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Carrots are a key staple in Pakistan’s agriculture, yet harvesting practices remain predominantly manual, resulting in high labor
costs, inefficiencies, and considerable postharvest losses. The current study presents the design and fabrication of a cost-effective,
intelligent carrot harvesting machine, modeled in SolidWorks and optimized for key operational parameters: claw belt speed of
4m/s, roller speed of 1.2m/s, and a taper angle of 26°, to maximize pick-up efficiency and minimize crop damage. A YOLOv8-
based quality assessment model, trained on a region-specific annotated dataset of local carrot varieties, was integrated for real-
time defect detection. The model achieved high accuracy (approximately 0.98), F1-score (approximately 0.95), and mAP@0.5
(approximately 0.94), ensuring the reliable sorting of high-quality produce. Laboratory evaluations demonstrated significant
performance gains over manual harvesting methods in terms of speed (3-5 acres/day vs. 0.2-0.5 acres/day), efficiency (80%-
92%), and reduced physical strain. These findings support the adoption of mechanized harvesting aligned with precision
agriculture to enhance productivity, safety, and sustainability.
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1. Introduction

Vegetables and fruits play a vital role in human health due to
their rich nutrients like vitamin C, fiber, folate, and potas-
sium. Over the last decade, the global fruit trade market
has observed a growth of around 40%, thus rising from 45
to 63 million tonnes [1]. Pakistan’s agricultural sector
remains heavily reliant on traditional harvesting methods,
particularly for vegetables such as carrots. This labor-
intensive approach, often involving rudimentary tools,
results in inefficiencies including suboptimal labor utiliza-
tion, reduced crop yields, and elevated operational costs
[2]. Such limitations are especially critical in the context of
a rapidly growing population and increasing domestic and
global demand for vegetables. The only potential solution
for problems like labor-intensive harvesting, expensive man-
ual labor, and time-consuming processes is the introduction
of agricultural robots [3, 4]. The automated agricultural pro-

cesses trends like harvesting [5], pruning [6], localized
spraying [7], and computer-aided vision techniques for veg-
etable and fruit image detection [8, 9] mark the pathway
toward the digital revolution in agriculture. While many
countries have transitioned to mechanized agricultural prac-
tices, Pakistan’s reliance on manual labor highlights a critical
gap that undermines its competitiveness in international
markets [10]. Introducing mechanized harvesting solutions
is no longer optional but essential to modernize the sector,
enhance productivity, and ensure sustainable growth in the
global economy [11]. Carrots are a dietary staple in Pakistan
and other developing economies [12]. They hold significant
importance due to their nutritional value and contribution
to food security. Being rich in essential vitamins and nutri-
ents, carrots support the dietary needs of Pakistan’s growing
population. Moreover, Pakistan ranks as a notable producer
of carrots, exporting to international markets and contribut-
ing significantly to agricultural GDP, accounting for
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approximately 20%-25% of the national economy [13].
However, inefficiencies in harvesting and postharvest han-
dling not only result in high labor costs but also lead to sub-
stantial postharvest losses, limiting the profitability of this
vital crop [14].

The agricultural sector in Pakistan has historically
played a vital role in the nation’s economy, with carrots
being a significant contributor among vegetables, generating
approximately $0.08 million. The exports are primarily clas-
sified under the category of fresh or chilled carrots and tur-
nips (HS code 070610). Over the 3 years from 2017 to 2019,
carrot exports increased marginally by 1.95%. The produc-
tion growth rate is estimated to have changed, underscoring
the need for enhanced mechanization and innovative solu-
tions to improve both yield and quality [15]. This highlights
an urgent need to adopt advanced carrot harvesting methods
to increase efficiency, reduce postharvest losses, and meet
both domestic and export demands effectively. The adoption
of automated carrot harvesting machines could revolution-
ize Pakistan’s agricultural sector. These systems reduce
dependency on manual labor, minimize human error, and
ensure timely harvesting, thus reducing spoilage and
increasing yields [16]. For a country where agriculture is
the backbone of rural livelihoods and food security, such
advancements are essential to align with global standards
and meet the growing demands of both local and interna-
tional markets. Agricultural mechanization plays a critical
role in the transition from traditional to modern agrarian
economies, directly improving labor productivity, resource
efficiency, and overall farm output. It plays a pivotal role in
ensuring sustainable food security and in alleviating rural
poverty. Manual harvesting typically requires 100-120 labor
hours per hectare, making the process labor-intensive and
time-consuming [17]. Appropriate mechanization has been
shown to reduce human labor requirements on farms by
25%-30%, cut working time by 25%-35%, and decrease fer-
tilizer usage by a similar margin [18]. Despite agriculture
employing approximately 37.4% of Pakistan’s total labor
force [19], the sector remains undermechanized, limiting
its capacity to meet the food demands of a rapidly growing
population [20]. To fully harness the agricultural potential
and address labor shortages and inefliciencies, there is an
urgent need to accelerate the adoption of appropriate,
scale-appropriate mechanization solutions across the farm-
ing landscape. Food security has emerged as one of the most
pressing challenges in Pakistan, affecting millions of people
across urban and rural areas. Despite being an agrarian
economy, the country is experiencing an alarming food cri-
sis, with 37% of the population classified as food insecure,
according to the 2023 Global Hunger Index [21].

In addition to mechanization, sorting and grading of car-
rots play a pivotal role in ensuring market competitiveness.
High-quality produce is essential for meeting export stan-
dards and consumer expectations. Advanced computer
vision technologies, such as YOLO (You Only Look Once)
and convolutional neural networks (CNNs), have emerged
as powerful tools for automating sorting processes [22].
Khanna et al. [23] used an ensemble version of YOLOv8n
called the fruit and vegetable detection network (FVDNet),
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which achieved a mean average precision (mAP) score of
0.82. Liu et al. [24] used the vanilla YOLO model for fruit
yield estimation in guava orchards. They found that V-
YOLO can rapidly detect the guavas with a detection speed
2.6 times higher than that of YOLOv10n. Gao et al. [25]
applied improved YOLO v5s for tomato identification in
the continuous working environment. The achieved results
show that the recall rate and tomato detection precision of
the YOLO v5s model are 82.42% and 92.08%, respectively.
The mean absolute precision and recognition precision are
improved by 1.29% and 2.72%, respectively, for the
YOLOv5s model. Yuan et al. [26] used the integrated model
named CNN_BIiLSTM deep learning model, that is, a combi-
nation of a CNN and bidirectional long-short term memory
neural network (BiLSTM) for the detection of the freshness
of fruits. They achieved results with an accuracy of 97.76%.
Khoiruddin and Tena [27] used a CNN to classify 36 differ-
ent vegetables and fruits based on their color, texture, and
shape. They achieved results with an accuracy of 97.31%.
Hence, these detection systems enable the real-time identifica-
tion and classification of carrots based on size, shape, and sur-
face defects, ensuring uniformity and adherence to quality
benchmarks [28]. By integrating such technologies into the
harvesting workflow, Pakistan’s agricultural sector can achieve
a higher standard of efficiency and precision, addressing both
domestic and international market requirements. Table 1
summarizes the recent technological advancements in carrot
harvesting, sorting, grading, and yield prediction.

Recent advancements in automation and precision agri-
culture have demonstrated the effectiveness of machine
learning and computer vision technologies in various aspects
of carrot production, as shown in Table 1. The CNNs have
been successfully applied in automatic sorting and quality
assessment, achieving accuracy rates ranging from 98.7%
to 99.82% (see Table 1). For instance, Ahmad et al. [29]
achieved 99.43% accuracy in sorting, while Limiao et al.
[30] reported a high accuracy of 99.82% using a deep learn-
ing model (CDDNet) for binary classification. Similarly,
Hongfei et al. [31] employed CNNs to assess carrot quality
based on appearance and achieved a classification accuracy
of 98.7%. In addition to sorting, the prediction of carrot
mass and volume has also been significantly enhanced by
machine learning models. For example, Weijun et al. [32]
utilized a stacked ensemble model (EM) and achieved an
R? of 0.997, MAPE of 1.28%, and RMSE of 3.02. Wengi
et al. [34] applied a deep Fourier network (DFN), obtaining
an R? of 0.9765 and RMSE of 0.0312 for volume prediction.
Moreover, the use of object detection technologies like
YOLOvV5 and YOLOV4, combined with semantic segmenta-
tion techniques like DeepLabv3, has proven effective for
detecting surface defects as well as estimating the physical
characteristics of carrots. Wengi et al. [34] reported 90.7%
accuracy with YOLOVS5 for harvesting and defect detection,
while Sze-Teng et al. [36] managed to achieve high accuracy
in estimating the length, width, and volume of carrots, with
average errors of 1.85%, 2.51%, and 5.35%, respectively. Fur-
thermore, predictive models like artificial neural networks
(ANNSs) and regression techniques have shown promise in
forecasting carrot yield and quality. Piotr et al. [38]
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TABLE 1: Recent studies on technological advancements in carrot harvesting, sorting, grading, and yield prediction.

Reference Focus area

Technology

Key performance outcome

Ahmad et al. [29]
Limiao et al. [30]

Automatic carrot sorting

Carrot grading

Hongfei et al. [31] Quality by appearance

Weijun et al. [32]
Weijun et al. [33]
Wengi et al. [34]

Mass prediction
Carrot grading
Harvesting & defect detection

CDDNet (deep learning)

Stacked ensemble model

YOLOvV5

CNN 99.43% accuracy
99.82% binary classification accuracy

98.70% accuracy, 98.34% sensitivity,
98.99% specificity

MAPE: 1.28%, RMSE: 3.02 g, R*: 0.997
ELM 96.67% recognition accuracy

CNN

90.7% accuracy

Mustafa and Humar [35] Volume prediction Deep Fourier Network R?: 0.9765, RMSE: 0.0312

Sze-Teng et al. [36] Carrot inspection YOLOV4 + DeepLabv3  Length/width/volume error: 1.85%, 2.51%, 5.35%
Zhenhui et al. [37] Rolling angle measurement OPC+ICSM High accuracy and efficiency

Piotr et al. [38] Yield loss prediction ANN 90.69% accuracy

Chan et al. [39] Yield mapping Random forest R?: 0.82, RMSE: 2.64 Mg/ha, MAE: 1.74 Mg/ha
de Lima et al. [40] Yield and quality prediction ANN R?: 0.68

demonstrated that ANNs could predict carrot root yield loss
with 90.69% accuracy, while Chan et al. [39] employed ran-
dom forest regression to predict carrot yield, achieving an R?
of 0.82 and RMSE of 2.64Mgha'. Lastly, innovative
methods for measuring the rolling angle of carrots, such as
the outer profile curve (OPC) and improved cyclic shift
method (ICSM), have been developed, offering high accu-
racy and efficiency, as demonstrated by Zhenhui et al. [37].
These findings underscore the growing potential of machine
learning and computer vision in improving the efficiency
and accuracy of carrot production processes.

While recent studies have demonstrated the successful
application of deep learning models for carrot sorting, grad-
ing, and quality estimation, most of these efforts remain con-
fined to controlled classification tasks or dataset-specific
prediction models, with limited emphasis on real-world
integration. Notably, previous work has not addressed the
combination of intelligent defect detection with an opti-
mized mechanical harvesting system tailored for practical
deployment. Furthermore, most existing models rely on
generic or publicly available datasets, which often fail to cap-
ture the morphological diversity of region-specific produce.
Additionally, prior studies rarely explore the joint tuning of
mechanical parameters (e.g., claw belt speed, roller speed, and
taper angle) and seldom incorporate control strategies such as
proportional-integral-derivative (PID) for maintaining opera-
tional consistency. This study addresses these limitations by
introducing a unified, low-cost carrot harvesting solution that
integrates a YOLOv8-based quality detection model, trained
on a custom-annotated dataset of local carrot varieties, with
an optimized mechanical design and PID controller to ensure
reliable performance under varied field conditions.

The proposed system comprises a cost-effective, intelli-
gent carrot harvesting machine combining a PID-
controlled mechanical framework with an automated sorting
mechanism powered by YOLOvV8. The machine’s harvesting
efficiency is quantified based on output per acre, while the
YOLOvV8 model enables real-time classification of harvested
produce, distinguishing high-quality carrots from defective

ones, such as cracked or spoiled samples. The model’s per-
formance is validated using standard evaluation metrics:
precision, recall, F1 score, and mAP, demonstrating robust
detection capability following effective model training and
convergence. The novelty of this work lies in its integration
of regionally adapted computer vision with precision-
optimized mechanical engineering. By using YOLOVS on a
locally trained annotated dataset, the system achieves
context-aware detection accuracy superior to generic
approaches. The harvesting mechanism operates at opti-
mized parameters of claw belt speed, roller speed, and taper
angle to minimize crop damage while maximizing efficiency.
The addition of a PID controller ensures stable operation
across varying conditions. These contributions altogether
deliver a scalable, intelligent harvesting solution aligned with
precision agriculture, offering meaningful advancement in
root crop automation for resource-constrained agricultural
economies.

2. Methodology

The experiment was conducted to evaluate the performance
of an automatic carrot harvesting machine through a struc-
tured methodology that combined mechanical system design
optimization, force optimization, soil interaction analysis,
and vision-based carrot sorting. The approach integrated
mechanical engineering principles with intelligent control
systems and machine learning algorithms. This ensured pre-
cision, reliability, and crop protection under field conditions.
The tensile strength of carrots was determined through con-
trolled mechanical testing, which guided the calibration of a
PID control system. To achieve optimal harvesting perfor-
mance, the claw belt speed, roller speed, and taper angle
were methodically varied and evaluated. These parameters
directly influence the machine’s ability to grip, lift, and
transport carrots while minimizing mechanical damage.
The claw belt speed was tested within a range of 3.5-4.5m/
s to assess the influence of sufficient pulling force and crop
safety. Roller speed was varied between 1.0 and 1.5m/s to
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FIGURE 1: Flowchart of the carrot harvesting design and sorting methodology.

determine its effect on soil removal and lifting smoothness.
Taper angles of 22°, 267, and 30° were selected to represent
different geometric configurations of the roller assembly,
influencing the carrot’s grip and trajectory during extraction.
This system dynamically adjusted the gripping force applied
by rubber belts to prevent breakage during extraction. The
harvesting mechanism comprised driver and driven pulleys
powered by a 96-W DC motor, tensioned via Teflon rollers
to prevent slippage, and used angled rollers and claw belts
to gently lift the carrots. Specialized pins were installed to
improve soil separation, while a robust mild steel digging
unit minimized extraction force by loosening the soil.

After extraction, stereo vision cameras captured high-
resolution images of the harvested carrots. These images
were processed in real time using a YOLOV8 detection
framework. It was trained to distinguish between marketable
and defective carrots based on shape, size, and visible defor-
mities. A dataset of 280 annotated images of harvested car-
rots was created using stereo camera captures under
natural lighting conditions to train and test the YOLOv8
model with a 70:30 ratio split. When detection accuracy
required improvement, the model was fine-tuned iteratively
using field-acquired data. Adaptive feedback from the PID
controller adjusted roller and belt speeds accordingly,
enhancing both operational efficiency and sorting precision.
Field trials were carried out under controlled conditions to
evaluate multiple operational parameters, including claw

belt speed, roller speed, and taper angle. A total of 25 trials
were conducted across 2-3 acres in loamy and sandy loam
soils, with preirrigation and soil moisture control to ensure
consistency. Performance was assessed in terms of harvest-
ing efficiency, damage rate, sorting accuracy, and energy
consumption. The insights obtained informed iterative
design improvements, resulting in a machine optimized for
carrot harvesting in Pakistani field conditions. Figure 1 illus-
trates the methodological sequence in a flowchart, beginning
with the optimized design of the carrot harvesting machine
(shown in vyellow), followed by mechanical extraction
(shown in red), and then real-time vision-based sorting
(shown in blue). This comprehensive process demonstrated
the potential for sustainable, labor-efficient carrot harvesting
through the integration of smart agricultural technologies.

3. Design and Experimentation

3.1. Tensile Testing. Mechanical tensile testing is critical in
optimizing carrot harvesting machines by providing essen-
tial data on the mechanical properties of carrots, such as
elastic modulus, tensile strength, and fracture toughness.
These insights allow for the design of harvesting mecha-
nisms that apply precise forces and prevent carrot damage
while reducing postharvest losses. Tensile test data guide
the engineering of machine components that prevent break-
ing during the harvesting process, confirming their
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FIGURE 2: Tensile testing setup for measuring carrot tensile force.

structural integrity under stress. Additionally, the testing
informs material selection for vital parts and ensures they
can withstand operational loads. Figure 2 shows the tensile
testing machine used to compute the tensile force required
for effective carrot harvesting. Fresh carrots were selected
and manually shaped into uniform cylindrical forms using
a knife and sandpaper to minimize surface irregularities
and ensure parallel gripping ends. Each specimen was
trimmed to a gauge length of approximately 100 mm. Car-
rots with varying diameters were tested to study the effect
of cross-sectional area on tensile strength. The average
diameter of the specimens was measured using a Vernier
Caliper and found to be approximately 20 mm. The speci-
mens were clamped vertically between the upper and
lower grips of the tensile machine, with particular atten-
tion to ensure proper axial alignment to avoid bending
stresses. The machine was equipped with strain gauges
and a load cell to record the force and elongation data.
A constant crosshead speed of 5mm/min was maintained
until specimen failure. Based on multiple trials with
shaped carrot samples of varying diameters, the average
tensile force required to fracture the specimens was found
to be approximately 70 N.

Furthermore, tensile testing accounts for the variability
in carrot varieties, including differences in size, shape, and
moisture content, enhancing the harvester’s adaptability
and efficiency. Table 2 summarizes the properties of carrots
cultivated in the South Asian region, including data repre-
sentative of crops from Pakistan, along with the computed
tensile force by testing. Therefore, mechanical tensile testing
is essential for creating advanced, damage-minimizing carrot
harvesters that improve productivity and performance in
diverse agricultural conditions.

TABLE 2: Properties of the carrot plant [41].

Properties Average value
Length (cm) 10-15+3
Diameter (mm) 30+£3.6
Mass (g) 85-100 + 15
Volume (cm?) 115+ 15
Foliage length (mm) 50+5
Tensile force (N) 70+ 15

3.2. Soil Conditions. The soil conditions in Punjab, Pakistan,
are generally favorable for carrot cultivation, primarily due
to the region’s fertile alluvial and loamy soils, which provide
an ideal environment for root crops. The soil texture, often
loamy or sandy loam, promotes good drainage, moisture
retention, and aeration, allowing for optimal carrot root
development. The pH of the soil, which typically ranges
from 6.0 to 7.0, supports healthy carrot growth by facilitat-
ing nutrient uptake and reducing the risk of disease [42].
The region’s well-developed canal irrigation system ensures
a consistent water supply, essential for maintaining adequate
soil moisture, particularly during the growing season [43].
However, excessive water or improper irrigation can lead
to soil compaction, which can hinder root expansion and
complicate harvesting. Additionally, while the soil is nutri-
ent-rich, the management of organic matter is crucial for
maintaining soil structure and preventing erosion [44].
Despite the generally favorable conditions, challenges such
as salinity in certain areas can affect carrot growth, and soil
compaction may arise in intensively cultivated fields [45].
Overall, the soil conditions in Punjab, when properly
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managed, support the successful cultivation and harvesting
of high-quality carrots. Figure 3 shows mature carrots grown
in Punjab, Pakistan, ready for harvest.

3.3. Experimental Setup. The experimental setup for evaluat-
ing the carrot harvesting machine was methodically struc-
tured to capture the influence of critical operational
parameters on performance metrics such as harvesting effi-
ciency and carrot damage. Tests were performed under both
laboratory-controlled and field-representative conditions. A
series of 25 experimental trials were conducted, varying claw
belt speed (3.5-4.5m/s), roller speed (1.0-1.5 m/s), and taper
angle (22°, 26°, and 30°). The experimental matrix was
designed to identify optimal settings that would maximize
harvesting efficiency while minimizing mechanical damage
to the carrots. Parameter ranges were determined from pre-
liminary field observations and relevant literature to reflect
practical operational limits under typical soil and crop con-
ditions. The chosen claw belt and roller speeds span from
minimal mechanical agitation to higher throughput levels.
The selected taper angles represent varying degrees of carrot
grip and guidance, enabling assessment of both conservative
and aggressive harvesting geometries. The optimized param-
eters were then selected for further evaluation. The develop-
ment of the carrot harvester involved a structured
optimization process to enhance performance, efliciency,
and durability. Key design parameters, including roller
speed, taper angle, claw belt speed, and motor power con-
sumption, were systematically evaluated under standardized
field conditions. Similarly, the claw belt speed was examined
at 3.5, 4.0, and 4.5m/s to balance harvesting speed and
mechanical stress on the tested carrots. The motor power
requirement was set at 96 W to ensure compatibility with
standard planting patterns while maintaining energy
efficiency.

Figure 4 presents the CAD design of the carrot harvest-
ing machine, developed using SolidWorks. Figure 4a illus-
trates the complete 3D model, providing a comprehensive
view of the machine’s overall structure and components.
Figure 4b displays the top view, offering insights into the
machine’s layout and arrangement of key elements.
Figure 4c presents the front view, highlighting the design
features and operational aspects from a frontal perspective.
Figure 4d shows the side view, detailing the machine’s pro-
file and structural configuration.

The automated carrot harvesting machine developed for
this study comprises several integrated components
designed for efficient and low-damage operation, with a total
fabrication cost of Rs. 140,000 (=$500). Key components of
the machine include a claw belt mechanism with rubber
claws and pulley-driven motion powered by a 96-W DC
motor, and a roller assembly featuring Teflon-coated rollers
set at a 26° taper angle for guiding and cleaning. A digging
unit with a mild steel blade loosens soil to reduce pulling
resistance, while the tensioning and alignment system with
Teflon tension rollers ensures belt stability. A PID-
controlled module adjusts motor torque in real time using
load sensor feedback to prevent crop damage. The machine
also integrates a stereo vision camera and YOLOv8-based
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FIGURE 3: Carrot ready for harvesting in Punjab, Pakistan.

detection system for real-time carrot quality assessment
and classification. Power is supplied by two lightweight 12-
V lithium batteries (each weighing approximately 4 kg and
with 20 Ah capacity), while 14-in. pneumatic tyres ensure
smooth mobility over uneven agricultural terrain. Finally, a
sorting conveyor system directs carrots into appropriate bins
based on vision output, ensuring consistency with minimal
manual handling, tailored for local farming needs.

Figure 5 shows the fabricated automatic carrot harvest-
ing machine. Testing was conducted in conditions with
loamy and sandy loam soils. Moisture levels were main-
tained between 15% and 25% to replicate optimal carrot
growth conditions. Carrot spacing was kept at 0.3 m, and
forward speed was maintained at 1.2 m/s for consistent oper-
ation across different plots. Performance metrics such as
harvesting speed and efficiency were carefully recorded.
The precision, accuracy, recall, and F1-score were used to
ensure effective YOLOv8 model performance. This compre-
hensive testing approach provided valuable insights into the
machine’s mechanical performance, detection capabilities,
and suitability for large-scale commercial carrot harvesting.
Key soil parameters recorded during the experimentation
are shown in Table 3. Soil type was classified by doing tex-
ture analysis, while moisture content was determined gravi-
metrically. The bulk density was measured using the core
sampling method, while compaction was assessed through
a cone penetrometer. The temperature was recorded using
soil thermometers, and root zone depth was evaluated by
manual excavation and profiling. The field was preirrigated
24 h before harvesting to maintain optimal soil looseness and
reduce pulling resistance. This ensured consistency in evaluat-
ing machine performance, particularly in terms of extraction
force, root damage, and sorting accuracy. These soil condi-
tions provided a realistic and challenging environment to
assess the adaptability of the machine’s digging unit, claw belt
grip, and PID force regulation under variable field textures.

3.4. Control System. The control system of the carrot har-
vesting machine is designed with an encoder-based feedback
mechanism to ensure precise operation and efficient harvest-
ing. The system uses encoders attached to the motors driving
the rollers, claw belts, and other mechanical components.
These encoders continuously monitor the rotational speed
and position of each part, providing real-time data to the
central processing unit (CPU). This feedback enables the
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implementation of a closed-loop control system, such as a PID
controller, to dynamically adjust motor power and maintain
optimal performance. As the machine operates, the control
system continuously monitors the encoder data to regulate
motor speed. This ensures that the rollers rotate at the correct

speed to match the forward velocity of the machine, as the
claw belts efficiently grip and pull the carrots without causing
damage. In the event of soil irregularities or variations in car-
rot density, the encoder feedback allows the system to make
real-time adjustments to prevent slippage or excessive force.
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TABLE 3: Soil parameters at the time of testing.
Soil property Value/range
Soil type Loamy and sandy loam
Soil moisture content 18%-22%
Bulk density 1.3-1.5g/cm’
Soil temperature 22°C-26°C
Compaction (penetrometer) 1.2-1.8 MPa
Root zone depth 15-25cm

TABLE 4: Hyperparameters of the YOLO v8 model.

Hyperparameters Values
Epoch no. 100
Learning rate 0.01
Batch size 16
Confidence threshold 0.4
ToU threshold (NMS) 0.5
Dropout rate 0.5
Optimizer Adam

3.5. Quality Carrot Detection. The YOLOv8 model was uti-
lized for carrot detection and quality assessment using a spe-
cialized dataset of 280 annotated images, prepared with the
Labellmg tool. The dataset was divided into training and
testing sets in a 70:30 ratio to ensure a robust evaluation
framework, and the hyperparameter configuration of the
YOLO model was fine-tuned to optimize its performance
for detecting and classifying the quality of carrots. The
model was trained for 100 epochs, which provided sufficient
iterations for meaningful patterns within the data. A learn-
ing rate of 0.01 was chosen to balance convergence speed
and accuracy, while a batch size of 16 was employed to
achieve an effective balance between computational effi-
ciency and model performance. A confidence threshold of
0.4 was set to filter out low confidence predictions, thereby
minimizing false positives (FPs), and the intersection over
union (IoU) threshold for nonmaximum suppression
(NMS) was configured at 0.5 to eliminate redundant bound-
ing boxes, retaining only the most accurate ones. The drop-
out rate of 0.5 was applied to minimize overfitting by
randomly deactivating neurons during training. The anchor
boxes were customized to align with the specific dimensions
and aspect ratios of the carrots in the dataset. The Adam
optimizer was utilized for its adaptive learning rate capabil-
ities, making it well suited for training on this relatively
small dataset. Table 4 shows the hyperparameters at which
the YOLOv8 model was trained.

The performance of the model was evaluated using key
metrics, including true positives (TPs), FPs, true negatives
(TNs), and false negatives (FNs). These metrics are essential
for calculating performance parameters such as precision,
recall, accuracy, and F1 score. A confusion matrix was gen-
erated to provide a comprehensive analysis of the model’s
classification performance. This offered insights into the bal-
ance between detection errors and correct predictions. This
approach ensured that the fine-tuned YOLOv8 model deliv-
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Figure 6: Carrot harvesting machine performance at taper angle 22°.
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FiGure 7: Carrot harvesting machine performance at taper angle 26°.

ered reliable and accurate detection and classification of car-
rot quality, facilitating a detailed evaluation of its
effectiveness. Performance was evaluated using accuracy,
precision, recall, and F1 score, which are defined as follows:

(true positives + true negatives)

Accuracy =
total carrot samples
. true positives
Precision = — —
true positives + false positives
true positives
Recall = P

true positives + false negatives’

B 5% (precision x recall)
score =

precision + recall

The training performance was visualized through
epoch-wise plots of precision as well as loss. The precision
curve exhibited steady improvement, stabilizing near peak
performance, while the loss curve showed a consistent
decline. This indicated effective learning of the model.
This fine-tuned YOLOv8 model demonstrated high preci-
sion in detecting carrot locations and orientations, facili-
tating the reliable separation of quality carrots from
defective ones. These findings highlight YOLOVS’s efficacy
in agricultural automation, enabling real-time, high-
accuracy operations.
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FIGURE 8: Carrot harvesting machine performance at taper angle 30°.

TABLE 5: Experimental setup and parameter optimization.

Test no. Claw belt speed (m/s) Roller speed (m/s) Taper angle (*) Harvesting efficiency (%) Carrot damage (%)
1 35 1 22 84 11
2 1.2 22 87 9
3 1.2 26 92

4 4.5 1.5 26 89

5 4.5 1 26 83 13
6 35 1 22 80 14
7 3.5 1.3 30 78

8 4 1 26 88 8
9 4.5 1 30 85 10
10 4.5 1.3 30 82 12
11 3.5 1 22 85 10
12 35 1.2 26 89 7
13 4 1.3 26 91

14 4.5 1.2 26 89 6
15 4.5 1.5 30 80 15
16 3.5 1.3 22 78 16
17 3.5 1 30 86 8
18 4.5 1 26 86 9
19 1.5 26 87 7
20 1.2 26 90 9
21 3.5 1.2 26 88 8
22 4 1.2 30 87 7
23 35 1 26 87 8
24 4.5 1.2 30 81 13
25 4 1.2 22 91 5

4. Results and Discussion

The effect of different taper angles: 22°, 26°, and 30°, and belt
speeds: 3.5, 4, and 4.5 m/s, was studied for three parameters
mainly roller speed, successful pick-up percentage, and dam-
age rate. Across all taper angles, roller speed increases with
higher belt speeds, reaching its maximum at 4.5m/s. The
successful pick-up percentage follows a similar pattern,
peaking at 4 m/s, while 3.5 m/s results in lower pick-up effi-
ciency. The damage rate remains minimal under all condi-
tions. However, a slightly higher damage rate is noted at

4.5m/s. The results indicate that a belt speed of 4m/s pro-
vides the optimal balance between maximizing pick-up effi-
ciency and minimizing damage. Additionally, the taper
angle influences overall performance, with the most effective
results observed at 26°.

Figure 6 illustrates the impact of a 22° taper angle on
roller speed, successful pick-up percentage, and damage rate
for three different belt speeds: 3.5, 4, and 4.5 m/s. The roller
speed increases with higher belt speeds, reaching its maxi-
mum at 4.5 m/s. The successful pick-up percentage also fol-
lows a similar trend, having a high efficiency of 91%,
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FIGURE 9: Heatmap showing the effect of claw belt speed and roller speed on carrot harvesting efficiency.

TABLE 6: Calculated carrot harvesting machine design parameters
after optimization (shift to results).

Design parameters Value
Roller speed—Ilinear (m/s) 1.2
Taper angle () 26
Claw belt speed—linear (m/s) 4.0
Motor power requirement (W) 96.0
Power consumption (kW) 1.2
Forward speed (m/s) 1.2
Carrot spacing (m) 0.3

observed at 4 m/s, while the lowest pick-up rate corresponds
to 3.5m/s. The damage rate remains lowest at 4m/s. These
results suggest that while increasing the belt speed enhances
roller speed and pick-up efficiency, excessively high speeds
may contribute to a marginal increase in damage.

Figure 7 illustrates the impact of a 26” taper angle on
roller speed, successful pick-up percentage, and damage rate
for three different belt speeds: 3.5, 4, and 4.5 m/s. The mini-
mum damage rate of 3% is achieved for a belt speed of 4 m/s.
This speed also yields the best successful pick-up of 92%.

Figure 8 shows the impact of a 30" taper angle on roller
speed, successful pick-up percentage, and damage rate for
three different belt speeds: 3.5, 4, and 4.5 m/s. The most suc-
cessful pick-up was observed at 4 m/s of 87% with an average

damage rate of 7%, while the lowest was observed for 3.5m/s
of 78%.

Table 5 presents experimental readings used to optimize
the carrot harvesting machine. It outlines the combinations
of claw belt speed, roller speed, and taper angle tested across
25 trials, along with the resulting harvesting efficiency and
crop damage rates.

The heatmap, shown in Figure 9, visually represents the
effect of varying claw belt speed and roller speed on the har-
vesting efficiency of the machine. Each cell in the heatmap
corresponds to a unique combination of these parameters,
with color intensity indicating the resulting efficiency per-
centage. Darker shades (dark orange) represent higher effi-
ciencies, while lighter shades indicate suboptimal
performance. This visualization aids in identifying the opti-
mal range of operating conditions for maximum harvesting
efficiency with minimal damage.

Based on the experimental results, the optimized design
parameters of the machine are mentioned in Table 6. The
design parameters were optimized to roller speed of 1.2m/
s, taper angle of 26°, and claw belt speed of 4.0 m/s for effi-
cient operation. The motor power requirement of 96 W,
along with a forward speed of 1.2m/s and carrot spacing
of 0.3 m, ensured compatibility with standard planting pat-
terns. These tests were conducted on a standardized setup,
with rollers set to a linear speed of 1.2 m/s and motor power
inputs continuously monitored to ensure operational
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FiGURE 10: Detection of quality carrots using YOLO. (a) All carrots detected (confidence: 0.58-0.87, no defects), and (b) quality carrots

detected (confidence: 0.62-0.87), defects not detected.
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FiGURE 11: Performance metrics of the YOLO model.

efficiency. Additionally, the machine’s power consumption
was recorded at 1.2kW.

Figure 10 shows the detection of quality carrots using the
YOLOv8 model. Figure 10a shows that all carrots are
detected with a confidence level of 0.58-0.87 and no defects.
Figure 10b shows that quality carrots are detected with a
confidence level of 0.62-0.87, while defective ones are not
detected.

Figure 11 provides a comparative analysis of precision,
accuracy, recall, and F1 score to evaluate the model’s perfor-
mance. Precision and accuracy exhibit the highest values,
approaching 0.98, indicating the model’s strong ability to
correctly identify relevant instances and maintain an overall
correct classification rate. The F1 score, a harmonic mean of
precision and recall, is slightly lower than precision but
remains close to 0.95, reflecting a balance between the
model’s precision and recall capabilities. Recall, which mea-
sures the model’s ability to identify all relevant instances, is
slightly above 0.9. Overall, the results demonstrate a robust
performance, with high precision and accuracy contributing
to an effective classification process.

Figure 12 demonstrates the precision of the YOLOvS
model during the training and validation phases for carrot
detection, plotted against the number of epochs. Initially,
both training and validation precision exhibit a rapid
increase, reflecting the model’s ability to learn features effec-
tively from the dataset. At approximately 30 epochs, the pre-

cision for both datasets surpasses 0.8, indicating strong
model performance in detecting carrots. Beyond 30 epochs,
the training precision slightly outpaces validation precision.
However, both curves converge near 90 epochs, achieving a
precision close to 0.95 and reaching an optimal level of
learning. Hence, the graph demonstrates the robustness
and reliability of the YOLOv8 model in detecting carrots,
with high precision. This is achieved for both the training
and validation datasets over 100 epochs. This highlights
the model’s capacity to balance learning efficiency and accu-
racy for carrot detection tasks.

Figure 13 illustrates the loss of the YOLOv8 model dur-
ing both the training and validation phases for carrot detec-
tion, plotted against the number of epochs. The loss
decreases significantly after the 50th epoch for both the
training and validation datasets, with minimum loss
observed at the 100th epoch, after which the loss stabilizes.
Opverall, this behavior reflects good training dynamics, where
the model learns effectively in the early stages and then sta-
bilizes, making it good for testing and deployment without
overfitting.

Figure 14 shows the relationship between the confidence
threshold and precision for the YOLOv8 model. Confidence
represents the model’s certainty about detecting an object
within an image, with higher values indicating a greater level
of certainty. Precision, in turn, refers to the proportion of TP
predictions (correct detections) relative to all positive pre-
dictions made by the model. As the confidence threshold
increases from 0.1 to 0.9, precision improves, reflecting that
the model becomes more selective and produces more accu-
rate detections with higher confidence. The precision stabi-
lizes at approximately 0.98 beyond a threshold of 0.7,
signifying that further increases in confidence do not signif-
icantly enhance precision but help reduce FPs.

Figure 15 illustrates the trade-off between confidence
and recall in model performance. Confidence represents
the model’s certainty in its predictions, while recall measures
the proportion of actual positives correctly identified by the
model. As confidence increases from 0.1 to 0.9, it is observed
that recall decreases. This highlights the typical inverse rela-
tionship between these two metrics. Initially, lower confi-
dence thresholds yield higher recall, indicating the model is
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more likely to classify TPs. However, as the confidence
threshold rises, recall sees a decline, suggesting more strin-
gent criteria for prediction, which reduces the number of
TPs identified.

The model exhibited strong detection performance by
achieving a mAP of approximately 0.94 at IoU 0.5
(mAP@0.5). These values indicate the model’s ability to
maintain high precision and recall across varying levels
of localization strictness, ensuring reliable detection and
classification of quality carrots. The high mAP scores fur-
ther reflect the robustness of the model in distinguishing
between quality and defective samples and hence rein-
force its effectiveness in automation-driven harvesting
applications.

Table 7 shows the comparison of the performance of
manual carrot harvesting versus carrot harvesting machines.
The comparison between conventional hand-picking and
harvesting machines shows critical differences in perfor-
mance parameters such as speed, efficiency, cost, scalability,
and worker safety. The analysis is seen as favoring machine-
based harvesting for large-scale and efficient operations.
Harvesting machines demonstrate a superior speed of 3-5
acres per day, with an average harvesting time of approxi-
mately 2.88h per acre. This significantly outpaces the 0.2-
0.5 acres per day achieved through manual methods. Addi-
tionally, the harvesting efficiency of machines, mainly rang-
ing from 80% to 92%, surpasses the 60%-80% efficiency of
manual picking. This higher efficiency is attributed to the
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precision and consistency of machines, which minimize crop
losses under optimal field conditions, whereas manual
methods are prone to human fatigue and error, increasing
the likelihood of unharvested crops.

Figure 16 shows the comparison of harvesting efficiency
using the conventional method and the carrot harvesting
machine. Although the initial cost of harvesting machines is
higher due to the expense of procurement and maintenance,
this investment is offset by their scalability and ability to han-
dle extensive operations. Machines can operate continuously
with minimal downtime, providing a clear advantage for
large-scale harvesting, whereas manual methods are limited
by the availability and endurance of the labor force. Moreover,
worker safety is significantly improved with machines, as they
reduce the physical strain and risk of injuries associated with
repetitive manual tasks. In contrast, manual harvesting poses
long-term ergonomic risks and a higher likelihood of work-
related injuries. In conclusion, the results strongly favor the
adoption of harvesting machines for modern agricultural
practices, particularly in large-scale farming. The increased
speed, superior efficiency, enhanced scalability, and improved
worker safety of machine-based methods outweigh the bene-
fits of lower initial costs associated with manual harvesting.
For sustainable and high-output farming, investing in harvest-
ing machinery provides a practical and scientifically justified
solution, aligning with the needs of precision agriculture and
labor optimization.

The experimental outcomes of the current study provide
substantial insights into the optimization of key design and
operational parameters for a carrot harvesting machine. Spe-
cifically, the optimal configuration, comprising a claw belt
speed of 4.0m/s, a roller speed of 1.2m/s, and a taper angle
of 26°, demonstrated a successful pick-up rate of up to 92%
and a minimal damage rate of mostly 6%-8%. These find-
ings are consistent with and, in some aspects, improve upon
previous studies reported in the literature, while also
addressing critical shortcomings identified in earlier designs.

Bokai et al. [46], in their analysis of a clamping and con-
veying device for carrot harvesting, highlighted persistent
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challenges in reducing damage and leakage rates. Their find-
ings reported average damage rates ranging from 3.5% to
9.9% for different varieties at varying clamping speeds
(0.4-1.3m/s). Although their best-case damage rates were
slightly lower than those observed in our study (minimum
of 6%), it is important to note that our design balances both
high pick-up efficiency and operational simplicity in field
deployment. Additionally, their design reported significant
leakage issues, which our optimized system addressed
through improved taper angle and synchronized belt-roller
dynamics, reducing both crop escape and mechanical strain.
The findings from Senthilkumar et al. [47] demonstrated a
detopping efficiency of 98% and a damage rate of just 2%
under optimized field conditions in hilly regions. While
these outcomes indicate excellent machine performance,
the actual field capacity was recorded at 0.028 ha/h (equiva-
lent to roughly 0.7 acres/day), significantly lower than the 3-
5 acres/day achieved by our machine. This reflects the suit-
ability of our design for large-scale operations in plain ter-
rains. Furthermore, the wuse of claw-based pick-up
mechanisms in our study provides more versatile handling
of diverse soil textures and planting configurations com-
pared to fixed blade designs. A similar emphasis on reducing
damage was presented in the study on the double-disc cutter
design [48]. Their optimized system achieved a root and
stem damage rate as low as 2.61%, yet this configuration
involved complex cutter geometry and precise disc settings.
While this advanced cutting system excels in reducing dam-
age during detopping, it does not directly address the effi-
ciency of pick-up or conveying, which our study
specifically focuses on. Moreover, their detopping effective-
ness (87%-89%) is comparable to the successful pick-up
rates (88%-91%) recorded at a 26" taper angle and 4.0 m/s
belt speed in our machine, suggesting our approach achieves
competitive performance using fewer moving parts and
lower energy requirements.

The optimized design parameters, specifically the roller
speed of 1.2m/s, claw belt speed of 4.0 m/s, and taper angle
of 26°, are well complemented by the physical design
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TABLE 7: Comparison of the performance of manual carrot harvesting vs. carrot harvesting machine.

Operational parameters

Conventional hand picking (based on 8 h/day)

Harvesting machine

Speed (acres/day) 0.2-05 3-5
Harvesting efficiency 60%-80% 80%-92%
Initial cost Low High
Scalability Limited High

Worker safety

High risk (physical strain)

Low risk

Harvesting efficiency

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

[[] Conventional method
[l Harvesting machine

FiGURrE 16: Comparison of carrot harvesting efficiency using the
conventional method and the harvesting machine. X highlights
the mean while the line signifies the median.

geometry of the harvesting system suggested by Gaadhe et al.
[49]. The spatial configuration, including belt length, eleva-
tion, and tyne spacing, ensures synchronized interaction
with typical carrot spacing observed in field conditions. This
synergy between mechanical setup and experimental optimi-
zation enhances the overall reliability, efficiency, and crop
protection performance of the harvester. The incorporation
of YOLOVS in our study introduces a significant advance-
ment by enabling real-time detection of quality carrots. With
a precision of 0.978, a recall of 0.912, and F1 score of 0.945,
the model demonstrates strong performance in distinguish-
ing quality produce from defective samples. These metrics
surpass traditional image processing techniques used in ear-
lier systems, offering an integrated solution for mechanical
harvesting and Al-based quality grading. The model’s mAP
(mAP@0.5) of 0.94 is indicative of its robustness and practi-
cality for deployment in postharvest automation. Moreover,
the overall harvesting efficiency of our machine (80%-92%)
outperforms the manual harvesting range (60%-80%), as
shown in Table 5. This superiority in both speed and effi-
ciency aligns well with modern agricultural needs for scal-
ability and reduced labour dependency. Compared to
conventional practices, our machine offers a balance of
mechanical reliability, operational simplicity, and digital
intelligence. Hence, while previous research has made valu-
able contributions to reducing damage rates and improving
specific components of carrot harvesters, the present study
offers a holistic approach that optimizes mechanical param-
eters in conjunction with Al-based quality detection. This
integrated methodology ensures not only minimal crop loss

and mechanical damage but also meets the scalability
demands of commercial operations. The combination of
optimized design parameters and smart detection thus con-
tributes to a novel and practical advancement in the domain
of automated root crop harvesting.

5. Conclusions

e Carrots are a key staple in Pakistan, and mechanizing
their harvest is essential to meet rising demand and
enhance agricultural efficiency and sustainability.

e A semiautomated, PID-controlled carrot harvesting
machine was successfully designed and tested under
Pakistani field conditions at the cost of Rs. 140,000
(=$500). It achieved a harvesting efficiency of 92%
with less than 5% root damage.

e The machine harvested 3-5 acres per day, with an
average harvesting time of approximately 2.88h per
acre, significantly outperforming manual methods
(0.2-0.5 acres/day), while also reducing labor depen-
dency and improving operational safety.

e The system demonstrated optimal mechanical perfor-
mance at a taper angle of 26°, claw belt speed of
4.0 m/s, and roller speed of 1.2 m/s. Incorporation with
a YOLOv8-based vision module enabled real-time
classification and sorting of carrots with a mAP
(mAP@0.5) of 94%, ensuring high detection accuracy.

e These outcomes support the adoption of precision
agriculture and mechanized harvesting as viable, sus-
tainable practices for improving productivity in devel-
oping regions.

o For future work, it is recommended to conduct exten-
sive field testing across a wider range of regions to val-
idate the results comprehensively. Furthermore, sensor
fusion techniques can be explored and incorporated
into the detection model to increase detection accuracy
and optimize sorting efficiency.
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