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Abstract
1.	 Bushfire fuel hazard is determined by the type, amount, density and three-

dimensional distribution of plant biomass and litter. The fuel hazard represents a 
biological control on fire danger and may change in the future with plant growth 
patterns. Rising atmospheric CO2 concentration (Ca) stimulates plant productivity 
(‘fertilisation effect’) but also alters climate, leading to a ‘climatic effect’. Both ef-
fects have impacts on future vegetation and thus fuel hazard. Quantifying these 
effects is an important component of predicting future fire regimes and evaluat-
ing fire management options.

2.	 Here, we combined a machine learning algorithm that incorporates the power 
of large fine spatial resolution (i.e. 90 m) datasets with a novel optimality model 
that accounts for the climatic and fertilisation effects on vegetation cover. We 
demonstrated the usefulness and practicality of this framework by predicting fuel 
hazard across the state of Victoria in Australia. We fitted and evaluated the mod-
els with long-term (i.e. 20 years), ground-based fuel observations.

3.	 The models achieved strong agreement with observations across the fuel haz-
ard range (accuracy >65%). We found fuel hazard increased more in dry environ-
ments due to future climate and Ca. The contribution of the ‘fertilisation effect’ 
to future fuel hazard varied spatially by up to 12%.

4.	 The predictions of future fuel hazard are directly useful to inform fire mitigation poli-
cies and as a reference for climate model projections to account for fire impacts.

5.	 Synthesis and applications: Climate change and rising Ca have profound impacts 
on vegetation and thus fuel load. Operational fire management and future fire 
risk forecasts will benefit from our realistic fuel load prediction framework that 
incorporates plant responses and fine soil and terrain attributes.
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1  |  INTRODUC TION

Recent catastrophic fires around the world have drawn attention to 
the need for improved fire risk assessments (Bowman et al., 2020; 
Duane et al., 2021). The likelihood of fire in terrestrial ecosystems is 
a function of: (i) the fuel hazard (i.e. the amount, density and three-
dimensional distribution of plant biomass, both dead and alive), (ii) 
fuel dryness, (iii) the weather conditions and (iv) the availability of 
ignition sources (Boer et al., 2017; Bradstock, 2010). Existing fire be-
haviour models can capture the impacts of weather on fire spread 
rate and intensity but require spatially explicit information about 
a range of fuel attributes as input (Tolhurst et al., 2008). Although 
current fuel hazard can be mapped using a combination of ground-
based and remotely sensed observations (Pierce et al., 2012), quan-
tification of future changes in these patterns in response to climate 
change requires predictive models.

Fuel hazard is closely related to variation in the composition and 
structure of the vegetation, which in turn are shaped by plant re-
sponses to long-term environmental conditions and disturbance re-
gimes (Kelley et al.,  2019). Consequently, predictions of future fuel 
hazard need to incorporate the potential impacts of climate change. 
There are two major ways that climate change affects fuel hazard. 
First, the rising atmospheric CO2 concentration (Ca) fertilises plants via 
an enhancement of photosynthesis (Ainsworth & Rogers, 2007), po-
tentially resulting in an increase in plant biomass (Ainsworth & Rogers, 
2007; Norby et al., 2005; Walker et al., 2019; Zhu et al., 2016). Any 
increase in plant biomass is likely to result in higher fuel loads, but the 
magnitude of change and how it will interact with other environmental 
factors remains uncertain (Bradstock,  2010). Second, rising air tem-
peratures and altered rainfall patterns have distinct effects on plant 
productivity and species composition, both of which could lead to al-
tered fuel hazard (Archibald et al., 2013). It is thus critical to account for 
plant responses to climate change when projecting future fuel hazard.

Changes in plant biomass under future climate can be predicted 
with a range of modelling approaches, which have been used to es-
timate fuel loads. For example, Clarke et al.  (2016) projected future 
fuel loads using the net primary productivity (NPP) predictions from a 
land surface model, assuming a linear relationship between NPP and 
fuel load. However, existing evidence suggests that fire regimes (i.e. 
fire frequency, intensity, season, type and extent) could vary within 
a biome with similar NPP—a single biome could have more than one 
fire regime while the same fire regime can be observed in different 
biomes (Archibald et al., 2013). Consequently, predictions of the spatial 
variation of fuel hazard under climate change need to be constrained 
by and evaluated against the fuel hazard observations under different 
environmental controls (i.e. climate, soil and topography).

Ground-based fuel observations have been routinely collected 
by fire management agencies in Victoria, Australia since 1995 (e.g. 
Hines et al., 2010) and have provided valuable insight on the spatial 
variation of fuel hazard at landscape to regional scales (e.g. Jenkins 
et al., 2020; McColl-Gausden et al., 2020). At each survey site, an 
ordinal score from low to extreme is assigned to four fuel strata 
including ‘Elevated’, ‘Near-surface’, ‘Surface’ and ‘Bark’ based on 

visual estimates of fuel hazard. The potential of these fine-spatial-
resolution data to help inform process-based model predictions of 
future fuel hazard remains under-utilised. Assuming the spatial vari-
ation of fuel hazard along climatic gradients is indicative of how fuel 
hazard may change with climate over time (i.e. space-for-time sub-
stitution; Pickett, 1989), these ground-based fuel surveys contain 
possibly the best information about the potential for changes in fuel 
hazard across Victoria in response to projected climate conditions.

Random forest models have been used to synthesise field-based 
fire observations and environmental drivers with demonstrated suc-
cess (Jenkins et al., 2020; McColl-Gausden et al., 2020; Pierce et al., 
2012). However, previous machine learning approaches have gener-
ally ignored plant responses to climate change (e.g. McColl-Gausden 
et al., 2020), due to the ‘space-for-time’ approach needing additional 
process-based information on vegetation responses to novel climate.

The past developments of empirical approaches thus exposed 
the limitation of pure statistical analysis and advocate novel ways to 
combine strengths of process-based plant biomass predictions with 
data-driven approaches (e.g. Jenkins et al., 2020). Yang et al. (2018) 
modelled the change of leaf area index (LAI; an indicator of plant 
foliage biomass) under changing climate and rising Ca. Incorporating 
this LAI model and random forest models could help address the 
lack of plant responses to future climate in current machine learning 
frameworks. This combined framework could unite the strength of 
fine-resolution empirical observations and the process-based plant 
responses to climate change, addressing the weakness of previous 
regression and process-based models.

Here, we used random forest models to predict spatial variation 
in fuel hazard at fine spatial resolution across the state of Victoria 
as a function of climate, soil and topographic attributes as well as 
modelled plant responses to climate change. The goal was to assess 
the potential of change in fuel hazard in response to projected future 
climate conditions and Ca. Although the training and evaluation of 
the models focused on a specific region, the methods and conclu-
sions built a quantitative understanding of anthropogenic impacts 
on future fuel hazard, which is applicable to similar regions across 
the world.

2  |  MATERIAL S AND METHODS

We used ground-based fuel hazard score observations and gridded 
information on 15 environmental predictors related to climate (6), to-
pography (5), soil (3) and potential vegetation cover (1). We used the 
ground-based fuel data to train and evaluate random forest models. 
We then made projections of future fuel hazard using climate model 
projections. The details of the data and models are outlined below.

2.1  |  Fuel hazard observations

The study area was the state of Victoria in Southeast Australia, 
where extensive fine-spatial-resolution data were available to test 

 13652664, 2025, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14486 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [21/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1311Journal of Applied EcologyYANG et al.

our novel machine-learning approach (Figure 1). The Victorian De-
partment of Environment, Land, Water and Planning provided field 
observations of fuel hazard ratings over the period 1995–2017 with 
a total of 47,245 individual records. The data contain categorical 
fuel hazard scores for surface, near-surface, elevated and bark fuel 
strata, with five levels: low (1), moderate (2), high (3), very high (4) 
and extreme (5) (Hines et al., 2010). The records were mostly single 
assessments for georeferenced plots of ca. 20 × 20 m.

We focused the analysis on the elevated stratum because of 
its high consistency among different surveys (Watson et al., 2012) 
and high impact on fire regimes (Hines et al., 2010). The elevated 
fuel hazard score is based on the cover and horizontal connectiv-
ity of dead and live plants that may not be consumed by a flame 
height of 0.5 m. The near-surface fuel hazard score is based on 
cover and horizontal connectivity of dead and live plants that is 
close (<0.5 m) but not lying on the ground. The surface fuel hazard 
score is based on litter depth, cover and horizontal connectivity 
lying on the ground. Bark fuel hazard is specific to certain tree spe-
cies and alone does not contribute to the fire regime at landscape 
scale. Therefore, we do not specifically model bark fuel stratum in 
this study.

Since we are interested in predicting potential fuel hazard 
score, we used the observations made at least 10 years after the 
last fire; this length of time allows the fuel to accumulate beyond 
95% of capacity (Burrows, 1994; Fox et al., 1979; Peet, 1971; Zazali 
et al., 2021). This filtering resulted in a total of 27,799 observations 

covering Victoria. Figure 1 shows the spatial distribution of the field 
observations, with the temporal distribution shown in Figure S1.

2.2  |  Climate predictors

We chose a set of climate, soil and topographic predictors that 
have been shown to drive fuel hazard in previous studies (e.g. Jen-
kins et al., 2020; McColl-Gausden et al., 2020). We used gridded 
daily climate data at 0.05 × 0.05° resolution from 1994 to 2018 
obtained from the SILO project (Jeffrey et al., 2001; accessed at 
http://www.longp​addock.qld.gov.au/silo/). We extracted daily 
precipitation (PPT), maximum air temperature (Tmax) and minimum 
relative humidity (RHmin) for the grid cells corresponding to the 
locations of the field observations. We aggregated the climate 
data to monthly time steps by taking the sum of precipitation and 
means for other variables. The PPT, Tmax and RHmin of the month 
before the fuel hazard observations were used as predictors to 
represent the impacts of short-term climate conditions. We cal-
culated the mean annual precipitation (MAP) and Tmax for 1994–
2018 to represent long-term climate conditions. Finally, a rainfall 
seasonality index presented by Feng et al. (2013) was used to cap-
ture long-term variation in the temporal distribution of precipita-
tion over the 12 months of the year; the index varies from 0 (even 
distribution over all months) to 2.48 (all rainfall concentrated in a 
single month). The details of meteorological data are in Table S1. In 

F I G U R E  1  Locations of the field fuel observations in southeast Australia. Inset showing the sampling region relative to Australia. n is the 
number of observations in a 0.1° pixel.
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addition to the climatic predictors used in the model, we obtained 
potential evapotranspiration (PET) from SILO and averaged over 
1994–2018. We then calculated an aridity index (AI) as PET/MAP. 
AI is not used as a predictor in the models but rather as an indica-
tor of long-term water balance among the pixels in the following 
analysis.

2.3  |  Soil and terrain attributes

Soil attributes, in particular proxies for water holding capacity and 
soil fertility, are expected to constrain spatial variation of fuel loads 
and fuel properties via their effect on vegetation composition, 
density and structure (McColl-Gausden et al., 2020). We obtained 
gridded bulk density, clay content for topsoil (0–5 cm) and available 
volumetric water capacity (0–200 cm) at 90 m resolution from the 
Whole Earth product of the Soil and Landscape Grid of Australia 
(Malone, 2022).

We used fine scale topographic products containing wetness 
index (Gallant & Austin, 2012a), adjusted monthly solar radiation 
in January and July (Gallant et al., 2014) and plan/profile curvature 
(Gallant & Austin, 2012b, 2012c) at 3 arcsecond resolution (~90 m). 
The topographic wetness index, calculated as specific catchment 
area divided by slope, is commonly used as an indicator of soil water 
availability (Gallant & Austin, 2012a). Mean monthly shortwave ra-
diation is the mean shortwave radiation (MJ m−2 day−1) received by 
a surface accounting for latitude, day of year, average atmospheric 
conditions and terrain effects (i.e. slope, aspect and topographic 
shading). We chose the shortwave radiation in January and July to 
account for different energy inputs for summer and winter. Plan 
and profile curvature, derived from the Smoothed Digital Elevation 
Model (Geoscience Australia,  2015), added further constraints on 
soil moisture availability and other variation in other soil attributes 
(e.g. soil depth). The soil and topographic data used are summarised 
in Table S1.

2.4  |  Future climate change projections

The climate change projections are based on the downscaled 
output of nine general circulation models (Clark et al.,  2021a, 
2021b): ACCESS1-0, BNU-ESM, CSIRO-Mk3-6-0, GFDL-CM3, 
GFDL-ESM2G, GFDL-ESM2M, INM-CM4, IPSL-CM5A-LR and 
MRI-CGCM3. The chosen projections were from a full list of 12 
models in Clark et al. (2021a, 2021b) but we excluded three mod-
els because they do not cover both representative concentration 
pathways (RCP) 4.5 and 8.5. We used projections of PPT, Tmax and 
RHmin for the intermediate RCP 4.5 and high emission RCP 8.5 for 
the period 2000–2100. We obtained projected climate data for 
time periods of 16 years at the beginning (2000–2015), middle 
(2045–2060) and end (2085–2100) of the 21st century. We cal-
culated the mean monthly climate for those three time periods for 
each of the nine climate models. The data were then aggregated in 

the same way as the historical climate data while the spatial reso-
lution was kept at 0.036° (~3.6 km). The MAP and mean Tmax were 
the mean of each 16-year period. The mean of current and future 
climate among the projections are shown in Figure S2. The future 
Ca used in the study is shown in Table S2.

2.5  |  Optimal leaf area index

Vegetation structural response to climate change was based on grid-
ded LAI layers simulated by an optimisation model (Yang et al., 2018). 
Briefly, the model uses long-term mean PPT, Tmax, vapour pressure 
deficit (calculated based on Tmax and RHmin) and photosyntheti-
cally active radiation (converted from monthly solar radiation) to 
predict LAI based on the concept of ecohydrological equilibrium 
(Woodward, 1987). The long-term mean PPT is used to estimate the 
amount of water available to support evapotranspiration. The opti-
mal LAI is then calculated as the LAI that maximises canopy carbon 
export (gross photosynthesis less leaf construction and respiration 
costs) subject to this constraint on evapotranspiration.

There are four advantages of the optimal LAI model (Yang 
et al., 2018) which makes it suitable to be incorporated into machine 
learning: (i) it has detailed photosynthetic and stomatal processes 
with plant responses to climate change and rising Ca; (ii) the opti-
misation process accounts for potential changes in plant strategies 
under future conditions; (iii) it showed a good agreement to satellite-
derived and ground-based observations over Australia during 
2000–2011; (iv) it is parsimonious with minimum computational re-
quirements and high interpretability. The optimal LAI model there-
fore allows us to capture essential aspects of the ‘fertilisation effect’ 
on future fuel hazard. Current and future LAI are shown in Figure S2.

2.6  |  Random forest models

We constructed three random forest models: one for each fuel stra-
tum (elevated, near-surface and surface). Each model predicted a 
fuel hazard score of a stratum using 15 predictors including climate, 
soil, topography and LAI as shown in Table S1. The field-based fuel 
hazard score data set was split into a training subset (random sample 
of 70% of observations) and an evaluation data subset (remaining 
30% of observations). Due to the importance of elevated fuels for 
variation in fire intensity and rate of spread, we focused our eval-
uation and prediction on this stratum (Cheney et al., 2012). All of 
the data processing and analyses were conducted in R (4.2, R Core 
Team, 2022), with the ‘randomforest’ function from the ‘randomfor-
est’ package (Liaw & Wiener, 2002) used for model fitting.

2.7  |  Model performance and importance of inputs

We used observed accuracy and Fleiss's Kappa coefficient 
(Fleiss,  1971) to assess model performance. Briefly, observed 
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accuracy captures the agreement between model predictions and 
observations. However, due to the imbalance in each score, accu-
racy could be driven by a single score that has high frequency in the 
data. The Kappa coefficient addresses this issue by balancing the 
frequency of scores in the data (expected accuracy) with the ob-
served accuracy. A Kappa coefficient over 0.4 is generally consid-
ered as good (McHugh,  2012). We also used ‘no-information rate’ 
(i.e. accuracy achievable by random sampling) as a baseline of model 
performance. The more model accuracy exceeds the ‘no information 
accuracy rate’ the better the model performance.

We conducted additional spatial cross-validation to quan-
tify the impact of spatial autocorrelation (Ploton et al., 2020). We 
used the ‘spatialblock’ function from the ‘blockCV’ package (Valavi 
et al., 2019) to create ten-fold spatial blocks with a range of 50 km. 
The outcome was 10 spatially independent training and testing data-
sets for each fuel stratum. We fitted a model to each of the training 
dataset and evaluated the model with the testing dataset. Since the 
hazard score of each stratum was clustered spatially, it is not possi-
ble to balance the number of observations in each score.

To assess the importance of each predictor, we used the Gini 
index (also known as ‘Gini importance’ or ‘mean decrease impurity’) 
defined as the total decrease in node impurity (the proportion of a 
sample in each node) averaged over all trees of the ensemble (Brei-
man, 2001). Since the Gini index is in favour of variables with high 
categorical frequency, we also reported the percent change of mean 
square error of each variable.

Given the field observations of fuel hazard scores covered a 
limited area of Victoria, we assessed the area of applicability of 
the training data set of the random forest models using the ‘aoa’ 
function from the R package ‘CAST’ (Meyer & Pebesma,  2021). 
This function calculates and compares the dissimilarity index for 
all predictors in the training sample locations with the predictors 
for the whole studying area. The outlier removed maximum dis-
similarity index of the training data is used as a threshold beyond 
which the model should not be applied to. This approach iden-
tified areas that are not represented by our field observations. 
Note that we did not include the monthly climate in the evaluation 
and only conducted the analysis once with historical climate (SILO 
data), soil, topography and LAI data. The relative importance of 
the predictors is also ignored. A map of the area of applicability 
is in Figure S3.

2.8  |  Future projections

We explored the applicability of the field data to the whole re-
gion and found that the sample sites covered most environmental 
variation of the region (Figure S3). We thus predicted future fuel 
hazard scores for each of the nine models and two RCPs, a total of 
18 climate projections. The soil and topography layers were resa-
mpled to the resolution of the climate model outputs (3.6 km) to 
make the projection at state scale. A LAI layer was predicted for 
each climate projection and period. Note that we also predicted 

fuel hazard scores for 2000–2015 with climate projections to 
avoid potential discrepancies between SILO and climate models. 
The projected fuel hazard scores varied by month because of 
monthly climate predictors. Since past intense fires in this region 
occurred mostly around January, we only report the fuel hazard 
score for January. The future fuel projections targeted potential 
fuel with the assumption of the land covered by natural vegeta-
tion. The projections contained the probability of each fuel hazard 
score on an ordinal categorical scale from 1 (low) to 5 (high). We 
predicted the probability of a hazard score of 4 or 5 (P4_5) for the 
elevated fuel stratum rather than the change in categories, since 
high scores in this stratum have shown to strongly affect fire be-
haviour (Hines et al., 2010).

2.9  |  Predictor impact assessment

Although the importance of each predictor was reported by the Gini 
index and increase of error, these metrics do not directly translate 
into the magnitude of change in the probability of a particular fu-
ture fuel hazard score. We therefore explored the impacts of two 
individual predictors by making projections with the target predictor 
from 2000 and 2015 instead of the projected predictor while hold-
ing all other predictors as projected (‘manipulated run’). For clarity, 
the projections with the full setup are referred to as ‘projections’. 
Comparing the ‘projections’ with the ‘manipulated run’ allowed us to 
separate the contributions of each predictor.

The two individual predictors that were assessed were the 
rainfall seasonality and the optimal LAI. We assessed rainfall 
seasonality because it showed high variability in the future and 
ranked high in the importance list. The difference between ‘pro-
jection’ and ‘manipulated run’ is referred to as the ‘rainfall season-
ality effect’.

The optimal LAI was investigated because it represents the ‘fer-
tilisation effect’ of rising Ca, a key innovation of this study. The dif-
ference between ‘projections’ and the ‘manipulated run’ is referred 
to as the ‘fertilisation effect’, hereafter. The fractional contribution 
of the ‘fertilisation effect’ was calculated as the ‘fertilisation effect’ 
divided by the ‘projection’.

2.10  |  High resolution projections

To explore model performance at fine spatial resolution, we 
focused on a topographically heterogeneous region of about 
20 km2 near Dargo, Victoria (−37.33588, −37.38554, 147.27566, 
147.32566). This mountainous region features strong heterogene-
ity in environmental conditions as indicated by the fine-scale pat-
terns of the selected terrain attributes (Figure S5). Models relying 
on climate only would predict no variation in fuel hazard scores 
due to the resolution of climate data (3.6–5.0 km). Here, we used 
topographic and soil data at 90 m resolution to demonstrate the 
capability of the model to predict fuel hazard scores at this fine 
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resolution. We used climate data from the ACCESS 1-0 climate 
projection only, which was deemed sufficient for this analysis. Be-
cause the goal is to highlight the capability of the model rather 
than predicting future change.

3  |  RESULTS

We first compared the predictions of the three random forest mod-
els, one for each fuel stratum, against the evaluation dataset. The 
models agreed well with the field-based observations in the evalu-
ation data sets in terms of accuracy, no information rate and Kappa 
coefficient (Table S3). For all three fuel strata, the models achieved 
an accuracy over 0.65, which is much higher than the ‘no informa-
tion rate’ (0.3–0.4). The models also had Kappa coefficients over 
0.5, indicating good model fits for all five score values despite the 
imbalanced sample size. Overall, the evaluation suggested good and 
consistent model performance for all three fuel strata and all five 
fuel hazard scores. The field observations also covered most of the 
environmental variability of the Victoria (Figure S3), demonstrating 
the applicability of the models.

The model performance is modestly affected by the spatial bias 
of ground-based observations. The ten-fold spatial cross-validation 
showed that the models consistently achieved a mean accuracy of 
0.33 (0.23–0.42) for elevated stratum, 0.27 (0.20–0.35) for near-
surface stratum, and 0.41 (0.25–0.61) against spatially independent 
test set. Notably, the Kappa coefficients of the cross-validation were 
consistently below 0.2 suggesting the models had unbalanced per-
formance in each hazard score because of uneven number of ob-
servations in each score in the training datasets. Instead of using 
a spatially even training dataset, we thus decided to use a training 
dataset that is balanced in score classes.

The random forest models also helped identify the key predic-
tors of fuel hazard score among the 15 layers of gridded input. The 
importance of each predictor, which is measured in terms of the 
contribution to the overall model accuracy, is shown in Figure 2. 
Climate predictors in general ranked higher than other predictors 
in all models. However, solar radiation for January consistently 
ranked high in all strata, suggesting the importance of slope gra-
dient and aspect for long-term climate controls on vegetation pro-
ductivity and fuel hazard. Rainfall seasonality is among the most 
important predictors for the hazard score of the elevated fuel 
stratum, indicating the temporal distribution of rainfall may be 
more important than the absolute total. RHmin is a climate factor 
that is important for all three models, but its importance is much 
smaller for predicting the hazard score of the elevated fuel stra-
tum than for the other two fuel hazard scores. The importance of 
optimal LAI was intermediate. Plan and profile curvature as well as 

clay fraction in the topsoil and available volumetric water capacity 
are consistently ranked low in importance for predicting hazards 
cores of all strata. For hazard scores of surface and near surface 
fuel strata, Tmax and PPT also ranked high in importance, indicating 
importance of short-term topoclimatic drivers in these two strata. 
It is notable that the importance based on prediction accuracy and 
Gini Index are different for all strata. For example, for the hazard 
score of the elevated fuel stratum, MAP is ranked high in impor-
tance according to the Gini Index but not when importance is mea-
sured by model accuracy.

After model evaluation, we used the fitted models to predict 
changes in fuel hazard scores for each fuel stratum under projected 
climate change and increasing Ca. The mean predicted change in 
the P4_5, averaged across the nine climate models, showed a dis-
tinct spatial distribution (Figure 3). For mid-21st century (2045–
2060), the model predicted an increased P4_5 in the north and 
southeast of Victoria under both the RCP4.5 scenario (Figure 3a) 
and the RCP8.5 scenario (Figure  3c,d) with more severe climate 
change resulting in larger changes. This pattern remained consis-
tent later in the 21st century (Figure 3b). The baseline P4_5 during 
2000–2015 of each stratum was shown in Figure  S4. The same 
projection for hazard scores of surface and near-surface strata are 
shown in Figures S6 and S7. The changes in the P4_5 (−0.2, 0.2) in 
surface and near-surface strata were much smaller than that of 
elevated stratum.

We explored the model projection of P4_5 of elevated fuel stra-
tum along a climate aridity gradient (Figure  4). For current condi-
tions, the results show a clear decrease in the median probability of 
high fuel hazard score in elevated fuel stratum as aridity increases, 
reflecting the pattern seen in the input data (Figure 4a) during 2000–
2015. For future conditions, the model predicts an increased P4_5 
of elevated stratum in dry region (AI >3.5) but not in more mesic 
regions under RCP8.5 by 2085–2100 (Figure 4b).

The strong spatial pattern in predicted change of the probabil-
ity of high hazard scores for the elevated fuel stratum encouraged 
a further investigation of the predictor of that spatial variation. We 
first assessed the impact of changes in rainfall seasonality. Com-
paring the ‘manipulated run’ (i.e. projections with rainfall seasonal-
ity from 2000 to 2015) to the ‘projection’ showed that the spatial 
variation in predictions is driven by rainfall seasonality (Figure 5). 
With the manipulated run, the model predicted no change in P4_5 
of the elevated fuel stratum, with predictions forming a narrow 
distribution with a single maximum (blue bars in Figure 5a). With 
the actual projections, the model predicted a bimodal distribution 
with around half of the pixels having little change in probability 
while the other half with a clear increase by up to 0.4 in the P4_5 of 
the elevated fuel stratum (red bars in Figures 3d and 5 compared 
with Figure 3a).

F I G U R E  2  The importance ranking of predictors. The importance of each predictor in each model was evaluated based on the random 
forest model fits to training datasets. (a, b) Importance based on decrease in accuracy and Gini Index for elevated fuel stratum, respectively. 
(c, d) Same but for near-surface fuel stratum, while (e, f) for surface fuel stratum. Colour marks different predictor types: climate—cyan; 
topography—brown; soil—grey; and plant—red.
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We also assessed the impact of changes in CO2, via the change in 
optimal LAI. The ‘fertilisation effect’, varied from −9% to 12% in the 
region under RCP8.5 by 2085–2100 (Figure 5b). Notably, the ‘fertil-
isation effect’ is larger in regions with current low LAI (Figure S2g).

We chose a mountainous region with complex topography (Dargo, 
Australia) to explore the potential of the model to describe fine scale 
(90 m) variation in fuel hazard (Figure 6). Dargo has large small-scale 
variations in topography (Figure S5). A model driven solely by coarse 
resolution predictors, such as gridded climate, would predict no vari-
ation in fuel hazard score within this region of ca. 4 × 5 km. The ran-
dom forest model with key terrain attributes as predictors, however, 
predicted strong variations in the probability of high hazard scores in 
the elevated fuel stratum. The P4_5 of the elevated fuel stratum in the 
valleys was relatively low compared to ridges (Figure 6a,b). Notably, 
the predicted response of P4_5 of the elevated fuel stratum to climate 
change is not uniform throughout the landscape (Figure 6c). Wet val-
leys (dark green in Figure 6c) saw higher increases in probability of high 
fuel hazard scores in elevated fuel stratum during 2085–2100 under 
RCP8.5 (Figure 6c) compared to the rest of the landscape.

4  |  DISCUSSION

With catastrophic fire events gaining global concern, realistic fire 
danger assessment tools are needed more than ever. Here, we pre-
sent a framework to predict fuel hazard at a fine spatial resolution 
that is directly useful for operational fire management. It is based on 
mechanism-informed random forest models that make use of field-
based observations of fuel hazard, gridded soil and topographic 
attributes, long-term climate trends, as well as plant responses to 
changing environment. Our modelling approach provides an impor-
tant step toward a mechanism-informed fire risk assessment system. 
The predictions could also be used in fire behaviour models as well 
as to evaluate other vegetation model projections.

4.1  |  Fire management decision support

The modelling framework presented here has several features that 
are useful at regional scale for fire managers. It can incorporate 

F I G U R E  3  The projected change in probability of a hazard score of 4 or 5 for the elevated fuel stratum (P4_5) of elevated fuel stratum in 
the future in January, with consistent spatiotemporal patterns. (a) Change by 2045–2060 compared to 2000–2015 under RCP4.5. (b) Change 
by 2085–2100 compared to 2000–2015 under RCP 4.5. (c, d) Same as (a, b) but under RCP 8.5. Note that the projections ignored land use 
type.

(a)

(b) (d)

(c)
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long-term field-based fuel hazard surveys. It can use a comprehen-
sive selection of predictors including climate, terrain, soil and veg-
etation. It can produce output that is interpretable and useful to fire 
managers and at a resolution that is relevant for operational man-
agement (Penman et al., 2022). Despite the high resolution, it has 
relatively low computational demand for regional projections (i.e. 
does not require high-performance computing). The comprehen-
siveness separated this approach from previous empirical models 
that only consider a subset of predictors (e.g. Jenkins et al., 2017; 
McColl-Gausden et al., 2020; Pierce et al., 2012) while the high reso-
lution (90 m) is what current process-based modelling cannot pro-
vide (Rabin et al., 2017).

The random forest model predicted increased P4_5 in the fu-
ture for areas currently under semiarid climates (Figure  4). This 
prediction is consistent with a previous analysis on historical burnt 
area and aridity (Kelley et al., 2019). Combining the finding with 
current knowledge on key limiting factors in different regions 
(Archibald et al., 2013; Boer et al., 2016; Bradstock et al., 2014), 
our predictions indicate changes in future fire regime as current 

semiarid regions showing increasing fuel load in elevated stratum. 
Specific fire management measures should be thus based on the 
actual fuel hazard and its change in all fuel strata (Figure 3; Fig-
ures S6 and S7).

4.2  |  Predictors of fuel hazard

Based on our analysis we recommend using a combination of cli-
mate, fine scale topographic attributes and plant response to cli-
mate change for fuel projections. We found CO2 fertilisation to 
contribute up to 12% of P4_5 in Victoria (Figure 4). Empirical models 
that do not include rainfall seasonality are unlikely to capture the 
actual change of fuel hazard score under future climate in Victo-
ria. Although this finding does not directly apply to other regions, 

F I G U R E  4  Predicted change in probability of a hazard score of 
4 or 5 for the elevated fuel stratum (P4_5) for the elevated fuel 
stratum during 2000–2015 (a) and under the high emission scenario 
RCP8.5 by 2085–2100 (b), with regions that are currently dry (AI 
>3.5) showing large increase in P4_5. X axis is the Aridity Index (AI) 
calculated as PET/MAP with long-term average SILO climate data. 
The changes are binned by 0.1 AI. The boxes are the predicted 
range of changes in probability considering both climate and leaf 
area index (LAI). The horizontal bars from top to bottom of each 
box show the maximum, 75% quantile, median, 25% quantile and 
minimum, respectively. The black dots are outliers.
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F I G U R E  5  The impacts of rainfall seasonality and CO2 
fertilisation on probability of a hazard score of 4 or 5 for the 
elevated fuel stratum (P4_5) of elevated stratum with clear 
spatial heterogeneity. (a) The change in the P45 of the elevated 
stratum using either constant or predicted rainfall seasonality 
under RCP8.5 by 2085–2100. The constant rainfall seasonality 
is the mean of all nine climate models during 2000–2015. The 
predicted rainfall seasonality is the mean of all nine climate models 
during 2085–2100 (Figure S1). The change of P45 is calculated 
as the difference of the probabilities between 2085–2100 and 
2000–2015 with positive values mean increase in probability. (b) 
Fractional contribution of ‘fertilisation effect’ to the predicted P45 
of the elevated fuel stratum under RCP8.5 by 2085–2100. Negative 
values mean the ‘fertilisation effect’ is in opposite direction and of 
smaller magnitude than the ‘climatic effect’.
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the approach is generalisable and could help extract knowledge 
from field-based observations across the world. In contrast, land 
surface models running on coarse resolution (>5 km) generally 
cannot resolve terrain-driven variation in plant growth (e.g. Clarke 
et al., 2016; Wu et al., 2022; but see Fiddes et al., 2022) and are 
unable to capture fine-scale variations in fuel hazard scores (Fig-
ure 6). Although spatial resolution might not be critical in captur-
ing global trends in fire risk, fine scale predictions are crucial for 
operational fire management on regional scales (Bale et al., 1998; 
Inbar et al., 2018; Nyman et al., 2015).

4.3  |  Providing a benchmark for 
process-based models

Although many process-based models have a fire component, the 
evaluation of those models focused on the carbon and water com-
ponents (Hantson et al.,  2020; Luo et al.,  2012). Existing evalua-
tions of the fire modules relied on satellite derived burned area (e.g. 
Arora & Boer, 2005; Hantson et al., 2020). Our predicted fuel haz-
ard represented the potential to use machine learning approaches 
to upscale field-based observations to the resolution of land surface 

F I G U R E  6  The projected change of probability of summer (January) high score of elevated fuel stratum in the future in Dargo region 
Victoria, Australia, highlighting the model's capacity of fine-spatial-resolution predictions. (a) Probability of a high score of elevated fuel 
stratum during 2000–2015. (b) Probability during 2085–2100 under RCP 8.5. (c) Difference between (a, b), with light blue marking pixels 
with declined probability. (d) Wetness index for the state of Victoria with red rectangle showing Dargo region. Note that the region shown in 
panels (a–c) (0.05 × 0.05°) is smaller than the rectangle in (d).
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models and thus could be used as an alternative to satellite-derive 
burned area products for benchmarking process-based models.

Current process-based models run on coarse horizontal grids 
(Eyring et al., 2016; Friedlingstein et al., 2022), which cannot capture 
the fine scale variation of fuel shown in field observations. Although 
fine spatial resolution simulations accounting for fuel variation are 
possible at regional scales (Fiddes et al., 2022), the computational 
demand prevents such implementation at the regional and global 
scales. Our machine learning approach could be used in a hybrid 
modelling framework to improve the model behaviour at fine spatial 
resolution (Reichstein et al., 2019).

4.4  |  Limitations and outlook

Despite the good overall predictive performance, this machine learn-
ing approach has four major limitations: (1) It cannot provide informa-
tion about the transient response of vegetation structural change due 
to gradual climate change. (2) It does not mechanistically model the 
impacts of plant composition and range shifts on fuel structure. (3) 
The ML models do not explicitly consider climate driven changes in fire 
regimes and the associated feedbacks with vegetation, which poten-
tially affects vegetation distribution and fuel accumulation (e.g. Mur-
phy & Bowman, 2012). (4) Human activities (e.g. land use change and 
fire hazard reduction efforts) are not included in the models but could 
result in substantial changes in future fire characteristics (e.g. Wu 
et al., 2022). Our approach aimed to quantify the potential for changes 
in fuel hazard as set by environmental and biological constraints. The 
shortcomings of this study could be addressed by process-based mod-
els which require significant developments in the computational ca-
pacity and the understanding of climate-vegetation-fire interactions.

The model is currently trained and evaluated with fuel hazard data 
from Victoria Australia due to the lack of long-term ground-based 
fuel observations globally. However, our study presented a gener-
alisable method to unify the strength of fuel hazard observations 
and mechanistic models. As new dataset based on advanced remote 
sensing techniques emerge (e.g. Leite et al., 2022), our framework 
could be applied to other regions/ecosystems and help accounting 
for the long-term impacts of climate change and rising Ca, which was 
potentially underestimated (McColl-Gausden et al., 2022). The fire 
hazard score we predicted here are inputs of existing fire behaviour 
models (e.g. Tolhurst et al., 2008), which combines weather and fuel 
hazard to predict the ignition, spread and intensity of fire. Conse-
quently, future studies could use the updated fuel hazard to improve 
future bushfire risk predictions and help mitigating the social and 
economic consequences of bushfire (Filkov et al., 2020).

5  |  CONCLUSIONS

Our random forest models predicted that the responses of future 
fuel hazard to climate change depend on climate aridity as well as 
local topographic attributes. We reported possible fuel hazard shifts 

because of changing climate and Ca. These findings highlight the fact 
that fuel hazard patterns are the product of the interaction among 
climate, vegetation and topography. Predictions based on a subset 
of these factors are thus unlikely to be reliable. Our framework pro-
vides a useful decision support tool for fire risk management as well 
as a reference for evaluating process-based model predictions.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. The temporal pattern of the field fuel hazard observations 
after filtering. (a) Shows the number of observations by month while 
(b) shows the number of observations in each year.
Figure S2. Current (2000–2015) and future (2085–2100) predicted 
climate and optimal leaf area index (LAI) under the RCP8.5 scenario. 
The left panels show the mean climate among nine climate model 
projections and the corresponding optimal LAI during 2000–2015. 
The mean values are averaged from nine climate projections and 
the corresponding nine LAI projections. The right panels show the 
mean absolute change (i.e., values in 2085–2100 minus values in 
2000–2015) under the RCP8.5 scenario. Values are averaged among 
changes in each projection.
Figure S3. Area of applicability of the models. Green colour indicates 
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regions the environmental conditions of which have been covered 
by current surveys.
Figure S4. The mean probability of high score in each stratum based 
on nine climate model projections during 2000–2015. These maps 
were used as baseline to evaluate the change in fuel hazard in the 
future.
Figure S5. Topography of Dargo region. (a) Wetness index. (b, c) 
Shortwave radiation in January and July respectively. (d, f) Profile 
and plant curvature.
Figure S6. Change of probability of high near-surface fuel score in 
the future in January. (a) Change of 2045–2060 compared to 2000–
2015 under RCP4.5. (b) Change by 2085–2100 under RCP 4.5. (c, d) 
Same as (a, b) but under RCP 8.5.
Figure S7. Change of probability of high surface fuel score (4 and 
5) in the future in January. (a) Change of 2045–2060 compared to 
2000–2015 under RCP4.5. (b) Change by 2100 under RCP 4.5. (c, d) 
Same as (a, b) but under RCP 8.5.
Table S1. Environmental predictors used in the machine learning 

models. Sources of the data can be found in the data availability 
section.
Table S2. Future atmospheric CO2 concentration (μmol mol−1) used 
in this study.
Table S3. Statistics of model evaluation. Note that the evaluation 
used the 30% of the observations that are independent from the 
training dataset.
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