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Learning Navigational Maps by Observing Human Motion Patterns

Simon T. O’Callaghan, Surya P. N. Singh, Alen Alempijevic and Fabio T. Ramos

Abstract— The study of human motion patterns is crucial for
the development of social robots that share the environment
with humans. This paper presents a methodology to allow
a robot to navigate in a complex environment by observing
pedestrian positional traces. A continuous probabilistic function
is determined using Gaussian process learning and used to
infer the direction a robot should take in different parts of
the environment. The approach learns and filters noise in the
data producing a smooth underlying function that yields more
natural movements. Our method combines prior conventional
planning strategies with most probable trajectories followed
by people in a principled statistical manner, and adapts itself
online as more observations become available. The use of
learning methods are automatic and require minimal tuning as
compared to potential function or spline function regression.
This approach is demonstrated and tested against a cluttered
office and open forum environments using laser and vision
sensing modalities. It yields interactive paths that are similar
to the expected people behaviour (e.g., across a street at a
pedestrian crossing) without any a priori knowledge of the
environment or explicit programming.

I. INTRODUCTION

As robots start to share the environment with humans,
the study of human motion patterns becomes increasingly
important. In the robotics community, the social interaction
between humans and robots have been object of numerous
studies [1], [2], [3]. It presents significant challenges and has
proved vexing for numerous reasons – not the least that such
interactions are often qualitative and difficult to measure.

However, human locomotion is incredibly informative.
Considering the points people transit not only informs how to
navigate, but also improves interaction. Consider, for exam-
ple, navigating around spilled coffee. Trying to sense this is
incredibly difficult, yet following the cues of people walking
around it is relatively much easier. That is, understanding
and generalising peoples’ behaviour is paramount to defining
better decision making rules and improve safety of humans
and robots. This, however, can be difficult as the variability
of human motion patterns is immense even in structured
environments such as offices and corridors. Also challenging
is estimating and modelling the uncertainty in these motions
from noisy sensors, which are generally subject to occlusions
and misdetections.

In this paper we study how robots can learn a potential
function for an environment by observing the motion pattern
of people and consider its use for navigation. Given a set
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of traces from pedestrians walking in a populated area, we
seek to learn a function that maps any arbitrary location
to a direction of travel – we call this the navigational
map. This navigational map reflects people’s behaviour in
a statistical manner and helps the robot to understand the
environment. For example, people (almost) always avoid
obstacles when walking. By learning how humans walk in
a closed area, a robot can avoid obstacles without relying
solely on perception. Equally, assumed social boundaries
such as personal workspaces or the area between a television
and a viewer often mean that the shortest path is not always
the optimum.

Traditionally, integrating such behaviour into the path
planner is challenging as the definitions of preferred spaces
are mostly qualitative, hence making metrics (and sensing)
difficult [4]. However, learning the motion pattern can lead to
trajectories that incorporate a very abstract level of reasoning
on the environment without explicitly understanding the
underlying principles influencing them.

The process of observing and tracking pedestrian move-
ments has received considerable attention in the robotics
community and includes approaches based on a variety
of sensing modalities including monocular vision [5], [6],
laser [4], and inertial measurement [7]. Human navigation
models, such as those proposed by [8], [9] and [10], are
primarily focused on steering and obstacle avoidance. The
suggested continuous curvature models complement this
work by providing a more informed initial navigation map.
While the process of extracting and tracking people is non-
trivial (particularly when multiple people are moving), this
work is concerned with using these trajectories for informing
robot navigation, preferably in as natural a manner as it is
presumed that this begets more interaction.

We rely on a machine learning technique to develop
a model of how people traverse the environment. Using
traditional path planning techniques as a prior, the resulting
navigational map emulates human-like motion trajectories
in a sound, statistical manner. In order to learn this map
from pedestrians’ traces, we explore the benefits of Bayesian
learning and, in particular, a popular regression technique
known as a Gaussian process [11].

A key aspect of this paper is the manner in which the
problem is formulated. By modelling human motions as a
deviation from a prior path plan, it becomes possible to infer
preferred areas (a subsequently areas of repulsion) all within
the Bayesian statistical framework.

This paper is organised as follows. Section II introduces
the problem formulation and describes the algorithms devel-
oped and illustrate them with a pedestrian example. Section



III details the theory behind the approach and Section IV
presents experimental results using real datasets. Finally,
Section V provides conclusions.

II. PROBLEM FORMULATION

Intuitively, the proposed approach seeks to produce a
navigational map, a function which maps a location to a
normalized velocity in a manner that incorporates the motion
patterns of people. This would enable the trajectory taken
by a person travelling to a destination to be estimated at
any location allowing the robot to navigate in a human-like
manner. Essentially, this is achieved by learning a continuous
function that describes how people deviate from some prior
belief on the path to a destination. This deviation function, Ψ,
is combined with the prior navigational map, H , to produce
a navigational map that captures the general trends of how
humans traverse the environment.

A. The Prior Map

The prior map, H , can potentially be derived from a
wide variety of navigational techniques described in the
literature, e.g. potential fields - for an overview, see Ch. 4
of [12] or sampling-based algorithms [13]. It can be viewed
as a method of incorporating expert knowledge about the
environment, such as perhaps the location of obstacles, into
the posterior map. In this paper, a naı̈ve prior is adopted
to illustrate the ability of the proposed technique to capture
social navigation trends in the map despite very little prior
understanding of the environment. Essentially, the prior di-
rection at any location, x∗, on the map is the arctangent of
the line joining that location to the destination, xD. More
formally:

H(x∗) = arctan(∇(xD − x∗)). (1)

B. Learning the Motion Patterns of People

Generally speaking, our technique can be divided into two
main segments. Initially, the outputted paths of a people
tracking algorithm such as [14], [15] are used in an offline
learning phase to estimate Ψ for a given destination. Sub-
sequently, a online algorithm uses the generated function to
traverse the environment in a way that reflects the tendencies
of people.

For the remainder of this section, data obtained by simulat-
ing the path traces of pedestrians using a zebra-crossing, Fig.
1, is employed as an illustrative example to help detail the
steps of our approach and highlight some of its advantages.

1) Offline Phase: Learning the Deviation Function: The
procedure for the offline learning phase is detailed in Alg.
1.

Each navigational map is conditioned on a specific des-
tination. Consequently, only observed path traces leading
to the goal are relevant to the problem. A KD-tree ball
search can be used to identify path traces ending at, or
passing through, the objective. Fig. 1(a) shows the traces
that would be chosen, represented in blue, when generating
a navigational map for the indicated destination. Fig. 1(b)

Algorithm 1 Learn Deviation Function, Ψ(θ)
Input: H:- Prior Map, xD:- Destination, Path Traces
Output: θ:- Parameters of Ψ

1: Identify Path Traces leading to xD
2: Determine Tangent of identified Path Traces at each

observation location, X .
3: Calculate target vector, y:

Ψ(X) = Tangent(X) − H(X)
4: Train Gaussian process using training data (X , y) to

learn the parameters, θ, of the underlying Deviation
Function.
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Fig. 1. Plan view of zebra-crossing with simulated pedestrians using it
to get from one sidewalk to another. (a) Pedestrian’s path traces. (b) The
observed locations of the pedestrians used to generate the traces

reveals the observed locations of the pedestrians, X , that
were used to create the selected traces.

The training data’s target vector, y, used for learning the
underlying deviation function is obtained from the selected
raw data by initially approximating the trajectory of the
pedestrians at each observed location and subtracting it from
some pre-determined prior.

An important advantage to our approach is that the form
of the prior map can be entirely user-specified. It can range
from trivial (no map) to very naı̈ve solutions such as in
this example where the prior’s trajectory is always directed
towards the destination or it could also take on a more
complex form. Fig. 2(a) compares the prior and the path
trace trajectory at every observed location of the pedestrians.
From this, training data for Ψ, such as that shown in Fig.
2(b), can be determined using Step 3 of Alg. 1.

A Gaussian process, GP, is then trained to estimate a non-
parametric probabilistic model of Ψ. The predictive mean
and variance functions of our example’s deviation model
were sampled and are shown in Fig. 3. The predictive
mean represents the model’s estimate of how much the
human motion pattern deviates from the expected direction
of navigation (the prior). The associated variance quantifies
the model’s confidence in each prediction.

2) Online Phase: Navigating to the Destination: Once a
model for Ψ has been trained, it becomes possible to predict
the motion pattern of people at any location, x∗, in the
environment and to obtain an associated variance on each
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Fig. 2. (a) Comparison between prior and trace trajectory. (b) Training
data passed to GP: location (metres) versus deviation angle (degrees)
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Fig. 3. (a) Grid samples from the predictive mean, shown in degrees, and
(b) variance functions of Ψ.

prediction. Alg. 2 describes how such a model can be used
to navigate a robot towards the destination in a human-like
manner.

Algorithm 2 Navigate to Destination, xD
Input: H , xD, θ, x∗

1: while x∗ 6= xD do
2: Direction(x∗) = H(x∗) + Ψ(x∗, θ)
3: Move forward along Direction(x∗)
4: end while

The robot queries the probabilistic model with its current
location and receives an estimate of the deviation angle. This
is then added to the original prior to produce a prediction of
the direction that a human would take in that position. The
robot moves along the trajectory given by the navigational
map until the destination is reached.

Figure 4 compares the prior navigational map with the
posterior map produced after incorporating the information
gathered from observing how people move through the envi-
ronment. The social context of the zebra-crossing is reflected
in the posterior map and it has the effect of channelling the
flow from left to right through the designated crossing zone.

Figure 5 demonstrates the routes that robots with various
starting locations would take to reach the destination using
Alg. 2 on the trained navigational map. The resulting paths
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Fig. 4. Comparison between prior (a) and our proposed navigational map
after being trained using observations of human motion patterns in the region
(b).
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Fig. 5. (a) Routes taken to destination using the posterior navigational
map for different starting locations. (b) 2σ boundary of trajectory prediction
along each route measured in degrees (right).

are in keeping with expected social context – they navigate
as we might expect a person would would take in the same
situation.

C. Incorporating Predictive Uncertainty into the Platform’s
Actions

An important output of our probabilistic model is the
predictive variance. This measure of uncertainty manifests
itself in the navigational map as a force that returns the
trajectories to those of the prior map in areas where there is
insufficient observations to make a reliable prediction on the
motion pattern of people. Examining the region below the
zebra-crossing in Fig. 5 where no pedestrians are observed,
the model is correctly uncertain about the value of Ψ here
and thus the trajectories of the navigational map return to
the prior.

The variance could also be used to influence the level of
caution that the robot exercises as it travels towards the des-
tination. Areas of high uncertainty generally correspond to
regions where few or no (pedestrian) observations. Regions
of high variance could be used as an indication that the robot
should adjust its speed appropriately or increase the computa-
tional power dedicated to perceiving its surroundings. Figure
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Fig. 6. Series of images showing the changes to the navigational map
when a new observation is made of a pedestrian crossing the road without
using the zebra-crossing. Clockwise from top left: Observed path traces.
Posterior navigational map. Predictive variance function for Ψ. Predictive
mean function for Ψ.

5(b) compares the 2σ boundaries of the three sample routes.
As expected, Path C initially has the highest uncertainty as
the platform moves through a region where no pedestrians
were observed.

A variation to the proposed approach would be to use the
variance as a repulsive force in the navigational map. This
would have the effect of causing the robot to move towards
regions where it has observed pedestrians and is more certain
about the value of Ψ.

D. Integrating New Observations into the Model

After the training phase, incorporating additional observa-
tions into the model can be done online. The theory behind
this procedure is detailed in Section III. Fig. 6 illustrates the
effects on the outputs of our method when the observation
of a jaywalker’s path trace is integrated into the map.

Interestingly, the trajectories of the navigational map be-
low the zebra-crossing adapt to reflect the behaviour of a
person walking in that region (i.e., to get to the other side of
the road as directly as possible) compared to the trajectories
in Fig. 5. Importantly, however, the variance in this region,
although lower than areas where no observations were made,
is still higher than the section over the zebra-crossing and the
route preferred by the majority of pedestrians.

III. LEARNING MECHANISM

The proposed method is based upon the Gaussian process’
ability to predict p(Ψ|x), where Ψ is the deviation taken by
people from the prior trajectory at x, a physical location

within the environment. The GP is used to fit a likelihood
function to the training data

{
xi, yi

}
i=1→N where N is

the number of training points and yi, the training output
or target data, corresponds to the angle between the prior
and the tangent to the path taken by the person at a specific
location. The resulting continuous function can then be used
to interpolate between data points allowing predictions to be
made on the human motion patterns over the entire region
using the well understood Bayesian statistical framework.

A. Gaussian Process Fundamentals

Several important characteristics of the Gaussian process
makes it well suited to our intended application.

• Continuous models: GPs do not require a discretised
representation of an environment. Similarly, they are
able to predict the motion pattern of people at arbitrary
locations.

• Predictive Variance: Unlike most other regression mod-
els, GPs provide uncertainty estimates for predictions at
any set of locations. This uncertainty takes into account
the local density of observations and their noise level.

• Marginal Likelihood: The parameters of the model are
marginalised during the training. This eliminates the
need for any hand-tuning.

• Flexibility: GPs are non-parametric regression models
and can thus approximate an extremely wide range of
motion models.

The Gaussian process itself can be viewed as a distribution
over an infinite number of possible functions thus performing
inference takes place directly in the space of functions. By
assuming that all deviation angles, indexed by their corre-
sponding location in the environment, are jointly Gaussian,
we obtain

Ψ(x∗) = N (µ, σ2), (2)

where

µ = k>(x∗, X)>
[
K(X,X) + σ2

nI
]−1y, (3)

σ2 = k(x∗, x∗)− k(x∗, X)
[
K(X,X) + σ2

nI
]−1

k(X, x∗).
(4)

Here, x∗ refers to a query or test location, X the training
inputs, σ2

n the variance of the global noise and K is the
covariance matrix. The elements of the covariance matrix
Kij = k(xi, xj) are defined depending on a covariance func-
tion k parameterised by hyperparameters. In this application,
the hyperparameters’ and σn’s optimal values for the datasets
are derived by maximising the log marginal likelihood using
a simulated annealing algorithm followed by quasi-Newton
gradient ascent.

By setting E[Ψ(x∗)] = 0 during training and inference,
the predicted deviation will naturally revert back to the
prior in areas lacking sufficient observations. An extensive
explanation and derivation of the Gaussian process can be
found in [11].



B. Training the Covariance Function

A number of commonly used covariance functions were
tested on a variety of datasets. Given the nature of the process
being modelled, it is unsurprising that stationary covariance
functions performed best, most notably the Matérn class [16]:

kMatern(x, x∗) = σf
21−ν

Γ(ν)

(√2νr
l

)ν
Kν

(√2νr
l

)
(5)

where r is the Euclidean distance between inputs x and x∗
while the trainable hyperparameters l and σf represent the
lengthscale and amplitude, respectively. Kν is a modified
Bessel function and ν is shape parameter that regulates the
smoothness of the interpolation. As special cases, ν →
∞ equates to infinitely differentiable squared exponential
covariance function and ν → 1

2 corresponds to the sharper
exponential covariance function. Cross validation led to the
conclusion that ν = 5

2 produced the best results.
The hyperparameters loosely correspond to the style of

motion adopted by the pedestrians in the environment.
Consequently, they appears to be generalise well to similar
scenarios such as a different flow in an office block or another
area of a park provided an identical method for deriving the
prior is used.

C. Storing and Updating the Inverse Covariance Matrix

A traditional drawback to the Gaussian process is its
long computational time which makes it unsuitable for many
online operations where realtime performance speeds are re-
quired. The GP’s runtime complexity of O(N3) is primarily
as a result of the requirement to invert the covariance matrix,
K, in equations 3 and 4.

Fortunately, the elements of K are independent of query
points. Consequently, its inverse can be precomputed and
stored for use in Alg. 2 thus eliminating the computational
bottleneck during online use. Additional observation loca-
tions can be subsumed into K−1 using the matrix inversion
lemma and submatrix inversion as detailed in [17].

IV. RESULTS

The proposed approach was tested on a number of dif-
ferent datasets. Here we present the results from two such
evaluations, namely the UTS RobotAssist Project [18] and
the Edinburgh Informatics Forum Pedestrian Database [6].

A. UTS RobotAssist Dataset

The experimental setup involved two stationary SICK
LMS-200 laser rangefinders, shown in blue in 7(a), posi-
tioned to cover a combined area of approximately 50 m2

of a typical office environment. The path traces of passing
employees were extracted using a Hidden Markov Model
people tracking algorithm [19]. Trajectories leading to a
chosen destination, indicated by the red star, were selected
as inputs to our algorithm, Fig. 7(c).

Once again, the naı̈ve potential function described in II-A
was used as the prior map, Fig. 7(b). The target vector, Fig.
7(d), was obtained using Line 3 of Alg. 1, enabling Ψ to be
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Fig. 8. Sparsely sampled quiver plot of the posterior navigational map with
examples of resulting routes to the destination taken from three different
starting locations (top). 2σ boundary (degrees) vs. fraction of route travelled
for each sample route (bottom).

learnt through the GP framework. Samples from the resulting
predictive mean and 2σ functions are shown in Fig. 7(e) &
(f).

The posterior navigational map, represented as a quiver
plot in Fig. 8, merges the observations of path traces into
the prior map to generate more socially-informed routes to
the destination. Three typical starting locations were chosen
as inputs to Alg. 2 and their resulting paths were plotted.

An important advantage to incorporating the motions of
people into the navigational map is the ability to indirectly
sense obstacles that may be occluded or even undetectable
to the robot’s sensors. The large table on which one of the
rangefinder’s is placed in Fig. 7(a) close to the center of the
image is below the sensor’s plane and hence does not appear
in the laser returns plotted in Fig. 7(b) & (c). Observing that
people avoid this area leads to trajectories like Path C which
also circumvent the obstacle without ever requiring to reason
about the boundaries or type of the obstruction. Although in
this case the obstacle is quite tangible, our approach would
just as easily handle more abstract obstructions such as a
restricted area due to a slippy surface or paths that may
impinge on the work areas of other people.

A key feature of the Gaussian process is its capacity to
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Fig. 7. Top row: (a) Occupancy grid of office area - positions of laser rangefinders marked in blue. (b) Prior navigational map - determined using Equation
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infer the most likely value of the Ψ at any point in the
map based on the trends of observed motion patterns in the
region. The benefit of this is clearly illustrated in the region
occluded to both rangefinders - around x∗ = [2, 3.5]m in
Fig. 7(c). Despite a lack of path traces in this area, the GP
correctly predicts the most likely trajectory of pedestrians
in the vicinity. Crucially, an associated variance is also
produced for each prediction and can be used as an indicator
of the caution that should be exercised in each particular
region. The second graph in Fig. 8 illustrates the 2σ boundary
for each of the sample paths. The area occluded from both
sensors is made apparent by the large peak in uncertainty
approximately halfway along the curve of Path A.

Similarly, the variance associated with the planned trajec-
tory of Path C is initially quite high due to a low density
of observations in the region as only 2 pedestrians were
observed here. However as the trajectory brings the robot
into the more populated corridors, the uncertainty on the
predicted value of the deviation from the prior falls to within
a 2σ boundary of approximately 3 degrees.

B. Edinburgh Informatics Forum Pedestrian Database

The database consists of a large set of detected pedestrians
walking through the Informatics Forum at the University of
Edinburgh, Fig. 9(a), and has been gathering data on a daily
basis since August 2009. The method of data acquisition
involves a fixed camera suspended 23 metres above the
floor that records the location of tracked targets on a frame-
by-frame basis. The tracked trajectories of a few hundred
detected targets are shown in Fig. 9(b).

The posterior navigational map shown in Fig. 9(c) was
generated from data gathered on September 10th 2009. The

destination that this particular map was conditioned on is
indicated by the red star in the lower portion of Fig. 9
(b) & (c). For illustrative purposes, four sample trajectories
have been plotted using different starting locations. One area
where people deviate strongly from the prior prediction is at
the bottom of the image where a staircase blocks a direct
line of travel. As Path A demonstrates, this deviation is also
learnt by our algorithm and incorporated into the navigational
map. Another interesting pattern captured by the proposed
technique is the elongated S-shaped trajectory which was
seen to be adopted by many pedestrians when moving from
the top left of the image to the destination, as indicated by
Path B.

The forum itself is a wide open area which differs consid-
erably from the more confined spaces of the previous dataset.
This fact is reflected in the smoother trajectories of the
pedestrians and consequently in the longer lengthscales learnt
by the covariance function. An important outcome resulting
from this smoother motion pattern is that the GP is more
confident at inferring the value of the deviation function in
regions far from observed traces compared similar distances
in the office dataset. Examining the uncertainty contours in
Fig. 9(c), it can be seen that the variance function rises much
more gradually to its maximum value in areas lacking in
observations relative to Fig. 7(f).

C. Cross-Validation of Results

A fundamental requirement of the proposed algorithm is
its ability to accurately model human-like trajectories in
different environments. The capacity of our technique to
emulate such trajectories was tested using cross-validation
on both datasets. Table IV-C summarises the results of our
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Fig. 9. (a) Plan view of forum. (b) Subset of tracked trajectories. (c)
Posterior navigation map (quiver plot) with uncertainty contours and their
associated colour bar superimposed. 4 sample trajectories from typical
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TABLE I
CROSS-VALIDATION RESULTS

σ Limit 2σ Limit
UTS RobotAssist 75.4 95.3
Edinburgh Informatics Forum 61.3 84.8

analysis. For the UTS RobotAssist dataset, the observed
trajectories were divided equally into a training set and a
validation set. Path traces from five different days were used
in testing the algorithms model learnt for the Edinburgh
Informatics Forum dataset.

The figures in the σ and 2σ columns represent the per-
centage of test points that fell within one and two standard
deviations of the prediction, respectively. Indicatively, the
models learnt for both datasets explain the validation cases
quite well, particularly the RobotAssist dataset. This is most
likely due to the fact that its narrow walkways confined the
range of motion hence reducing outliers. It was found that
the majority of outliers in the Edinburgh dataset leading to
the slightly lower than expected percentage of traces falling
within the 2σ limit was as a result of pedestrians who tended
to wander aimlessly around the open area before choosing a
destination.

V. CONCLUSIONS

In this paper we have introduced a powerful tool for
incorporating the motion patterns of people into the tra-
jectories of robots. We have demonstrated its ability to
address several important challenges currently facing robotic

navigation such as perceiving obstacles that are traditionally
difficult to observe and motion planning in a manner that
conforms to social assumptions. The proposed approach
is illustrated and tested on a variety of datasets which
demonstrate the algorithm’s capacity to encapsulate social
context in navigation.

Handling this problem within the framework of the Gaus-
sian process avoids the necessity to discretise the world or
the resulting trajectories. Crucially, an associated predictive
variance exists along each trajectory which can be used to
dictate the the level of confidence the robot have in the
model for each region of the map. An additional benefit
of adopting a Bayesian approach is the ability to learn
the sensor noise levels and characteristics of the underlying
function in tandem through the optimisation of the marginal
likelihood function without the requirement of hand-tuning
the model’s parameters.

We believe that this work is an initial step towards inte-
grating conventional decision making algorithms and path
planning with the complex decision making processes in
humans and their social behaviours.
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