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Abstract—Surface Electromyogram (EMG) signals recorded
from an amputee’s residual muscles have been investigated
as a source of control for prosthetic devices for many years.
Despite the extensive research focus on the EMG control of
arm and gross hand movements, more dexterous individual
and combined prosthetic fingers control has not received the
same amount of attention. To facilitate such a control scheme,
the first and the most significant step is the extraction of a
set of highly discriminative feature set that can well separate
between the different fingers movements and to do so in a
computationally efficient manner. In this paper, an accurate and
efficient feature projection method based on Fuzzy Neighborhood
Preserving Analysis (FNPA) with QR-decomposition, is proposed
and denoted as FNPA. Unlike existing attempts in fuzzy linear
discriminant analysis, the objective of the proposed FNPA is
to minimize the distance between samples that belong to the
same class and maximize the distance between the centers of
different classes, while taking into account the contribution of
the samples to the different classes. The method also aims to
efficiently overcome the singularity problems of classical LDA
and Fuzzy LDA. The proposed FNPA is validated on EMG
datasets collected from nine subjects performing 10 classes of
individual and combined fingers movements. Practical results
indicate the significance of FNPA in comparison to many other
feature projection methods with an average accuracy of 91%,
using only two EMG electrodes.

I. INTRODUCTION

Powered upper limb prostheses can be controlled using

surface Electromyogram (EMG) signals detected from the

residual muscles in a scheme denoted as myoelectric control.

In such a control scheme, voluntarily controllable features of

the surface EMG are used as input to select and modulate the

functions of a powered prosthesis. This approach has clinical

applications in individuals with amputations or congenitally

deficient upper limbs [1]. Typically a pattern recognition

framework is utilized to classify the acquired EMG signals into

one of a predefined sets of forearm movements [2], [3]. Vari-

ous feature sets and classification methods have been utilized

in the literature demonstrating the feasibility of myoelectric

control [4]. Given the success of utilizing EMG signals in

decoding the intended forearm movements, there have been

recent attempts to achieve more dexterous individual finger

control [5], [6]. For example, Peleg et al. [7] employed surface

EMG signals to identify when and which finger is activated

using only two electrodes placed on the forearm. Tsenov et

al. [8] also utilized two EMG electrodes to detect four finger

movements using time domain features and neural networks

classifiers achieving nearly 93% accuracy. However, both of

these attempts did not consider combined fingers movements.

Tenore et al. [5] extended the idea of EMG based finger control

into movements that consisted of flexion and extension of

all the fingers individually and of the middle, ring and little

finger as a group achieving ≥ 98% accuracy with thirty-two

electrodes [5], [9] and with fifteen electrodes [10]. However, a

reduction in the number of electrodes, without compromising

the classification accuracy, would significantly simplify the

requirements for controlling state of the art prostheses.

While much of the work presented in literature focus on

experiments with able-bodied subjects, Cipriani et al. [11]

reports real-time experiments on both able-bodied and am-

putees participants. Eight pairs of electrodes were utilized

to classify seven finger movements, including two classes of

combined fingers movements. A k-nearest neighbor (kNN)

classifier achieved an average classification accuracy of 79%

(for amputees)-to-89% (for able-bodied participants). How-

ever, no experiments were conducted to validate the need

for the total eight pairs of electrodes upon that of a smaller

combination. Additionally, the kNN classifier requires large

memory to store all the training patterns to compare each

testing sample based on distances, while further computing

difficulties are imposed on kNN by the high dimensional data.

Due to the high variance nature of the EMG signal [12],

the extracted information from the EMG signals tend to

be liberally dispersed amongst the original feature set. In

such a case, feature projection based dimensionality reduction

methods were shown to be able to consolidate this information

in an effective manner by a number of researchers [12], [13],

[14], [15]. The use of the projection methods is also justified

by the multichannel approach that is usually utilized to capture

motor information from different muscles leading to a large

feature set that even affects the total time of classification.
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To this end, various projection methods were utilized in

EMG classification including: Principal Components Analysis

(PCA) [13], Linear Discriminant Analysis (LDA) [12], Uncor-

related Linear Discriminant Analysis (ULDA) [16], [14], and

very recently Orthogonal Fuzzy Neighborhood Discriminant

Analysis (OFNDA) [15]. However, each one of these methods

has its own limitations, as will be described in the next section.

In this paper, a new method denoted as FNPA is proposed

based on earlier work of the first author in Khushaba et al.

[15]. The key difference between OFNDA and FNPA lies in

the way by which the well-known singularity of classical LDA

(and its variants) is avoided. Specifically, FNPA applies the

QR decomposition to modify the optimization process to avoid

singularity, while OFNDA applies PCA as a preprocessing step

to remove any correlation that causes singularity. Additionally,

FNPA removes the orthogonal constraint on the resultant

features and utilizes the QR-decomposition to solve singularity

rather than to produce a set of orthogonal features.

The structure of this paper is as follows: Section II presents

the proposed method and its associated derivations. Section

III describes the data collection procedure and the utilized

hardware. Section IV presents the experimental results and

finally, conclusions are provided in Section V.

II. FUZZY NEIGHBORHOOD DISCRIMINANT ANALYSIS

WITH QR-DECOMPOSITION

In this section, a new dimensionality reduction method is

described that is considered as a novel variation to fuzzy

LDA (FLDA). FLDA is a well known data-analytic tool for

studying the class relationship between data points, but a major

disadvantage of FLDA is that it fails to discover the local

geometrical structure of the data points. It has been shown in

the literature that in many cases the local structure is generally

more important than global structure for discriminant analysis

[17], [18], [19]. Additionally, preserving the local structure

allows the maximization of the margin between data points

from different classes at each local area. Specifically, a new

feature projection method is proposed in which the data points

are mapped into a subspace in which the nearby points with

the same label are close to each other while the nearby points

with different labels are far apart.

Given a universal set with elements xk distributed in a

pattern space as X = {x1, x2, ..., xl}, where k = 1, 2, ..., l with

l being the total number of patterns. For simplicity, It will be

useful to describe the membership value that the k’th vector

has in the i’th class with the following notation

µik = µi(xk) ∈ [0, 1] (1)

Denote the mean of the data samples that belong to class i
as xi and the radius of the data as r

r = max ‖xi − xk‖σ (2)

Then the fuzzy membership µik can be calculated as follows

µik =

(

‖xi − xk‖σ
r + ǫ

)
−2

m−1

(3)

where m is the fuzzification parameter, ǫ > 0 is a small

value to avoid division by zero, and σ is the standard deviation

involved in the distance computation. Finally, the membership

of each of the samples in all of the problem classes is

normalized according to
∑c

i=1 µik =1.

The description of the proposed FNPA proceeds with the

fuzzy within class scatter matrix given as:

SW =

c
∑

i=1

li
∑

k=1

µik (xk − vi) (xk − vi)
T

(4)

where µik is the membership of pattern k in class i, xk is

the k’th sample, vi is the mean of the patterns that belong to

class i.

vi =

∑li
k=1 µikxk
∑li

k=1 µik

(5)

We proceed with the modification of the within class scatter

matrix starting from Eq.4 as follows

SW =

c
∑

i=1

li
∑

k=1

µik

(

xkxTk − vix
T
k − xkvT

i + viv
T
i

)

(6)

SW =

c
∑

i=1

[

li
∑

k=1

µikxkxT
k − vi

li
∑

k=1

µikxTk

−vTi

li
∑

k=1

µikxk + viv
T
i

li
∑

k=1

µik

]

(7)

Using Eq.5 we replace
∑li

k=1 µikxT
k with vTi

∑li
k=1 µik, and

∑li
k=1 µikxk with vi

∑li
k=1 µik . Thus Eq.7 can be re-written

as

SW =

c
∑

i=1

1

2
∑li

j=1 µij

li
∑

k=1

li
∑

j=1

µikµij (xk − xj) (xk − xj)
T

(8)

The above equation indicates that the objective of the

new SW is to minimize the distance between samples of

the same class when projecting them. Such distance can

be limited to that between each sample and its k-nearest

neighbors, thus preserving the local neighborhood information.

Additionally, in a similar manner to FLDA, the proposed new

SW also incorporates the membership values thus considering

the samples contribution in the class when preserving their

distances. According the strong law of large numbers [20],

Eq.8 can be further simplified into one that employs matrices

multiplications rather than using summations. In order to

simplify the above equation and the subsequent equations, we

provide the following two definitions
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Definition-1: Bi is the fuzzy amount of elements in fuzzy

class ci, this is equal to the summation of the membership

values of the samples that belong to class ci in the same class,

and is given by:

Bi =

li
∑

k=1

µik, (9)

Definition-2: N is the fuzzy amount of elements in all fuzzy

classes, and this is given by:

N =
c
∑

i=1

Bi, (10)

If we replace µikµij in Eq.8 by Wkj and given that we

already have the exterior sum in terms of i, then

SW =

c
∑

i=1

1

2Bi

li
∑

k=1

li
∑

j=1

(xk − xj) (xk − xj)
T
Wkj (11)

SW =

c
∑

i=1

2

2Bi

(

li
∑

k

xkxTk Dkk −

li
∑

k,j

xkxTj Wkj

)

(12)

which can be generalized to

SW =

(

XDXT −XWXT

)

(13)

SW =

(

XL1X
T

)

(14)

where L1 = D −W is derived in the same manner as the

Laplacian matrix in [20]. D is a diagonal matrix; its entries

are column sums of W (or row sums since W is symmetric),

Dkk =
∑

k Wkj .

Now in a similar approach to the derivation of SW , we

derive the between class scatter matrix starting with the fuzzy

version of SB ,

SB =

c
∑

i=1

li
∑

k=1

µik (vi − x) (vi − x)
T

(15)

where x is the mean of the training samples, this is in turn

given as

x =

∑c

i=1

∑li
k=1 µikxk

∑c
i=1

∑li
k=1 µik

(16)

The between class scatter matrix represented by Eq.15 can

be expressed as

SB =
1

2N

c
∑

i=1

c
∑

j=1

BiBj (vi − vj) (vi − vj)
T

(17)

The above equation can be also written in terms of matrices

multiplications using the same approach employed with SW .

If we simply replace BiBj with Bij then

SB =
1

2N

c
∑

i=1

c
∑

j=1

Bij

(

vi − vj

)(

vi − vj

)T

(18)

SB =

(

c
∑

i,j=1

Bijviv
T
i − 2

c
∑

i,j=1

vivjBij +
c
∑

i,j=1

vjvTj Bij

)T

(19)

SB =

(

V EV T − V BV T

)

(20)

which can be written as

SB = V L2V
T (21)

where L2 = E −B and E is a diagonal matrix; its entries

are column (or row since B is symmetric) sums of B, Eii =
∑

iBij . The i’th column of matrix V is Vi. Using the new

representation of SW and SB given by Eq.14 and Eq.21, the

transformation matrix GFNPA related to FNPA is found as

the eigen vectors of Eq.22

GFNPA = argmax
G

trace

(

GTSBG

GTSW G

)

, (22)

where the above function aims at maximizing the distance

between the samples of different classes while minimizing the

distance between the samples of the same class.

A. QR-Decomposition based FNPA

In most real world problems we usually end up with

singular matrices and thus the above optimization in Eq.22

may simply fails. To overcome the singularity problem, a PCA

preprocessing step was utilized in [15]. However, its generally

known that PCA does not consider the class information when

projecting the data. Thus, important information may be lost

during the PCA transformation step. Unlike previous work, we

propose a modified optimization function upon that of Eq.22

in the following manner:

A closer look at Eq.13 and Eq.20 reveals that Eq.22 can

be maximized by minimizing B and maximizing W . Thus,

to simplify the optimization in Eq.22, the following steps are

adopted:

• Normalize the matrix W such that each column sum-

mation becomes 1 (or row since its symmetric). This in

turn makes the diagonal matrix D an identity one and

L1 become equivalent to I−W , with I being an identity

matrix.

• Take the second part of the denominator represented by

XWXT to the numerator and change the sign. This is

justified by that minimizing this term at the denominator

is equivalent to maximizing it at the numerator. Thus,

the denominator simplifies to XXT while the numerator

is given as αV L2V
T + (1 − α)XWXT , where α with

1 > α > 0 is a parameter introduced here to regulate the
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importance of the information represented by XWXT

with respect to the information represented by the differ-

ent classes centers defined in V .

• Then we rewrite the first part of the new numerator value

from V L2V
T , with V being the matrix holding the differ-

ent classes mean, into αXUTL2UXT +(1−α)XWXT ,

with U being the matrix that holds the membership values

of each of the samples in all of the problem classes

according to the definition given by Eq.3 and Eq.5.

Thus, the above objective function in Eq.22 simplifies to

argmax
G

trace

(

GTXAXTG

GTXXTG

)

(23)

with A = αUTL2U + (1 − α)W . In order to avoid singu-

larity, we propose here to employ the QR-decomposition as

one possible solution. Let X = QR be the QR-decomposition

of X , where Q ∈ R
n×r is orthogonal matrix, with QTQ =

QQT = I , and R ∈ R
r×l is upper triangular (with r =

rank(X)). Thus, Eq.22.

argmax
G

trace

(

GTQRARTQTG

GTQRRTQTG

)

(24)

Assuming an optimal transformation matrix H = QTG, for

some G ∈ R
r×q, i.e., extracting the q-leading features, then

Eq.24 can be written as

argmax
H

trace

(

HTRARTH

HTRRTH

)

(25)

The optimal solution in this case (i.e., the columns of H∗)

are the q-leading eigenvectors of the above equation associated

with the q largest eigenvalues. After getting the H∗ then we

simply multiply H∗ by Q to get the final projection matrix,

i.e., G∗ = H∗Q.

III. DATA COLLECTION

Nine subjects, seven males and two females, aged between

20-35 years were recruited to perform the required fingers

movements. The subjects were all normally limbed with no

neurological or muscular disorders. All participants provided

informed consent prior to participating in the study. Subjects

were seated on an armchair, with their arm supported and fixed

at one position to avoid the effect of different limb positions

on the generated EMG signals.

The EMG data was collected using two EMG channels (Del-

sys DE 2.x series EMG sensors) and processed by the Bagnoli

Desktop EMG Systems from Delsys Inc. A 2-slot adhesive

skin interface was applied on each of the sensors to firmly

stick the sensors to the skin. A conductive adhesive reference

electrode (Dermatrode Reference Electrode) was utilized on

the wrist of each subject. The positions of these electrodes are

shown in Fig.1. The EMG signals collected from the electrodes

were amplified using a Delsys Bagnoli-8 amplifier to a total

gain of 1000. A 12-bit analog-to-digital converter (National

Instruments, BNC-2090) was used to sample the signal at

4000 Hz; the signals were acquired using Delsys EMGWorks

Acquisition software. The EMG signals were then bandpass

filtered between 20-450 Hz with a notch filter implemented to

remove the 50 Hz line interference.

Ten classes of individual and combined fingers movements

were implemented including: the flexion of each of the indi-

vidual fingers, i.e., Thumb (T), Index (I), Middle (M), Ring

(R), Little (L) and the pinching of combined Thumb-Index

(T-I), Thumb-Middle (T-M), Thumb-Ring (T-R), Thumb-Little

(T-L), and finally the hand close (HC) as shown in Fig.2.

(a) position of first electrode (b) position of second electrode

Fig. 1. Electrodes placement on the right forearm

When collecting data, the subjects were asked to perform

each of the aforementioned ten movements, and hold that

movement for a period of 5 seconds in each trial. Six trials,

or repetitions, of each movement were collected. Four trials

from each movement data were allocated for training and the

remaining 2 trials were allocated for testing.

IV. EXPERIMENTS AND RESULTS

In the EMG-pattern recognition system, an analysis window

size of 128 msec that was incremented by 25 msec was utilized

when extracting the features. Various features in time and

frequency domain were extracted from each of the analysis

windows to represent the EMG activity. These included all of

the followings (reader can refer to [4] for details): number

of zero crossings (1 feature), waveform length (1 feature),

number of slop-sign changes (1 feature), skewness (1 feature),

root-mean-square (1 feature), mean absolute value (1 feature),

integral absolute value (1 feature), parameters of an autore-

gressive (AR) model with an order of 11 providing significant

enhancements upon smaller model orders (11 features), and

the Hjorth time-domain parameters (3 features) totaling 21

features/channel. In a problem of 2 channels, the total number

of extracted features is 42 features (21 feature/channel × 2

channels = 42 features).

In the feature projection step, the performance of the

proposed FNPA method is validated against a set of different

other feature projection methods including: PCA, Neighbor-

hood Preserving Embedding (NPE) [17], Locality Preserving

Projection (LPP) [18], Local Fisher Discriminant Analysis

(LFDA)[23], Fuzzy Linear Discriminant Analysis (FLDA)

[24], Uncorrelated Discriminant Analysis (ULDA) [16], and

the Baseline without feature projection. All of the aforemen-

tioned methods were limited to produce only c-1 features

(the default in discriminant analysis) to produce a competent

and fair comparison of the power of these methods and their

discriminatory power embedded in the first c-1 features.
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Fig. 2. Different movement classes considered in this paper.

In the classification step, different classifiers were utilized

in the experiments including: Support Vector machine (SVM)

with the LIBSVM implementation [21], Regression Tree clas-

sifier (RegTree) available in Matlab, and the Extreme Lean-

ing Machine (ELM) classifier [22]. The LIBSVM classifier’s

parameters were optimized as: (SVM type: C-SVC), cost

parameter for C-SVC was c = 8 and kernel type was set to a

radial basis function with γ = 12/Number of features. On the

other hand, the number of hidden nodes in ELM was set to

50. In the final step, a majority vote postprocessing step was

utilized to smooth the output of the classifier and to further

enhance the classification accuracy [14]. For a given decision

point di, the majority vote decision smooths the classifier

output by also considering the previous m decisions (m=8

in this experiment). The value of dmv is simply the class

label with the greatest number of occurrences in this point

window of the decision stream. The classification error rates

using the aforementioned feature projection methods with the

above classifiers are shown in Fig.3.

The classification error rates show few important points

including: Firstly, there is an obvious enhancement in clas-

sification results when using all of the LPP, LFDA, FLDA,

ULDA, and FNPA feature projection methods in comparison to

that achieved by the Baseline (without projection). Secondly,

the performance of both PCA and NPE was fluctuating and

showing higher classification error rates, on average, than the

other methods and the Baseline. This is justified by that both

PCA and NPE required more features to be extracted than

that of c-1 to produce similar results to the other selected

projection methods. Thirdly, it is also very clear that the only

projection method that produced competent and very close

results to the proposed FNPA was ULDA. A two-way analysis

of variance (ANOVA) test was utilized with a significance level

of p = 0.05 as shown in Table.I, with both FNPA and ULDA

showing significant enhancement on other methods.

Despite the similar results achieved by ULDA and FNPA, it

should be noted here that ULDA is very expensive in terms of

its associated computational cost due to the use of the singular

value decomposition in its implementation (available at http:

//www-users.cs.umn.edu/∼jieping/uLDA/ULDA.m). Thus, to

prove the significant computational time difference between

ULDA and the proposed FNPA, the computational time of

all of the utilized projection methods was calculated within

Matlab on a PC with 3 GHz CPU and 8 GB of RAM as

shown in Table.II. According to the computational time of

different methods and their achieved classification error rates

that favored FNPA and ULDA upon other projection methods,

then one can clearly notice that FNPA is actually preferred

upon ULDA as it provides a saving in computational cost of

(5.2865-0.9671)/5.2865*100 = 81.70%.

In the last part of the experiments, we also look at the

recognition rates of the individual classes of fingers move-

ments. In order to achieve that, the confusion matrix showing

the class-wise classification accuracies was computed using

the LIBSVM classifier (as it showed the best results) and

averaged across all nine subjects as shown in Fig.4. According

to these results, it can be noted here that there were some

difficulties in separating the individual fingers movements

from that of the same finger movement when combined with

the thumb. Such misclassification result may be justified by the

difficulty in separating the patterns associated with movements

that incur large degrees of nonlinear overlapping among each

other. Thus, nonlinear feature extraction methods should be

investigated in a future work in this area.

V. CONCLUSION

An efficient feature projection method based on Fuzzy

and neighborhood discriminant analysis was proposed in this

paper. The proposed FNPA employed the QR-decomposition

to solve the singularity problem. A two channel EMG pattern

recognition system was then implemented with datasets col-

lected from nine subjects performing 10 classes of individual

and combined fingers movement. The classification results

showed that both of the proposed FNPA and the well-known

ULDA achieved very similar results on the collected datasets

with 91% accuracy on average across all subjects. However,

FNPA also showed much lower computational time require-

ments than that of ULDA which further proves the significance

of the proposed method.
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