
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.



Intelligent Driver Drowsiness Detection System Using Uncorrelated
Fuzzy Locality Preserving Analysis

Rami N. Khushaba, Sarath Kodagoda, Sara Lal, Gamini Dissanayake

Abstract— One of the leading causes of automobile accidents
is related to driving impairment due to drowsiness. A large
percentage of these accidents occur due to drivers’ unaware-
ness of the degree of impairment. An automatic detection
of drowsiness levels could lead to lower accidents and hence
lower fatalities. However, the significant fluctuations of the
drowsiness state within a short time poses a major challenge
in this problem. In response to such a challenge, we present
the Uncorrelated Fuzzy Locality Preserving Analysis (UFLPA)
feature projection method. The proposed UFLPA utilizes the
changes in driver behavior, by means of the corresponding
Electroencephalogram (EEG), Electrooculogram (EOG), and
Electrocardiogram (ECG) signals to extract a set of features
that can highly discriminate between the different drowsiness
levels. Unlike existing methods, the proposed UFLPA takes into
consideration the fuzzy nature of the input measurements while
preserving the local discriminant and manifold structures of the
data. Additionally, UFLPA also utilizes Singular Value Decom-
position (SVD) to avoid the singularity problem and produce
a set of uncorrelated features. Experiments were performed
on datasets collected from thirty-one subjects participating in
a simulation driving test with practical results indicating the
significance of the results achieved by UFLPA of 94%-95%
accuracy on average across all subjects.

I. INTRODUCTION

Driving is one of the most common attention-demanding
tasks in daily life, as it requires the vehicle operator to
maintain a constant level of alertness or awareness. Driver’s
drowsiness is a serious problem that is believed to be a direct
and contributing cause of road-related accidents as it progres-
sively impairs the driver’s awareness about external events.
The loss of awareness is usually associated with a reduction
in perception, recognition and vehicle control abilities [1].
Recent studies have shown that driver drowsiness is believed
to account for 20% of all vehicle accidents on motorways
and monotonous roads1. Given the severity of this problem,
developing corrective measures for the practical evaluation
of the different drowsiness levels is of significant importance
to prevent disastrous outcomes.

The approaches that have been used for driver’s drowsiness
detection can be primarily divided into three categories. The
first category focus on detecting physical changes during
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drowsiness by image processing techniques, such as average
of eye-closure speed, percentage of eye-closure over time,
eye tracking as quantization of drowsiness levels, and driver’s
head movements [2], [3]. The second category includes
techniques that correlate the driver’s alertness state with a
set of vehicle behavioral parameters including steering wheel
angular position, speed of car movement, lane deviation,
and changing course [4], [5]. Several limitations of both of
these categories were reported by many authors suggesting
devising different methods for drowsiness detection [6], [7].
The third category includes techniques attempting to identify
physiological associations between driver drowsiness and the
corresponding patterns of the Electroencephalogram (EEG)
(brain activity), Electrooculogram (EOG) (eye movement),
and Electrocardiogram (ECG) (heart rate) signals [8], [9],
[10]. Most of these studies reported that the physiological
approach to drowsiness detection can provide very accurate
results [6], as strong correlation between these signals and
the driver’s cognitive state was found in many studies.
Specifically, the change in the cognitive state can be associ-
ated with significant changes in EEG frequency bands such
as delta (δ: 0-4Hz), theta (θ: 4-8Hz), alpha (α: 8-13Hz), and
beta (β: 13-20Hz) [11], [12] or their combinations [13], or
with changes in the eyelid parameters extracted from the
EOG [14], and changes in the heart rate variability using the
ECG power spectrum [15]. The long-term aim of this work
is oriented toward an intelligent driver drowsiness detection
system combining information from the aforementioned cat-
egories. However, various limitations exist in each category.
In this paper, we focus on optimizing the performance of
the third category using state-of-the-art feature extraction
and projection so that it can complement the information
extracted from other categories in a future work.

One of the main limitations in developing a practical
drowsiness detection system based on physiological signals
is related to the large number of channels employed within
many of the above studies to capture the brain cognitive
state. As an example, sixty-two EEG channels were utilized
by Fu et al. [16] to distinguish awake, drowsy and sleep in a
driving simulation study, while Lin et al. [17] utilized thirty-
two EEG/EOG channels and 2 ECG channels, Wallerius
et al. [18] used 21 EEG channels, and Yeo et al. [19]
used nineteen EEG channels and one EOG recording. The
large number of channels was reported to be crucial for the
success of many systems, as a small number of channels
was reported to compromise the classification accuracy [19],
[16]. The justification is that when using a small number of
channels, the available feature extraction methods are not



able to capture the complex overlapping of the different
drowsiness levels. However, a small number of channels
means the system is closer to a practical solution in terms of
physical electrodes attachment and computational complexity
of the algorithm.

On the other hand, a significant drop in classification
accuracy was also reported in the literature when classifying
the extracted features into three or more classes, rather
than two binary classes (either awake and sleep) due to the
fluctuations of the drowsiness states or levels [16]. Hence,
a new dimensionality reduction/feature projection method is
needed to extract an informative feature set that can best
discriminate between the different drowsiness levels or states.

In this paper, a new feature projection technique that
we refer to as the Uncorrelated Fuzzy Locality Preserving
Analysis (UFLPA) is developed in an attempt to overcome
many of the limitations of the available methods. The pro-
posed method introduces the concept of neighborhood and
locality sensitive analysis into fuzzy discriminant analysis
through a theoretically justified approach. Additionally, the
features generated by the proposed UFLPA are statistically
uncorrelated among each other. The main goal here is to find
the minimum number of uncorrelated features preserving the
relevant information with minimum dimensions. This will
in turn result in a classifier with fewer adaptive parameters
to be determined, i.e., a classifier with better generalization
properties.

The structure of this paper is as follows: Section II
reviews the available dimensionality reduction methods with
their associated limitations. Section III presents the proposed
UFLPA method. The data collection procedure is described
in section IV. Section V presents the experimental results.
Finally, conclusions are given in Section VI.

II. FEATURE PROJECTION BASED DIMENSIONALITY
REDUCTION

In the literature, Principal component analysis (PCA) and
Linear discriminant analysis (LDA) are commonly used
dimensionality reduction methods [20] (include one ref for
LDA). Different from PCA, LDA is more suitable for classi-
fication problems, as it projects the data along the directions
that maximize the ratio of the between-class scatter matrix
(Sb) to the within-class scatter matrix (Sw) of the projected
data. However, there are a number of limitations associated
with classical Linear Discriminant Analysis (LDA) includ-
ing, the need of the scatter matrix to be nonsingular and
the number of features generated by LDA is bounded by
the number of classes, c-1 (the rank of Sb). Both LDA and
PCA can only see the global Euclidean structure of data. In
order to capture the local manifold structure, many attempts
were proposed in the literature, including Locality Sensitive
Discriminant Analysis (LSDA) [25] and Locality Preserving
Projections (LPP) [26]. However, like classical LDA, these
methods require a preprocessing step (PCA or SVD) or a
proper regularization method to avoid singularity [24], [27].

Given the particular problem of drowsiness detection, it is
quite common to have large fluctuations in the drowsiness

levels; in such a case, the local data structure might be more
important than the global structure for discriminant analysis.
Further, most bio-signals generated by the human body tend
to generate patterns that are fuzzy in their nature, i.e., patterns
that may belong simultaneously to more than one class up
to a certain degree, which can not be effectively handled by
PCA or LDA. Hence, adopting a feature projection method
that maximizes the margins between the features belonging
to different stages at each local area, while considering
the fuzzy nature of drowsiness patterns, may lead to better
separation of the different drowsiness levels. This motivates
the proposed UFLPA. The proposed UFLPA also presents
a set of mutually uncorrelated features, which is a desired
property in any pattern recognition problem to minimize
information redundancy [30].

III. UNCORRELATED FUZZY LOCALITY PRESERVING
ANALYSIS

Given a universal set with elements xk distributed in a
pattern space as X = {x1, x2, ..., xl}, where k = 1, 2, ..., l
with l being the total number of patterns. For simplicity, it
will be useful to describe the membership value that the kth
vector has in the ith class with the following notation

µik = µi(xk) ∈ [0, 1] (1)

Denote the mean of the data samples that belong to class
i as xi and the radius of the data as r

r = max ‖xi − xk‖σ (2)

Then the fuzzy membership µik can be calculated as
follows

µik =
(‖xi − xk‖

r + ε

) −2
m−1

(3)

where m is the fuzzification parameter chosen as m > 1,
and ε > 0 is a small value to avoid singularity. Finally, the
membership of each of the samples in all of the c-problem
classes is normalized according to

∑c
i=1 µik =1.

The description of the proposed UFLPA proceeds with the
fuzzy total scatter matrix given by Watada et al. [28] as:

ST =
c∑

i=1

li∑

k=1

µik (xk − x) (xk − x)T (4)

where µik is the membership of pattern k in class i, xk

is the kth sample, li is the number of training samples for
class i, x is the mean of the training samples.

x =
∑c

i=1

∑li
k=1 µikxk∑c

i=1

∑li
k=1 µik

(5)

Unlike Watada et al. [28], which focused on the global
structure of the data, we aim to modify Eq. 4 to focus on the
local structure of the data. We proceed with the modification
of the total scatter matrix starting from Eq.4 as follows



ST =
c∑

i=1

li∑

k=1

µik

(
xkxT

k − xxT
k − xkxT + xxT

)
(6)

Using Eq.5 we replace
∑c

i=1

∑li
k=1 µikxT

k with
xT ∑c

i=1

∑li
k=1 µik, and

∑c
i=1

∑li
k=1 µikxk with

x
∑c

i=1

∑li
k=1 µik. Thus Eq.6 can be re-written as

ST =
1∑c

i=1

∑li
j=1 µik

[
c∑

i=1

li∑

k=1

c∑
p=1

lp∑

j=1

µijµpkxkxT
k

−
c∑

i=1

li∑

k=1

c∑
p=1

lp∑

j=1

µijµpkxkxT
j

]
(7)

In order to simplify the above equation, we provide the
following definition

Definition-1: N is the fuzzy amount of elements in all
fuzzy classes, and this is given by:

N =
c∑

i=1

li∑

k=1

µik, (8)

Thus, by using the above definition in Eq.7 and with some
linear algebra we end up with

ST =
1

2N

c∑

i=1

li∑

k=1

c∑
p=1

lp∑

j=1

µijµpk

(
xk − xj

)(
xk − xj

)T

(9)
The total scatter matrix is equal to the summation of

the within-class scatter matrix and the between-class scatter
matrix, that is

ST = SB + SW (10)

Thus, Eq. 9 can be decomposed into the following two
equations

SW =
1

2N

c∑

i=p=1

li∑

k=1

lp∑

j=1

µikµpj (xk − xj) (xk − xj)
T

(11)

SB =
1

2N

c∑

i=1

c∑
p=1
p 6=i

li∑

k=1

lp∑

j=1

µikµpj (xk − xj) (xk − xj)
T

(12)
Thus, Eq. 11 indicates that the objective of the new

SW is to minimize the distance between samples of the
same class when projecting them, thus preserving the local
neighborhood information. On the other hand, the proposed
new SB maximizes the margin between data points from
different classes at each local neighborhood. Additionally,
both of SW and SB also incorporate the membership values
to consider the samples contribution in the different class
while preserving the local data structure. Thus, the above
equations can be used to discover the discriminant structure

in the data. However, in order to discover both geometrical
and discriminant structures of the data manifold we adopt
an approach from Cai et al. [25], in their Locality Sensitive
Discriminant Analysis (LSDA) method, to construct two
local neighborhood graphs to accurately characterize both
of these structures. A linear transformation is then found to
optimally preserve the local neighborhood information, as
well as discriminant information using the notion of graph
Laplacians.

Let Uw and Ub be the weight matrices for our proposed
fuzzy within-class graph and the fuzzy between-class graph
respectively, and let N(xk) be the set of the nearest few
neighbours to xk. N(xk) can be split into Nw(xk) (for
neighbours sharing the same class label as xk) and Nb(xk)
(for neighbours sharing different class label to xk) .We define
Uw and Ub according to the following equations:

Uw,kj =
{

µikµpj if xj ∈ Nw(xk)
0 if p 6= i

}
(13)

Ub,kj =
{

0 if p = i
µikµpj if xj ∈ Nb(xk)

}
(14)

The nature of the above matrices implies dropping the
class label indices i and p, as both matrices account for
the total number of samples. This is done to facilitate using
sparse implementations of these matrices to minimize the
associated computational cost. However, before proceeding
with the rest of the derivations, the differences between our
approach and that of LSDA [25] should be clearly stated
here.
• The first is that our approach utilizes fuzzy member-

ships when constructing the neighborhood graphs, while
LSDA [25] puts an edge in the graph only if two
samples from the same class are among the k nearest
neighbors of each other only.

• Additionally, we manipulate the terms in the final
optimization problem to make the generated features
statistically uncorrelated, which is not the case with
LSDA.

Using Eq.13 and Eq.14, one can simplify Eq.11 into

SW =
1

2N

∑

k,j

(xk − xj) (xk − xj)
T

Uw,kj (15)

which simplifies to

SW =
1
N

(
XDXT −XUwXT

)
(16)

where D is a diagonal matrix; its entries are column
sums of Uw (or row sums since Uw is symmetric), Dkk =∑

j Uw,kj . In a similar manner to the above derivations, the
between-class scatter matrix can also be reformulated as:

SB =
1
N

(
XEXT −XUbX

T

)
(17)



where E is a diagonal matrix; its entries are column (or
row, since Ub is symmetric) sums of Ub, Ekk =

∑
j Ub,kj .

The transformation matrix related to UFLPA can be ac-
quired as the eigenvectors of the following equation assum-
ing that the scatter matrices are not singular.

GUFLPA = arg max
G

trace

(
GT SBG

GT SW G

)
, (18)

In our proposed UFLPA, the goal is to reduce the amount
of information redundancy and produce a set of uncorrelated
features while avoiding the singularity problem (if it exists).
Thus, we propose to employ an approach based on simulta-
neous diagonalization of the matrices according to Ye et al.
[31] to end up with a set of uncorrelated features. To proceed
with this process, we start by modifying the above objective
function.

A closer look at Eq.16 and Eq.17 reveals that Eq.18
can be maximized by minimizing Ub, i.e., minimize the
memberships of the samples that belong to a certain class
in all other classes. On the other hand, to minimize the
denominator we need to maximize Uw, i.e., maximize the
memberships of the samples that belong to a certain class in
the same class. To proceed with further analysis, we employ
a normalized Laplacian graph i.e., replace Lw = D − Uw

by Lw = I − (
√

D)−1Uw(
√

D)−1, and Lb = E − Ub by
Lb = I − (

√
E)−1Ub(

√
E)−1. Additionally, we modify the

numerator to X
(
αLb + (1− α)(

√
D)−1Uw(

√
D)−1

)
XT

where α is a suitable constant (0 ≤ α ≤ 1). Thus, the
optimization problem reduces to

arg max
G

trace

(
GT XAXT G

GT XXT G

)
(19)

where A =
(
αLb + (1− α)(

√
D)−1Uw(

√
D)−1

)
. In

order to solve the singularity problem, the SVD decom-
position is employed here. Supposing rank(X) = r, the
SVD decomposition of X is then given as X = UΣV T ,
where U ∈ <n×r, Σ = diag(σ1, ...., σr) ∈ <r×r with
σ1 ≥ ... ≥ σr, and V = [v1, ...vr] ∈ <l×r. Then

arg max
G

trace

(
GT UΣV T AV ΣUT G

GT UΣV T V ΣUT G

)
(20)

To simplify the above optimization problem a simple
variable modification scheme is then utilized by setting B =
ΣUT G to get

arg max
B

trace

(
BT V T AV B

BT B

)
(21)

Thus, the eigenvectors of the original problem can now be
found by finding first the eigenvectors of Eq.21, represented
by the columns of B∗. After getting B∗, the G∗ can be found
by simply taking G∗ = UΣ−1B∗ and the extracted features
in this case are uncorrelated (the reader may refer to [27],
[31] for the proof).

IV. DATA COLLECTION PROCEDURE

Thirty-one subjects (volunteer drivers, all males) aged
between 20-69 years were recruited to perform a driving
simulation task. All participants gave written consent for the
study, which was approved by the institutional ethical com-
mittee. To qualify for the study, a lifestyle appraisal ques-
tionnaire was used requiring participants to have no med-
ical contraindications such as severe concomitant disease,
alcoholism, drug abuse, and psychological or intellectual
problems likely to limit compliance [32]. Most of the studies
were conducted between 9:00AM to 1:00PM with the total
study time involving 2-3 hours per subject. This included
completing questionnaires, physiological sensor attachment
and performing the driving simulator task. Caffeine, tea or
food as well as smoking were restricted approximately 4 hr
and alcohol 24 hr before the study.

The data collection process included two simultaneous col-
lection procedures. The first was to collect the physiological
changes associated with the drowsiness when performing
a simulation task, while the second involved monitoring
the driver facial expressions through a vision system. The
driving simulator equipment consisted of a large display
unit with in-built steering wheel, brakes, and accelerator.
The video display showed the current speed, the driving
environment, other cars, pedestrians, and other road stimuli.
The participants were asked to breathe normally and restrict
all unnecessary movements as much as possible during
driving. The driving simulator software was acquired from
Systems Technology, Inc. (STI), USA, for which the STISIM
driver was utilized in this task. All subjects were given
instructions on the operation of the simulator prior to the
study. Two driving sessions were completed by each of the
drivers. The initial driving session was approximately 25
min of alert driving, with a track involving many cars and
stimuli on the road to serve as the baseline measure. The alert
driving session was followed by monotonous driving session,
in which participants were required to drive continuously
for approximately 1 h. This session involved the participants
driving with very few road stimuli in a track resembling
country-side driving.

Simultaneous physiological measurements were recorded
during the driving sessions. A FlexComp Infiniti encoder,
from Thought Technology Inc., was utilized as the physio-
logical data acquisition device (data was sampled at 2048
Hz). It consisted of three Electroencephalogram (EEG)
channels, one Electrooculogram (EOG) channel, and one
Electrocardiogram (ECG channel. The three EEG channels
were recorded according to the 10-20 international standard
of electrode placement [33], with EEG electrodes placed
at Fz (frontal), T8 (temporal), and Oz (occipital) sites. A
monopolar montage was used, that is, EEG activity was
recorded in relation to a linked-ear reference. Vertical EOG
was recorded from the left eye, and later used to identify
drowsiness by observing the blink rate of each subject. A
surface electrode measuring the ECG signal was utilized
with the reference electrode placed on the shoulder and the



active electrodes placed on the right and the left chest. Blood
pressure and heart rate were collected before and after the
driving task.

Physical signs of drowsiness were identified using video
images of the driver’s face, linked in real time with the
physiological measurements. The level of drowsiness was
estimated based on the Wierewille and Ellsworth criteria
[34]. Specific facial features characterized the drowsiness
level observed during the driving task, including the facial
tone, slow eyelid closure, and mannerisms (rubbing, yawn-
ing, nodding, etc.). A continuous drowsiness scale containing
five descriptors was utilized. These descriptors are given as:
Alert-or Not Drowsy (class-1), Slightly Drowsy (class-2),
Moderately Drowsy (class-3), Significantly Drowsy (class-
4), and Extremely Drowsy (class-5) [34]. Three observers,
trained by a neuroscientist, visually rated the total driving
time in video segments of one minute duration and assigned
a corresponding drowsiness descriptor according to the afore-
mentioned scale. In order to form the final class label for
each subject’s data segments, a majority voting process was
utilized. In such a process, each segment is assigned the label
that most of the observers agreed on. The final label of the
scored segments was considered to be the class label for
the stages of drowsiness required to train any classification
system.

V. EXPERIMENTS AND RESULTS

The first step in the conducted experiments was to extract
a set of features from the available 5 channels (3 EEG plus
1 ECG plus 1 EOG) utilized in this research. A windowing
approach was utilized in which a sliding window of 10 sec
length was incremented by 2 sec each time on each of the
channels. Given that there is no one agreed-upon feature
extraction method in the literature, a variety of features
were extracted from each of the windows. Specifically, the
extracted feature set included: number of zero crossings (1
feature), Hjorth parameters (3 features), root mean square (1
feature), autoregressive model coefficients (10 features), the
spectral moments (4 features), waveform length (1 feature),
and Barlow parameters (3 features) (most available from
the BioSig toolbox at http://biosig.sourceforge.
net/). Thus, the extracted feature set is made of a total
of 115 features (23 feature/channel × 5 channels = 115
features). For simplicity we denote this feature set as the
TDAR, i.e., a combination of Time Domain AutoRegressive
features.

In order to test the performance of the proposed
UFLPA against the available methods from the litera-
ture, all of the following methods were implemented:
LPP [26], LSDA [25] (all implementations with regu-
larization are available from http://www.cs.uiuc.
edu/homes/dengcai2/Data/data.html), the Un-
correlated Linear Discriminant Analysis (ULDA) [31] (avail-
able from http://www.public.asu.edu/˜jye02/
Software/index.html), the Fuzzy Linear Discriminant
Analysis (FLDA) [28], [29], in addition to the classification

accuracy of the Baseline, i.e., using the total number of fea-
tures without reduction. Two classifiers were utilized in the
experiments: the first is the well-known k-Nearest Neighbor
(kNN, with k=1 providing powerful enough results), and the
support vector machine classifier (the LIBSVM implemen-
tation available at http://www.csie.ntu.edu.tw/

˜cjlin/libsvm/).
The average classification error results across all of the 31

subjects using the kNN and LIBSVM classifiers are shown in
Fig.1. It clearly shows the superiority of the proposed UFLPA
when comparing with all other feature projection methods.
Additionally, it can be seen that more features provided better
classification results in UFLPA than that of KNNFLDA or
ULDA. Maximum of 30 features were considered in this
experiment for which the UFLPA managed to achieve an
average of ≈94% with the LIBSVM classifier and ≈95%
with the kNN classifier across all subjects.

It was noted that the drivers exhibited different levels of
drowsiness during the simulation test. Therefore we have
analyzed the average classification errors for different groups
having drowsiness levels of 2, 3, 4 and 5 (Fig.2). The error
bars represent the standard deviation.

All of these results indicate that the proposed UFLPA
managed to achieve higher classification accuracy rates with
a fewer number of features than all other methods. It could
also be noted that the accuracies of UFLPA, LSDA, and
LPP were higher when using the kNN classifier than that of
the LIBSVM classifier. It can be justified by the fact that
the objective function of these methods in the minimization
work well with the kNN as kNN also focuses on distances
between each sample and its neighbors. On the other hand,
the performances of ULDA and KNNFLDA were more
powerful with the LIBSVM classifier than with the kNN
classifier, as such methods focus on preserving the global
Euclidean structure rather than the local manifold structure.
However, for the specific application of drowsiness levels
classification the local manifold structure is more important
than the global structure, as proved by the classification
results. Additionally, one can clearly notice that the use
of discriminant analysis methods that generate c-1 features
generally have poor performances in this application.

In order to prove the statistical significance of the achieved
classification results by UFLPA across all 31 subjects, a two-
way analysis of variance (ANOVA) test with significance
level set to ρ = 0.05 was utilized. The ANOVA test results
proved the statistical significance of the results achieved by
UFLPA in comparison to all other methods, as the achieved
ρ was always smaller than 0.001.

The second adopted significance measure was to look at
the confusion matrices (class-wise classification accuracies).
These were computed as an average for all of the 31
subjects across 30 runs. The mean of the resultant average
confusion matrix with each feature projection method and
classifier was then plotted as shown in Fig.3 with error
bars representing standard deviations. These results indicate
again the superiority of the results achieved by the proposed
UFLPA in comparison to the other methods.
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Fig. 1. Classification results using different feature projection methods with two different classifiers averaged across 31 subjects
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(a) Average across 3 subjects exhibiting 2 drowsiness levels
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(b) Average across 12 subjects exhibiting 3 drowsiness levels
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(c) Average across 10 subjects exhibiting 4 drowsiness levels
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Fig. 2. Classification results using different feature projection methods with two different classifiers averaged across 31 subjects

VI. CONCLUSION

A new feature projection and dimensionality reduction
method was proposed in this paper. The UFLPA method aims
at preserving the local structure of the data samples while
considering the contribution of each sample in the different
drowsiness levels. Additionally, the extracted features by

UFLPA were made to be statistically uncorrelated between
each other, thus minimizing the amount of information
redundancy. The performance of the proposed UFLPA was
tested on datasets collected from 31 drivers while performing
a simulation test. Different drowsiness levels were exhibited
by each of the drivers and the proposed UFLPA was able
to show better performance than other methods from the
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Fig. 3. Average of class-wise accuracy across thirty-one subjects using
different classifiers with error bars indicating standard deviations.

literature in classifying these drowsiness levels, achieving an
average of ≈95% using the kNN classifier, and an average
of ≈94% with the LIBSVM classifier, across all of the 31
drivers while using only 30 features.
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