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Deep learning underpins most of the currently advanced natural language processing (NLP) tasks such as tex-
tual classification, neural machine translation (NMT), abstractive summarization and question-answering (QA).
However, the robustness of the models, particularly QA models, against adversarial attacks is a critical con-
cern that remains insufficiently explored. This paper introduces QA-Attack (Question Answering Attack), a novel
word-level adversarial strategy that fools QA models. Our attention-based attack exploits the customized atten-

tion mechanism and deletion ranking strategy to identify and target specific words within contextual passages.
It creates deceptive inputs by carefully choosing and substituting synonyms, preserving grammatical integrity
while misleading the model to produce incorrect responses. Our approach demonstrates versatility across various
question types, particularly when dealing with extensive long textual inputs. Extensive experiments on multiple
benchmark datasets demonstrate that QA-Attack successfully deceives baseline QA models and surpasses existing
adversarial techniques regarding success rate, semantics changes, BLEU score, fluency and grammar error rate.

1. Introduction

Question-answering (QA) models, a key task within Sequence-to-
Sequence (Seq2Seq) frameworks, aim to enhance computers’ ability
to process and respond to natural language queries. As these models
have evolved, they have been widely adopted in real-world applica-
tions such as customer service chatbots (Nuruzzaman & Hussain, 2018),
search engines (Zhu et al., 2021), and information retrieval in fields
like medicine (Jin et al., 2021) and law (Martinez-Gil, 2023). How-
ever, despite the significant progress in deep learning and natural lan-
guage processing (NLP), these models remain vulnerable to adversar-
ial examples, leading to misinformation, privacy breaches, and flawed
decision-making in critical areas (Dong et al., 2022; Hathaliya et al.,
2022; Klopfenstein et al., 2017; Sun et al., 2021; Yin et al., 2018).
This highlights the importance of understanding how adversarial exam-
ples are generated from the attackers’ perspective and potential defense
mechanisms — an area that remains under-explored.

QA models are expected to comprehend given texts and questions,
providing accurate and contextually relevant answers (Soares & Par-
reiras, 2020). These models primarily address two types of questions:
Informative Queries and Boolean Queries. The Informative Queries typ-
ically begin with interrogative words such as “who,” “what,” “where,”
“when,” “why,” or “how,” requiring detailed and specific information

* Corresponding author.

from the provided context. Although models like T5 (Raffel et al., 2020),
LongT5 (Guo et al., 2022), and BART (Lewis et al., 2020), which follow
an encoder-decoder structure, have demonstrated strong performance,
they still suffer from maliciously crafted adversarial examples. Initially,
studies like “Trick Me If You Can” (Wallace et al., 2019b) primarily
relied on human annotators to construct effective adversarial question-
answering examples. This methodology, however, inherently constrains
scalability and increased resource demands. As research progressed,
automated approaches for attacking textual classifiers in QA models
emerged. Gradient-based methods, as employed in Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015), RobustQA (Yasunaga et al.,
2018), UAT (Wallace et al., 2019a), and HotFlip (Ebrahimi et al., 2018),
were developed to identify and modify the most influential words affect-
ing model answers. Building upon a deeper understanding of QA tasks,
subsequent studies explored more targeted strategies. For instance, Po-
sition Bias (Ko et al., 2020), TASA (Cao et al., 2022), and Entropy
Maximization (Shinoda et al., 2023) investigated the manipulation of
sentence locations and the analysis of answer sentences to identify vul-
nerable parts of the context. These approaches refined the attack meth-
ods by applying modifications through paraphrasing or replacing origi-
nal sentences, thus enhancing the effectiveness of adversarial examples.
However, these methods encounter two primary challenges: 1) None
of these attack methods is suitable for both “informative queries” and
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“boolean queries”. 2) Constraining the search space for optimal vulnera-
ble words to answer-related sentences compromises attack effectiveness;
meanwhile, targeting entire sentences proves inefficient (Jia & Liang,
2017).

In addition, Boolean Queries seek a simple binary “Yes” or “No” an-
swer. Models like BERT (Devlin et al., 2019), RoBERTa (Zhuang et al.,
2021), and GPT variants (Antaki et al., 2024; Bongini et al., 2022; Klein
& Nabi, 2019; Stiennon et al., 2020), which excel at sentence-level un-
derstanding and token classification, are widely used for Boolean QA
tasks. These models leverage their deep contextual understanding of
language to accurately determine whether a given statement is true or
false, making them state-of-the-art baselines for the task. Researchers
have proposed various approaches to target boolean classifiers in the
context of Boolean Queries attacks. Attacks like (Garg & Ramakrishnan,
2020; Jin et al., 2020; Li et al., 2020; Ren et al., 2019; Zang et al.,
2020), which involve adding, relocating, or replacing words, are based
on the influence that each word has on the prediction. They retrieve
word importance by the output confidence to the level or with gradient.
However, gradient calculation is computationally intensive and ineffec-
tive when dealing with long context input, and knowing victim models’
internal information is unrealistic in practice.

We present QA-Attack, an adversarial attack framework tailored
for both Informative Queries and Boolean Queries in QA models. It is
especially suitable for advancing the research in semi-black-box and
gray-box attacks. QA-Attack uses a Hybrid Ranking Fusion (HRF) al-
gorithm that integrates two methods: Attention-based Ranking (ABR)
and Removal-based Ranking (RBR). ABR identifies important words by
analyzing the attention weights during question processing, while RBR
evaluates word significance by observing changes in the model’s output
when specific words are removed. The HRF algorithm combines these
insights to locate vulnerable tokens, which are replaced with carefully
selected synonyms to generate adversarial examples. These examples
mislead the QA system while preserving the input’s meaning. This uni-
fied attack method improves both performance and stealth, ensuring
realistic applicability for both types of queries. In summary, our work
makes the following key contributions:

¢ We present QA-Attack with a Hybrid Ranking Fusion (HRF) algo-
rithm designed to target question-answering models. This novel ap-
proach integrates attention and removal ranking techniques, accu-
rately locating vulnerable words and fooling the QA model with a
high success rate.

o Our QA-Attack can effectively target multiple types of questions. This
adaptability allows our method to exploit vulnerabilities across di-
verse question formats, which significantly broadens the scope of
potential attacks in various real-world scenarios.

e QA-Attack generates adversarial examples by implementing subtle
word-level changes that preserve both linguistic and semantic in-
tegrity while minimizing the extent of alterations, and we conduct
extensive experiments on multiple datasets and victim models to
thoroughly evaluate our method’s effectiveness in attacking QA mod-
els.

The rest of this paper is structured as follows. We first review QA sys-
tem baselines and adversarial attacks for QA models in Section 2. Then,
we detail our proposed method in Section 3. We evaluate the perfor-
mance of the proposed method through extensive empirical analysis in
Section 4. We conclude the paper with suggestions for future work in
Section 5.

2. Related work

This section provides a comprehensive overview of question-
answering models and examines the existing research on adversarial
attacks against them.
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2.1. Question answering models

Question answering represents a complex interplay of NLP, informa-
tion retrieval, and reasoning capabilities (Soares & Parreiras, 2020; Yigit
& Amasyali, 2024). Basically, these models are designed to process an
input question and a context passage, extracting or generating an ap-
propriate answer through elaborate analysis of the semantic relation-
ships between these elements (Wang, 2022). Modern QA systems typi-
cally rely on deep learning models with transformer-based architectures
like BERT (Devlin et al., 2019) and its variants (Lan et al., 2020; Sanh
et al., 2019; Zhuang et al., 2021) being particularly prevalent. These
models excel at capturing contextual information and understanding nu-
anced relationships in the text with transformers, allowing them to per-
form impressively on QA tasks. In addition to these transformer models,
encoder-decoder architectures such as T5 (Khashabi et al., 2020; Raffel
et al., 2020) and BART (Lewis et al., 2020), GPT (Brown et al., 2020) and
PEGASUS (Zhang et al., 2020) have also become prominent in QA mod-
els. These models utilize an encoder to process the input question and
context, transforming them into a rich, context-aware representation,
and the decoder is then used to generate a coherent and contextually
appropriate answer.

2.2. Previous works on attacking QA models

With the development of NLP techniques, recent research has in-
creasingly focused on developing sophisticated textual adversarial ex-
amples for QA systems (Wallace et al., 2019b). The inherent differences
between “informative queries” and “boolean queries” necessitate dis-
tinct attacking diversities due to their unique answer structures (Wal-
lace et al., 2019a). Attacks on boolean QA pairs closely resemble meth-
ods used to mislead textual classifiers. These attacks primarily operate
at the word level, aiming to manipulate the model’s binary (yes/no) out-
put (Garg & Ramakrishnan, 2020; Li et al., 2020). In contrast, informa-
tive queries present a more complex challenge. These attacks frequently
target the sentence level, requiring an approach to disrupt the model’s
comprehensive understanding (Li et al., 2021).

2.2.1. Boolean queries attacks

Boolean queries are similar to classification tasks in NLP, while the
answer is based on two-way input: question and context. They are vul-
nerable to attacks designed for NLP classifiers when question and con-
text are simply encoded and concatenated. Approaches such as Garg
and Ramakrishnan (2020), Jin et al. (2020), Li et al. (2020), Madry
et al. (2018), Ren et al. (2019), Zang et al. (2020) concentrate on
altering individual words based on their influence on model predic-
tions. These methods typically employ carefully selected synonyms for
word substitution. The process of word replacement is guided either by
the direct use of BERT Masked Language Model (MLM) (Devlin et al.,
2019) or by leveraging gradient information to determine optimal sub-
stitution candidates. While effectively fool classifiers (boolean queries),
these attacks were initially designed for classification tasks and have
shown limited efficacy when applied to the question-and-context for-
mat of QA systems. To address this limitation, some attack methods
for Seq2Seq models have been adapted for QA models. UAT (Wallace
et al., 2019a), which averages gradients and modifies input data to max-
imize the model’s loss, has been adapted for QA but still struggles with
boolean queries due to their simplicity. Similarly, TextBugger (Li et al.,
2019), which focuses on character-level perturbations, also faces chal-
lenges in handling the deeper semantic understanding required in QA,
especially for multi-sentence reasoning. Liang’s approach (Liang et al.,
2018), relying on confidence-based manipulations, has difficulty reduc-
ing the model’s certainty in boolean queries where the binary answers
leave less room for variation in confidence. Although these approaches
offer improved accuracy in attacking informative questions with minor
modifications, they struggle with boolean queries. We argue that these
methods face challenges in identifying the most vulnerable words when
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dealing with concatenated question-context input relationships. The
MLQA attack (Rosenthal et al., 2021) attempts to bridge this gap by
utilizing attention weights to identify and alter influential words. How-
ever, this method, developed specifically for multi-language BERT mod-
els, may not fully address QA-specific vulnerabilities.

2.2.2. Informative queries attacks

In contrast to boolean queries, adversarial attacks on informative
queries within QA systems share fundamental similarities with attacks
on other Seq2Seq models (Bahdanau et al., 2014; Cheng et al., 2020; Li
& Liu, 2023; Luong et al., 2015; Moosavi-Dezfooli et al., 2016; Ribeiro
et al., 2018), concentrating more on the inter-relationship between ques-
tion and context. The defense mechanisms like RobustQA (Yasunaga
et al., 2018) have been developed to enhance model resilience through
improved training methods, and sophisticated attacks continue to suc-
cessfully compromise these systems, especially when employing sub-
tle manipulations of key input elements. Character-level attack meth-
ods, notably HotFlip (Ebrahimi et al., 2018), have demonstrated signif-
icant success by strategically flipping critical characters based on gra-
dient information, leading to misinterpreting informative inputs. In the
multilingual domain, MLQA (Talmor & Berant, 2019) leverages atten-
tion weights to identify and target crucial words, though its attention
mechanism, primarily designed for multilingual functionality, may not
fully exploit the intricate vulnerabilities within the model’s attention
architecture. Advanced techniques have emerged to target the influ-
ence that answers have on QA systems. Position Bias and Entropy Max-

‘ Input:
‘ Context (C): The novel,...,
‘ ,..., during Queen Elizabeth I's reign.

Attention-based Ranking (ABR)

~

Question (q): Is the other boleyn girl part of a series?
set during the reign of Henry's daughter
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imization methods exploit model weaknesses by manipulating contex-
tual patterns and answer positioning, particularly effective in scenar-
ios involving complex, lengthy responses. Syntactically Controlled Para-
phrase Networks (SCPNs) (Iyyer et al., 2018) generate adversarial ex-
amples through strategic syntactic alterations while preserving seman-
tic meaning. TASA (Targeted Adversarial Sentence Analysis) (Cao et al.,
2022) primarily relies on manipulating the answer sentences to mis-
lead QA models, making it particularly effective for informative queries
where complex responses provide more opportunities for subtle modifi-
cations. However, this approach is not suitable for boolean queries, as
the simplicity of yes/no answers limits the sentence-level manipulations
that TASA depends on.

Despite significant progress in adversarial attacks on QA systems,
existing methods still face several notable limitations. Most approaches
are specialized for either informative or boolean queries, but not both.
For instance, sentence-level attacks such as TASA are designed for infor-
mative QA tasks that require detailed answers, and are not applicable to
boolean queries due to their simplicity and limited answer structure. In
contrast, Textfooler primarily targets classification tasks and often fails
to generalize well to open-ended or extractive QA formats. Additionally,
sentence-level adversarial strategies, while often effective in misleading
QA models, typically suffer from high computational cost due to the
need for candidate generation, semantic similarity evaluation, and sen-
tence rewriting. More critically, these approaches often introduce signif-
icant semantic shifts, which can alter the original intent of the context or
question. This undermines the imperceptibility of adversarial examples
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Fig. 1. The workflow of our QA-Attack algorithm for QA models. It processes question-context pairs through two parallel modules: Attention-based Ranking (ABR)
and Removal-based Ranking (RBR). These modules generate attention and removal scores respectively for each word using customized attention mechanisms and
removal ranking strategies. The scores are then aggregated, and the rop, highest-scoring words are selected as candidates. Finally, these candidates are replaced with
BERT-generated synonyms to create adversarial examples that can effectively mislead the QA model.
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and raises concerns about the validity and naturalness of the generated
inputs, particularly in scenarios where preserving the original meaning
is crucial.

Recent research has proposed several defense strategies to enhance
the robustness of QA systems against adversarial attacks. Frequency-
Guided Word Substitution (FGWS) (Mozes et al., 2021) improves input
stability by substituting rare words with high-frequency synonyms dur-
ing training, thereby strengthening the model’s resilience to word-level
perturbations. Similarly, Random Masking Training (RanMASK) (Zeng
et al., 2023) enhances robustness by randomly masking tokens during
fine-tuning, which encourages the model to generalize effectively over
incomplete or partially corrupted inputs. These defense mechanisms
make QA systems less vulnerable to various types of adversarial attacks.

3. Our proposed attack method

In this section, we introduce the QA-Attack algorithm. It can be sum-
marized into three main steps. First, the method effectively captures
important words in context by processing pairs of questions and corre-
sponding context using attention-based and removal-based ranking ap-
proaches. Then, attention and removal scores are combined, allowing
the identification of the most influential words. At last, a masked lan-
guage model (Devlin et al., 2019) is utilized to identify potential syn-
onyms that could replace the targeted words. The overall workflow of
QA-Attack is shown in Fig. 1. In the following sections, we explain our
model in detail.

3.1. Problem setting

Given a pre-trained question-answering model F, which receives
an input of context C, question g, and outputs answer a, such that
F(q,C) = a. The objective is to deceive the performance of F with per-
turbed context C’ such that F(q,C’) # a. To craft C’, a certain number
of perturbation c,;, is added to the context C by replacing some of its
original tokens {c, ¢, ..., c,}.

3.2. Attention-based ranking (ABR)

Attention mechanisms were first used in image feature extraction
in the computer vision field (Galassi et al., 2021; Lyu et al., 2023; Xu
et al., 2015; Yang et al., 2020). However, they were later employed
by Bahdanau et al. (2014), Ni et al. (2022) to solve machine translation
problems. In translation tasks, attention mechanisms enable models to
prioritize and focus on the most relevant parts of the input data (Luong
et al., 2015). In question-answering tasks, attention scores are imported
to examine the relationships between question and context, allowing
the model to determine which words or phrases are most relevant to
answering the question (Xiao & Zhu, 2023). Hence, we leverage the at-
tention score to identify target words for our attack. We employ the
attention mechanism from T5 (Raffel et al., 2020) that has been specif-
ically optimized for question-answering tasks in UnifiedQA (Khashabi
et al., 2020). As shown in Fig. 1, the “Attention-based Ranking” begins
by encoding the input context and question through an encoder. Dur-
ing the encoding process, self-attention allows the model to analyze how
each word in the input relates to every other word, effectively highlight-
ing the words that carry the most weight in understanding both question
and context. In the decoding process, cross-attention further refines this
by focusing on the parts of the input most relevant to generating the cor-
rect output. By averaging the attention scores of all layers and heads,
we match them to each input word.

The implement details are shown in Algorithm 1. The question & con-
text pair is fitted into attention network A, and we filter out the attention
scores for context (lines 1 to 8 of Algorithm 1). Then, the attention score
of each word corresponding to each layer is summed up. After averaging
and normalization, the word-level attention score is obtained.
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Algorithm 1: QA-attack algorithm (adversarial generation).

Input : QA victim model F(-), logits L, question ¢, context C,
words in the context ¢, reference answer a, attention
network A, top k words to attack top,, number of
synonyms d, BERT MLM model BERT for generating
synonyms.

Output: Optimal adversarial sample C’

// Attention-based Ranking;

Compute attention scores: a « [(c, A(g + O))];

Initialize attention score list: attention_scores < [ |;

for each score in a do

if score € C then
‘ Append score to attention_scores;
end

end

// Removal-based Ranking;

Initialize importance score list: importance_scores < [ |;

for each c in C do

Generate modified context: C* « C excluding c;
Compute importance score:
importance_scores.append(|F(q,C*) — F(q,C)|);

© ® N U A W N =

e
w N = O

14 end
15 // Hybrid Ranking Fusion;
16 Combine attention and importance scores:
combined_scores < attention_scores U importance_scores;
17 Select top, words: top_k_list « sort(combined_scores)[ : top,];
18 Initialize adversarial examples list: Adv_list < [ ];
19 for each t in top_k_list do

20 Generate adversarial token from d potential synonyms:
Caaw < BERT(D);

21 Create adversarial context: AC < [¢}, ..., Cagps --+ s Cnls

22 Append AC to Adv_list;

23 end

3.3. Removal-based ranking (RBR)

Previous studies on adversarial attacks in the text have shown
that each word’s significance can be quantified using an importance
score (Cao et al., 2022; Jin et al., 2020; Li & Liu, 2023; Li et al., 2020).
This score is largely determined by how directly the word influences the
final answer. To enhance the efficacy of ranking progress, we rank each
word in the context to obtain the removal importance score (lines 9 to
14 of Algorithm 1). Given the input context C containing n words from
¢, to ¢, and question ¢, the importance score (removal score) of the i th
(1 <i<n)word ¢ is:

I;=Lg(alq,C)—Lg(a|q,C\cp), (@]

where C\ ¢; represents the context after deleting ¢;, and L, =
log P(a | g, C) refers to the probability (logits) of the label, respectively.

3.4. Hybrid ranking fusion (HRF)

The attention-based and removal-based word selection techniques
offer complementary perspectives on token significance, each highlight-
ing different aspects of word importance. Consequently, we tend to
choose words that both methods consider significant. This is achieved
by adding the scores from each method for every word to create a fusion
score.

When generating a fusion score, we address several key factors. First,
we independently normalize the attention and removal scores before
adding them together. Then, to balance attack effectiveness and effi-
ciency, we introduce a fop, parameter, a positive integer that controls
the number of words targeted. Finally, we select the rop; highest-scoring
words for modification (lines 15 to 18 of Algorithm 1).
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3.5. Synonym selection

Various synonym generation methods exist, including
Word2Vec (Mikolov et al., 2013), Hownet (Dong & Dong, 2003),
and WordNet (Miller, 1992). We adopt BERT (Devlin et al., 2019) for
synonym selection due to its textual capabilities, which enable it to
generate synonyms based on the complete sentence structure. Unlike
Word2Vec’s static embeddings or WordNet’s fixed synonym lists, BERT’s
context-sensitive approach allows for dynamic synonym selection that
preserves both semantic meaning and grammatical correctness. This
contextual awareness makes BERT particularly effective for crafting
natural and semantically coherent adversarial examples.

We process each selected word in the context by replacing it with
the “[MASK]” token. This modified context is then input into the BERT
Masked Language Model (MLM) to predict the most likely substitutions
for the masked word. To expand the range of potential samples, we intro-
duce a parameter d that controls the number of synonym substitutions
considered (lines 19 to 23 of Algorithm 1). This approach allows us to
generate a diverse set of imperceptible replacements while maintaining
contextual relevance.

3.6. Candidate selection

We define an optimal adversary as one that maximizes the diver-
gence between the predicted and attacked answers. For boolean queries
(yes/no), we follow previous successful textual classifier approaches by
comparing the logits of output labels. For informative queries, we ag-
gregate the logits across individual words in the response. The optimal
adversary C’ is identified from the “Adv_list” using the logits derivation
function L, as detailed in Algorithm 2.

Algorithm 2: QA-attack algorithm (optimization).

1 Initialize maximum gap: max_gap « —oo;
2 Initialize optimal adversarial context: C’ « @;
3 for each adv in Adv_list do

4 if F(adv) # a then
5 Compute gap: gap < L(F(adv)) — L(F(C));
6 if gap > max_gap then
7 Update maximum gap: max_gap < gap;
8 Update optimal adversarial context: C’ < aduv;
9 end
10 end
11 end

12 return Optimal adversarial sample C’

4. Experiment and analysis

In this section, we present a comprehensive evaluation of QA-
Attack’s performance compared to current state-of-the-art baselines. Our
analysis covers several key aspects with various metrics, providing a
thorough understanding of our method’s capabilities, limitations, and
performance across diverse scenarios. We provide a detailed analysis
of attack performance and imperceptibility (Section 4.4). Besides, to
gain deeper insights, we conduct ablation studies (Section 4.5) and as-
sess attacking efficiency (Section 4.6). In addition, we examine QA-
Attack’s response to defense strategies (Section 4.8), exploring the ef-
fects of adversarial retraining (Section 4.7) and investigating the trans-
ferability of attacks (Section 4.9). Finally, we report the preference of
our attack by investigating parts of speech preference (Section 4.10)
and analyzing its robustness versus the scale of pre-trained models
(Section 4.11).
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4.1. Datasets and victim models

We assess QA-Attack using four informative query datasets: SQUAD
1.1 (Rajpurkar et al., 2016), SQUAD V2.0 (Rajpurkar et al., 2018), Nar-
rativeQA (Kocisky et al., 2018), and NewsQA (Trischler et al., 2017), as
well as two domain-specific datasets, EMRQA (Pampari et al., 2018)
and FinQA (Chen et al., 2022), along with a boolean query dataset,
BoolQ (Clark et al., 2019). Note that EMRQA and FinQA are domain-
specific datasets designed to evaluate attack performance in specialized
fields, and thus were excluded from our ablation experiments.

SQuAD 1.1: Questions formulated by crowd workers based on
Wikipedia articles. Answers are extracted as continuous text spans
from the corresponding passages.

¢ SQuAD 2.0: Extension of SQuAD 1.1 incorporating unanswerable

questions. These questions are designed such that no valid answer

can be located within the provided passage, adding complexity to
the task.

NarrativeQA: Questions based on entire books or movie scripts. An-

swers are typically short and abstractive, demanding deeper compre-

hension and synthesis of narrative elements.

e NewsQA: Questions based on CNN news articles designed to test
reading comprehension in the context of current events and jour-
nalistic writing.

e BoolQ: Dataset of boolean (yes/no) questions derived from
anonymized, aggregated queries submitted to the Google search en-
gine, reflecting real-world information-seeking behavior.

e EMRQA: Large-scale question-answer pairs generated from elec-
tronic medical records. It emphasizes domain-specific reasoning and
medical information extraction, challenging models with clinical
contexts.

¢ FinQA: Financial QA dataset focusing on numerical reasoning over

semi-structured tables and text passages, requiring models to per-

form calculations and logical inference.

Our experiment includes three question-answering models for com-
parison. They are T5 (Khashabi et al., 2020), LongT5 (Guo et al., 2022),
and BERT} s (Devlin et al., 2019). The LongT5 is an extension of T5
with an encoder-decoder specifically for long contextual inputs. The
BERT-based models are structured with bidirectional attention, mean-
ing each word in the input sequence contributes to and receives context
from both its left and right sides. Table 1 presents the distribution of
dataset splits and F1 scores reported on each QA baseline.

4.2. Baseline attacks

For our experimental baselines, we employ seven leading attack
methods: TASA (Cao et al., 2022), RobustQA (Yasunaga et al., 2018),
Tick Me If You Can (TMYC)(Wallace et al., 2019b), T3(Wang et al.,
2020), TextFooler (Jin et al., 2020), PIA (Parry et al., 2024), and LLM-
Attack (Wang et al., 2023). We utilize the official implementation of T3
in its black-box setting, while TASA, TMYC, and RobustQA are employed
with their standard configurations. TextFooler, originally not designed

Table 1
Dataset distribution and corresponding baseline performance (F1).

Data distribution Model performance (F1)

Dataset

Total Train  Validation Test ~T5 LongT5 BERT),.

SQuAD 1.1 100k 87,600 10,570 N/A  88.9 89.5 88.5
SQuAD V2.0 150k 130,319 11,873 N/A 81.3 83.2 74.8
NewsQA 119k 92,549 5165 5126 66.8 67.2 60.1
BoolQ 16k 9427 3270 3245 85.2 86.1 80.4
NarrativeQA 45k 32,747 3461 10,557 67.5 68.9 62.1
EMRQA 400k 300,000 50,000 50,000 71.2 72.5 69.3
FinQA 10k 7000 1500 1500 77.8 78.6 74.2
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Comparison of original and adversarial contexts for two types of queries. The table highlights the differences between
the original and adversarial contexts, as well as the corresponding answers provided by the model before and after

the attack.

Question

Was the movie “The Strangers” based on a true story?

Context

The Strangers is a 2008 American slasher film written and directed by Bryan
Bertino. Kristen (Liv Tyler) and James (Scott Speedman) are expecting a relaxing
weekend at a family vacation home, but their stay turns out to be anything but
peaceful as three masked torturers leave Kristen and James struggling for survival.
Writer-director Bertino was inspired by real-life events: the Manson family Tate
murders, a multiple homicide; the Keddie Cabin Murders, that occurred in California
in 1981; and a series of break-ins that occurred in his own neighborhood as a child.

Adversary

The Strangers is a 2008 American slasher thriller written and directed by Bryan
Bertino. Kristen (Liv Tyler) and James (Scott Speedman) are spending a relaxing
weekend at a family vacation home, but their stay turns out to be anything but
peaceful as three masked torturers leave Kristen and James struggling for survival.
Writer-director Bertino was influenced by real-life incidents: the Manson family Tate
murders, a multiple homicide; the Keddie Cabin Murders, that occurred in California
in 1981; and a series of break-ins that occurred in his own home as a child.

Original Answer

Yes

Attacked Answer

No

Question

Who ruled the Duchy of Normandy?

Context

The Normans were famed for their martial spirit ...The Duchy of Normandy, which
they formed by treaty with the French crown, was a great fief of medieval France,
and under Richard I of Normandy was forged into a cohesive and formidable
principality in feudal tenure ...Norman adventurers founded the Kingdom of Sicily
...an expedition on behalf of their duke, William the Conqueror, led to the Norman
conquest of England at the Battle of Hastings in 1066.

Adversary

The Normans were famed for their warrior spirit ...The Duchy of Normandy, which
they formed by treaty with the French crown, was a great fief of medieval France,
and under William I of Normandy was forged into a cohesive and formidable
principality in feudal tenure ...Norman adventurers invaded the Kingdom of Sicily

...an invasion on behalf of their duke, William the Conqueror, led to the Norman
conquest of England at the siege of Hastings in 1066.

Original Answer The French crown

Attacked Answer

William I of Normandy

for question-answering tasks, was adapted for our experiments by mod-
ifying it to process the context only (questions are removed). For PIA
and LLM-Attack, we employ their official implementations aligned with
question answering tasks.

4.3. Experiment settings and evaluation metrics

The base setting of our experiments is to let top, =5, d =2, and use
a BERT-base-uncased' with 12 Transformer encoder layers (L) and 768
hidden layers (H) as the synonym generation model. Some visualized
examples are shown in Table 2. Tables 3-5 summarize the experimental
results on informative queries datasets, offering a comparative analysis
of our QA-Attack method against five state-of-the-art QA baselines. For
boolean queries, we present the attacking results on the BoolQ dataset
in Table 6. Besides, we provide code for the reproducibility of our ex-
periments.”> The metrics used in our experiment are:

e F1: The F1 score balances precision and recall, providing a nuanced
view of how much the attacked answers match reference answers.

e ROUGE and BLEU: A higher BLEU (Papineni et al., 2002) or
ROUGE (Lin, 2004) score in context indicates that the adversarial
context retains more of the exact phrasing, contributing to better
linguistic fluency and coherence.

e Exact Match (EM) Measures the percentage of model predictions
that exactly match the correct answers in both content and format.

—

https://github.com/google-research/bert/?tab = readme-ov-file.
Our code is available at https://github.com/UTSJiyaoLi/QA-Attack.

X

e Similarity (SIM): Evaluates the semantic similarity between orig-
inal and adversarial context using BERT (Devlin et al., 2019) em-
beddings. (Note: In our following experiments, EM and SIM are not
only measured answers but also reflect the quality of the generated
context in Section 4.5.3).

e Modification Rate (Mod): Mod measures the proportion of altered
tokens in the text. This metric considers each instance of replace-
ment, insertion, or deletion as a single token modification.

e Grammar Error (GErr): GErr measures the increase in grammati-
cal inaccuracies within successful adversarial examples relative to
the original text. This measurement employs LanguageTool (Naber,
2003) to enumerate grammatical errors.

e Perplexity (PPL): PPL serves as an indicator of linguistic fluency
in adversarial examples (Kann et al., 2018; Zang et al., 2020). The
perplexity calculation utilizes a GPT-2 model with a restricted vo-
cabulary (Radford et al., 2019).

It is important to note that the evaluation metrics (SIM, Mod, GErr, and
PPL) employed in this work are specifically designed to quantify the
degree of semantic and linguistic divergence between original and ad-
versarial inputs from a computational model perspective. These metrics
are used to assess attack effectiveness in disrupting model predictions,
rather than directly measuring human perceptibility. We do not assume
that lower SIM or GErr/PPL values necessarily correspond to greater
detectability by human readers. While human imperceptibility is a fo-
cus of other NLP attacks, such as summarization, it is not a focus in
our research for QA attacks, due to the different types of application
scenarios. It is supported in prior studies that attacks can be evaluated


https://github.com/google-research/bert/?tab=readme-ov-file
https://github.com/UTSJiyaoLi/QA-Attack
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Comparative analysis of QA-Attack and baseline models on T5. Drops of BLEU and ROUGE scores
(uni-gram) on contexts are reported in the table, with higher values indicating better performance.
For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better performance.

Datasets Methods F1] EM| ROUGE? BLEU?T SIM|
TASA (Cao et al., 2022) 9.21 7.49 89.12 82.88 6.38
TMYC (Wallace et al., 2019b) 7.28 8.21 81.91 78.72 8.22
RobustQA (Yasunaga et al., 2018) 5.89 7.52 84.23 77.41 6.03
SQUAD 1.1 TextFooler (Jin et al., 2020) 10.6 10.49 83.11 76.05 6.29
T3 (Wang et al., 2020) 5.41 6.29 86.83 73.82 7.23
PIA (Parry et al., 2024) 7.32 8.33 82.37 79.03 7.33
LLM-Attack (Wang et al., 2023) 8.98 9.54 85.11 75.12 6.77
QA-Attack (ours) 4.67 5.68 90.51 84.11 5.91
TASA (Cao et al., 2022) 20.09 19.31 70.21 76.06 7.29
TMYC (Wallace et al., 2019b) 17.23 20.68 65.19 69.82 9.05
RobustQA (Yasunaga et al., 2018) 16.37 18.73 67.71 63.19 8.14
TextFooler (Jin et al., 2020) 21.69 24.5 65.33 65.01 9.32
SQuAD V2.0 T3 (Wang et al., 2020) 11.19 19.68 69.71 73.53 8.82
PIA (Parry et al., 2024) 12.58 17.46 71.48 75.46 8.11
LLM-Attack (Wang et al., 2023) 13.82 19.63 69.01 74.21 8.44
QA-Attack (ours) 9.13 15.41 72.76 77.28 6.33
TASA (Cao et al., 2022) 11.79 15.25 68.11 70.36 6.11
TMYC (Wallace et al., 2019b) 12.73 9.32 65.91 67.22 7.61
RobustQA (Yasunaga et al., 2018) 10.01 13.91 67.19 64.11 6.81
Narrative QA TextFooler (Jin et al., 2020) 14.72 18.61 63.85 62.82 11.74
T3 (Wang et al., 2020) 11.74 11.37 62.34 60.17 6.28
PIA (Parry et al., 2024) 11.65 14.81 66.67 70.51 6.71
LLM-Attack (Wang et al., 2023) 12.23 15.72 63.71 69.04 8.91
QA-Attack (ours) 5.61 7.23 69.18 75.73 5.23
TASA (Cao et al., 2022) 8.56 29.44 77.28 69.44 12.28
TMYC (Wallace et al., 2019b) 6.12 31.23 77.96 72.49 10.32
RobustQA (Yasunaga et al., 2018) 5.12 29.48 78.72 79.82 10.84
NewsOA TextFooler (Jin et al., 2020) 9.01 30.86 74.21 57.44 27.91
T3 (Wang et al., 2020) 6.21 28.52 75.22 72.56 14.27
PIA (Parry et al., 2024) 7.41 28.77 75.18 74.91 14.41
LLM-Attack (Wang et al., 2023) 8.11 29.15 74.33 69.92 11.37
QA-Attack (ours) 3.61 24.42 78.85 82.83 8.92

without human evaluations (Cheng et al., 2020; Li et al., 2019; Madry
et al., 2018).

4.4. Experiment analysis

Our experimental results in Tables 3-5 demonstrate that QA-
Attack consistently outperforms baseline methods across all informa-
tive datasets. As shown in Table 6, our method achieves superior per-
formance on the boolean dataset, surpassing all baseline approaches in
degrading victim models’ accuracy (note that TASA is designed only for
informative queries; it is incompatible with boolean query attacks). For
informative queries, comparing performance on attacking LongT5 with
SQuAD 1.1 and NarrativeQA datasets (representing shortest and longest
contexts) in Table 5, we observe that while F1 and EM scores decrease
for longer contexts, QA-Attack maintains superiority over baselines. This
indicates our approach’s robustness and adaptability to varying context
lengths, particularly in long texts. The improved performance in longer
contexts suggests our HRF approach effectively identifies and targets
vulnerable tokens. Regarding semantic consistency, QA-Attack achieves
lower similarity scores compared to baseline methods, indicating that
the answers generated after the attack deviate more in meaning from the
ground truth responses. In addition, as shown in Table 7, these attacks
reveal heightened vulnerabilities when applied to specialized medical
and financial data inputs. Notably, QA-Attack achieves superior perfor-
mance on both the EMRQA and FinQA datasets, consistently outper-
forming all baselines across the informative and boolean answer types,
which are categorized based on our task-specific definition.

Additionally, the quality of the generated adversarial samples is
evident from the ROUGE and BLEU scores. Our method consistently
achieves higher ROUGE and BLEU scores compared to the baselines,

which suggests that the adversarial examples generated by QA-Attack
are not only effective in terms of altering the model’s output but also
maintain a high degree of contextual and linguistic coherence. This is
largely due to our synonym selection method, which ensures the replace-
ments are contextually appropriate and semantically relevant. More-
over, the token-level replacement strategy, which only modifies fewer
words (typically five in the base setting), further ensures that the adver-
sarial examples remain similar to the original context while fooling the
model.

4.5. Ablation and hyperparameters studies

To comprehensively validate the efficacy of the proposed QA-Attack
method, this section conducts a detailed ablation study, dissecting each
component to assess its individual impact and overall contribution to
the method’s performance.

4.5.1. Effectiveness of hybrid ranking fusion on multiple question types

We test how HRF, ABR, and RBR methods perform across different
top, values on the SQUAD and BoolQ datasets, with d remaining, shown
in Fig. 2. HRF consistently outperforms ABR and RBR for all rop, val-
ues on both datasets. This suggests that combining attention-based and
removal-based ranking in HRF is more effective at generating robust
adversarial examples than using either method alone. The graph also
shows that as rop, increases, all methods improve, indicating that higher
top; values help identify vulnerable tokens better and lead to more ef-
fective attacks.

Despite the better performance at higher rop, values, the study uses
top, =5 as a base setting. This choice balances effectiveness with mini-
mal text modification, ensuring that adversarial examples remain close
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Comparative analysis of QA-Attack and baseline models on Bert;,.. Drops of BLEU and ROUGE
scores (uni-gram) on contexts are reported in the table, with higher values indicating better per-
formance. For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better

performance.
Datasets Methods F1| EM| ROUGE? BLEU?T SIM|
TASA (Cao et al., 2022) 1527  34.33  82.87 67.22  8.19
TMYC (Wallace et al., 2019b) 12.89  28.63  81.51 76.39  10.24
RobustQA (Yasunaga et al., 2018) 15.72 25.38 79.28 73.27 15.81
SOUAD 1.1 TextFooler (Jin et al., 2020) 23.04 3728 67.28 49.49 1411
: T3 (Wang et al., 2020) 8.79 16.11  57.19 63.81  16.92
PIA (Parry et al., 2024) 27.12 4056  60.03 4217 17.94
LLM-Attack (Wang et al., 2023) 8.23 19.34 86.03 72.81 8.91
QA-Attack (ours) 6.42 13.31  91.22 77.16  7.43
TASA (Cao et al., 2022) 3122 289 77.06 69.05  8.22
TMYC (Wallace et al., 2019b) 20.38 2777  73.81 67.23  10.34
RobustQA (Yasunaga et al., 2018) 27.64 31.82 75.67 71.42 11.23
TextFooler (Jin et al., 2020) 36.8 2049  67.14 62.67  13.28
D V2.
SQuAD V2.0 g (Wang et al., 2020) 26.16  27.47  74.94 70.14  7.24
PIA (Parry et al., 2024) 39.62 3421  60.81 58.06  14.19
LLM-Attack (Wang et al., 2023) 2521 2588  77.06 7177  7.31
QA-Attack (ours) 22.18 21.5 80.12 75.23  4.11
TASA (Cao et al., 2022) 1211 1451  61.15 63.04  7.32
TMYC (Wallace et al., 2019b) 8.41 1023 52.89 69.82  10.72
RobustQA (Yasunaga et al., 2018) 7.24 9.43 63.81 67.43 9.53
Narrative QA TextFooler (Jin et al., 2020) 13.74 1879  56.11 56.82  14.21
T3 (Wang et al., 2020) 8.49 15.35  65.48 67.09  7.83
PIA (Parry et al., 2024) 1533 2022 5361 55.04  17.41
LLM-Attack (Wang et al., 2023) 6.41 11.02  66.42 66.04  6.42
QA-Attack (ours) 3.86 9.34 69.44 71.15  5.61
TASA (Cao et al., 2022) 16.85  20.95  68.74 69.12  15.22
TMYC (Wallace et al., 2019b) 15.86  31.23  77.96 7249  10.31
RobustQA (Yasunaga et al., 2018) 17.72 29.48 79.62 67.33 10.84
NewsOA TextFooler (Jin et al., 2020) 2413 2263 59.17 61.22  31.07
ews T3 (Wang et al., 2020) 21.22 2257 6514 67.11  18.27
PIA (Parry et al., 2024) 28.65 33.21  58.77 59.19  33.61
LLM-Attack (Wang et al., 2023) 1845 26,51  70.07 69.51  10.12
QA-Attack (ours) 1491  20.20 8071 74.87  9.22
to the original context while still being effective. The consistent trend —m— SQUAD 1.1 HRF —a— SQUAD 1.1 ABR
, -
acr(f)ss both S(})luﬁiD ?ndd]'?»ftzolQ dataset's demonstr;tes 'that' HRF’s suvlla.eru')r o— SQuAD 1.1 RBR BoolQ HRF
performance holds for di erent que.stlon types, s owing its \./ers.atl 1.ty in BoolQ ABR BoolQ RBR
attacking various question-answering models. This analysis highlights F1
the practical effectiveness of the HRF method and its ability to generate 3
impactful adversarial examples across different QA tasks. B
To further examine the relationship between ABR and RBR within
HRF, we evaluate various weighting ratios for each method’s contribu- 30 ¢
tion to the final HRF score. Specifically, we assign varying distribution I
percentages to ABR and RBR before combining their scores, allowing us 25 ¢
to assess the impact of each method on overall performance. As shown /o
in Fig. 3, the x-axis denotes the ABR:RBR weight ratio, while the y-axis 20 /
reflects the corresponding EM scores. The results reveal that increasing ./ -
ABR’s weight leads to only a slight increase in EM, whereas increasing 15 —
- @
RBR’s weight results in a more significant degradation in performance T
(much higher EM scores). This trend suggests that ABR contributes more 10 +
to identifying impactful candidates and plays a more critical role than top
RBR within the HRF method. | % % |
3 5 7 10

4.5.2. Effectiveness of synonym selection

To evaluate our Synonyms Selection approach, we conduct compar-
isons in two aspects. We first compare our BERT-based synonym genera-
tion against two alternative methods: WordNet (Miller, 1992), an online
database that contains sets of synonyms, and HowNet (Dong & Dong,
2003), which produces semantically similar words using its network
structure. Using the base configuration, we evaluate the EM scores when
attacking T5 and BERT},,. models across three datasets: SQuAD 1.1,
NarrativeQA, and BoolQ. The results in Table 8 demonstrate that our
QA-Attack with BERTy,,. consistently achieved superior performance
compared to other methods across all datasets and victim models.

Fig. 2. F1 score analysis for HRF, ABR, and RBR variants of QA-Attack using
different rop, values, tested on datasets SQuUAD 1.1 and BoolQ.

On the other hand, we also examine the impact of parameter d
in Synonym Selection, which determines the number of synonyms ob-
tained from the Masked Language Model (MLM). Table 9 illustrates that
as d increases from 1 to 3, F1 scores consistently decrease across all
datasets, indicating improved attack performance. This trend suggests
that a more aggressive setting (higher d) is more effective in compro-
mising model accuracy across various datasets.
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Table 5

Comparative analysis of QA-Attack and baseline models on LongT5. Drops of BLEU and ROUGE
scores (uni-gram) on contexts are reported in the table, with higher values indicating better per-
formance. For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better

performance.

Datasets Methods F1] EM| ROUGE? BLEU?T SIM|
TASA (Cao et al., 2022) 10.61 22.45 80.67 70.41 11.88
TMYC (Wallace et al., 2019b) 12.43 29.81 75.37 63.83 13.22
RobustQA (Yasunaga et al., 2018) 17.22 31.11 73.11 68.29 17.64

SOUAD 1.1 TextFooler (Jin et al., 2020) 35.31 44.09 57.77 49.49 25.33
T3 (Wang et al., 2020) 9.33 24.52 49.23 60.33 20.87
PIA (Parry et al., 2024) 8.92 20.11 82.91 70.03 10.32
LLM-Attack (Wang et al., 2023) 9.31 21.03 81.67 68.82 10.73
QA-Attack (ours) 7.38 18.78 84.22 72.67 9.67
TASA (Cao et al., 2022) 30.71 30.11 64.71 67.28 9.32
TMYC (Wallace et al., 2019b) 34.11 33.88 64.21 65.11 14.82
RobustQA (Yasunaga et al., 2018) 29.01 39.59 62.91 68.22 13.09
TextFooler (Jin et al., 2020) 38.25 34.67 60.47 64.16 15.44

SQuAD V2.0 T3 (Wang et al., 2020) 30.44 30.13 65.81 63.72 8.29
PIA (Parry et al., 2024) 28.13 27.71 75.62 69.83 7.21
LLM-Attack (Wang et al., 2023) 29.41 28.44 74.19 68.11 7.64
QA-Attack (ours) 27.11 24.73 77.37 70.32 5.29
TASA (Cao et al., 2022) 8.22 10.67 69.83 65.77 9.53
TMYC (Wallace et al., 2019b) 9.36 11.33 63.15 64.27 14.72
RobustQA (Yasunaga et al., 2018) 15.83 12.03 64.28 63.12 12.77

Narrative OA TextFooler (Jin et al., 2020) 12.77 14.82 62.99 54.21 17.33
T3 (Wang et al., 2020) 8.38 8.26 63.92 66.32 8.92
PIA (Parry et al., 2024) 6.31 6.93 68.02 66.91 8.23
LLM-Attack (Wang et al., 2023) 6.82 7.52 67.11 65.74 8.51
QA-Attack (ours) 4.62 5.33 70.33 68.32 7.44
TASA (Cao et al., 2022) 16.85 24.54 64.83 66.81 14.82
TMYC (Wallace et al., 2019b) 19.28 29.01 62.88 68.67 11.43
RobustQA (Yasunaga et al., 2018) 17.23 27.42 58.32 57.22 13.37

NewsOA TextFooler (Jin et al., 2020) 27.22 26.39 53.33 53.01 25.82
T3 (Wang et al., 2020) 17.83 25.87 63.25 65.43 19.27
PIA (Parry et al., 2024) 16.18 25.91 66.81 67.11 11.32
LLM-Attack (Wang et al., 2023) 16.91 26.41 65.42 65.02 11.78
QA-Attack (ours) 15.32 24.12 68.23 70.55 10.48

Table 6

Attack performance comparison on baseline models using the BoolQ dataset, with top results high-
lighted in bold. Note that TASA (Cao et al., 2022) is not applicable to boolean questions.

Victim Models Methods F1] EM| ROUGE? BLEU?T SIM|
TASA (Cao et al., 2022) N/A N/A N/A N/A N/A
TMYC (Wallace et al., 2019b) 17.43 19.36 82.09 77.23 21.83
RobustQA (Yasunaga et al., 2018) 14.33 18.92 79.15 80.33 13.22
TS TextFooler (Jin et al., 2020) 20.11 19.07 80.91 83.25 33.82
T3 (Wang et al., 2020) 15.16 14.74 71.32 68.79 15.82
PIA (Parry et al., 2024) 11.23 15.11 85.02 81.21 12.94
LLM-Attack (Wang et al., 2023) 11.91 15.77 84.47 79.87 13.21
QA-Attack (ours) 8.64 13.9 87.31 86.57 11.42
TASA (Cao et al., 2022) N/A N/A N/A N/A N/A
TMYC (Wallace et al., 2019b) 21.35 13.28 63.21 70.57 7.34
RobustQA (Yasunaga et al., 2018) 24.81 9.21 69.22 76.01 6.67
Bert, TextFooler (Jin et al., 2020) 33.02 11.57 65.11 67.81 8.17
ase T3 (Wang et al., 2020) 22.06 11.02 76.17 74.62 6.23
PIA (Parry et al., 2024) 20.13 8.93 74.81 76.31 5.92
LLM-Attack (Wang et al., 2023) 21.11 9.52 73.92 74.21 6.24
QA-Attack (ours) 18.39 6.51 77.21 78.11 4.66
TASA (Cao et al., 2022) N/A N/A N/A N/A N/A
TMYC (Wallace et al., 2019b) 29.77 9.82 67.04 73.22 7.43
RobustQA (Yasunaga et al., 2018) 24.56 8.21 70.49 71.83 9.33
LongT5 TextFooler (Jin et al., 2020) 33.02 11.57 65.11 67.81 8.17
T3 (Wang et al., 2020) 22.06 11.02 76.17 74.62 6.23
PIA (Parry et al., 2024) 20.23 7.44 74.51 76.42 5.87
LLM-Attack (Wang et al., 2023) 21.11 8.32 73.23 74.31 6.02
QA-Attack (ours) 17.67 7.03 78.67 77.54 4.37
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Table 7
Comparative analysis of eight attack methods targeting the T5 model across EMRQA and FinQA datasets,
categorized by answer type. Results are stratified into boolean and informative response subsets to illustrate
performance variations across different task types.
Answer Type Datasets Methods F1] EM| ROUGE?T BLEU?t SIM|
TASA (Cao et al., 2022) 12.25 12.25 61.37 61.54 8.16
TMYC (Wallace et al., 2019b) 11.38 11.38 55.27 59.18 8.62
RobustQA (Yasunaga et al., 2018) 10.27 10.27 57.70 58.49 7.04
EMROQA TextFooler (Jin et al., 2020) 12.22 12.22 54.33 61.27 8.44
T3 (Wang et al., 2020) 10.73 10.73 56.49 61.89 7.13
PIA (Parry et al., 2024) 11.35 11.35 53.96 54.94 7.28
LLM-Attack (Wang et al., 2023) 11.27 11.27 62.53 55.81 7.62
. QA-Attack (ours) 8.79 8.79 64.87 62.24 6.73
Informative
TASA (Cao et al., 2022) 11.94 11.94 57.56 63.93 7.95
TMYC (Wallace et al., 2019b) 10.77 10.77 57.89 60.14 8.37
RobustQA (Yasunaga et al., 2018) 9.91 9.91 60.10 59.83 6.94
FinQA TextFooler (Jin et al., 2020) 11.88 11.88 55.02 59.65 8.79
T3 (Wang et al., 2020) 9.54 9.54 63.78 55.42 7.30
PIA (Parry et al., 2024) 10.83 10.83 58.26 57.41 7.23
LLM-Attack (Wang et al., 2023) 10.81 10.81 62.18 56.32 7.31
QA-Attack (ours) 8.59 8.59 67.42 65.11 6.61
TASA (Cao et al., 2022) 12.14 12.14 60.64 64.29 7.82
TMYC (Wallace et al., 2019b) 11.22 11.22 56.17 57.99 8.73
RobustQA (Yasunaga et al., 2018) 10.14 10.14 61.16 61.16 7.28
EMROA TextFooler (Jin et al., 2020) 12.08 12.08 62.93 57.39 8.87
T3 (Wang et al., 2020) 9.80 9.80 64.60 62.10 7.05
PIA (Parry et al., 2024) 10.92 10.92 55.30 58.69 7.50
LLM-Attack (Wang et al., 2023) 10.74 10.74 60.81 63.54 7.18
QA-Attack (ours) 8.91 8.91 64.98 66.92 6.78
Boolean
TASA (Cao et al., 2022) 12.01 12.01 60.69 54.96 7.91
TMYC (Wallace et al., 2019b) 10.81 10.81 62.92 63.64 8.66
RobustQA (Yasunaga et al., 2018) 9.95 9.95 64.15 58.51 7.19
FinQA TextFooler (Jin et al., 2020) 11.93 11.93 60.90 55.68 8.54
T3 (Wang et al., 2020) 9.36 9.36 60.86 59.71 7.21
PIA (Parry et al., 2024) 10.91 10.91 60.14 59.15 7.32
LLM-Attack (Wang et al., 2023) 10.89 10.89 54.67 56.80 7.44
QA-Attack (ours) 8.63 8.63 67.31 64.58 6.69
Table 8
6.4 + EM scores for attacks on T5 and BERT},,,. models using three distinct syn-
onym generation methods. Lower scores indicate more effective attacks.
6.2 Methods Victim models Datasets
SQuAD 1.1 NarrativeQA  BoolQ
p TS 14,22 7.25 29.08
S 1
s HowNet BERT, . 7.66 452 26.91
TS 5.31 3.99 21.63
& WordNet BERT,,,, 7.23 5.67 19.35
5871 BERT,. ours) 4.67 5.61 8.64
ase BERT} e 6.42 3.86 18.39
5.6 1
Table 9
F1 scores demonstrating QA-Attack’s performance across five datasets un-
| | | | | der different d values (i.e., number of synonym candidates for substitu-
0.2/0.8 0.3/0.7 0.5/0.5 0.7/0.3 0.8/0.2 tions).

ABR / RBR Weight Ratio

Fig. 3. The impact of HRF weight distribution (ABR/RBR) on EM score using
the SQUAD 1.1 dataset. A lower EM score means better attack performance.

4.5.3. Texual quality of word candidates

In our ablation study, detailed in Table 10, we investigate the quality
of adversarial examples generated by various attack methods on the T5
model using the SQUAD 1.1 dataset. We evaluate our word replacement
technique with encoder-decoder candidate generation (T3), as well as
sentence-level modification methods (TASA, TMYC). The results indi-
cate that our word-level synonym selection approach outperformed all
other baselines. Notably, our word-level attack maintains a lower gram-
mar error rate and higher linguistic fluency than alternative methods.

10

SQuAD 1.1 SQuAD V2.0 BoolQ Narrative QA NewQA
d=1 8.52 14.72 19.22 7.63 10.66
d=2 467 9.13 15.16 5.61 3.61
d=3 217 7.26 11.43 3.71 3.27

Although RobustQA employs the same synonym selection strategy, it
requires more word modifications to successfully attack the model and
tends to produce more adventurous alterations.

4.6. Platform and efficiency analysis
In this section, we evaluate QA-Attack’s computational efficiency

under base settings. We measure efficiency using time consumption
per sample, expressed in seconds, where a lower value indicates
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(a) F1 score trends when retraining with varying sizes of adversarial
examples generated by different methods.
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(b) F1 scores of attacking T5 models retrained with increasing propor-
tions of adversarial examples.

Fig. 4. F1 scores of T5 model on SQUAD 1.1 dataset showing (a) performance after retraining with varying proportions of adversarial examples from multiple
generation methods, and (b) robustness against attacks on the retrained model under different scenarios.

Table 10
Performance metrics for different word candidate selection strategies against
the T5 model on the SQuAD 1.1 dataset.

Methods EM|] SIM? Mod| PPL| GErr|
TASA (Cao et al., 2022) 9.21 6.38 8.15 143 0.13
TMYC (Wallace et al., 2019b) 7.28 8.22 9.21 151 0.14
RobustQA (Yasunaga et al., 2018) 5.89 6.03 8.35 147 0.15
T3 (Wang et al., 2020) 6.23 7.23 7.93 133 0.13
TextFooler (Jin et al., 2020) 10.60 6.29 8.17 136 0.14
PIA (Parry et al., 2024) 6.21 6.12 7.85 130 0.13
LLM-Attack (Wang et al., 2023) 6.48 6.04 8.01 132 0.13
QA-Attack (ours) 5.68 5.91 7.24 125 0.12

Table 11
Time consumption (seconds per sample) for various methods and datasets. A
lower value indicates better performance.

Narrative SQuAD SQuAD NewsQA BoolQ

QA 1.1 V2.0
TASA (Cao et al., 2022) 28.77 15.82 18.25 10.72 N/A
TMYC (Wallace et al., 2019b) 25.61 12.75 16.33 9.21 7.42
RobustQA (Yasunaga et al., 2018) 25.82 24.46 22.15 12.81 15.82
T3 (Wang et al., 2020) 26.52 21.37 28.38 14.74 7.93
PIA (Parry et al., 2024) 24.81 12.35 17.67 9.28 7.53
LLM-Attack (Wang et al., 2023)  27.33 14.87 13.09 11.21 7.98
QA-Attack (ours) 23.51 10.61 12.38 8.32 7.22

superior performance. As shown in Table 11, the outcomes reveal that
QA-Attack exhibits remarkable time efficiency, consistently outperform-
ing baseline methods across both long-text (NarrativeQA) and short-text
(SQuAD 1.1) datasets. This superior performance can be attributed to
QA-Attack’s innovative Hybrid Ranking Fusion (HRF) strategy, which
effectively identifies vulnerable words within the text, significantly en-
hancing the speed of the attack process.

4.7. Adversarial retraining

In this section, we investigate QA-Attack’s potential for enhancing
downstream models’ accuracy. We employ QA-Attack to generate ad-
versarial examples from SQuAD 1.1 training sets and incorporate them
as supplementary training data. We reconstruct the training set with
varying proportions of adversarial examples added to the raw training
set. The retraining process with this augmented data aims to examine
how test accuracy changes in response to the inclusion of adversarial
examples. As illustrated in Fig. 4(a), re-training with adversarial exam-
ples slightly improves model performance when less than 30 % of the
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training data consists of adversaries. However, performance decreases
when the proportion of adversaries exceeds 30 %. This finding indicates
that the optimal ratio of adversarial examples in training data needs to
be determined empirically, which aligns with conclusions from previous
attacking methods. To evaluate how re-training helps defend against ad-
versarial attacks, we analyze the robustness of T5 models trained with
varying proportions of adversarial examples (0%, 10 %, 20 %, 30 %,
40 %) from different attack methods, as shown in Fig. 4(b). A lower
F1 score indicates higher model susceptibility to adversarial attacks.
It demonstrates that incorporating adversarial examples during train-
ing consistently improves model robustness, as evidenced by increas-
ing F1 scores across all attack methods. Notably, QA-Attack emerges as
the most effective approach, consistently outperforming other methods,
with its advantage becoming particularly pronounced at higher percent-
ages of adversarial training data.

4.8. Attacking models with defense mechanism

Defending NLP models against adversarial attacks is crucial for main-
taining the reliability of language processing systems in real-world ap-
plications (Goyal et al., 2023). To further analyze how attacks are per-
formed under defense systems, we deploy two distinct defense mecha-
nisms to investigate our attack performance under defense systems. The
first is Frequency-Guided Word Substitutions (FGWS) approach (Mozes
et al., 2021), which excels at detecting adversarial examples. The sec-
ond is Random Masking Training (RanMASK) (Zeng et al., 2023), a tech-
nique that enhances model robustness through specialized training pro-
cedures. We perform the adversarial attack on T5 on datasets SQUAD
1.1, NarrativeQA, and BoolQ; the results are presented in Table 12. The
results show that QA-Attack demonstrates superior adversarial robust-
ness across multiple benchmark datasets, consistently outperforming ex-
isting methods against state-of-the-art defenses.

4.9. Transferability of attacks

To evaluate the transferability of our method, we conduct cross-
model attacks using adversarial examples generated from two different
models: T5 and RoBERTa. Adversarial examples crafted against T5 are
evaluated on RoBERTa, DistilBERT, and MultiQA, while those gener-
ated against RoBERTa are transferred to T5, DistilBERT, and MultiQA.
Fig. 5 presents our transferability results. Both subfigures 5(a) and (b)
demonstrate that adversarial examples generated by QA Attack, whether
crafted against T5 or RoBERTa, consistently degrade the performance
of other QA models. QA-Attack exhibits superior transferability across
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Table 12
Effectiveness of defense mechanisms (FGWS (Mozes et al., 2021) and RanMASK (Zeng et al., 2023)) against QA-Attack:
EM scores of T5 model output answers across SQuAD 1.1, NarrativeQA, and BoolQ datasets. Lower scores indicate higher
attack success against defenses.
Datasets Defense TASA RobustQA TMYC T3 PIA LLM-Attack QA-Attack
SQUAD 1.1 FGWS (Mozes et al., 2021) 34.71 39.42 28.51 24.11 22.63 23.21 21.03
. RanMASK (Zeng et al., 2023) 32.17 39.78 44.81 41.09 31.28 32.02 30.26
Narrative QA FGWS (Mozes et al., 2021) 49.28 44.62 37.21 45.17 38.91 39.54 38.33
RanMASK (Zeng et al., 2023) 38.41 37.14 41.62 43.81 35.81 36.42 34.47
BoolQ FGWS (Mozes et al., 2021) 45.71 47.37 38.97 45.33 39.11 39.94 38.34
RanMASK (Zeng et al., 2023) 41.63 42.88 47.25 42.17 41.12 41.66 40.51
Bl QA-Attack (ours) lll TASA (Cao et al., 2022) [l Textfooler (Jin et al., 2020) @ T3 (Wang et al., 2020)
25 ‘ 25 ‘ ‘
20 |- - 20 |- -
o 15| - o 15 -
I L
<} o
1% O
n (%)
ham b
L 10| - L o10 - -
5+ - 5 -
0 0

RoBERTa DistilBERT MultiQA

(a) Transfer attack with samples generated for T5

T5 DistilBERT MultiQA

(b) Transfer attack with samples generated for RoOBERTa

Fig. 5. F1 scores for transfer attacks on QA models using adversarial samples generated for T5 or RoOBERTa. Lower values indicate better performance. (a) Transfer
attack with samples generated for T5, (b) Transfer attack with samples generated for RoBERTa.

both source model configurations compared to baseline methods (TASA,
TextFooler, and T3) on both NarrativeQA and BoolQ datasets. These re-
sults validate that QA-Attack generates adversarial perturbations that
exploit fundamental vulnerabilities shared across diverse neural QA ar-
chitectures, demonstrating our approach’s robustness and broad appli-
cability.

4.10. Parts of speech preference

To further understand the candidate word distribution of our word-
level attack, we examine its attacking preference in terms of Parts of
Speech (POS), highlighting vulnerable areas within the input context.
We use the Stanford POS tagger (Toutanova et al., 2003) to label each
attacked word, categorizing them as noun, verb, adjective (Adj.), adverb
(Adv.), and others (e.g., pronoun, preposition, conjunction).

Table 13 illustrates the POS preferences of QA-Attack compared to
baseline methods. For informative queries on the SQuAD 1.1 dataset, most
attacking methods predominantly target nouns, which are typically key
semantic carriers in questions and contexts. Modifying nouns can di-
rectly alter the core meaning of the passage, leading the model to gen-
erate incorrect answers. Interestingly, TASA shows a slight preference
for adverbs, which often modify the certainty or scope of statements,
subtly affecting the model’s interpretation.

For boolean queries on the BoolQ dataset, we observe that some at-
tacks tend to manipulate adjectives and adverbs. These parts of speech are
crucial in yes/no questions because they often determine the polarity,
intensity, or qualification of statements (e.g., “always” vs “sometimes”,
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Table 13
Part-of-speech preferences in victim word selection across different attack
methods (TASA incompatible with Boolean queries).

Datasets Methods Noun Verb Adj. Adv. Others
TASA (Cao et al., 2022) N/A N/A N/A N/A N/A
TMYC (Wallace et al., 2019b) 47% 21% 11% 5% 17%
RobustQA (Yasunaga et al., 2018) 34% 13% 22% 16% 15%

SOUAD 1.1 TextFooler (Jin et al., 2020) 44% 13% 23% 8% 12%
T3 (Wang et al., 2020) 60% 17% 6% 7% 10%
PIA (Parry et al., 2024) 41% 14% 24% 11% 10%
LLM-Attack (Wang et al., 2023) 39% 13% 22% 12% 14%
QA-Attack (ours) 34% 9% 18% 3% 36%
TASA (Cao et al., 2022) N/A N/A N/A N/A N/A
TMYC (Wallace et al., 2019b) 14% 19% 12% 35% 20%
RobustQA (Yasunaga et al., 2018) 19% 14% 27% 23% 17%

BoolQ TextFooler (Jin et al., 2020) 41% 15% 27% 7% 10%
T3 (Wang et al., 2020) 42% 13% 20% 16% 9%
PIA (Parry et al., 2024) 36% 14% 26% 13% 11%
LLM-Attack (Wang et al., 2023) 34% 15% 24% 14% 13%
QA-Attack (ours) 10% 19% 25% 18% 28%

“true” vs “possible”), and small changes can easily flip the correct an-
swer.

Notably, our QA-Attack exhibits a higher tendency to target the “oth-
ers” category, including pronouns, prepositions, and conjunctions. Al-
though these function words carry relatively less standalone semantic
content, modifying them can disrupt the grammatical and sequential
structure of the sentence.
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Table 14
A comparative analysis of attacks on various sizes of BERT models using the
SQuAD 1.1 dataset. Lower values indicate better attack performance.

Versions BERT Tiny BERT Mini BERT Medium  BERT Large

Size L=2H=128 L=4,H=256 L=8H=512 L=24,H=1024
EM | 11.82 13.26 13.31 14.25

F1| 5.67 6.35 6.42 7.24

SIM | 6.23 7.12 7.43 8.38

Why certain POS are more effective in misleading the model?. The effec-
tiveness of attacking different POS varies between question types due
to the distinct ways models process semantic and syntactic cues. For
informative queries (SQuAD 1.1 dataset), answers often depend on ac-
curately identifying nouns or named entities within the context. These
are the anchors for understanding “who” or “what” the question refers
to, making them high-impact targets. Changing nouns forces the model
to either misinterpret the reference or fail to locate the answer span.
In contrast, boolean queries (BoolQ dataset) rely more on assess-
ing logical qualifiers and sentence-level polarity. Therefore, modifying
adjectives and adverbs (which influence truth values or intensifiers)
greatly affect model predictions. For example, changing “always” to
“sometimes” or “likely” to “unlikely” can invert the correct yes/no an-
swer without drastically altering sentence fluency or detectability.

QA-Attack’s distinct strategy.. Notably, QA-Attack shows a distinct POS
preference with a higher proportion of the “others” category (pronouns,
prepositions, conjunctions). Though these function words carry less
standalone semantic content, they are crucial for sentence structure and
syntactic dependencies. Modifying them subtly disrupts the grammati-
cal and sequential structure of the sentence without noticeably changing
its meaning.

These findings suggest that effective attacks are not limited to alter-
ing content words (noun) to shift meaning but can also exploit syntactic
and structural weaknesses (adv, adj, others), a strategy that underlies
QA-Attack’s superior performance across diverse QA tasks.

4.11. Robustness versus the scale of pre-trained models

From the attacking results in Table 4 discussed in Section 4.4, we
recognize the limitation of our QA-Attack on BERT},,e, with L = 12 and
H =768, which does not sufficiently support robust experimental out-
comes. To address this issue and gain more comprehensive insights,
we conducted experiments with four different sizes of BERT (Devlin
et al., 2019) models®: BERTypy, BERTini» BERTegiums and BERTjypge.
Our findings, detailed in Table 14, demonstrate a positive correlation
between model size and experimental robustness. The effectiveness of
adversarial attacks decreases as the complexity and capacity of the BERT
model increase, suggesting that deeper architectures provide better pro-
tection against adversarial perturbations.

5. Conclusion and future work

The robustness of QA models has been increasingly challenged by ad-
versarial attacks. These attacks expose the vulnerabilities of models used
in various tasks, including information retrieval, conversational agents,
and machine comprehension. To address this, we introduced QA-Attack,
which leverages Hybrid Ranking Fusion (HRF) to conduct effective at-
tacks by identifying and modifying the most critical tokens in the input
text. Through a combination of attention-based and removal-based rank-
ing strategies, QA-Attack successfully disrupts model predictions while
maintaining high levels of semantic and linguistic coherence. Extensive

3 Different sizes of BERT models can be obtained from https://github.com/
google-research/bert/
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experiments have demonstrated that our method outperforms existing
attack techniques regarding attack success, fluency, and consumption
across various datasets, confirming its efficacy in undermining the ro-
bustness of state-of-the-art QA models.

While adversarial attacks such as QA-Attack expose vulnerabilities in
QA systems, they simultaneously provide valuable opportunities to eval-
uate and enhance model robustness. Moving forward, we plan to focus
our research on developing effective defense strategies that can mitigate
these identified vulnerabilities. In future work, we intend to expand our
investigation beyond the current word-level perturbation constraints
by incorporating sentence-level attacks, which will provide deeper in-
sights into the impact of more extensive modifications on QA model
performance. Additionally, we plan to extend QA-Attack to handle in-
creasingly complex and diverse QA scenarios, including multiple-choice
questions and multi-hop reasoning tasks (Yu et al., 2020). Moreover, we
intend to investigate targeted attacks designed to provoke model hallu-
cinations, with the goal of understanding and mitigating the factors that
lead models to generate unsupported responses beyond QA scenarios.
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