCS results. According to the statistical moments, the sample size of optimal 
virtual model is selected as 300 for accuracy estimation.

To further illustrate the various yielding conditions of FGM turbine blade under different temperatures, in Figs. 5–8, the relevant 

Fig. 7. The estimated PDFs of yielding displacement from proposed method and MCS results at temperature ranges of (a) 350o~450o, (b) 
750o~850o, and (c) 1150o~1250o.

Fig. 8. The estimated PDFs of yielding displacement from proposed method and MCS results at temperature ranges of (a) 350o~450o, (b) 
750o~850o, and (c) 1150o~1250o.

Table 3 
The estimated moments of yielding load at different temperature ranges.

Temperature range Moments Methods Yielding load RE (%)

T1 Mean (kN) PM 1.311 -0.152
MCS 1.313 -

Standard deviation PM 2.124e-03 0.141
MCS 2.127e-03 -

T2 Mean (kN) PM 0.733 -0.543
MCS 0.737 -

Standard deviation PM 3.874e-03 0.180
MCS 3.881e-03 -

T3 Mean (kN) PM 0.298 -1.650
MCS 0.303 -

Standard deviation PM 5.141e-03 -0.214
MCS 5.152e-03 -
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probabilistic moments (e.g., probabilistic density function (PDF) and cumulative density function (CDF)) of random yielding loads and 
yielding displacements have been provided. As shown in Figs. 5–8, with the increment of bearing temperature range, the corre
sponding yielding capacity of FGM structure is decreased. Specifically, for working temperature around 350o~450o, the mean yielding 
load of structure is 1.35kN and the mean yielding displacement is 0.24cm, but for 1150o~1250◦ case, the load is only 0.3kN with the 
displacement of 0.9cm, which is vulnerable of FGM structure against potential mechanical or structural plastic damage. Moreover, the 
virtual model established from the proposed method shows great agreement with the deterministic numerical result, however, the 
computational efforts for predictions of structural yielding information are significantly reduced. The details are: total of 58.3 hours for 
300 random samples running, 0.48 hour for virtual model training and establishment, and 2 minutes for yielding load and 
displacement predictions of FGM turbine blade. All of the calculations are finished on the platform of Intel(R) Xeon(R) Gold 5215 CPU 
@ 2.5GHz 10 cores with 192GB RAM.

Furthermore, detailed statistical moments about random yielding loads and displacements under three different temperature 
ranges are provided in Tables 3, 4. It has been clearly shown in the tables that the proposed method results simulate very close to the 
deterministic MCS responses. The maximum absolute relative error of yielding capacity between two approaches is around 0.15% at 
temperature range 350o~450o, around 0.5% at temperature range 750o~850o, and around 1.6% at temperature range 1150o~1250o. 
Similar relative error trend has also been observed for the estimated yielding displacement between two approaches, and it was caused 
due to the greater deviations of structural responses accumulated from temperature dependent plasticity components. Overall, the 
accuracy, applicability and efficiency of the proposed framework has been demonstrated through both PDF, CDF plots and statistical 
moment figures.

With the accumulation of plastic strain in the FGM body, more and more simulation points would be yielded and clustered as yield 
zones as shown in Fig. 9. The yield zone represents the potential failure region of the concerned structure after initiating with plasticity 
and could be considered as weak section of advanced structure for further topological optimization and material behaviour 

Table 4 
The estimated moments of yielding displacement at different temperature ranges.

Temperature range Moments Methods Yielding displacement RE (%)

T1 Mean (cm) PM 0.242 0.415
MCS 0.241 -

Standard deviation PM 6.831e-04 0.0293
MCS 6.833e-04 -

T2 Mean (cm) PM 0.153 -1.923
MCS 0.156 -

Standard deviation PM 7.987e-04 1.191
MCS 7.893e-04 -

T3 Mean (cm) PM 0.095 4.396
MCS 0.091 -

Standard deviation PM 9.548e-04 -1.083
MCS 9.554e-04 -

Fig. 9. Predicted yield zone of FGM turbine blade at different temperatures.
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strengthens. As shown in Fig. 9, at different randomly assumed temperature levels of 415o, 824o and 1183o, the corresponding yielding 
points at different locations can be directly estimated through the established virtual model, and the yielding points can be collected as 
yield zone for FGM turbine blade under different working temperatures. The estimated yield zones have been compared to the 
deterministic simulation results as shown in Fig. 10, and it can be observed that the estimated yield zones of FGM turbine blade are 
almost identical with the actual yield regions, but can be predicted in an efficient manner. Therefore, critical structural failure 
assessment before completely collapse stage can be effectively provided for the designers and engineers to optimize the composite 
more resilient ones, which highlights the advantages of the proposed coupling framework.

5.2. FGM engine block under high temperature

The second practical application is engine block that has been frequently used in automobile, mechanical, and manufacturing 
fields. The engine block operates under high temperatures primarily because of the internal combustion process that occurs within it. 
However, under certain circumstances, factors like the design of the engine block, along with issues of cooling systems, could affect the 
stability and safety of engine block under long term high temperature effects. Thus, considering the top-tier performance of composite 
components made for FGM engine block, it ensures that these high temperatures are managed safely and effectively. For this numerical 
application, the FGM engine block is deformed under various high temperature scenarios, and the nonlinear responses are also 
recorded from the pure metal made engine block for better comparison purpose. The adopted geometry and physical working con
dition of FGM engine block is shown in Fig. 11. The core of block is made of ceramic component then gradually transformed to metal 
component in the outer tube side. The FE mesh convergence study is provided in Fig. 12 and the total number of 11472 tetrahedron 

Fig. 10. Deterministic yield zone of FGM turbine blade at different temperatures.

Fig. 11. Numerical example 2: FGM engine block.
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elements is adopted to mesh the geometry. The support of engine block is fixed and shown with black triangle symbols in Fig. 12 and 
the block is working against uniform distributed pressure P along the internal tube layer with high temperature applied.

The FGM engine block operates in a highly uncertain thermal environment. In Table 5, the relevant uncertain information of 
material and environment are all considered as random vector θ(T) : [E(T), υ(T), σ0(T), κ(T), ...]T with the corresponding distribution 
parameters. The metal component deforms plastically with isotropic hardening effects while the ceramic component only considers 
elastic response. As comparison, for the second case, both FGM component and pure metal component are analysed with three uni
formly distributed temperature ranges to investigate different nonlinear behaviours between the traditional homogenous ones and 
advanced composite ones. As reference results, the crude 1000 cycles of MCS running for two types of material would be calculated 
simultaneously to provide all deterministic results for the uncertain events, comparable results can be found in Fig. 13.

By collecting all random yielding points information as training dataset, the virtual model of both FGM engine block and pure metal 
are tested with different levels of sample size as listed in Table 6. In Table 6, at the sizes of 240 and 270, the R2 and the RMSE of both 
materials present converged trend to develop stable surrogate models, respectively. Thus, the optimal training size for FGM engine 
block and pure metal structure is selected as 270 for conservative purpose.

Observed from Fig. 13, it is evident that the high temperature induced nonlinear performance of FGM engine block exhibit clear 

Fig. 12. (a) Adopted mesh condition and (b) mesh convergence study.
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differences with the pure metal block. To better demonstrate the different yielding information of FGM block and metal block under 
different temperatures, the PDFs and CDFs of random yielding loads and yielding displacements are provided in Figs. 14–17. From 
Figs. 14 to 17, the yielding capacity of FGM engine block shows greater values than pure metal block among three temperature 

Table 5 
Variational system properties of the FGM engine block [19–23].

System phase Material property Distribution type Mean Standard deviation

Metal Em (GPa) Lognormal 220 22
υm Normal 0.24 0.024
σY (MPa) Beta 210 21
κm Logistic 823.5 82.35
ρm (kg/m3) Normal 6500 650
αm (10− 6/○C) Beta 7.642 0.07462

Ceramic Ec (GPa) Lognormal 160 16
υc Normal 0.23 0.023
ρc (kg/m3) Normal 3250 325
αc (10− 6/○C) Beta 5.112 0.5112

Temperature T1 (○C) Uniform [450, 550]
T2 (○C) Uniform [950, 1050]
T3 (○C) Uniform [1450, 1550]

Fig. 13. Random load-displacement curves at (a) 450o~550o, (b) 950o~1050o, and (c) 1450o~1550o temperature ranges.
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intervals. For instance, in temperature range 950o~1050o, the yielding load range of FGM block is from 2.1 kN to 3.4 kN, while for the 
pure metal block, the load range is from 1.0 kN to 2.1 kN. Also, the yielding displacement range of FGM block is from 0.04 cm to 0.16 
cm, for pure metal is from 0.01 cm to 0.07 cm. From this case, it shows that FGM component has larger bearing load capacity and 
higher yielding deformation under high temperature working conditions, which is a significant improvement of mechanical behaviour 
compared to traditional homogeneous metallic component. Moreover, by using the virtual modelling technique, the nonlinear re
sponses of both materials have been efficiently predicted under different thermal cases: total of 52.5 hours for 270 random samples 
running, 0.36 hour for virtual model training and establishment, and 2 minutes for yielding load and displacement predictions of both 
FGM engine block and pure metal block.

Detailed statistical moments about random yielding loads and displacements under three different temperature ranges for both 
materials are provided in Tables 7, 8. It has been clearly shown in the tables that the proposed method generate yielding loads of both 
FGM and metal components that simulates very close to the deterministic MCS responses. Accurate prediction results have also been 
observed for the estimated yielding displacement between two approaches for both components. Therefore, the accuracy, applicability 
and efficiency of the proposed framework has been once again reinforced through both PDF, CDF plots and statistical moment figures 
for traditional metallic materials and newly developed FGM structures.

As highlighted, one of the critical advantages of virtual modelling technique is the quick response prediction of structures against 
future random information. To illustrate this capability, in Table 9, a total of four groups of arbitrary generated random vectors are 

Table 6 
Convergence study of training samples.

Material Sample size 90 120 150 180 210 240 270

FGM R2 0.932 0.945 0.966 0.987 0.988 0.992 0.992
RMSE 0.423 0.341 0.312 0.272 0.226 0.205 0.203

Metal R2 0.901 0.932 0.954 0.967 0.978 0.989 0.991
RMSE 0.656 0.521 0.403 0.387 0.371 0.365 0.361

Fig. 14. The estimated PDFs of yielding load from FGM and pure metal at temperature ranges of (a) 450o~550o, (b) 950o~1050o, and 
(c) 1450o~1550o.

Fig. 15. The estimated CDFs of yielding load from FGM and pure metal at temperature ranges of (a) 450o~550o, (b) 950o~1050o, and 
(c) 1450o~1550o.

Y. Feng                                                                                                                                                                                                                   Applied Mathematical Modelling 146 (2025) 116176 

15 



provided to be considered as structural inputs. By using the already developed virtual models of both FGM engine block and pure metal 
block, the deterministic FE simulation process can be avoided and the four groups of random inputs can be directly substituted into the 
explicit virtual model formulations to acquire the structural responses. Detailed prediction results of both components have been 
provided in Figs. 18, 19. As shown in Figs. 18, 19, it is evident that under different input information, the predicted nonlinear responses 
of both FGM and metal blocks from virtual models are almost identical with the actual deterministic results, even considering different 
temperature levels. The maximum relative error between these two approaches is smaller than 2%, which is acceptable in practical 
engineering field. In the meantime, considering the continuously varied information in real-life thermal environmental working 

Fig. 16. The estimated PDFs of yielding displacement from FGM and pure metal at temperature ranges of (a) 450o~550o, (b) 950o~1050o, and 
(c) 1450o~1550o.

Fig. 17. The estimated CDFs of yielding displacement from FGM and pure metal at temperature ranges of (a) 450o~550o, (b) 950o~1050o, and 
(c) 1450o~1550o.

Table 7 
The estimated moments of yielding load at different temperature ranges.

Temperature range Moments Methods Yielding load

FGM Metal

T1 Mean (kN) PM 3.843 2.076
MCS 3.841 2.077

Standard deviation PM 1.673 1.739
MCS 1.672 1.736

T2 Mean (kN) PM 2.764 1.633
MCS 2.759 1.631

Standard deviation PM 1.883 1.905
MCS 1.879 1.908

T3 Mean (kN) PM 1.865 0.731
MCS 1.860 0.727

Standard deviation PM 2.174 2.269
MCS 2.181 2.261
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Table 8 
The estimated moments of yielding displacement at different temperature ranges.

Temperature range Moments Methods Yielding displacement

FGM Metal

T1 Mean (cm) PM 0.127 0.0675
MCS 0.126 0.0673

Standard deviation PM 0.983 1.031
MCS 0.981 1.034

T2 Mean (cm) PM 0.0763 0.0421
MCS 0.0760 0.0417

Standard deviation PM 1.258 1.167
MCS 1.262 1.159

T3 Mean (cm) PM 0.0561 0.0272
MCS 0.0558 0.0266

Standard deviation PM 1.573 1.671
MCS 1.568 1.665

Table 9 
Arbitrary generated FGM structural random inputs.

System phase Material property Case I Case II Case III Case IV

Metal Em (GPa) 206 224 218 235
υm 0.23 0.25 0.22 0.28
σY (MPa) 210 215 207 229
κm 810.1 803.5 823.6 800.3
ρm (kg/m3) 6340 6295 6488 6216
αm (10− 6/○C) 7.55 8.01 8.12 7.47

Ceramic Ec (GPa) 154 163 172 164
υc 0.21 0.24 0.26 0.27
ρc (kg/m3) 3122 3245 3301 3005
αc (10− 6/○C) 5.06 5.23 5.44 4.99

Temperature T (○C) 468 546 1023 1534

Fig. 18. Predicted yielding load of FGM engine block at random structural inputs.
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conditions, the proposed virtual modelling technique for advanced FGM structure reduces a significant number of computational 
efforts in model analysis, safety/reliability evaluation and component inspection/maintenance disciplines.

6. Conclusion

In this study, the random elastoplastic analysis of functionally graded structures under high-temperature conditions is investigated. 
A novel thermal-mechanical coupling framework, termed thermoplastic-virtual model, is proposed by incorporating temperature 
dependent performance, hardening plastic behaviour and artificial intelligence technique within one unified system. The Touloukian 
and Tamura-Tomota-Ozawa models are employed to simulate the high temperature effects and nonlinear material behaviours of the 
FG structure, respectively. In addition, to ensure a robust and physically feasible high temperature induced stochastic elastoplastic 
analysis, an extended support vector regression based virtual modelling approach is introduced for multivariate uncertainty quanti
fication. Such that the deformed nonlinear deflection, plastic damage zone, and fragility curves could be directly estimated through 
established surrogate model for FG structure under various temperature distributions. This approach enables the effective estimation 
of statistical characteristics of any concerned structural nonlinear responses. Consequently, the performance of the FG structure 
against both serviceability and strength limit states under high-temperature conditions can be thoroughly assessed. The effectiveness, 
accuracy, and applicability of the proposed thermal-plastic virtual model are fully demonstrated through the detailed investigation of 
two practical FG structures, which can be critical and referrable for high temperature involved elastoplastic deformation prediction of 
real-life composite structures.

Additionally, Poisson’s ratio in this research is prescribed as a spatially and thermally varying function for analytical convenience. 
However, the author acknowledges that Poisson’s ratio enters the constitutive relations nonlinearly and cannot be reliably interpolated 
between constituent values using classical mixture rules. To maintain internal consistency for isotropic materials, the shear modulus is 
not independently defined but derived using the relation G(x,T) = E(x,T) /[1 − 2 ⋅ υ(x,T)]. While this approach is mathematically 
consistent, it may not reflect physically homogenized behaviour. More rigorous treatment using micromechanical models is prepared 
for future work.
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Appendix A. Formulations of vectors and matrix defined in the optimization problem

The vectors and matrices of Q̂x, Âx, D̂x, aT
x , êx, k̂x and rx involved within the X-SVR optimization expression can be presented by: 

Q̂x =

⎡

⎢
⎢
⎣

γ1Ij×j
γ1Ij×j

pIi×i
pIi×i

⎤

⎥
⎥
⎦, Âx =

⎡

⎣
02j×2j 02j×i 02j×i
0i×2j Ii×i 0i×i
0i×2j 0i×i − Ii×i

⎤

⎦, D̂x =

⎡

⎣
02j×j 02j×j 02j×2i
− xtrain xtrain 0i×2i
xtrain − xtrain 0i×2i

⎤

⎦ (A1) 

ax =

⎡

⎣
ej
ej
02i

⎤

⎦, êx =

⎡

⎣
02j
ei
ei

⎤

⎦, k̂x =

⎡

⎣
02j
ytrain

− ytrain

⎤

⎦, rx =

⎡

⎢
⎢
⎣

px
qx
ϑ
ϑ̂

⎤

⎥
⎥
⎦ (A2) 
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