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Abstract Land use and land cover changes have altered terrestrial ecosystem carbon storage, but their
impacts on ecosystem sensitivity to drought and temperature fluctuations have not been evaluated spatially over
the globe. We estimate drought and temperature sensitivities of ecosystems using vegetation greenness from
satellite observations and vegetation biomass from dynamic global vegetation model (DGVM) simulations.
Using a space-for-time substitution with satellite data, we first illustrate the effects of vegetation cover changes
on drought and temperature sensitivity and compare them with the effects estimated from DGVMs. We also
compare simulations forced by scenarios with and without land cover changes to estimate the historical land
cover change effects. Satellite data and vegetation models both show that converting forests to grasslands results
in a more negative or decreased positive sensitivity of vegetation greenness or biomass to drought. Significant
variability exists among models for other types of land cover transitions. We identify substantial effects of
historical land cover changes on drought sensitivity from model simulations with a generally positive direction
globally. Deforestation can lead to either an increased negative sensitivity, as drought-tolerant forests are
replaced by grasslands based on model ensemble mean, or a decreased negative sensitivity, since forests under
current land cover are predicted to exhibit greater drought resistance compared to those under pre-industrial land
cover. Overall, our findings emphasize the critical role of forests in maintaining ecosystem stability and
resistance to drought and temperature fluctuations, thereby implying their importance in stabilizing the carbon
stock under increasingly extreme climate conditions.

Plain Language Summary Human activities, such as agricultural expansion and deforestation, have
dramatically changed plant species and their distribution, affecting their growth. Given global warming and
more severe and frequent drought events, it is crucial to understand whether land use and land cover changes
make the terrestrial ecosystem more resilient or vulnerable to drought events and higher temperatures. We use
three satellite observations as proxies for vegetation growth states and process-based models designed for
simulating vegetation growth to evaluate whether different vegetation types respond differently to drought
events and temperature fluctuations. We find that forests are more resistant to drought and temperature than
grasslands and croplands as observed through satellites. Models also predict decreased ecosystem sensitivity to
drought when forests become grasslands, but simulate sensitivity differently when vegetation changes to
croplands. Land cover changes since the pre-industrial era have substantially altered ecosystem sensitivity to
drought and temperature. Overall, our findings highlight the vital role of forests in maintaining ecosystem
stability or making the ecosystem benefit from climate. Future land management strategies should consider
these insights. We need to improve model performance in simulating croplands' response to drought and
temperature changes to better guide future land use.

1. Introduction

Terrestrial ecosystems play a key role in the global carbon cycle and have been absorbing around 30% of
anthropogenic carbon dioxide (CO,) emissions (Friedlingstein et al., 2023). Expanding and intensifying land use
and land cover changes (LULCC) have dramatically altered the land surface, directly perturbing terrestrial carbon
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storage and resulting in a small net land carbon sink (Pongratz et al., 2021). LULCC has contributed about 10%—
15% to total anthropogenic CO, emissions (Friedlingstein et al., 2023) and has had substantial regional effects in
recent decades, such as a decline in Eastern Europe's terrestrial carbon sink with a ~52% decrease of net carbon
sink from LULCC and forestry over 2010-2019 (Winkler et al., 2023) and a carbon loss of 1.18 PgC from
deforestation in the Brazilian Amazon over 2010-2019 (Qin et al., 2021). LULCC also indirectly impacts carbon
storage by changing the vegetation response to extreme events, which is here referred to as ecosystem sensitivity,
which has not been quantified. Under climate change with increasing extreme events such as heatwaves and
droughts (IPCC, 2021), it is essential to understand how and to what extent LULCC modulates vegetation carbon
sensitivity and stability to environmental stressors at the global scale.

LULCC affects ecosystem response to climate extremes by modulating ecosystem species compositions and
forest structure. Various studies have proposed that ecosystem responses during drought vary with plant species
(Anderegg et al., 2018; Condit et al., 1995; DeSoto et al., 2020; N. McDowell et al., 2008), biodiversity
(Grossiord et al., 2014; Isbell et al., 2015; D. Liu et al., 2022), and vegetation traits such as tree height (Nepstad
etal., 2007; L. Liu et al., 2021), tree density (Bottero et al., 2017; Zamora-Pereira et al., 2021) and tree age (F. Liu
et al., 2021; N. G. McDowell & Allen, 2015; Phillips et al., 2009). These studies suggest that LULCC, which
directly changes the above ecosystem properties, might strongly affect the ecosystem sensitivity to extreme
events. For example, forest management practices, such as wood harvest, change tree age and height distributions
(Picchio et al., 2020). Forest fragmentation and subsequent edge effects from deforestation increase wildfire
susceptibility (Alencar et al., 2004; Cochrane & Laurance, 2002) and tree mortality (Laurance et al., 2000; Qie
et al., 2017), change plant species composition and diversity (Haddad et al., 2015), and contribute to forest
degradation (Bourgoin et al., 2024).

LULCC effects on ecosystem sensitivity can be partitioned into two classes: (a) direct effects caused by changes
in vegetation composition through LULCC, which in turn directly alters ecosystem sensitivity because different
vegetation types exhibit distinct responses to drought and temperature; and (b) indirect effects arising from
changes in sensitivity of vegetation types between the simulation with and without LULCC. For example, after
deforestation, due to the decreased tree population, the competition among trees for water and nutrients is
relieved, and trees may suffer less from drought stress, which causes an increase in the drought resistance of
forests. Dynamic global vegetation models (DGVMs) can be used to understand these two classes of LULCC
effects. DGVMs have been commonly used to assess the contribution of LULCC to the global carbon budget or
LULCC biophysical effects through multiple factorial simulations with different forcing (Devaraju et al., 2018;
Friedlingstein et al., 2023). These factorial simulations also allow us to extract the effect of LULCC on ecosystem
sensitivity from other confounding environmental factors as they are based on the same varying CO, and climate
conditions but different LULCC conditions in DGVMs.

The availability of new remote sensing data has allowed for a global evaluation of the effect of LULCC on
ecosystem sensitivity. These results can be used to compare with the LULCC effects predicted by DGVMs. For
example, Xiao et al. (2023) quantified ecosystem resistance as the sensitivities of vegetation indices to drought
duration and temperature and found substantial effects of land cover and land management on ecosystem
resistance to droughts and temperature, including deforestation, forest harvest, and irrigation. However, it remains
difficult to disentangle the land cover and land management effects from confounding environmental factors,
such as background climate, which introduce uncertainties in the results. A common approach to isolate the local
effect of land cover changes and minimize the potential effects of confounding environmental factors relies on a
space-for-time substitution over a spatial moving window when comparing different land cover types, which has
been applied to investigate the influence of LULCC on the surface energy budget and redistribution, surface
temperature, and temperature diurnal cycle (Duveiller et al., 2018; Y. Liet al., 2015; Z. Liu et al., 2019), and cloud
cover through land-atmosphere coupling (e.g., Duveiller et al., 2021). Under the assumption of a similar climate
background in each local moving window, the variance of the target variables in the moving window is mostly
explained by different fractions of land cover types. To our knowledge, this kind of approach has not yet been
applied to disentangle the effects of land cover changes on ecosystem sensitivity from other confounding
environmental factors.

In this study, we aim to disentangle the role of LULCC in shaping ecosystem sensitivity to droughts and
maximum temperature anomalies at the global scale. We do so by combining a space-for-time substitution
approach based on remote sensing products and factorial simulations comparison based on DGVMs. Within this
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scope, we compare the spatial pattern of ecosystem sensitivity to droughts and maximum temperature anomalies
derived from satellite observations and DGVMs. We then explore the effects of vegetation changes on ecosystem
sensitivity and compare the results from satellite data and DGVMs. Finally, we estimate the historical LULCC
effects and further attribute the effects to direct and indirect effects.

2. Materials and Methods
2.1. Satellite-Based Vegetation and Land-Cover Data

We used 21 years of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data (MOD13C1
v061) for 2001-2020 at a 0.05° spatial resolution (Didan, 2021). NDVI is an empirical index exploiting the
differences that green and healthy vegetation portrays in terms of reflectances in the red and near infra-red do-
mains. However, this index typically saturates. Our analysis is thus based on KNDVI, a non-linear generalization
of the NDVI that is calculated following the empirical equation proposed by Camps-Valls et al. (2021):

kNDVI = tanh(NDVI?) (1

While kNDVI can be calculated using more sophisticated formulations that better correlate with variables such as
gross primary productivity (Camps-Valls et al., 2021, Q. Wang et al., 2023), the simpler formulation in Equation 1
is here preferred for convenience in terms of deriving it directly from the MODIS NDVI product and still
mitigating the effect of saturation. kND VI is also chosen here because it can be acquired at a relatively high spatial
resolution compared to global products related to aboveground vegetation biomass with a period longer than
10 years, such as vegetation optical depth, which is directly proportional to the vegetation water content of the
aboveground canopy biomass (X. Li et al., 2021). kKNDVI enables us to use smaller local moving window sizes,
which will better satisfy the assumption of a homogeneous climate background for space-for-time substitution.
We calculated the annual mean kNDVI to investigate the inter-annual vegetation dynamics.

We used the MODIS MCD12Q1 v061 land cover data set based on the International Geosphere-Biosphere
Program classification. The data set provides land cover fractions of 17 land-cover classes at 0.05° spatial res-
olution for 2001-2020 (Friedl & Sulla-Menashe, 2022). We then aggregated vegetation cover classes into four
main vegetation cover classes (Forest, Shrub, Grass, and Crop) as described in Table S1 in Supporting Infor-
mation S1. We also tested the robustness of our results to the choice of land cover maps by using the same method
but with the plant functional type (PFT) maps derived from the European Space Agency (ESA)'s Climate Change
Initiative (CCI) annual land cover maps (Harper et al., 2023) from 2001 to 2020 to account for uncertainties in
land cover classification (Hartley et al., 2017; W. Li et al., 2018). The original spatial resolution is 300 m and we
perform a first-order conservative remapping (area-weighted mean) to regrid them to 0.05° to fit the resolution of
KNDVI. For our analysis, we exclude pixels with less than 5% vegetation cover or more than 50% water body
cover over the selected period.

2.2. Climatic Variables

To estimate ecosystem sensitivity to drought and high temperatures, we use monthly soil moisture (SM) and
monthly 2-m maximum temperature (7,,,,) variables from TerraClimate, which is available at ~4 km spatial
resolution for the period 1958-2022 (Abatzoglou et al., 2018). TerraClimate employs climatically aided inter-
polation by merging high-spatial resolution climatological normals from the WorldClim data set with coarser
resolution time-varying (i.e., monthly) data from Climatic Research Unit (CRU) Ts4.0, JRA-55, and root zone
storage capacity data set (Abatzoglou et al., 2018). We perform a first-order conservative remapping to regrid the
data to 0.05° spatial resolution and select the period of 2001-2020. TerraClimate SM is derived from monthly
surface water balance data sets using a water balance model that incorporates reference evapotranspiration,
precipitation, temperature, and interpolated plant extractable soil water capacity at a higher resolution.

2.3. Models and Simulations

We use simulations from DGVMs performed within the project “Trends and drivers of the regional-scale sources
and sinks of carbon dioxide” (TRENDY-v11; Friedlingstein et al., 2022; Le Quéré et al., 2013; Sitch et al., 2024)
that provide outputs of monthly total SM content, yearly mean carbon mass in vegetation (cVeg) at the pixel level
as well as disaggregated per PFT (cVegpgr) between 2001 and 2020 at 0.5° or 1° spatial resolution. The models
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fulfilling these requirements were CABLE-POP, CLASSIC, OCN, ORCHIDEE, and SDGVM (see Table S3 in
Supporting Information S1 for a comparison of the model output and relevant processes included).

The models are forced by either the 6-hourly historical climate forcing over 1901-2021 from the CRU and
Japanese Reanalysis forcing data or the monthly CRU data set on a 0.5° X 0.5° grid (Harris et al., 2014, 2020) and
annual time-series of CO, over 1700-2021, derived from ice core CO, data merged with NOAA annual resolution
from 1958 onwards (Lan et al., 2024). Land cover and land-use maps are based on the harmonized land-use
change data LUH2-GCB2022 for the period 1700-2022 (an update to the LUH2 v2h data set; Hurtt
et al., 2020), which includes land-use change data, including subgrid-scale transitions between primary forest,
secondary forest, primary non-forest, secondary non-forest, cropland, pasture, rangeland, and urban land (Chini
et al., 2021; Hurtt et al., 2020).

To extract the LULCC effects on ecosystem sensitivity to drought and temperature, we use two simulations: (a)
simulation S2, which is forced by the time-invariant land use map corresponding to the year 1700, and recon-
structed and observed historical environmental conditions of climate, N deposition, and atmospheric CO, con-
centrations; and (b) simulation S3, which is forced by observed historical land use and cover distribution in
addition to the aforementioned time-variant environmental conditions. The simulated SM was calculated from the
hydrological model in each DGVM.

Global vegetation is represented using different PFTs in different DGVMs. For a consistent comparison, we
group the PFTs of each DGVM into four main vegetation classes (Forest, Shrub, Grass, and Crop) as described in
Table S1 in Supporting Information S1 and calculate the cVeg for each main vegetation class (cVeg,) from

cVegppr.

2.4. Estimating Ecosystem Sensitivity

We use annual means of observed kNDVI and modeled cVeg at the pixel level as a measure for vegetation
dynamics to calculate ecosystem sensitivity to droughts and 7,,,,,. We also used simulated cVeg,,, to calculate
ecosystem sensitivity to droughts and Tmax for different vegetation types for S2 and S3 simulations. We calculate
the annual mean kNDVI to compare to results calculated from cVeg and cVegpgr reported on an annual basis in
the TRENDY-v11 data set and the annual mean values reflect the vegetation conditions and disturbance from
drought and heat stress during the whole year.

The annual mean kNDVI, cVeg, cVeg,,,.. and Tmax, were detrended by subtracting the long-term trend of the
linear fit. These time series anomalies are then z-score standardized by dividing by their standard deviation over
the period 2001-2020. The detrended annual time series is used in the analysis because cVeg and cVegpgr are
reported on an annual basis from the TRENDY v11 data set.

To identify drought periods, we first remove the long-term mean seasonal cycle (monthly mean SM over the
period 1979-2020) and the linear trends of monthly SM data from TerraClimate and DGVM output. We define
extremes as the occurrence of a value of SM below a threshold value (10th percentile) near the tails of the
probability distribution of SM anomalies, that is, P(X < SM(#)) < 0.1 (Seneviratne et al., 2012). For each pixel, we
determine the distribution of monthly SM anomalies from 1979 to 2020 using kernel density estimation (KDE;
Parzen, 1962; Harmeling et al., 2006). We use drought months from the S3 simulation to identify droughts in both
the S3 and S2 simulations for each selected DGVM for a consistent comparison of drought events between the
two simulations.

We then apply a multivariate linear regression model for each pixel and grid cell over 2001-2020 following:
Yanom (1) = alN(®) + BTanom (1) + PYapom (1 — 1) + C + &(1) 2
where Y,,om(®) and Y, .z — 1) denote the annual anomaly of KNDVI, cVeg, or cVeg,,,, at a given year (f) and
the previous year (¢ — 1). In our study, year (¢) is defined as a calendar year since cVeg is reported as the annual
mean for each calendar year, as provided in the TRENDY model output. N(¢) denotes the number of drought
months in year t, where the drought months are defined as the occurrence of a value of SM below the 10th
percentile threshold value, given the probability distribution of SM anomalies, that is, P(X < SM(t)) < 0.1.
T .nom(?) represents the deseasonalized and detrended 7,,,,,. a corresponds to the vegetation sensitivity to drought
duration and f indicates the vegetation sensitivity to 7,,,,. The term ¢ corresponds to the dependence of

XIAO ET AL.

4 of 20

5UB917 SUOWILLIOD BA[a.D) 3|aet(dde a3 Ag pausenob ae sajoiie YO ‘9sn JO Sa|n. oy Akeiqi] auljuQ 431 UO (SUO I IPUOS-pUe-SUWLBY WD A3 | 1M ARelg 1 pul|Uo//:Sdiy) SUOIIPUOD pue SWLB | 3U) 88S *[9202/T0/TZ] Uo ARigi7auliuO AB|IAN *[10UN0D UdIeasay [EIIPBIA PUY UleaH [euoieN Aq 8/£800991202/620T OT/I0p/wod A8 |m: Areiqputjuosgndnbe//sdny wouy papeojumoq 'S ‘'S20z ‘vegeiv6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2024GB008378

Table 1

Symbols of the Calculated Sensitivity to Drought and Temperature and Their Changes in This Study

Ecosystem sensitivity to  Ecosystem sensitivity to

Category Data source drought temperature
Pixel level sensitivity KNDVI from MODIS QNDVI Bnpvi
DGVMs ensemble mean apGyMs Ppcvms
Individual DGVM (OCN as an example) aoeN Pocn
Vegetation cover type sensitivity (F: forests; G: grasslands; C: kNDVI from MODIS Xr, X, Xc (X could be any of the terms we defined
croplands) DGVM:s ensemble mean for pixel-level sensitivity)
Individual DGVM (OCN as an example)
Sensitivity change (F — G: forests to grasslands; F — C: forests to  kNDVI from MODIS AXp_ g, AXp_ ¢, AXg_ . (X could be any of the

croplands; G — C: grasslands to croplands)

DGVM:s ensemble mean terms we defined for pixel level sensitivity)

Individual DGVM (OCN as an example)

vegetation on its state in the previous year r — 1, and aims to control for memory effects of the previous year
(Cranko Page et al., 2022; De Keersmaecker et al., 2016; Y. Liu et al., 2019) when estimating @ and p. C is the
intercept and represents the expected anomaly of vegetation greenness or biomass over 2001-2020 when all
predictors are zero. € is the residual term. We include the terms ¢ and C considering their physical relationship
with vegetation growth and their contribution to the predictability of our Equation 2. More discussion can be
found in Text S2 in Supporting Information S1.

A positive value of « implies an increase in vegetation greenness or biomass when there is a longer drought.
Conversely, a negative value of a represents the detrimental impacts during drought periods, which we use as a
measure of ecosystem resistance to droughts. A more negative a (i.e., with a higher absolute magnitude) cor-
responds to a lower ecosystem resistance, while an a close to zero implies high resistance. Similarly, we use
negative f as a measure of ecosystem resistance to temperature and positive  implies beneficial responses of the
ecosystem to higher temperatures. Based on Equation 2, drought sensitivity and temperature sensitivity derived
from kKNDVI with MODIS land cover maps are referred to as aynpy and fynpyr- They are also calculated from
cVeg at the pixel level and then averaged for the five selected DGVMs (i.e., the model ensemble mean), because
all model results are based on cVeg, we omit the symbols of cVeg and subsequently refer to these sensitivities as

apgvms And Ppgyvms (see Table 1).

2.5. Estimating Vegetation Transition Effects From Remote Sensing Data

We quantify the effects of pairwise land cover transitions on ecosystem sensitivity to droughts and temperatures
(a and p). We do not investigate the pixels with abrupt land cover changes because the areas with strong and
abrupt vegetation transitions from 2001 to 2020 can be limited and dividing the 20-year time series into multiple
periods shortens the record and makes the estimate of ecosystem sensitivity to drought duration and temperature
unreliable. Large changes in land cover compositions might directly affect KNDVI and result in overestimated
ecosystem sensitivities. Instead, to estimate these effects from satellite data, we use the space-for-time substi-
tution method established by Duveiller et al. (2018) and implemented in the Julia YAXArraysToolbox package
(Pabon-Moreno et al., 2023). This method allows us to infer the effects of land cover changes without focusing on
the pixels with abrupt land cover changes or shifts in vegetation types in time. We use the ecosystem sensitivity
estimated for pixels with stable land cover by excluding pixels with over 25% changes in any of the four
vegetation types over 2001-2020 before applying the space-for-time substitution. We used a 5 by 5 moving
window on 0.05° pixels. For every moving window, we use the linear regression model (Equation 2) to establish a
relationship between the ecosystem sensitivity (« and f) estimated over 2001-2020 and mean land cover fractions
X from MODIS land cover maps over 2001-2020, as described in Equation 3.
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Y1 = w1X1 + Wy X1p +... + DX 1m

Y2 = @1 X1 + X F .o+ WXy
y=Xo=> ] 3)

Yn = wlm+w2-m+ v O Xy

We use the four main vegetation types (Forest, Shrub and Savannas, Grass, and Crop) and five other non-
vegetation land cover types (Permanent Wetlands, Urban and Built-up Lands, Permanent Snow and Ice,
Barren, and Water Bodies) because the method requires all land cover fraction predictors to sum to 1. For each
window of n (n = 25) pixels, the matrix X(n, m) comprises the fractions of each of the m (m = 9) land cover types
as explanatory variables X,,,, and the response variable y, corresponds to ecosystem sensitivity to drought (a,,) or
temperature (f,), respectively. The vector of w coefficients (w,) corresponds to the predicted sensitivity of each
land cover type. However, X cannot be directly used in this analysis because the fractions of the 9 land cover types
necessarily sum to one on land, which can lead to spurious correlations between different land cover fractions,
and/or between land cover fractions and the response variable. Therefore, in this procedure, an additional
transformation is applied to reduce the dimensionality of X using singular value decomposition. More technical
details can be found in Duveiller et al. (2018).

After establishing linear regression models for all local moving windows over the globe, we estimate the effects of
land cover transitions from vegetation cover type A to another vegetation cover type B with:

AVrp=I5— 9 4)

Here, y, and yg are calculated from the relationship established by Equation 3 by assuming that the pixel is
covered by only land cover type A or B (x, = 1 or x5 = 1). We refer to the calculated ecosystem sensitivity to
drought for forests, grasslands, and croplands as aynpvi,» @npvi, and agnpyi.. and ecosystem sensitivity to
temperature as Sinpyi,» Avovi, a1d Pinpyi.- The space-for-time substitution method does not assume the di-
rection of the transition and treats the effect of forest-to-grassland and the effect of grassland-to-forest transitions
as opposite. For conciseness, we only show the results for forest-to-grassland, forest-to-cropland and grassland-
to-cropland transitions. We refer to the effects of the transitions between them as Aaynpvi,  .» A%npvi, . 4> and

Aagnpv, - and Afpyi, o Aoy, o a0d Ay, . (see Table 1).

The method assumes that the average land cover compositions (X;,,,) is the major driver of the spatial variation of
the ecosystem sensitivity to drought and temperature (y,) over a local moving window. This assumption might be
violated in some areas, leading to a low R? of the fitted linear model from Equation 3. To make sure that the
vegetation transition effects are appropriately captured by Equations 3 and 4, we filter these effects using a
threshold of R* > 0.2 of the fitted linear model from Equation 3. To calculate the pairwise change in sensitivities
from land cover transitions, the method also requires enough co-occurrences of vegetation classes within the local
moving window and tends to provide more reliable results if there are large and evenly balanced presences of both
vegetation classes of interest. We use an index quantifying mutual presence (Ic) for each pair of vegetation classes
and mask out those pixels whose Ic < 0.5 (local windows do not provide enough co-occurrences of two classes of
vegetation of interest for the transition). We further exclude local moving windows with significant topographic
variability, as topographical relief often corresponds to climatic gradients, undermining the space-for-time
approach. Pixels are filtered based on three criteria: (a) the standard deviation of elevation within the local
window must not exceed 50 m; (b) the difference between the mean elevation of the central pixel and the mean
elevation across the local window should be under 50 m; and (c) the difference in elevation standard deviation
between the central pixel and the entire local window must be less than 50 m. Finally, to address potential un-
certainties of our space-for-time substitution approach, we only use the values of the effects of land cover
transitions on ecosystem sensitivities (@ and f) estimated from Equations 3 and 4 that fall inside the 20th and 80th
percentiles for further analysis. We do not use a standard deviation-based outlier filtering because the standard
deviation is sensitive to extreme values and is greater than 1 in these cases. Applying an SD-based outlier filtering
criterion still retains physically unrealistic values. By filtering with the 20th—80th percentile, we ensure a more
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Indirect effects from changes in forest and
crop resistance from S3 to S2 (i)

A

(b)

»Direct effects (i)

Pre-industrial land cover Pre-industrial land cover Current land cover (2001-2020)
with pre-industrial a, B with current q, B with current a, B

Figure 1. Illustration for partitioning historical land cover effects on ecosystem sensitivity into direct (i) and indirect effects (ii). Land cover types are represented using
patches within a grid cell. Land cover changes occur in areas indicated by the red box, where the forest is converted to cropland. (a) A grid cell in the S2 simulation with
fractions of forest and cropland identical to the pre-industrial land cover. (b) A grid cell where fractions of forest and cropland are identical to the pre-industrial land
cover with ecosystem sensitivity to drought and temperature derived from the S3 simulation. (c) A grid cell in the S3 simulation with forest and cropland fractions
averaged for 2001-2020. The thin red arrow indicates direct effects (i) caused by different ecosystem sensitivity between forest and cropland. The thin black arrow
represents indirect effects (ii) caused by varying ecosystem sensitivity in the forest between S3 and S2, and the dashed black arrow represents indirect effects (ii) caused
by varying ecosystem sensitivity in the cropland between S3 and S2.

reliable representation of the vegetation transition effects on ecosystem sensitivity. After the above filtering
processes, we keep 3% of the pixels with valid values.

2.6. Estimating Vegetation Transition Effects From the Model Output

We use cVeg from S3 simulation as Y, Tmax from model forcing data, and the number of drought months N in
each year calculated from SM from each model output to calculate the global pattern of ecosystem sensitivity to
drought and Tmax following Equation 2. We use S3 simulation because it is forced by historical LULCC, so that it
is more comparable to the KNDVI than S2 simulation without LULCC. DGVMs also simulate cVeg per PFT and
allow us to directly calculate the ecosystem sensitivity to droughts and Tmax for each main vegetation class by
using cVeg . as Y, instead of using the space-for-time substitution with satellite data. We then calculate the
effect of vegetation cover changes on the ecosystem sensitivity to drought in each pixel using:

®)

Aag; ;= A3, — Ag3,
where a represents drought sensitivity, with i and j denoting two distinct vegetation cover classes, where
vegetation cover class i is converted to j. Similarly, we estimate the effect on ecosystem sensitivity to Tmax . We
refer to the model ensemble mean ecosystem sensitivity to drought for forests, grasslands, and croplands as
ADGVMs;» ADGVMs, aNd ApGyms,» and ecosystem sensitivity to temperature as ﬂDGVMst ﬁDGVMSG and ﬂDGVMSC and
the model ensemble mean effect of vegetation cover changes as Aapgyws, _ .» A@pgvms,_ ;> a0d Aapgyms, . and

ABpgyms,, o APpcvMsy_. o> a1d APpgyms, . . (see Table 1).

We also estimate historical LULCC effects on ecosystem sensitivity to drought and temperature, that is, those that
occurred, as opposed to the potential effects that can be expected from space-for-time substitution or from looking
only at differences within S3 simulation. We further partition them into direct and indirect contributions by
contrasting S3 and S2 simulations. Figure 1 illustrates the division of these two effects. Under S3 and S2 sim-
ulations, DGVMs are forced with the same transient climate and CO, concentrations; the only difference is that
S3 has land cover changes but S2 has a fixed pre-industrial land use and land cover map, so we can compare them
to extract the historical LULCC effects. We calculate the reconstructed ecosystem sensitivity @ and J for each
pixel based on a;, f; from Equation 2, and the corresponding land cover fraction f; of each main vegetation class j
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from S3 and S2 simulations following Equations 6 and 7. We then estimate the historical LULCC effects by

comparing the & and B between S3 and S2 simulations and partition the total effects into (a) direct effects, where
the changes arise from changes in f; and (b) indirect effects, where the changes arise from changes in a following
Equation 8:

n

a5 = ) asy Js, (6)
p=
n

a5 = ) as fo, (7
=

n n n n
(G — O52) = (Z “s3,fs3,- - Z “53_,fsz_,> + (Z (lsa,fsz, - Z Ufsz_,fsz,) (®)
=1 j=! j=1 j=!

0] (i)

In these equations, & denotes the reconstructed drought sensitivity. S2 and S3 refer to the two simulations and f
denotes the fraction of each main vegetation class relative to the total vegetation cover fraction and j represents
each of the n main vegetation classes (n = 3). Similarly, we also evaluate the historical LULCC effects for ﬁ

In Equation 8, we group the terms with the same « but different f into term (i), and terms with varying o but the
same f into term (ii). Term (i) refers to the direct effects attributable to the difference in land cover fractions
between S3 and S2. The difference arises from different « in different vegetation types. Term (ii) represents the
indirect effects arising from differences in a per vegetation type j between S3 and S2. Different a estimated in S2
and S3 for the same vegetation types might be attributed to the differing water resource needs of the tree PFT
following land cover changes. In S3, the reduction in tree cover can result in a decreased water requirement for the
tree PFT to endure drought conditions, leading to a less negative sensitivity to drought at the grid cell level.
Similarly, we also evaluated the impact of vegetation cover changes on temperature sensitivity.

We estimate a, f, Aa, Af, @ and B first for each model and then calculate their model ensemble mean. For pixel-
wise comparison between DGVMs and kKNDVI and among models, all the above metrics are regridded to 1°
spatial resolution using first-order conservative remapping. We employ the two-sided Wilcoxon signed-rank test
(Wilcoxon, 1945) at a 5% confidence level to evaluate the statistical significance of differences in the median of a,
p and the effects of vegetation cover changes on « and f between DGVMs and kNDVI. We use the one-sided
Wilcoxon signed-rank test (Wilcoxon, 1945) at a 5% confidence level to evaluate whether medians of a, f in
forests are significantly higher than those in grasslands or croplands. We only show results aggregated for three
main vegetation classes (Forest, Grass, and Crop) because only CABLE-POP has the Shrub PFT.

3. Results
3.1. Observation-Based Sensitivity and Comparison to Models

Globally, ecosystem sensitivity to drought estimated from kKNDVI predominantly exhibits negative values, with
65% of the vegetated area showing negative apyr. Exceptions were observed in some tropical forests and boreal
regions (Figures 2a and S7b in Supporting Information S1). Compared to anpy, €cosystem sensitivity to
temperature fnpy; Shows a smoother spatial pattern that strongly depends on latitudes (Figures 2d and 2f).
Vegetation north of 45°N and vegetation in tropical forests, such as Amazon rainforests, show positive sensitivity
to yearly mean monthly maximum temperature (S, npy;), Which indicates that vegetation KND VI increases under
higher temperatures. Negative f,py; is detected in other tropical regions such as Central America, East Brazil,
and South Asia (Figure S7c in Supporting Information S1). The spatial pattern of fypy; in the tropics closely
aligns with the distribution of dominant vegetation cover (Figure S4 in Supporting Information S1). Positive
Pinpyr values are predominantly found in tropical forests, while negative fnpy; values are mainly associated
with shrublands, savannas, grasslands, and croplands. This pattern reflects the varying temperature ranges
optimal for vegetation growth across different vegetation types. Areas with positive aynpyy and fynpy; coincide
with energy-limited areas (Denissen et al., 2022; Jiao et al., 2021). Whereas negative aynpy1 and finpyy, indi-
cating negative impacts on vegetation greenness during droughts or hotter periods, are mostly in water-limited
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Figure 2. Estimated drought sensitivity @ and temperature sensitivity f from kNDVI (a, d) and the modeled cVeg (b, e) over 2001-2020. The sensitivities are then
averaged across Dynamic global vegetation models. Areas with a coefficient of variation (CV) > 3 between models are marked as gray stipplings. The averages for
different latitudes and their standard deviations are shown on the right (c, f).

regions. This is consistent with the previous findings that ecosystem response to water availability depends on
whether the area is energy-limited or water-limited (Ciais et al., 2005; Flach et al., 2018).

To compare models to KNDVI, the global results are used, including the stippled areas with low agreement among
models in Figures 2b and 2e. cVeg sensitivity to drought from DGVMs ensemble mean shows a similar spatial
pattern to the estimation of drought sensitivity using kNDVI (anpvi): DGVMs estimate negative values of
apgvms in 83% of the vegetated areas and positive values in limited areas in tropical forests and boreal regions
(Figure 2b). Drought sensitivity from DGVMs shows a smoother spatial pattern than drought sensitivity from
kNDVIs, partly due to kNDVI's higher spatial resolution. Even after regridding drought sensitivity from kNDVI
to a 1° spatial resolution, aqnpyy Still shows higher spatial variability than apgyys (Figure S6 in Supporting
Information S1). This may be attributed to kNDVI capturing fine scale processes not necessarily represented in
models, as well as noise due to, for example, cloud cover and shadows. Additionally, the regression model may
attribute non-drought effects, which are not accounted for in the predictors, to the coefficients including aynpv1-
The spatial correlation between apgyys and regridded aynpyy is quite low (r = 0.19), with agcy showing the
closest agreement (r = 0.20) of the five DGVMs (Figure S5 in Supporting Information S1). Models and kNDVI
show a better agreement for the temperature sensitivity than drought sensitivity, with a spatial correlation of 0.67,
and CLASSIC shows the closest agreement (r = 0.64) (Figure S5 in Supporting Information S1). Similar to
Pnpvis Pogyms tends to be positive in areas north of 45°N, but the simulated effects are weaker than fipyy
(Figures 2e and 2f). In the tropics, fnpy; shows divergent signals among areas dominated by different vegetation
types. In the tropical forests, S ypy; shows positive values, but fpgyy 1S negative or near zero, showing no
beneficial effects to higher temperatures. This discrepancy may suggest that models have difficulty simulating the
positive responses of tropical forests to climate anomalies, including increased radiation and temperature, during
periods of higher temperatures.

Our linear autoregressive model Equation 2 fits the modeled cVeg better than KNDVI observations over the globe
(Figure S3 in Supporting Information S1). R? of Equation 2 fitted for kNDVI is higher than 0.5 in 12% of the
areas, with a global mean of 0.27. Our model performs better in some areas in eastern South America, southern
Africa, eastern Australia, and some boreal regions, where the R? is higher than 0.5. The model mean R? of
Equation 2 fitted for modeled cVeg is higher than 0.5 in 51% of the areas with a global mean of 0.50.
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Figure 3. Estimated drought sensitivity distributions (a) and temperature sensitivity distributions (b) from S3 cVeg,,,., for different vegetation types from different
models, the model ensemble mean, and kNDVI, with medians as black lines, interquartile ranges as colored shading, and the 10th and 90th percentile range as whiskers.
The depicted distributions are limited to pixels where forest, grass, and crop coexist. Colored stars indicate vegetation types with sensitivity significantly lower than that
calculated in forests, as determined by the one-sided Wilcoxon signed-rank test at a 5% confidence level.

3.2. Contrasting Sensitivity for Different Vegetation Cover

We compare ecosystem sensitivity for different vegetation types, forests, grasslands, and croplands with results
from kKNDVI. In this study, we define higher sensitivity as values that are either less negative or more positive,
rather than just larger in magnitude. Ecosystem kNDVI sensitivity to drought and temperature is less negative or
more positive in forests than in grasslands and croplands. The predicted aynpyy, shows a global median of —0.06
(p-value <0.05) with the lower and upper quartile range [Q1, Q3] = [—0.22, 0.13] per drought month, signifi-
cantly higher than the median of aynpyr, (—0.18 per drought month, [Q1, Q3] = [—0.36, 0.05], p-value <0.05) and
ONDVI, (—0.15 per drought month, [Q1, Q3] = [—0.35, 0.02], p-value <0.05) over the areas where forests,
croplands, and grasslands coexist (one-sided Wilcoxon signed-rank test; p-value <0.05). Approximately 40% of
the regions exhibit positive aynpyi, particularly along the edges of the Amazon, Eastern Europe, and Russia,
where anpyr i also predominantly positive. In contrast, positive values of agnpyr, and agnpvr,. are less common,
covering only 28% and 26% of the areas, mainly at the edges of tropical forests in the Amazon and Central Africa,
as well as in Eastern Europe and Russia. fipyr, shows a median of 0.30 over the globe ([Q1, Q3] = [—0.03, 0.52],
p-value <0.05), significantly higher than the median of Pnpvi,, (0.04, [Q1, Q3] = [—0.26, 0.28], p-value <0.05)
and Pnpvi, (0.06, [Q1, Q3] = [-0.25, 0.26], p-value <0.05) (one-sided Wilcoxon signed-rank test; p-value
<0.05). We also find less negative sensitivity (i.e., higher resistance) to drought in forests than grasslands from
most DGVMs and their ensemble mean. When we compare forests to croplands, DGVMs have divergent pre-
dictions of whether forests exhibit reduced sensitivity to drought than croplands. The median of apgyws, over the
globe (—0.09 per drought month, [Q1, Q3] = [—-0.14, —0.02] per drought month, p-value <0.05) is significantly
higher than the median of apgyms, (—0.13 per drought month, [Q1, Q3] = [-0.21, —0.07] per drought month, p-
value <0.05), indicating that forests tend to be more drought-resistant. The distribution of apgyws. (median of
—0.07 per drought month, [Q1, Q3] = [—0.17, —0.02] per drought month, p-value <0.05) is similar to the dis-
tribution of apgywms, (Figure 3a). The median of Spgyus, is significantly higher than the median of fpgy,, (one-
sided Wilcoxon signed-rank test; p-value <0.05) but their absolute difference is small. The difference between

Pocvwms, and Ppgyms,. is also small.

Similar to the spatial pattern of apgyw;, the model ensemble mean estimates apgyms,» ¥pGvMs,» aNd Apgyms, aT€
predominantly negative with the exceptions of limited positive values in boreal and tropical regions (Figure S8b
in Supporting Information S1). apgyms, is less negative than apgywms, and apgvms. in most areas. Spgyms,
Ppcyms, and fpgywms, show negative values mostly in tropical regions and positive values in areas at around 40°N
to 60°N latitudes, Eastern US, and East Asia (Figure S8d in Supporting Information S1). fpgys,, 1s more negative
compared to Spgyws, in the tropics but more positive in boreal regions, as reflected by a wider interquartile and
10th-90th percentile range in Figure 3b. Over the globe, there is only a small difference in the spatial medians of
temperature sensitivity between forests and grasslands.
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Figure 4. Land cover transition effects on drought sensitivity (a) and temperature sensitivity (b) retrieved from local moving windows based on KNDVI. The
distributions of Aa and A are shown inside each map. The median is shown as the blue number, indicated by the blue line. If the median significantly differs from zero
(Wilcoxon signed-rank test; p-value <0.05), the corresponding number is displayed in bold. The zero line is shown as the black line.

Among the five DGVMs, significantly higher medians of apgywms, than apgywms, are simulated in CABLE-POP,
CLASSIC, and OCN (one-sided Wilcoxon signed-rank test; p-value <0.05). Only OCN simulates significantly
higher apgyms, than apgyms.- CABLE-POP and ORCHIDEE simulate significantly higher medians of Spgyws,
than fpgymg,- Only ORCHIDEE exhibit significantly higher medians of Spgyy, than Spgyms,.-

3.3. Vegetation Transition Effects on Ecosystem Sensitivity

By applying the local moving window method on aynpy; and Binpyr. We further estimate the potential vegetation
transition effects on ecosystem sensitivity to droughts and temperatures (Figure 4). In this study, we define
increased sensitivity as values that are either less negative or more positive, rather than just an increase in
magnitude. Similarly, decreased sensitivity is defined as values that are either more negative or less positive. Our
analysis reveals that when forests are converted to grasslands or croplands (also referred to as non-forests), the
median of Aanpyi,_ , is —0.08 per drought month and its lower and upper quartile ([Q1, Q3]) is [-0.24, 0.07] per
drought month. The median of Aaynpyi, _ . is around —0.08 per drought month ([Q1, Q3] = [-0.19, 0.02] per
drought month). oqnpy; decreases when forests are converted to non-forests, predominantly in North America,
Europe, East Asia, and the tropics (Figure 4a). The transition from grasslands to croplands results in small
changes in aynpyy, With a global median of 0.02 per drought month ([Q1, Q3] = [—0.08, 0.13] per drought month).
Specifically for areas with negative aynpyr, ecosystem sensitivity to drought increases in 63% of the areas when
forests are converted to grasslands and in 70% of the areas when forests are converted to croplands. For tem-
perature sensitivity changes, the median Afpyr,_, is —0.15 ([Q1, Q3] = [-0.34, 0.03]), and Afpvy, . €X-
hibits a median change of —0.19 ([Q1, Q3] = [—0.33, —0.06]). The transitions from forests to non-forests lead to a
decrease in finpyy in over 71% of the areas, predominantly in North America, Europe, East Asia, and the tropics,
as illustrated in Figure 4b. There is no significant change in fypy; for the transition between grasslands and
croplands. The contrasts of apyy and fiypyy between forests and non-forests underscore that deforestation or
afforestation activities, in addition to their direct impacts on vegetation, also play a significant role in changing the
ecosystem sensitivity.

Based on the a and j calculated for different vegetation types from the five DGVMs, we analyze the effects of the
transition between them on ecosystem sensitivity to droughts and temperatures. We calculated the model
ensemble mean of these transition effects and compared them to the effects inferred from kNDVI (Figure 5).
When the forests are converted to grasslands, apgyws decreases globally with a median of —0.04 per drought
month ([Q1, Q3] = [—0.10, 0.02] per drought month), consistent with the kKNDVI estimate (Figure 5c). More than
66% of the areas exhibit a decrease in apgyys When forests are converted to grasslands. This pattern is consistent
for all models, except ORCHIDEE, which estimates a small positive median Aapgyws,_ - For other transitions,
the agreement between models and kNDVI is weaker. The transition from forests to croplands shows a median
effect of 0.01 per drought month ([Q1, Q3] = [—0.06, 0.08] per drought month) on apgyms, Which decreases in
only 45% of the areas (Figure 5a), whereas the median of effects for the same transition estimated from kNDVT is
around —0.08 per drought month and 70% of the areas show a decrease. OCN also shows a similar negative

XIAO ET AL.

11 of 20

5UB917 SUOWILLIOD BA[a.D) 3|aet(dde a3 Ag pausenob ae sajoiie YO ‘9sn JO Sa|n. oy Akeiqi] auljuQ 431 UO (SUO I IPUOS-pUe-SUWLBY WD A3 | 1M ARelg 1 pul|Uo//:Sdiy) SUOIIPUOD pue SWLB | 3U) 88S *[9202/T0/TZ] Uo ARigi7auliuO AB|IAN *[10UN0D UdIeasay [EIIPBIA PUY UleaH [euoieN Aq 8/£800991202/620T OT/I0p/wod A8 |m: Areiqputjuosgndnbe//sdny wouy papeojumoq 'S ‘'S20z ‘vegeiv6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2024GB008378

Forest to Crop Grass to Crop

= kNDVI (CCI)
0.6 mmm CABLE-POP

Aa (month~1)

B CLASSIC s SDGVM
mmm OCN —— kNDVI (MODIS) median

mmm kNDVI (MODIS)

ORCHIDEE ~—— Model mean median

* * *
8 -0.8 =
Forest to Grass Forest to Crop Grass to Crop Forest to Grass Forest to Crop Grass to Crop
Transition type Transition type

Figure 5. Model-based transition effects and their comparison with KNDVI. Global pattern of land cover transition effects on drought sensitivity (a) and temperature
sensitivity (b) estimated from model mean. The distributions of Aa and Af are shown inside each map. The median is denoted in blue, indicated by the blue line. If the
median significantly differs from zero (two-sided Wilcoxon signed-rank test; p-value <0.05), the corresponding number is displayed in bold. The zero line is shown as
the black line. The median of the corresponding transition effects estimated from KNDVI is shown as the orange line. The distributions of transition effects estimated
from kNDVTI and different models are also shown in panels (c, d) with medians as black lines, interquartile ranges as colored shading, and ranges between the 10th and
90th percentiles as whiskers. The horizontal blue lines in panels (c, d) indicate the median of transition effects calculated from kNDVI. Colored stars mark models whose
median is not significantly different from kNDVI (two-sided Wilcoxon signed-rank test; p-value <0.05).

median of the forest-crop transition effects on a (—0.08 per drought month, [Q1, Q3] = [—0.22, 0.05] per drought
month) to kNDVI but other models do not capture the negative impacts. The transition between grasslands and
croplands has negligible effects on aqnpyy, but all models except ORCHIDEE predict increased a.

Transition effects on f inferred from the model ensemble mean and kKNDVI are less consistent than the transition
effects on a (Figures 4b and 5b). KNDVI indicates a decrease in fiypy; but the model ensemble mean shows a
close to 0 change in fpgym, ([Q1, Q3] = [—0.11, 0.12]) when forests are converted to grasslands and a positive
median change of 0.04 ([Q1, Q3] = [—0.09, 0.18]) when forests are converted to croplands (Figure 5d). Less than
50% of the areas exhibit a decreased Ppgym, (Figure 5b). Among the five DGVMs, CABLE-POP and
ORCHIDEE show negative medians of Af._, 5, with values close to kKNDVI. When grasslands are converted to
croplands, the model ensemble mean simulates a positive median of Afipgyy,_ . 0f 0.03 ([Q1, Q3] = [-0.07,
0.12]), but the median of Afpyy,_ . is close to 0 ([Q1, Q3] = [—0.11, 0.12]). ORCHIDEE and SDGVM also
simulate a transition effect with a median close to 0 ([Q1, Q3] = [—-0.12, 0.13] in ORCHIDEE and [Q1,
Q3] =[-0.17, 0.15] in SDGVM), but CLASSIC simulates a strong positive effect on S sgsic for grass-to-crop
transition with a median of 0.18 ([Q1, Q3] = [-0.02, 0.41]).

To conclude, ecosystem sensitivity to drought and temperature is estimated to be less positive or more negative
(i.e., weaker resistance) when forests are converted to grasslands or croplands, while grass-to-crop transition does
not result in a systematic change in sensitivity. To test the robustness of our results to land cover maps, we also
used the ESA CCI PFT maps to calculate the kNDVI-based transition effects. The main conclusion remains the
same (Figures 5c and 5d). Therefore, we consistently use the results from the MODIS MCD12Q land cover map
for discussion in this study.
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Figure 6. Global pattern of total, direct, and indirect effects of land cover change since pre-industry on ecosystem sensitivity to droughts (a) and Tmax (b), estimated
from the dynamic global vegetation model mean. The averages of the effects on ecosystem sensitivity to droughts (c) and ecosystem sensitivity to Tmax (d) over the
deforested areas are shown for all DGVMs, with error bars indicating the standard deviation.

3.4. Direct and Indirect Effects From Historical LULCC

The effects of vegetation changes shown in Figure 5 point to potential substantial effects of historical LULCC on
ecosystem sensitivity to drought and temperature. However, the space-for-time substitution method applied to
satellite products is limited to identifying only the potential direct effects of LULCC. DGVMs, on the other hand,
also allow for the inference of indirect LULCC effects arising from changes in  or § for the same vegetation types
within a grid cell in the simulation with LULCC compared to the simulation with static pre-industrial land cover
maps. By contrasting the reconstructed & and j3 between S3 and S2 simulations, we evaluate the total historical
LULCC effects on ecosystem sensitivity to droughts and temperature. The total global LULCC effects on the
model ensemble mean & and ﬁ are shown in Figures 6a and 6b. We estimate the uncertainty range of the total,
direct and indirect historical LULCC effects by plus/minus one standard deviation. The global mean effect on & is
0.008 £ 0.04 per drought month and the global average effect on B is 0.013 + 0.06. However, decreased
ecosystem sensitivity to drought and temperature is simulated in deforestation hotspots where forests are con-
verted to grasslands, including Southern Brazil, Western US, and Australia.

We further separate the total effects into direct and indirect effects as outlined in Equation 8 to understand their
relative importance. Direct effects on & estimated by the model ensemble mean exhibit a global average of around
0 = 0.02 per drought month. 52% of the areas show negative direct LULCC effects. They are negative in some
deforested areas where forests are dominantly converted to grasslands at the edge of the Amazon, in Southeast
Asia, Central America, and Australia but positive in areas with higher forest cover in 2001-2020 compared to
1700, such as Western Europe (Figures 6a and S9a in Supporting Information S1). Indirect effects, on the
contrary, contribute to increasing @ with a global average of 0.008 % 0.04 per drought month. 57% of the areas
show positive indirect effects. Specifically, in contrast to negative direct effects estimated at the edge of the
Amazon, indirect effects are largely positive in the Amazon. The mean direct effect on & in Brazil is
—0.013 £ 0.026 per drought month, but the mean indirect effect is 0.018 £+ 0.053 per drought month. Among
different DGVMs, mean direct effects are negative in CABLE-POP and OCN but indirect effects contribute
positively to the total LULCC effects for all models in deforested areas (Figure 6c).
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The direct effects on /3 exhibit a mean of around 0 + 0.04 and they are negative in 45% of the areas, particularly in
deforested areas at the edge of the Amazon, in South Asia, Western US, and part of Eastern Europe (Figures 6b
and S9b in Supporting Information S1). The indirect effects contribute to an increased B (Figure S9b in Sup-
porting Information S1). The mean indirect effect on ﬁ is 0.013 £ 0.06 and they are positive in 55% of the areas.
Mean direct effects on /3 are negative in three DGVMs (CABLE-POP, OCN, and ORCHIDEE), and mean indirect
effects are positive in all models except ORCHIDEE in deforested areas. The two effects compensate for each
other in CABLE-POP and OCN.

In summary, DGVMs suggest that while direct effects result in less positive or more negative ecosystem
sensitivity (weaker resistance) to drought and temperature over many deforested areas, due to the impacts of the
predominant transition from forests to grasslands in 2001-2020 compared to 1700, indirect effects remain
important and compensate for direct effects in many regions.

4. Discussions

4.1. Contrasting Ecosystem Sensitivity and Resistance to Drought and Temperature Between Forests and
Non-Forest Vegetations

In this study, we assess KND VI sensitivity to drought and temperature. Drought and temperature sensitivity can be
positive or negative. Positive responses during drought periods are also observed in some ecosystems, reflected in
increased GPP (Bastos et al., 2020) or vegetation greenness (Xiao et al., 2023). Negative values of sensitivities of
the vegetation state to drought and temperature reflect ecosystem resistance, which measures the ability of
ecosystems to persist and maintain their functioning during a disturbance (Gessler et al., 2020). More negative
sensitivities indicate weaker resistance. Forests exhibit higher positive or less negative sensitivity (i.e., stronger
resistance) to droughts than non-forests in more than 63% of the areas in all climate zones. This finding is
supported by previous experimental studies (Anderegg et al., 2018), and research using GPP data sets across
Europe (Bastos et al., 2020; Zhang et al., 2016), SIF (Walther et al., 2019), and L-VOD and EVI globally (Xiao
et al., 2023). Higher resistance to droughts in forests compared to non-forest vegetations can be explained by the
intrinsic structural and physiological differences between trees and crops, such as deeper rooting depth of trees
(Canadell et al., 1996), greater water storage capacity in forest stems (Matheny et al., 2015), a weaker decline in
light use efficiency with SM for forests compared to non-forest vegetation (Walther et al., 2019) and distinct water
use strategies in response to drought between forest and grassland or cropland (Buras et al., 2020; Fu et al., 2020;
Teuling et al., 2010; Wolf et al., 2013).

Similarly, we find stronger positive sensitivity and less negative sensitivity to higher temperatures in forests than
in non-forests from kNDVI, particularly in areas where forests benefit from higher temperatures (§ > 0). In
temperate regions, forests might benefit from higher temperatures through warming-induced phenological
changes, while grasses and crops may exhibit a negative response in photosynthesis due to a nonlinear response of
photosynthesis to temperature, resulting in a less positive or more negative sensitivity (weaker resistance) to hot
extreme days. A notable trend toward earlier spring growing season onset and delayed autumn senescence in the
temperate forests in the eastern USA has been observed (Keenan et al., 2014). In Russia during the heatwave in
2010, strong reductions in photosynthesis and greenness in grasslands and croplands were found due to heat
effects on canopy structure, while regions of predominantly mixed forests showed small to insignificant re-
ductions with even enhanced absorbed radiation (Yoshida et al., 2015).

Our estimates of ecosystem sensitivity to drought and temperature derived from kNDVI may be affected by
uncertainties in the original NDVI data set, MOD13C1 v061. This data set employs a QA filtering scheme to
address cloud contamination when processing input 1 km pixels into a 0.05° geographic product (Didan &
Munoz, 2019). This approach reduces bias toward sunny days in annual mean kNDVI values (Didan &
Munoz, 2019).

Severe tree mortality events following a strong drought year can impact ecosystem carbon fluxes in subsequent
years (Yu et al., 2022), potentially influencing KNDVI and its estimated sensitivity to drought and temperature.
However, the impact of tree mortality on vegetation greenness may be partially or entirely obscured at coarser
spatial scales, such as 250 m or 8 km (Yan et al., 2024). In addition, the lag-1 term in Equation 2 accounts for
legacy effects from disturbances in the previous year, making our estimation of kNDVI sensitivity to drought and
temperature less affected by long-term tree mortality events.
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Apart from vegetation types, land management practices, such as irrigation and wood harvest, can significantly
influence ecosystem sensitivity to drought and temperature. However, the absence of explicit representation of
irrigation in the TRENDY v11 DGVMs used in this study limits our ability to directly assess the effects of
irrigation in these models. Future incorporation of irrigation processes in those DGVMs without explicit rep-
resentation of irrigation, could provide more insights into the role of land management in shaping ecosystem
resistance to climate extremes (Pongratz et al., 2021).

4.2. Comparison Between Observed and Modeled Transition Effects

Less positive or more negative sensitivity to drought a, when forests are converted to grasslands, is evident from
kNDVI. This effect is also simulated by the DGVM ensemble mean. However, when forests are converted to
croplands, in contrast to KNDVI, CLASSIC and SDGVM predict a less negative sensitivity (higher resistance) in
croplands than in forests. This discrepancy may stem from diverse representations of complex crop management
and varying performances of DGVMs in agricultural lands. SDGVM tends to underpredict a across Earth's major
agricultural regions, probably attributable to the absence of agricultural management practices such as improved
seeds, fertilization, and irrigation (Walker et al., 2017). In CLASSIC, the incorporation of an N cycle in CLASSIC
is in development and there is no representation of fertilization and irrigation in croplands. Furthermore, the
benchmark for cropland is limited to one FLUXNET site (Melton et al., 2020). All five DGVMs also do not
simulate irrigation explicitly (Table S3 in Supporting Information S1) and might assume no or less water stress for
crops, which might explain less negative drought sensitivity of crops than trees.

Land cover transition effects on f estimated from kKNDVI are generally negative, indicating a decreased sensi-
tivity to temperature when forests are converted to grasslands. Models do not simulate these negative effects on /3,
particularly at around 50°N and in the central Amazon (Figures 4b and 5b). The main reason for this discrepancy
between modeled and observed effects lies in the underestimation of fpgyy, in these regions (Figures S8c¢ and
S8d in Supporting Information S1). Although both models and kNDVI exhibit positive sensitivity to temperature
in forests in mid-latitudes, suggesting a beneficial effect of higher temperatures, the model mean underestimates
this effect. In the tropics, fnpy;, estimated from kNDVI is positive in 61% of the area, whereas gy, €sti-
mated from the model mean is only positive in 29% of the area, also contributing to the underestimated transition
effects between forests and grasslands.

Another potential explanation for the discrepancies, aside from the suboptimal performance of DGVMs in
simulating crops and vegetation sensitivity to temperature, is the inherent differences between vegetation carbon
and kKNDVI. The latter measures only the variations in greenness of the vegetation canopy. While there is a good
linear correlation between L-VOD, a proxy for vegetation biomass, and kNDVI in ecosystems with relatively low
biomass density, such as grasslands and croplands, divergent signals appear in dense tropical forests where the
vertical canopy structure becomes complex (Xiao et al., 2023). Therefore, the comparison between ecosystem
sensitivity calculated from kNDVI and model-simulated vegetation carbon might yield less accurate results in
ecosystems with dense biomass, such as tropical forests. The choice of different vegetation indices, such as EVI or
NIRv, might also influence the results because they reflect slightly different vegetation properties.

A few uncertainties exist in the estimated vegetation transition effects using the space-for-time substitution. First,
we do not consider spatial gradients in general soil properties within the local moving window of 0.25° when
applying the space-for-time substitution and we assume that vegetation cover is the only driver of the changes in
ecosystem sensitivity to drought and temperature in the local moving window. Second, we cautiously filter our
vegetation transition effects retrieved from kKNDVT and the space-for-time substitution and only keep around 3%
of the total pixels with valid KNDVI sensitivity to drought and temperature. The filtered results are sparse in
certain regions, particularly those with large-scale homogeneous vegetation types and low land cover co-
occurrence, such as boreal regions dominated by shrubs and savannas, and the Central Amazon dominated by
forests. Despite this, we still retained over 110,000, 190,000, and 170,000 pixels for the three transition types,
respectively, as shown in Figures 4a and 4b. The high-resolution kNDVI and climate data set ensure homoge-
neous climate conditions within a moving window of 0.25°. They also provide enough pixels for analysis even
after our strict filtering. We also recognize that the space-for-time substitution approach may not capture the
potential differences between forest-to-grassland/cropland and grassland/cropland-to-forest transitions, whose
ecological impacts can be asymmetric. Deforestation typically results in a significant loss of biodiversity, while
afforestation practices often favor a few commercially successful tree species, leading to forests with less
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structural complexity (Ma et al., 2023; Naudts et al., 2016). Deforestation may more severely impact vegetation's
sensitivity to drought and high temperatures compared to the mitigating effects of afforestation.

4.3. Direct and Indirect Effects of Historical LULCC on Ecosystem Sensitivity to Drought

By contrasting model simulations S3 and S2, we compute the historical LULCC effects on drought sensitivity.
Subsequently, we decompose the total effects into direct and indirect components. Direct effects contribute to a
decreased drought sensitivity in deforested areas in CABLE-POP and OCN (Figure 6c), reflecting negative
transition effects on drought sensitivity when forests are transformed into grasslands or croplands. In contrast,
CLASSIC and SDGVM exhibit positive mean direct effects because they simulate a strong increase in @ when
forests are converted to croplands.

Nevertheless, all models show positive mean indirect effects in deforested areas, resulting in a more positive or
less negative drought sensitivity under LULCC. These positive indirect effects are primarily contributed by the
increased drought sensitivity of forests in these areas (Figures S10 and S11 in Supporting Information S1). Over
56% of the forests under identical CO2 and climate conditions exhibit less negative sensitivity to drought (higher
drought resistance) in the S3 simulation with large-scale deforestation compared to the S2 simulation (Figure S11
in Supporting Information S1). Additionally, the difference in drought sensitivity between S3 and S2 shows a
positive global mean (Figure S10 in Supporting Information S1). Such an increased resistance has also been
reported in previous observation-based studies and can be partly attributed to reduced competition for resources
within forests. Higher resource acquisition capacity per tree with increasing growing space has been found to
reduce drought-induced mortality (Allen et al., 2010; N. McDowell et al., 2008). Forest thinning has been
assessed as an effective management strategy to mitigate drought impacts (D'Amato et al., 2013; Gavinet
et al., 2020; Sohn et al., 2016), especially on sites where water is the main growth-limiting factor (Sohn
etal., 2016). Forest stands with less dense canopies following thinning are often characterized by higher soil water
availability for the residual trees (Brooks & Mitchell, 2011; McDowell et al., 2003).

DGVMs, however, are not capable of detecting the edge effects and might overestimate the beneficial indirect
effects on ecosystem sensitivity to drought. In reality, deforestation also leads to higher forest fragmentation and
an increased proportion of forests being located in close proximity to the forest edge. Forest edges alter
microclimate conditions, such as temperature, humidity, radiation, and wind speed, by exposing parts of the forest
environment to external climatic conditions, reducing the ability of a forest to buffer its internal microclimate
from those more extreme macroclimate conditions (Ewers & Banks-Leite, 2013). Edge effects have also been
reported to increase wildfire susceptibility (Alencar et al., 2004; Cochrane & Laurance, 2002) and tree mortality
(Laurance et al., 2000; Qie et al., 2017).

5. Conclusions

In conclusion, our study combines MODIS kNDVI data and TRENDY-v11 DGVMs to conduct a comprehensive
assessment of the effects of vegetation cover transitions and historical LULCC on ecosystem sensitivity to both
droughts and maximum temperatures at the global scale. Our findings underscore less positive or more negative
sensitivity (a decrease in resistance) to drought and temperature when forests are converted to grasslands and
croplands from kNDVI. Despite large variability, most of the DGVMs agree on higher positive or less negative
sensitivity (higher drought resistance) of forests than grasslands. We find a less negative or more positive drought
sensitivity due to LULCC from DGVMs. By distinguishing between the direct and indirect effects of LULCC on
ecosystem sensitivity, our study highlights the significant role of indirect effects, which arise from changes in the
sensitivity of the same vegetation type, especially forests. These results are based on DGVMs, which are not
coupled to the atmosphere, the atmospheric feedback induced by LULCC should also be considered in the future
to comprehensively assess the vulnerability of ecosystems to climate extremes under climate change. Overall, our
findings emphasize the critical role of forests in maintaining ecosystem stability and resistance. Understanding
the complex effects of vegetation transition aids in developing land management and conservation strategies that
enhance ecosystem stability under ongoing climate change. Our study emphasizes the need to improve vegetation
sensitivity representation in DGVMs to better represent emergent changes in vegetation resistance due to in-
teractions between human activities and climate change.
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