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A B S T R A C T

Existing methods for impact force identification are based on full transfer matrix. Constructing and using transfer 
matrices can be computationally intensive, especially for large-scale complex structures in practice. Partial 
transfer matrix refers to a subset of the full transfer matrix, potentially reducing computational cost and 
complexity. In this paper, a partial transfer matrix-based group sparse regularisation method is proposed for the 
impact force localization and reconstruction. Its robustness and adaptivity with respect to different subsets of full 
transfer matrix, noise level and number of impact forces are numerically studied using impact forces on a simply 
supported beam. The number of sensors for impact force identification can be significantly reduced by the 
proposed method and its localization and time history reconstruction can be determined even with one single 
sensor configuration. A 10 m long steel-concrete composite bridge model is built in the laboratory. The effec
tiveness of the proposed method for impact force identification is validated and compared with L1-norm and L2- 
norm regularisation methods numerically and experimentally. Results show that the proposed partial transfer 
matrix-based group sparse regularisation method has good robustness and identification accuracy and has better 
performance on the impact force localization and time history reconstruction comparing with L1-norm and L2- 
norm regularisation methods.

1. Introduction

Impact force identification regarding to force localization and 
reconstruction is an essential task in civil engineering for assessing 
structural loading condition, structural health monitoring, and reli
ability design (LeClerc et al., 2007; Park et al., 2009; Jia et al., 2015a; 
Khanam et al., 2015). In practice, it is often difficult, even impossible to 
measure all forces on the entire structure directly using force trans
ducers. Force identification as an indirect measurement has been studied 
over last few decades, in which the easily measurable structural vibra
tion responses are used to identify impact forces (Liu et al., 2021; San
chez and Benaroya, 2014; Inoue et al., 2001). It is an inverse problem to 
estimate the force locations and amplitudes from structural dynamic 
responses, e.g. displacement, velocity, acceleration and strain responses, 
etc. The ill-posedness of impact force identification problems makes it 
exceedingly challenging to provide a unique and stable solution and 
often results in large estimation errors. Unknown excitation locations 
further exacerbate the difficulty of force identification.

Regularisation techniques, such as Tikhonov regularisation (also 

known as the L2-norm regularisation method) and the sparse regular
isation techniques, are widely used to solve the ill-posedness in inverse 
problems. Zhu and Law (2002) used Tikhonov regularisation to identify 
moving loads on a continuous beam from measured structural responses. 
Jacquelin et al. (2003) compared the performance of Tikhonov regu
larisation and truncated singular value decomposition for reconstructing 
the time history of impact force acting on an aluminium plate in time 
domain. Jia et al. (2015b) proposed a weighted Tikhonov regularisation 
method for identifying random dynamic force in the frequency domain, 
where the weighting matrix depends on the frequency response func
tion. Sparse regularisation has received considerable interest on the field 
of signal recovery. The L1-norm regularisation as the standard sparse 
regularisation is widely used for dynamic force identification. Qiao et al. 
(2019a) proposed an enhanced sparse regularisation method for impact 
force identification based on weighted L1-norm minimization. To 
consider the intrinsic structure of the impact force that nonzero elements 
occur in groups, sparse group regularisation method based on mini
mizing the mixed L2,1-norm norm is proposed for impact force identi
fication (Qiao et al., 2019b). These above studies are based on the 
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assumption that the locations of impact forces are exactly known.
In practice, the locations of impact forces are often unknown, that 

makes the force identification process even more challenging. A variety 
of approaches have been proposed to tackle the force localization and 
reconstruction problem. Wang and Chiu (2003) identified the location 
and amplitude of an unknown impact force acting on a simply supported 
beam in time and frequency domain. Kalhori et al. (2018) applied the 
Tikhonov regularisation method for reconstructing the time history and 
localization of impact force acting on a composite panel. Goutaudier 
et al. (2020) proposed a single sensor technique for localizing and 
reconstructing impact events on structures. Qiu et al. (2019) combined 
pattern recognition with the similarity metric to localize impacts in time 
domain. After the localization, the impact time history was recon
structed with Tikhonov regularisation. Li and Lu (2016) proposed a 
method for localization and identification of impact. The location of 
impact was first determined with an error functional indicator using the 
complex method. The identification of impact time history was then 
considered as a constrained optimization problem. Wambacq et al. 
(2019) presented an algorithm to localize and identify forces in the 
frequency domain. Recently group sparsity has been exploited as an 
alternative sparse regularisation technique for solving impact force 
identification problems. Feng et al. (2021) utilized the external force 
group sparse feature and developed a group relevance vector machine 
group sparsity regularisation method to localize and reconstruct 
external forces on structures using structure responses in time domain. 
Liu et al. (2022) also used the force vector group sparse feature and 
proposed a novel impact force identification method based on the 
nonconvex overlapping group sparsity (NOGS), allowing to localize the 
impact force and recover its time history simultaneously from a limited 
number of measurements. In all above studies, the general full transfer 
matrix was used, and it required the force information of the whole time 
period including both loading and unloading periods. In practice, the 
number of sensors may be limited, and the situation where the number 
of sensors is less than the number of excitations faces the under
determined issue. For full-scale structures, the transfer matrix for the 
whole time period is a high-dimensional matrix. The corresponding 
computational cost for the force identification is high, especially dealing 
with the data storage and inverse calculation. For the force identifica
tion, the information before and after the impact force in the full transfer 
matrix was redundant. This redundancy induces the ill-posedness of the 
inverse problem for the force identification, and it significantly affects 
accuracy of the force identification.

To address the above limitations, the partial transfer matrix is pro
posed for impact force identification in this study. By using the prior 
information of impact force, the information including a short time 
period and excitation time can be obtained from measured responses. 
Then a partial transfer matrix associated with the time period can be 
constructed. This approach offers two advantages. First, it significantly 
reduces the dimensionality of the problem, improving computational 
efficiency. Second, it reduces the unnecessary data, enhancing the ac
curacy of the solution.

In this paper, a partial transfer matrix-based group sparse regular
isation method for impact force localization and reconstruction is pro
posed. It is organized as follows: Section 2 presents the preliminary 
theories for impact force identification. In Section 3, the proposed 
impact force identification method based on partial transfer matrix and 
group sparse regularisation are depicted. Numerical and experimental 
validation are studied in Sections 4 and 5, respectively. Finally, some 
conclusions are drawn in Section 6.

2. Preliminary theories for impact force identification

2.1. Dynamics of a simply supported beam under external forces

For a simply supported uniform Euler-Bernoulli beam under external 
forces, its dynamic governing equation can be given as: 

Mü(t)+Cu̇(t) + Ku(t) = LF(t) (1) 

where M, C and K are the mass, damping, and stiffness matrices of the 
beam respectively; ü(t), u̇(t) and u(t) are acceleration, velocity and 
displacement responses of the beam at time t, respectively; F(t) is the 
input force vector and L is the mapping matrix.

Eq. (1) can be expressed in the state space form as, 

ż(t)=Az(t) + BF(t) (2) 

where z(t) =

{
u(t)
u̇(t)

}

, A =

[
0 I

− M− 1K − M− 1C

]

, and B =

[
0

M− 1L

]

. A is 

the continuous system matrix; B is the input matrix and I is an identity 
matrix. When acceleration response measurements are available at 
certain locations of the structure, the output vector can be formulated as 
y(t) = Rü(t) with R being the output influence matrix and depending on 
the sensor locations. Consequently, the measurement can be expressed 
as 

y(t)=Cz(t) + DF(t) (3) 

where C =
[
− RM− 1K, − RM− 1C

]
and D(t) = RM− 1L are respectively 

the continuous output matrix and feedthrough matrix.
Combining Eqs. (2) and (3), we can obtain the continuous analytical 

solution as, 

y(t)=CΦ(t)z(0) + C
∫ t

0
Φ(t, τ)BF(τ)dτ + DF(t) (4) 

where Φ(t) = exp(At); z(0) is the initial dynamic condition of the beam.
An impact dynamic force Fi(t) is represented as, 

Fi(t)= eiδ(t − τ),with ei = [0,⋯,0, 1, 0,⋯, 0]T (5) 

Considering the zero initial conditions, the measured dynamic 
response at the jth location of the beam is 

hji(t, τ)= yj(t)=Cj

∫ t

0
Φ(t, τ)Beiδ(τ − τ1)dτ + Deiδ(t − τ1) (6) 

For multiple impact forces and measured responses, Eq. (6) can be 
rewritten as, 

y(t)=
∫ t

0
h(t, τ)F(τ)dτ (7) 

where h(t, τ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

h11(t, τ)
h21(t, τ)

⋯

hns,1(t, τ)

h12(t, τ)
h22(t, τ)

⋯

hns,2(t, τ)

⋯
⋯
⋯

⋯

h1,nr(t, τ)
h2,nr(t, τ)

⋯

hns,nr(t, τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; F(t) =

[F1(t), F2(t),⋯, Fnr(t)]T; ns is the number of sensors; nr is the number of 
impact forces applied asynchronously at different locations.

The convolution problem of Eq. (7) can be converted into the dis
cretised form as, 

Y=HF (8) 

where =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y1

Y2

⋮

Yns

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H11

H21

H12

H22

⋯ H1,nr

⋯ H2,nr

⋮ ⋮ ⋱ ⋮

Hns,1 Hns,2 ⋯ Hns,nr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F1

F2

⋮

Fnr

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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H11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h11(t1) 0

h11(t2) h11(t1)

⋯

⋯

0 0

0 0

⋮ ⋮ ⋯ ⋮ ⋮

h11(tn− 1) h11(tn− 2)

h11(tn) h11(tn− 1)

⋯

⋯

h11(t1) 0

h11(t2) h11(t1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Δt (9) 

Considering a single impact force that may applied at one of the nr 
potential pre-defined locations, the assembled force F can be formed into 
nr subgroups, corresponding to each of the force locations. For ns 
measurements, an illustration for impact force identification in the 
matrix form of Eq. (8) is shown in Fig. 1 when the non-zero impact force 
vector F1 is applied. From the figure, only a fraction of elements in F is 
exerted by non-zero values, which is referred as the true force location. 
The rest of them are referred as non-force locations. For traditional force 
identification methods, the general whole transfer matrix is used for 
force identification by solving the inverse problem, and the number of 
sensors should be more than the number of forces to avoid the under
determined situation.

2.2. Impact force identification based on traditional L2-norm and L1-norm 
regularisation techniques

The impact response matrix as shown in Fig. 1 is ill-posed that means 
that the measurement noise would be amplified significantly by the least 
squares estimate using Eq. (8). Therefore, regularisation techniques 
have been used to stabilise the solution for impact force identification. 
The Tikhonov regularisation based on minimizing L2-norm and sparse 
regularisation based on minimizing L1-norm are two popular regular
isation techniques for solving the inverse problem of ill-posed and large- 
scale matrices. For Tikhonov L2-norm regularisation, it seeks for a stable 
solution by introducing an L2-norm penalty with controlling highly 
oscillating components. Hence, the impact force identification problem 
defining as a trade-off between the residual and regularized norms, 

minmize
F

‖HF − y‖2
2 + λ‖F‖2

2 (10) 

where λ > 0 is the regularisation parameter. The L2-norm of the impact 
force ‖F‖2

2 is called the regularisation term or the penalty term. Here, the 
ill-posed model in Eq. (8) is improved by introducing an additional term 

in Eq. (10), that renders the problem less sensitive to perturbations. Due 
to the convexity of Eq. (10), Tikhonov regularisation has an analytic 
solution with any fixed λ 

F=
(
HTH + λI

)− 1HTy (11) 

From Eq. (11), the Tikhonov solution is a smooth function of λ as it 
varies over the interval (0,∞).

On the other hand, the Lasso regression based on L1-norm are widely 
used in domains with massive datasets, such as genomics, where effi
cient and fast algorithms are essential. The Lasso is, however, not robust 
to high correlations among predictors and will arbitrarily choose one 
and ignore the others and break down when all predictors are identical. 
The Lasso penalty expects many coefficients to be close to zero, and only 
a small subset to be larger (and nonzero). The Lasso estimator uses the L1 
penalized least squares criterion to obtain a sparse solution to the 
following optimization problem. 

minmize
F

‖HF − y‖2
2 + λ‖F‖1 (12) 

For the impact force identification, the pulse interval can be regarded 
as a group and the sparse elements of unknown impact forces exhibit 
intrinsic structure in form of groups as shown in Fig. 1. The above 
standard sparse regularisation techniques have not considered the group 
structure of impact forces.

3. Impact force identification using group sparse regularisation

In this section, an impact force identification method based on group 
sparse regularisation is proposed using one sensor to identify the loca
tions and amplitudes of the forces. The method is based on the partial 
transfer matrix and group sparse regularisation from the acceleration 
response of a single sensor.

3.1. Impact force identification using one single sensor

Fig. 2 shows a simple supported Euler-Bernoulli beam subjected to 
impact forces. The locations of impact forces are unknown and nr po
tential force locations are pre-defined.

When the response measured from one sensor is used for the impact 
force identification, the discrete form of Eq. (8) can be illustrated in 

Fig. 1. The illustration of force identification problem in matrix form.
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Fig. 3. The M, C, K matrices are pre-known, which are used to construct 
the full transfer matrix. Based on the intrinsic feature of the impact force 
as shown in Fig. 3, only a submatrix of the general full transfer matrix is 
associated with the impact force time interval and this submatrix could 
be selected for the force identification. The dimension of the submatrix 
is much smaller than that of the general transfer matrix and the 
computational efficiency could be increased significantly.

For the case with one single sensor, the inverse problem of impact 
force identification can be expressed as 

Y1 =HP (13) 

Assuming there is non-zero value in some specific time points of the 
impact force history. The matrix H and F can be divided into submatrix 
according to whether the force value equals to 0. 

H=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ho
11 Hp

11 Hq
11 Ho

12 Hp
12 Hq

12 ⋯ Hq
1,nr

Ho
21 Hp

21 Hq
21 Ho

22 Hp
22 Hq

22 ⋯ Hq
2,nr

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Ho

ns,1 Hp
ns,1 Hq

ns,1 Ho
ns,2 Hp

ns,2 Hq
ns,2 ⋯ Hq

ns,nr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(14) 

F=
{

Fo
1

T Fp
1

T Fq
1

T Fo
2

T Fp
2

T Fq
2

T ⋯ Fq
nr

T
}T

(15) 

where Fp
i denotes the force history vector with non-zero value at the 

location i, Fo
i and Fq

i denote the zero values vector. Hence, 

Yj =Ho
j1Fo

1 + Hp
j1Fp

1 + Hq
j1Fq

1 + Ho
j2Fo

2 + Hp
j2Fp

2 + Hq
j2Fq

2 + ⋯ + Hq
j,nrF

q
nr 

= Hp
j1Fp

1 + Hp
j2Fp

2 + ⋯ + Hp
j,nrF

p
nr (16) 

Eq. (14) can be written as a matrix style: 

Y1 =HpFp (17) 

where Hp =
[

Hp
11 Hp

12 ⋯ Hp
1,nr

]
is the partial transfer matrix, and 

the force vector is grouped as Fp =
[

Fp
1

T Fp
2

T ⋯ Fp
nr

T
]T

.

Since an impact force often causes a large amplitude of the beam 

responses, the time interval and duration of the impact force can be 
estimated from responses to determine the partial transfer matrix. A 
threshold of the response value could be used to estimate the start time 
of the impact force. In practice, response measurements are inevitably 
contaminated by noise. Eq. (13) becomes, 

Y1 =HpFp + w (18) 

where the vector w represents the measurement noise.

3.2. Partial transfer matrix based group sparse regularisation for impact 
force identification

In this section, the incorporation of partial transfer matrix and group 
sparse regularisation technique for impact force identification is intro
duced. For impact force identification, the pulse interval can be regar
ded as a group and the sparse elements of unknown impact forces exhibit 
intrinsic structure in form of groups as shown in Fig. 3. To utilise the 
group structure, the group sparse regularisation technique for impact 
force identification is proposed and the L2,1-norm penalty is used to 
replace the pure L2-norm term in Eq. (10) or the L1-norm penalty in Eq. 
(12). In the impact force identification from the response of one single 
sensor with an assumption of nr potential force locations, we have the 
response Y1 ∈ Rnt , a nt × (nr ⋅nt́ ) matrix Hp and a vector Fp ∈ Rnr⋅ntʹ. 
nt́ = 2m+ n, n denotes the nonzero values and m means the length 
before or after the force. Therefore, the problem can be generalised as an 
unconstrained optimization form, 

Minimize
F

‖HpFp − Y1‖
2
2 + λ

∑nr

i=1

⃦
⃦Fp

i

⃦
⃦

2 (19) 

For solving this constrained optimization problem given in Eq. (19)
falls in the class of gradient-projection methods, a common variant of 
gradient-projection methods computes a direction of descent at iterate k 
by finding the Euclidean-norm projection of a scaled steepest descent 
direction onto the feasible set. A spectral projected gradient algorithm 
(SPG) is adopted here (Meier et al., 2008). To describe the optimization 
procedure using the algorithm, the objective function ‖HpFp − Y1‖

2
2 +

λ
∑nr

i=1

⃦
⃦Fp

i

⃦
⃦

2 is denoted as f(x) and x denotes the variable corresponding 

Fig. 2. Simply supported beam subjected to impact forces.

Fig. 3. The discrete form using the submatrix with one single sensor.
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to the force vector. Therefore, the values of the objective function and its 
gradient at iterate k can be represented as f(xk) and ∇f(xk), respectively. 
Using Π to denote this projection, β as the scale factor for the steepest 
descent direction d, and t as a step length, the iterates can be written as: 
xk+1 = xk + t(

∏
(xk − β∇f(xk)) − xk). The descent direction is d≜ 

∏
(xk −

β∇f(xk)) − xk. The step length β determined using ‘Barzilai and Bor
wein’ (BB) algorithm is chosen as in the inverse Raliegh quotient β = STS

STy 

(where S = xk − xk− 1; y = ∇f(xk) − ∇f(xk− 1)) (Barzilai and Borwein, 
1988). The step length t can be determined with a non-monotone Armijo 
line search (Armijo, 1966). In general, using the SPG strategy yields an 
algorithm that can efficiently compute the optimal projection by solving 
a small linearly constrained problem for each group. The detail pro
cedure regarding to the algorithm can be found in the reference (Meier 
et al., 2008).

3.3. Determine the location of the impact force

When the forces for each group are identified, they can be used to 
identify the true force locations from all the potential locations. A 
location index can be calculated by the ratio between the norm of the 
estimated ith group force vector and that of the entire force vector in 
percentage defined as, 

LOCi =

⃦
⃦F̃

p
i

⃦
⃦

2

‖F̃
p
‖2

× 100% (20) 

where F̃
p
i is the ith group of the estimated force vector, F̃

p 
is the entire 

estimated force vector. From Eq. (20), the location index for a certain 
force group with a largest value indicates the most possible true location 
of the impact force. Fig. 4 shows the flowchart of the proposed method.

4. Numerical study

4.1. Model description

To verify the effectiveness and performance of the proposed method 
for impact force identification, numerical simulations are carried out on 
a simply supported beam model. The beam model is 6 m long with the 
cross section of 0.1m × 0.03m and the mass density of 7850 kg/m3. The 
Young’s modulus E of the beam material is 2.05 × 1011N/m2. The 
Rayleigh damping is considered with two coefficients α = 0.5, β = 1 in 
this section. In practice, these two coefficients could be estimated using 
the damping ratios and natural frequencies of two vibration modes. The 
beam model is divided into 300 equal Euler-Bernoulli finite elements. 
The dynamic response of the beam under the impact force is calculated 
with a time interval of 0.001s and the time record duration of 4 s. The 
impact force is simulated as a triangular pulse with 5 nonzero values. 
The range of the impact force with nonzero values is identified. Nine 
possible force locations evenly distributed along the beam with the in
terval of 0.6 m are considered in the force localization, noted as P1~P9. 
These locations are uniformly distributed along the beam as shown in 
Fig. 2. The distance between two adjacent locations is 0.6 m. The sensor 

Fig. 4. Flowchart of the proposed method for force identification.
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location does not have much effect on the identification result and the 
response Y1 is used as arbitrary in this study.

To evaluate the accuracy of the impact force identification using the 
proposed method, the relative error (RE) for the ith force identification 
is defined as the difference between the actual force vector Fp

i and the 
estimated one F̃

p
i , 

REi =

⃦
⃦Fp

i − F̃
p
i

⃦
⃦

1⃦
⃦Fp

i

⃦
⃦

1

× 100% (18) 

To evaluate the accuracy of the peak value of the identified impact 
forces, the relative percentage error of the peak value (PRE) for the ith 
force identification is defined as 

PREi =

⃦
⃦
⃦Fp

pi − F̃
p
pi

⃦
⃦
⃦

1⃦
⃦
⃦Fp

pi

⃦
⃦
⃦

1

× 100% (19) 

where F̃
p
pi and Fp

pi are the peak values of ith identified and true impact 
forces respectively.

In the simulations, the impact force is applied at location P2. The 
response of one single sensor (Y1) is used. To study the effect of mea
surement noise, the white noise is added to simulate the measurement 
as, 

Yn =Y1 + lev×
1
n
∑n

i=1
|Y1| × rand (20) 

where Yn and Y1 are the structural responses corresponding to noise and 
noiseless, respectively. n is the total number of elements in the vector Y1. 
lev is the noise level. rand is a standard normal distribution vector. 5 % 
noise is added to the response to simulate the polluted measurement, 
unless otherwise specified.

4.2. Impact force identification

Based on the specific feature of the impact force and its relevant 
dynamic response, the duration of the impact force can be estimated as 
shown in Fig. 5. From the acceleration response, the force duration is 
around the beginning of the response marked as two red dotted lines in 
the figure. Based on this prior information, a suitable submatrix from the 
transfer matrix could be selected to identify the predefined locations 
force in this study. The data length of the submatrix depends on the time 

interval of the impact force and the sampling frequency. Assuming that 
the impact force is a triangular pulse with a short time interval of 0.006 s 
and there are 5 nonzero values, the 2 m +5 values around the beginning 
of the response are chosen to cover the excitation time interval of impact 
force, as shown in Fig. 5. The effects of the m value will be discussed in 
the later subsection.

Fig. 6 shows the identified results using the submatrix with m = 5 by 
the L1-norm, L2-norm regularisation methods and the proposed method, 
respectively. The identified impact force locations by these three 
methods are shown in Fig. 7(a)–(c), respectively and the reconstructed 
time histories of the impact force are shown in Fig. 7(d)-7(f), respec
tively. The force vector is separated into 9 groups, each associated with 
one potential force location. Among the potential locations, only non- 
zero forces occur at the true force location. From Fig. 6, the identified 
result by the proposed method is agree well with the true value, and that 
by the L1-norm regularisation method is close to the true value with 
some small oscillations. There are large oscillations in the result by the 
L2-norm regularisation method and it fails to reconstruct the impact 
force. In Fig. 7, all three methods could indicate the location of the 
impact force, but the result by the L2-norm regularisation has some large 
LOC values at false force locations. The LOC values by the L1-norm and 
L2,1-norm regularisation methods are approximate 100 % at the force 
location and the values at other locations are close to zero and the results 
show that the impact force location could be identified accurately using 
these two methods. Fig. 7(d) shows that the reconstructed impact force 
by the L2-norm regularisation method has large errors compared to the 
true value, and the RE and PRE values are 80.51 % and 57.82 % 
respectively. In Fig. 7(e), the identified result by the L1-norm regular
isation method has some oscillations around the force peak, and the RE 
and PRE values are 20.91 % and 4.90 % respectively. From Fig. 7(f), the 
result by the proposed L2,1-norm regularisation method fits well with the 
true force, and the RE and PRE values are 1.06 % and 0.15 % respec
tively. From the above, the impact force location and values could be 
accurately identified simultaneously with one single sensor by the pro
posed partial transfer matrix-based group sparse regularisation method.

4.3. Effects of the m value

The selection of m value is to ensure that the required time steps of 
the impact excitation are included and it determines the size of the 
partial transfer matrix. In this study, the m value is selected from 0 to 30. 
Different partial transfer matrices based on the m value are constructed 
for impact force identification using the proposed method. The 

Fig. 5. Impact excitation interval determination from acceleration responses.
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Fig. 6. Identified force vector divided into predefined groups.

Fig. 7. The results of impact force identification: the localization index results: (a) using L2-norm regularisation; (b) using L1-norm regularisation; (c) using L2,1-norm 
regularisation; impact force time history reconstruction at real location results: (d) via L2-norm regularisation; (e) via L1-norm regularisation; (f) via L2,1-norm 
regularisation.

Table 1 
The LOC values with different sizes of submatrices.

m values Method P1 P2 P3 P4 P5 P6 P7 P8 P9

0 L2-norm 10.5 95.6 11.1 11.9 13.0 12.3 10.0 6.9 3.6
L1-norm 0.1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.3 100.0 0.2 0.1 0.1 0.2 0.1 0.1 0.1

5 L2-norm 28.6 27.3 33.8 39.4 47.1 9.3 32.2 40.5 27.7
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.4 100.0 0.4 0.3 0.2 0.4 0.4 0.3 0.3

10 L2-norm 28.7 18.8 34.8 41.2 48.4 9.1 33.3 40.5 27.3
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.7 100.0 0.8 0.3 0.4 0.6 0.6 0.5 0.3

20 L2-norm 50.5 65.8 27.6 22.1 19.8 22.7 20.6 18.0 14.6
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.4 100.0 0.5 0.2 0.2 0.4 0.4 0.3 0.2

30 L2-norm 47.7 64.0 27.2 21.4 20.8 26.0 23.0 22.4 17.1
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.7 100.0 1.0 0.5 0.5 0.7 0.7 0.6 0.4

B. Zhang et al.                                                                                                                                                                                                                                   Journal of Infrastructure Intelligence and Resilience 4 (2025) 100170 

7 



identified results are compared with that by the L2-norm and L1-norm 
regularisation methods. Table 1 shows the LOC values with different 
sizes of submatrices, e.g. different m values. Table 2 shows the RE and 
PRE values with different sizes of submatrices. From Table 1, the LOC 
values at P2 for all m values by the L1-norm regularisation method and 
the proposed method are approximate 100 % and the values at other 
locations are close to zero. The results show that these two methods 
could identify the location of the impact force with all m values suc
cessfully. The L2-norm regularisation method cannot localize the impact 
force when m = 5 and 10. From Table 2, RE and PRE values by the L1- 
norm regularisation method reduces with the increase of the m value, 
and the values by the proposed method increases slightly with the size of 
submatrix, e.g. the m value. The RE and PRE values by the proposed 
method are below 4.5 % and 1.3 % respectively, and they are much 
smaller than that by the L1-norm regularisation method, e.g. 20.91 % 
and 4.90 % respectively. The result indicates the effectiveness and ac
curacy of the proposed method even with small m value for the partial 
transfer matrix. There are large errors by the L2-norm regularisation 
method. As the above, compared with the L2-norm and L1-norm regu
larisation methods, the proposed method has the best performance for 
the impact force localization and identification.

In general, the computational cost is directly related to the m value. 
The computational efficiency for the force identification will be reduced 
when the m value increases. Although a small m value contains less in
formation, it also reduces the impact of noise. The error of the force 
identification using the proposed method has a slight increase with the 
m value. Therefore, a small m value may be considered first for better 
results in practice.

4.4. Effect of measurement noise

To study the effect of measurement noise, different levels of white 
noise are added to the calculated response to simulate the polluted 
measurements, i.e., 1 %, 3 %, 5 %, 10 % and 15 % noise levels are 

studied. The impact force is the same as that in Section 4.2. One single 
sensor response is used for the impact force identification. The above
mentioned three regularisation methods are used to identify the impact 
force based on the partial transfer matrix (m = 5) considering different 
measurement noise. The LOC, RE and PRE values are listed in Tables 3 
and 4, respectively. Fig. 8(a), (b) and 8(c) show the LOC, RE and PRE 
values with different measurement noise levels using three methods. The 
reconstruction time history results from the responses with different 
measurement noise levels using three methods are shown in Fig. 8(d), 
(e) and 8(f) respectively.

From Fig. 8(a) and Table 3, all three methods could indicate the 
location of the impact force even with 15 % measurement noise. The 
LOC values by the L1-norm and L2,1-norm regularisation methods are 
approximate 100 % at the force location and the values are close to zero 
at other locations. The LOC value by the L2-norm regularisation method 
is around 70 % at the force location and the values are not zero at other 
locations. From Fig. 8(b) and (c), the RE and PRE values are approximate 
the same for different noise levels. From Table 4, the RE and PRE values 
of the proposed method are 5.55 % and 3.42 % when the measurement 
noise is 15 %, and these values are much smaller than that by the L1- 
norm and L2,1-norm regularisation methods. The results show that the 
proposed method is much robust to the measurement noise and has the 
highest accuracy for the impact force reconstruction. Fig. 8(d), (e) and 8 
(f) shows the identified impact forces from measurements with different 
noise levels. The results confirm that the measurement noise does not 
have large influence on the identified results. There is a big error in the 
force amplitude by the L2-norm regularisation method, as shown in 
Fig. 8(d), and this is due to the smoothing effect of the L2-norm. From 
Fig. 8(e), there are some oscillations around the peak of the impact force. 
The identified results by the proposed L2,1-norm regularisation method 
agree well with the true values as shown in Fig. 8(f).

Table 2 
The RE and PRE values with different sizes of submatrices.

m values L2-norm L1-norm L2,1-norm

RE% PRE% RE% PRE% RE% PRE%

0 17.25 20.79 20.15 4.59 0.55 0.07
5 80.51 57.82 20.91 4.90 1.06 0.15
10 97.89 66.12 20.54 4.60 1.96 0.11
20 122.91 72.50 18.25 2.67 3.07 0.86
30 128.45 74.61 16.26 2.16 4.49 1.27

Table 3 
Localization index LOC results under different noise levels.

Impact location P1 P2 P3 P4 P5 P6 P7 P8 P9

LOC result LOC1 LOC2 LOC3 LOC4 LOC5 LOC6 LOC7 LOC8 LOC9

1 % L2-norm 56.2 73.7 16.9 13.1 15.9 15.9 15.6 12.6 6.8
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.1 100.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1

3 % L2-norm 56.2 73.7 16.7 13.2 15.9 15.9 15.5 12.6 6.9
L1-norm 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.2 100.0 0.2 0.1 0.1 0.2 0.1 0.2 0.1

5 % L2-norm 56.1 73.8 16.9 13.0 16.0 16.1 15.6 12.6 6.8
L1-norm 0.1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.2 100.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1

10 % L2-norm 56.0 73.6 17.4 12.9 15.9 16.5 15.7 12.8 6.7
L1-norm 1.2 100.0 0.8 0.2 1.0 0.0 0.6 0.2 0.3
L2,1-norm 0.9 100.0 0.9 0.5 0.7 0.6 0.6 0.5 0.6

15 % L2-norm 55.9 73.5 17.3 13.2 16.0 16.3 15.8 13.0 7.2
L1-norm 0.8 100.0 0.9 0.0 0.7 0.7 0.2 0.0 0.1
L2,1-norm 1.2 100.0 1.2 0.8 0.5 0.9 0.9 0.7 0.8

Table 4 
Identification accuracy index RE and PRE results under different noise levels.

Noise L2-norm L1-norm L2,1-norm

RE% PRE% RE% PRE% RE% PRE%

1 % 80.33 57.42 24.97 8.06 0.93 0.32
3 % 80.44 57.43 23.38 6.53 1.02 0.32
5 % 81.11 58.65 21.81 5.88 0.61 0.43
10 % 79.97 59.74 17.87 3.17 4.61 3.30
15 % 81.65 59.85 20.31 3.22 5.55 3.42
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Fig. 8. The results of impact force identification under different noise effect: The identification index results: (a) localization index LOC; (b) identification accuracy 
index RE; (c) identification accuracy index PRE; impact force time history reconstruction at real location results under 1 %, 5 % and 10 % noise effect results: (d) via 
L2-norm regularisation; (e) via L1-norm regularisation; (f) via L2,1-norm regularisation.

Fig. 9. Accelerations for estimation of two intervals related to impact forces.

Fig. 10. Identified force vector for double impact divided into predefined groups.
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4.5. Multiple impact force identification with one single sensor

In practice, multiple impact forces usually appear at different loca
tions asynchronously. The identification of two and three impact forces 
using the proposed method is studied in this section. For the case with 
two impact forces, these impact forces are applied at the locations P2 
and P4 separately. The response of one single sensor (Y1) shown in Fig. 9
is used. 5 % noise is added to the response to simulate the polluted 
measurement. The interval between two adjacent green dash lines is 
obtained as m = 5 in Fig. 9 and the corresponding transfer submatrix is 
selected for the impact force localization and reconstruction. There are 
two intervals corresponding to two impact forces in Fig. 9.

The identified force vector results based on the proposed method are 
illustrated in Fig. 10. The corresponding localization results of two 
impact forces by three methods are shown in Fig. 11(a), (b) and 11(c)
respectively. The reconstructed time histories of two impact force are 
shown in Fig. 11(d) and (e) respectively. The LOC, RE and PRE values 
are listed in Tables 5 and 6. From Fig. 10, the locations of two impact 
forces at P2 and P4 are identified successfully by the L1-norm regular
isation method and the proposed L2,1-norm regularisation method. The 
identified result by the L2-norm regularisation method contains highly 
oscillatory false components at other locations and these oscillations 
affect the accuracy of the impact force identification. From Table 5, the 
LOC values at locations of these two impact forces are 70 % or above by 

the L1-norm regularisation method and the proposed L2,1-norm regu
larisation method and the results show that the impact forces could be 
accurately located. The LOC values at locations of two impact forces by 
the L2-norm regularisation method are only 57.5 % and 42.5 % 
respectively. Fig. 11(d) and (e) show the identified impact force time 
histories by three methods. The identified results of two impact forces by 
the proposed L2,1-norm regularisation method are close to the true 
values. The identified result of the impact force at P2 by the L1-norm 
regularisation method is close to the true value and there are some 

Fig. 11. The results of two impact force identification: the localization index results: (a) using L2-norm regularisation; (b) using L1-norm regularisation; (c) using L2,1- 
norm regularisation; impact force time history reconstruction at real location results: (d) identified impact force at P2; (e) identified impact force at P4.

Table 5 
Localization index LOC results for different number of impact force.

Impact location P1 P2 P3 P4 P5 P6 P7 P8 P9

1 L2-norm 56.1 73.8 16.9 13.0 16.0 16.1 15.6 12.6 6.8
L1-norm 0.1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
L2,1-norm 0.2 100.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1

2 L2-norm 45.2 57.5 24.7 42.5 30.0 23.9 21.4 14.3 9.9
L1-norm 0.0 69.9 0.0 71.6 0.0 0.2 0.0 0.0 0.0
L2,1-norm 0.7 70.7 0.8 70.7 0.4 0.7 0.6 0.6 0.6

3 L2-norm 39.0 48.2 23.1 38.9 26.7 44.8 26.9 17.4 18.9
L1-norm 0.2 57.2 0.3 57.7 0.0 58.3 0.7 0.2 0.1
L2,1-norm 0.5 57.8 0.6 57.7 0.2 57.6 0.5 0.4 0.4

Table 6 
Identification accuracy index RE and PRE results for different number of impact 
force.

Impact 
number

Impact 
position

L2-norm L1-norm L2,1-norm

RE% PRE 
%

RE% PRE 
%

RE 
%

PRE 
%

1 P2 81.11 58.65 21.81 5.88 0.61 0.43

2 P2 99.78 57.20 4.59 4.39 1.60 0.69
P4 46.87 69.73 11.66 8.47 1.74 1.32

3 P2 59.11 58.61 4.07 2.21 2.05 0.27
P4 62.21 69.56 8.10 6.21 1.63 0.95
P6 40.34 64.19 6.87 5.36 1.33 1.06
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oscillations at the identified result of the impact force at P4. This is 
probably induced by the initial response condition for the second impact 
force. For the first impact force conducted at P2, the initial response is 
zero. While for the second impact force at P4, the initial response is non- 
zero and it may affect the second force identification. There is no effect 
by the proposed L2,1-norm regularisation method as shown in Fig. 11(d) 

and (e). Accurate force time history for both impact forces are obtained 
using the proposed method.

For the case of three impact force identification, three impact forces 
are applied at locations P2, P4 and P6 separately. One single sensor (Y1) 
response shown in Fig. 12 is employed, and 5 % noise is added to the 
response to simulate the polluted measurement. Three intervals 

Fig. 12. Acceleration time history for triple excitations interval determination.

Fig. 13. Identified force vector for triple impacts divided into predefined groups.

Fig. 14. The results of triple impact force identification: the localization index results: (a) using L2-norm regularisation; (b) using L1-norm regularisation; (c) using 
L2,1-norm regularisation; impact force time history reconstruction at real location results: (d) identified impact force at P2; (e) identified impact force at P4; (e) 
identified impact force at P6.
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indicated by green dash lines in Fig. 12 associated transfer submatrices 
are selected for three impact force localization and reconstruction.

Three forces with the same amplitude and distance are used to verify 
the proposed method. The identified force vector results by three 
methods are illustrated in Fig. 13. The corresponding localization results 
by three methods are shown in Fig. 14(a) and (b) and 14 (c) respectively. 
The reconstructed time histories of three impact forces are shown in 
Fig. 14(d), (e) and 14(f) respectively. The corresponding LOC, RE and 
PRE values are listed in Tables 5 and 6 From Figs. 13 and 14, and Ta
bles 5 and 6, three impact force forces are located successfully by the L1- 
norm regularisation method and the proposed L2,1-norm regularisation 
method and the identified results of three impact forces by the proposed 
method are all close to the true values. The proposed transfer submatrix 
based L2,1-norm regularisation method has the best performance on 
multiple impact force localization and reconstruction.

5. Experimental validation

5.1. Experimental setup

To further verify the effectiveness and applicability of the proposed 
method, the experimental study is performed on a steel-concrete com
posite bridge model shown in Fig. 15. As shown in Fig. 16, 28 possible 
impact force locations are predefined and labelled from S1 to S14 and 
N1 to N14. The impact hammer (PCB 086D20 with sensitivity 0.23 mV/ 
N) is used for the excitation. NI data acquisition system is used to record 
the impact force and acceleration response data with a sampling fre
quency 1000Hz. The acceleration response from A2 is used for the 
impact force identification. Single force (conducted at S4) identification 
and two force (conducted at S4 and S6) identification are conducted in 
this section. The transfer matrix can be constructed according to the 

Fig. 15. Experimental model and acquisition equipment.
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modal test. The identified modal results compared to its finite element 
modelling are shown in Fig. 17. The transfer submatrix associated with 
the impact force time interval could be selected for the loading interval 
force identification.

5.2. Results and discussions

The proposed transfer submatrix-based group sparse method is used 
to identify the impact force and the results are compared with that by the 
L2-norm and L1-norm regularisation methods. Fig. 18 shows the single 
impact force localization and reconstruction results from one single 
response. Fig. 18(a), (b) and 18(c) show the identified location of the 
impact force using three methods respectively. Fig. 18(d), (e) and 18(f) 
show the corresponding identified impact force time histories respec
tively. From Fig. 18(a)–(c), the location of the impact force is clearly 
indicated by the peaks of the results by the L1-norm regularisation 
method and L2,1-norm regularisation method. There is no clear peak by 
the L2-norm regularisation method and it shows that the method fails to 
obtain the clear location information. From Fig. 18(d)–(f), the identified 
result by the proposed method is much closer to the true value compared 
with that by other two methods. From Fig. 18(b) and (e), it can also see 
that the impact force localization and time history identification is less 
accurate by the L1-norm regularisation method comparing with the 
proposed method.

The same accelerometer (A2) is used to identify two impact forces at 
S4 and S6 separately. The LOC values by three methods are shown in 
Fig. 19(a), (b) and 19(c) respectively. The reconstructed time histories of 

these two impact forces are shown in Fig. 19(e) and (f). Fig. 19(a), (d) 
and 19(e) show that two impact forces are not able to be located and 
reconstructed by the L2-norm regularisation method. Fig. 19(b) shows 
that two impact forces could be located correctly and the LOC value for 
the second force is less than 50 %. From Fig. 19(d) and (e), the identified 
first impact force is larger than the true value and the identified second 
impact force is smaller than the true value by the L1-norm regularisation 
method. That means the first force is overestimated and the second one 
is underestimated. On the other hand, by the proposed L2,1-norm regu
larisation method, these two impact forces are clearly located by two 
peaks and the identified results are much close to the true values. The 
results show that the proposed method has good robustness and accu
racy for two impact force identification of complex bridge structures.

6. Conclusions

In this paper, the transfer submatrix-based group sparse regularisa
tion method for multiple impact force localization and reconstruction 
has been developed. Based on the intrinsic feature of impact force, the 
transfer submatrix associated with the impact excitation time interval 
could be constructed for the loading interval force identification. By this 
method, the dimension of the inverse problem can be dramatically 
decreased, and the computational efficiency can be significantly 
improved. It could also reduce the ill-posedness of the inverse problem, 
especially when the number of sensors is less than the number of impact 
forces. The force group could be grouped based on the potential force 
locations. The proposed method could obtain stable and accurate results 

Fig. 16. Predefined possible load position in the experiment model.

Fig. 17. Modal parameters of the beam from experimental model and FE model.
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Fig. 18. Experimental results of single impact force identification at location S4: the localization index results: (a) using L2-norm regularisation; (b) using L1-norm 
regularisation; (c) using L2,1-norm regularisation; impact force time history reconstruction at real location results: (d) via L2-norm regularisation; (e) via L1-norm 
regularisation; (f) via L2,1-norm regularisation.

Fig. 19. Experimental results of double impact force identification: the localization index results: (a) using L2-norm regularisation; (b) using L1-norm regularisation; 
(c) using L2,1-norm regularisation; impact force time history reconstruction at real location results: (d) identified impact force at S4; (e) identified impact force at S6.
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based on the structured group sparsity in the force vector. The group 
sparse regularisation method based on the L2,1-norm penalty is validated 
and compared with the L1-norm regularisation method and the L2-norm 
regularisation method numerically and experimentally. In the numerical 
study, determination of the submatrix, noise effect and multiple impacts 
identification are investigated using one single sensor response. 
Comparing with the L1-norm and L2-norm regularisation methods, the 
proposed transfer submatrix-based group sparse regularisation method 
has the best performance on the multiple impact force localization and 
time history reconstruction.

The proposed method adopted the transfer submatrix, and the 
computational efficiency and accuracy of force identification are 
significantly increased, especially for large-scale structures in practice. 
The performance of the proposed method is verified using the numerical 
and laboratory experimental studies. In this study, the transfer matrix is 
constructed using numerical modelling or laboratory modal testing. 
Further verification is needed for practical applications in real-time 
monitoring systems of complex structures in operational environment.
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