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Abstract

Modern electrical vehicles (EVs) are equipped with sizable batteries that possess significant
potential as energy prosumers. EVs are poised to be transformative assets and pivotal
contributors to the virtual power plant (VPP), enhancing the performance and profitability
of VPPs. The number of household EVs is increasing yearly, and this poses new challenges
to the optimization of VPP operations. The computational cost increases exponentially as
the number of decision variables rises with the increasing participation of EVs. This paper
explores the role of a large number of EVs as prosumers, interacting with a VPP consisting
of a photovoltaic system and battery energy storage system. To accommodate the large
quantity of EVs in the modeling, this research adopts the decentralized control structure. It
optimizes EV operations by regulating their charging and discharging behavior in response
to pricing signals from the VPP. A two-stage optimization framework is proposed for VPP-
EV operation using a reinforcement algorithm and gradient-based programming. Action
masking for reinforcement learning is explored to eliminate invalid actions, reducing inef-
fective exploration, thereby accelerating the convergence of the algorithm. The proposed
approach is capable of handling a substantial number of EVs and addressing the stochastic
characteristics of EV charging and discharging behaviors. Simulation results demonstrate
that the VPP-EV operation optimization increases the revenue of the VPP and significantly
reduces the electricity costs for EV owners. Through the optimization of EV operations, the
charging cost of 1000 EVs participating in the V2G services is reduced by 26.38% compared
to those that opt out of the scheme, and VPP revenue increases by 27.83% accordingly.

Keywords: reinforcement learning; virtual power plant; electrical vehicle (EV); vehicle-to-grid
(V2G); gradient-based programming; two-stage optimization

1. Introduction
In the context of the increasing demand for electricity, distributed energy resources

(DERs) can effectively enhance the existing centralized energy network, offering greener
energy and greater flexibility and reliability. The virtual power plant (VPP) presents a highly
efficient and popular solution for seamlessly integrating distributed energy resources into
the distribution network [1,2].

EVs provide flexible, mobile energy storage solutions [3–5], and their widespread
adoption is increasingly recognized as a crucial element of the energy transition. As sales
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of EVs flourish, operations are facing the challenge of an ever-increasing number of EVs
integrated into the VPP. The intermittent nature of renewable generation and the uncon-
trolled charging/discharging of EVs can threaten the security and reliability of power
system operations. The optimal operation of VPPs with EVs is a complex problem due
to the inherent intermittency of DERs and the stochastic nature of EV charging and dis-
charging behaviors. Modelling a realistic number of EVs interacting with VPPs incurs
a significant computational burden for traditional optimization methods, for instance,
mixed integer programming [6,7] and dynamic programming [8]. With increasing EV
participation, the number of decision variables expands, resulting in an exponential rise in
computational costs.

Voluminous historical studies have focused on VPP scheduling and operation [9] while
excluding EVs from the modeling entirely or treating them merely as standard loads [9,10]
without considering bidirectional interaction between VPPs and EVs. Ref. [11] introduces a
new VPP that integrates an EV fleet to mitigate the variability of wind power output. In [12],
the energy-saving potential of a VPP comprising PV and energy storage systems (ESS) is
examined using historical data. Ref. [3] utilizes EVs as a storage medium to overcome the
variability of wind generation. Ref. [4] proposes a two-stage robust optimization model for
a VPP that aggregates EV energy storage; it analyzes the distribution characteristics of EVs
over time, along with the responsiveness of EV users, to create a model for energy storage
capacity. The deployment of VPPs with EVs to enhance renewable energy integration and
manage EV charging and discharging efficiently is focused on in [13]. Ref. [14] researches
the technical challenges associated with integrating EVs and renewable energy sources into
the electric power system.

Ref. [15] has explored pricing strategies for VPP operators that benefits both the
operators and EV users. The proposed model involves a Stackelberg game where the VPP
acts as a power sales operator, guiding EV users to charge orderly by setting an appropriate
power sales price. Ref. [16] optimizes the scheduling and operation of a VPP comprising
charging stations for EVs, stationary batteries, and renewable energy sources. The potential
of using bidirectional chargers to turn EV battery packs into a VPP that supports the power
grid is explored in [17]. Ref. [18] discusses the impact of uncoordinated EV charging
behavior on the power grid and the potential for coordinated operation to provide grid
flexibility through VPPs. Ref. [15] offers valuable insights for VPPs to efficiently manage
EV charging behavior and enhance their operating revenue. The need for detailed charging
models of EVs is highlighted in [10], and their impact on VPP operations is explored
by considering four different types of EVs. Ref. [19] presents a method to enhance the
reliability of a multi-type load power supply, reduce disorder in EV charging, and ensure
the low-carbon economic operation of a VPP. Ref. [5] discusses the potential for EV charging
to function as a VPP to support distribution system operators.

VPPs are crucial for coordinating EV participation in the power market as aggregators
of renewable energies and diverse loads. Ref. [20] proposes a vehicle-to-vehicle (V2V)
market mechanism as a supplement to vehicle-to-grid (V2G) operations, aiming to maxi-
mize the revenue of each EV owner and create a distributed electricity market. The V2V
market allows for trade among EV owners within a local distribution grid, leveraging
charging points such as charging stations and auto parks. Ref. [21] introduces an agent-
based control system for coordinating the charging of EVs in distribution networks. Its
objective is to charge EVs during low electricity price periods while adhering to technical
constraints. Ref. [22] considers multiple EV parking lots that are controlled by the VPP
and its competitors, vying to attract EVs through competitive offering strategies. In [23],
the power optimization of PQ and PV nodes in the power grid was addressed using the
SARSA method based on the convergence of power flow calculations. Ref. [24] uses SARSA
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methods to address Q-learning’s overestimation issue in the automatic generation con-
trol strategy for interconnected power grids. Ref. [18] introduces discomfort function for
scheduling EV charging that accounts for EV drivers’ reluctance to change their initial
charging patterns.

V2G [25] technology allows not only for the charging of the EVs but also for the
discharge of energy back into the grid. Through V2G services, EV groups can play a
dual-role as both energy consumer and provider. To tap into the battery capacity of EVs in
a parking lot, Ref. [26] proposes V2G services and a dynamic charging price to optimally
control the charging and discharging of EVs in a parking lot. Ref. [27] designs an energy
management system to optimize the energy distribution between a workplace’s PV system,
grid, and battery electric vehicles (BEVs), leading to reductions in charging costs and
decreased grid energy consumption.

There is increasing research on V2G services in the context of VPPs, but the research
on the integration of V2G services provided by a large quantity of EVs into VPPs is still
not sufficiently explored. Although the price signal from the VPP to the EV group is well-
understood and has been extensively studied [21,26], the potential for V2G services offered
by the EV group to the VPP remains under-explored in existing research. Refs. [20,26,27]
did not discuss what impact the arrival of a significant number of EVs at a charging parking
lot would have on the aggregator, and how to optimize and mitigate these impacts without
compromising the interests of the power provider.

Although various studies [6,18,25,26,28–31] have explored VPP–EV coordination using
different optimization approaches, scalability remains a major challenge. As the number of
EVs increases, ensuring computational efficiency and solution quality becomes increasingly
difficult. Game-theoretic [32,33] methods often perform well in small systems but face ex-
ponential growth in complexity with more agents, leading to convergence issues. Similarly,
neural network-based reinforcement learning (RL) models can be slow to converge and
yield suboptimal results compared to lighter, more interpretable tabular RL algorithms in
small-scale settings [34].

Compared to the existing literature, the core motivation for this research is addressing
the challenges posed by the substantial quantity of EVs integrated into VPP operations. To
overcome the challenges, special considerations are required to ensure optimal solutions
are obtained within reasonable time budget. Interactive optimization frameworks in the
form of centralized control [15–18] structures demand substantial computational resources
and time. Consequently, this study adopts a decentralized [35,36] approach to decouple
the modeling of the VPP and EVs. Additionally, RL algorithms exhibit robustness in
dynamic and uncertain environments, enabling adaptive decision-making when the EV
model is trained iteratively using the Monte Carlo (MC) simulation. For VPP optimization,
a gradient-based optimization algorithm combined with a custom loss function is novelly
employed to leverage the high computational capacity of GPUs.

This paper presents a two-stage optimization framework for managing the operation
of a VPP that integrates EVs, PVs, and a battery energy storage system (BESS). The VPP
aims to maximize the revenue from both the EV group and the electricity wholesale market
while offering reduced charging costs to the EV group to incentivize their participation in
V2G discharge activities. To study the impact of a realistic number of EVs, a MC-SARSA is
proposed to train an EV model on the electricity price provided by the VPP.

The contributions of this paper are threefold:

(1). A two-stage optimization framework for the coordinated operation of a VPP that
integrates PVs, and a BESS, serving a substantial quantity of EVs that act as prosumers.

(2). A MC-SARSA algorithm is used to train the EV model based on the electricity price
provided by the VPP, with training accelerated through action masking for RL.
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(3). A gradient-base optimization algorithm with custom loss function to achieve optimal
solution for VPP operation, also an exemplary pricing strategy is proposed for the
analytic purposes of VPP profitability and EV cost reduction.

2. Problem Formulation
EVs parked at workplace charging facilities typically remain for extended durations,

providing sufficient time to charge their batteries to the expected energy level before
departure. However, the energy capacity stored in the EV batteries during this period after
being fully charged is wasted. The capacity of EV batteries can be leveraged to increase the
financial benefits for both the VPP and EV owners. EV owners will obtain a better charging
electricity price by participating in the V2G scheme and offer the battery capacity to VPP
as long as the battery is charged to the expected energy level at departure. The desired
SOC level before departure is modeled as a variable set by the EV owner upon arrival.
This design introduces flexibility into the EV model, enabling it to accommodate diverse
driving scenarios and individual user preferences. For example, drivers with mileage
anxiety may choose to set their desired SOC to the maximum limit. By specifying the target
SOC, the model captures realistic behavioral variations among EV owners. This flexibility
ensures that charging strategies are better aligned with individual needs and driving habits.
At the aggregate level, the VPP can tap from this EV battery capacity at disposal through
trading in the wholesale electricity market.

This research does not adopt a centralized control structure, as centralized control relies
on physical communication infrastructure, requiring sufficient speed, stability, and band-
width. Moreover, it places the entire computational and decision-making burden on a
single node, creating a critical single point of failure that compromises the system’s ro-
bustness and scalability. In such a setup, decisions are made centrally without considering
the specific preferences of individual participants, and the lack of personalized incentives
may discourage user participation. Therefore, in this research, the VPP does not directly
manage EV charging and discharging; rather, the EV model functions as a self-interested
agent. The final product of the EV optimization is a self-governing agent that requires no
additional tuning during runtime. This EV model is capable of directing the charging/dis-
charging behavior of EVs as they enter the car park. Additionally, since the EV model can
simulate a large number of EV charging and discharging behaviors, it can also be used for
price strategy analysis.

2.1. Two-Stage Optimization Framework

MC simulation is a robust statistical technique employed to model and analyze the
impact of risk and uncertainty in prediction and forecasting models [37]. This method
relies on the generation of a large number of random samples to investigate the potential
outcomes of a process or system. The inputs to the simulation are typically character-
ized by probability distributions (normal, uniform. . . ), which delineate the range and
likelihood of various input values. The process entails conducting numerous iterations,
with each simulation using different sets of random inputs to generate a distribution of
possible outcomes.

The two-stage optimization framework is a strategic approach utilized in decision-
making processes, characterized by the sequential execution of decisions across two distinct
stages. This framework proves particularly advantageous for addressing problems where
uncertainty or variability plays a significant role.
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2.1.1. First Stage: EV Model Training

In the first stage, the EV drive-in time, departure time, state of charge (SOC) at
drive-in, and minimum charging hours are mathematically modeled using stochastic
distribution. Based on this stochastic distribution, an MC simulation is employed to
randomly generate an EV customer’s entry into the system, optimizing the EV model until
achieving optimal convergence.

Direct optimization methods such as dynamic programming (DP) and mixed integer
linear programming (MILP) are not considered in this study due to their inherent limi-
tations. DP requires full knowledge of system dynamics and suffers from the curse of
dimensionality [34], making it computationally inefficient for large state or action spaces.
This limitation is particularly relevant to our problem, which involves optimizing the
behavior of a large number of EVs. While MILP is effective for problems with a moderate
number of decision variables, it struggles with non-convex constraints and objectives, mak-
ing it less suitable for complex, uncertain, or nonlinear scenarios involving interdependent
EV participants.

For EV modeling, Monte Carlo SARSA (MC-SARSA) was selected over deep RL meth-
ods due to its superior convergence stability, computational efficiency, and interpretability.
In mathematical optimization, deep RL often encounters convergence instability, leading
to suboptimal outcomes. In contrast, tabular MC-SARSA provides more reliable learning
for EV charging scheduling. It also requires far less computational power while achieving
comparable performance, making it suitable for edge deployment on EV terminals. More-
over, its tabular structure offers better interpretability of learned policies compared with
the black-box nature of DNN.

The motivation for modeling EV behaviors using RL also lies in its efficiency and adapt-
ability. Once trained, an RL model requires relatively low computational resources, making
it well-suited for deployment in resource-constrained environments such as the charging ter-
minals in our case. Accordingly, the operational behavior of the EV model is formulated us-
ing an MC-SARSA RL algorithm, enhanced with action masking to accelerate convergence.

Upon completion of the EV model training, 1000 EVs are randomly generated, prepar-
ing for the second stage, which involves VPP operational optimization. In this stage,
the 1000 EVs act as contracted prosumers, and their operational behavior is guided by the
optimal EV model trained in this stage.

2.1.2. Second Stage: VPP Operational Optimization

In the second stage, a BESS and a PV system are mathematically modeled, and the
base electricity price of wholesale market is determined. PV generation is highly sensitive
to the weather conditions of a given area. To develop a model that is robust to the stochastic
nature of this renewable resource, traditional direct optimization methods, such as linear
programming and dynamic programming, often struggle due to the issue of variable
explosion when large volumes of PV data are considered.

In the context of VPP modeling, convergence time is less critical compared to EV mod-
eling, which must accommodate a substantially large population of EVs. Neural networks,
owing to their high representational capacity, are particularly well-suited for optimizing
problems characterized by stochastic PV generation. Deep neural network (DNN)-powered
gradient optimization offers distinct advantages, including inherent differentiability and
GPU-accelerated parallelization, handling computationally intensive optimization. Conse-
quently, the formulation of objective functions in VPP modeling can be extended to include
general differentiable functions, thereby relaxing the constraints traditionally imposed by
convexity [38].
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As a result, a DNN is designed for the gradient-based optimization of the VPP model.
A custom loss function is designed as the objective function of the VPP modeling. As the
DNN converges, the stabilized loss value converges to the optimal results of the VPP model.
Figure 1 illustrates the two-stage optimization framework for managing the operation of a
VPP that integrates EVs, PVs, and a BESS.

Start

Collect model input Electricity price from
VPP

EV simulation
parameters

arrival/departure time
inital SOC

Optimize
Monte Carlo SARSAR

reinforcement
learning

Optimality
Reached

Find-tune
RL model parameters

Sample 1000 EVs

EV simulation
parameters

arrival/departure time
inital SOC

Simulate EV
charging/discharging

behaviors

Electricity price from
VPP

Fine-tune
DNN model
parameters

Optimize VPP model
by gradient-based

programming

ESS initial SOC
PV generation

Optimality
reached

Maximum VPP revenue

End

Yes

Yes

Stage ONE

Stage TWO

Hourly discharge/charge power
of EV group

No

No

Figure 1. Two-stage optimization framework.

2.2. EV Model

EV enters the workplace car park in a stochastic manner, and leaves at around 5 pm in
the afternoon. During the period of stay, the EV owner expects the vehicle to be charged
to the required hours set upon entering. During the span of around 9 h, the vehicle is
assumedly contracted to the VPP owner to offer the battery capacity to the VPP, and, in
return, VPP allows the EV owner to charge the vehicle at a favorable hour and price.
The EV will always charge during the hours with the lowest price and discharge during
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the hours with the highest price, based on the assumption that the EV acts as a rational
agent prioritizing its own benefits. EV owners participating in V2G schemes benefit from
reduced prices in exchange for granting the VPP the right to use their EV batteries during
their parking periods. As this paper focuses on optimizing the benefits of the VPP, EV
battery degradation is not directly modeled.

The objective of the first stage optimization is to minimize the cost of charging the EVs
to the minimum charging requirements which are formulated as follows:

min(CEV
pur − REV

V2G) (1)

The total cost of charging the EV group is the sum of the individual charging costs
for each EV, minus the V2G services revenue generated by each EV. REV

V2G is the revenue
by selling electricity to the VPP through V2G service. CEV

pur is the charging cost incurred by
purchasing electricity from the VPP.

Upon arrival, an EVi has an initial amount of energy stored in the battery, the SOC of
the EVi is set to the initial SOC level, SEVi

SOC−init. In this research, the initial SOC level of the
EVi follows a normal distribution.

SEVi (tEVi
arr ) = SEVi

SOC−init (2)

where tEVi
arr is the arrival time of the ith EV, SEVi

SOC−init is the initial drive-in SOC of the ith EV.
The V2G revenue from the VPP to the EV group is the accumulating value of the V2G

revenue at each time step t for each EVi in the group:

REV
V2G =

N

∑
i=1

(
T

∑
t=0

λEV
V2G(t)× PEVi

disch(t)× ∆t− µ
EVi
V2G

)
(3)

where N is the total number of EVs in the study, T is the total number of time steps
considered in the optimization period, and ∆t is the duration of each time step. PEVi

disch(t) is
the discharged power from ith EV to the VPP at the time t, λEV

V2G(t) is the V2G electricity
price offered to EV group by the VPP at the time t. µEV

V2G is the V2G service fee charged by
the VPP to the EV owner participating in the scheme.

The cost of purchasing electricity from the VPP follows (4). The total cost of charging
the EV group is the sum of the costs of purchasing electricity at each time step t for each
EVi in the group:

CEV
pur =

N

∑
i=1

T

∑
t=0

λEV
pur(t)× PEVi

chg (t)× ∆t (4)

where PEVi
chg (t) is the charging power of the ith EV from the VPP at the time t, λEV

pur(t) is the
charging electricity price offered to EV group by the VPP at the time t.

Before arrival and after departure, the SOC of EVi is set to zero:

SEVi (t) = 0 t < tEVi
arr or t > tEVi

dep (5)

where tEVi
dep is the departure time of the ith EV.
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The SOC of the EVi at time t + 1 during the scheduling is calculated as follows:

SEVi (t + 1) = SEVi (t)+η
EVi
chg ×

PEVi
chg (t)

CEVi
− 1

η
EVi
disch

×
PEVi

disch(t)
CEVi

× ∆t

tEVi
arr ⩽ t ⩽ tEVi

dep − 1

(6)

where SEVi (t) is the SOC of the ith EV at time t, η
EVi
chg is the charging efficiency of the ith EV,

η
EVi
disch is the discharging efficiency of the ith EV, and CEVi is the battery capacity of the ith EV.

Outside the parking period (from arrival to departure), the charging and discharging
power of EVi should be zero:

PEVi
disch(t) = PEVi

chg (t) = 0

t < tEVi
arr or t > tEVi

dep

(7)

During the MC simulation, the departure time for EVi should always be later than the
arrival time at all times. Both the departure time and the arrival time should be a positive
integer following a normal distribution, with a different mean value.

0 ⩽ tEVi
arr < tEVi

dep (8)

The charging and discharging power of the EVi at any time during the scheduling must
not exceed the maximum and minimum charging/discharging power limits, as described
by the following equation:

PEVi
disch−min ⩽ PEVi

disch(t) ⩽ PEVi
disch−max

PEVi
disch(t) ̸= 0, tEVi

arr ⩽ t ⩽ tEVi
dep

(9)

PEVi
chg−min ⩽ PEVi

chg (t) ⩽ PEVi
chg−max

PEVi
chg (t) ̸= 0, tEVi

arr ⩽ t ⩽ tEVi
dep

(10)

where PEVi
disch−min and PEVi

disch−max are the minimum and maximum discharging power of

the ith EV respectively; Likewise, PEVi
chg−min and PEVi

chg−max are the minimum and maximum

charging power of the ith EV.
To protect the battery life of the EV, the SOC of the EVi is constrained by the follow-

ing conditions:
SEVi

min ⩽ SEVi (t) ⩽ SEVi
max

tEVi
arr ⩽ t ⩽ tEVi

dep

(11)

where SEVi
min and SEVi

max are the minimum and maximum SOC of the ith EV, respectively.
The power exchange between the EV group and the VPP adheres to the following

balance equation:

PVPP
EV (t) =

N

∑
i=1

PEVi
chg (t)−

N

∑
i=1

PEVi
disch(t) 0 ⩽ t ⩽ T (12)

To prevent simultaneous charging and discharging within any operational time hori-
zon, the power exchange between the ith EV and the VPP is regulated by the follow-
ing condition:

PEVi
chg (t)× PEVi

disch(t) = 0 0 ⩽ t ⩽ T (13)
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Upon departure, the SOC of the ith EV should be charged to the required SOC level.

SEVi (tEVi
dep) = SEVi (tEVi

arr ) + SEVi
reqd (14)

where SEVi
reqd is the required energy that need to be charged to the ith EV at departure in

terms of SOC.

2.3. VPP Model

The VPP in this study owns a PV system, a BESS. Additionally, a group of EVs
that randomly enter and leave the workplace parking lot during working hours are the
contracted customers of the VPP. The purpose of the BESS is to smooth the intermittent PV
power generation and store the surplus energy. PV energy generation involves converting
sunlight into electricity using photovoltaic cells, which convert the light into direct current
(DC), then transformed into alternating current (AC) for use in homes and businesses or
for feeding into the electrical grid. The VPP generates revenue by selling electricity on the
wholesale market and providing energy to meet the charging demands of the EV group as
shown in Figure 2. The scale of the VPP business is modeled to accommodate N number
of EVs entering daily, where N represents any realistic figure that makes business sense
to the VPP owner. Once the RL-based EV model is trained, it enables efficient scalability
to 100–3000 EVs with minimal computational overhead, due to its decentralized decision-
making policy. Although the experimental results in this paper focus on 1000 EVs, the model
can scale to 5000 or more without notable computation time increase. The trained EV model
is capable of analyzing business strategies for a VPP at a fine-grained scale, factoring in the
number of EVs included in the modeling.

EVs

  VPP

Wholesale Market

PV

BESS

Information Flow
Energy Flow

Figure 2. Relationship diagram of VPP and EV group.

The objective of this VPP study, which is the second stage of the optimization frame-
work, is to maximize the revenue of the VPP which is calculated as follows:

max(RVPP
f eed−in − CVPP

pur + CEV
pur − REV

V2G) (15)

where RVPP
f eed−in is the revenue gained by selling electricity to the wholesale market. CVPP

pur
is the cost incurred by purchasing electricity from the wholesale market during en-
ergy deficiency.
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The revenue of the VPP is the surplus from the revenue gained by selling electricity to
the wholesale market and the cost incurred by purchasing electricity from the wholesale
market during energy deficiency. Another stream of revenue comes from the energy
transactions between EVs and the VPP. This includes the energy purchased by EVs for
charging during the scheduled time period, offset by the energy sold back to the VPP
through V2G services.

The VPP feed-in revenue is calculated by accumulating all the VPP feed-in revenue
during each time step t:

RVPP
f eed−in =

T

∑
t=0

λVPP
f eed−in(t)× PVPP

f eed−in(t)× ∆t (16)

where λVPP
f eed−in(t) is the feed-in price at the time t, PVPP

f eed−in(t) is the power fed into the grid
by the VPP at time step t.

The cost of purchasing electricity from the wholesale market is calculated as follows:

CVPP
pur =

T

∑
t=0

λVPP
pur (t)× PVPP

grid (t)× ∆t (17)

CVPP
pur is the cost incurred from purchasing electricity from the wholesale market.

λVPP
pur (t) is the wholesale market electricity price at the time t. PVPP

grid (t) is the required
power from the grid for VPP at time step t.

The feed-in electricity price sold to the wholesale market at each time step t is marked
down from the purchase electricity price from the wholesale market by a discount factor α,
where 0 < α < 1.

λVPP
f eed−in(t) = α× λVPP

pur (t) 0 ⩽ t ⩽ T (18)

2.3.1. PV Generation

For the purpose of mathematical modeling, the PV panels are aggregated into a single
unit, calculated using the following formula [26]:

PVPP
PV (t) = I(t)× A× ηPV (19)

where PVPP
PV is the PV power generation of the VPP, I(t) is the global horizontal irradiance

at time t, A is the area of the PV panels, and ηPV is the efficiency of the PV panels.

2.3.2. Battery Storage

During the period of VPP scheduling, the discharging and charging of the ESS is
constrained by the following condition:

SESS(T + 1) = SESS(t)+(
ηESS

chg ×
PESS

chg (t)

CESS − 1
ηESS

disch
×

PESS
disch(t)
CESS

)
× ∆t

0 ⩽ t ⩽ T

(20)

where SESS(t) is the SOC of the ESS at time t, PESS
chg (t) is charging power of the ESS at time

t, PESS
disch(t) is the discharging power of the ESS at time t, ηESS

chg is the charging efficiency of

the ESS, ηESS
disch is the discharging efficiency of the ESS, and CESS is the battery capacity of

the ESS.
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The charging and discharging power of the ESS at any time during the scheduling
can not exceed the maximum and minimum power limits, as described by the follow-
ing constraints:

PESS
disch−min ⩽ PESS

disch(t) ⩽ PESS
disch−max

PESS
disch(t) ̸= 0, 0 ⩽ t ⩽ T

(21)

PESS
chg−min ⩽ PESS

chg (t) ⩽ PESS
chg−max

PESS
chg (t) ̸= 0, 0 ⩽ t ⩽ T

(22)

where PESS
chg−min and PESS

chg−max are the minimum and maximum charging power of the

ESS, respectively; likewise, PESS
disch−min and PESS

disch−max are the minimum and maximum
discharging power of the ESS, respectively.

The ESS cannot be charged and discharged simultaneously at any time during the
scheduling period, and this is ensured by the following condition:

PESS
chg (t)× PESS

disch(t) = 0 0 ⩽ t ⩽ T (23)

At the end of the scheduling, the SOC of the ESS should be the same as the initial
SOC SESS

init .
SESS(T + 1) = SESS(0) = SESS

init (24)

For the safe operations of the ESS, the SOC of the ESS is constrained by (25) at any
time t:

SESS
min ⩽ SESS(t) ⩽ SESS

max 0 ⩽ t ⩽ T (25)

where SESS
min and SESS

max are the minimum and maximum SOC, respectively.

2.3.3. Power Equation

During the scheduling period, the VPP system is constrained by the following bal-
ance equation:

PVPP
PV (t) + PESS

disch(t)− PESS
chg (t)− PVPP

EV (t)

= PVPP
f eed−in(t)− PVPP

grid (t)

0 ⩽ t ⩽ T

(26)

where PVPP
EV (t) is defined in (12). PVPP

EV (t) > 0 when EVs are charging, PVPP
EV (t) < 0 when

EVs are discharging.
Power exchange between the VPP and the grid during the operational time horizon is

governed by the following condition:

PVPP
grid (t)× PVPP

f eed−in(t) = 0 0 ⩽ t ⩽ T (27)

2.3.4. Modeling and Simulation

The VPP model is a three-layer neural network with a neuron configuration of
24-50-100-50-24, which converges stably to the optimality within 3 min and 47 s. The input
vector is divided into two segments: the first segment consists of the hourly electricity
prices, and the second segment includes 24 inputs representing the solar power generation
for each hour. The model outputs 24 values, which correspond to the hourly discharge or
charging schedule operations of the BESS.

The output decision vector of the neural network is constrained to the range [−1, 1]
using the hyperbolic tangent activation function, where negative values indicate VPP
battery discharging, positive values represent charging, and a value of zero signifies an idle
state with no charging or discharging activity. Positive raw values from the neural network



Energies 2025, 18, 5898 12 of 29

are scaled to the range [PESS
chg−min, PESS

chg−max], while negative raw values are similarly scaled

to [PESS
disch−min, PESS

disch−max]. As a result, constrait (23) is upheld. Furthermore, SESS(t) is
cliped within the bounds [SESS

min , SESS
max] to ensure compliance with the predefined operational

limits, if the output decision vector of the neural network results in a violation of the lower
or upper bounds of SESS(t) during training.

The MC sampling method is employed to simulate 1000 EVs driving at various times
with diverse charge demands, computing the hourly power exchange between EVs and
the VPP, leveraging the optimal EV model previously trained. On average, the MC-SARSA
model with action masking converges within approximately 4 min 18 s. This convergence
time reflects the model’s ability to efficiently explore and exploit the action space while
maintaining stability in the learning process. Note that while the choice of 1000 vehicles
reflects the scale of the VPP business and is not constrained by computational capabilities.

2.4. Pricing Strategy

The electricity price offered by VPP is vital to both parties in terms of charging costs
and revenue. The pricing strategy itself is a research direction that attracts many researchers.
To prove the concept, this paper only includes an exemplary price strategy, formulated
as (28), to demonstrate the significant impact of pricing on VPP-EV operations. The choice
of pricing strategy can result in varying outcomes, potentially resulting in a win–win, win–
lose, or lose–lose situation for both stakeholders—the VPP and the EVs. The exemplary
pricing strategy is that the VPP proprietor gets the wholesale market electricity price for 24 h
covering the whole operational period by prediction or other means. For each individual
time step t, we know the price p(t). The price will be shuffled in terms of the time stamp.
The sum of the 24 prices will be unchanged but for individual time step t̃, the new price
p̃(t̃) is more likely from a different time-step of p(t). Once a price p(t) is selected, it won’t
be chosen anymore in the process. Consider 24 prices as 24 balls in a bag, each ball has a
price p(t) attached to it. According to our pricing strategy, for each time t̃ ranging from
1 to 24, the pricing strategy picks a ball from the bag, and the price p(t) attached will be
selected for the current time step t̃. The ball is subsequently removed from the bag. At the
end of the process, no ball should be left in the bag.

p̃(t) = Pstrtg(λwhsle, t) (28)

λEV
base(t) = µ× p̃(t) (29)

λEV
pur(t) = τmu × λEV

base(t) (30)

λEV
V2G(t) = τdisc × λEV

base(t) (31)

where λwhsle is the wholesale market price, and Pstrtg is the price strategy that accepts the
wholesale price and time step t and outputs a price for the time t. p̃(t) is the base electricity
price derived from the pricing strategy at time t. µ is the price multiplier which plays a
significant role in revenue allocation for a VPP; λEV

base(t) is the base EV electricity price, τdisc

is the discount of λEV
base(t) for V2G, a positive decimal which is less than one, and τmu is the

markup of λEV
base(t) for charging, a positive decimal which is larger than one. Figure 3 shows

the process of deriving the EV charging/discharging price from the wholesale market price.
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Figure 3. Process of deriving EV charging/discharging price.

3. Solution Methods
3.1. Gradient-Based Programming

Gradient-based programming is used in optimization where gradients of a function
are utilized to find the optimal solution. Gradient-based programming fundamentally
revolves around optimizing an objective function [39]. This function could represent
various metrics, such as error or cost, that the program seeks to optimize. The gradient of
the objective function is calculated for each parameter, pointing toward the direction of
maximum growth of the function. By taking the negative of the gradient, the direction that
most steeply decreases the function is obtained. Parameters are iteratively updated using
the computed gradients. The updates are usually performed using a method like gradient
descent, stochastic gradient descent, mini-batch gradient descent. These methods adjust
the parameters in the direction of the negative gradient. The update step for parameters x
at iteration t is as follows:

xt+1 = xt − η∇ f (xt) (32)

where η is the learning rate and ∇ f (xt) is the gradient of the loss function, f (·), at the
current point. The process is repeated until the parameters converge to a minimum of the
function. During backpropagation in neural network training, the gradient is calculated by
recursively applying the chain rule to propagate derivatives backward through the layers
of the network.

3.2. Custom Loss Function

A custom loss function is a user-defined function designed to evaluate the performance
of a machine learning model by minimizing the expected loss from the input data. Unlike
standard loss functions, such as Mean Squared Error (MSE) or Cross-Entropy Loss, a custom
loss function is tailored to address the specific needs of a particular problem. This is
especially useful when standard loss functions fail to adequately capture the application-
specific performance metrics that are crucial for the given application [40]. For deep
neural networks (DNNs), it is essential that the custom loss function be differentiable to
facilitate backpropagation.

In this study, a custom loss function is crafted to optimize the VPP model. The nonlin-
ear constraints are addressed through the design of this custom loss function, tailored to
penalize constraint violations during the training process. Any violation of the constraint
results in a significantly large penalty, effectively discouraging the neural network from
exploring infeasible regions of the solution space. The loss function integrates the feed-in
revenue, purchase cost, and revenue generated from the EV group. The primary goal
of the VPP model is to maximize its revenue. The custom loss function is formulated as
in (33) and (34), where LVPP is the loss function of the VPP model, αVPP is the penalty
coefficient, and ρVPP is the penalty exponent for the VPP modeling. As training progresses,
the DNNs are iteratively updated to minimize the loss function, thereby maximizing the
revenue of the VPP. Minimizing the loss function also guides the model toward solutions
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that respect the system constraints. In this way, constraint compliance is achieved as a
result of loss minimization.

LVPP = −RVPP
f eed−in + CVPP

pur − CEV
pur + REV

V2G + ψVPP
pen (33)

ψVPP
pen =

(
|SESS(T + 1)− SESS

init | × αVPP
)ρVPP

(34)

3.3. Monte Carlo SARSA

This research trains the EV model using MC-SARSA RL algorithm. MC-SARSA is a
type of RL algorithm that combines the Monte Carlo method with the SARSA algorithm. It
is particularly useful in environments where episodes are clearly defined and end in a finite
number of steps, and it can be applied when the model of the environment is unknown
or too complex to model accurately. Unlike standard SARSA which updates the value
function after every step within an episode, MC-SARSA waits until the end of the episode
to perform the update [41], using the entire sequence of states, actions, and rewards to
make its calculations. This can be advantageous in environments where immediate rewards
are sparse or delayed, as it allows the agent to learn from the full sequence of interactions
with the environment.

For an episode of length T, starting at time step t, the return Gt is defined as the total
discounted reward from time step t + 1 to the end of the episode:

Gt =
T

∑
k=t+1

γk−(t+1)Rk (35)

where γ is the discount factor, and Rk is the reward received at time step k. MC-SARSA dif-
fers from regular SARSA in that SARSA updates after each step using bootstrapping, while
MC-SARSA uses the full return Gt. After an episode, for each state-action pair encountered
in the episode, the action-value function is updated using the following formula:

Q(St, At)← Q(St, At) + α
(
Gt −Q(St, At)

)
(36)

where α is the learning rate, St is the state at time step t, At is the action taken at that time,
and Q(St, At) denotes the action-value function for the state-action pair (St, At).

The reward function of the EV model is defined as in (37) and (38), where REVi
rwd is the

reward function of the ith EV, µ
EVi
V2G represents the V2G participation fee of the ith EV, ψ

EVi
pen

is the penalty term for the ith EV.
The penalty term ψ

EVi
pen is added to the reward function to penalize the EV model for

not meeting the EV’s minimum charging requirements upon departure. The penalty term
is calculated based on the value difference between the SOC of the EV at departure and
the required SOC, where αEV is the penalty coefficient, and ρEV is the penalty exponent for
EV modeling.

REVi
rwd = −

T

∑
t=0

(
λEV

pur(t)× PEVi
chg (t)× ∆t− λEV

V2G(t)× PEVi
disch(t)× ∆t

)
− µ

EVi
V2G − ψ

EVi
pen (37)

ψ
EVi
pen =

(
|SEVi (tEVi

dep)− SEVi
reqd| × αEV

)ρEV

(38)

3.4. Action Masking

Action masking in RL is a technique that restricts an agent’s available actions to
only valid ones at a given state, preventing the selection of actions that are nonsensical
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or invalid. This is particularly important in environments with rules or constraints that
limit the agent’s choices at certain times [42]. By using action masking, the agent can focus
on learning from valid actions, improving its efficiency and avoiding penalties associated
with exploring invalid ones. This technique helps speed up the learning process, reduces
computational waste, and is particularly useful in environments with large and dynamic
action spaces, such as complex games, robotics, or tasks with specific constraints.

The action mask is defined as m(s) ∈ {0, 1}|A| for state s, where A is the set of all
possible actions. The action mask is a binary vector of size |A|, where |A| is the number
of actions. ma(s) = 1 indicates that action a is valid in state s, while ma(s) = 0 marks
it as invalid. To ensure the algorithm only selects valid actions, the Q-values of invalid
actions are replaced with a large negative number. The modified Q-value function can be
expressed as follows:

Qmasked(s, a) =

 Q(s, a), if ma(s) = 1

−109, if ma(s) = 0
(39)

where Qmasked(s, a) is the modified Q-value function, Q(s, a) is the original Q-value func-
tion. This results in a masked action selection rule:

a∗ = arg max
a∈A

Qmasked(s, a) (40)

where a∗ is the selected action.
Leveraging domain knowledge, the action mask is designed to eliminate invalid

charging or discharging actions, ensuring that the EV only considers sensible options at
the given state. This approach enhances the efficiency of the EV’s learning process and
prevents the exploration of actions that leads to violations of operational conditions.

4. Case Studies
4.1. Parameters and Case Settings

The battery capacity of an EV in this study is assumed to be 80 kWh. The maximum
charging and discharging power of an EV is set as 7.4 kW. For safety considerations,
overcharging a battery can pose risks such as overheating, potential fire or explosion
hazards. On the other hand, surpassing the maximum SOC during EV battery charging
typically yields diminishing returns in energy efficiency. In light of this, in this study,
the EV’s minimum SOC is constrained to 0.2, while its maximum is set at 0.8 [43].

Both the charging and discharging efficiencies are configured to be 0.95. For revenue
generation, the VPP sets the base electricity price for EVs at 2.0 times the rate sourced from
the Australian Energy Market Operator (AEMO) [44]. Also, the charge price is set at a
1.1 markup of the base electricity price offered by the VPP, while the discharge price is
discounted by 0.9 of the base electricity price. According to [32], without loss of generality,
in this modeling, the individual EV arrival times follow a normal distribution with a mean
of 9 and a standard deviation of 1. Departure times are also normally distributed with a
mean of 17 and a standard deviation of 1. The initial SOC for each individual is modeled
with a mean of 0.34 and a standard deviation of 0.1. The minimum charge time for each
individual is drawn from a discrete uniform distribution ranging from 2 to 5 (Table 1) [26].

To use the SARSA algorithm, which is a tabular reinforcement learning method,
discretization is required. Electricity prices and SOC levels are both rounded to two
decimal places for efficiency in memory storage. The customer-facing digits with two
decimal places is an acceptable compromise in the context of business sense. The penalty
coefficient, αEV is set to 100, while ρEV is assigned a value of 3.
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Table 1. Stochastic parameters for EV simulation.

Arrival Time (Hour) N(9, 1)

Departure Time (Hour) N(17, 1)

Initial SOC N(0.34, 0.1)

Minimum Charge Time (Hour) U(2, 5)

The VPP contains a BESS with a capacity of 8 MWh, the charging/discharging ef-
ficiency of the BESS is 0.95, and its maximum charging/discharging power is 5 MWh.
The penalty coefficient αVPP is set as 100, while ρVPP is set to 3. The price of electricity from
the VPP to the grid is discounted by 10% compared to the grid price. Figure 4 is an example
of VPP charge/discharge electricity price from/to the wholesale market [44]. The hourly
PV generation [45] for a typical operational day is shown in Table 2.
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Figure 4. VPP electricity price from the wholesale market.

Table 2. Hourly PV generation.

t kW t kW t kW

1 0 9 3340 17 4495

2 0 10 4955 18 2420

3 0 11 6655 19 615

4 0 12 7830 20 15

5 0 13 8315 21 0

6 255 14 7560 22 0

7 1085 15 4455 23 0

8 1760 16 3815 24 0

The EV operational model is trained using the MC-SARSA RL algorithm to minimize
the charging cost of EVs while ensuring the EVs are charged to the minimum charging
requirement before departure. The accumulated rewards of the EV RL model climb up as
the training progresses, indicating the model is learning to optimally direct the charging
and discharging operation to minimize the charging cost of EVs. In one scenario, the MC-
SARSA EV model stabilizes and converges to a total cost of AUD 5385 for 1000 EVs after
500,000 training episodes (Figure 5). The reached minimum cost is the stochastic mean
value of the total cost of charging 1000 randomly entered EVs. The Brownian reward
fluctuation after convergence is caused by the stochastic sampling of EVs with varying
charging needs and parking durations during the training process.
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Figure 5. Accumulated rewards per episode (over 24 h) during the training of the EV schedul-
ing model.

Take one EV sample of the Monte Carlo simulation, and examine the charging and
discharging behavior of the EV during the parking period. The EV charging and discharging
operation is optimized by the EV model trained using MC-SARSA algorithm. Figure 6
shows time steps 7, 8, and 9 presents the cheapest electricity price, and the EV is charging
during these hours. Time steps 6 and 12 presents the highest electricity price, and the EV is
discharging during these hours.
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Figure 6. Operations of a single EV over time T.

The EV enters the carpark at hour 6, with an initial SOC of 0.24, and it is charged to
the minimum SOC requirement (0.42) before departure at hour 16. Figure 7 presents the
changes in the SOC of a randomly selected EV from the 1000 EVs in the simulation over
the time span T, following the optimized charging and discharging operational behaviors.
From Figure 7, it is observed that there is a SOC declination at hours 6 and 12, and a SOC
increment at hours 7, 8, 9 and 15. Hours 6 and 12 are the time with the highest electricity
price, and thus the EV is discharging during these hours. As hours 7, 8, 9, and 15 are the
times with the lowest electricity prices, the EV is charging during these hours.
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Figure 7. Changes in the SOC of a single EV over time T.

4.1.1. Charging Strategies

Based on the preferred charging strategy, EV owners are classified into three types: T1:
those who charge immediately until their energy needs are met, despite being less sensitive
to higher charging prices; T2: those who optimize their charging without participating
in the V2G scheme and pay a moderate charging price; and T3: those who optimize
their charging while participating in the V2G scheme, thereby benefiting from the lowest
charging prices.

To facilitate comparison, it is advisable to assess the total cost for all 1000 EVs as-
suming they follow charging strategies T1, T2, or T3. Additionally, understanding the
revenue generated by the VPP and V2G under these different strategies will enable a clear
comparison of the impacts on both the VPP and the EVs. In the case study, three categories
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of EV groups (C1, C2, and C3), each adopting a different charging strategy, are analyzed.
All three categories use the same EV electricity price, P0, to facilitate comparison, with the
details illustrated in Table 3.

Table 3. Categories of EV charging groups (C1–C3).

Category Charging Strategy EV Electricity Price

C1 T1 P0

C2 T2 P0

C3 T3 (V2G) P0

Executing the price strategy depicted in Figure 3 will yield varying results for the VPP
and EVs. Among the prices generated by this strategy, three specific prices (P0, P1, and P2),
as seen in Figure 8, have been selected for the purpose of analysis.
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Figure 8. Three base EV electricity price for case studies.

4.1.2. Battery Degradation

Battery charging and discharging cycles contribute to battery degradation over time.
Frequent deep discharges and high-rate charging can accelerate capacity loss. To account
for the battery degradation of BESS in VPP, a case study is designed to include the bat-
tery degradation cost in the VPP optimization model. Including the battery degradation
for BESS in VPP will economically effect the outcome of the optimization. The battery
degradation cost is modeled following the approach in [26] as follows:

B =
R

L× ηESS (41)

CESS
deg =

T

∑
t=0

PESS
disch(t)× B (42)

where B is the battery degradation cost per kWh discharged, R is the battery replacement
cost, L is the total lifetime energy throughput. ηESS is the squared root of the roundtrip
efficiency of the BESS, and CESS

deg is the total battery degradation cost of the BESS over the
scheduling period T. In this study, the battery degradation coefficient B is set to AUD
0.038 per kWh [43], this value reflects the amortized cost of capacity loss over the expected
lifetime of the battery.

The EV battery modeling enforces upper and lower bounds on the SOC to ensure safe
operation within limits. However, additional battery degradation effects are not explicitly
considered in this study. The economic benefits obtained from reduced EV charging costs
are inherently designed to offset the potential degradation costs associated with V2G
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discharging. Since this paper primarily focuses on the economic operation of the VPP, EV
battery degradation is not explicitly modeled in this context.

4.1.3. Computational Environment

The simulation and optimization were conducted on a laptop equipped with a
12th Gen Intel Core i7-1265U CPU (1.80 GHz), 16 GB of RAM, and an Nvidia GeForce
MX550 GPU. The optimization of the VPP model was implemented using the PyTorch 2.1
Python package. The MC-SARSAR algorithm was self-implemented in the C# program-
ming language, running on the .NET 7.0 platform.

4.2. Results and Analysis

The case study evaluates various EV charging categories and their impact on both EV
charging costs and VPP revenue. The analysis also examines pricing models and their im-
plications for both the VPP and the EVs. The results are presented in the following sections.

4.2.1. EV Charging Strategy Analysis

Table 4 presents the total cost of charging 1000 EVs across three distinct charging
categories: C1, C2, and C3. The base electricity rate offered by the VPP for this analysis
is P0.

Table 4. Comparison of charging costs for 1000 EVs (C1, C2 and C3).

Categories EV Charging Cost VPP Revenue

C1 AUD 6517.55 AUD 8125.62

C2 AUD 2719.82 AUD 5872.81

C3 AUD 2565.79 AUD 5889.29

Charging Category C1

In the case of C1, EV will start charging upon arrival until the required energy is
met, the base electricity offered by VPP is P0. Among the 1000 sample EVs, the minimum
charging cost for an EV is AUD 2.59, the maximum charging cost for an EV is AUD 14.95,
the average charging cost for an EV is AUD 6.52, and the total charging cost for 1000 EVs
is AUD 6517.55. EV customers in C1 pay the most expensive charging price as a result of
disorderly charging behaviors.

Charging Category C2

In the case of C2, where the EV will charge at the lowest price until the charging
requirement is met during the scheduling period, EV in C2 does not participate in the V2G
scheme. For C2, among the 1000 sample EVs, the minimum charging cost for an EV is AUD
0.27, the maximum charging cost for an EV is AUD 5.42, the average charging cost for an
EV is AUD 2.72, and the total charging cost for 1000 EVs is AUD 2719.82. Compared with
the charging cost of EVs in the case of C1, the total charging cost for all the EVs in case C2
is reduced by 58.27%.

Charging Category C3

EV customers in C3 charge at the lowest price until the charging requirement is met
during the scheduling period; furthermore, they also participate in the V2G scheme. For C3,
among the 1000 sample EVs, the minimum charging cost for an EV is AUD −1.10, where
the negative value indicates that the customer gains revenue while charging the EV to the
required SOC, the maximum charging cost for an EV is AUD 5.55, the average charging cost
for an EV is AUD 2.57, and the total charging cost for 1000 EVs is AUD 2565.79. Compared
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to the charging cost of EVs in the case of C2, the total charging cost for all the EVs in case
C3 is reduced by AUD 154.03, which is 5.66% cost reduction. It should be noted that out of
the AUD 2565.79 charging cost, the V2G service fee in (3) is AUD 150, that is, 15 cents per
EV customer.

The C3 case with V2G emerges as the most advantageous charging approach among
the three analyzed categories (C1, C2, and C3). The implementation of V2G not only
facilitates cost reductions for EV owners but also enhances the overall efficiency of energy
usage guided by the VPP. The cumulative effect of these financial benefits, coupled with
the potential for improved energy management and reduced strain on the grid, positions
V2G as the superior strategy.

The simulation of 1000 EVs driving at various times with diverse charge demands is
analyzed by computing the hourly power exchange between EVs and the VPP, as presented
in Figure 9 for category C3. V2G services only accounts for a small portion of the total
power exchange between EVs and the VPP. This is because the electricity prices offered
by the VPP vary by a very small amount at different hours during the charging period,
leaving little room to incentivize EVs to discharge to the grid.
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Figure 9. Hourly power exchange (in kW) between the VPP and 1000 EVs in category C3.

The VPP revenue is AUD 5872.81 in the case of C2, and AUD 5889.29 in C3, which is
reduced by about AUD 2200 compared with C1. In the case of C2, EV customers pay a hefty
additional cost of AUD 3700 for VPP to have the AUD 2200 extra revenue, compared with
C1. Considering that the price scheme and price multiplier can be leveraged to readjust
VPP revenue, C2 and C3 are superior business models than C1.

4.2.2. Sensitivity Analysis
EV Electricity Price

The charge price is 10% markup over the base electricity price, the discharge price is
the 90% discount on the base electricity price for V2G. Three examplery base EV electricity
prices (Figure 8) are used for the case studies. To design the cases, for each base EV
electricity, the charging strategies T2 and T3 with V2G are examined, as seen in Table 5.
The total cost of charging 1000 EVs across six distinct charging categories: C2 to C7, are
presented in Table 6.

When comparing the charging categories C2 and C3, the EV charging cost in C3, which
incorporates V2G services, is AUD 154.03 lower than that of C2, resulting in a cost reduction
of 5.66%. Although C3 provides only a slight advantage over C2, the difference is largely
driven by the pricing strategy.

In the comparison between C4 and C5, the EV charging cost in C5, also with V2G
services, is AUD 333.76 less than that of C4, representing an 11.33% reduction. However,
it is important to note that the revenue generated by the VPP in C5 is AUD 333.89 lower
than that in C4. Consequently, there is no incentive for the VPP to provide V2G services in
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C5, as the reduction in EV costs merely offsets the revenue loss, creating an unfavorable
win-loss scenario. This pricing strategy should therefore be avoided.

Table 5. Categories of EV charging groups (C2–C7).

Category Charging Strategy EV Electricity Price
C2 T2 P0
C3 T3 (V2G) P0
C4 T2 P1
C5 T3 (V2G) P1
C6 T2 P2
C7 T3 (V2G) P2

Table 6. Comparison of charging costs for 1000 EVs and VPP revenue (C2–C7).

Categories EV Charging Cost VPP Revenue
C2 AUD 2719.82 AUD 5872.81
C3 AUD 2565.79 AUD 5889.29
C4 AUD 2944.86 AUD 5666.96
C5 AUD 2611.10 AUD 5333.07
C6 AUD 2807.16 AUD 4205.66
C7 AUD 2066.58 AUD 5376.62

In contrast, the comparison between the charging categories C6 and C7 reveals that
the EV charging cost in C7, which includes V2G services, is AUD 740.58 lower than that in
C6, translating to a substantial 26.38% cost reduction. Additionally, the VPP revenue in C7
exceeds that of C6 by AUD 1170.96, representing a 27.83% increase. Thus, the V2G services
in C7 represent the most cost-effective and mutually beneficial charging strategy among all
the cases considered from C2 to C7.

Overall, the cases from C2 to C7 demonstrate that with an appropriate pricing strategy
for EVs, there exists significant potential for both EV owners and VPPs to benefit from V2G
services, resulting in a favorable win–win situation.

Battery Capacity

Battery capacity is a key factor influencing the total charging cost of EVs. Table 7
illustrates how varying battery sizes affect overall charging expenses. A smaller capacity,
such as 60 kWh, results in a higher total cost of AUD 3090.84 for 1000 EVs, as these vehicles
require more frequent charging sessions, often coinciding with peak electricity price periods.
In contrast, larger capacities like 100 kWh provide greater flexibility to charge during off-
peak hours, lowering the total cost further to AUD 2065.29. The base case of 80 kWh yields
an intermediate cost of AUD 2565.79. This analysis underscores the economic advantage of
larger battery capacities in reducing EV charging costs.

Table 7. Impact of battery capacity on total EV charging cost.

Battery Capacity EV Charging Cost

60 kWh AUD 3090.84

80 kWh (BASE) AUD 2565.79

100 kWh AUD 2065.29
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Rated Charging Power

The rated charging power has a substantial impact on the charging cost of EVs. Table 8
shows how varying the rated charging power influences overall charging expenses. A lower
charging rate, such as 7.4 kW, results in a higher total cost of AUD 2565.79 for 1000 EVs
because slower chargers limit flexibility, forcing more charging during peak-price periods.
In contrast, higher power levels—22 kW and 40 kW—enable faster charging, allowing
EVs to better exploit off-peak electricity prices and reducing costs to AUD 2123.16 and
AUD 1549.11, respectively. This analysis underscores the economic advantage of higher-
power chargers in minimizing charging costs for EV owners.

Table 8. Effect of rated charger power on total EV charging cost.

Rated Charger Power EV Charging Cost

7.4 kW (BASE) AUD 2565.79

22 kW AUD 2123.16

40 kW AUD 1549.11

Max SOC Limit (EV)

Table 9 demonstrates that the maximum SOC limit of EVs positively affects total EV
charging costs. Higher SOC thresholds (0.90 and 0.95) enable greater flexibility to charge
during off-peak hours, reducing expenses to AUD 2507.31 and AUD 2506.89 for the EV
group. In contrast, a lower limit of 0.80 limits energy storage and increases the frequency
of charging during costly periods, raising overall costs. Beyond 0.90, further EV charging
cost savings diminish, and battery degradation increases. Thus, setting an optimal SOC
limit is essential to balance economic efficiency and battery health.

Table 9. Effect of maximum EV charging SOC limit.

Max SOC Limit EV Charging Cost

0.80 (BASE) AUD 2565.79

0.90 AUD 2507.31

0.95 AUD 2506.89

EV Charger Efficiency

EV charger efficiency significantly impacts the total charging cost for EVs. Table 10
illustrates the effect of varying charger efficiencies on the overall charging expenses. A lower
charger efficiency results in higher energy losses during the charging process, leading to
increased costs. For instance, with a charger efficiency of 0.80, the total charging cost
for 1000 EVs is AUD 3252.84. As the efficiency improves to 0.90, the cost decreases to
AUD 2763.79. The base case with a charger efficiency of 0.95 yields the lowest cost of
AUD 2565.79. This analysis underscores the importance of utilizing high-efficiency chargers
to minimize energy losses and reduce charging costs for EV owners.

Table 10. Impact of EV charger efficiency on total charging cost.

EV Charger Efficiency EV Charging Cost

0.80 AUD 3252.84

0.90 AUD 2763.79

0.95 (BASE) AUD 2565.79
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Battery Degradation

Including battery degradation costs in the VPP optimization model affects the VPP
revenue. Table 11 compares the VPP revenue with and without considering battery degra-
dation for the BESS. When battery degradation is not included (BASE case), the VPP
revenue is AUD 5889.29. However, when battery degradation costs are accounted for,
the VPP revenue decreases to AUD 5612.33, with a degradation cost of AUD 173.28. This
reduction in revenue highlights the economic impact of battery wear and tear on the VPP’s
profitability. Incorporating battery degradation into the optimization model encourages
more sustainable operation strategies that balance immediate revenue generation with
long-term asset preservation.

Table 11. Impact of including BESS degradation on VPP revenue.

Include BESS Degradation VPP Revenue Degradation Cost

No (BASE) AUD 5889.29 AUD 0

Yes AUD 5612.33 AUD 173.28

4.2.3. Scalability

Once the RL model is trained, it can be efficiently applied to larger populations of EVs
without retraining. In particular, the trained MC-SARSA model was successfully tested
to direct the operation of 100,000 EVs, costing only 380.13 s on the researcher’s laptop
(see configuration above). This highlights the framework’s capability to handle large-scale
implementations with minimal computational overhead. The near-linear scalability in
inference time between 1000 and 100,000 EVs illustrates the efficiency of the decentralized,
policy-based design, which allows each EV agent to operate independently using the shared
learned policy.

4.2.4. Comparison

The solution method, MC-SARSA, adopted in this research, is compared with the
SARSA algorithm, which is widely used in the literature [23,24]. Figure 10 presents
the individual charging costs for 50 EVs randomly chosen from the 1000 EVs under the
two methods in the case of category C2. From the figure, it is obvious that the MC-SARSA
algorithm is dominantly more cost-effective than the model trained using the SARSA algo-
rithm. Both models, SARSA and MC-SARSA, were trained for 120 million epochs. Using
the MC-SARSA method, the total charging cost for the 50 EVs is AUD 129.64, compared
to AUD 219.28 with the SARSA optimization method. These results demonstrate that
the MC-SARSA method achieves a better solution, reducing the EV charging costs by
AUD 89.64, which represents a 40.87% decrease. The theoretical advantage of MC-SARSA
in producing higher-quality solutions lies in its use of the true return from a complete, real
episode. In contrast, SARSA updates the current state-action pair based on an estimated
value of the next state-action, which is typically less accurate and introduces bias [41].

To demonstrate the motivation for choosing a RL-based optimization method over
traditional MILP approaches [6,7] for large-scale EV dispatching, two comparative experi-
ments were conducted under a V2G setting. In both experiments, the goal is to optimize
the charging and discharging behaviors during runtime, given a baseline EV electricity
price P0. The results, summarized in Table 12, show that MILP models—solved using
Gurobi—require 125 s to compute charging/discharging actions for 1000 EVs, whereas the
MC-SARSA algorithm completes the same task in just 2.7 s. Once trained, the MC-SARSA
model can leverage learned policies to make quick decisions in real time, whereas MILP
approach requires solving complex optimization problems from scratch each time. This
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paradigm shift from traditional optimization-based methods to pre-trained, learning-based
approaches accounts for the substantial reduction in inference time.
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Figure 10. Charging cost comparison of SARSA and MC-SARSA.

In addition to the substantial reduction in inference time, MC-SARSA yields a lower
EV charging cost of AUD 2565.79 compared to AUD 2603.92 achieved by MILP. While the
VPP revenue obtained using MILP is AUD 5930.42—slightly higher than the AUD 5889.29
from MC-SARSA—the increase is mainly contributed by the inflated EV charging costs.
These findings highlight the advantage of the RL-based model in terms of computational
time and solution quality, making it better suited for real-time and large-scale applications.

Table 12. Comparison of solution quality and inference time between MILP and MC-SARSA.

Solution
Method

VPP
Revenue

EV
Charging Cost

Inference
Time

MC-SARSA AUD 5889.29 AUD 2565.79 2.7 s

MILP AUD 5930.42 AUD 2603.92 125.0 s

4.2.5. Limitation

In a decentralized implementation, several potential communication and coordination
challenges may arise. Since the VPP does not exert direct control over individual EVs,
coordination relies on price signals and local decision-making by autonomous agents. This
distributed structure can lead to short-term power fluctuations or collective overreactions
in the aggregated load. A well-designed pricing strategy can help mitigate these effects
by guiding user behavior away from grid peak hours. Heterogeneous communication
standards among charging stations and varying network reliability can introduce further
uncertainty in coordination.

The model assumes deterministic market prices and renewable generation forecasts,
whereas real-world systems are affected by considerable uncertainty in both market dy-
namics and renewable generation. Moreover, the RL model’s generalization capability may
be limited when applied to different price structures or environmental variables, as the
trained policy reflects the statistical properties of its training data.

The current study focuses primarily on optimizing the operational and economic
performance of the VPP and EVs under idealized grid conditions. Consequently, it does
not explicitly consider the physical or operational limitations of the power grid, such as
transformer capacity, or voltage stability constraints that may arise when a large number of
EVs engage in simultaneous V2G discharging.

5. Conclusions
This study introduces a two-stage optimization framework designed to manage the

operation of a VPP that integrates EVs, PVs, and a BESS. The VPP aims to maximize
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revenue from both the EV group and the electricity wholesale market, while offering re-
duced charging costs to the EV group to incentivize their participation in V2G discharge
activities. By modeling 1000 EVs in the optimization framework, the VPP model deter-
mines the optimal solution by scheduling BESS and trading in the wholesale electricity
market. Including a large number of EVs in the VPP modeling enables the business to
capture more accurate and realistic data, results, and insights, thereby aiding in better
business decision-making. While optimizing VPP operational modeling, gradient-based
programming leverages neural networks as a powerful tool for fast and efficient optimality
searching in VPP modeling. Custom loss functions for large neural networks overcome
the limitations of traditional programming methods, such as strict linearity, convexity,
and limited scales of decision variables. MC-SARSA increases the convergence speed for
optimizing EV charging and discharging operations, delivering more optimal results within
a reasonable time limit. The simulation results demonstrate that, under some charging
strategy and EV electricity price selection, optimizing the operations of EVs can lead to
a 26.38% reduction in the charging costs for 1000 EVs and the VPP revenue increases by
27.83% with the implementation of V2G services.

Modeling under idealized grid conditions limits the applicability of the findings to
real-world networks, as grid constraints can influence feasible power flows and economic
outcomes. Future research can extend the model to incorporate detailed grid-level con-
straints and network-aware optimization. Incorporating a more comprehensive benchmark-
ing and discussion of computational efficiency and convergence would further strengthen
the methodological foundation.

The integration of stochastic or robust optimization and transfer learning to mitigate
the uncertainties identified in the limitation section can further improve the adaptability
and reliability of the proposed method. Moreover, investigating the iterative optimization
of EV electricity pricing within a bi-level framework represents a promising direction.
In addition, studying the impacts of limited charging infrastructure on VPP profitability
and the charging/discharging behaviors of a large number of EVs remains an important
area for further exploration.
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Abbreviations

List of symbols used in this paper
Symbol Description
EV Model Variables
N Total number of EVs
T Total number of time steps in scheduling period
t Time step index
tEVi
arr Arrival time of i-th EV

tEVi
dep Departure time of i-th EV

SEVi (t) State of charge (SOC) of i-th EV at time t
SEVi

SOC−init Initial SOC of i-th EV upon arrival
SEVi

reqd Required SOC increment before departure
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SEVi
min, SEVi

max Minimum and maximum SOC limits of i-th EV
CEVi Battery capacity of i-th EV
PEVi

chg (t) Charging power of i-th EV at time t

PEVi
disch(t) Discharging power of i-th EV at time t

PEVi
chg−min, PEVi

chg−max Minimum and maximum charging power

PEVi
disch−min, PEVi

disch−max Minimum and maximum discharging power

ηEVi
chg , ηEVi

disch Charging and discharging efficiency of i-th EV

λEV
pur(t) Electricity purchase price from VPP to EV

λEV
V2G(t) V2G electricity selling price from EV to VPP

µEVi
V2G V2G participation fee charged to i-th EV owner

CEV
pur Total EV charging cost

REV
V2G Total V2G revenue from EVs to VPP

∆t Duration of each time step
VPP Model Variables
PVPP

EV (t) Net power exchanged between EV group and VPP
PVPP

grid (t) Power purchased from the wholesale grid

PVPP
f eed−in(t) Power sold by VPP to the grid

λVPP
pur (t) Wholesale electricity purchase price

λVPP
f eed−in(t) Electricity feed-in price to the wholesale market

CVPP
pur Cost of electricity purchased from the market

RVPP
f eed−in Revenue from selling electricity to the grid

α Discount factor for feed-in electricity price
BESS Variables
SESS(t) SOC of BESS at time t
SESS

init Initial SOC of the BESS
SESS

min , SESS
max Minimum and maximum SOC limits

PESS
chg (t) Charging power of BESS at time t

PESS
disch(t) Discharging power of BESS at time t

PESS
chg−min, PESS

chg−max Minimum and maximum charging power

PESS
disch−min, PESS

disch−max Minimum and maximum discharging power
ηESS

chg , ηESS
disch Charging and discharging efficiency of BESS

CESS Energy capacity of the BESS
PV System Variables
PVPP

PV (t) PV generation power at time t
I(t) Global horizontal irradiance at time t
A Total PV panel area
ηPV PV conversion efficiency
Pricing Strategy Parameters
p̃(t) Base electricity price at time t
λEV

base(t) Base EV electricity price
µ Price multiplier for base EV price
τmu Markup factor for charging price
τdisc Discount factor for V2G price
Pstrtg(λwhsle, t) Pricing strategy function
λwhsle Wholesale electricity price vector
Algorithm Parameters
αEV , ρEV Penalty coefficient and exponent for EV model
αVPP, ρVPP Penalty coefficient and exponent for VPP model
LVPP Custom loss function for VPP optimization
ψEVi

pen Penalty terms for i-th EV for constraint violation
ψVPP

pen Penalty terms for VPP model for constraint violation
REVi

rwd Reward function for i-th EV
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γ Discount factor in reinforcement learning
Q(s, a) Action-value function for state s and action a
Qmasked(s, a) Masked Q-value excluding invalid actions
m(s) Action mask vector for valid actions
A Set of possible actions
a∗ Optimal action selection
Rk Reward at step k
Gt Return (cumulative discounted reward)
η Learning rate for gradient descent
∇ f (xt) Gradient of loss function
List of abbreviations used in the paper.
Abbreviation Full Form
AEMO Australian Energy Market Operator
BESS Battery Energy Storage System
DER Distributed Energy Resource
DNN Deep Neural Network
DP Dynamic Programming
ESS Energy Storage System
EV Electric Vehicle
MC Monte Carlo
MC-SARSA Monte Carlo SARSA (episodic reinforcement learning method)
MILP Mixed-Integer Linear Programming
MSE Mean Squared Error
PV Photovoltaic
RL Reinforcement Learning
SARSA State-Action-Reward-State-Action (RL algorithm)
SOC State of Charge
V2G Vehicle-to-Grid
VPP Virtual Power Plant
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