ZUTS

UNIVERSITY

OF TECHNOLOGY

SYDNEY

Deep Variational Generative Models:
Theory and Algorithms

by Zhangkai Wu

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Longbing Cao

University of Technology Sydney
Faculty of Engineering and Information Technology

January 2025



CERTIFICATE OF ORIGINAL AUTHORSHIP

requirements for the award of Doctor of Philosophy, in the School of Com-

puter Science at the Faculty of Engineering and Information Technology
at the University of Technology Sydney, Australia. This thesis is wholly my
own work unless otherwise referenced or acknowledged. In addition, I certify
that all information sources and literature used are indicated in the thesis.

I , Zhangkai Wu declare that this thesis, submitted in fulfilment of the

This document has not been submitted for qualifications at any other aca-
demic institution.

This research is supported by the Australian Government Research Training
Program.

Production Note:
Signature removed prior to publication.

DATE: 9" November, 2024
PLACE: Sydney, Australia



ABSTRACT

ative models that combine variational inference with deep learning architectures.

By leveraging the representational strength of deep neural networks and the
probabilistic framework of variational inference, DVGMs have advanced the ability to
model complex, high-dimensional data distributions, enabling them to effectively handle
images, sequences, time-series, and tabular data, thereby extending their impact across
machine learning, computer vision, data analysis, and natural language processing.
These models, by uniting the strengths of deep learning with Bayesian principles, pro-
vide a flexible approach to understanding intricate data structures and have opened new
pathways for efficient representation learning and high-quality generation.

Despite their strengths, DVGMs face notable gaps between probabilistic inference and
deep generation, raising several key questions: (1) How can DVGMs balance Bayesian
inference with the depth required for generative tasks? (2) How can they manage
the trade-off between inference-driven representation and data fitting? (3) How can
inference assumptions be leveraged to ensure robust generation? (4) How do probabilistic
assumptions be designed to generate cross-modality? (5) How can DVGMs achieve
consistent inference within dynamic generation processes? These questions underscore
the challenges limiting DVGMs’ potential in practical applications requiring flexible,
reliable, and interpretable data generation.

This thesis systematically studies how to effectively address these challenges, pro-
viding both experimental and theoretical support. Given the intricate balance required
between inference and generation in DVGMs, it is crucial to integrate information-
theoretic principles and adaptive mechanisms to enhance DVGM performance across
diverse tasks. Specifically, this thesis proposes five novel methods to tackle these issues.
The main ideas include employing information-theoretic approaches to train DVGMs,
introducing adaptive balancing mechanisms to dynamically adjust inference and gen-
eration based on data characteristics, and designing task-specific DVGM structures
tailored for various data types. These innovations aim to strengthen representation
disentanglement, improve robustness to noise, and increase scalability, enabling DVGMs
to handle high-dimensional, noisy, and time-sensitive data effectively. Through these
advancements, the thesis establishes a solid foundation for enhancing DVGMs’ applica-
bility in complex, real-world scenarios and provides new directions for future research in
generative modeling.

D eep Variational Generative Models (DVGMs) represent a powerful class of gener-
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CHAPTER

INTRODUCTION

In this chapter, we briefly introduce the definition of deep variational generative model,
related challenges and questions, thesis contributions, and finally show the framework

of the entire thesis.

1.1 Background

odern machine learning systems increasingly rely on generative models to
understand, simulate, and manipulate complex data. However, several funda-
mental challenges remain unresolved: how to balance expressive data modeling
with principled uncertainty estimation, how to achieve robust generation under limited
supervision, and how to design models that generalize across modalities and evolving
data distributions. These issues are especially critical in real-world scenarios such as
medical diagnosis, where models must not only predict outcomes from heterogeneous
clinical data (e.g., images, text, and signals), but also provide reliable uncertainty esti-
mates to support decision-making. Similarly, in applications like language generation or
scientific discovery, generating plausible yet controllable outputs under data sparsity or
structural ambiguity remains a persistent challenge.
To address these problems, deep variational learning has emerged as a powerful
framework that combines the strengths of variational inference with the representational
capacity of deep neural networks. This approach enables scalable, uncertainty-aware

modeling of complex data, offering a principled yet flexible foundation for tasks such

1



CHAPTER 1. INTRODUCTION

as generative modeling, anomaly detection, and semi-supervised learning. Within this
paradigm, Deep Variational Generative Models (DVGM) have been developed to extend
conventional architectures like VAEs, aiming to tackle problems such as hierarchical
representation, dynamic inference, and multimodal generation with enhanced fidelity
and interpretability.

The development of deep generative models has undergone significant advancements,
evolving from foundational models like Variational Autoencoders (VAEs) [76] to advanced
frameworks such as Diffusion Models (DMs) [62, 131-134, 136], Bayesian Flow Networks
(BFNs) [54], and Flow Matching [5, 95, 96]. These models have demonstrated exceptional
capabilities in modelling high-dimensional data, showing robust performance across a
wide range of applications, including machine learning, data analysis, and computer
vision. Deep generative models are now widely used in tasks such as density estima-
tion, modelling sequential and tabular data, image data editing for computer vision,
and representation learning. Each of these advancements has contributed to improved
accuracy and interpretability in complex data distributions, thus enhancing the capacity

of generative models to deliver impactful results across various domains.

1.2 Motivation

DVGMs are integral to modern data modeling, enabling powerful inference and genera-
tion capabilities across high-dimensional and complex data domains. However, achieving
a seamless integration of inference and generation within DVGMs remains challenging.
In particular, DVGMs face inherent trade-offs in balancing these dual tasks, with notable
gaps between amortized inference and the capabilities of deep learning frameworks.
Additionally, DVGMs encounter difficulties in reliably capturing intricate data repre-
sentations and generating accurate samples under varied data conditions. These issues
limit the robustness and versatility of DVGMs in practical applications, such as anomaly
detection, structured image editing, and time series analysis, where models must be
flexible, adaptable, and highly accurate. Thus, there is a pressing need to advance DVGM
architectures to better address the intricate dynamics between inference and generation.

To advance the theoretical and practical potential of DVGMs, this thesis identifies

five overarching challenges that are pivotal to enhancing their effectiveness:

1. how to establish a flexible framework within DVGMs to dynamically balance

inference and generation tasks,
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2. how to develop reliable mechanisms for DVGMs to accurately represent and disen-

tangle latent factors in complex image data,

3. how to improve DVGM robustness when inferring representations in time series

data environments with sparse or noisy signals,

4. how to enhance the adaptability of DVGMs in capturing diverse latent structures in

discrete and continuous data for more reliable inferences across varied conditions,

5. how to facilitate the generation of meaningful, structured representations in image
data that support both interpretability and utility in downstream tasks, and how
to enable fine-grained, adaptable control in generation processes for image data to

meet specific semantic demands within the latent space.

This thesis offers an in-depth exploration of these challenges, proposing innovative
solutions aimed at strengthening the integration of inference and generation in DVGMs

and extending their applicability across a broader range of complex, real-world tasks.

1.3 Research Questions and Objectives

This thesis aims to develop novel theoretical and algorithmic frameworks to improve the
balance of inference and generation in Deep Variational Generative Models (DVGMs),
with a particular focus on enhancing adaptability, robustness, and semantic quality
across a range of complex data types. The research is guided by the following questions
and corresponding objectives:

RQ1. How can evolutionary mechanisms balance inference and generation
in DVGMSs? Balancing inference and generation is critical to effective DVGM training.
Existing approaches rely on static hyperparameters, often leading to KL vanishing and
suboptimal representations. To address this, we propose an evolutionary VAE (eVAE) that
applies variational genetic algorithms to dynamically fine-tune this balance, enabling
the model to adapt to different data structures without manual intervention.

RQ2. How can DVGM calibrate inference to separate disentangled and
coupled representations? Many existing models suffer from entangled latent factors,
reducing interpretability and stability. To tackle this, we introduce Contrastive Copula
VAE (C?VAE), which employs contrastive learning and a self-supervised classifier to

refine disentangled representations and mitigate coupling.

3
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RQ3. How can weak augmentation improve inference robustness in DVGMs
for anomaly detection? Sparse and noisy anomalies in time series data challenge
DVGM inference. To overcome this, we develop a Weakly Augmented VAE (WAVAE)
that integrates weak augmentation and contrastive learning to enhance the model, Ads
anomaly sensitivity and reconstruction accuracy.

RQ4. How can DVGMs enhance inference in complex parameter spaces for
better generation? Modeling high-level semantics from both continuous and discrete
data requires flexible latent structures. We address this by proposing ParamReL, a
framework that extracts semantic representations directly from parameter spaces using
progressive encoding, improving generative accuracy and adaptability.

RQ5. How can progressive inference facilitate low-dimensional generation
in diffusion models? Diffusion models often struggle with compact latent representa-
tions. To solve this, we introduce ProgDiffusion, a diffusion-based model incorporating
a self-encoding mechanism to generate timestep-specific semantic representations for

efficient, structure-aware generation.

1.4 Research Innovations

This thesis aims to advance Deep Variational Generative Models (DVGMs) by enhancing
their adaptability and robustness across diverse data types and application scenarios.
The main contributions of this study are summarized as follows:

Innovation 1.

This study pioneers an evolutionary mechanism within DVGMs, enabling a dynamic
balance between inference and generation that is adaptable throughout training. This
innovation increases the adaptability of DVGMs to various data structures and tasks
by automatically adjusting model trade-offs, thereby improving their robustness across
different application contexts without manual hyperparameter tuning.

Innovation 2.

To address the limitations in handling complex image data, this research introduces a
Contrastive Copula VAE (C2VAE) that utilizes contrastive learning to separate disentan-
gled from coupled latent factors. This approach strengthens the inference process within
DVGMs, improving their capacity to manage high-dimensional image data by enhancing
the stability and clarity of latent representations, which is essential for image-based
applications.

Innovation 3.
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This study introduces a Weakly Augmented VAE (WAVAE) specifically designed to
enhance inference robustness in time series anomaly detection. By incorporating weak
augmentation and self-supervised learning, WAVAE demonstrates an advanced ability
to handle noisy and sparse signals in time series data, making it more adaptable to
real-world anomaly detection scenarios where data quality and density vary.

Innovation 4.

A novel framework, ParamReL, is developed to extract meaningful semantics from
complex parameter spaces, enabling DVGMs to process both discrete and continuous
data effectively. This framework advances DVGM adaptability by allowing progressive
encoding directly in parameter space, ensuring accurate and context-aware generation
that supports a broader range of data types and applications.

Innovation 5.

This thesis proposes a Progressive Diffusion model, ProgDiffusion, which leverages
progressive inference to generate low-dimensional semantic representations in diffusion
models. By aligning latent changes over time, this approach allows DVGMs to generate
structured and efficient representations, enhancing their suitability for applications

requiring compact representations, such as data synthesis and feature extraction.

1.5 Research Contributions

This thesis makes four primary contributions to the advancement of Deep Variational
Generative Models (DVGM), addressing theoretical and practical challenges related to
inference, generation, and generalization across data types and architectures.

Contribution 1. A Generalized Framework for DVGM Design.

Despite the success of VAEs and related models, existing DVGM research often
focuses on narrow architectural variants without a unifying structure for handling
complex data distributions. This thesis proposes a comprehensive and generalizable
DVGM framework that unifies variational inference with deep generative modeling,
integrating various mechanisms such as latent diffusion, copula-based representation,
and Bayesian flow. This framework provides a foundation for systematically designing
and comparing DVGMs under a consistent set of principles, bridging gaps between
separately developed methods and enabling scalable modeling across tasks.

Contribution 2. Novel Inference-Centered DVGM Architectures.

Effective variational inference in deep models remains a core challenge, particularly

in dynamic or structurally complex data scenarios. To address this, several novel models
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are proposed:

1) eVAE, an evolutionary variational autoencoder, introduces a genetic optimization
mechanism that adaptively balances the trade-off between inference and generation,
overcoming issues like KL vanishing and enhancing disentangled representation learn-
ing.

2) ProgDiffusion rethinks diffusion-based generation by embedding a progressive self-
encoding mechanism into the latent space, enabling low-dimensional and semantically

consistent generation, especially in high-dimensional domains.

3) ParamReL extends inference capabilities to the parameter space, enabling DVGMs
to directly learn semantic representations from model parameters and improve general-

ization across both discrete and continuous data domains.
Contribution 3. Cross-Domain Application and Data Adaptability.

Most DVGM models are benchmarked on narrow data types (e.g., images), limiting
their applicability. This thesis systematically adapts the proposed models to multiple

domains:

1) For image data, C2VAE introduces a contrastive copula-based design that disen-
tangles latent factors while mitigating coupling, improving interpretability in vision

applications.
2) For time series anomaly detection, WAVAFE incorporates weak augmentation and

contrastive learning to strengthen inference robustness under sparse and noisy anomaly

conditions.

3) For discrete and textual data, both ParamReL and eVAE are adapted to handle
structural irregularities, demonstrating the DVGM framework,Ads versatility beyond
continuous domains.

Contribution 4. Practical Scalability and Downstream Utility.

A growing concern in modern Al is scaling generative models while maintaining

interpretability and control. This thesis explores how the proposed DVGM architectures

can scale to larger models and be adapted for downstream tasks:

1) Design strategies are introduced to extend DVGMs to deeper networks and broader

datasets while preserving inference stability.

2) Applied studies,Aisuch as image editing via region control and time series anomaly
detection,Aidemonstrate how the proposed methods improve downstream performance,

offering practical benefits in real-world Al systems.
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1.6 Research Significance

The theoretical and practical significance of this thesis is summarized as follows:

1.6.1 Theoretical Significance

This thesis makes significant contributions to the theoretical foundation of DVGMs
by advancing model adaptability across various inference and generation tasks. The
theoretical innovations in this research have strong potential to guide future studies
in generative modeling, especially in the fields of structured representation learning,
anomaly detection, and flexible image editing.

The findings on evolutionary mechanisms in DVGMs provide a new framework for
balancing inference and generation in generative models, introducing a theoretical
basis for dynamic adaptability in generative tasks. This framework encourages future
researchers to explore more adaptive balancing methods, enhancing DVGM performance
in diverse data environments.

This thesis also introduces novel inference mechanisms tailored to different DVGM
architectures, including VAEs, diffusion models, and Bayesian flow networks. By ex-
amining the theoretical properties of contrastive and progressive inference methods,
this research lays a foundation for improved representation disentanglement and low-
dimensional generation, expanding the capabilities of DVGMs in data synthesis and
latent structure learning.

Further, this research offers a structured approach to enhancing DVGM inference
across data types, such as visual, time series, and discrete data. Theoretical advance-
ments in handling these diverse data types with tailored models provide a foundation for

more robust DVGMs, inspiring further studies on data-type-specific generative modeling.

1.6.2 Practical Significance

The practical significance of this thesis lies in its potential to address the increasing
demand for adaptable generative models across a variety of real-world applications. The
proposed DVGM frameworks and models are validated on real-world datasets, ensuring
that the methods developed in this research can be applied directly to practical problems
in fields such as computer vision, natural language processing, and anomaly detection.

In particular, the new DVGM models for visual data, time series anomaly detection,

and flexible image editing extend the applicability of generative models in areas where
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data diversity and noise present significant challenges. Practitioners can leverage these
DVGM frameworks to improve performance in applications like medical imaging, pre-
dictive maintenance, and personalized content generation, where model robustness and
adaptability are critical.

Moreover, this thesis demonstrates how DVGM architectures can be scaled for large-
model design and adapted for specific downstream tasks. The findings offer a practical
roadmap for deploying DVGMs in complex real-world scenarios, emphasizing the models’
flexibility, scalability, and effectiveness in supporting a broad spectrum of machine

learning applications.
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Figure 1.1: Thesis structure

1.7 Thesis Structure

The structure of this thesis is shown in Figure 1.1, and the chapters are organized as

follows:
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CHAPTER 1 provides an introduction to the research background, motivation,
research questions, objectives, and contributions of this thesis.

CHAPTER 2 reviews related work on Deep Variational Generative Models (DVGM),
discussing existing methodologies, applications, and limitations, thereby establishing
the foundation for the contributions in this thesis.

CHAPTER 3 presents eVAE: Evolutionary Variational Autoencoder, a novel DVGM
that applies evolutionary mechanisms to dynamically balance inference and generation.
This chapter addresses RQ1 and aims to achieve RO1 by enhancing model adaptability
without the need for static hyperparameter tuning.

CHAPTER 4 introduces C2VAE: Gaussian Copula-based VAE, which differentiates
disentangled from coupled representations through a contrastive posterior. This model is
designed to improve representation stability in complex image data, addressing RQ2 to
achieve RO2.

CHAPTER 5 presents the Weakly Augmented Variational Autoencoder (WAVAE) for
anomaly detection in time series data. By integrating self-supervised learning, WAVAE
strengthens inference robustness and improves sensitivity to anomalies. This chapter
addresses RQ3 to achieve RO3.

CHAPTER 6 introduces ParamReL: Learning Parameter Space Representation via
Progressively Encoding Bayesian Flow Networks. This model is designed to enhance
inference across complex parameter spaces, supporting DVGM applications in both
discrete and continuous data domains. This chapter addresses RQ4 to achieve RO4.

CHAPTER 7 proposes ProgDiffusion: Progressively Self-encoding Diffusion Models, a
novel DVGM that facilitates low-dimensional and timestep-specific semantic generation.
This approach enhances DVGM efficiency and aligns latent representations with diffusion
processes, addressing RQ5 to achieve ROS5.

CHAPTER 8 summarizes this thesis’s findings, discusses the research’s implications,

and suggests potential directions for future work.

1.8 Notation and Description of Symbols

In the development of Deep Variational Generative Models (DVGM), a clear and consis-
tent notation system is essential for understanding the mathematical formulations and
conceptual elements. Table 1.1 provides a comprehensive summary of the symbols and
their corresponding descriptions used throughout this work. The symbols are categorized

into six main groups:
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* Losses and Divergences: This category includes various loss functions () and
divergence measures (a®, 8°,yP) that are critical for optimizing the DVGM frame-
work. These metrics help balance the reconstruction accuracy, latent representation

quality, and model robustness.

* Data and Latent Variables: These symbols (X, z, etc.) represent the input data, its
variations (e.g., X;,Z,), and corresponding latent variables. They are foundational

for describing how data is processed and represented within the generative model.

¢ Statistical Parameters and Functions: This group (u,o, p, etc.) defines statisti-
cal properties such as mean, variance, and correlation, which are used for modeling

distributions and quantifying uncertainty in the latent space.

* Distributions and Functions: Key probability distributions (p1,q,7T) and math-
ematical functions (W, 7T'C) are included here, highlighting their role in variational

inference and generative processes.

¢ Evolutionary Parameters and Strategies: This section introduces evolutionary
computation concepts (chromosomes,&,Pr.,Pr,,), which are integrated with the
variational generative framework. These parameters and strategies enhance the

exploration of solution spaces and the model’s adaptability to complex tasks.

* Miscellaneous Symbols: These symbols (N,B, f, g, etc.) capture additional con-
cepts, including data batch properties, dimensionality, and specific encoding or
decoding functions. They ensure a complete and versatile representation of the
DVGM process.

This detailed breakdown of notations facilitates a structured understanding of the
theoretical framework and its practical implementations. By standardizing these symbols,
the presented model maintains clarity and consistency, enabling easier comprehension

and replication of the proposed methods.

Table 1.1: Symbols and their descriptions in DVGM.

Notions Descriptions

Losses and Divergences

Continued on next page
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Notions Descriptions
& Loss function “r Reconstruction loss
£r Raw loss »? Augmented loss
<1 Inference loss a Coefficient of total correlation
aP a-divergence B Coefficient of KL divergence
Bt) Noise schedule BP pB-divergence
Y Coefficient of mutual information | P y-divergence

Data and Latent Variables
X Data/input variable X Reconstructed data/input vari-
able
Xy t-times data/input variable y Labels of sample
z Latent variable Z, Raw latent variable
Z, Augmented latent variable Z t-times latent variable
Zc Coupled representation z;,z.  Positive sample representations
z'/ Negative sample representation
Statistical Parameters and Functions
u Mean value Ue Coupled mean variable
o Variance value Oc Coupled variance value
z Covariance matrix P Correlation matrix
% Degree of freedom T Temperature parameter
Distributions and Functions
PI Input distribution Po Output distribution
q Posterior distribution v Classifier
I Mutual information TC Total correlation
Time step TC Cumulative distribution function
Evolutionary Parameters and Strategies

chromodcheemosome variables {B:} Beta coefficients
c Information bottleneck & Variational evolutionary learner
it Fitness function Pr.  Crossover rate
Pr,,  Mutation rate 7 Evolving distribution

Continued on next page
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Notions ‘ Descriptions

M Variational mutation strategy ‘
Miscellaneous Symbols
N Number of samples B Batch samples
K Number of negative samples D Dimensions of input
f Encoder function g Decoder function
F Multivariate cumulative distribu- | F~1 Inverse of cumulative distribution
tion

\% Value function () Copula function
r Density ratio h Bayesian update function
Uy Hyper feature at ¢-times H Entropy
€ Noise variable € ~ A4(0,I) n Threshold value of anomaly score
) Noise model parameterized by ¢ | n°V*2  Hyperparameter of SBX
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CHAPTER

DEEP VARIATIONAL GENERATIVE MODEL

Chapter Overview. This chapter introduces the foundations and advancements of Deep
Variational Generative Models (DVGM), a family of models that combine the strengths

of variational inference and deep learning. The chapter is structured as follows:

* Section 2.1 provides a high-level overview of DVGMs and their representative

architectures, including VAEs, diffusion models, and Bayesian Flow Networks.

* Subsequent sections examine key technical components: trade-offs between infer-
ence and generation, representation learning, latent space modeling, and cross-

modality adaptability.

* We also review the application of DVGMs in time-series modeling, anomaly detec-

tion, and self-supervised learning.

* The chapter concludes with a discussion on research gaps in current DVGM ap-

proaches, motivating the novel methods proposed in the following chapters.

2.1 Deep Variational Generative Model Overview

Generative Al has rapidly emerged as a transformative area in machine learning, pro-
viding frameworks for data generation and representation that mimic real-world com-
plexity [53, 84, 106, 115, 136]. Within this domain, Deep Variational Learning (DVL) [54,

62, 76] represents a powerful integration of deep learning and variational inference

13
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techniques. This fusion benefits from deep networks’ representational power and the
ability of variational inference to handle uncertainty. DVL thus enables models like the
Variational Autoencoder (VAE) [120, 130, 145, 146], Flow-based Models [16, 122], and
Diffusion Models [39, 123, 131] to model complex distributions. These models can be
applied across diverse tasks, from image generation to anomaly detection, thanks to

their flexibility and robustness.

2.1.1 Variational Autoencoders

The VAE is a foundational model in DVGM, designed to address limitations in au-
toencoders such as the lack of smooth representation spaces [140]. Through learning
continuous and smooth distribution representations p(x) over latent variables z, VAEs
enable effective encoding and decoding that preserves data structure. The encoder, pa-
rameterized by q4(z | x), and the decoder, which approximates pg(x | 2), allow VAEs to
reconstruct data and generate new samples by sampling from the learned distribution.
This framework, leveraging the Stochastic Gradient Variational Bayes (SGVB) estimator
and the reparameterization trick, enables efficient optimization of both generative and
inference parameters, leading to tractable gradients. The VAE objective function, typi-
cally optimized via ELBO, balances data reconstruction and KL divergence, making it

suitable for generative tasks where capturing latent structure is critical [45, 52].

VAEs mitigate autoencoder issues like sparse representation [140] by learning con-
tinuous and smooth representation distribution p(x), x € & from observations & over
latent variables z. After learning an encoding distribution g4(z | x) in encoding neural
networks, VAEs apply variational inference to approximate the posterior distribution
po(x | 2). Learning tasks such as reconstructed and generated outputs can then be sam-
pled from this learned distribution in a generative process. With the SGVB estimator and
reparameterization trick, the gradients become tractable, and the generative parameters
0 and inference parameters ¢ are learnable. The objectives of VAEs can be converted to
ELBO with the expectation over empirical distribution pgst, of the data towards both

reconstruction %g and inference %1 [45, 52].

ZLELBO = Ex~pypa [Eq¢(z|x) [log po(x | 2)]
(2.1) -KL(g¢(z | ®)p(2))]
= ExNPdata .,%R + ‘££I
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2.1.2 Diffusion Models

Diffusion models are a recent addition to the DVGM family, excelling in generating
high-quality, diverse data by modeling data transformations as a sequence of denoising
steps [39, 123, 131]. These models leverage stochastic processes to iteratively transform
noise into data, resulting in clear, sharp images or structured data outputs. Unlike
other generative models, diffusion models are particularly suitable for tasks requiring
high fidelity in generated samples, such as image generation and speech synthesis. By
optimizing for different noise levels and introducing regularization techniques, diffusion
models achieve both flexibility and precision, handling high-dimensional data effectively.
DDPM Denoising Diffusion Probabilistic Models (DDPM) [62] introduce diffusion and
denoising processes to generate high-quality samples. Formally, let xy denote the original
data and x7 denote the pure Gaussian noise. The forward diffusion process is defined as

a series of diffusion steps t € {1,...,T}, where noise is added at each diffusion step ¢:

(2.2) q(X¢1X4-1) = N (X451 1= B X¢-1, B D),

B: is a variance schedule that controls the amount of noise added at each step. The goal
of the diffusion process is to gradually transform data x( into noise x7 through this
iterative procedure.

The reverse process aims to revert the noisy data x7 back to the original data x(
by step-by-step denoising. This is achieved by learning a series of denoising steps that

approximate the reverse transitions:
(2.3) Po(X-11x1) = N (x;-1; po(x1,1),07 1),

where ug(-,-) is a neural network parameterized by 6 to predict the mean of the reverse
process, and O’? is the variance. The entire reverse process can be optimized by minimizing
the KL-divergence of KL[q(X¢,X1.7) || pe(X0,X1.7)]. This objective encourages the model
to learn accurate reverse transitions, thereby enabling the generation of high-quality
samples from pure noises.

DDIM [131] accelerates sampling process of DDPM by designing a deterministic

sampling step as:

X X
(2.4) q(Xo-11X2,%0) = N (V@Tx0 + /1 arg Y20 ),
V1-a;

which keeps the form q(x;|xq) = A (\/a;X¢,(1 — a;)I). Since Markov property is not
required in the diffusion process, DDIM may use a subset of denoising timesteps to speed

up the sampling procedure.
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Diffusion autoencoders (DAE) Diffusion models are incapable of obtaining mean-
ingful semantic representations through its training process since the intermediate
latents {x;}; have the same size of observations xg. Thus, diffusion autoencoder (DAE)
methods [118, 150] use an encoder q4(z|X¢) to first encode observations xg into a se-
mantic representation z and then insert z into the denoising step of the reverse process
as pg(x;—1|/x¢,z). The entire reverse process can be optimized by minimizing the KL-
divergence of KL [q(Xo,X1.712)q 4(2|X0) | po(x0,X1.7)p(2)].

However, z captures static semantic representations but not align well with the
dynamic intermediate latents {x;};. More importantly, it would be almost infeasible to
utilize the trained encoder q4(z|x() to generate samples since sample x¢ is unknown in

the sample generation task.

2.1.3 Bayesian Flow Networks

Bayesian Flow Networks enhance flow-based models by integrating Bayesian principles
to model data uncertainties and structural dependencies [54]. In these networks, the
transformation between data distributions is governed by a series of invertible mappings,
allowing for precise control over data representations. Bayesian Flow Networks are
especially useful in fields where the data exhibits complex, structured dependencies,
such as in genomics or time-series forecasting. The Bayesian component allows the
model to capture both the uncertainty inherent in the data and the latent dependencies
between variables, providing an interpretable framework that can adapt to dynamic
data structures.

Bayesian Flow Networks (BFNs) [54, 135, 171] serve as deep generative models with
a primary objective to learn an output distribution for generating observations. The
distribution’s parameters are learned by a neural network, which takes the posterior
parameters of observations of inputs. Here, we try to understand BFNs from an alterna-
tive parameter perspective since these (posterior) parameters play a key role in BFNs.
BFNs involves concepts such as input distribution, sender distribution and receiver
distribution, making it less accessible to readers unfamiliar with BFNs.

Figure 2.1 shows T steps of training and sample generation in BFNs, similar to
diffusion models [62, 131]. To train BFNs, we minimize the divergence between the
ground-truth data distribution and the evolving output distributions over T steps. At
each step t € {T,...,1}, an intermediate (posterior) parameter 0, is first updated using
a Bayesian update function A(-) as 6; = h(0:.1,X;+1), where x;,1 is the observation at

step t + 1. 0; is then fed into a neural network () to form the parameters of output
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distribution, i.e., a decoder po(x;|¥(0;), for model training. After training, these interme-
diate output distributions can be employed to simulate observations during the sample

generation process, replacing the actual observations at each step ¢.

By working in the parameter space, BFNs can uniformly model continuous, discrete,
and discretized observations. For example, BFNs can use the mean of Gaussian dis-
tributions as parameter 6 to model continuous data or use the event probabilities of
categorical distributions as 0 to study discrete data (see detailed settings for distributions
in Table 2.1). However, BFNs cannot produce meaningful latent semantics capturing

high-level concepts in the mixed-type observations, such as hair colors in portrait images.

Table 2.1: Examples of detailed distribution formats in BFNs. 0.1 = {1, p;}l}). cate:
categorical distribution.

Data type p1(X¢10441) ps(Xs|xs; ) 0;=h(0s41,%;, )
Continuous data L/V(xt;utﬂ,ptj}l) ,/V(a?t;x,at_l) U = %

Discrete data Cat(xy; Il{ -1) N (& Kex, —ap,aKI) 0 = m%%
Data type po(x:16;) Pr(E: |y (0;), ay)

Continuous data 0(x; —w(0y)) N (X p(0y), a;l)

Discrete data Cat(softmax((6;))) Yrpolk;w( @) N (X aKep — ay,a: KI)

Conditional
Decoder

Figure 2.1: Our alternative understanding of Bayesian Flow Networks (BFNs). Each
step consists of a conditional decoder po(x:|y¥(8;)) (in blue rectangle) and a Bayesian
update function A(-) (in peach rectangle). In training BFNs, the dashed arrows between
the conditional decoder and {xt}?=1 are non-existent, as {xt}{=1 refers to observations.
During sample generation, these dashed arrows become solid, representing that the
decoder generates x; as part of the sampling process.
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2.2 Applications of DVGM on Multimodal Data

The DVGM framework is highly adaptable to various data modalities, making it a
versatile tool for modeling structured and unstructured data. By capturing complex
latent spaces and managing uncertainty, DVGM enables sophisticated representations

across diverse applications.

2.2.1 Trade-off between Generation and Inference

To solve Evidence Lower Bound (ELBO), the inference model qy(z|x) can be trained
jointly by maximizing the ELBO to acquire reasonable compression for task fitting.
However, a weak capacity of the decoder and the variety of data could make the expres-
sive posterior favor task fitting rather than optimal inference [188]. For example, in
variational language generation, the decoder built on autoregressive models such as
LSTM and PixelCNN can generate language samples by the autoregressive property
rather than the posterior-based latent variables [157]. The VAE degenerates to an au-
toregressive model where the KL divergence between posterior and prior reaches zero
quickly during training. This results in KL vanishing and poor generalization in test
for the lack of diversity. The approaches of learning orthogonal transformation of priors
with the same distribution by the decoder [71, 107] may sacrifice accurate inference in
optimal representation and generalization of fitting the data. Other research attributes
the training conflict to the inherent property of bound optimization. For example, under

a solid factorial assumption about the posterior distribution [98], i.e.,
(2.5) p(x,z)=px|2)[[p(z:),
i

the ELBO constraining the variational samples favors the data fitting [18] but fails to
maximize the probability mass on log-likelihood. In addition, the vanilla VAE optimizer
strengthens the disjointness between q(z|x;), i.e., y; — c0,0; — 0", to separate the
log-likelihood concentrated on each sample, resulting in maximizing the mass of joint
distribution [188].

One way to address the above issues is to tighten the log-likelihood lower bound for
correct variational approximation in posterior [7, 40, 81, 124, 148], prior [77, 141] and
decomposition of ELBO [45, 188] under some mild assumptions. For example, f-VAE
adds the hyper-parameter 8 to weigh the £k, term. Then, ELBO minimizes Zg to the
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convergence of data fitting collectively with the regularization %£; by varying S:

ZLELBO =E x~p 410 [Eq¢(zlx) [log po(x | 2)]

(2.6) —BDk1 (q4(z | %) p(2))]
=E, [D%R + ﬁgl] .

~Pdata

B-VAE introduces some fundamental limitations, which trigger various follow-up
research. InfoVAE introduces a scaling parameter A on the KL-term and converts the
objective to [188]:

oD LrLBo =al (x;z) — D1, (94(z | X)| p(2))

—E ) [Drr (902 | X)Ipo(xllz))],
where I, is the mutual information with weight @ and a + 1 -1 =0. This linear tuning
on the KL shows limitation to dynamic uncertainty.

Further, conditional VAE (CVAE) introduces an initial guess as a conditional variable
into the objective function for multimodal data. The SA-VAE involves a cyclical annealing
schedule to split the training to multiple cycles starting at f = 0 and progressively
increases f until =1 to reduce the KL vanishing [49]. In ControlVAE, the PID control
compares the KL divergence with a set point, with their difference as feedback to
the controller to tune the hyperparameter f(¢) [127]. ControlVAE thus optimizes KL
dynamically but is constrained by the PID controller which follows a separate tuning
mechanism from the VAE itself.

The existing work leaves gaps for building an approximate weight allocation between
reconstruction and inference, tuning external hypberparameters within the VAE working
mechanism and handling these issues in a dynamic manner over an evolutionary learning
process. Our eVAE addresses these gaps by incorporating the variational genetic learning
into balancing inference and generation and evolutionarily involving their effect into

adjusting the VAE learning behaviors toward better uncertain tradeoff learning.

2.2.2 Representation Learning

DVGM provides a robust framework for representation learning by capturing complex
data structures through latent space transformations. By training on disentangled
representations and leveraging contrastive methods, DVGM learns independent and
semantically meaningful features, making it ideal for applications such as image clas-

sification, object detection, and semantic segmentation [15]. Techniques like g-VAE,
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InfoVAE, and FactorVAE add constraints that encourage disentanglement, allowing the
DVGM to isolate independent factors within the data. This disentanglement enables more
interpretable features, which are crucial in applications where feature interpretability is

essential for downstream tasks.

Unsupervised disentangled learning in VAEs aims to learn hierarchical distribution
dependencies between hidden features toward inducing hidden units independently
discriminative to generative factor variances, thus capturing those explanatory features
in the hidden space [15]. This requires meeting a factorizable and diagonal assumption
on estimating posterior distributions in VAEs [18, 76] to generate decoupled features by
stochastic variational inference. To eliminate the entanglement between hidden features,
the TC and dual total correlation (DTC) are incorporated into evidence lower bound
(ELBO) under the factorization assumption. Specifically, penalizing the TC and DTC
terms aims to regularize the posterior estimation toward discarding those dependent fea-
ture pairs or clusters, respectively. Accordingly, the recent research focuses on accurately
estimating these TC terms. For example, f-TCVAE [27] derives a decomposed ELBO
by the Monte Carlo (MC) estimation iteratively over samples. HFVAE [45] constructs
an MC-based estimator by partially stratified sampling. These methods suffer from the
MC-based scalability issue and inductive bias (such as relating to the batch size). Further,
FactorVAE [74] involves an adversarial mechanism to train a density ratio-based ELBO.
GCAE [178] captures dependencies in feature groups by specifying discriminators on
specific DTC terms. In contrast, C2VAE involves a new attempt for disentangled learning

to differ disentangled from coupled features and then their representations.

Contrastive learning enables self-supervision. One typical example is to contrast
similar with dissimilar data points by a triplet loss to encode and discriminate semantic
features in a hypothesis space for representation learning [57]. Another recent topic is to
train conditional generative models in a contrastive manner to exploit the correlations
between data samples, which could be of various types. cVAE [1] learns a foreground re-
construction by eliminating the background information among dependent feature pairs.
C-VAE [35] learns a latent variable indicator by a minority/majority loss to address the
class imbalance in downstream tasks. ContrastVAE [151, 163] aggregates the posterior
from two different views of comments for a sequential recommendation. NCP-VAE [9]
trains an optimal prior for sampling with a contrastive loss in an adversarial way. These
studies focus on reconstruction for specific learning tasks, but limited work contributes
to inference accuracy in VAEs. In contrast, C2VAE makes the first attempt to learn

and differ strongly vs weakly coupled features for contrastive disentangled-coupled
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representation disentanglement.

Copula functions [168] are introduced to deep neural networks for VDL, including
VAEs, variational LSTM (VLSTM) [165], where copula learns the dependencies between
hidden features. Copula-based VAEs and VLSTM integrate copula dependence model-
ing into variational inference to improve autoencoders and LSTMs. CopulaVAE [148]
replaces the collapsible ELBO with a Gaussian copula-based posterior to avoid the KL
vanishing in language modeling. Copula VLSTM [165] learns dependence degrees and
structures between hidden features for leveraging LSTM for sequential forecasting. [149]
adopts a Gaussian copula to model the correlations between discrete latent variables
for a conditional generation from a Bernoulli posterior. [125, 155] integrate a copula
function into LSTM to model the dependence for forecasting. Instead, C2VAE integrates
copula representations into contrastive classification to downplay those coupled features

for improved disentangled representation learning.

2.2.3 Time-Series Learning

Time-series data present unique challenges due to their temporal dependencies and
structural patterns. In this context, DVGM models such as Variational Recurrent Neu-
ral Networks (VRNN) and time-series-based VAEs capture sequential dependencies
by integrating meta-prior learning and recurrent structures [34, 137]. These models
enable anomaly detection, trend forecasting, and behavior prediction by capturing the
latent distributions over time, which is crucial for robust time-series modeling. Recent
extensions incorporate recurrent and attention-based structures, enhancing DVGM’s
ability to model long-term dependencies and contextual variability, which are essential

for applications in finance, healthcare, and climate modeling.

2.2.4 Implicit Data Fitting by Non-probabilistic Generative
Models

Non-probabilistic generative models for Time Series Anomaly Detection (TSAD) aim to
reconstruct data robustly. Prior studies concentrate on optimizing this reconstruction
process to match the characteristics of time-series data via the design of deep network
embeddings. Specifically, [25] and [73] implemented an autoencoder (AE) framework,
deploying symmetric encoder-decoder structures and assembling one to multiple CNN-
based encoder-decoders for the reconstruction of sequence data. Furthermore, [190]

utilized a generative adversarial network (GAN)-based reconstruction for anomaly de-
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tection, implicitly fitting a likelihood function for normal data through an adversarial

mechanism.

2.2.5 Explicit Data Fitting by Probabilistic Generative Models

Unlike AE-based models that learn an encoding-decoding process for a dataset, VAE-
based models excel in identifying continuous representations within a low-dimensional
space. These representations, characterized by their smooth and continuous nature in
the hidden space, are essential for preserving probabilistic properties during sampling.
Consequently, VAEs can reconstruct samples with increased sharpness and interpretabil-
ity, outperforming their AE-based counterparts. In contrast to GANs, VAEs explicitly
model data likelihood distribution and provide additional constraints on the posterior
distribution based on a preset prior, making them more suitable for modelling data in
dynamic areas and designing end-to-end anomaly detectors. For instance, [93] utilized
a Gaussian mixture model (GMM) as data likelihood distribution, and [164] employs a
dynamical prior over time.

Issues in VAE based TSAD: VAEs tend to sacrifice representation [187] for data
fitting. In that case, the induced latent hole will lead to the lack of robustness. At the same
time, the modeling failure in learning the likelihood of the sequence data exacerbates
its robustness issues. Specifically, VAE-based anomaly detection typically employs a
convolutional neural network (CNN) architecture for data encoding. While effective for
image data, this approach often fails to capture the temporal characteristics of time-
series data, such as seasonality, periodicity, and frequency domain features, through
CNN encoding filters. The shallow fully connected networks (FCN) are employed in VAEs
as substitutes. As a result, the naive structure cannot capture varying dependencies,
and compared to image data, the sequences in training are relatively small. Due to the
modeling and data issues, these generative models cannot converge to optimal.

Advances in VAE-based TSAD: To remedy the above issues, the traditional vari-
ational framework has been upsurged by integrating the meta-prior into generative
modelling. For instance, a variational recurrent neural network (VRNN) establishes a
model for the VAE inference, prior estimation, and reconstruction processes by capturing
the temporal dependencies between intermediate variable k in the deterministic model
and input variables x in the recurrent neural network. This approach and its variants
[34, 72, 137] effectively utilize VAE to learn and model the latent distribution of data
while maintaining temporal dependencies in the recurrent neural network. On the other

hand, the variational representation can be designed. [89] utilizes prototype-based ap-
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proaches to define latent representations for multivariate time series (MTS) and learn a

robust likelihood distribution of normal data.

2.2.6 Self-supervised Learning on Time Series Data in

Deterministic and Generative Models

In deterministic models, augmenting time-series data or their representations, combined
with specific self-supervised algorithms, can provide a sufficient depth for training in
downstream tasks. For instance, in prediction tasks, [156] encoded time-series segments
in both time and frequency domains to obtain positive and negative sample pairs, us-
ing contrastive learning to capture the seasonal-trend representation of time-series
data. [64] constructed positive pairs with multi-granularity time-series segments and
corresponding latent variable representations, enhancing fine-grained information for
prediction by maximizing mutual information.

In classification tasks, [86] formed pairwise representations of global and local in-
put series, obtaining informational gains through adversarial learning. For anomaly
detection tasks, [169] acquired spatio-temporal dependent representations suitable for
downstream tasks. [180] proposed a multi-layer representation learning framework
to obtain consistent, contextual representations of overlapping segments, designing a
contrastive loss by decomposing overlapping subsequences in both instance and temporal
dimensions to obtain positive and negative sample pairs. Additionally, [173] employed a
dual bilinear process at the encoding level to capture positive and negative samples of
time sequences, thereby capturing both long and short-term dependencies.

In contrast, Self-Supervised Learning (SSL) based on time-series generative models
typically focuses on data and representation augmentation as a generative approach. For
instance, AE-based methods such as those presented in [29, 129, 152, 184] leverage the
AE architecture for data augmentation. Similarly, diffusion-based approaches [6, 90, 154]

employ diffusion processes to augment time-series data and representations.

2.2.7 Latent Space Learning

DVGM models provide flexible latent space structures, which can be adapted to capture
hierarchical, structured, and disentangled representations for both continuous and
discrete data. Hierarchical VAEs, for example, allow for the learning of nested latent
spaces, supporting applications where complex dependencies exist, such as in natural

language processing and hierarchical clustering. Through architectures like VQ-VAE
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and Ladder VAE, DVGM can capture varying levels of abstraction within the data, which
is essential for tasks requiring multi-level feature extraction, such as language modeling,
speech synthesis, and bioinformatics [75, 130].

Generative representation learning models can be considered as a variant of La-
tent Variable Models (LVMs). Latent Variable Models [46] which aim at learning the
joint distribution p(x,z) over data x and latent variables z present efficient ways for
uncovering hidden semantics. In LVMs, the joint distribution p(x,z) is usually decom-
posed as: p(x,z) = p(x| z)p(z), where p(z) represents prior knowledge for inference [143],
thus facilitating learning the conditional distribution p(x | z). Among LVMs, Varia-
tional AutoEncoders (VAEs) [76] and diffusion models [62, 131] are two representative
approaches [82].

In VAEs, latent variables z is obtained through an encoder network q(z|x), whereas
observations are reconstructed through a decoder network pg(x|z), with ¢ and @ being
the encoder and decoder parameters.

The dimensions of z are usually much smaller than those of x, denoted as |z| < [x]|,
such that redundant information is effectively removed and the most semantically
meaningful factors are abstracted [100]. VAEs are popular for downstream tasks like
disentanglement [44, 61, 66, 174], classification [138, 142], and clustering [68, 167].

On the other hand, diffusion models [62, 131] first use T diffusion steps to transform
observation x into a white noise x7 and then use T denoising steps to reconstruct the
observation. Diffusion models have obtained impressive performance in the fidelity and
diversity of generation tasks. However, they might be unable to obtain meaningful latent
semantics since the dimensions of x and x7 are the same as |x| = [x7|. [118, 150] have
attempted to integrate a decodable auxiliary variable z to enable diffusion models to
obtain low-dimensional latent semantics. However, they have not overcome issues like

the slow training speed inherent to the diffusion and reverse processes.

2.2.8 Discrete and Continuous Data Modeling

DVGM models have shown effectiveness in handling mixed data types, such as discrete
and continuous data. Recent advances incorporate copula-based modeling and discrete
encodings, which facilitate learning in non-smooth latent spaces. For discrete data,
models like VQ-VAE employ codebook structures to encode discrete representations,
supporting applications in text generation and symbolic reasoning. For continuous data,
hierarchical structures like NVAE and ParamReL improve posterior approximation
and enhance generative capacity [130, 148]. This adaptability allows DVGM to handle
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applications in natural language processing, medical diagnosis, and other domains where

both discrete and continuous variables coexist.

Recent advances have demonstrated that diffusion models [62, 131] are capable of
generating high-quality data. Nonetheless, compared to the autoencoder framework,
the intermediate outputs in diffusion stages are high-dimensional and lack smoothness,
making them unsuitable for representation learning. Contemporary research focuses on
encoding a conditional latent space to acquire low-dimensional semantic representations.
However, those observations-based models [118, 150], such as VAEs and diffusion models,

exhibit limitations when applied to discrete data.

Deep hierarchical VAEs have seen progress in capturing latent dependence structures
for encoding an expressive posterior, statistically or semantically. VQVAE-based [120,
146] models have local-to-global features-based explanatory hierarchies at the image
level, forming a codebook-based discrete posterior. In [130, 141], recursive latent struc-
tures in multi-layer networks form an aggregated posterior. NVAE [145] demonstrates
that depth-wise hierarchies encoded by residual networks can approximate the poste-
rior precisely despite using shallow networks. Unlike the observation-based encoder,
where the information flow between input and latent is maximized in encoding-decoding
pipelines in the sample space, ParamReL uses progressive encoders in the parameter
space to capture the dynamic semantics.

Pre-trained diffusion models [123], [14] have shown that the upsampling features
from a U-Net can capture semantic information useful for downstream tasks. This dis-
covery has sparked increasing research in leveraging these upsampling features of pre-
trained diffusion models across various applications, including classification [108, 159],
semantic segmentation [14, 189], panoptic segmentation [166], semantic correspon-
dence [59, 101, 139, 182], and image editing [60, 144]. In most of these approaches,
identifying the optimal denoising step and upsampling layer is crucial for achieving high
predictive performance. These approaches do not suggest fundamental changes to model
architectures or training methodologies, leaving the specific architectural components
and techniques for learning useful semantic representations unclear. ParamReL uses

these discoveries to construct efficient self-encoders.

Chapter Summary

This chapter provided a comprehensive overview of Deep Variational Generative Models,

covering foundational architectures such as VAEs, diffusion models, and Bayesian Flow

25



CHAPTER 2. DEEP VARIATIONAL GENERATIVE MODEL

Networks, as well as their applications across diverse data types and tasks. Through our

analysis, several key limitations were identified:

¢ Existing models often struggle to maintain a stable trade-off between inference
accuracy and generative expressiveness, especially in dynamic or high-dimensional

settings.

* Representation learning remains constrained by challenges in disentanglement,
information collapse, and the lack of semantic interpretability in intermediate

latents.

* Current approaches inadequately support joint modeling of discrete and contin-
uous variables, limiting DVGM adaptability in real-world, heterogeneous data

environments.

* Most architectures are optimized for specific tasks or modalities, lacking a general-

izable and modular framework to unify design across domains.

These challenges motivate the development of novel, inference-centered DVGM
models introduced in the next chapters, which aim to improve adaptability, robustness,

and semantic expressiveness in both generative and downstream tasks.
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CHAPTER

EVOLUTIONARY VARIATIONAL AUTOENCODER

The Variational Autoencoder (VAE) framework provides a powerful approach for learning
latent representations, but challenges such as KL-vanishing and imbalanced inference-
generation dynamics limit its performance. To address these issues, we propose evolu-
tionary variants, aiming to answer RQ1: How can evolutionary mechanisms balance
inference and generation in DVGM?

To achieve RO1, we introduce the Evolutionary VAE (eVAE), which employs varia-
tional genetic algorithms to dynamically optimize the information bottleneck, mitigating
KL-vanishing and enhancing representation disentanglement. The following sections
detail the design of eVAE, highlighting how evolutionary strategies, such as probabilistic
chromosome selection and simulated binary crossover, are integrated to achieve a balance

between compression and reconstruction.

3.1 eVAE: Evolutionary variational autoencoder

Variational Autoencoders (VAEs) [76] have attracted considerable interest for their
capacity to learn continuous and smooth distributions from observations, integrating
probabilistic modeling and deep neural learning principles. They offer substantial advan-
tages in incorporating prior knowledge, mapping inputs to probabilistic representations,
and approximating the likelihood of outputs. The incorporation of a Stochastic Gradi-
ent Variational Bayes (SGVB) estimator [76] within VAEs allows the model to learn

a structured probabilistic latent space for more representative attributes in a hidden
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space. VAEs have been successfully applied in various fields, including time series fore-
casting [47], out-of-domain detection in images [58, 109, 119, 162], image generation
with spiking signals, and text generation by language modeling [185]. Beyond generative
tasks, VAEs are used extensively in representation learning tasks, such as disentangle-
ment [126, 176], classification [69, 128], clustering [172], and manifold learning [2, 31].
However, VAEs still encounter challenges, particularly in finding an optimal trade-off

between representation compression and generation accuracy.

Theoretically, the bound optimization of variational inference in VAEs replaces the
log-likelihood function with a surrogate function optimized by gradient descent. In prac-
tice, the Evidence Lower Bound (ELBO) is unable to fully approximate the conditional
likelihood due to a persistent gap between posterior and prior distributions, thereby
failing to achieve a balance between representation robustness and reconstruction qual-
ity. Specifically, a weak KL divergence can lead to KL vanishing, whereas a strong KL,
divergence may result in an unfavorable likelihood. Additionally, this trade-off is sensi-
tive to the disjointed nature of posterior distributions, data characteristics, and network

architectures.

To address these issues, various techniques have been proposed. The first approach
focuses on adjusting term balance in objective functions. Examples include -VAEs [20]
incorporating a hyperparameter 8, InfoVAE [188] adding a scaling parameter to the
KL term, SA-VAE [49] using a cyclical annealing schedule to progressively increase 8
to reduce KL vanishing, and ControlVAE [127] implementing a proportional-integral-
derivative (PID) control to dynamically tune hyperparameters. However, these methods
partially address only specific objectives, failing to resolve balance issues in dynamic

settings.

From an information bottleneck perspective, VAEs function as lossy information
compressors, where adjusting the KL divergence within a range controls the information
bottleneck, which flows from representing latent variables to reconstructing samples.
This adjustment supports a trade-off between compression and reconstruction [8, 20].
Inspired by this perspective, we propose a novel framework called evolutionary VAE
(eVAE), which dynamically tunes the optimal state of this information bottleneck across
iterations to better align information flow. eVAE integrates variational evolutionary
learning with variational information bottleneck concepts in VAEs to facilitate optimal
exploration and a well-balanced trade-off between representation compression and

generation accuracy.

The integration of evolutionary learning with VAEs is an emerging research area.
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This work pioneers this integration by proposing a variational genetic algorithm that
optimizes VAE objectives and model exploration through an evolving framework. Ad-
ditionally, eVAE dynamically refines the VAE inference process (the KL terms) using
evolutionary and probabilistic techniques, promoting a stable convergence towards bal-
anced inference and generation. To prevent premature convergence, eVAE introduces
probabilistic chromosome selection for a smooth search space. To avoid exhaustive ran-
dom search, simulated binary crossover [36] and Cauchy-distributed mutation guide
training towards stable convergence. Overall, eVAE represents the first evolutionary
VAE framework, unconstrained by VAE architecture, input settings, or ELBO objec-
tive function. By combining variational encoding and decoding, information bottleneck
principles, and evolutionary learning within a deep neural framework, eVAE improves
model disentanglement and reconstruction loss, effectively addressing the issue of KL

vanishing.

3.2 The eVAE Model

The eVAE model addresses the challenges mentioned by incorporating variational genetic
learning to balance inference and generation, adjusting VAE learning dynamics towards
a better trade-off without complex hyperparameter tuning. The eVAE model also tunes
the inference-generation balance in Eq. (2.1) by jointly addressing issues in Egs. (2.6)
and (2.7). The framework of eVAE, illustrated in Figure. 3.1, integrates variational

evolutionary learning into deep learning to improve VAE balance.

3.2.1 Notation and Problem Setup

The input variable is denoted by x € 2 < R?x, and the latent variable by z € Z < R%
where dx > d,. The goal is to achieve optimal inference capability, i.e., deriving z for
downstream tasks, and robust reconstruction, i.e., generating X from x using the decoder.
During each iteration, the VAE optimizes a surrogate loss in Eq. (2.6) regulated by a
factor f. We adopt an evolutionary algorithm-based training method termed evolving
inner-outer-joint training, where the value of  is determined iteratively to balance
inference and reconstruction.

At the start of training, a set of candidate values, {8}, representing / chromosomes, is
generated. For iteration ¢, model performance is evaluated by its distortion £; and rate

“Zr. These values are then passed to the variational evolutionary learner &. Operated
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Figure 3.1: The framework of eVAE. The VAE results inform chromosome sampling. The
genes are then updated through variational V-crossover and V-mutation. The evolved
results at ¢ are evaluated for retraining, abandonment, or convergence at ¢ + 1.

under crossover and mutation probabilities, denoted Pr. and Pr,,, the learner performs
genetic operations on chromosomes. These adjusted genes are integrated into the model

for the subsequent iteration, guiding the model toward a trade-off between inference and

reconstruction.

3.2.2 eVAE - Evolving Inner-outer-joint Training

Inner training
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Figure 3.2: eVAE - inner-outer joint evolutionary training process. The upper part illus-
trates VAE training at time ¢, while the lower part shows outer training by variational
genetic algorithm. Optimized results are fed back to VAE for further training.
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The eVAE framework follows an evolving inner-outer-joint learning process, where
both VAE and its evolutionary parameters are optimized iteratively. Figure. 3.2 shows
this process. For input x; € &, a VAE model 7 is initialized with ¢ and trained to
optimize the decoder pg(x;|z;) and encoder q(z;|x;) with a prior p(z). The initial objective

function is defined as:
gELBoinner = ExtNP% [xR(Xt,Zt) + ﬂgl(Xt,Zt)] .

In the next step, an outer variational evolutionary learner & updates the weight in an
outer process. In this work, & is implemented using a variational genetic algorithm (VGA)
for variational evolution. & samples a chromosome f; from an evolving distribution %
and evolves it through variational crossover and mutation, generating a new chromosome
B:+1 for the next outer iteration.

The updated parameter f;.1 is used in the VAE model 7; for the following training
iteration. We store the VAE state at time ¢ and calculate the fitness value of ;.1 using
the following objective:

(31) gELBO‘;‘ffT :Ext+1~p% [gR(xt+1,zt+1)

+BL1 (e 41,2141) |-

Next, the state of the VAE at time ¢ is reloaded, and f;;1 is updated by the chromo-
some with the highest fitness value, §;, ;, from the candidate group. Consequently, 7;1
and its parameters ¢ 1, 0+1, and f;+1 are updated for the ¢t + 1 iteration. The VGA &
repeats this process until convergence.

This joint inner-outer training approach optimizes the balance between reconstruction
and inference (e.g., minimizing £g with reconstructed X; and optimizing £s) over time,
iterating in a generative process until the VAE model converges.

Thus, the eVAE objective function becomes:

(3.2) ZLovag =ming, ¢, YN | LrrB0,.: 01, G5 (6,04, 8B}, LrLBO,)) Xt

Optimizing f* for the balance between representation and generation yields:

(3.3) B~ £ (& (B b0, LrLBO,)) -
The overall ELBO of eVAE is:

LeVAE = Ezeqyaix) 108 po(Xe | Z0) + fp,~2(Bt, E)Dk1.(q (2t | 1) p(2))
=Ex, 1~p, LR+ [(B) L1 + E(ALELBO)].

(3.4)
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3.2.3 Variational Evolution in eVAE

The variational evolutionary learner & in eVAE optimizes parameters using a Variational
Genetic Algorithm (VGA), including crossover and mutation operations. This approach

circumvents typical problems of premature convergence and random search.

3.2.3.1 Variational Genetic Algorithm (VGA)

eVAE uses VGA for external parameter optimization while conducting internal gradient-
based optimization. VGA consists of several stages: initialization VGA consists of sev-
eral stages: initialization, variational crossover (V-crossover), variational mutation (V-
mutation), and variational evaluation (V-evaluation), as shown in the bottom part of
Figure. 3.2. Each step is outlined below.

Chromosome selection: Chromosomes in VGA are embedded as continuous variables
sampled from an evolving distribution £. A candidate group of L chromosomes, {f;} =
{B1,...,PL}, is maintained, where each chromosome is associated with a fitness value,
f¥it This allows chromosome-fitness pairs to evolve in VGA, producing offspring selected

based on fitness across generations:

(3.5) B, Y =B, /1), ..., (BL, 1O

V-crossover: The top-performing chromosomes at time ¢ undergo crossover to gen-
erate new genes, increasing genetic variety. Using Simulated Binary Crossover (SBX)
[36], eVAE identifies the strongest chromosomes, f; rqsher and Bt mother, and generates

candidate offspring, f;1, for the next iteration:
ﬁt+1,child1 = %[(1 + rc)ﬁt,father +(1- rc)ﬁt,mother];

(3.6) € : or

:Bt+1,child2 = %[(1 - rc)ﬁt,father +(1+ rc)ﬁt,mother],

where r. is the crossover rate, drawn from a probability density function P.(r.):

eVA
0.5 E+ )7 ifr, <1
(3.7) P (re)=
e 0.5(n°VAE + 1)%, otherwise.
rC

Samples for r. are drawn from:

1
(2u)n""E+1 if u <0.5;
(3.8) re=

1
VAE .
(ﬁ) L otherwise
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eVAE js a hyper-parameter that influences the similar-

eVAE

where u is a random variable, and 1

ity between offspring and their parents. A larger n yields offspring closer to parents,

while a smaller n°VAE

results in greater variation. The new offspring, f;.1, is selected
based on which option of 6 better satisfies Eq. equation 3.11.

The V-crossover procedure is outlined in Algorithm 1.

Algorithm 1 VGACrossover: Simulated Binary Crossover in Variational Genetic Algo-

rithm

Require: Strongest chromosomes at t-iteration, B rasher, Btmother; scaling hyperparam-
eter 7°VAE

Ensure: Updated candidate group {8;}'*! at ¢ + 1-iteration

: Generate a random variable u between 0 and 1

:ifu<05 then1

re =2u)r"t > Generate mutation rate r,
else

rc = (2(11_11,)) eVAE+1

: end if

. function SBXCROSSOVER(,Bt,father,,Bt,mother,rc)

: ,Bt+1,child1 =0.5 [(1 + rc)ﬁt,father +(1- rc)ﬁt,mother]

: ﬁt+1,child2 =05 [(1 - rc)ﬁt,father +(1+ rc),Bt,mother]

: Replace the two chromosomes with lowest fitness in {f;}’ with Bi+1,chital and
Bt+1,child2

: end function

: return {B;}'*!

=
o

S
N =

V-mutation: Offspring generated through crossover undergo further mutation to
enhance genetic diversity. Variational mutation strategy .# diversifies offspring by
modifying f;,1 from crossover or ; from the current generation. Chromosome S; ,, from

the group mutates with probability:
(3.9) M ,Bt+1 = ﬁt,m +Tm,

where r,, is sampled from a Cauchy distribution P,,:
1 1

3.10 =— .

Algorithm 2 details the mutation process.

3.2.3.2 V-evaluation & VGA Fitness Function

Chromosomes updated through V-crossover and V-mutation undergo evaluation to deter-

mine if they advance to the next generation. Within the VAE framework, the following
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Algorithm 2 VGAMutation: Cauchy-based Mutation in Variational Genetic Algorithm

Require: Selected chromosome f; , at t-iteration from group {;}
Ensure: Updated group {8;}/™! at t + 1-iteration
1: function CAUCHYMUTATION(f; )

2 Generate a Cauchy distribution based on f; ,,
_1_1
3: m — E 1+ﬁt2’m
4: Sample from P,,
5: Bts1=PBetm +Tm > Generate mutated chromosome and update the group

6: end function
7: return {f;}*!

heuristic fitness function f¥** guides chromosome evolution to align with VAE objectives:

(3.11) F = A%ELBO,,, + IKL141(Bre1) —cll,
where:
(3.12) AZLELBO,.1 = LELBO,.1(Bt+1) — LELBO,(B1),

represents the ELBO change after applying the evolved . The task-specific information
bottleneck ¢ ensures bound optimization of eVAE through evolutionary adjustments.
V-evaluation and fitness values direct eVAE towards convergence, balancing recon-
struction and inference with evolutionary parameterization. Chromosomes with higher
fitness, forming pairs such as {8/, {,f,  {}, proceed in the optimization. The inner-outer-

joint eVAE process is summarized in Algorithm 3.

3.3 Theoretical Analysis

To illustrate the eVAE framework, we consider S-VAE as a base model to develop an
evolutionary VAE. Here, we analyze the impact of eVAE on parameter adjustment, the
trade-off between reconstruction and regularization, and the training performance in
B-VAE.

To understand how eVAE achieves effective compression in encoding and decoding, we
revisit ELBO from an information bottleneck perspective. Using rate-distortion theory,
we define an optimization bound for f-VAE. This leads to three distinct lower bounds:
experiment-specific (e.g., B-VAE), KL-specific (e.g., ControlVAE), and iteration-specific
(e.g., eVAE). The experiment-specific bound adjusts the ratio fp between reconstruction

and representation loss as a fixed hyperparameter [20]. KL-specific approaches, such
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3.3. THEORETICAL ANALYSIS

Algorithm 3 EIOTraining: Evolving Inner-outer-joint Training

Require: Crossover rate Pr., mutation rate Pr,,, batch data x
Ensure: Optimal chromosome pair {8*, f*}
1: Initialize parameters of decoder 0, encoder ¢, and chromosome group {f;} =
{f1,...,PL}
2: while ¢t < T do
3 Sample Pr; from N(0,1) > Probability to evolve
4 if Pr; < Pr,, then
5 Save current parameters 0y, ¢;
6: Generate f;+1 using V-mutation . (f;)
7 Evaluate ;.1 using fitness function f(&(¢;,0:,{B}, LELBO,))
8 else if Pr,, < Pr; < Pr. then
9 Save parameters 0;, ¢;

10: Generate ;.1 using V-crossover 6 (B rather, Bt mother)

11: Evaluate f;+1 using fitness function

12: else

13: Select the strongest pair {8*, f*}

14: Update VAE parameters 0;.1, P11 — Levar(0:, ¢z, B 1Xy)

15: end if
16: end while
17: return {§*,f*}

as PID-based ControlVAE [127], employ nonlinear controllers for KL divergence to set
Bk1 dynamically. In contrast, eVAE aims to dynamically adjust 8 through a variational
evolutionary learner &(f;) over iterations.

The trade-offs achieved by eVAE across iterations balance reconstruction and repre-
sentation, optimizing 8-VAE parameters and achieving both theoretical and empirical
efficiency, as shown in Figure. 3.3. In particular, the early convergence of disentangled
representation impacts reconstruction, while unstable rate optimization impacts disen-
tanglement [126]. Only the eVAE model, guided by an iteration-specific lower bound,
maintains a stable balance, achieving optimal models with low reconstruction error and
high mutual information gap (MIG) metric.

Specifically, B-VAE tunes f by setting a task-relevant ratio between inference loss £1
and generation loss %R, aiming to maximize the likelihood at a constant threshold, B,

given by:

(3.13) %%prpdata Yr, st pLr<B.

This process can be framed through the Information Bottleneck (IB) theory [7], where

B<r acts as a bottleneck, compressing latent capacity of Z to represent X. In this context,
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VAE
1401 = A-VAE

=== ControlVAE

1201 — eVAE

100

601
40

201

Figure 3.3: Information plane with R — D curves of VAE, -VAE, ControlVAE, and eVAE
on dSprites. Values (R,D) are averaged over five restarts per iteration.

IB optimizes I (Z,X) to derive a concise representation:
(3.14) maxI(Z,X), st. I(ZX)<Ip.
Theorem 3.1. For B-VAE hyperparameter fp, the experiment-specific lower bound is:

Lp-vae®,$)=-D - PR < —ppl - D,

where R denotes compression rate, D distortion, and Bp is an experiment-specific constant.
VAESs therefore achieve a rate-distortion trade-off.

Proof. Using VIB, ELBO is bounded by distortion D = -E, ¢(x,z)[10g po(x|z)] and rate
R = Eq¢(x,z)[DKL(q¢(z|x)|Ip(z))], where I(X,Z) is bounded above by I <R:

qo(z | x)

d
p(z) “

R :fq(x)dqug(z | x)log

=IX,Z)+TC(Z)
=IX,7Z)
and lower bound I = H — D:

I:ffp(x,z)logp(xlz)dxdz
p(

X)

szp(x,z)log q(xlz)dxdz
p(x)

fop(x,z)logq(xlz)dxdz—fp(x)logp(x)dx

:ffp(x,z)logq(xlz)dxdz+H(X)
=H-D.
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3.3. THEORETICAL ANALYSIS

Thus, the information bottleneck is bounded by
H-D<I<R,

where H represents data entropy.

In B-VAE, Bp imposes a compression constraint, producing:

H-D<I<R,
H—DSﬁBISﬁBR,
H<ppl+D<pgR+D.

The bound simplifies to:
Zﬁ—VAE(Q,Qb) =-D - ,BBR < —,BBI -D.
|

ControlVAE is a f-VAE variant tuning fxz to achieve a specific KL level through
PID control:

Theorem 3.2. For ControlVAE’s KL-specific factor Bkr, the lower bound is:

zControlVAE(H,(p) =-D - ,BKLR < —,BKLI -D.

eVAE extends the B-VAE framework by evolving BI(X,Z) through a variational
evolutionary learner &. Following outer iteration ¢, §; evolves based on task and training

phase, guided by fitness function f¥:

Theorem 3.3. eVAE establishes an iterative lower bound for the inner training phase at

iteration t+ 1:
Zevag = =8Bl — E(By)Dy,

where the iteration-specific lower bound balances task alignment in —&(B;)D; with infer-

ence quality in &(B)1;.
Proof. From Eq. equation 3.4 and Eq. equation 3.11, the eVAE loss at iteration ¢ is:

LevAE = Ezeqy(z1x) 108 o (Xt | 20)+
fﬁt~%(ﬁt7g)DKL(q¢(zt | x¢) p(z))
=Ex, 1~po [ LR+ (1) L1 + E(ALELBO)]
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Per VIB theory, R; sets the upper bound of the information bottleneck 1,(X;,Z;):
R; =1;X;,Z;) + TC(Zy).
The lower bound D; is given by:
I,=H - D;.
Thus, eVAE optimization for a dynamic lower bound is:

Levag = —E(P)Di — E(PI;.

We further compare the effects of eVAE against baseline VAE models (-VAE and Con-
trolVAE) using rate-distortion (R-D) curves in Figure. 3.3. Standard VAE (in yellow)
prioritizes representation learning over minimizing empirical error at the initial stage,
optimizing the rate only after a quarter of the iterations. In f-VAE (in green), the
experiment-specific lower bound (—fgl — D) restricts the achievable distortion. Con-
trolVAE (in pink) initially minimizes distortion for data fitting, and subsequently opti-
mizes the rate to obtain a smooth representation through a KL-specific bound (-fxrI—-D).
However, directly adjusting 8 through the PID controller can cause fluctuating trade-offs
between inference capacity and reconstruction quality. In contrast, eVAE produces an
iteration-specific lower bound (-&(B;)I; — &(B:)D;) to maintain a stable balance between
minimizing distortion and controlling the rate. In disentangled representation learning,
early convergence hinders reconstruction, while unstable R-D optimization reduces dis-
entanglement [126]. Only the iteration-specific lower bound from eVAE avoids balance
fluctuation, reaching optimal model performance with low reconstruction error and high

mutual information gap (MIG) metric.

3.4 Experiments

We evaluate eVAE in three primary tasks: disentangled representation learning, image
generation, and language modeling. Each task is set up following established baselines

[127], ensuring consistency in encoder-decoder network architectures and optimizers.
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3.4.1 Dataset and Baselines

The three tasks and their respective datasets are outlined below:

Disentangled representation learning aims to learn independent latent variables to
generate images. We evaluate eVAE on the dSprites dataset!, a collection of 737,280
binary images generated by five factors: shape (square, ellipse, heart), scale, orientation,
and x and y positions. Baselines include -VAE, ControlVAE, and DynamicVAE, with
parameters kept consistent across models. For fairness, we use =1 and f =4 in -VAE,
and for ControlVAE and DynamicVAE, a setpoint of KL = 19.

Image generation involves reconstructing imagery samples from given data points.
For this task, we use the CelebA dataset (cropped version) [97], which consists of 202,599
RGB images of celebrity faces. The baselines used for comparison are f-VAE and Con-
trolVAE.

Language modeling performs word-level text generation. We use the Penn Treebank
dataset (PTB) [103], an English corpus. To illustrate the impact of KL vanishing, we
compare eVAE with cost annealing (Cost-10Kk) [17], cyclical annealing (Cyc-8) [49], and
PID control (PID-3) [127]. For fair comparison, eVAE is tuned to match the KL setpoint
used in ControlVAE.

3.4.2 Performance in Disentangled Representation Learning

In this task, we evaluate reconstruction quality using disentangled features. Figure. 3.4(a)
shows that eVAE achieves the lowest reconstruction loss, reaching 9.2, compared to
ControlVAE at the same KL divergence target (KL = 19). Figures. 3.4(a) and (b) also
demonstrate that eVAE presents a more stable training curve than other VAEs due to
its VGA fitness-guided dynamic weighting, unlike the direct 8 adjustments in f-VAE
and ControlVAE. Figure. 3.4(c) illustrates the disentanglement achieved across each

generative factor.

The disentanglement effectiveness is further quantified using the MIG [26] and
dimension-wise MIG scores. Table 3.1 summarizes the results, where eVAE outperforms
B-VAE and other baselines.

1dSprites: a dataset for disentanglement testing. Available at: https:/github.com/deepmind/dsprites-
dataset/
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Figure 3.4: Learning curves on dSprites. (a, b) show that eVAE achieves the lowest recon-
struction loss compared to VAE (8 = 1), B-VAE (8 =4), ControlVAE, and DynamicVAE at
a fixed KL point KL = 19. (c) displays the element-wise KL divergence across iterations,
with eVAE maintaining stable KL values for each dimension (factor): y position (z2),
scale (z3), shape (z4), x position (z6), and orientation (z7).

B-VAE(B = 4) ControlVAE (KL = 19) DynamicVAE (KL = 19) eVAE (KL =19)

Figure 3.5: Latent traversal on dSprites using ellipse shapes. Each row represents a
different latent factor while keeping others fixed. The first column shows the seed image
for initialization. The remaining columns display images generated by manipulating the
latent dimension z over the range [-3, 3].

Table 3.1: Disentangled representation performance on dSprites.

Metrics/Models B-VAE (f=4) ControlVAE DynamicVAE eVAE

pos. x 0.0359 0.7697 0.7662 0.7286
pos. y 0.0243 0.7458 0.7500 0.7180
Shape 0.0116 0.0777 0.1276 0.1449
Scale 0.1507 0.6412 0.6591 0.6605
Orientation 0.0039 0.0961 0.1123 0.1261
MIG 0.1741 0.4492 0.4689 0.4723

40



3.4. EXPERIMENTS

Table 3.2: Generation performance on CelebA.

Metrics/Models VAE ControlVAE eVAE
FID 58.71+0.207 55.79+0.257 54.06+0.201
SSIM 0.675+0.0001 0.688+0.0002 0.692+0.0001

3.4.3 Performance in Image Generation

We evaluate eVAE for image generation using the CelebA dataset. For fair comparison,
we set the KL target to 200, aligning with the best reconstruction quality in [127]. eVAE
is tuned to achieve this target similar to ControlVAE. Figure. 3.6(a) shows that eVAE
achieves the lowest reconstruction error, and the dynamic evolution of g allows the KL

divergence to reach the desired target, as shown in Figure. 3.6(b).

During testing, eVAE generates new samples from the prior by discarding the encoder
pathway [76]. For latent traverse, we plot latent codes from —3 to 3, covering a broader

range.

240
—— ControlVAE-200
e

220 VAE-200
200

- 180

b4
160

140

120

100
0.0 0.4 0.8 1.2 16 2.0 2.4 0.0 0.4 0.8 1.2 16 2.0 2.4
1es

Training steps e Training steps

(a) Reconstruction Loss (bYKL

Figure 3.6: Performance comparison of different VAEs for image generation on CelebA.

3.4.4 Performance in Language Modeling

To demonstrate eVAE’s effectiveness in preventing KL vanishing, we plot KL, reconstruc-
tion loss, and KL weight over iterations. The evolution of § reveals eVAE’s automatic
tuning capability and indicates that cost annealing (Cost-10k) suffers from KL vanishing.
Cyeclical annealing (Cyc-8), PID, and VGA achieve nonzero KL divergence, with eVAE

showing the lowest reconstruction loss at 70 in word generation.
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3.4.5 Sensitivity Analysis

Setpoint: The setpoint in Eq. equation 3.11 implicitly guides the model towards conver-
gence at a target value c for specific representation learning. Setpoints vary based on
differences in benchmark datasets and backbone models. In this section, we present a
principle for selecting this hyperparameter guided by information theory, followed by
experimental results on disentangled tasks.

Based on Shannon’s source coding theorem [55] for bit compression, a D-ary block

code of length n with size M has a compression limit:

1
Hp(X) > limsup —logp M,,.

n—oo N

Simplifying for binary code (D = 2) with dataset size L, the information bottleneck c

satisfies:
¢ = H(X)>logyL.

In practice, the KL setpoint should exceed logs L by a small margin. For dSprites,
setting KL to 19 yields the best disentanglement (Table 3.3), while for CelebA, a KL of
around 190 ensures optimal image generation (Table 3.4). In the language modeling task
(Figure. 3.8), a KL setpoint above 2 prevents KL vanishing, maintaining stability during

training.

Table 3.3: Sensitivity analysis of setpoints, crossover rates, and mutation rates in
dSprites.

, eVAE
Metrics/Models —pr— 20— KT - 15) (0.04, 0.001) (0.04, 0.002) (0.03, 0.001) (0.03, 0.002)
MIG 0.121 0.1872 0.4723 0.4715 0.4662 0.4709
Distortion 29.5 15.1 9.9 9.9 9.6 10.2

Table 3.4: Sensitivity analysis of setpoints and crossover/mutation rates on CelebA.

Metrics/Models eVAE
(KL = 190) (KL =210) (0.12, 0.005) (0.09, 0.005) (0.1, 0.006) (0.1, 0.004)
FID 58.32+0.101 57.89+0.205 58.07+0.183 58.32+0.198 57.95+0.201 58.11+0.189
Distortion 208 196 209 201 199 202

Crossover and Mutation Rates: In VGA, large crossover or mutation rates can prevent
convergence, while overly small rates risk reducing diversity and causing premature
convergence. Experimentally, a crossover rate around 0.03 with a mutation rate an order

of magnitude smaller yields stable performance in the disentanglement task, as shown
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Table 3.5: Sensitivity analysis of setpoints and crossover/mutation rates on CelebA.

Metrics/Models eVAE
(KL=190) (KL=210) (0.12,0.005) (0.09,0.005) (0.1, 0.006) (0.1, 0.004)
58.32+0.101 57.89+0.205 58.07+0.183 58.32+0.198 57.95+0.201 58.11+0.189

FID
Distortion 208 196 209 201 199 202
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Figure 3.7: Box plot of generated distributions from a fixed parent pair (Father = 1,
Mother = 2), varying n°VAE values for SBX. Higher n°VAE values reduce offspring diversity.
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Figure 3.8: Numerical analysis of eVAE’s impact on KL vanishing in PTB. The label
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in Table 3.3. For image generation, a crossover rate of around 10% and mutation rate of
0.5% achieve optimal performance (Table 3.4). For language generation a crossover rate
of 7% and mutation rate of 0.6% prevents KL vanishing.

Individual Generation: Bit-wise crossover and mutation are unsuitable for generating
sufficient diversity in deep learning models. To address this, VGA’s simulated binary
crossover (SBX) operator generates float 64 chromosomes. The SBX hyperparameter

eVAE eVAE

n controls sampling scale, with larger n values producing offspring closer to

parent values (Figure. 4.2). While task-specific tuning is ideal, experimentally n¢'*E = 5

offers stability across tasks.

3.5 Summary of this Chapter

In this chapter, we propose eVAE to solve the the imbalance between representation
inference and task fitting caused by surrogate loss in VAEs. We make the first attempt
to introduce an evolutionary variational autoencoder (eVAE), building on the variational
information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE
integrates a variational genetic algorithm into VAE with variational evolutionary opera-
tors, including variational mutation, crossover, and evolution. Its training mechanism
synergistically and dynamically addresses and updates the learning trade-off uncertainty
in the evidence lower bound without additional constraints and hyperparameter tuning.
Furthermore, eVAE presents an evolutionary paradigm to tune critical factors of VAEs
and addresses the premature convergence and random search problem in integrating
evolutionary optimization into deep learning. Experiments show that eVAE addresses
the KL-vanishing problem for text generation with low reconstruction loss, generates all
disentangled factors with sharp images, and improves image generation quality. eVAE
achieves better disentanglement, generation performance, and generation-inference

balance than its competitors.
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CHAPTER

DECOUPLED VARIATIONAL AUTOENCODER

Variational deep learning has enabled robust representation learning, yet challenges
in modeling hidden feature dependencies and achieving disentangled representations
persist. Addressing these gaps leads to RQ2: How can DVGM calibrate inference to
separate disentangled and coupled representations? To fulfill RO2, we introduce the
Contrastive Copula VAE (C?VAE), which leverages neural copula functions and
contrastive learning to address these challenges.

The subsequent sections detail how C2VAE refines unsupervised disentangled learn-
ing by separating coupled and factorized representations, demonstrating its advantages
over traditional TC-based approaches in improving inference stability and disentangle-

ment quality.

4.1 Gaussian Copula-based VAE Differing
Disentangled from Coupled Representations with

Contrastive Posterior

In recent years, integrating stochastic variational inference into deep neural networks
(DNNs) has formed a new learning paradigm - variational deep learning (VDL, or
deep variational learning). VDL jointly characterizes dependencies between hidden
neural features and between their distributions, going beyond deep neural principles

and synergizing analytical statistical principles. Variational autoencoders (VAEs) rep-
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resent a typical milestone for VDL, which transforms point-based autoencoders into
process-oriented VAE for VDL. Various VAEs have been proposed in recent years to
robustly fit the likelihoods of diverse data, such as tabular data [3, 4, 35, 110, 170],
images [130, 146], and sequences [42, 70]. By estimating the likelihood over all data
points, a VAE learns a smooth representation space under certain manifold hypotheses.
It characterizes variational low-dimensional distributions corresponding to the input
feature space and produces analytical results leveraging deep features and relations
learned by DNNs. Consequently, VAEs further enhance representation learning for more
challenging learning tasks such as out-of-domain detection [24, 91], image processing,
time series anomaly detection [23, 94], multi-task learning [138], domain adaptation
[67, 147], and continual learning [37, 177]. However, a significant gap remains in VAEs,
i.e., exploring the distribution dependency between hidden features of DNNs, which
has shown beneficial for leveraging stochastic factor interactions and downstream tasks
[148, 165].

On the other hand, to enable more explainable variational reconstruction, a recent
interest and challenge in VAE studies is to enable their unsupervised disentangled
learning. Disentangled learning has been widely explored in supervised representation
learning and classification [15] to learn single hidden units sensitive to single generative
factor change but invariant to the variances of other factors. However, unsupervised
disentangled learning in VAEs is more challenging with limited progress made. A com-
mon approach involves the total correlation (TC) to remedy the insufficient expressive
posterior in the surrogate loss of vanilla VAEs. TC is a variant of mutual information to
quantify the redundancy in multivariate dimensions [51]. For VAEs, TC is incorporated
into their evidence lower bounds (ELBO) to induce factorized variational distributions
with a T'C(Z) loss capturing the divergence between estimated posterior ¢(Z) and prior
p(Z) over hidden features Z € #%:

TC(Z)=TC(z1,22,...,24)

q(z1,29,...,24)
p(z1)p(22)...p(2q)
=Dk1(q(Z)|p(Z)).

(4.1) = [Eq(zl,zz,...,zd) 1

However, factorizing the prior, i.e., p(Z) := H?Zl p (z j) involves strong IID assumption
between hidden features {z;} [21]. Further, enforcing TC does not guarantee to capture
dependent structures by the posterior distribution, no matter what the estimator is,
by either mutual information estimators [13, 27, 45, 80, 138] or density ratio tricks

[74, 178]. This is because the dependencies between hidden features may vary, where
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some are more strongly coupled than others, resulting in more (we call explicit) vs
less (implicit) explanatory hidden features. For example, high cholesterol may be more
affiliated with dietary habits and exercises than with age and gender. While the TC-based
factorization ensures the independence between features, more explanatory (explicit)
features may still be coupled with other less explanatory (implicit) ones in the hidden
feature space. Hence, the TC factorization only guarantees the independence between
those disentangled explicit features but ignores the dependencies in the entire hidden
space. This forms another important gap in the existing VAE theories.

This work addresses the aforementioned gaps in modeling distribution dependency
in the hidden neural space and further differentiates strongly coupled hidden features
from weakly coupled features to improve unsupervised disentangled representations. To
this end, we build a contrastive copula variational autoencoder (C*VAE). First, as copula
functions have been demonstrated powerful in learning high-dimensional dependence
[111, 168], a neural Gaussian copula function learns the dependence between hidden
features and identifies coupled representations [165]. Then, a self-supervised contrastive
classification mechanism contrasts the disentangled factorized representations with
these coupled representations sampled from a neural Gaussian copula function. Further,
C2VAE filters those strongly dependent hidden features captured by the copula function
and induces an optimal posterior distribution characterizing more factorizable hidden
features for improved disentangled representations.

We evaluate C2VAE on four synthetic and natural image datasets: two grayscale
(dSprites, SmalINORB) and two colored (3D Shapes, 3D Cars). It demonstrates the effect
of the C>VAE design and mechanisms in outperforming the existing TC-based models in
terms of four disentanglement performance measures based on intervention, prediction,

and information.

4.2 The C2VAE Model

4.2.1 Preliminary

We introduce factorized posterior estimation, copula-coupled representation learning,

and contrastive disentangled learning. These form the key constituents of our C>VAE.
As shown in Figure. 4.1, the encoder output in C2VAE is converted to two sets of rep-

resentations: (1) the neural disentangled posterior distribution g y(z|x) as a multivariate

Gaussian with a diagonal covariance structure; and (2) a copula coupled representation
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Figure 4.1: C2VAE: The architecture and contrastive learning of disentangled representa-
tions for contrastive copula VAE. Zrc¢ optimizes disentangled factorized representations,
Zc enhances the disentanglement by distinguishing factorized representations from
coupled representations.

by a new encoder branch as a covariance encoder, which shares the same framework
as the posterior encoder. This auxiliary encoder parameterized by v captures the de-
pendence between hidden variables by learning the neural copula function. Copula
learns the dependence coefficient matrix X. These two sets of representations share the
dimension of hidden variables and learn their respective representations parameterized
by mean p, and coefficient matrix 2, respectively. All the notions can be found in Table
1.1.

4.2.2 Factorized Posterior Estimation for Disentangled

Representations

VAE [76] is a generative model: p(x) = [ p(x|2)p(z)dz over data x and hidden features
z learned in a deep manner. By sampling from the prior p(z) of hidden features, the

generative distribution p(z|x) can be approximated by a variational distribution q(z|x).
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Further, to incorporate this generative learning into the autoencoder framework, a
surrogate loss below is derived from approaching the reconstruction pg(x|z) by a decoder
parameterized by 6 to the inference qy(z|x) by an encoder parameterized by ¢. The VAE
learning process can be denoted as:

p(x,2)
q(2)

> Eg(z)logp(x|2) +Eyz) log

log p(x) = E4(2)log
p(2)
q(2)
> Eq(z)logp(x | 2) - Dg1.(q(2)lIp(2)).

When trained by a stochastic gradient variational Bayes (SGVB) estimator, VAE

optimizes:
(4.2) ZE1B0 = Eqy (e | logpo(x | 2)| ~ Dicr (g4(z | )] Ip(2)).

VAE reconstructs samples by optimizing the likelihood function Eg,(z|x) [ log po(x|2)| and
learns a low-dimensional representation under a manifold hypothesis by regularizing
Dkr1(ge(z | 0)lIp(2)).

To learn disentangled representations by VAEs for explanatory hidden generative
factors, under the factorizable assumption, the posterior distribution g 4(z|x) is estimated
by decomposing it into several independent and identically distributed (IID) conjugate
distributions. Then, we convert the ELBO in Eq. (4.2) to a TC-based ELBO as follows:

%rc :=Eq(zin) | log p(x|2) — D1, (q(2 | 2)1|q(z | %))

~Dir(¢(2)113(2))]
=LL(x|z)—1(x,2)—TC(2),

where ¢(2) := Hd 14 (2j), LL(x|2) is the log-likelihood of data samples, I(x,2) is the mu-
tual information between x and z. The TC term, i.e., the density ratio of two distributions
q(2),3(2), is estimated by the density ratio trick, TC(2) := Dgy1,(q(2)1(2)).

It is not feasible to compute this expectation (i.e., integral) analytically. Generally,
using Monte Carlo methods to explicitly determine the density ratio results in a signifi-

cant computational load, especially ill-suited for deep learning. The challenge deepens

q(2) .
q(z)

q(2), 4(2), or both. Under these circumstances, we pivot towards techniques designed

when this density ratio r(z) := is inaccessible due to the incalculability of either

for density ratio estimation. This involves harnessing the strong association between
density ratio estimation and probabilistic classification. Specifically, we employ a discrim-

inator, denoted as W(z), parameterized by ¥ and use an adversarial learning paradigm to
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approximate the desired density ratio distribution. In this scenario, our approximation

for T'C(z) is transformed into a classification problem for the discriminator ¥, i.e.,
(4.3) TC(z) ~r*(z) ~ Vy(2).

To derive the ¥ based density ratio item r*(z) in optimizing the T'C(z) item in Eq.
(4.2.2), the density ratio trick is enacted as follows: We assume y to be the binary label
indicating the origin of z from either ¢(z) when y =1 or g(z) when y = 0, and Z(z|y)

signifies the ensuing conditional distribution:

q(z) (y=1)

P(z|y):= )
q(z) (y=0)

According to the Bayes’ theorem, the density ratio r(z) is rewritten as:
_q(z) Pzly=1)

T 4@ P(zly=0)

_ (9’(3/ =1| z)P]’(z)) (y(y =0| z)@(z))_l

. 20p=1 P(y=0)
_P(y=0)P(y=1|2)

S Py=1DP(y=0|2)

Then, We approximate the ratio of marginal densities using the proportion of sample

r(z)

sizes:

P(y=0) N, N; \'_N,
P(y=1) N;+N, (Nq +Nq) " N;
where N, and N; represent the number of samples drawn from g(z) and §(z), respectively.
For computational simplicity, we assume N, = N; so that we can prepare the same
number of samples from the two distributions. Under this assumption, the density ratio
r(z) can be reformulated in terms of pseudo-label class probabilities,
_P(y=1|2)
~P(y=0l2)

In fact, by introducing the pseudo-labels, we reduce the problem’s complexity to a

r(z)

binary classification task. This implies that one distribution 22(y = 0| z) can be repre-
sented in terms of another 1 - 22(y = 1| z). Consequently, we can derive a density ratio
expression involving only pseudo-label class probabilities 22(y = 1| z). Namely,
_Py=1lz) Py=1l2)

r(z) = =
P(y=0|z) 1-P(y=1|z)
=exp |lo Ply=112)
—P 8 T =112)

~expo ! (P(y=112)].
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where 07! is the logit function given by o~ 1(p) = log(%).

In fact, the pseudo-label class probabilities 22(y = 1| z) can be approximated using a
discriminator W(z) parameterized by . This discriminator accepts samples from both
q(z) and ¢(z), subsequently outputting a probability within the range [0, 1], indicating
the likelihood of the samples originated from q(z). Thus, we term ¥ (z) as a probabilistic
classifier. Therefore, we can use a function of probabilistic classifier ¥(z) as a proxy to

acquire an estimator of the density ratio r(z). Namely,
r(z)=exp [0 (¥(2))]
~exp[o HP(y=1|2))] =r*(2).
Hence, if we have a probabilistic binary classifier that outputs the probability of y with
input 2, we can estimate the density ratio:

_ (2)
TC(2) = D1 (q(2)13(2)) :[Eq@log%

-1
Bl _P(y=12)

=log —\I’(z) ,
1-Y(2)
where W(2) is a classifier.
Subsequently, we incorporate the classifier-based density ratio into TC-based ELBO

in Eq. (4.2.2) to acquire the surrogate loss:

%rc :=Egzim | log p(x|2) - Dgr(q(z | %)@ (2 | x))

~Dir(g(@113(2)|,

=LL(x|2z)-1(x,2)—TC(2)

Y(2) ]
1-Y(=2)’

where the TC term quantifies the dependencies between d-dimensional hidden variables,

=2gLB0 — YEq(2) [ log

regularized by the degree hyperparameter y.

Figure. 4.2 illustrates this TC-based decomposition of the vanilla ELBO in Eq. (4.2.2).
The TC-based ELBO Zrc is a loose bound to ensure the independence between factors z
in the factorized posterior. It avoids a correlation structure between hidden variables

toward disentangled representations.
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Figure 4.2: The element-wise decomposition of ELBO under the factorizable assumption
based on information theory. Under the comparison of objectives in VAEs, we can conclude
that TC-based factorization, e.g., [61, 74, 138], provides a tighter bound than other
methods, e.g., [45].

4.2.3 Learning Coupled Representations by Copula

Typically, we employ adversarial mechanisms to train the discriminator-based density
ratio estimation r*(z). The specific approach involves two main steps: firstly, we maximize
the generator’s ability in representation learning, denoted as G = {Encoder,Decoder}
based on Eq. (4.2.2), i.e.,

(4.4) maxV(G) = H(q(2),1),H(4(2),0) - ZeLro.

where V is a value function and D denotes the classifier which classifies whether sample
2z comes from disentangled distribution q(2) or g(2).

Subsequently, we invert the pseudo-labels to induce adversarial, thereby enhanc-
ing the discriminator’s capability to discern whether the sample originated from the

disentangled distribution ¢(2) or not, i.e.,
(4.5) mgle(D) = H(q(2),0),H(q(2),1).

During this second adversarial phase, while samples from the disentangled distribution
can be easily drawn (sampled from the optimized encoder distribution), those from an-
other distribution g(z) are often generated based on samples generated from g(z) under
the independence testing assumption [74]. Diverging from previous methodologies, we
leverage the Gaussian copula function to generate samples that entangle each other
from a copula distribution, denoted as z. ~ §.(z). This methodology enables the discrimi-
nator to dissociate interrelated features, thereby empowering the model to identify more
orthogonal representational spaces.

Specifically, we learn the coupled representations z. in Eq. (4.9). A Gaussian copula

C(-) captures the joint dependencies (with matrix X) between hidden features z of the
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4.2. THE C2VAE MODEL

learned posterior distribution after the encoding with parameters ¢, as shown in Figure.
4.1. This identifies those coupled samples, which can be treated as drawn from the joint
distribution p(z;u.,0.) with the reparameterization trick to enable the stochastic latent

variables z to be represented by a deterministic function with parameters pu.,o..

To model the joint dependence between multivariates, copula learns a joint distribu-
tion over marginal distributions whose univariate marginal distributions are given as
F;(z,4) for variable z;. As the Gaussian copula fits most of the multivariate applications,
we assume 24 ~ Uniform(0,1). Under Sklar’s theorem [111], there exists a joint copula
function C(-) which captures the dependencies between variables given the cumulative
distribution function of multiple variables z1,z9,...,24. Their multivariate cumulative

distribution F' can be modeled by copula over marginal distributions as:

(4.6) F(z1,...,24)=C(F1(21),...,Fa(2a)),

Gaussian copula is elliptical whose marginal distribution F(2) is subject to an ellipti-

cal family. With u; = F;(2;), we can obtain the copula density function ¢ by:

4.7 c(ui,...,uq) =F(F1(21),F (29),...,F 1(29)),

where F~1(z) is the inverse cumulative distribution function of marginal Gaussian
distribution F' and the copula function ¢ is a multivariate density normal distribution

parameterized with mean p. and covariance matrix .

When imposing a dependence assumption on latent representations, subject to a
diagonal multivariate Gaussian distribution with mean p. and variance o., a Gaussian
copula joint distribution with covariance matrix X is sampled in neural settings and by a
differentiable reparameterization. Here, we adopt the Cholesky-based parameterization
of coefficient matrices to induce the latent samples. The Cholesky parameterization [148]
is for the joint distribution of Gaussian copula, which factorizes a correlation matrix
into a triangular matrix and its transposition for sampling the copula function directly
in a high dimensional space. To ensure the numerical stability, i.e., the matrix needs
to be positive definite, having all diagonal elements to be 1, we learn the components
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separately: = =w-I+vvT, which is defined as:

1 Softplus(Z;¢pc)
- |+

Softplus(Z;¢c) 1

1 Tanh(Z;¢c)

(4.8) [ A ]

Tanh(Z;¢c) 1

1 Tanh(Z;¢c) r
Tanh(Z;¢c) 1

=w-I+wvvl.

The decomposition generates the positive definite covariance £ = LLT for reparam-
eterization. By sampling from the uniform distribution, we acquire the coupled repre-
sentations: 2, = 4, + 0. © €, where € ~ 4(0,I), maintaining the dependencies between
individual dimensions.

Algorithm 4 shows the process of representation sampling. Different from the low-
rank representation in [148, 149], we generate the coefficient matrix directly and replace
the ReLU function by the Softplus function to ensure the positive definite property of the

triangular matrix L.

Algorithm 4 Coupled representation learning with Gaussian copula

Input: Factorized mean p; and covariance X
Output: Coupled representation 2z,

2 —qy(z|x)

w — Softplus(W1-Z +bq)

v — Tanh(Wg-Z +bg)

S—w-I+vv!

L — CholeskyFactorization(X)

zc — p,+L-e, where e ~ A4(0,1)

Consequently, with the coupled representations learned, we can apply the contrastive
learning in Section 4.2.4 to distinguish the discrepancy over the factorized representation
24 and this coupled representation z, following the contrastive learning framework in

Eq. (4.9). This will make the learned posterior distribution g4(z|x) more factorizable.
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4.2.4 Contrastive Learning to Enhance Disentangled

Representations

Although different strategies are available to estimate the TC term in Eq. (4.2.2) with
factorized factors in a DNN setting, there is no theoretical guarantee to acquire the opti-
mal posterior for disentangled learning. This is attributed to the difficulty in modeling a
heterogeneous and hierarchical posterior distribution while the TC-based ELBO decom-
position is IID. In contrast, statistically, it is easier to model the correlation structure in
the low-dimensional factorized factors.

Accordingly, to address the incorrect amortized inference and reconstruction error
of the modified bound in Eq. (4.2.2) for disentanglement, the optimal posterior can be
approximated in a contrastive way: we can learn an unsupervised classifier ¥ param-
eterized by v to distinguish the aforementioned disentangled representation z4 from
the coupled representation z. learned from the entire hidden space as discussed in Sec-
tion 4.2.3. First, with these two representations z; and z., we define their (1) strongly
independent (positive) pair (24,(2)), where 24 can be treated as drawn from a (similar)
target distribution ¢(z), denoted as H (q(z),l) with a pseudo label 1 indicating that
the learning representation is drawable from the target distribution; and (2) strongly
dependent negative pair (z.,§(2)), where 2z, is drawn from a dissimilar distribution §(2),
denoted by H(G(2),0) with a pseudo label 0. Then, we learn the classifier ¥ to determine
whether the representation comes from the target or a dissimilar distribution with a

contrastive loss Z¢:

%c=H(q(2),1)+H(q(2),0)

(4.9) 1 N
-~ n; [1n (0(Wy (1)) +1n (1= o(¥y (1) ]

where N is the number of samples. We train ¥ with the pseudo labels for ¥, (2)) over
disentangled posterior z4 and W (27) over coupled representations z.. By minimizing
Zc, consequently, to enhance disentanglement, the contrastive loss and classifier ¥ en-
sure that the latent variables inferred by the encoder discard those features drawn from
the similar distribution, i.e., retaining those independent features from the dissimilar

distribution.

4.2.5 The C2VAE Algorithm

We build C?VAE as follows, with its architecture and information flow shown in Figure.

4.1. Given data 2 = {x(l),...,x(”)}, we first learn its posterior distribution g4(z|x) per

55



CHAPTER 4. DECOUPLED VARIATIONAL AUTOENCODER

the factorization assumption. By applying the reparameterization trick, we train the
TC-based ELBO with a factorized posterior q(2). Then, the optimal posterior ¢ *(z|x) is
trained in iterations that discard those dependent features. Specifically, the classifier
Y(z4,2.;%) is trained to distinguish the factorized representation z; ~ q(2) from the
coupled representation z. ~ §(z;u.,0.), where u.,o. are the parameters of the neural
copula function discussed in Section 4.2.3.

Algorithm 5 shows the C?VAE processes. It involves a two-phase optimization process.
Parameters ¢,0 are fixed in optimizing Eq. (4.5); the same in optimizing Eq. (4.4) by

fixing parameters .

Algorithm 5 The training process of C2VAE

Require: Training data &, training batch B
Ensure: Parameters of encoder ¢, decoder 6, and classifier y
1: while not converged do
2: for each B in 2 do
Generate the TC loss in terms of the discriminator
Compute gradients of Eq. (4.4) with respect to 8 and ¢
Update the parameters of encoder 6 and decoder ¢
end for
for each B in 2 do
Generate coupled representations per Algorithm 4
Compute the gradients of Eq. (4.5) with respect to v
Update parameters y of the classifier
11: end for
12: end while

[y
<

4.3 Experiments

4.3.1 Data and Baselines

Datasets We evaluate C2VAE on (1) two grayscale datasets: dSprites [61] as a binary 2D
shape dataset with 737,280 samples, and SmalINORB [85] as a toy dataset with 48,600
synthetically rendered images; and (2) two color datasets: 3D Shapes [19] as a 3D shape
dataset with 480,000 RGB images, and 3D Cars [121] as a 3D car dataset with 17,568
images generated from 24 rotation angles corresponding to 199 car models.

Baselines For a fair comparison with the total correlation-based VAEs, we compare
C?VAE with three VAEs, which involve some decomposition and approximation under a

mild assumption and sharing the same deep frameworks. 8-VAE [61] is a variant of the
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basic VAE with a penalty on Dk, in the vanilla ELBO by an additional coefficient  to
acquire the disentangled representations. B-TCVAE [27] was the first work splitting the
TC term to obtain the more factorizable posterior in a Monte Carlo estimator. FactorVAE

[74] shows another way to acquire the factorized posterior in a density ratio estimator.

4.3.2 Effect of Learning Disentangled Representations

Disentanglement measures For comprehensive and fair quantitative evaluation, we
use the following measures [22] to assess the effect of disentangled representation
learning: (1) intervention-based: FactorVAE score (FAC); (2) information-based: Mutual
Information Gap (MIG) [92]; and (3) prediction-based: Separated Attribute Predictability
(SAP) [80], [74].

Further, to verify the effectiveness of a learned factorized prior, the Unsupervised
Score [99] estimates the discrepancy between learned representations and optimal ones.
The unsupervised score is measured by the Mutual Information (MI) score verifying the
correlations between latent variables, the Total Correlation (T'C), and the Normalized
Wasserstein Distance (WCN) where their lower values identify stronger correlations
between a Gaussian posterior and its marginals.

The settings of the baselines for disentangled representation learning are shown in
Table 4.1.

Quantitative Results of Disentanglement. Table 4.2 depicts the quantitative
evaluation results of each algorithm. The results of each entry are averaged over five
random seeds. We follow the experimental settings in literature to set coefficients as f =4
for B-VAE [61], § =4 for B-TCVAE [74], y = 10 for FactorVAE. This affects the relation
between parts in the surrogate loss which plays an important role in balancing recon-
struction and representation. In addition, y = 6.4 is another optimal hyperparameter in
[74] to generate disentangled representations for latent traversals.

On dSprites, C2VAE outperforms the factorized VAE FactorVAE over all metrics
except for the total correlation distance. In particular, C2VAE performs well on latent
metrics, SAP and FAC, rather than on representation-based metrics like MIG, which
are estimated by the Monte Carlo sampling. Similar observations can be seen in the
other three datasets. The unsupervised score shows the effect of the learned factorized
distribution. C*VAE fits the assumption with the lowest WCN in acquiring the most
factorized posterior with the multiplication of marginal distributions.

Qualitative Results of Disentanglement. The disentanglement performance on

four datasets over latent traversals can be seen in Figure. 4.3, Figure. 4.4, Figure.
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Table 4.1: Four disentanglement datasets with their ground-truth generative factors.
‘g’ stands for grayscale images, and ‘¢’ stands for color images. In SmalINORB and 3D
Shapes, their 64-size version is used for the base model.

Dataset ColorMode Ground Truth Factors ImageSize

Shape: square, ellipse, heart
Scale: 6 values linearly spaced in [0.5,1]
dSprites g Orientation: 40 values in [0,27] (64,64, 1)
Position X: 32 values in [0, 1]
Position Y: 32 values in [0, 1]
Category: 0 to 9

Elevation: 9 values in [0, 8]

SmalINORB g (64,64, 1)
Azimuth: 18 values in [0,340]
Lighting: 6 values in [0,5]
Floor hue: 10 values in [0, 1]
Wall hue: 10 values in [0, 1]
Object hue: 10 values in [0, 1]

3D Shapes [ (64, 64 ,3)

Scale: 8 values in [0, 1]
Shape: {0,1,2,3}

Orientation: 15 values in [ — 30, 30]

Car types

Color
3D Cars c (64, 64, 3)
rotation (2 types)

Roof height

4.5, and Figure. 4.6. Latent traversals can assess the disentanglement properties of
a trained generative model. For latent traversal in disentanglement, one modifies a
specific dimension within a set range, such as -3 to +3 for standardized latent spaces,
while holding other dimensions constant. Upon decoding the adjusted latent vectors,
generated samples are assessed for variations. Successful disentanglement is evident
when alterations in a single latent dimension correspond solely to one distinguishable
factor in the data, like an object’s rotation, with other attributes remaining unaltered. In
summary, compared with FactorVAE, C2VAE achieves the best disentanglement than

others with less reconstruction error.

From Figure. 4.3, utilizing a latent traversal on the dSprites dataset with the trained
models reveals that FactorVAE can disentangle the x and y features, as observed in
rows 1 and 7 on the left side of Figure. 4.3, effectively. However, it entangles other
features. Specifically, it exhibits partial disentanglement for scale and shape features,
as shown by rows 9 and 10 on the left side of Figure. 4.3. Although the latent space
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Scale

Shape

FactorVAE C? VAE

Figure 4.3: Traversal results of FactorVAE and C2VAE on dSprites in terms of five factors:
x, y, orientation, scale, and shape.

captures the continuous changes of scale and shape, i.e., transitioning from large to
small shapes and from elliptical to circular and then square, these transformations
remain intertwined with shape features. FactorVAE fails to disentangle the orientation
feature, where continuous sampling in this dimension causes the shape, direction, and
orientation features to become entangled. In contrast, C°VAE displays disentanglement
on the x and y features, as shown by rows 3 and 7 on the right side in Figure. 4.3, and
exhibits partial disentanglement on the other three features, as shown by rows 1, 9 and
10 on the right side in Figure. 4.3, with shape features still somewhat embedded in the

compressed latent dimensions.

Figure. 4.4 shows that a latent traversal on the SmalINORB dataset indicates that
both models demonstrate some disentanglement capability on the azimuth, lighting
and category features. However, compared to FactorVAE, C2VAE captures a broader
spectrum of lighting variations. Due to the inherent encoding capacities of the base

models, both exhibit limited reconstruction abilities, resulting in blurred outcomes.

Further, the results in Figure. 4.5 show that a latent traversal of the 3D Shapes
dataset demonstrates that FactorVAE adeptly disentangles features such as orientation,
floor hue, and object hue, as illustrated by rows 1, 8 and 10 on the left side in Figure. 4.5.
However, there is considerable overlap in the disentanglement of distinct color domains

for wall hue, as shown in row 6 on the left side of Figure. 4.5, leading to ambiguity in
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Figure 4.4: Traversal results of FactorVAE and C2VAE on SmalINORB in terms of three
factors: azimuth, lighting, and category.

representing wall color. Moreover, the object hue feature appears to be intertwined with
both the wall hue and scale. In contrast, C?*VAE successfully disentangles five distinct
features: wall hue, object hue, scale, floor hue, and orientation, as illustrated in rows
1, 3, 5 and 9 on the right side of Figure. 4.5. It’s worth noting, however, that the shape
attribute is entangled with the object hue feature, as indicated by row 4 on the right side
of Figure. 4.5.

In addition, Figure. 4.6 shows that a latent traversal analysis of the 3D Cars dataset,
where FactorVAE adeptly disentangles features related to color (as shown on the second
row on the left side in Figure. 4.6) and the second rotation (as shown by the sixth
row on the left side in Figure. 4.6). This suggests that variations in car color and
orientation correspond independently and continuously to the changes of their latent
variables, respectively. However, the disentanglement becomes less pronounced for
features such as car type, overall rotation, and roof height. Conversely, C2VAE more
distinctly disentangles features, notably the two rotational aspects (as shown by the
third and sixth rows on the right side of Figure. 4.6), roof height (illustrated by the first
row on the right side in Figure. 4.6), and color (highlighted by the third and seventh rows
on the right side in Figure. 4.6). The model also demonstrates a partial disentanglement
of the car type feature, as shown by the third and ninth rows on the right side in

Figure. 4.6. It is pertinent that continuous sampling in the latent space, as defined by
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Figure 4.5: Traversal results of FactorVAE and C2VAE on 3D Shapes in terms of six
factors: orientation, shape, scale, wall hue, floor hue, object hue.

FactorVAE, occasionally results in reconstruction failure, manifesting this as incomplete
imagery data. This phenomenon intimates that the FactorVAE model might suffer from
a posterior collapse issue, which implies challenges in achieving stable representation

learning and a smooth, continuous representational space.
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Figure 4.6: Traversal results of five factors of FactorVAE and C2VAE on 3D Cars in terms
color rotationl, rotation2, roof height, and car type.
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Table 4.2: Performance (mean + std) on different datasets and by different models w.r.t.
different evaluation metrics. We evaluate -VAE, B-TCVAE, and FactorVAE on dSprites

and 3D Shapes.

Unsupervised Scores

dSprites MIG SAP FAC
MI TC WCN
B-VAE (=4) 0.15+0.06 10.7+0.16 0.12+0.41 0.19+0,01 0.019+0.009 0.78+0.026
B-TCVAE 0.17 £0.15 11.2+0.06 0.11+0.007 0.17+0.06 0.031+0.006 0.70+0.009
FactorVAE 0.11+0.92 10.05+0.922 0.11+0.009 0.20+0.010 0.028+0.015 0.81+0.034
C2VAE (y=10) 0.11+0.33 11.8+0.3 0.099+0.026 0.20+0.001 0.044+0.22 0.84+0.001
C2VAE (y=6.4) 0.11+0.57 12.4+0.015 0.079+0.13 0.21+0.003 0.035+0.014 0.85+0.002
SmalINORB Unsupervised Scores ;- SAP FAC
MI TC WCN
B-VAE (=4) 0.17+0.022 12.38 +0.76 0.34+0.14 0.10+0.002 0.04 £0.008 0.59+0.20
B-TCVAE 0.14+0.012 12.1+0.19 0.32+0.001 0.13+0.010 0.05+0.003 0.60+0.01
FactorVAE 0.21+0.007 12.23 +£0.560 0.38 +£0.033 0.14+0.019 0.061+0.008 0.62+0.30
C2VAE (y=10) 0.14 +0.016 11.55+0.5 0.25+0.14 0.15+0.0001 0.066 +£0.007 0.62+0.0004
C?VAE (y=6.4) 0.14 £0.017 11.96 +0.734 0.27 £0.011 0.15+0.017 0.066+0.006 0.61+0.26
3D Shapes Unsupervised Scores MIG SAP FAC
MI TC WCN
B-VAE (8 =4) 0.15+£0.21 2.3+0.16 0.12+0.52 0.24+£0.005 0.058+0.0005 0.93+0.005
B-TCVAE 0.11+0.007 2.1+0.31 0.007+0.052 0.32+0.004 0.050+0.009 0.97+0.36
FactorVAE 0.11+0.014 1.5+0.14 0.06+0.042 0.33+0.004 0.047+0.0004 0.98+0.21
C2VAE (y=10) 0.08+0.015 4.1+0.48 0.08+0.016 0.17+0.003 0.054+0.0002 0.95+0.003
C?VAE (y=6.4) 0.09+0.006 2.8+0.18 0.06+0.024 0.23+0.002 0.075+0.001 0.99+0.025
3D Cars Unsupervised Scores MIG SAP FAC
MI TC WCN
B-VAE (=4) 0.18+0.006 14.7+0.78 0.38 +0.03 0.04+0.032 0.02+0.098 0.82+0.088
B-TCVAE 0.13+0.012 11.6+0.66 0.28+0.03 0.07+0.024 0.02+0.014 0.89+0.064
FactorVAE 0.16+0.008 13.9+0.98 0.37+0.02 0.06+0.029 0.02+0.005 0.86+0.036
C2VAE (y=10) 0.13+£0.007 11.3+0.76 0.14+0.04 0.06 £0.0001 0.02+0.004 0.87+0.0003
C?VAE (y=6.4) 0.12+0.007 11.5+0.80 0.14+0.04 0.05+0.018 0.02 £0.002 0.86+0.024
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4.3. EXPERIMENTS

4.3.3 Trade-off between Reconstruction and Representation

By bringing the total correlation-based estimation into VAE optimization, C*VAE ac-
quires a loose bound in Eq. (4.2.2) than the original ELBO. This contributes to obtaining
better disentanglement performance but hinders the model from overfitting data.

By evaluating the trade-off between reconstruction and representation, we draw the
training curves of reconstruction loss over iterations. Figure. 4.7 shows a comparison of
reconstruction error on dSprites with five random seeds on the two TC-based models.
It shows that C2VAE retains a stable training curve with smaller variance over five
trials in acquiring a reasonable representation induced by a stable training stage as
shown in [126]. In addition, C2VAE induces more accurate amortized inference with the

contrastive classifier to achieve a smaller reconstruction loss than the compared VAEs.
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Figure 4.7: Learning curves on dSprites. The horizontal axis represents the number of
training iterations, while the vertical axis represents the reconstruction loss.

4.3.4 Ablation Studies

We further investigate the effect of different coupled representations captured by various
copula functions in C2VAE. The following C2VAE variants are created to capture different

dependencies between dimensions.

e C2VAE-I, where the contrastive posterior is estimated by permuting batch latent

variables under the independence test assumption [10].

e C2?VAE-G, where the contrastive representation is sampled by Gaussian copula

based on the learned neural posterior distribution.

e C2VAE-S, where the contrastive representation is sampled by Student copula.

Student copula is a copula function that incorporates the student’s t-distribution.
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CHAPTER 4. DECOUPLED VARIATIONAL AUTOENCODER

It is often used to model variables with heavy-tailed distributions or when extreme

values are more likely. It can be denoted as:

C(uy,ug,...,un;p,v)
=T (T "(u1;v), T M ug;v),..., T Hun;v)ip),

where p refers to the correlation matrix, v is the degree of freedom, and 7T refers to

the cumulative distribution function of the t distribution.

* C2VAE-M, where the contrastive representation is sampled by Gaussian mixture
copula. The Gaussian mixture copula is a copula function based on the Gaussian
mixture model, used for modeling the dependence structure among multivariate
random variables. It combines the characteristics of the Gaussian distribution
and copula functions, allowing flexible capture of different dependencies among

variables. It can be denoted as:

C(ui,ug,...,u,;0)
k
. w; - Cy(@ Yug;pmi,01:),

i=1
D H(ug; p9i,09i), -, @ W iy T i),

0 refers to the correlation matrix, and w; is the weight of each copula part.

Table 4.3 shows the results, where we can summarize that the C2VAE with different
representations may converge at different stages. The C2VAE with Gaussian copula

achieves better disentanglement performance w.r.t. the metric SAP.

Table 4.3: Representation and data fitting performance of the C2VAE variants with
different dependency functions for contrastive representation learning. SAP measures
the disentanglement learning performance, and KL and Reconstruction Loss for the data
fitting effect.

C2VAE-G C2VAE-I C2VAE-S C2VAE-M

SAP 0.6 0.4 0.2 0.2
KL 22 20 22 26
ReconstructionLoss 19 28 19 20

4.3.5 Hyperparameters

We further evaluate the disentanglement performance of C2VAE with its variants in

terms of hyperparameter y. Table 4.4 shows the effect of coefficient y on disentanglement.
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It shows that the performance of disentanglement is sensitive to y, where C*VAE variants

achieve the best performance at around y = 6.

Table 4.4: Representation and data fitting performance of the C*VAE variants by varying
the hyperparameter y. SAP evaluates the disentanglement learning performance, and
KL and Reconstruction Loss measure the data fitting effect.

Yy=1 y=2 y=4 y=6 y=8 y=10
SAP 054 055 0.55 0.64 052 0.70

KL 17 19 22 23 22 20
ReconstructionLoss 35 18 30 27 17 27

4.4 Summary of This Chapter

In this chapter, we propose a Contrastive Copula VAE (C2VAE), a self-supervised vari-
ational autoencoder to jointly learn disentangled and coupled hidden factors and then
enhance disentangled representation learning by a self-supervised classifier to eliminate
coupled representations in a contrastive manner. To this end, a Contrastive Copula VAE
(C2VAE) follows the probabilistic principle without relying on prior knowledge about data
and involving strong modeling assumptions on the posterior in the neural architecture.
C2VAE simultaneously factorizes the posterior (evidence lower bound, ELBO) with total
correlation (TC)-driven decomposition to learn factorized disentangled representations
and extracts the dependencies between hidden features by a neural Gaussian copula
to learn coupled representations. Then, a self-supervised contrastive classifier differ-
entiates the disentangled from the coupled representations, where a contrastive loss
regularizes this contrastive classification and the TC loss eliminates entangled factors
by strengthening disentangled representations. C2VAE demonstrates a strong effect in
enhancing disentangled representation learning. C2VAE further contributes to improved
optimization by addressing the TC-based VAE instability and the trade-off between

reconstruction and representation.
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CHAPTER

AUGUMENTED VARIATIONAL AUTOENCODER

Variational Autoencoders (VAEs) have shown promise in anomaly detection by mapping
data to latent distributions that capture normal patterns. However, challenges such as
latent space mismatching and data imbalance hinder their robustness. This motivates
RQ3: How can weak augmentation improve inference robustness in DVGM for anomaly
detection?

To achieve RO3, we propose the Weakly Augmented VAE (WAVAE), a model
that leverages self-supervised learning and weak augmentation to enhance latent space
expressiveness. By maximizing mutual information in a contrastive training framework,
WAVAE addresses these challenges, improving anomaly sensitivity and reconstruction
accuracy. The following sections outline WAVAE’s mechanisms and its ability to mitigate

latent space disruptions for robust anomaly detection.

5.1 Weakly Augmented Variational Autoencoder for

Time Series Anomaly Detection

Deep probabilistic generative models build the likelihood distribution on the whole
dataset, mapping data points to a distribution and providing an uncertainty estimation
for the generative process. In modelling the generative process of data in an unsupervised
manner, the hidden structure of latent variables can be achieved at the same time. Among

these, the VAEs model has been applied in modelling sequence data due to the flexible
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autoencoder mechanism compared with the unstable discriminators training in GANs
and fast generation speed compared with the multi-step generation in diffusion models.
Aside from learning the likelihood of time series data, VAE based model can exhibit
anomaly detection ability in an unsupervised manner. The underlying assumption is
that unknown anomaly patterns typically exhibit statistical characteristics that deviate

significantly from the normal distribution.

To acquire the robust likelihood acquired by VAEs, recent methods tend to introduce
the meta-prior to learn the spatiotemporal dependence inherent in posteriors. For ex-
ample, time-varying priors that adapt to dynamic assumptions [34, 72, 116, 137] have
demonstrated effectiveness and powerful capabilities in capturing sequence data like-
lihoods. Additionally, other studies [83, 89] have proposed the creation of task-specific
priors based on a factorized assumption explicitly designed to model contextual de-
pendence among data. Various strategies have been employed to achieve this, such
as using prototype distribution-based representations optimized by meta-learning and

decomposing contextual representations.

However, the implicit or explicit design manner of prior overlooks the learning of the
hidden structure of latent space, inducing the mismatching from latent area to normal
region, degrading the accuracy in detection anonymously. Besides, the anomalous se-
quence in real scenarios is limited compared to the normal sequence, and the anomalous
point always disputes the normal points to learn the smooth and continuous latent space.
The data imbalance and unsupervised manner will aggravate the mismatching from
latent pattern to datapoint in py(x|z). Specifically, since these anomalies lack the spatio-
temporal dependence on normal sequence, they disrupt the formation of a continuous and
smooth latent space for normal samples. Consequently, representations sampled from
these latent holes fail to accurately reconstruct input samples, causing a discrepancy
between the representations and the reconstructed data. This mismatch significantly
impairs an anomaly detector’s performance and compromises the model’s overall ro-
bustness. Figure. 5.1 presents a more intuitive understanding of this phenomenon. To

address this, we try to increase the Expressive of encoders in a self-supervised manner.

In light of these challenges, we propose to improve data utilization using self-
supervised learning (SSL) to enhance representation learning and induce latent space
robustness. SSL [183] enables models to extract more informative representations from
unlabeled data, leading to sufficient training. To achieve this, we employ data augmen-
tation on unlabeled data through SSL strategies, facilitating the training of models by

contrastive or adversarial methods for TSAD. Our contributions include:
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5.1. WEAKLY AUGMENTED VARIATIONAL AUTOENCODER FOR TIME SERIES
ANOMALY DETECTION
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Figure 5.1: Comparison of the latent space induced by anomalies in non-robust VAE-
based TSAD models (upper section) with the robust representation learning space
fostered by WAVAE (lower section). We illustrate it by the Swissroll rather than Gaussian
distribution. The upper part delineates the rise of the latent hole by a non-robust TSAD
model and its effect on the model robustness. Anomalous sequences x} (depicted within
the blue window in the upper section), when encoded into the representation space,
disrupt the structural integrity of the latent space. This disruption results in latent hole
primarily because these anomalous sequences x} lack the spatio-temporal coherence
inherent in the normal sequence x7. Consequently, sampling from these discontinuous
regions leads to a mismatch between the representation (indicated by the blue dot z;)
and its generation (also shown by the blue dot in the likelihood function), as illustrated
in the upper section, a disproportionately high likelihood function mass characterizes the
representation in the latent space. In such scenarios, the TSAD model may erroneously
classify an anomaly as normal, compromising its robustness. In contrast, the lower
section demonstrates how data augmentation via the WAVAE model can engender a
more continuous and smoothly distributed data likelihood (as depicted in the central part
of the bottom figure). In this context, representation z;) encoded by anomalous sequences
x} sampled from regions outside the normal latent space are associated with a lower
likelihood function mass, thereby enhancing the robustness and efficacy of anomaly
detection in TSAD tasks.
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* A generative self-supervised learning framework for TSAD: WAVAE presents
an enhanced generative framework using self-supervised learning, with a likeli-
hood function for learning and the derivation of a surrogate error for optimization.
This novel approach sets the stage for more effective model design in VAE-based
TSAD.

* Deep and shallow learning in augmented models: WAVAE implements weakly
augmented anomaly detection by incorporating data augmentation, enabling un-
dergo thorough training with support from augmented counterparts. Both deep and

shallow learning methods are introduced to integrate these two models effectively.

Extensive experiments on five public datasets demonstrate the effectiveness of our
approach. WAVAE achieves superior performance w.r.t. ROC-AUC and PR-AUC, surpass-
ing the state-of-the-art models. Additionally, comprehensive ablation studies verify the
performance over the design of the VAE model, time series preprocessing, and sensitivity

analysis on different modules and hyperparameters in deep optimization.

Plain View in Plate Diagram Augmented View in Plate Diagram
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Figure 5.2: Graphical model for augmented variational autoencoders. Under the plate
notation rules, a white circle denotes a hidden (or latent) variable, while a grey circle
signifies an observed variable. The variables contained in the square denote local vari-
ables, which are independently repeated N times. Dashed arrow edges imply conditional
dependence. Dotted lines represent parameters. Our methodology utilizes two generative
models. The inference part of models, i.e., g4, and g¢,, encodes the raw input, denoted as
xr, and the augmented input, x,, into their respective low-dimensional representations,
z; and z,. Subsequently, the generative part of models pg, and pg, samples the latent
space to reconstruct the input samples, respectively. We employ a ¥ parameterized
module to synchronize the learning outcomes of both models.
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5.2 The WAVAE Model

We first provide the problem definition for generative model-based TSAD. Then, we
depict the structure of an augmented generative model with random variables and their
dependency structure. The augmented generative anomaly detection model operates
within the framework of probabilistic generative modeling, employing self-supervised
techniques to augment the latent variables 2z during training a generative model, thereby
enhancing a deep model’s fit to the data likelihood. Accordingly, we implement a self-
supervised VAE based on input data augmentation, which preprocesses the input data
x to generate latent variables z, with different views. To align the likelihood functions
of the raw and augmented models, we introduce two distinct mutual information loss
functions, one grounded on depth and the other on statistics. By maximizing the mutual

information between them, the models draw samples more fitting the same distribution.

5.2.1 Problem Definition

Time series data is succinctly represented as & := {(x'?, y(i))}?zl, encompassing n time-
stamped observations x € R¢ situated within a c-dimensional representation space, each
paired with a discrete observation y. The observation y is assigned discrete values
across [ predefined classes, delineated as y € {0,1,...,/ —1}. Here, ¢ denotes the feature
dimensionality at each time point, categorizing the dataset as an MTS when ¢ > 1 and as
a univariate time series for ¢ = 1. In the figures and Eq.s followed, to enhance notational
conciseness, we abbreviate raw as r and augmentation as a.

In generative models-based TSAD, the focus is on learning a reconstructing model,
i.e., Mnormal, to model the mass of loglikelihood of the majority of normal data points
within the entire dataset & = {Znormal, Zabnormal}- Anomalies are then identified in an
unsupervised, end-to-end fashion by calculating the anomaly score, denoted as AS(x,%).
It quantifies the difference between a given input x and its modeled copy X as recon-
structed by #,ormal- This approach is feasible, assuming that the log-likelihood learned
from normal observations will diverge notably when encountering anomalous data,

yielding elevated anomaly scores.

5.2.2 Data Augmentation-guided Probabilistic Generative Model

The plate diagram in Figure. 5.2 defines an augmented probabilistic generative model.

The upper part of the diagram specifies the learned joint distribution of the original data
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x, and its latent variable z,, i.e., p(xy,2;), where the latent variable z, is generated by
an inference network q 4, (zr|x;) parameterized by ¢,, and the reconstructed variable %,
is produced by a generative network pg (x,|2;) parameterized by 6,. The model optimizes

an approximate surrogate error £y comprising a reconstruction loss that maximizes

ELBO’
the likelihood distribution £} and a Dy, loss that minimizes the discrepancy between

the prior of latent variables and their variational posterior £7, i.e.

Lripo = [Eq%(zﬂxo[logpe,(xr | zr)]

%
~ BDkL(gg(2: | 2)lID(2)).
P

The lower part of the plate diagram outlines the probabilistic model of the joint distri-
bution of the augmented view data x, and latent variables z,, i.e., p(x,,2,) with latent
variables z, derived from an augmented inference network gy, (2a1x), i.e., 24 ~ g¢,(2alx).
Similar to the above, the model optimizes an augmented reconstruction loss fﬁ‘ and

inference loss £}, i.e.,

xﬁLBo = [Eq¢a(za|xa)[10gpea(xa | za)]

J

23
~PDkL(q¢(za | %a)lIp(2)).
PA

On one hand, both models strive to fit their respective data distribution likelihoods. On
the other, we leverage the advantage of data augmentation by maximizing the mutual
information I(z,,z,) between two latent models, optimizing an MI loss parameterized
by v (in deep learning approximation) to train the models for maximal data likelihood
jointly.

Given the variety of latent variable augmentations, we augment the raw data to
augment the model. In summary, we propose an augmented probabilistic generative
model to learn a joint likelihood function p(x;,z,,x,,2,) for anomaly detection while
simultaneously optimizing an inference network parameterized by ¢,,®,, a generative
network parameterized by 6;,0,, and an alignment network parameterized by y. y can
be parameterized by neurons in deep learning approximation and pseudo-parameters in

shallow learning. The generative process is as follows:
(5.1) P Xy, x5) = fp(xraxa,zraza)dzrdza,

72



5.2. THE WAVAE MODEL

where x, represents the raw input data points, x, refers to the augmented samples based
on the input, 2z, refers to the raw latent variable, and z, refers to the augmented latent

variable.

The joint distribution is often too high-dimensional and sophisticated to solve directly.
To address this, a tractable variational distribution ¢(z,,2,) is employed as an approx-
imation within the framework of variational inference (VI). Due to the computational
convenience it offers, we typically take the logarithm of the distribution. Consequently,
as depicted in Eq. 5.1, the likelihood of data that encompasses latent variables can be

decomposed as follows:

P (%r,%3)
(5.2) [ Py, %a,2r,22) (21, 2a)
= dz,dz,,
q(zr,za)
and we can obtain the log versions as follows:
log p (xy,x3,)
(5.3) =10gf p(xr,xayzryza)Q(zraza)dzrdza.
Q(zr, 23)

Given the log function is convex, we can obtain a lower bound by Jensen’s inequality:

logp (xr,x3)

P (Xr,Xa,2r,22)
q(2r,2a | %r,x3)
p (xraxa> zI‘> za)
q(2r,2a | Xr,%3)
p(xr | 20)p(xa | 2a) p(2r,2a)

Q(zr | xr)q (zalxa)
:EEq(z,|xr)log[p(xr | 20)] + Eg(z,1xa) 10g [0 (x4 | za)]
1

= log [EQ(zr,za |2y, %a)

2[Eq(zryza|-‘x7ry-x'a) lOg

(54) :[ECI(zryzalxr»xa)log [

p(2r,2a) ]
+E lo .
§ q(Zr,Zalxryxa) g q(zr | xr)q (Za | xa) |
2

As we can see, the 1 part can be decomposed into two reconstruction losses, i.e., 1 =

Zg + %R, and the 2 part in Eq. 5.4 can be decomposed as:
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p(2r,2a) ]
q(2r | xr)q (22 | xa)
p(2r,22)
p(2r)p(2a)
p(zr)p (2a)
q(zr 1 xr)q (20 | x3)

—F log p(2r,2a)
q(2r,2a|%r,%a) p(zr)p (za)

~ v

Eq(zr,2al%,,%0) 108

=ﬂ5q(zryza|xrrxa) log

(5.5) +Eq(zr,zalwr20) 108

v~

A
—Dgrlq(z [ %) p(2:)] - Drr[q(2a | xa) | p (2a)],

i il

where the 2 part can be the combination of two inference losses and the mutual infor-
mation between latent variables, i.e., 2= 2] + ££Ia +I(2r,24), where we denote i = Z],
i1=2, and A = I(zy,2a).

Minimizing the term 1 leads to an increased log-likelihood for both p(x,|z;) and
p(x,]z,), which is applicable to both the raw and augmented data perspectives. Reducing
the inference loss, represented as &7, ﬁla within the section labeled as 2, contributes
to a more coherent latent space that facilitates the reconstruction process. Moreover,
enhancing the mutual information, denoted as I(z,,z,), serves to bridge the disparity
between the raw and augmented models. This process ensures a cohesive framework
for incorporating data augmentation into the generative model. In conclusion, the pro-
posed objective for learning is to approximate the joint distribution p(x,,x,) in an
augmentation-informed generative modeling context, denoted as:

Lavag =1+A—1—1i1

(5.6) . .
=Zr180 + LELBo T (21, 24),

where £avar represents the augmentation based VAE loss.

5.2.3 Deep and Shallow Learning in Mutual Information

Approximation
5.2.3.1 MI approximation in shallow learning

We employ a ZinfoncE (Noise Contrastive Estimation [112]) loss to approximate the lower
bound of MI. Since this method uses a non-parametric variational distribution for VI,
it can be considered as a form of shallow learning. When the variational distribution

q(zr|z,) is employed to approximate the intractable posterior distribution p(z.|z,), as
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in Eq. (5.7a), we can derive a lower bound as shown in Eq. (5.7b). Specifically, by using

P(21) o f(zr,2a)

FER) where f(2,,2,) is a critic

an energy-based variational function q(z.|z,) =
value function, and a(z,) = Ep () [ef .y )] for approximation, we use the convexity of the
log function to apply Jensen’s inequality to E,(.,)[loga(za)] to further derive a lower
bound, as in Eq. (5.7c). By utilizing the inequality: log(z) < % +log(t) — 1, we can further
approximate another lower bound, as in Eq. (5.7d). Using K samples for an unbiased
estimate, we obtain Eq. (5.7e), we can approximate it to the infoNCE loss Monte Carlo

estimation, that is, Ziyfner in Eq. (5.71):

I(z;,24)
q(2r | za)p(2r]2a)
p(2r)q(2r | 24)
q(zr | 2za)
p(zy)

(5.7a) =LCp(z;,2a) [10

=Ep(z,.2.) | 108

+ [Ep(za)[DKL(p(zr | za)llg(2r | 2a))]
(5.7b) = p(zr,za)[l()gq(zr | 2a)]

= P(Zr,za)[f(zry za)]

E ef(zr,za)
(5.7¢) ~Epza) p(zr)a[(z ) s togtatzan - 1]
a
ef (Ze1)2a)
SR CEPR Y by popmmn
of (2x1),2a)
(5.7d) + |]—:p(z(r,lzK))p(zﬁ|z(!‘,1)) a (za z(r 1K))
K f(z(r i)s%(a, z))
e
5.7e =E| =) lo
( ) K ; g 1 ZK ef(z(rz) z(aj))
K 2@z
(5.79) =F| % Z Pl ) ] ZinfoNCE-
i=1 KZJ lp(z(al)lz(ra})

We optimize an infoNCE loss scaled by the temperature coefficient 7:

ZLnfoNCE

(5.8) exp (zl,;’Tza/r)
=—log

Y ,exp (zu za/r) + Y v#u €XP (zu zv/T)

where the negative pairs are none, indicating that the negative keys for a sample are the

positive keys for others.
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5.2.3.2 MI approximation in deep learning

We can decompose the MI into two ratios in Eq. (5.9a) and approximate it per a density
ratio trick, guided by [33]. In that case, the density ratio is approached by a parameterized
neural network, and we can approximate the MI implicitly in a deep learning scheme.

Specifically, instead of modeling two distributions directly, i.e., q(z;,2,) and g(z,), we

_ 9(2r,2a)
- q(zr)

to classify whether the label comes from the target distribution &2 or not, as shown in

can learn the ratio r in an adversarial manner, i.e., training a discriminator

Eq. (56.9b), where y is a preset pseudo label. Since we use the discriminator method to

estimate the MI, the upper bound is denoted as Eq. (5.9c¢).

q(zr|za)
Q(Zr,za) q(zr)
_ q(zrlza)
q(2r,2a) —q(zr)
Py=1]|zy) Py=1]|zy)
+log
P(y=0]zy) P(y=0]zy)

Y(zy) Va(za) 4
5.9 <1 +1 = s
(590 o8 1-Y(z,) o8 1-Ya(za) adversial

(5.9a)

(5.9b) <log

5.2.4 End-to-End Anomaly Detection Training

This section introduces an end-to-end TSAD model based on a weakly augmented gener-

ative model.

5.2.4.1 Weakly Augmentation

In augmentation-based generative models, the likelihood fitting is enhanced by reusing
training data. In VAEs, this leads to improved generative models pg(x | 2) parameterized
by 6 via enriched data representations in the inference network q4(z | x) parameterized
by ¢. The augmented latent variable, z,, is derived as z, ~ q(2;]|x). During data prepro-
cessing, we can augment latent representations directly by manipulating the input data
augmentation, represented as z, ~ q(z,]x,). Here, the augmented input x, is obtained
from the raw input x, using the augmentation operation @, formulated as x, = O(x).
Data augmentation methods for time series data typically require an input array
of size (batch, time_steps, channel), with manipulation possible in the batch do-
main (such as jittering with noise, scaling, and normalization) or in the time domain
(including window slicing and warping). Additionally, augmentations can be applied in

the frequency domain. These techniques enrich the original dataset through various
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methods, effectively enhancing data diversity. This diversification is crucial for models to
comprehend better and predict time series patterns.

Nevertheless, our findings suggest that applying weak augmentation to the original
input data may yield more favourable outcomes for likelihood fitting in anomaly detection.
Specifically, weak augmentation involves subtle modification of the data, primarily

through different normalization techniques. These include:

e Standardization:

(5.10) Xy =052y ) = xa_ :

2

i is the mean and o as the standard deviation of the data.

¢ Min-Max Normalization:

xr —min(x;)

(5.11) % =07 (%) = max(x,) — min(xy)’

This scales the data to a specified range, such as 0 to 1.

Such moderate adjustments typically preserve the fundamental characteristics and
trends of the time series. They enable the model to discern the core attributes of the data
more effectively, thereby enhancing prediction accuracy. Furthermore, weak augmenta-

tion maintains the data’s authenticity, mitigating the risk of over-distorting the original

data structure. This is vital for preserving both the reliability and interpretability of the
model.

vy

a | > @—*é @ ||» = *@—>0

—
Z 1 Zg > 0
a —» —> qa i d —»
e z) @ 0 ¢ z, > 1
Qdate 0,0 Fix / Q 0,9 Update 1/1/

Figure 5.3: Illustration of adversarial learning in mutation information approximation.
In the first stage, the discriminator is frozen to update the parameters of encoders
and decoders. In the second stage, we freeze the generator’s parameters and train the
discriminator while simultaneously inverting the pseudo-labels of positive and negative
samples to train the discriminator.

v

v
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5.24.2 Training

For raw input x,, we first obtain its augmented variable x, during the data preprocessing
phase. Then, we train the inference networks for both the raw and augmented perspec-
tives, namely g4, (2, | xy) and q4,(za | xa), as well as the generative networks pg, (x; | 2r)
and pg, (x4 | 25). At the same time, we optimize the inference and reconstruction losses
based on Eq. (5.2.2) and Eq. (5.2.2).

During training, we employ a strategy of sharing parameters for joint likelihood
consolidation of the raw data distribution p(xy,z,) and augmented data distribution
p(xa,2,) to align the reconstruction effect. This allows the inference and reconstruction
networks to share the same structure and parameters during training. Such an approach
reduces the number of model parameters and increases the generalization of the model,
enabling it to learn normal patterns of different data distributions in reconstructing
normal data.

In conducting VI of the joint distribution’s posterior distribution, we maximize the
MI of the two latent variables to encourage the original generator and the augmented
generator to produce similar data distributions. In our actual optimization objectives,
i.e., the surrogated loss Awavag, we implement two methods to control the divergence

between the two likelihood distributions: the ,%‘1%‘{,11% loss based on contrastive learning:

LinfeNCE =1+ A —i—ii

=Zipo + LiLpo +1(zr.2a)
(5.12) ELBO ELBO r;%a
=Zp1Bo + LaLBo + LinfoNCE(2r, 2a)

::"(fELBO + 2}%130 + axinfoNCE(zr, za)7

and the o%\?v%%séal loss based on adversarial learning:

Lo =1+ A—i—ii

:gr + za +I(Z z )
(5.13) ELBO ELBO r;%a
:"%IELBO + :fEaLBO + ZLadversial(Zr, 2a)

322}%1,]30 + QELBO + Y ZLadversial(2r, 2a).
The discriminator’s performance is optimized in an adversarial manner, with the specific
optimization process illustrated in Figure. 5.3. The first part focuses on maximizing
the encoder-decoder capabilities, and the second part involves swapping pseudo-labels
to maximize discriminator loss. In the training stage, we use a and y to constrain the
infoNCE loss and adversarial loss, respectively, to achieve the balance between inference

and repesentation.
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Figure 5.4: The overall framework of WAVAE, training begins with the raw data x,
undergoing an augmentation algorithm AUG, resulting in augmented data x,. Con-
currently, we train a shared-parameter VAE separately for both sets of data. However,
evaluation, i.e., anomaly detector, is conducted solely on the original model between raw
input x, and its reconstruction &, essentially designing an end-to-end anomaly detector.

5.2.4.3 Anomaly Scores

The training process and the determination of anomalies are illustrated in Figure. 5.4.
The reconstruction-based anomaly detection utilizes the deviation between the original
data and the reconstructed data as an anomaly score, denoted as AS(x,x). We determine
whether the input data is anomalous by comparing the anomaly score with a preset

threshold 7. The specific process is shown in Algorithm 6.

5.3 Experiments

5.3.1 Benchmarks

To validate the effectiveness of our approach, we select 16 reconstruction-based models
for anomaly detection in time series data as benchmarks, which included 6 generative
models (GANs and AEs based):

1. Transformer autoencoder (TAE) [104]: A transformer autoencoder encodes and

decodes time-series data to capture temporal dependencies.
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Algorithm 6 The training process of WAVAE
Require: Dataset 2 = (B’ ,B é}m Training batch By, = {(xV, yV ))}?:1 € R0*s*f Evalua-

tr’ =1’
tion batch B, € RE*sx¢, > b,s,c refer to the size of batch, sequence length, and
features respectively

Ensure: Parameters of encoder £, decoder g4, and discriminator v, anomaly threshold

7.
1: for each B! in the training batch By, do
2: B! — 0O(BY) > Operation @ is defined in Eq. (5.10) and Eq. (5.11)
3: B.cB,
4: end for
5: while not converged do
6: for each B',B! in 2 do
7: Compute gradients of Eq. (5.12) or Eq. (5.13) w.r.t. 6 and ¢
8: Update the parameters of f and g
9: end for
10: end while
11: for each B! in the evaluation batch B, do
12:  Bj — go(fp(BD) > Reconstruct the sequence
13: for each x’,x’ in B, do
14: Score — AS(x!,x)) > Calculate the anomaly score based on similarity
15: if Score <n then
16: xL is an anomaly
17: else
18: . is not an anomaly
19: end if
20: end for
21: end for

2. The multi-scale CNN-RNN based autoencoder (MSCREA): A CNN, RNN-based au-
toencoder leverages CNN for representation extraction across multiple scales and
RNN to capture temporal dependencies, tailored for enhancing anomaly detection

in time-series data.

3. BeatGAN (BGAN) [190]: A GAN-based model for ECG anomaly detection, learning

normal heartbeats to identify irregular patterns in time-series data.

4. RNN-based autoencoder (RAE) [102]: A gated recurrent unit (GRU) based autoen-
coder designed to encode and decode time-series data for anomaly detection by

learning sequential patterns and temporal relationships.
5. CNN-based autoencoder [181]: A CNN-based autoencoder architecture tailored for
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6.

time-series analysis, utilizing convolutional layers to identify spatial patterns in

data, essential for detecting anomalies in sequential datasets.

RandNet (RN) [25]: An ensemble of randomly structured autoencoders with adap-

tive sampling recognize efficiently and robustly detect outliers in data.

In addition, 10 anomaly detection methods for time-series data involve probabilistic

generative models, namely Variational autoencoders, including:

1.

The Gaussian mixture model variational autoencoder (GMMVAE) [93]: The VAE
with GMM priors combines the probabilistic framework of Gaussian mixtures with
the generative capabilities of VAEs to model complex distributions in time-series

data, facilitating robust anomaly detection through learned latent representations.

. Variational autoencoder (VAE) [164]: modeling the likelihood of generative data.

. Recurrent neural network based VAE (RNNVAE) [116]: Merging an RNN with

the variational approach to autoencoding, capturing temporal dependencies in

sequential data for improved anomaly detection through stochastic latent spaces.

The variational RNN autoencoder (VRAE) [137]: combining the sequence modeling
strengths of RNNs with the probabilistic latent space of variational autoencoders,
aiming to improve anomaly detection in time-series by learning complex temporal

structures.

. a’-VQRAE, BT'-VQRAE, and y'-VQRAE [72]: Extensions of VRAE, with RNN

substituted by a quasi-recurrent network and a, B, y-log-likelihood loss to help the

VAE model achieve robust representation.

a-biVQRAE, B-biVQRAE, and y-biVQRAE [72]: Variants of VQRAE, with RNN
extended to bilevel to achieve time dependence on time-series data, while the a, S,

Y-loglikelihood loss helps the VAE-based model achieve robust representation.

5.3.2 Experimental Setup

Datasets: To validate the effectiveness of our proposed methodology, we undertake a

series of experiments on a quartet of MTS datasets below. These datasets, encompassing

several hundred temporal sequences, are sourced from real-world industrial systems or

are synthetically generated, comprehensively evaluating the modeling performance.
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The Genesis demonstrator dataset for machine learning (GD)! comprises five distinct
sequences, encapsulating continuous or discrete signals recorded from portable pick-and-
place robots at millisecond intervals. We harness the sequence replete with anomalies to
target anomaly detection, specifically the Genesis_AnomalyLabels.csv, which consists
of 16,220 records. Within this framework, records marked with class 0 are designated
as normal, whereas the remaining classifications, classes 1 and 2, are delineated as
anomalies.

The high storage system data for energy optimization (HSS)? dataset is composed of
four sequences documenting the readings from induction sensors situated on conveyor
belts.Within each sequence, records tagged with class 0 are categorized as normal,
whereas those labelled with class 1 are identified as anomalous.

The electrocardiogram dataset (ECG)? comprises a solitary time-series sequence
collected from PhysioNet signals attributed to a patient with severe congestive heart
failure. For the sake of consistent comparison, we follow the guidelines in [32], utilizing
ECG5000_TRAIN.tsv from the training dataset of anomaly detection. This approach
involves classifying three classes (supraventricular ectopic beats, PVC, and unclassifiable
events) as anomalies, while the two remaining classes (R-on-T premature ventricular
contraction, normal) are maintained as the normal data.

The trajectory dataset (TD)* encapsulates a unique time-series sequence, with each
data point being two-dimensional. These points represent the detection algorithm’s
accuracy in delineating the skeletal structure of a hand, coupled with assessments
from three human evaluators on the algorithm’s predictive accuracy. We undertake an
unsupervised anomaly detection task in this setting using the HandOutlines_TRAIN.tsv
file extracted from the training set, comprising 1,000 instances. Within this dataset,
instances classified as normal bear the label of class 1, and those recognized as anomalies
carry the label of class 0.

Implementation details: Our experimental setup was standardized to ensure a
level playing field and control for potential performance biases introduced by Pytorch
Versions. The versions selected for all implementations are Python 3.7.16, PyTorch 1.1.0,
NumPy 1.19.2, CUDA toolkit 10.0.130, and cuDNN 7.6.5. This approach guarantees
that the proposed and comparative algorithms are evaluated under equivalent computa-
tional environments. Our hardware setup included NVIDIA Quadro RTX 6000 GPUs

"https://www.kaggle.com/datasets/inIT-0WL/genesis-demonstrator-data-for-machine-learning
nttps://wuw.kaggle.com/datasets/inIT-0WL/high-storage-system-data-for-energy-optimization
3https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
“https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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with driver version 525.105.17 and CUDA version 12.0. Additionally, we incorporate a
randomness control module, employing seed values to govern the stochasticity across

computational units such as GPU, Python, and PyTorch.

5.3.3 Robust Detection Performance by Expressive Posteriors

The anomaly detection performance on five public datasets can be found in Tables 5.1
and 5.2. With PRAUC and ROCAUC metrics, our method outperforms the baselines across
all datasets, regardless of whether they are AE and GAN-based generative models or
VAE-based ones. Note that our comparative data is originated from [72]. Additionally,
we observe that the methods based on adversarial mechanisms generally underperform

than those using contrastive loss.

Table 5.1: Overall accuracy, PR-AUC. For each dataset, the three best-performing meth-
ods are denoted using distinct markings: bold for the top method, superscript asterisk”
for the second-best, and underline for the third-best.

Models/Datasets GD HSS ECG TD
TAE 0.088 0.195 0.138 0.175
MSCREA 0.075 0.161 0.105 0.148
BGAN 0.109 0.214 0.103 0.151
RAE 0.128 0.242 0.118 0.163
CAE 0.116 0.207 0.107 0.177
RN 0.112 0.146 0.105 0.168
GMMVAE 0.142 0.216 0.163 0.364
VAE 0.097 0.203 0.131 0.188
RNNVAE 0.086 0.204 0.079 0.118
VRAE 0.131 0.219 0.144 0.165
a’-VQRAE 0.235 0.225 0.177 0.428
ﬁT-VQRAE 0.242 0.223 0.177 0.427
YI-VQRAE 0.245 0.222 0.184 0.423
a-biVQRAE 0.249 0.227%0.141 0.429
f-biVQRAE 0.256 0.224 0.189%0.430
Y-biVQRAE 0.2580.222 0.186 0.432
WAVQRAE-Adverisal || 0.304 0.286 0.190 0.440
WAVQRAE-Contrast || 0.307 0.358 0.200 0.504
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Table 5.2: Overall accuracy, ROC-AUC.

Models/Datasets GD HSS ECG TD
TAE 0.652 0.563%0.542 0.531
MSCREA 0.582 0.509 0.509 0.519
BGAN 0.673 0.549 0.547 0.622
RAE 0.608 0.537 0.552 0.593
CAE 0.641 0.560 0.574 0.583
RN 0.731 0.526 0.524 0.533
GMMVAE 0.763 0.534 0.533 0.531
VAE 0.664 0.525 0.531 0.643
RNNVAE 0.595 0.516 0.536 0.574
VRAE 0.658 0.521 0.551 0.662*
a"-VQRAE 0.970 0.529 0.592 0.539
BT-VQRAE 0.968 0.520 0.583 0.535
Y*-VQRAE 0.969 0.524 0.598 0.547
a-biVQRAE 0.975 0.538 0.597 0.542
f-biVQRAE 0.976 0.527 0.603%0.546
7-biVQRAE 0.9780.526 0.601 0.549
WAVQRAE-Adverisal || 0.991 0.563 0.612 0.579
WAVQRAE-Contrast || 0.996 0.575 0.630 0.646

5.3.4 Sensitivity Analysis

An extensive series of ablation experiments rigorously assess the sensitivity of hyperpa-
rameters in our model. This comprehensive evaluation encompasses many hyperparame-

ter sets throughout the entire end-to-end training process.

* We investigate variations in VAE-related hyperparameters such as the § in Eq.
(5.2.2) and Eq. (5.2.2) to balance the inference and reconstruction in VAE training,

the dimension of 2, and the reconstruction loss #x.

* We also scrutinize SSL-related hyperparameters like the number of discriminator

layers, the weight of infoVAE loss, and the augmentation method.

* In addition, we delve into hyperparameters pertinent to time-series processing,

including the sequence length and hidden variables in embeddings.

¢ Lastly, we explore adjustments in deep learning hyperparameters, including batch

size, learning rates, and the number of epochs.
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Figure 5.5: Sensitivity analysis of VAE-related hyperparameters indicates significant
findings: (a) reveals that the dimension of z profoundly influences outcomes, with optimal
performance when the dimensionality ranges between 14 and 20. (b) shows that f exerts
a minimal effect on optimization, peaking in efficacy at 0.001. (c) demonstrates the
superior performance of the MSE loss function.
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Figure 5.6: Sensitivity analysis of infoNCE loss related hyperparameters. From (a), it
is observed that the weight of the infoNCE Loss has a minimal impact on the overall
effectiveness, and a weight around 0.5 can achieve the best performance. (b) illustrates
varying augmentation approaches, indicating that using the min-max normalization
(MinMax) on both original and augmented data is the most effective.

In each set of experiments, we systematically vary a selected hyperparameter within its
feasible range while maintaining the default settings for all other hyperparameters to
isolate and understand the individual impact of each hyperparameter adjustment on the

modeling performance.

5.3.4.1 Effect of VAEs

Ideally, VAE is adept at modelling data distributions, encapsulating the potential to fit
the likelihood of diverse data modalities through its sophisticated encoder-decoder ar-
chitecture rooted in deep neural networks. Concurrently, it postulates a manifold-based,
low-dimensional, continuous and smooth space. However, in real-world applications,
the efficacy of a VAE-based data likelihood estimation is subject to substantial vari-

ability, influenced by the selection of encoder-decoder architectures, the diversity of
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Figure 5.7: Sensitivity analysis of adversarial loss related hyperparameters. From (a), it
is observed that the weight of the infoNCE Loss has a minimal impact on the overall
effectiveness. Conversely, (b) indicates that the number of layers in the discriminator
significantly affects the results, with the best performance observed between 2 and 3
layers. (c) illustrates varying augmentation approaches, indicating that using the min-
max normalization (MinMax) on both original and augmented data is the most effective.
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Figure 5.8: Sensitivity analysis of sequence-related hyperparameters. (a) indicates that
the model’s anomaly detection performance is not affected by the length of the series. (b)
shows that the encoding network achieves the best performance when the hidden state
size is 32.
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Figure 5.9: Sensitivity analysis of deep learning related hyperparameters. (a) A batch
size of 64 yields optimal results. (b) The learning rate has minimal impact on the model.
(c) The best performance is observed at 50 epochs.
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data modalities, and the specificity of the task at hand. To isolate and assess the ef-
fects of these factors on anomaly detection performance, we embark on a systematic
sensitivity analysis of hyperparameters spanning three pivotal domains: weight of KL
divergence f, dimensions of latent variables d, and reconstruction loss function. Through
this methodical examination, we aim to elucidate the impact of these variables on the
VAE'’s reconstruction proficiency, thereby enhancing the model’s suitability for anomaly

detection endeavours.

Dimensions of Latent variables: The dimensionality of latent variables determines
the amount of information the encoder compresses to maximize the log likelihood under
the information bottleneck theory. Simultaneously, it influences the dependency and
causality of low-dimensional space representations under the manifold assumption. The
fundamental assumptions of generative models-based time-series anomaly detection
posit that anomaly data will deviate from the likelihood of normal data. We conduct
experiments with varying dimensions of latent variables z to develop a robust likelihood
function, specifically exploring {8,10,12,14,16,18,20}. Figure. 5.5 (a) shows the outcomes

and an in-depth analysis of these experiments, indicating the optimal dimension for z.

KL Divergence Weight: The KL weight controls the balance between represen-
tation learning and reconstruction in the VAE model and the information during the
compression process, affecting the model’s robustness during training. We use the hyper-
parameter 8 to adjust the VAE’s compression capability. We select five distinct values
for the KL term to assess their impact, specifically {le —5,5¢ —5,1e —4,5¢ —4,1e — 3}.

Detailed results and analysis of this exploration are presented in Figure. 5.5 (b).
Reconstruction Loss Function:

In Eq. (5.2.2) and Eq. (5.2.2), we fit different likelihood distributions by optimizing
the specific reconstruction loss. For discrete data, we optimize the binary cross entropy
(BCE) loss, i.e., EKI?CE, to fit the log-likelihood of a multivariate Bernoulli distribution,

denoted as:

BCE
< R

(5.14) =E g,(z1x) [log pg (x| 2)]

D
=E ¢ (z1%) Y xqloghpq(z)+(1—xg)log(1-Apq(2))|,
d=1

Where x € {0,1}” and A € {0,1}” are the parameters of univariate Bernoulli distributions.

For continuous data, we optimize the mean square error (MSE) $}¥SE to fit the log-

87



CHAPTER 5. AUGUMENTED VARIATIONAL AUTOENCODER

likelihood of a multivariate Gaussian distribution, denoted:
‘%g[SE =E gz1x[logp (x| 2)]

(5.15) 1 i ,
=— ) llxg—%4ll°.
D ;5

We also test two robust variants [50] based on the Bernoulli likelihood distribution:

grobustl
R
(5.16) ar+1

a1

D
(]‘[ (xq&7' +(1—xq)(1-&q)™) - 1) ,
d=1

and Gaussian likelihood distribution:

gﬁobustZ
(5.17) as+1 1 az 2 2
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where a1, a1 are the hyperparameters and o is the variance. The analysis and comparison

of four types of loss functions are illustrated in Figure. 5.5 (c).

5.3.4.2 Effect of SSL Loss

The SSL Loss in Eq. (5.12) and Eq. (5.13) will be biased by the approximation methods
and augmentation types.

InfoNCE loss: Our study investigates the infoNCE loss in contrastive learning for
mutual information maximization with weight hyperparameters {0.1,0.2,0.3,0.4,0.5},
detailed in Figure. 5.6 (a), different scaler, shown in Figure. 5.6 (b).

Adversarial loss: Our study investigates the adversarial learning discriminator loss
for mutual information maximization with weight hyperparameters {0.1,0.2,0.3,0.4,0.5},
detailed in Figure. 5.7 (a), varying layers [1,2,3,4], analyzed in Figure. 5.7 (b), different
scaler, shown in Figure. 5.7 (c).

Augmentation Methods:

For self-supervised methods applied to time-series, augmentation can mine the in-
trinsic characteristics of the data, addressing the issue of insufficient data for deep
models. To validate the effectiveness of our approach, we experiment with various strong
augmentations to enhance the time dependencies and frequency domain representations
of time-series data. In parallel, we also explore several weak augmentations, specifi-

cally normalization techniques applied to time-series data. Our findings indicate that
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the domains transformed by strong augmentations are ill-suited for generating robust
likelihood functions, leading to suboptimal results in anomaly detection. In that case, We
conduct sensitivity analysis experiments by testing two combinations of weak augmenta-
tions. These combinations include both raw and augmented data using MinMax (Figure.
5.6 (b), Figure. 5.7 (¢) MM), raw data with MinMax and augmented data with Standard
(Figure. 5.6 (b), Figure. 5.7 (c) MS), raw data with Standard and augmented data with
MinMax (Figure. 5.6 (b), Figure. 5.7 (¢) SM), and both raw and augmented data using
standardization (Figure. 5.6 (b), Figure. 5.7 (c) SS). Specific experimental results and
analysis are presented in Figure. 5.6 (b), Figure. 5.7 (c).

5.3.4.3 Effect of Time Series Processing

The inherent characteristics of time series, such as the window size in a batch and the
memory step length in the encoding model, can impact modeling performance.

Sequence Length: In time-series data analysis, the window length is critical as
it sets the data truncation extent, essential for detecting anomalies with periodicity or
spatio-temporal continuity. Furthermore, the length of the time series plays a significant
role in identifying contextual anomalies. For our sensitivity analysis, we choose the
time series lengths of {8,16,32,64,96}. Detailed experimental results and analyses are
illustrated in Figure. 5.8 (a).

Hidden Variables: We evaluate the impact of different hidden space sizes in the
embedding, experimenting with the dimensionality of {1,2,3,4,8,16,32,64,128,256}.

Detailed analysis and results are presented in Figure. 5.8 (b).

5.3.4.4 Effect of Deep Learning

In deep models, batch size, learning rates, and epochs cooperate to guide the model
convergence to the optimal.

Batch Sizes: By modulating the batch size, we gain insights into the stability of
gradient updates and their consequent impact on model convergence. To this end, we
select batch sizes {32,64,128} to ascertain their influence on the modelling performance
empirically. Detailed experimental results and analyses are illustrated in Figure. 5.9 (a).

Learning Rates: The step size in gradient descent induced by the learning rate
is taken during optimization and can significantly influence the modelling ability to
find minima. We test the learning rates of {0.001,0.01,0.1} and systematically study
their effects and optimize the modelling performance. Figure. 5.9 (b) illustrates detailed

experimental results and analyses.
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Number of Epochs: In the context of unsupervised anomaly detection, rather
than focusing on model generalization, we prioritize the impact of training duration on
performance. We fix the randomness and maintain consistent hyperparameters, testing
the same model’s anomaly detection capabilities at epochs {10,20,30,40,50}. Figure. 5.9

(c) illustrates detailed experimental results and analyses.

5.4 Summary of This Chapter

In this chapter, we propose a Weakly Augmented VAE (WAVAE), which incorporates self-
supervised learning (SSL) into VAE to augment input and better estimate the anomaly-
sensitive likelihood for more robust reconstruction. Specifically, WAVAE mitigates the
disruption of anomalies in the low-dimensional representation space, thus resulting in
augmented latent representations for TSAD. By augmenting latent representations via
enhanced training, WAVAE increases the robustness of estimating the likelihood of nor-
mal data and improves the sensitivity to anomalies. It synchronizes the training of both
augmented and raw models and aligns their convergence during data likelihood optimiza-
tion. This is achieved by maximizing mutual information in the Evidence Lower Bound
with contrastive learning for shallow learning and a discriminator-based adversarial
strategy for deep learning. WAVAE significantly advances VAE by integrating SSL into
likelihood enhancement on five public synthetic and real datasets, validating the efficacy
of WAVAE for TSAD, compared to state-of-the-art models and through comprehensive

ablation studies.
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PARAMETER REPRESENTATION BAYESIAN FLOW MODEL

Bayesian flow networks (BFNs) have emerged as a promising generative framework for
handling mixed-type data, yet they often fail to capture low-dimensional latent semantics
necessary for robust representation learning. This limitation motivates RQ4: How can
DVGM enhance inference in complex parameter spaces for better generation?

To address RO4, we introduce ParamReL, a framework that shifts representation
learning from observation spaces to parameter spaces. By leveraging progressive encod-
ing and mutual information maximization, ParamReL extracts latent semantics directly
from intermediate parameters, enabling the model to handle diverse data formats and
achieve clearer, disentangled representations. The following sections outline ParamReL’s
innovations and its effectiveness in capturing meaningful semantics across discrete and

continuous data.

6.1 ParamReL: Learning Parameter Space
Representation via Progressively Encoding

Bayesian Flow Networks

This work explores a new important question: How to learn latent semantics in parameter
spaces rather than in observation spaces of mixed-type data comprising continuous,
discrete, and even discretized observations? We propose a novel unified parameter space

representation learning framework that utilizes the parameter spaces rather than the
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observation spaces for mixed-type data.

Representation learning [15] aims to discover low-dimensional latent semantics from
high-dimensional observations, widely applied in areas including computer vision [41,
87, 186], and data analytics [113, 142]. While the main focus has been on continuous-
valued data [27, 74, 105], it is more challenging to uncover semantics in discrete [11, 28]
and even discretized [120, 146] data. However, existing efforts often encounter issues
like inconsistent discoveries and redundant modeling [78, 191]. Recently, Bayesian flow
networks (BFNs) [54, 135, 171] emerged as a promising deep generative model. BFNs
use multiple steps similar to diffusion models [62, 131] to refine parameters of an output
distribution for reconstructing observations. Accordingly, BFNs offer a unified strategy to
handle mixed-type data while enabling fast sampling. However, they struggle to capture

low-dimensional latent semantics, raising the above open question.

Correspondingly, we propose a novel unified Parameter space Representation Learning
framework, ParamReL, which leverages the multi-step generative learning of BFNs
for representation learning on mixed-type data. ParamReL tackles this by performing
representation learning in the parameter space to extract high-level latent semantics.
The key insight lies in progressively self-encoding the intermediate parameters of BFNs,
generating low-dimensional latent semantics step by step. Specifically, ParamReL adopts
an architecture similar to BFNs but with two significant innovations: (1) a self-encoder
encodes intermediate parameters into lower-dimensional latent semantics, capturing
gradual semantic changes throughout the multi-step generation process; and (2) a condi-
tional decoder, which conditions on latent semantics and intermediate parameters, and
forms the parameters of an output distribution for simulating observations. Additionally,
ParamReL involves a reverse-sampling procedure customized for tasks like image recon-
struction and interpolation. Variational inference method is used in learning ParamReL,
where mutual information is used to promote disentangled latent semantic learning,

resulting in distinct and meaningful representations.

We evaluate ParamReL in learning meaningful high-level latent semantics from
both discrete and continuous-valued observations on benchmark data. The sampling and
reverse-sampling mechanisms of ParamReL successfully perform tasks such as latent
interpolation, disentanglement, time-varying conditional reconstruction, and conditional
generation. Notably, the self-encoder reveals progressive semantics throughout flow steps,
enabling ParamReL to generate semantics with improved clarity, while maintaining high

quality of sample generation.
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6.2 The ParamRel.L Model

Here, we explain the framework of ParamReL and its main design mechanisms.

ParamReL leverages the parameter space for representation learning by extracting
low-dimensional latent semantics from high-dimensional mixed-type data. Different from
BFNs in approximating data distribution p(x(), ParamReL learns the joint distribution
over observation xg and a series of latent semantics {zt}z;l, with |z;| < |x¢l,VE€{1,...,T}.
That is, ParamReL seeks to reconstruct xy while obtaining meaningful low-dimensional
latent semantics {zt}le.

Building on BFNs, ParamReL consists of four main components:

(1) A self-encoder, conditioning on the intermediate (posterior) parameters 0; to gener-

ate progressive latent semantics z;, described in Section 6.2.1.

(2) A conditional decoder, using a neural network on latent semantics z; and interme-
diate parameters 6; to form the output distribution for subsequent steps, detailed
in Section 6.2.2.

(3) A sampling and reverse-sampling process, facilitating tasks such as image recon-

struction and interpolation, outlined in Section 6.2.3.

(4) A training and testing procedure, as discussed in Section 6.2.4, optimizing latent

semantics z; and ensuring effective model generalization.

Together, ParamReL forms a robust framework to capture and utilize latent semantics
and to improve the performance of tasks including unconditional image generation and

reconstruction.

6.2.1 Parameter Encoding through A Self-encoder

The self-encoder, denoted as q(z;|0;,t), progressively encodes intermediate parameters
0; into low-dimensional latent semantics z;, which facilitates representation learning
from high-dimensional, mixed-type data at each step ¢. [14] has shown that upsampling
layers from a U-Net in pre-trained diffusion models [123] may capture meaningful
semantic information. Inspiring from this discovery and in training ParamReL, we
adopt approaches similar to [101] to parameterize q(z;|0,t) for more details). Through
q$(z¢10;,1), the intermediate parameter 0; effectively encodes itself into z;, together they

form v(0;,z;) for the output distribution.
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Ideally, the latent semantics z; should provide low-dimensional semantics distinct
from the intermediate parameters 6; in BFNs but without compromising the data
reconstruction process. To learn high-quality latent semantics, a smooth, learnable
latent space is necessary, which is ensured by integrating the prior distribution p(z;)
into a robust probabilistic framework, allowing efficient sampling of xy. For simplicity
and efficiency, we assume p(z;) follows a Gaussian distribution.

q4(2z¢|04,1) differs from traditional auto-encoders q(z|x¢) in two key aspects:

* q¢(z:04,t) is conditioned on the intermediate parameter 8;, rather than being
conditioned on xXg. This summarizes information from all previous steps to enable

generating latent semantic z; through all the T steps.

¢ The self-encoder generates a step-wise semantic z;, which is tailored to the dynamic
behavior of variables over time ¢. This series of latent semantics {zt}tT:1 are expected
to exhibit progressive semantic behaviors (such as gradual changes in age, smile,

or skin color) throughout the generation process.

When observations Xy are unavailable, e.g. sample generation tasks, it is also worth
noting that directly using regular auto-encoders like q4(z|x¢) to generate latent se-
mantics is infeasible. They may require an additional module to generate latent se-
mantics [118], while training such modules would introduce computational overhead.
However, in their case, not using auto-encoders q4(z|x() would lead to inefficient resource

use.

6.2.2 Conditional Decoder

The conditional decoder refers to the output distribution po(x;|w(0,2;)) which conditions
on latent semantics z; and intermediate parameter 8; to simulate x;. The condition
w(0¢,z;) explicitly incorporates z; as part of its conditioning mechanism. Following the
settings in diffusion models [62, 131], we use the U-Net architecture with the Cross-

Attention in each layer specified as

vd

where W€ WK WV are the query, key and value weight matrix, respectively.

Cross-Attention(0;,z;) = ( )V, where Q = WQHt,K = WKzt,V = WVzt

Since z; works together with the corresponding intermediate parameter 6;, it is

expected that z; aligns well with the progressively structured parameter 8;. Lower-level
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o -

Figure 6.1: Reverse-sampling process in BFNs.

intermediate latent x; (such as hair texture) is progressively incorporated. The proposed

self-encoder works consistently with the conditional decoder here as both work on 6;.

6.2.3 Sampling and Reverse-sampling Processes

After training ParamReL, the sampling and reverse-sampling processes play a crucial
role in generating and reconstructing data, which is essential for tasks such as image
generation and interpolation. Generating samples begins with an initial guess of the
intermediate parameters 87.1. From 07,1, this sampling process sequentially generates

X7,X7-1,...,X0. Specifically, given the parameter 0, at each step ¢, we have:

(6.1) zt ~ q(2410:,1), X¢ ~ po(Xe|Y(0¢,21)), 0:-1 = h(0;,%;).

We use the trained encoder q(z:|0;,¢) to replace the prior p(z;) of z; for improving the
sampling quality. After 0 is obtained, a sample can be generated as zo ~ q(z0|09,0),xo ~
po(Xolw(69,20)).

However, the reverse-sampling process, which transits the observation xy through the
intermediate latents x1,X9,...,X7_1 until X7, is not as straightforward as the sampling
procedure. Without a clearly defined reverse-sampling process, it would be challenging
to perform tasks such as image reconstruction and interpolation. In fact, by taking the
inverse of the Bayesian update function A(-) as 0; = A~ 1(0;_1,x:_1), the intermediate

latent x;_; can transit to x; as:
(6.2) 0:=h1(0;:-1,%-1), 2t ~ qp(2101,1), X; ~ po(X; W (0;,2,)).

Given the straightforward definition of Bayesian update function A(-), its inverse opera-
tion is generally easy to derive. Furthermore, this developed reverse-sampling process

can be naturally extended to BFNs. Transiting x;_; to x; at time ¢ can be performed as
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0,=h"1(0,_1,%x,_1), with x; sampled as x; ~ po(x¢|w(0;)). With this approach, BFNs can
effectively perform tasks like image reconstruction and interpolation, which were diffi-
cult or even impossible by previous BFNs models. Figure 6.1 shows the reverse-sampling

process of BFNs.

6.2.4 Training and Test with ParamReL

Here, we outline the process of training and testing ParamReL by focusing on optimizing
ParamReL to learn meaningful latent semantics while ensuring effective reconstruction
of observations. The training process involves variational inference to approximate the
joint distribution of latent variables, and a mutual information term is integrated into
improving the quality of learned latent semantics by strengthening the relationship
between intermediate parameters and latent semantics.
Variational Inference for Intractable Joint Distribution In ParamReL, the joint
distribution over x(, intermediate latents {xt}z;l and latent semantics {z,f}g’:1 can be
defined as p(xo, {x7 {27 | 1-) = poxolw(00,20)) TIL-; [P(Z)Epox, w0120 [Ps(Xe-11X0)]],
where the output distribution po(xg|w(09,z¢)) at step 0 is used to model observation
x0, and Ep(x,y(0,,2:)[Ps(X¢-1/X¢)] follows the definition of BFNs to model intermediate
latent x;_1, and pg(X;_1|x;) is a noisy distribution of x;.

With q4(z;|0;,t) defined as the encoder for z; and ps(x;-1/x;) defined as the vari-
ational distribution for x;_;, the evidence lower bound (ELBO) on the marginal log-
likelihood of observation x is:

T
(6.3) logp(x¢)=—)_ Epr@:1-)Eqp(z:10,,t) {KL [ps (X¢-11%0) | Epg(xs1p0,,2:0[PS(Xe-11%)]]
t=1

~KL[q¢(2:10:,8) | p(2)]} + Epp(8ol-)g(z010,0) [In PO (X0|¥(80,20))] := ELBO.

Maximizing ELBO is equivalent to performing amortized inference [76] through en-
coders q(z¢|0;,t) and learning likelihood function through decoders [188]. When the
encodable posterior q¢(z;|0;,¢) is used to infer high-level semantics z;, those interme-
diate latents {X,g};r:1 contain low-level information in generating the observations. In
ParamReL, the parameters of the output distribution are learned through iteratively pro-
ceeding the Bayesian updating functions and a learned noise model y¢(0,z) parameterized
by neural networks .

Mutual Information Regularization Ideally, during the training phase, we want to
acquire the latent semantic z; by the self-encoder q(z;|0;,t) and achieve high-quality

reconstruction Xy by the decoder (i.e., the output distribution po(x¢|y(89,2))). However,
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there exists a trade-off between inference and learning [127, 158] coherent in optimizing
the ELBO in Eq. (6.3). In most cases, optimizing ELBO favours fitting likelihood rather
than inference [188]. Based on the rate-distortion theory [7, 12], the rate, represented by
the KL divergence term constrained by the encoders, compresses sufficient information
to minimize the distortion, or reconstruction error, while simultaneously limiting the
informativeness to promote a smooth latent space.

To remedy the insufficient representation learning during the inference stage, we
want to increase the dependence between intermediate parameters 6; and latent seman-
tics z; by maximizing their mutual information 1(0;,z;). We can rewrite the tractable
learning object in ParamReL by adding the mutual information maximization term as
ELBO,; =ELBO + %Zt I,(04;2;), where y is the trade-off parameter. Considering that we
cannot optimize this object directly, we can rewrite it by factorizing the rate term into

mutual information and total correlation (TC).

6.3 Experiments

We present two ParamReL variants operating in different parameter spaces: Param-
RelLd for discrete input distributions (Section 6.3.2), and ParamReLc for continuous
input distributions (Section 6.3.3), respectively. We evaluate the representation learning
capabilities of ParamReL in three reconstruction-based tasks: latent interpolation, disen-
tanglement, and time-varying conditional reconstruction. Additionally, we evaluate the
model for unconditional generation, where samples are generated only from the decoder

using a given prior.

6.3.1 Evaluation Setup

We conduct a two-fold comparison to evaluate the performance of ParamReL variants.
Firstly, we compare our parameter-based models (ParamReLc and ParamRelL.d) with es-
tablished sample-based representation learning baselines, including AE and VAE-based
models such as B-VAE [61], infoVAE [188], and diffusion-based models such as Dif-
fAE [118] and InfoDiffusion [150]. These models represent key advancements in the field:
B-VAE introduce disentanglement into VAE, infoVAE incorporates MMD for balancing
generation and representation, while DiffAE and InfoDiffusion explore the integration
of AEs and VAEs into diffusion models to learn encodable latents and disentangled

representations, respectively. Secondly, we compare the performance of ParamReLc and
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ParamRelLd across various input distributions for continuous and discrete data, respec-
tively. The discrete datasets include binarized versions of MNIST (bMNIST) [38], Fash-
ionMNIST (bFashionMNIST) [160], while the continuous datasets include CelebA [97],
CIFAR10 [79], and Shapes3D [19]'. This comparison allows for a detailed examination
of how different parameter space assumptions impact the representation learning of

discrete and continuous data.

6.3.2 Semantic Representation of Discrete Data by ParamReLd

Here, we measure the quality of the learned latent semantics z¢ through the downstream
classification tasks. Since zg locates at step 0, they should be general and transferable [48].
Various datasets by deep classifiers are assessed to ensure their universality. Specifi-
cally, following the approach in [161], we train a classifier on labeled test sets for each
ParamReL: model. We allocate 80% of the dataset for training a classifier and reserve the
remaining 20% for test purposes. The performance on the test set is evaluated based on
AUROC. This process is conducted in a 5-fold cross-validation manner, with the results
reported as mean + one standard deviation. The results are shown in Figure 6.2 (a).
Higher AUROC suggests that the learned latent semantics zy contain more information

about data.

6.3.3 Semantic Representation of Continuous Data by

ParamRel.c

On continuous data, we evaluate ParamReLc for conditional generation, conditional
reconstruction, latent interpolation, and disentanglement.

High-level Representation Learning for Conditional Generation Plot demon-
strates that high-level semantic information is captured by the learned latent seman-
tics {zt};jr:l for image generation. This is illustrated by a set of latent-sample pairs
< {zi}z;l,xiyzj >, where {zl’;}tT:1 are obtained by reverse-sampling from the i-th input image
through the trained ParamReL, and xf_p’J is the j-th sample from .4 (0,I) corresponding
to the i-th input image. Concurrently, the low-level information, such as local attributes
in images (e.g., Narrow_Eyes, Mouth_Slightly_Open, Blond_Hair), are determined by

L,J

X

1For the discrete version, continuous data (k-bit images) can be discretized into 2* bins by dividing
the data range [—1,1] into % intervals, each of length 2/k.
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Time-varying Representation Learning for Conditional Reconstruction
We design a new time-varying reconstruction task to evaluate the effectiveness of
the progressive latent semantics learned by the self-encoder. A latent-sample pair
< {z?xed}thl,xi}"ed > is first obtained by apply the trained ParamReL'’s reverse-sampling
process on an image. Then, we use the latent semantics at step ¢* to replace other steps’
ones and “reconstruct” the image as x; ~ po(xtlw(ﬂt,z?,f‘ed)),f)t_l =h(0:,x),Vt=T,...,1.
In that case, the attributes vary due to the semantics evolution encoded by time-specific

latent.
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Figure 6.2: Quantitative representation learning comparison over generative models on
discrete data (a). ParamReL demonstrates competitive performance in capturing seman-
tic information for classification, achieving approximately 0.84 AUROC for bFashionM-
NIST and 0.91 for bMNIST. Additionally, it shows robust generative capabilities, with
FID values ranging from 0.5 to 0.6 for bMNIST and around 5 for bFashionMNIST. Among
the ParamReL-based models, ParamRel.d with a categorical distribution is particularly
effective in modelling discrete data distributions, yielding lower FID values of 0.5 for
bMNIST and 4.2 for bFashionMNIST. As shown in (b), the learned semantics exhibit pro-
gressive, time-varying changes. By varying time encodes at 200, 300, 400 time steps, more
attributes will be influenced in the reconstruction stage: the Wavy_hair, Brown_hair,
Arched_Eyebrows attributes in the first line, the Double_Chin, Mustache, Goatee at-
tributes in the second line and the Young, High_Cheekbones, Arched_Eyebrows at-
tributes in the third line. Notations: [ , FID]; [(e, bMNIST), (M, bFashionMNIST)];
[(—, ParamReLd),(— - —, ParamReLc)].

Smooth Representation Learning for Latent Interpolation Latent space inter-
polation [53, 61] is commonly used to validate the smoothness, continuity, and semantic
coherence of the learned latent semantics in generative models. Typically, two samples
are embedded into the latent space, and interpolating between the latent variables gener-
ates interpolated representations. The reconstructed outputs produced by the sampling

process reveal the semantic richness of the latent space.
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(c) Eyeglasses

Figure 6.3: Disentanglement of ParamReL on FFHQ-128. The interpretable traversal
directions are displayed by traversing the encodings ranging from [—3, 3].

ParamReL achieves near-exact reconstruction, in contrast to the downgraded perfor-
mance of VAE variants such as (a) vanilla VAE, and (b) f-VAE. Compared with diffusion
models (¢) DiffAE and (d) InfoDiffusion, ParamReL characterizes a smoother and more

consistent latent space with high-quality samples.

Disentanglement We perform latent traversals on the FFHQ and CelebA datasets
to evaluate the disentanglement properties of our trained ParamReL. In this process, we
modify one dimension of the learned latent semantics {zt}z;l each step, and replace it with
M evenly distributed numbers within a standardized range (e.g., —3 to +3), while keeping
the other dimensions fixed. After decoding these adjusted latent semantics, we evaluate
the generated samples for changes in specific attributes. Successful disentanglement
is verified when manipulating one single dimension alters only one distinguishable
attribute, such as age, while leaving all other attributes unchanged. ParamReL effectively
isolates and controls individual data attributes in both FFHQ and CelebA. For example,
on FFHQ, manipulating latent dimensions controls attributes like Mustache, Brown
Hair, and Eyeglasses, while other attributes remain constant. Similarly, on CelebA,
attributes such as Smiling, Pale Skin, and Big Nose are independently manipulated
without affecting others.

To provide a thorough and unbiased quantitative assessment of disentanglement, we
utilize two metrics: 1) Disentanglement, Completeness, and Informativeness (DCI) [43],
which is a prediction-based indicator; and 2) Total AUROC Difference (TAD) [179], an
intervention-based criterion. Additionally, we report the generation quality and conclude

that ParamReL achieves near-exact reconstruction on CelebA. Both the qualitative latent
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traversal results and the quantitative disentanglement metrics show that ParamReL
effectively learns disentangled representations, with visual traversals closely aligning

with the attributes that the latent semantics are intended to capture.

6.4 Summary of This Chapter

In this chapter, we propose a novel unified parameter space representation learning frame-
work, ParamReL, which extracts progressive latent semantics in parameter spaces of
mixed-type data. In ParamReL, a self-encoder learns latent semantics from intermediate
parameters rather than observations. A significant challenge in representation learning
is to capture latent semantics in data mixing continuous, discrete, and even discretized
observations (called mixed-type data), encountering issues like inconsistent discover-
ies and redundant modeling. Recently, Bayesian flow networks (BFNs) offer a unified
strategy to represent such mixed-type data in the parameter space but cannot learn
low-dimensional latent semantics since BFNs assume the size of parameters being the
same as that of observations. This raises a new important question: how to learn latent
semantics in parameter spaces rather than in observation spaces of mixed-type data? The
learned semantics are then integrated into BFNs to efficiently learn unified representa-
tions of mixed-type data. Additionally, a reverse-sampling procedure can empower BFNs
for tasks including input reconstruction and interpolation. Extensive experiments verify
the effectiveness of ParamReL in learning parameter space representations for latent
interpolation, disentanglement, time-varying conditional reconstruction, and conditional

generation.
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PROGRESSIVELY SELF-ENCODING DIFFUSION MODEL

Diffusion models (DMs) have demonstrated exceptional performance in generating
high-quality samples, yet challenges remain in uncovering low-dimensional, aligned
semantic representations throughout the generative process. This leads to RQ5: How
can progressive inference facilitate low-dimensional generation in diffusion models?

To address ROS5, we propose ProgDiffusion, a novel diffusion model that incor-
porates a self-encoding mechanism to generate dynamic, timestep-specific semantic
representations. By conditioning on intermediate latents and upsampling features,
ProgDiffusion aligns progressive semantic representations with latent changes over time,
enabling efficient unconditional generation. The following sections detail ProgDiffusion’s
mechanisms and its contributions to learning aligned semantics and improving sample

generation quality.

7.1 ProgDiffusion: Progressively Self-encoding
Diffusion Models

Diffusion models (DMs) [39, 62, 131] have obtained tremendous successes in generating
high-quality images. In general, DMs first define a noising scheme to sequentially add
noises upon original observations x( to obtain a sequence of noisy intermediate latents
X1,...,X7, and then learn in a reverse way to predict these x7,...,x1 to reconstruct xg.

While DMs’ outstanding image generation capability has endorsed their capabilities in
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learning meaningful semantic information, these semantics are unable to be directly
produced in standard DMs. The intermediate latents x1,...,x7 have the same shape
as that of the observations x¢ as |xg| = |x1] = ... = |[X7|, making it difficult to claim
meaningful low-dimensional semantics are uncovered.

Existing methods in learning semantic representations in DMs may be roughly
categorized into two groups: (1) Diffusion Auto-Encoder (DAE) models [30, 56, 65, 114,
118, 150, 153] encode observations xg into low-dimensional semantic representations z
and then use z as a condition to generate denoised intermediate latents in the reverse
process. However, since observations are required in generating semantics, unconditional
generation would be difficult since observations are unavailable in such tasks !; (2)
Diffusion hyperfeature methods

[59, 88, 101, 139, 144, 166, 182, 189] which investigate the upsampling features,
denoted as {u;,1};, in pre-trained DMs’ U-Net architecture into various downstream
tasks since these layers’ dimensions are lower than the observations. However, These
approaches do not propose making fundamental changes to model architectures and
training methodologies. It is thus unclear the actual architectural components and
techniques in learning useful semantic representations.

Unaligned and undetermined semantic representation is another issue. When the
semantic representation z is static in DAE methods, z may not align well with the
progressive behaviors of intermediate latents xi,...,x7. For, using the same z for gen-
erating x7 and x; might be questionable since x7,x; should contain different levels of
semantics and the former is close to white noises while the latter is more similar to the
observations. In Diffusion hyperfeatures, identifying an ideal denoising timestep as well
as layer number for highest predictive performance is usually non-trivial and it might
need great efforts to address it.

When inefficient sampling affects the sampling generation, inconsistent training
target and unaligned semantics might deteriorate learning correct representation struc-
tures. This paper proposes a Progressive self-encoded Diffusion model (ProgDiffusion)
to address them. Similar to DAE, ProgDiffusion uses DDIM [131]s forward diffusion
process, and conditions on semantic representation and the previous denoising timestep’s
intermediate latent x; to sample the current intermediate latent x;_1 in the reverse
process. In contrast, instead of using a commonly used static encoder q ¢(z|xg), ProgDif-

fusion comprises a self-encoder q4(z;|x;,u;+1,%), which conditions on the intermediate

IDiffAE [118] has separately trained an additional latent Denoising Diffusion Implicit Model (DDIM) to
generate semantics z. However, it requires additional training resources and adds additional uncertainties
to the sample generation qualities

104



7.1. PROGDIFFUSION: PROGRESSIVELY SELF-ENCODING DIFFUSION MODELS

latent x;, step (¢£+1)’s upsampling features u; 1, and the denoising timestep ¢ to generate
a stepwise semantic representation z;. z; is then used as conditions to generate x;_;
through the ¢-th denoising step as x;-1 ~ pg(Xs—11x¢,Z¢).

The self-encoder q(z;|x;,u;+1) rules out the observation x¢ required in generating
semantic representations. Efficient unconditional sampling is thus achieved by interleav-
ing the generation of progressive semantic representations through z; ~ q4(z:|xs,u;+1)
and intermediate latents through x;_1 ~ pgo(x;-1/X¢,2;), until the final sample x( is ob-
tained. In particular, the former enables a series of progressive semantic representations
to be learned, whereas the later conditions on low-level details and high-level semantics
to generate the intermediate latents. As x; progressively approaches the observation
over the denoising step ¢, z; also obtains clearer semantics with denoising timestep ¢

decreases.

We use all the potential information, including x; and w;, 1, in forming the conditions
to generate semantics as z; ~ q¢(z¢|X;,us11,1). The learned z; may avoid the nontrivial
selection of upsampling layer, and we might also obtain meaningful architectural insights
in learning DMs’ semantics. In particular, as u;;+;1 also contains certain semantics,
transferring these semantics u;.; with intermediate latent x; should be easier than

learning the semantics from x; only.

For this, we introduce a mutual information term I(x;,z;) between the intermediate
latent x; and semantic representation z; to the objective function. Maximizing this term
ensures that z; stores sufficient information from x;. Please be noted that I(x;,z;) is
different from I(xg,z) as in [150, 188], as we store information from x; rather than
observation x(. In this way, ProgDiffusion fits the intermediate latents and learns
appropriate generation and amortized inference at the same time. Figure 7.5 illustrates

and compares ProgDiffusion with DiffAE.

The experiments involve progressive semantic visualization tasks to understand the
effect of aligned semantics. We also test ProgDiffusion on Other tasks, such as image
interpolation, unconditional generation, and disentanglement, further verifying the

effectiveness of our design.

The main contributions of this work include: (1) ProgDiffusion enables effective un-
conditional generation using a refined encoder; (2) ProgDiffusion conditions on all the
intermediate information, including latent x; as well as U-Net’s upsampling features
u;+1, to generate semantic representation z;; (3) ProgDiffusion learns progressive se-
mantic representations which align well with intermediate latents; (4) ProgDiffusion

integrates a stepwise mutual information term I(z;,x;) to fit intermediate latents and
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learn effective models at the same time; (5) A new task is designed to visualize the

progressive structured semantic representation learning.

Table 7.1: Comparative assessment of ProgDiffusion and diverse generative models,
focusing on high-quality generation and specific representation learning capabilities.

Generation Representation
Model High Quality Low Dim. Continuous Smooth Time Specific
AE X N x X X
VAE X v x X x
GAN X x x x x
DDPM v x v X X
DDIM v x v v x
LDM v v v X x
DiffAE v v x v X
PDAE v v x v x
InfoDiff v v v v x
DisDiff v v x v X
DiTi v v x v X
HDAE v v x v x
ProgDiffusion v v v v v

Xt

Semantic Representation: Zy, — Encoder:q,(z; X, U4, 1)

Reverse:py(x;—1 |X;,2;)

Upsampling Features: U,

o 1
Intermediate Latents: X; —» Forward:q(x|X¢—1)

Figure 7.1: A detailed pipeline of training ProgDiffusion, consisting of a self-encoder and
a diffusion based sample decoder. During the training phase, the noise sample x; at step
t is employed to predict the next step sample pg (x;—1 | X¢,Z;) by a noise prediction net
parameterized by @, which is conditioned on the induced semantic representations z;
sampled from q¢(z;|xs,1z41,2).
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7.2 The ProgDiffusion Model

ProgDiffusion is a DAE-like model that adopts the same diffusion process as DDIM [131],
and uses an encoder to learn semantic representations and then conditions on it to
generate the next intermediate latent in the reverse process.

Accordingly, we highlight a few parts of the training object in the reverse process of
ProgDiffusion: (1) the self-encoder, which encodes time-specific information progressively
by a hierarchical time dependent encoder framework; (2) the time specific ELBO for
training ProgDiffusion; (3) the time specific mutual information regularizer. Figure. 7.1

displays the general framework of ProgDiffusion.

7.2.1 The self-encoder

ProgDiffusion generates time-specific semantic representations {z;}; through a self-

encoder as:
(71) zt~q¢(ztlxt,ut+1,t),Vt:1,...,T

where we name q (z:%;,u;41,1) since X; first encodes itself into z; and then works tother
with z; to form the denoising step.

q¢(z¢Xs,uz11,¢) and the commonly used encoder g4(z|x¢) (e.g., amortized infer-
ence [76]) have the following two major differences: (1), there are T semantic repre-
sentations {z;}; that can track the gradual changes of semantics along with the reverse
steps, whereas the semantic is static in the amortized inference; (2), each z; is conditioned
on the ¢-th intermediate latent x;, the upsampling features u;.1, and the denoising step
t rather than the observation x( as in existing DAE models. Therefore, the semantics zp
and z; should be quite different since x7 and x; are close to noises and the observations,
respectively.
U-Net’s upsampling features u;,.; In addition to x; and the denoising timestep ¢,
the proposed self-encoder also conditions on the upsampling features u;.; to generate
semantic representation z;. Recent works [59, 88, 101, 139, 144, 166, 182, 189] show
that these upsampling features might contain important spatial semantic information.
While those approaches focused on investigating these layers from a pre-trained diffusion
models for downstream tasks, ProgDiffusion may propose making fundamental changes
to model architectures and training methodologies, exploring the actual architectural

components and techniques in learning useful semantic representations. Also, it might
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be easier in learning semantics from upsampling features and intermediate latents than
from the intermediate latents only.

Since the upsampling features contain different sizes, we use an aggregation network
which takes the form as Z{;l w;-h(usy1), where L is the number of upsampling features
in U-Net, w41, is the /-th upsampling features, w; is the corresponding mixing weight,
and A(-) is the upsampling operation to ensure all the {A(u;,1;)}; are in the same size.
Differences between z; and U-Net’s bottleneck layer ProgDiffusion’s time specific
semantic representation z; is different from the U-Net’s bottleneck layer b; in the
following aspects: (1) although the bottleneck layer b; has the lowest resolution, usually
its following upsampling features contain more semantic information [159]. z; has
conditioned on all the upsampling features and x; and may contain more semantic
inforamtion; (2) z; has larger influence. b; is used to generate the first upsampling
layer only, whereas z; is a global semantics representation captured by layer-by-layer
attentions among the U-Net layers.

Time specific semantic representations We expect time specific semantic represen-
tations would be more adaptive to ProgDiffusion than a static representation. E.g., The
amount of semantic information contained by x7 and x; might be proportional to the
amount of observation information. Since {z;}; are in the same shape, it would also be
quite straightforward to learn summarized semantics from a pre-trained ProgDiffusion

model.

7.2.2 The Reverse Process

ProgDiffusion uses the semantic representation z; and intermediate latent x; as condi-
tions in generating the next intermediate latent x;_; and formulates the reverse step as
po(X:—1|X¢,2:). Thus, the joint probability over the intermediate latents x1.7, observations
xo and the semantic representations z.7 is:

T

(7.2) p(xo,X1.7,21.7) = p(x7) [ | [P0 (X¢t-11%¢s,20) p(24)]
=1

in which z,’s prior is usually defined as p(z;) = A(z0,I). A trained self-encoder q4(z;|x;,u;+1,%)

may replace the prior p(z;) in the sample generation task.

7.2.3 The ELBO for Training

The training objective function can be formalized w.r.t. the evidence lower bound (ELBO)

as ELBO:
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(7.3) ELBO = —[Eq(xt)q(zl)10gpg(X0|X1,Z1)

1 T
+ T Y EqxpKL [qp(2Ze|xt, 041, 8) | p(z4)] + KLIg(x7[x0) | p(x7)]
t=1
T
+ 3 Eqex)gznKLIG(Xe-11%4,X0) | po(xs—11%¢,24)]
=2

The major ELBO difference between DiffAE and ProgDiffusion lies that ProgDiffusion’s
ELBO uses all the T' KL-divergences between the self-encoders and the prior distribution

of each z;.

7.2.4 Mutual Information Regularizer

During the training phase, ProgDiffusion aims to acquire the semantic representation
z; through the self-encoder q(z;|x;,u;,1,%) and achieve high-quality reconstruction X
via the decoder. However, there is an inherent trade-off between correct inference and
observation reconstruction, as highlighted in [127, 158], which becomes evident when
optimizing ELBOprogDiffusion i Eq. (7.3). Typically, ProgDiffusion prioritizes fitting the
likelihood over inference [188], resulting in sub-optimal latent space representations.
To remedy the insufficient representation learning during the inference stage, we
increase the dependence between the intermediate latent x; and its corresponding
semantic z; by maximizing the mutual information (MI) I(x;,z;). Hence, we rewrite the

learning object in ProgDiffusion by adding the mutual information term as:

(7.4) ELBO, = ELBO + %Zlq(xt;zt),
t

where 1,(x;;2;) is the mutual information between x;,z; under distribution q (z;|x,?).
As we cannot optimize this objective directly, we rewrite it by factorizing the rate term
into MI and total correlation (TC) KL [g¢(z:) | p(z)]:

T
(7.5) ELBO, = Z Eqx)q(z)KLIG(Xs-11%¢,%0) | po(Xs-11%¢,24)]

A-1
+ L2 2L [go@n) | pzo)]

1
+—1 Z Eqee)KL [q(ze/%4,1) || p(20)] +
T 4 T

+KL[g(x7I%0) || p(X7)] — Eg(x,)q(z1) log Po(X0(X1,21)

Mutual Information Learning. Unlike the rest of the terms in Eq. (7.5) that can

be optimized directly using reparameterization tricks, the TC term cannot be directly
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optimized due to the intractable marginal distribution q4(z;). Here, we follow the ap-
proach in [188] to replace the TC term with any strict divergence D, D (g¢(2)|p(z)) =0
iff ¢ (z) = p(z). We implement the maximum-mean discrepancy (MMD) [188] from the
divergence family. MMD is a statistical measure to quantify the difference between two
probability distributions, which compares their mean embeddings in a high-dimensional

feature space. By defining the kernel function «(-,-), Dyup is denoted as:

(7.6) Dy (@)1 p(2)) = Ep) p) [K (2,2)] — 2E 42 peary [ X (2,2') ]

+Eq(a).q@) [x (2,2')]

7.3 Implementing ProgDiffusion

In optimizing the mutual information regularized time specific ELBO, w.r.t. Eq. (7.5),
we modify the DiffAE framework and propose ProgDiffusion network illustrated in

Figure 7.1.

7.3.1 Implemention of ProgDiffusion

Based on DiffAE’s implementation, implementing ProgDiffusion is straightforward.
In particular, we may simply substitute the time-independent encoder q4(z|x¢) by a

self-encoder q ¢(z:|x;,u441,1), from

# model/unet_autoenc.py
class BeatGANsAutoencModel (BeatGANsUNetModel) :

def forward(self, x, t, x_start):

tmp = self.encode(x_start)

to

# model/unet_autoenc.py
class BeatGANsAutoencModel (BeatGANsUNetModel) :
def forward(self, x, t, x_start):
# =2zt = g_sample(z_start, t)
utl = self.extract(x,t)# extract Upsampling Features in former

— time steps

tmp = self.encode(x,,utl,t)
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7.3.2 Unconditional Generation

We use the trained self-encoder q(z;|x;,u;+1,%), replacing z,’s prior distribution p(z;),
to accomplish the unconditional generation task in ProgDiffusion. Accordingly, a sample
can be generated as in Algorithm 7. By progressively encoding the intermediate latent
X; into a time-specific semantic representation z;, the resultant semantic information is

introduced in generating samples.

Algorithm 7 Unconditional generation process of ProgDiffusion

Input: number of steps 7', noise level o1, parameters ¢ and 0
Output: x
Sample x7 ~ A (x7;0,1), set up;1 =@
for t =T to1do
Sample z; ~ q (2%, 0441,2)
Sample x;-1 ~ pg(Xs-1/X¢,2¢)
end for
Return x;

Reverse —» | Sample | Encode

|

|
® |®

(a) DDIM

q4(2]x0) %
(b) DiffAE

E —_ >
G (Ze | Xe, Ur1, 1) a

(c) ProgDiffusion

$RUI

Figure 7.2: Three distinct generation paradigms are compared w.r.t. their representative
models. Only (a) DDIM and (c) ProgDiffusion enable unconditional generation from
noise samples x ~ A4(0,I). Conversely, (b) DiffAE only can do conditional sampling,
depending on the input sample xy. The generation by ProgDiffusion is based solely on a
simple distribution and closely resembles DDIM, leveraging the strengths of probabilistic
models to approximate the data likelihood distribution.

7.4 Experiments

We validate ProgDiffusion on several real-world high-resolution datasets, including
FFHQ, CelebA-HQ, LSUN-Horse, and LSUN-Bedroom. To comprehensively evaluate
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(b) Unconditional Generation by ProgDiffusion

Figure 7.3: Comparing the images generated from DiffAE and ProgDiffusion after train-
ing on FFHQ: (a) The conditionally generated samples by DiffAE tend to retain redun-
dant background information. In contrast, (b) the unconditionally generated samples
by ProgDiffusion focus more closely on the dataset likelihood, capturing more detailed
information in each sample.

the generation and representation abilities of ProgDiffusion and their significance, we

design several vision tasks to answer the following research questions:

RQ1: What advantages can ProgDiffusion offer in generation and how does ProgDif-

fusion perform compared with state-of-the-art generative models?

RQ2: How about the effectiveness of the learned time-specific encoding?

RQ3: Is the intermediate latents x; smooth and continuous?

RQ4: Is the semantic representation, encoded in ProgDiffusion, represented by

Z; ~ q(Z¢|Xs,uz11,1) and learned by the encoder, both smooth and continuous?

RQ5: How does ProgDiffusion perform on downstream tasks?
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7.4.1 RQI1: Improving Unconditional Generation

The key strength of ProgDiffusion lies in its ability to generate unconditionally con-
trasting to other diffusion-autoencoder-pipeline models. ProgDiffusion has the capability
of generating output samples that are not conditioned on any specific input data but
rather solely depend on noises sampled from a specified prior (typically a normal distri-
bution). Figure 7.2 elucidates the difference and sustained advantages inherent in the
ProgDiffusion model.

We employ the clean-FID [117] to quantify the unconditional generation quality of
ProgDiffusion over 10,000 samples. ProgDiffusion conducts the unconditional generation
on four real-world datasets based on Algorithm 7. The unconditional generation for DDIM
follows [131] merely on sampled noise x7 ~ A (0,I). It should be noted that DiffAE cannot
perform unconditional generation (those generated samples are meaningless with a high
FID score at around 300). Table 7.2 shows that ProgDiffusion achieves a lower FID score
than DDIM in various time self-encoders conditioned on x; only and x;,¢. Figure 7.3
shows that the unconditionally sampled images by ProgDiffusion consistently ensure
shape generation quality while maintaining the richness and variety of real-world data

sets.

7.4.2 RQ2:Visualizing Time Specific Semantics

To evaluate the effectiveness of our time self-encoder, we design a time-semantic encoding
task to intuitively demonstrate the encoded semantic information spanning over time.
First, we acquire the fixed subcode x%ﬁ‘*, i.e., T-step noises conditioned on the raw input x
in the diffusion process. Second, we diversify the time-specific semantic representation z;
by our self-encoders by changing the input pairs (x;,¢)1*%. For each input pair, we obtain
the reconstruction x5 by the corresponding fixed subcodes, and time-specific encodes
(x7,2:)"* in the reverse process. As shown in Figure 7.4, the reconstructed images
change over ¢ times. This demonstrates that our model can capture the time-dependent

low-dimensional semantics.

7.4.3 RQ3: Time-dependent Semantics Guided Interpolation

We employ the latent interpolation tasks to validate the smoothness of subcodes learned
in ProgDiffusion. Latent interpolation [53, 61] can validate the smoothness, continuity,
and semantic coherence property in the representation space learned by generative

models. Typically, two samples are embedded into their corresponding latent spaces, and
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Table 7.2: FID scores (]) for unconditional generation. ProgDiffusion is competitive with
DDIM baselines. ProgDiffusion has a self-encoder ¢(z;|x;), where '+ timeEnc’ refers to
the ProgDiffusion with sample-time based self-encoder, i.e., q(z;|x;,u;+1,t). The bold font
indicates the best.

FID |
Dataset Model T=10 T=20 T=50 T=100
FFHQ-128 | DDIM 99.56 21.45 15.08 12.03

ProgDiffusion | 22.77 18.14 15.52 12.88
+ timeEnc 21.28 17.30 13.06 11.01
Horse-128 DDIM 22.12 1292 7.92 5.97
ProgDiffusion | 14.70 12.88 9.71  7.12
+ timeEnc 13.92 10.27 8.11 6.85
Bedroom-128 | DDIM 13.70 9.23 7.14 594
ProgDiffusion | 12.63 10.59 855 7.10
+ timeEnc 11.07 897 762 591
CelebA-64 DDIM 16.38 12.70 8.52 5.83
ProgDiffusion | 15.32 12.17 8.87 7.96
+ timeEnc 13.69 11.03 7.26 6.29

Fixed Xp, varying T

(b)

(9. X7) (225 %3)

Image Reconstruction(a,b,c) by time varying and fixed

Figure 7.4: Time-specific Semantic Encoding Task: identifying the time-specific changes
in the progressive encoding of ProgDiffusion. By varying time encoding for 100, 200, 300,
400 time steps, more attributes will be influenced in the reconstruction stage: the Young,
Bangs, and Brown_Hair attributes in (a), the Blond_Hair, Pale_skin attributes in (b),
and the Wavy_Hair, High_Cheekbones and Blond_Hair attributes in (c).
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o T
(b) ProgDiffusion

Figure 7.5: The Comparison of DiffAE and ProgDiffusion in latent interpolation tasks.
From the left to right side, we can see that both diffusion based models support contin-
uous representation learning with features varying gradually from the first image to
the second. However, with time-dependent semantics, ProgDiffusion smoothly guides
the latent variation, as depicted in (b). Meanwhile, the fifth image in (a) indicates that
DiffAE can lead to the feature collapse during latent variation.

< Disentangl >

sasse[) Surreapm (q) sSuegq (e)

Figure 7.6: Semantic disentanglement observed in ProgDiffusion through latent traver-
sals on FFHQ. The interpretable traversal directions are illustrated by traversing the
semantic representation within the range of [-3,3]. Independent variations in attributes
such as Bangs in (a), Wearing Glasses in (b), and Goatee in (c) are obvious, while other
attributes remain unchanged.
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+

Male ——» <«——Smiling—*» <«——— Hat

Figure 7.7: Attribute manipulation on FFHQ utilizing a linear classifier.

interpolating these latent variables yields interpolated representations. The semantic
richness of the learned space is revealed through the reconstruction performed by

generative models.

7.4.4 RQ4: Time-dependent Semantic Encoding for

Disentanglement

The validity of the semantic encoding z improved by the self-encoders can be examined
through disentanglement tasks. Disentanglement refers to the process whereby gen-
erative models find the information within a dataset into meaningful segments, each
residing within a set of encoding semantics z. In ProgDiffusion, we introduce the TC
term to diminish the dependencies between the dimensions of z, enabling each dimension
to encapsulate distinct feature information. The effect of this disentanglement can be
visually observed in Figure 7.6. Additionally, we employ Total AUROC Difference (TAD)
and learned attributes (ATTRS) [179] to quantify the disentangled information. We also
utilize the FID score to evaluate the generative capability of our method while achieving
disentangled representation over 10,000 samples. Table 7.3 presents a performance
comparison, illustrating that ProgDiffusion consistently outperforms all baseline models

across various FID and TAD metrics.
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Table 7.3: Performance comparison of different methods on TAD, ATTRS and FID metrics
on CelebA. The bold font indicates the best.

Models ‘ TAD (1) ATTRS (1) FID ()
AE 0.042+0.004 1.0+0.0 90.4+1.8
DiffAE [118] 0.155+0.010 2.0+0.0 22.7+2.1
VAE [76] 0.000+0.000 0.0+0.0 94.3+2.8
B-VAE [20] 0.088+0.061 1.6+0.8 99.8+2.4
InfoVAE [188] 0.000+0.000 0.0+0.0 77.8+1.6
InfoDiffusion [150] | 0.299+0.006 3.0+0.0 22.3+1.2
DisDiff [175] 0.305+0.010 - 183+2.1
ProgDiffusion 0470+0.008 4.0+0.0 22.8+1.3

7.4.5 RQ5: Time-dependent Semantics for Attribute

Manipulation

The semantics encoded by ProgDiffusion are meaningful and low-dimensional, making
them suitable for downstream tasks. To validate this, we perform attribute manipulation
tasks. Specifically, we train a linear classifier on the latent codes derived from images
with negative and positive manifestations of a target attribute, determining the linear
trajectory for attribute alterations. Consequently, the classifier can provide gradients
for ProgDiffusion to generate targeted modifications, as discussed in [39, 63]. Following
[118], we conduct experiments for ProgDiffusion trained on the FFHQ dataset and
training the classifier on the 40 attributes in CelebA-HQ. Figure 7.7 illustrates the

manipulation outcomes over four distinct attributes of the FFHQ dataset.

7.5 Summary of This Chapter

In this chapter, we propose ProgDiffusion, a novel approach for learning low-dimensional,
progressive latents tailored for expanding DMs. Different from the previous DAE-like
models, ProgDiffusion integrates a self-encoder conditioned on time-specific input and
time steps, enabling it to perform unconditional generation and time-specific semantic
encoding tasks. To embed the lantent completely, the self-encoder was implemented by a
hierarchical time dependent encoder network to learn multi-scale semantics inherent in
U-Net. The quantitative and qualitative experimental results on the 4 high-resolution
datasets have demonstrated that ProgDiffusion advanced in unconditional generation

quality and various downstream representation learning tasks.
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CHAPTER

CONCLUSION AND FUTURE WORK

In this chapter, we provide a comprehensive conclusion for the entire thesis and outline

several promising directions for future research.

8.1 Conclusion

Deep Variational Generative Models (DVGM) have demonstrated significant potential
in numerous applications, thanks to their strong representational power and ability to
handle uncertainties in complex data distributions. These models have become essential
tools in fields such as anomaly detection, data density estimation, image modeling, and
representation learning. By combining the strengths of deep learning with variational
inference, DVGM provides flexible and expressive models suited for a wide range of
data-driven tasks. This versatility has enabled advancements in machine learning, data
analysis, and computer vision, where DVGM effectively models high-dimensional data
and contributes to areas like semi-supervised learning and complex data generation.
Despite their advantages, DVGMs face challenges related to inference and generation due
to the complexities of variational inference, such as balancing inference robustness with
generation quality and managing coupled representations. Addressing these limitations
is key to fully realizing the potential of DVGMs.

* How can evolutionary mechanisms balance inference and generation in
DVGM? In Chapter 3, we introduce eVAE, the first framework to incorporate
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evolutionary learning with variational autoencoders. eVAE dynamically optimizes
the balance between reconstruction accuracy and inference robustness, address-
ing a longstanding challenge in VAEs. By using variational genetic operators,
eVAE mitigates issues like premature convergence and random search. Our frame-
work combines stochastic gradient descent with genetic algorithms through an
inner-outer-joint training mechanism. Guided by information bottleneck theory,
eVAE introduces an iteration-specific lower bound to balance compression and

decompression over time.

* How can DVGM calibrate inference to separate disentangled and coupled
representations? In Chapter 4, we propose C2VAE, trained with contrastive disen-
tangled learning to separate and remove coupled features and their representations.
This enables C?VAE to learn factorizable representations for disentanglement, ef-
fectively eliminating strongly coupled features through copula-based dependency

learning.

¢ How can weak augmentation improve inference robustness in DVGM for
anomaly detection? In Chapter 5, we present WAVAE, a weakly augmented VAE
for time series anomaly detection. The model achieves a more robust latent space
representation through joint training on augmented data. We also introduce two
self-supervised strategies, adversarial and contrastive learning, to enhance data

fitting performance.

* How can DVGM enhance inference in complex parameter spaces for im-
proved generation? In Chapter 6, we propose a novel unified parameter space
representation learning framework to handle continuous, discrete, and discretized
data. Unlike traditional encoders that map observations into static latent se-
mantics, ParamReL uses a self-encoder to derive progressively structured latent
semantics from intermediate parameters at each generation step. This framework
facilitates effective representation learning across data types, as validated by ex-
periments on tasks like latent interpolation, disentanglement, and conditional
generation. The results demonstrate its ability to extract meaningful high-level
semantics, yielding unified representations and a clearer semantic understanding
of the data.

* How can progressive inference facilitate low-dimensional generation in

diffusion models? In Chapter 7, we introduce ProgDiffusion, a Progressive Self-
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Encoded Diffusion model that achieves efficient unconditional generation and
progressively structured semantic representations. This model leverages a self-
encoder mechanism using U-Net’s upsampling features, intermediate latents, and
denoising timesteps to generate time-specific semantic representations. Diverging
from conventional methods that rely on observation conditioning, our encoder

operates independently of input data, enabling unconditional generation.

8.2 Future Work

The methods presented in this thesis address critical questions in DVGM, yet several

areas remain open for further exploration, presenting exciting opportunities for future

research.

¢ Exploring alternative evolutionary mechanisms for adaptive inference
and generation balance: While eVAE integrates evolutionary learning with
variational autoencoders, future research could explore other evolutionary mecha-
nisms to enhance DVGM adaptability. Investigating alternative genetic operators
or hybridizing evolutionary algorithms with advanced deep learning techniques
may further refine the balance between reconstruction accuracy and inference

robustness in complex data settings.

Developing advanced disentanglement techniques for coupled represen-
tations: Although C?VAE showcases effective contrastive disentangled learning,
disentangling highly coupled features remains challenging in high-dimensional
spaces. Future work could focus on more sophisticated dependency modeling meth-
ods, such as multi-level copula-based learning or hierarchical contrastive tech-
niques, to improve disentanglement and enable richer, factorized representations

across diverse data modalities.

Incorporating novel augmentation strategies for anomaly detection: WAVAE
has shown that weak augmentation can improve inference robustness in anomaly
detection. Extending this approach with advanced augmentation methods, such as
adversarial augmentations or domain-specific transformations, could enhance the
robustness and generalizability of anomaly detection models in various applica-

tions.
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* Enhancing representation learning in complex parameter spaces for
DVGM: The ParamReL framework is a promising step toward unified param-
eter space representation learning, but optimizing across heterogeneous data types
remains challenging. Future research could explore adaptive parameter space
learning methods that dynamically adjust the representation strategy based on
data characteristics, improving generation quality and interpretability in complex

and dynamic parameter spaces.

* Refining progressive inference for low-dimensional generation in dif-
fusion models: While ProgDiffusion demonstrates the potential of progressive
inference for low-dimensional generation, further refinement is needed for com-
plex generative tasks. Exploring multi-stage progressive encoding and decoding
schemes or leveraging hierarchical latent spaces could yield structured and se-
mantically rich representations, enabling DVGM to excel in applications requiring

fine-grained and conditional generation.

* Expanding DVGM applications to cross-modal and multi-modal genera-
tion: Although DVGM has proven effective in tasks like anomaly detection and im-
age modeling, expanding its applications to cross-modal and multi-modal settings
(e.g., text-to-image or audio-visual generation) represents a promising research
direction. Cross-modal variational inference and generative modeling could enable
DVGM to integrate multiple data modalities, broadening its utility in real-world

applications requiring multimodal integration.

Future Perspectives in AI Research

Looking ahead to the next 3—-5 years, several emerging trends in artificial intelligence
research are poised to reshape the landscape of generative modeling and variational
inference. One prominent direction is the growing integration of multi-modal learning,
where models are designed to jointly process and generate data across different modal-
ities, such as text, image, audio, and video. This necessitates more expressive latent
variable models capable of aligning heterogeneous representations while preserving
modality-specific structures.

Another key trend is the advancement of foundation models and large-scale pretrain-
ing, which encourage the development of DVGM-based architectures that can leverage

transfer learning, continual learning, and in-context learning. These models are expected

122



8.2. FUTURE WORK

to exhibit better generalization and adaptability to diverse downstream tasks, especially
under data-scarce or domain-shift scenarios.

Additionally, interpretability and controllability are gaining increased attention,
particularly in high-stakes domains such as healthcare, science, and decision-making
systems. Future research may focus on developing structured latent spaces that facilitate
reasoning, explanation, and human-aligned interaction.

Finally, the emergence of energy-efficient and resource-aware learning methods also
motivates the design of compact yet powerful generative models, where hierarchical and
variational techniques can help reduce redundancy and improve computational efficiency.
In this context, DVGM will likely play a central role in bridging probabilistic modeling
with real-world AI deployment.
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