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 a b s t r a c t

Deep learning underpins most of the currently advanced natural language processing (NLP) tasks such as tex-
tual classification, neural machine translation (NMT), abstractive summarization and question-answering (QA). 
However, the robustness of the models, particularly QA models, against adversarial attacks is a critical con-
cern that remains insufficiently explored. This paper introduces QA-Attack (Question Answering Attack), a novel 
word-level adversarial strategy that fools QA models. Our attention-based attack exploits the customized atten-
tion mechanism and deletion ranking strategy to identify and target specific words within contextual passages. 
It creates deceptive inputs by carefully choosing and substituting synonyms, preserving grammatical integrity 
while misleading the model to produce incorrect responses. Our approach demonstrates versatility across various 
question types, particularly when dealing with extensive long textual inputs. Extensive experiments on multiple 
benchmark datasets demonstrate that QA-Attack successfully deceives baseline QA models and surpasses existing 
adversarial techniques regarding success rate, semantics changes, BLEU score, fluency and grammar error rate.

1.  Introduction

Question-answering (QA) models, a key task within Sequence-to-
Sequence (Seq2Seq) frameworks, aim to enhance computers’ ability 
to process and respond to natural language queries. As these models 
have evolved, they have been widely adopted in real-world applica-
tions such as customer service chatbots (Nuruzzaman & Hussain, 2018), 
search engines (Zhu et al., 2021), and information retrieval in fields 
like medicine (Jin et al., 2021) and law (Martinez-Gil, 2023). How-
ever, despite the significant progress in deep learning and natural lan-
guage processing (NLP), these models remain vulnerable to adversar-
ial examples, leading to misinformation, privacy breaches, and flawed 
decision-making in critical areas (Dong et al., 2022; Hathaliya et al., 
2022; Klopfenstein et al., 2017; Sun et al., 2021; Yin et al., 2018). 
This highlights the importance of understanding how adversarial exam-
ples are generated from the attackers’ perspective and potential defense 
mechanisms – an area that remains under-explored.

QA models are expected to comprehend given texts and questions, 
providing accurate and contextually relevant answers (Soares & Par-
reiras, 2020). These models primarily address two types of questions: 
Informative Queries and Boolean Queries. The Informative Queries typ-
ically begin with interrogative words such as “who,” “what,” “where,” 
“when,” “why,” or “how,” requiring detailed and specific information 
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from the provided context. Although models like T5 (Raffel et al., 2020), 
LongT5 (Guo et al., 2022), and BART (Lewis et al., 2020), which follow 
an encoder-decoder structure, have demonstrated strong performance, 
they still suffer from maliciously crafted adversarial examples. Initially, 
studies like “Trick Me If You Can” (Wallace et al., 2019b) primarily 
relied on human annotators to construct effective adversarial question-
answering examples. This methodology, however, inherently constrains 
scalability and increased resource demands. As research progressed, 
automated approaches for attacking textual classifiers in QA models 
emerged. Gradient-based methods, as employed in Fast Gradient Sign 
Method (FGSM) (Goodfellow et al., 2015), RobustQA (Yasunaga et al., 
2018), UAT (Wallace et al., 2019a), and HotFlip (Ebrahimi et al., 2018), 
were developed to identify and modify the most influential words affect-
ing model answers. Building upon a deeper understanding of QA tasks, 
subsequent studies explored more targeted strategies. For instance, Po-
sition Bias (Ko et al., 2020), TASA (Cao et al., 2022), and Entropy 
Maximization (Shinoda et al., 2023) investigated the manipulation of
sentence locations and the analysis of answer sentences to identify vul-
nerable parts of the context. These approaches refined the attack meth-
ods by applying modifications through paraphrasing or replacing origi-
nal sentences, thus enhancing the effectiveness of adversarial examples. 
However, these methods encounter two primary challenges: 1) None 
of these attack methods is suitable for both “informative queries” and 

https://doi.org/10.1016/j.neunet.2025.108105
Received 17 November 2024; Received in revised form 21 July 2025; Accepted 8 September 2025

Neural Networks 194 (2026) 108105 

Available online 13 September 2025 
0893-6080/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0009-0003-8595-0944

$top_{k}$


$F$


$C$


$q$


$a$


$F(q, C) = a$


$F$


$C'$


$F(q, C') \neq a$


$C'$


$c_{adv}$


$C$


$c_1, c_2, \ldots , c_n$


$A$


$C$


$n$


$c_1$


$c_n$


$q$


$i \ th$


$1 \leq i \leq n$


$c_i$


\begin {equation}\label {equation: removal importance score} I_i = L_{F}(a \mid q,C) - L_{F}(a \mid q, C \setminus c_i),\end {equation}


$C \setminus c_i$


$c_i$


$L_{F} = \log P(a \mid q, C)$


$top_k$


$top_k$


$d$


$C'$


$L$


$top_k = 5$


$d = 2$


$top_k$


$d$


$top_k$


$top_k$


$top_k$


$top_k$


$top_k$


$top_k = 5$


$d$


$d$


$d$


$d$


$L=12$


$H=768$

https://orcid.org/0000-0002-3003-1313
mailto:jiyao.li-1@student.uts.edu.au
mailto:mingze.ni@uts.edu.au
mailto:ysgong@sdu.edu.cn
mailto:wei.liu@uts.edu.au
https://doi.org/10.1016/j.neunet.2025.108105
https://doi.org/10.1016/j.neunet.2025.108105
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.108105&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. Li et al.

“boolean queries”. 2) Constraining the search space for optimal vulnera-
ble words to answer-related sentences compromises attack effectiveness; 
meanwhile, targeting entire sentences proves inefficient (Jia & Liang, 
2017).

In addition, Boolean Queries seek a simple binary “Yes” or “No” an-
swer. Models like BERT (Devlin et al., 2019), RoBERTa (Zhuang et al., 
2021), and GPT variants (Antaki et al., 2024; Bongini et al., 2022; Klein 
& Nabi, 2019; Stiennon et al., 2020), which excel at sentence-level un-
derstanding and token classification, are widely used for Boolean QA 
tasks. These models leverage their deep contextual understanding of 
language to accurately determine whether a given statement is true or 
false, making them state-of-the-art baselines for the task. Researchers 
have proposed various approaches to target boolean classifiers in the 
context of Boolean Queries attacks. Attacks like (Garg & Ramakrishnan, 
2020; Jin et al., 2020; Li et al., 2020; Ren et al., 2019; Zang et al., 
2020), which involve adding, relocating, or replacing words, are based 
on the influence that each word has on the prediction. They retrieve 
word importance by the output confidence to the level or with gradient. 
However, gradient calculation is computationally intensive and ineffec-
tive when dealing with long context input, and knowing victim models’ 
internal information is unrealistic in practice.

We present QA-Attack, an adversarial attack framework tailored 
for both Informative Queries and Boolean Queries in QA models. It is 
especially suitable for advancing the research in semi-black-box and 
gray-box attacks. QA-Attack uses a Hybrid Ranking Fusion (HRF) al-
gorithm that integrates two methods: Attention-based Ranking (ABR) 
and Removal-based Ranking (RBR). ABR identifies important words by 
analyzing the attention weights during question processing, while RBR 
evaluates word significance by observing changes in the model’s output 
when specific words are removed. The HRF algorithm combines these 
insights to locate vulnerable tokens, which are replaced with carefully 
selected synonyms to generate adversarial examples. These examples 
mislead the QA system while preserving the input’s meaning. This uni-
fied attack method improves both performance and stealth, ensuring 
realistic applicability for both types of queries. In summary, our work 
makes the following key contributions:

• We present QA-Attack with a Hybrid Ranking Fusion (HRF) algo-
rithm designed to target question-answering models. This novel ap-
proach integrates attention and removal ranking techniques, accu-
rately locating vulnerable words and fooling the QA model with a 
high success rate.

• Our QA-Attack can effectively target multiple types of questions. This 
adaptability allows our method to exploit vulnerabilities across di-
verse question formats, which significantly broadens the scope of 
potential attacks in various real-world scenarios.

• QA-Attack generates adversarial examples by implementing subtle 
word-level changes that preserve both linguistic and semantic in-
tegrity while minimizing the extent of alterations, and we conduct 
extensive experiments on multiple datasets and victim models to 
thoroughly evaluate our method’s effectiveness in attacking QA mod-
els.

The rest of this paper is structured as follows. We first review QA sys-
tem baselines and adversarial attacks for QA models in Section 2. Then, 
we detail our proposed method in Section 3. We evaluate the perfor-
mance of the proposed method through extensive empirical analysis in 
Section 4. We conclude the paper with suggestions for future work in 
Section 5.

2.  Related work

This section provides a comprehensive overview of question-
answering models and examines the existing research on adversarial 
attacks against them.

2.1.  Question answering models

Question answering represents a complex interplay of NLP, informa-
tion retrieval, and reasoning capabilities (Soares & Parreiras, 2020; Yigit 
& Amasyali, 2024). Basically, these models are designed to process an 
input question and a context passage, extracting or generating an ap-
propriate answer through elaborate analysis of the semantic relation-
ships between these elements (Wang, 2022). Modern QA systems typi-
cally rely on deep learning models with transformer-based architectures 
like BERT (Devlin et al., 2019) and its variants (Lan et al., 2020; Sanh 
et al., 2019; Zhuang et al., 2021) being particularly prevalent. These 
models excel at capturing contextual information and understanding nu-
anced relationships in the text with transformers, allowing them to per-
form impressively on QA tasks. In addition to these transformer models, 
encoder-decoder architectures such as T5 (Khashabi et al., 2020; Raffel 
et al., 2020) and BART (Lewis et al., 2020), GPT (Brown et al., 2020) and 
PEGASUS (Zhang et al., 2020) have also become prominent in QA mod-
els. These models utilize an encoder to process the input question and 
context, transforming them into a rich, context-aware representation, 
and the decoder is then used to generate a coherent and contextually 
appropriate answer.

2.2.  Previous works on attacking QA models

With the development of NLP techniques, recent research has in-
creasingly focused on developing sophisticated textual adversarial ex-
amples for QA systems (Wallace et al., 2019b). The inherent differences 
between “informative queries” and “boolean queries” necessitate dis-
tinct attacking diversities due to their unique answer structures (Wal-
lace et al., 2019a). Attacks on boolean QA pairs closely resemble meth-
ods used to mislead textual classifiers. These attacks primarily operate 
at the word level, aiming to manipulate the model’s binary (yes/no) out-
put (Garg & Ramakrishnan, 2020; Li et al., 2020). In contrast, informa-
tive queries present a more complex challenge. These attacks frequently 
target the sentence level, requiring an approach to disrupt the model’s 
comprehensive understanding (Li et al., 2021).

2.2.1.  Boolean queries attacks
Boolean queries are similar to classification tasks in NLP, while the 

answer is based on two-way input: question and context. They are vul-
nerable to attacks designed for NLP classifiers when question and con-
text are simply encoded and concatenated. Approaches such as Garg 
and Ramakrishnan (2020), Jin et al. (2020), Li et al. (2020), Madry 
et al. (2018), Ren et al. (2019), Zang et al. (2020) concentrate on 
altering individual words based on their influence on model predic-
tions. These methods typically employ carefully selected synonyms for 
word substitution. The process of word replacement is guided either by 
the direct use of BERT Masked Language Model (MLM) (Devlin et al., 
2019) or by leveraging gradient information to determine optimal sub-
stitution candidates. While effectively fool classifiers (boolean queries), 
these attacks were initially designed for classification tasks and have 
shown limited efficacy when applied to the question-and-context for-
mat of QA systems. To address this limitation, some attack methods 
for Seq2Seq models have been adapted for QA models. UAT (Wallace 
et al., 2019a), which averages gradients and modifies input data to max-
imize the model’s loss, has been adapted for QA but still struggles with 
boolean queries due to their simplicity. Similarly, TextBugger (Li et al., 
2019), which focuses on character-level perturbations, also faces chal-
lenges in handling the deeper semantic understanding required in QA, 
especially for multi-sentence reasoning. Liang’s approach (Liang et al., 
2018), relying on confidence-based manipulations, has difficulty reduc-
ing the model’s certainty in boolean queries where the binary answers 
leave less room for variation in confidence. Although these approaches 
offer improved accuracy in attacking informative questions with minor 
modifications, they struggle with boolean queries. We argue that these 
methods face challenges in identifying the most vulnerable words when
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dealing with concatenated question-context input relationships. The 
MLQA attack (Rosenthal et al., 2021) attempts to bridge this gap by 
utilizing attention weights to identify and alter influential words. How-
ever, this method, developed specifically for multi-language BERT mod-
els, may not fully address QA-specific vulnerabilities.

2.2.2.  Informative queries attacks
In contrast to boolean queries, adversarial attacks on informative 

queries within QA systems share fundamental similarities with attacks 
on other Seq2Seq models (Bahdanau et al., 2014; Cheng et al., 2020; Li 
& Liu, 2023; Luong et al., 2015; Moosavi-Dezfooli et al., 2016; Ribeiro 
et al., 2018), concentrating more on the inter-relationship between ques-
tion and context. The defense mechanisms like RobustQA (Yasunaga 
et al., 2018) have been developed to enhance model resilience through 
improved training methods, and sophisticated attacks continue to suc-
cessfully compromise these systems, especially when employing sub-
tle manipulations of key input elements. Character-level attack meth-
ods, notably HotFlip (Ebrahimi et al., 2018), have demonstrated signif-
icant success by strategically flipping critical characters based on gra-
dient information, leading to misinterpreting informative inputs. In the 
multilingual domain, MLQA (Talmor & Berant, 2019) leverages atten-
tion weights to identify and target crucial words, though its attention 
mechanism, primarily designed for multilingual functionality, may not 
fully exploit the intricate vulnerabilities within the model’s attention 
architecture. Advanced techniques have emerged to target the influ-
ence that answers have on QA systems. Position Bias and Entropy Max-

imization methods exploit model weaknesses by manipulating contex-
tual patterns and answer positioning, particularly effective in scenar-
ios involving complex, lengthy responses. Syntactically Controlled Para-
phrase Networks (SCPNs) (Iyyer et al., 2018) generate adversarial ex-
amples through strategic syntactic alterations while preserving seman-
tic meaning. TASA (Targeted Adversarial Sentence Analysis) (Cao et al., 
2022) primarily relies on manipulating the answer sentences to mis-
lead QA models, making it particularly effective for informative queries 
where complex responses provide more opportunities for subtle modifi-
cations. However, this approach is not suitable for boolean queries, as 
the simplicity of yes/no answers limits the sentence-level manipulations 
that TASA depends on.

Despite significant progress in adversarial attacks on QA systems, 
existing methods still face several notable limitations. Most approaches 
are specialized for either informative or boolean queries, but not both. 
For instance, sentence-level attacks such as TASA are designed for infor-
mative QA tasks that require detailed answers, and are not applicable to 
boolean queries due to their simplicity and limited answer structure. In 
contrast, Textfooler primarily targets classification tasks and often fails 
to generalize well to open-ended or extractive QA formats. Additionally, 
sentence-level adversarial strategies, while often effective in misleading 
QA models, typically suffer from high computational cost due to the 
need for candidate generation, semantic similarity evaluation, and sen-
tence rewriting. More critically, these approaches often introduce signif-
icant semantic shifts, which can alter the original intent of the context or 
question. This undermines the imperceptibility of adversarial examples 

Fig. 1. The workflow of our QA-Attack algorithm for QA models. It processes question-context pairs through two parallel modules: Attention-based Ranking (ABR) 
and Removal-based Ranking (RBR). These modules generate attention and removal scores respectively for each word using customized attention mechanisms and 
removal ranking strategies. The scores are then aggregated, and the 𝑡𝑜𝑝𝑘 highest-scoring words are selected as candidates. Finally, these candidates are replaced with 
BERT-generated synonyms to create adversarial examples that can effectively mislead the QA model.
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and raises concerns about the validity and naturalness of the generated 
inputs, particularly in scenarios where preserving the original meaning 
is crucial.

Recent research has proposed several defense strategies to enhance 
the robustness of QA systems against adversarial attacks. Frequency-
Guided Word Substitution (FGWS) (Mozes et al., 2021) improves input 
stability by substituting rare words with high-frequency synonyms dur-
ing training, thereby strengthening the model’s resilience to word-level 
perturbations. Similarly, Random Masking Training (RanMASK) (Zeng 
et al., 2023) enhances robustness by randomly masking tokens during 
fine-tuning, which encourages the model to generalize effectively over 
incomplete or partially corrupted inputs. These defense mechanisms 
make QA systems less vulnerable to various types of adversarial attacks.

3.  Our proposed attack method

In this section, we introduce the QA-Attack algorithm. It can be sum-
marized into three main steps. First, the method effectively captures 
important words in context by processing pairs of questions and corre-
sponding context using attention-based and removal-based ranking ap-
proaches. Then, attention and removal scores are combined, allowing 
the identification of the most influential words. At last, a masked lan-
guage model (Devlin et al., 2019) is utilized to identify potential syn-
onyms that could replace the targeted words. The overall workflow of 
QA-Attack is shown in Fig. 1. In the following sections, we explain our 
model in detail.

3.1.  Problem setting

Given a pre-trained question-answering model 𝐹 , which receives 
an input of context 𝐶, question 𝑞, and outputs answer 𝑎, such that 
𝐹 (𝑞, 𝐶) = 𝑎. The objective is to deceive the performance of 𝐹  with per-
turbed context 𝐶 ′ such that 𝐹 (𝑞, 𝐶 ′) ≠ 𝑎. To craft 𝐶 ′, a certain number 
of perturbation 𝑐𝑎𝑑𝑣 is added to the context 𝐶 by replacing some of its 
original tokens {𝑐1, 𝑐2,… , 𝑐𝑛}.

3.2.  Attention-based ranking (ABR)

Attention mechanisms were first used in image feature extraction 
in the computer vision field (Galassi et al., 2021; Lyu et al., 2023; Xu 
et al., 2015; Yang et al., 2020). However, they were later employed 
by Bahdanau et al. (2014), Ni et al. (2022) to solve machine translation 
problems. In translation tasks, attention mechanisms enable models to 
prioritize and focus on the most relevant parts of the input data (Luong 
et al., 2015). In question-answering tasks, attention scores are imported 
to examine the relationships between question and context, allowing 
the model to determine which words or phrases are most relevant to 
answering the question (Xiao & Zhu, 2023). Hence, we leverage the at-
tention score to identify target words for our attack. We employ the 
attention mechanism from T5 (Raffel et al., 2020) that has been specif-
ically optimized for question-answering tasks in UnifiedQA (Khashabi 
et al., 2020). As shown in Fig. 1, the “Attention-based Ranking” begins 
by encoding the input context and question through an encoder. Dur-
ing the encoding process, self-attention allows the model to analyze how 
each word in the input relates to every other word, effectively highlight-
ing the words that carry the most weight in understanding both question 
and context. In the decoding process, cross-attention further refines this 
by focusing on the parts of the input most relevant to generating the cor-
rect output. By averaging the attention scores of all layers and heads, 
we match them to each input word.

The implement details are shown in Algorithm 1. The question & con-
text pair is fitted into attention network 𝐴, and we filter out the attention 
scores for context (lines 1 to 8 of Algorithm 1). Then, the attention score 
of each word corresponding to each layer is summed up. After averaging 
and normalization, the word-level attention score is obtained.

Algorithm 1: QA-attack algorithm (adversarial generation).
Input : QA victim model 𝐹 (⋅), logits 𝐿, question 𝑞, context 𝐶, 

words in the context 𝑐, reference answer 𝑎, attention 
network 𝐴, top 𝑘 words to attack 𝑡𝑜𝑝𝑘, number of 
synonyms 𝑑, BERT MLM model 𝐵𝐸𝑅𝑇  for generating 
synonyms.

Output: Optimal adversarial sample 𝐶 ′

1 // Attention-based Ranking;
2 Compute attention scores: 𝛼 ← [(𝑐, 𝐴(𝑞 + 𝐶))];
3 Initialize attention score list: 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑠 ← [ ];
4 for each 𝑠𝑐𝑜𝑟𝑒 in 𝛼 do
5 if 𝑠𝑐𝑜𝑟𝑒 ∈ 𝐶 then
6 Append 𝑠𝑐𝑜𝑟𝑒 to 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑠;
7 end 
8 end 
9 // Removal-based Ranking;
10 Initialize importance score list: 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 ← [ ];
11 for each 𝑐 in 𝐶 do
12 Generate modified context: 𝐶∗ ← 𝐶 excluding 𝑐;
13 Compute importance score: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(|𝐹 (𝑞, 𝐶∗) − 𝐹 (𝑞, 𝐶)|);
14 end 
15 // Hybrid Ranking Fusion;
16 Combine attention and importance scores: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑠 ∪ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠;
17 Select 𝑡𝑜𝑝𝑘 words: 𝑡𝑜𝑝_𝑘_𝑙𝑖𝑠𝑡 ← sort(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑐𝑜𝑟𝑒𝑠)[ ∶ 𝑡𝑜𝑝𝑘];
18 Initialize adversarial examples list: 𝐴𝑑𝑣_𝑙𝑖𝑠𝑡 ← [ ];
19 for each 𝑡 in 𝑡𝑜𝑝_𝑘_𝑙𝑖𝑠𝑡 do
20 Generate adversarial token from 𝑑 potential synonyms: 

𝑐𝑎𝑑𝑣 ← 𝐵𝐸𝑅𝑇 (𝑡);
21 Create adversarial context: Δ𝐶 ← [𝑐1,… , 𝑐𝑎𝑑𝑣,… , 𝑐𝑛];
22 Append Δ𝐶 to 𝐴𝑑𝑣_𝑙𝑖𝑠𝑡;
23 end 

3.3.  Removal-based ranking (RBR)

Previous studies on adversarial attacks in the text have shown 
that each word’s significance can be quantified using an importance 
score (Cao et al., 2022; Jin et al., 2020; Li & Liu, 2023; Li et al., 2020). 
This score is largely determined by how directly the word influences the 
final answer. To enhance the efficacy of ranking progress, we rank each 
word in the context to obtain the removal importance score (lines 9 to 
14 of Algorithm 1). Given the input context 𝐶 containing 𝑛 words from 
𝑐1 to 𝑐𝑛 and question 𝑞, the importance score (removal score) of the 𝑖 𝑡ℎ
(1 ≤ 𝑖 ≤ 𝑛) word 𝑐𝑖 is:
𝐼𝑖 = 𝐿𝐹 (𝑎 ∣ 𝑞, 𝐶) − 𝐿𝐹 (𝑎 ∣ 𝑞, 𝐶 ⧵ 𝑐𝑖), (1)

where 𝐶 ⧵ 𝑐𝑖 represents the context after deleting 𝑐𝑖, and 𝐿𝐹 =
log𝑃 (𝑎 ∣ 𝑞, 𝐶) refers to the probability (logits) of the label, respectively.

3.4.  Hybrid ranking fusion (HRF)

The attention-based and removal-based word selection techniques 
offer complementary perspectives on token significance, each highlight-
ing different aspects of word importance. Consequently, we tend to 
choose words that both methods consider significant. This is achieved 
by adding the scores from each method for every word to create a fusion 
score.

When generating a fusion score, we address several key factors. First, 
we independently normalize the attention and removal scores before 
adding them together. Then, to balance attack effectiveness and effi-
ciency, we introduce a 𝑡𝑜𝑝𝑘 parameter, a positive integer that controls 
the number of words targeted. Finally, we select the 𝑡𝑜𝑝𝑘 highest-scoring 
words for modification (lines 15 to 18 of Algorithm 1).
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3.5.  Synonym selection

Various synonym generation methods exist, including 
Word2Vec (Mikolov et al., 2013), Hownet (Dong & Dong, 2003), 
and WordNet (Miller, 1992). We adopt BERT (Devlin et al., 2019) for 
synonym selection due to its textual capabilities, which enable it to 
generate synonyms based on the complete sentence structure. Unlike 
Word2Vec’s static embeddings or WordNet’s fixed synonym lists, BERT’s 
context-sensitive approach allows for dynamic synonym selection that 
preserves both semantic meaning and grammatical correctness. This 
contextual awareness makes BERT particularly effective for crafting 
natural and semantically coherent adversarial examples.

We process each selected word in the context by replacing it with 
the “[MASK]” token. This modified context is then input into the BERT 
Masked Language Model (MLM) to predict the most likely substitutions 
for the masked word. To expand the range of potential samples, we intro-
duce a parameter 𝑑 that controls the number of synonym substitutions 
considered (lines 19 to 23 of Algorithm 1). This approach allows us to 
generate a diverse set of imperceptible replacements while maintaining 
contextual relevance.

3.6.  Candidate selection

We define an optimal adversary as one that maximizes the diver-
gence between the predicted and attacked answers. For boolean queries 
(yes/no), we follow previous successful textual classifier approaches by 
comparing the logits of output labels. For informative queries, we ag-
gregate the logits across individual words in the response. The optimal 
adversary 𝐶 ′ is identified from the “Adv_list” using the logits derivation 
function 𝐿, as detailed in Algorithm 2. 

Algorithm 2: QA-attack algorithm (optimization).
1 Initialize maximum gap: max_gap← −∞;
2 Initialize optimal adversarial context: 𝐶 ′ ← ∅;
3 for each 𝑎𝑑𝑣 in 𝐴𝑑𝑣_𝑙𝑖𝑠𝑡 do
4 if 𝐹 (𝑎𝑑𝑣) ≠ 𝑎 then
5 Compute gap: gap ← 𝐿(𝐹 (𝑎𝑑𝑣)) − 𝐿(𝐹 (𝐶));
6 if gap > max_gap then
7 Update maximum gap: max_gap← gap;
8 Update optimal adversarial context: 𝐶 ′ ← 𝑎𝑑𝑣;
9 end 
10 end 
11 end 
12 return Optimal adversarial sample 𝐶 ′

4.  Experiment and analysis

In this section, we present a comprehensive evaluation of QA-
Attack’s performance compared to current state-of-the-art baselines. Our 
analysis covers several key aspects with various metrics, providing a 
thorough understanding of our method’s capabilities, limitations, and 
performance across diverse scenarios. We provide a detailed analysis 
of attack performance and imperceptibility (Section 4.4). Besides, to 
gain deeper insights, we conduct ablation studies (Section 4.5) and as-
sess attacking efficiency (Section 4.6). In addition, we examine QA-
Attack’s response to defense strategies (Section 4.8), exploring the ef-
fects of adversarial retraining (Section 4.7) and investigating the trans-
ferability of attacks (Section 4.9). Finally, we report the preference of 
our attack by investigating parts of speech preference (Section 4.10) 
and analyzing its robustness versus the scale of pre-trained models
(Section 4.11).

4.1.  Datasets and victim models

We assess QA-Attack using four informative query datasets: SQuAD 
1.1 (Rajpurkar et al., 2016), SQuAD V2.0 (Rajpurkar et al., 2018), Nar-
rativeQA (Kočiský et al., 2018), and NewsQA (Trischler et al., 2017), as 
well as two domain-specific datasets, EMRQA (Pampari et al., 2018) 
and FinQA (Chen et al., 2022), along with a boolean query dataset, 
BoolQ (Clark et al., 2019). Note that EMRQA and FinQA are domain-
specific datasets designed to evaluate attack performance in specialized 
fields, and thus were excluded from our ablation experiments.

• SQuAD 1.1: Questions formulated by crowd workers based on 
Wikipedia articles. Answers are extracted as continuous text spans 
from the corresponding passages.

• SQuAD 2.0: Extension of SQuAD 1.1 incorporating unanswerable 
questions. These questions are designed such that no valid answer 
can be located within the provided passage, adding complexity to 
the task.

• NarrativeQA: Questions based on entire books or movie scripts. An-
swers are typically short and abstractive, demanding deeper compre-
hension and synthesis of narrative elements.

• NewsQA: Questions based on CNN news articles designed to test 
reading comprehension in the context of current events and jour-
nalistic writing.

• BoolQ: Dataset of boolean (yes/no) questions derived from 
anonymized, aggregated queries submitted to the Google search en-
gine, reflecting real-world information-seeking behavior.

• EMRQA: Large-scale question-answer pairs generated from elec-
tronic medical records. It emphasizes domain-specific reasoning and 
medical information extraction, challenging models with clinical 
contexts.

• FinQA: Financial QA dataset focusing on numerical reasoning over 
semi-structured tables and text passages, requiring models to per-
form calculations and logical inference.

Our experiment includes three question-answering models for com-
parison. They are T5 (Khashabi et al., 2020), LongT5 (Guo et al., 2022), 
and BERTbase (Devlin et al., 2019). The LongT5 is an extension of T5 
with an encoder-decoder specifically for long contextual inputs. The 
BERT-based models are structured with bidirectional attention, mean-
ing each word in the input sequence contributes to and receives context 
from both its left and right sides. Table 1 presents the distribution of 
dataset splits and F1 scores reported on each QA baseline.

4.2.  Baseline attacks

For our experimental baselines, we employ seven leading attack 
methods: TASA (Cao et al., 2022), RobustQA (Yasunaga et al., 2018), 
Tick Me If You Can (TMYC)(Wallace et al., 2019b), T3(Wang et al., 
2020), TextFooler (Jin et al., 2020), PIA (Parry et al., 2024), and LLM-
Attack (Wang et al., 2023). We utilize the official implementation of T3 
in its black-box setting, while TASA, TMYC, and RobustQA are employed 
with their standard configurations. TextFooler, originally not designed 

Table 1 
Dataset distribution and corresponding baseline performance (F1).

Dataset
 Data distribution  Model performance (F1)
 Total  Train  Validation  Test  T5  LongT5  BERTbase

 SQuAD 1.1  100k  87,600  10,570  N/A  88.9  89.5  88.5
 SQuAD V2.0  150k  130,319  11,873  N/A  81.3  83.2  74.8
 NewsQA  119k  92,549  5165  5126  66.8  67.2  60.1
 BoolQ  16k  9427  3270  3245  85.2  86.1  80.4
 NarrativeQA  45k  32,747  3461  10,557  67.5  68.9  62.1
 EMRQA  400k  300,000  50,000  50,000  71.2  72.5  69.3
 FinQA  10k  7000  1500  1500  77.8  78.6  74.2
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Table 2 
Comparison of original and adversarial contexts for two types of queries. The table highlights the differences between 
the original and adversarial contexts, as well as the corresponding answers provided by the model before and after 
the attack.

for question-answering tasks, was adapted for our experiments by mod-
ifying it to process the context only (questions are removed). For PIA 
and LLM-Attack, we employ their official implementations aligned with 
question answering tasks.

4.3.  Experiment settings and evaluation metrics

The base setting of our experiments is to let 𝑡𝑜𝑝𝑘 = 5, 𝑑 = 2, and use 
a BERT-base-uncased1 with 12 Transformer encoder layers (L) and 768 
hidden layers (H) as the synonym generation model. Some visualized 
examples are shown in Table 2. Tables 3–5 summarize the experimental 
results on informative queries datasets, offering a comparative analysis 
of our QA-Attack method against five state-of-the-art QA baselines. For 
boolean queries, we present the attacking results on the BoolQ dataset 
in Table 6. Besides, we provide code for the reproducibility of our ex-
periments.2 The metrics used in our experiment are:

• F1: The F1 score balances precision and recall, providing a nuanced 
view of how much the attacked answers match reference answers.

• ROUGE and BLEU: A higher BLEU (Papineni et al., 2002) or 
ROUGE (Lin, 2004) score in context indicates that the adversarial 
context retains more of the exact phrasing, contributing to better 
linguistic fluency and coherence.

• Exact Match (EM) Measures the percentage of model predictions 
that exactly match the correct answers in both content and format.

1 https://github.com/google-research/bert/?tab=readme-ov-file.
2 Our code is available at https://github.com/UTSJiyaoLi/QA-Attack.

• Similarity (SIM): Evaluates the semantic similarity between orig-
inal and adversarial context using BERT (Devlin et al., 2019) em-
beddings. (Note: In our following experiments, EM and SIM are not 
only measured answers but also reflect the quality of the generated 
context in Section 4.5.3).

• Modification Rate (Mod): Mod measures the proportion of altered 
tokens in the text. This metric considers each instance of replace-
ment, insertion, or deletion as a single token modification.

• Grammar Error (GErr): GErr measures the increase in grammati-
cal inaccuracies within successful adversarial examples relative to 
the original text. This measurement employs LanguageTool (Naber, 
2003) to enumerate grammatical errors.

• Perplexity (PPL): PPL serves as an indicator of linguistic fluency 
in adversarial examples (Kann et al., 2018; Zang et al., 2020). The 
perplexity calculation utilizes a GPT-2 model with a restricted vo-
cabulary (Radford et al., 2019).

It is important to note that the evaluation metrics (SIM, Mod, GErr, and 
PPL) employed in this work are specifically designed to quantify the 
degree of semantic and linguistic divergence between original and ad-
versarial inputs from a computational model perspective. These metrics 
are used to assess attack effectiveness in disrupting model predictions, 
rather than directly measuring human perceptibility. We do not assume 
that lower SIM or GErr/PPL values necessarily correspond to greater 
detectability by human readers. While human imperceptibility is a fo-
cus of other NLP attacks, such as summarization, it is not a focus in 
our research for QA attacks, due to the different types of application 
scenarios. It is supported in prior studies that attacks can be evaluated 

Neural Networks 194 (2026) 108105 

6 

https://github.com/google-research/bert/?tab=readme-ov-file
https://github.com/UTSJiyaoLi/QA-Attack


J. Li et al.

Table 3 
Comparative analysis of QA-Attack and baseline models on T5. Drops of BLEU and ROUGE scores 
(uni-gram) on contexts are reported in the table, with higher values indicating better performance. 
For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better performance.
 Datasets  Methods  F1↓  EM↓  ROUGE↑  BLEU↑  SIM↓

SQuAD 1.1

 TASA (Cao et al., 2022)  9.21  7.49  89.12  82.88  6.38
 TMYC (Wallace et al., 2019b)  7.28  8.21  81.91  78.72  8.22
 RobustQA (Yasunaga et al., 2018)  5.89  7.52  84.23  77.41  6.03
 TextFooler (Jin et al., 2020)  10.6  10.49  83.11  76.05  6.29
 T3 (Wang et al., 2020)  5.41  6.29  86.83  73.82  7.23
 PIA (Parry et al., 2024)  7.32  8.33  82.37  79.03  7.33
 LLM-Attack (Wang et al., 2023)  8.98  9.54  85.11  75.12  6.77
 QA-Attack (ours)  4.67  5.68  90.51  84.11  5.91

SQuAD V2.0

 TASA (Cao et al., 2022)  20.09  19.31  70.21  76.06  7.29
 TMYC (Wallace et al., 2019b)  17.23  20.68  65.19  69.82  9.05
 RobustQA (Yasunaga et al., 2018)  16.37  18.73  67.71  63.19  8.14
 TextFooler (Jin et al., 2020)  21.69  24.5  65.33  65.01  9.32
 T3 (Wang et al., 2020)  11.19  19.68  69.71  73.53  8.82
 PIA (Parry et al., 2024)  12.58  17.46  71.48  75.46  8.11
 LLM-Attack (Wang et al., 2023)  13.82  19.63  69.01  74.21  8.44
 QA-Attack (ours)  9.13  15.41  72.76  77.28  6.33

Narrative QA

 TASA (Cao et al., 2022)  11.79  15.25  68.11  70.36  6.11
 TMYC (Wallace et al., 2019b)  12.73  9.32  65.91  67.22  7.61
 RobustQA (Yasunaga et al., 2018)  10.01  13.91  67.19  64.11  6.81
 TextFooler (Jin et al., 2020)  14.72  18.61  63.85  62.82  11.74
 T3 (Wang et al., 2020)  11.74  11.37  62.34  60.17  6.28
 PIA (Parry et al., 2024)  11.65  14.81  66.67  70.51  6.71
 LLM-Attack (Wang et al., 2023)  12.23  15.72  63.71  69.04  8.91
 QA-Attack (ours)  5.61  7.23  69.18  75.73  5.23

NewsQA

 TASA (Cao et al., 2022)  8.56  29.44  77.28  69.44  12.28
 TMYC (Wallace et al., 2019b)  6.12  31.23  77.96  72.49  10.32
 RobustQA (Yasunaga et al., 2018)  5.12  29.48  78.72  79.82  10.84
 TextFooler (Jin et al., 2020)  9.01  30.86  74.21  57.44  27.91
 T3 (Wang et al., 2020)  6.21  28.52  75.22  72.56  14.27
 PIA (Parry et al., 2024)  7.41  28.77  75.18  74.91  14.41
 LLM-Attack (Wang et al., 2023)  8.11  29.15  74.33  69.92  11.37
 QA-Attack (ours)  3.61  24.42  78.85  82.83  8.92

without human evaluations (Cheng et al., 2020; Li et al., 2019; Madry 
et al., 2018).

4.4.  Experiment analysis

Our experimental results in Tables 3–5 demonstrate that QA-
Attack consistently outperforms baseline methods across all informa-
tive datasets. As shown in Table 6, our method achieves superior per-
formance on the boolean dataset, surpassing all baseline approaches in 
degrading victim models’ accuracy (note that TASA is designed only for 
informative queries; it is incompatible with boolean query attacks). For 
informative queries, comparing performance on attacking LongT5 with 
SQuAD 1.1 and NarrativeQA datasets (representing shortest and longest 
contexts) in Table 5, we observe that while F1 and EM scores decrease 
for longer contexts, QA-Attack maintains superiority over baselines. This 
indicates our approach’s robustness and adaptability to varying context 
lengths, particularly in long texts. The improved performance in longer 
contexts suggests our HRF approach effectively identifies and targets 
vulnerable tokens. Regarding semantic consistency, QA-Attack achieves 
lower similarity scores compared to baseline methods, indicating that 
the answers generated after the attack deviate more in meaning from the 
ground truth responses. In addition, as shown in Table 7, these attacks 
reveal heightened vulnerabilities when applied to specialized medical 
and financial data inputs. Notably, QA-Attack achieves superior perfor-
mance on both the EMRQA and FinQA datasets, consistently outper-
forming all baselines across the informative and boolean answer types, 
which are categorized based on our task-specific definition.

Additionally, the quality of the generated adversarial samples is 
evident from the ROUGE and BLEU scores. Our method consistently 
achieves higher ROUGE and BLEU scores compared to the baselines, 

which suggests that the adversarial examples generated by QA-Attack 
are not only effective in terms of altering the model’s output but also 
maintain a high degree of contextual and linguistic coherence. This is 
largely due to our synonym selection method, which ensures the replace-
ments are contextually appropriate and semantically relevant. More-
over, the token-level replacement strategy, which only modifies fewer 
words (typically five in the base setting), further ensures that the adver-
sarial examples remain similar to the original context while fooling the 
model.

4.5.  Ablation and hyperparameters studies

To comprehensively validate the efficacy of the proposed QA-Attack 
method, this section conducts a detailed ablation study, dissecting each 
component to assess its individual impact and overall contribution to 
the method’s performance.

4.5.1.  Effectiveness of hybrid ranking fusion on multiple question types
We test how HRF, ABR, and RBR methods perform across different 

𝑡𝑜𝑝𝑘 values on the SQuAD and BoolQ datasets, with 𝑑 remaining, shown 
in Fig. 2. HRF consistently outperforms ABR and RBR for all 𝑡𝑜𝑝𝑘 val-
ues on both datasets. This suggests that combining attention-based and 
removal-based ranking in HRF is more effective at generating robust 
adversarial examples than using either method alone. The graph also 
shows that as 𝑡𝑜𝑝𝑘 increases, all methods improve, indicating that higher 
𝑡𝑜𝑝𝑘 values help identify vulnerable tokens better and lead to more ef-
fective attacks.

Despite the better performance at higher 𝑡𝑜𝑝𝑘 values, the study uses 
𝑡𝑜𝑝𝑘 = 5 as a base setting. This choice balances effectiveness with mini-
mal text modification, ensuring that adversarial examples remain close 
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Table 4 
Comparative analysis of QA-Attack and baseline models on Bertbase. Drops of BLEU and ROUGE 
scores (uni-gram) on contexts are reported in the table, with higher values indicating better per-
formance. For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better 
performance.

 Datasets  Methods  F1↓  EM↓  ROUGE↑  BLEU↑  SIM↓

SQuAD 1.1

 TASA (Cao et al., 2022)  15.27  34.33  82.87  67.22  8.19
 TMYC (Wallace et al., 2019b)  12.89  28.63  81.51  76.39  10.24
 RobustQA (Yasunaga et al., 2018)  15.72  25.38  79.28  73.27  15.81
 TextFooler (Jin et al., 2020)  23.04  37.28  67.28  49.49  14.11
 T3 (Wang et al., 2020)  8.79  16.11  57.19  63.81  16.92
 PIA (Parry et al., 2024)  27.12  40.56  60.03  42.17  17.94
 LLM-Attack (Wang et al., 2023)  8.23  19.34  86.03  72.81  8.91
 QA-Attack (ours)  6.42  13.31  91.22  77.16  7.43

SQuAD V2.0

 TASA (Cao et al., 2022)  31.22  28.9  77.06  69.05  8.22
 TMYC (Wallace et al., 2019b)  29.38  27.77  73.81  67.23  10.34
 RobustQA (Yasunaga et al., 2018)  27.64  31.82  75.67  71.42  11.23
 TextFooler (Jin et al., 2020)  36.8  29.49  67.14  62.67  13.28
 T3 (Wang et al., 2020)  26.16  27.47  74.94  70.14  7.24
 PIA (Parry et al., 2024)  39.62  34.21  60.81  58.06  14.19
 LLM-Attack (Wang et al., 2023)  25.21  25.88  77.06  71.77  7.31
 QA-Attack (ours)  22.18  21.5  80.12  75.23  4.11

Narrative QA

 TASA (Cao et al., 2022)  12.11  14.51  61.15  63.04  7.32
 TMYC (Wallace et al., 2019b)  8.41  10.23  52.89  69.82  10.72
 RobustQA (Yasunaga et al., 2018)  7.24  9.43  63.81  67.43  9.53
 TextFooler (Jin et al., 2020)  13.74  18.79  56.11  56.82  14.21
 T3 (Wang et al., 2020)  8.49  15.35  65.48  67.09  7.83
 PIA (Parry et al., 2024)  15.33  20.22  53.61  55.04  17.41
 LLM-Attack (Wang et al., 2023)  6.41  11.02  66.42  66.04  6.42
 QA-Attack (ours)  3.86  9.34  69.44  71.15  5.61

NewsQA

 TASA (Cao et al., 2022)  16.85  20.95  68.74  69.12  15.22
 TMYC (Wallace et al., 2019b)  15.86  31.23  77.96  72.49  10.31
 RobustQA (Yasunaga et al., 2018)  17.72  29.48  79.62  67.33  10.84
 TextFooler (Jin et al., 2020)  24.13  22.63  59.17  61.22  31.07
 T3 (Wang et al., 2020)  21.22  22.57  65.14  67.11  18.27
 PIA (Parry et al., 2024)  28.65  33.21  58.77  59.19  33.61
 LLM-Attack (Wang et al., 2023)  18.45  26.51  70.07  69.51  10.12
 QA-Attack (ours)  14.91  20.20  80.71  74.87  9.22

to the original context while still being effective. The consistent trend 
across both SQuAD and BoolQ datasets demonstrates that HRF’s superior 
performance holds for different question types, showing its versatility in 
attacking various question-answering models. This analysis highlights 
the practical effectiveness of the HRF method and its ability to generate 
impactful adversarial examples across different QA tasks.

To further examine the relationship between ABR and RBR within 
HRF, we evaluate various weighting ratios for each method’s contribu-
tion to the final HRF score. Specifically, we assign varying distribution 
percentages to ABR and RBR before combining their scores, allowing us 
to assess the impact of each method on overall performance. As shown 
in Fig. 3, the x-axis denotes the ABR:RBR weight ratio, while the y-axis 
reflects the corresponding EM scores. The results reveal that increasing 
ABR’s weight leads to only a slight increase in EM, whereas increasing 
RBR’s weight results in a more significant degradation in performance 
(much higher EM scores). This trend suggests that ABR contributes more 
to identifying impactful candidates and plays a more critical role than 
RBR within the HRF method.

4.5.2.  Effectiveness of synonym selection
To evaluate our Synonyms Selection approach, we conduct compar-

isons in two aspects. We first compare our BERT-based synonym genera-
tion against two alternative methods: WordNet (Miller, 1992), an online 
database that contains sets of synonyms, and HowNet (Dong & Dong, 
2003), which produces semantically similar words using its network 
structure. Using the base configuration, we evaluate the EM scores when 
attacking T5 and BERTbase models across three datasets: SQuAD 1.1, 
NarrativeQA, and BoolQ. The results in Table 8 demonstrate that our 
QA-Attack with BERTbase consistently achieved superior performance 
compared to other methods across all datasets and victim models.

Fig. 2. F1 score analysis for HRF, ABR, and RBR variants of QA-Attack using 
different 𝑡𝑜𝑝𝑘 values, tested on datasets SQuAD 1.1 and BoolQ.

On the other hand, we also examine the impact of parameter 𝑑
in Synonym Selection, which determines the number of synonyms ob-
tained from the Masked Language Model (MLM). Table 9 illustrates that 
as 𝑑 increases from 1 to 3, F1 scores consistently decrease across all 
datasets, indicating improved attack performance. This trend suggests 
that a more aggressive setting (higher 𝑑) is more effective in compro-
mising model accuracy across various datasets.
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Table 5 
Comparative analysis of QA-Attack and baseline models on LongT5. Drops of BLEU and ROUGE 
scores (uni-gram) on contexts are reported in the table, with higher values indicating better per-
formance. For F1, EM, and SIM (i.e., similarity) metrics on answers, lower values indicate better 
performance.

 Datasets  Methods  F1↓  EM↓  ROUGE↑  BLEU↑  SIM↓

SQuAD 1.1

 TASA (Cao et al., 2022)  10.61  22.45  80.67  70.41  11.88
 TMYC (Wallace et al., 2019b)  12.43  29.81  75.37  63.83  13.22
 RobustQA (Yasunaga et al., 2018)  17.22  31.11  73.11  68.29  17.64
 TextFooler (Jin et al., 2020)  35.31  44.09  57.77  49.49  25.33
 T3 (Wang et al., 2020)  9.33  24.52  49.23  60.33  20.87
 PIA (Parry et al., 2024)  8.92  20.11  82.91  70.03  10.32
 LLM-Attack (Wang et al., 2023)  9.31  21.03  81.67  68.82  10.73
 QA-Attack (ours)  7.38  18.78  84.22  72.67  9.67

SQuAD V2.0

 TASA (Cao et al., 2022)  30.71  30.11  64.71  67.28  9.32
 TMYC (Wallace et al., 2019b)  34.11  33.88  64.21  65.11  14.82
 RobustQA (Yasunaga et al., 2018)  29.01  39.59  62.91  68.22  13.09
 TextFooler (Jin et al., 2020)  38.25  34.67  60.47  64.16  15.44
 T3 (Wang et al., 2020)  30.44  30.13  65.81  63.72  8.29
 PIA (Parry et al., 2024)  28.13  27.71  75.62  69.83  7.21
 LLM-Attack (Wang et al., 2023)  29.41  28.44  74.19  68.11  7.64
 QA-Attack (ours)  27.11  24.73  77.37  70.32  5.29

Narrative QA

 TASA (Cao et al., 2022)  8.22  10.67  69.83  65.77  9.53
 TMYC (Wallace et al., 2019b)  9.36  11.33  63.15  64.27  14.72
 RobustQA (Yasunaga et al., 2018)  15.83  12.03  64.28  63.12  12.77
 TextFooler (Jin et al., 2020)  12.77  14.82  62.99  54.21  17.33
 T3 (Wang et al., 2020)  8.38  8.26  63.92  66.32  8.92
 PIA (Parry et al., 2024)  6.31  6.93  68.02  66.91  8.23
 LLM-Attack (Wang et al., 2023)  6.82  7.52  67.11  65.74  8.51
 QA-Attack (ours)  4.62  5.33  70.33  68.32  7.44

NewsQA

 TASA (Cao et al., 2022)  16.85  24.54  64.83  66.81  14.82
 TMYC (Wallace et al., 2019b)  19.28  29.01  62.88  68.67  11.43
 RobustQA (Yasunaga et al., 2018)  17.23  27.42  58.32  57.22  13.37
 TextFooler (Jin et al., 2020)  27.22  26.39  53.33  53.01  25.82
 T3 (Wang et al., 2020)  17.83  25.87  63.25  65.43  19.27
 PIA (Parry et al., 2024)  16.18  25.91  66.81  67.11  11.32
 LLM-Attack (Wang et al., 2023)  16.91  26.41  65.42  65.02  11.78
 QA-Attack (ours)  15.32  24.12  68.23  70.55  10.48

Table 6 
Attack performance comparison on baseline models using the BoolQ dataset, with top results high-
lighted in bold. Note that TASA (Cao et al., 2022) is not applicable to boolean questions.
 Victim Models  Methods  F1↓  EM↓  ROUGE↑  BLEU↑  SIM↓

T5

 TASA (Cao et al., 2022)  N/A  N/A  N/A  N/A  N/A
 TMYC (Wallace et al., 2019b)  17.43  19.36  82.09  77.23  21.83
 RobustQA (Yasunaga et al., 2018)  14.33  18.92  79.15  80.33  13.22
 TextFooler (Jin et al., 2020)  20.11  19.07  80.91  83.25  33.82
 T3 (Wang et al., 2020)  15.16  14.74  71.32  68.79  15.82
 PIA (Parry et al., 2024)  11.23  15.11  85.02  81.21  12.94
 LLM-Attack (Wang et al., 2023)  11.91  15.77  84.47  79.87  13.21
 QA-Attack (ours)  8.64  13.9  87.31  86.57  11.42

Bertbase

 TASA (Cao et al., 2022)  N/A  N/A  N/A  N/A  N/A
 TMYC (Wallace et al., 2019b)  21.35  13.28  63.21  70.57  7.34
 RobustQA (Yasunaga et al., 2018)  24.81  9.21  69.22  76.01  6.67
 TextFooler (Jin et al., 2020)  33.02  11.57  65.11  67.81  8.17
 T3 (Wang et al., 2020)  22.06  11.02  76.17  74.62  6.23
 PIA (Parry et al., 2024)  20.13  8.93  74.81  76.31  5.92
 LLM-Attack (Wang et al., 2023)  21.11  9.52  73.92  74.21  6.24
 QA-Attack (ours)  18.39  6.51  77.21  78.11  4.66

LongT5

 TASA (Cao et al., 2022)  N/A  N/A  N/A  N/A  N/A
 TMYC (Wallace et al., 2019b)  29.77  9.82  67.04  73.22  7.43
 RobustQA (Yasunaga et al., 2018)  24.56  8.21  70.49  71.83  9.33
 TextFooler (Jin et al., 2020)  33.02  11.57  65.11  67.81  8.17
 T3 (Wang et al., 2020)  22.06  11.02  76.17  74.62  6.23
 PIA (Parry et al., 2024)  20.23  7.44  74.51  76.42  5.87
 LLM-Attack (Wang et al., 2023)  21.11  8.32  73.23  74.31  6.02
 QA-Attack (ours)  17.67  7.03  78.67  77.54  4.37
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Table 7 
Comparative analysis of eight attack methods targeting the T5 model across EMRQA and FinQA datasets, 
categorized by answer type. Results are stratified into boolean and informative response subsets to illustrate 
performance variations across different task types.
 Answer Type  Datasets  Methods  F1↓  EM↓  ROUGE↑  BLEU↑  SIM↓

Informative

EMRQA

 TASA (Cao et al., 2022)  12.25  12.25  61.37  61.54  8.16
 TMYC (Wallace et al., 2019b)  11.38  11.38  55.27  59.18  8.62
 RobustQA (Yasunaga et al., 2018)  10.27  10.27  57.70  58.49  7.04
 TextFooler (Jin et al., 2020)  12.22  12.22  54.33  61.27  8.44
 T3 (Wang et al., 2020)  10.73  10.73  56.49  61.89  7.13
 PIA (Parry et al., 2024)  11.35  11.35  53.96  54.94  7.28
 LLM-Attack (Wang et al., 2023)  11.27  11.27  62.53  55.81  7.62
 QA-Attack (ours)  8.79  8.79  64.87  62.24  6.73

FinQA

 TASA (Cao et al., 2022)  11.94  11.94  57.56  63.93  7.95
 TMYC (Wallace et al., 2019b)  10.77  10.77  57.89  60.14  8.37
 RobustQA (Yasunaga et al., 2018)  9.91  9.91  60.10  59.83  6.94
 TextFooler (Jin et al., 2020)  11.88  11.88  55.02  59.65  8.79
 T3 (Wang et al., 2020)  9.54  9.54  63.78  55.42  7.30
 PIA (Parry et al., 2024)  10.83  10.83  58.26  57.41  7.23
 LLM-Attack (Wang et al., 2023)  10.81  10.81  62.18  56.32  7.31
 QA-Attack (ours)  8.59  8.59  67.42  65.11  6.61

Boolean

EMRQA

 TASA (Cao et al., 2022)  12.14  12.14  60.64  64.29  7.82
 TMYC (Wallace et al., 2019b)  11.22  11.22  56.17  57.99  8.73
 RobustQA (Yasunaga et al., 2018)  10.14  10.14  61.16  61.16  7.28
 TextFooler (Jin et al., 2020)  12.08  12.08  62.93  57.39  8.87
 T3 (Wang et al., 2020)  9.80  9.80  64.60  62.10  7.05
 PIA (Parry et al., 2024)  10.92  10.92  55.30  58.69  7.50
 LLM-Attack (Wang et al., 2023)  10.74  10.74  60.81  63.54  7.18
 QA-Attack (ours)  8.91  8.91  64.98  66.92  6.78

FinQA

 TASA (Cao et al., 2022)  12.01  12.01  60.69  54.96  7.91
 TMYC (Wallace et al., 2019b)  10.81  10.81  62.92  63.64  8.66
 RobustQA (Yasunaga et al., 2018)  9.95  9.95  64.15  58.51  7.19
 TextFooler (Jin et al., 2020)  11.93  11.93  60.90  55.68  8.54
 T3 (Wang et al., 2020)  9.36  9.36  60.86  59.71  7.21
 PIA (Parry et al., 2024)  10.91  10.91  60.14  59.15  7.32
 LLM-Attack (Wang et al., 2023)  10.89  10.89  54.67  56.80  7.44
 QA-Attack (ours)  8.63  8.63  67.31  64.58  6.69

Fig. 3. The impact of HRF weight distribution (ABR/RBR) on EM score using 
the SQuAD 1.1 dataset. A lower EM score means better attack performance.

4.5.3.  Texual quality of word candidates
In our ablation study, detailed in Table 10, we investigate the quality 

of adversarial examples generated by various attack methods on the T5 
model using the SQuAD 1.1 dataset. We evaluate our word replacement 
technique with encoder-decoder candidate generation (T3), as well as 
sentence-level modification methods (TASA, TMYC). The results indi-
cate that our word-level synonym selection approach outperformed all 
other baselines. Notably, our word-level attack maintains a lower gram-
mar error rate and higher linguistic fluency than alternative methods. 

Table 8 
EM scores for attacks on T5 and BERTbase models using three distinct syn-
onym generation methods. Lower scores indicate more effective attacks.

Methods Victim models  Datasets
 SQuAD 1.1  NarrativeQA  BoolQ

HowNet
 T5  14.22  7.25  29.08
 BERTbase  7.66  4.52  26.91

WordNet
 T5  5.31  3.99  21.63
 BERTbase  7.23  5.67  19.35

BERTbase (ours)  T5  4.67  5.61  8.64
 BERTbase  6.42  3.86  18.39

Table 9 
F1 scores demonstrating QA-Attack’s performance across five datasets un-
der different 𝑑 values (i.e., number of synonym candidates for substitu-
tions).

 SQuAD 1.1  SQuAD V2.0  BoolQ  Narrative QA  NewQA
𝑑 = 1  8.52  14.72  19.22  7.63  10.66
𝑑 = 2  4.67  9.13  15.16  5.61  3.61
𝑑 = 3  2.17  7.26  11.43  3.71  3.27

Although RobustQA employs the same synonym selection strategy, it 
requires more word modifications to successfully attack the model and 
tends to produce more adventurous alterations.

4.6.  Platform and efficiency analysis

In this section, we evaluate QA-Attack’s computational efficiency 
under base settings. We measure efficiency using time consumption 
per sample, expressed in seconds, where a lower value indicates
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Fig. 4. F1 scores of T5 model on SQuAD 1.1 dataset showing (a) performance after retraining with varying proportions of adversarial examples from multiple 
generation methods, and (b) robustness against attacks on the retrained model under different scenarios.

Table 10 
Performance metrics for different word candidate selection strategies against 
the T5 model on the SQuAD 1.1 dataset.
 Methods  EM↓  SIM↑  Mod↓  PPL↓  GErr↓
 TASA (Cao et al., 2022)  9.21  6.38  8.15  143  0.13
 TMYC (Wallace et al., 2019b)  7.28  8.22  9.21  151  0.14
 RobustQA (Yasunaga et al., 2018)  5.89  6.03  8.35  147  0.15
 T3 (Wang et al., 2020)  6.23  7.23  7.93  133  0.13
 TextFooler (Jin et al., 2020)  10.60  6.29  8.17  136  0.14
 PIA (Parry et al., 2024)  6.21  6.12  7.85  130  0.13
 LLM-Attack (Wang et al., 2023)  6.48  6.04  8.01  132  0.13
 QA-Attack (ours)  5.68  5.91  7.24  125  0.12

Table 11 
Time consumption (seconds per sample) for various methods and datasets. A 
lower value indicates better performance.

Narrative 
QA

SQuAD 
1.1

SQuAD 
V2.0

 NewsQA  BoolQ

 TASA (Cao et al., 2022) 28.77 15.82 18.25  10.72  N/A
 TMYC (Wallace et al., 2019b) 25.61 12.75 16.33  9.21  7.42
 RobustQA (Yasunaga et al., 2018) 25.82 24.46 22.15  12.81  15.82
 T3 (Wang et al., 2020) 26.52 21.37 28.38  14.74  7.93
 PIA (Parry et al., 2024) 24.81 12.35 17.67  9.28  7.53
 LLM-Attack (Wang et al., 2023) 27.33 14.87 13.09  11.21  7.98
 QA-Attack (ours) 23.51 10.61 12.38  8.32  7.22

superior performance. As shown in Table 11, the outcomes reveal that 
QA-Attack exhibits remarkable time efficiency, consistently outperform-
ing baseline methods across both long-text (NarrativeQA) and short-text 
(SQuAD 1.1) datasets. This superior performance can be attributed to 
QA-Attack’s innovative Hybrid Ranking Fusion (HRF) strategy, which 
effectively identifies vulnerable words within the text, significantly en-
hancing the speed of the attack process.

4.7.  Adversarial retraining

In this section, we investigate QA-Attack’s potential for enhancing 
downstream models’ accuracy. We employ QA-Attack to generate ad-
versarial examples from SQuAD 1.1 training sets and incorporate them 
as supplementary training data. We reconstruct the training set with 
varying proportions of adversarial examples added to the raw training 
set. The retraining process with this augmented data aims to examine 
how test accuracy changes in response to the inclusion of adversarial 
examples. As illustrated in Fig. 4(a), re-training with adversarial exam-
ples slightly improves model performance when less than 30% of the 

training data consists of adversaries. However, performance decreases 
when the proportion of adversaries exceeds 30%. This finding indicates 
that the optimal ratio of adversarial examples in training data needs to 
be determined empirically, which aligns with conclusions from previous 
attacking methods. To evaluate how re-training helps defend against ad-
versarial attacks, we analyze the robustness of T5 models trained with 
varying proportions of adversarial examples (0%, 10%, 20%, 30%, 
40%) from different attack methods, as shown in Fig. 4(b). A lower 
F1 score indicates higher model susceptibility to adversarial attacks. 
It demonstrates that incorporating adversarial examples during train-
ing consistently improves model robustness, as evidenced by increas-
ing F1 scores across all attack methods. Notably, QA-Attack emerges as 
the most effective approach, consistently outperforming other methods, 
with its advantage becoming particularly pronounced at higher percent-
ages of adversarial training data.

4.8.  Attacking models with defense mechanism

Defending NLP models against adversarial attacks is crucial for main-
taining the reliability of language processing systems in real-world ap-
plications (Goyal et al., 2023). To further analyze how attacks are per-
formed under defense systems, we deploy two distinct defense mecha-
nisms to investigate our attack performance under defense systems. The 
first is Frequency-Guided Word Substitutions (FGWS) approach (Mozes 
et al., 2021), which excels at detecting adversarial examples. The sec-
ond is Random Masking Training (RanMASK) (Zeng et al., 2023), a tech-
nique that enhances model robustness through specialized training pro-
cedures. We perform the adversarial attack on T5 on datasets SQuAD 
1.1, NarrativeQA, and BoolQ; the results are presented in Table 12. The 
results show that QA-Attack demonstrates superior adversarial robust-
ness across multiple benchmark datasets, consistently outperforming ex-
isting methods against state-of-the-art defenses.

4.9.  Transferability of attacks

To evaluate the transferability of our method, we conduct cross-
model attacks using adversarial examples generated from two different 
models: T5 and RoBERTa. Adversarial examples crafted against T5 are 
evaluated on RoBERTa, DistilBERT, and MultiQA, while those gener-
ated against RoBERTa are transferred to T5, DistilBERT, and MultiQA. 
Fig. 5 presents our transferability results. Both subfigures 5(a) and (b) 
demonstrate that adversarial examples generated by QA Attack, whether 
crafted against T5 or RoBERTa, consistently degrade the performance 
of other QA models. QA-Attack exhibits superior transferability across 
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Table 12 
Effectiveness of defense mechanisms (FGWS (Mozes et al., 2021) and RanMASK (Zeng et al., 2023)) against QA-Attack: 
EM scores of T5 model output answers across SQuAD 1.1, NarrativeQA, and BoolQ datasets. Lower scores indicate higher 
attack success against defenses.
 Datasets  Defense  TASA  RobustQA  TMYC  T3  PIA  LLM-Attack  QA-Attack

SQuAD 1.1  FGWS (Mozes et al., 2021)  34.71  39.42  28.51  24.11  22.63  23.21  21.03
 RanMASK (Zeng et al., 2023)  32.17  39.78  44.81  41.09  31.28  32.02  30.26

Narrative QA  FGWS (Mozes et al., 2021)  49.28  44.62  37.21  45.17  38.91  39.54  38.33
 RanMASK (Zeng et al., 2023)  38.41  37.14  41.62  43.81  35.81  36.42  34.47

BoolQ
 FGWS (Mozes et al., 2021)  45.71  47.37  38.97  45.33  39.11  39.94  38.34
 RanMASK (Zeng et al., 2023)  41.63  42.88  47.25  42.17  41.12  41.66  40.51

Fig. 5. F1 scores for transfer attacks on QA models using adversarial samples generated for T5 or RoBERTa. Lower values indicate better performance. (a) Transfer 
attack with samples generated for T5, (b) Transfer attack with samples generated for RoBERTa.

both source model configurations compared to baseline methods (TASA, 
TextFooler, and T3) on both NarrativeQA and BoolQ datasets. These re-
sults validate that QA-Attack generates adversarial perturbations that 
exploit fundamental vulnerabilities shared across diverse neural QA ar-
chitectures, demonstrating our approach’s robustness and broad appli-
cability.

4.10.  Parts of speech preference

To further understand the candidate word distribution of our word-
level attack, we examine its attacking preference in terms of Parts of 
Speech (POS), highlighting vulnerable areas within the input context. 
We use the Stanford POS tagger (Toutanova et al., 2003) to label each 
attacked word, categorizing them as noun, verb, adjective (Adj.), adverb 
(Adv.), and others (e.g., pronoun, preposition, conjunction).

Table 13 illustrates the POS preferences of QA-Attack compared to 
baseline methods. For informative queries on the SQuAD 1.1 dataset, most 
attacking methods predominantly target nouns, which are typically key 
semantic carriers in questions and contexts. Modifying nouns can di-
rectly alter the core meaning of the passage, leading the model to gen-
erate incorrect answers. Interestingly, TASA shows a slight preference 
for adverbs, which often modify the certainty or scope of statements, 
subtly affecting the model’s interpretation.

For boolean queries on the BoolQ dataset, we observe that some at-
tacks tend to manipulate adjectives and adverbs. These parts of speech are 
crucial in yes/no questions because they often determine the polarity, 
intensity, or qualification of statements (e.g., “always” vs “sometimes”, 

Table 13 
Part-of-speech preferences in victim word selection across different attack 
methods (TASA incompatible with Boolean queries).
 Datasets  Methods  Noun  Verb  Adj.  Adv.  Others

SQuAD 1.1

 TASA (Cao et al., 2022)  N/A  N/A  N/A  N/A  N/A
 TMYC (Wallace et al., 2019b)  47%  21%  11%  5%  17%
 RobustQA (Yasunaga et al., 2018)  34%  13%  22%  16%  15%
 TextFooler (Jin et al., 2020)  44%  13%  23%  8%  12%
 T3 (Wang et al., 2020)  60%  17%  6%  7%  10%
 PIA (Parry et al., 2024)  41%  14%  24%  11%  10%
 LLM-Attack (Wang et al., 2023)  39%  13%  22%  12%  14%
 QA-Attack (ours)  34%  9%  18%  3%  36%

BoolQ

 TASA (Cao et al., 2022)  N/A  N/A  N/A  N/A  N/A
 TMYC (Wallace et al., 2019b)  14%  19%  12%  35%  20%
 RobustQA (Yasunaga et al., 2018)  19%  14%  27%  23%  17%
 TextFooler (Jin et al., 2020)  41%  15%  27%  7%  10%
 T3 (Wang et al., 2020)  42%  13%  20%  16%  9%
 PIA (Parry et al., 2024)  36%  14%  26%  13%  11%
 LLM-Attack (Wang et al., 2023)  34%  15%  24%  14%  13%
 QA-Attack (ours)  10%  19%  25%  18%  28%

“true” vs “possible”), and small changes can easily flip the correct an-
swer.

Notably, our QA-Attack exhibits a higher tendency to target the “oth-
ers” category, including pronouns, prepositions, and conjunctions. Al-
though these function words carry relatively less standalone semantic 
content, modifying them can disrupt the grammatical and sequential 
structure of the sentence.
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Table 14 
A comparative analysis of attacks on various sizes of BERT models using the 
SQuAD 1.1 dataset. Lower values indicate better attack performance.
 Versions  BERT Tiny  BERT Mini  BERT Medium  BERT Large
 Size  L = 2, H = 128  L = 4, H = 256  L = 8, H = 512  L = 24, H = 1024
 EM ↓  11.82  13.26  13.31  14.25
 F1 ↓  5.67  6.35  6.42  7.24
 SIM ↓  6.23  7.12  7.43  8.38

Why certain POS are more effective in misleading the model?. The effec-
tiveness of attacking different POS varies between question types due 
to the distinct ways models process semantic and syntactic cues. For 
informative queries (SQuAD 1.1 dataset), answers often depend on ac-
curately identifying nouns or named entities within the context. These 
are the anchors for understanding “who” or “what” the question refers 
to, making them high-impact targets. Changing nouns forces the model 
to either misinterpret the reference or fail to locate the answer span.

In contrast, boolean queries (BoolQ dataset) rely more on assess-
ing logical qualifiers and sentence-level polarity. Therefore, modifying 
adjectives and adverbs (which influence truth values or intensifiers) 
greatly affect model predictions. For example, changing “always” to 
“sometimes” or “likely” to “unlikely” can invert the correct yes/no an-
swer without drastically altering sentence fluency or detectability.

QA-Attack’s distinct strategy.. Notably, QA-Attack shows a distinct POS 
preference with a higher proportion of the “others” category (pronouns, 
prepositions, conjunctions). Though these function words carry less 
standalone semantic content, they are crucial for sentence structure and 
syntactic dependencies. Modifying them subtly disrupts the grammati-
cal and sequential structure of the sentence without noticeably changing 
its meaning.

These findings suggest that effective attacks are not limited to alter-
ing content words (noun) to shift meaning but can also exploit syntactic 
and structural weaknesses (adv, adj, others), a strategy that underlies 
QA-Attack’s superior performance across diverse QA tasks.

4.11.  Robustness versus the scale of pre-trained models

From the attacking results in Table 4 discussed in Section 4.4, we 
recognize the limitation of our QA-Attack on BERTbase, with 𝐿 = 12 and 
𝐻 = 768, which does not sufficiently support robust experimental out-
comes. To address this issue and gain more comprehensive insights, 
we conducted experiments with four different sizes of BERT (Devlin 
et al., 2019) models3: BERTtiny, BERTmini, BERTmedium, and BERTlarge. 
Our findings, detailed in Table 14, demonstrate a positive correlation 
between model size and experimental robustness. The effectiveness of 
adversarial attacks decreases as the complexity and capacity of the BERT 
model increase, suggesting that deeper architectures provide better pro-
tection against adversarial perturbations.

5.  Conclusion and future work

The robustness of QA models has been increasingly challenged by ad-
versarial attacks. These attacks expose the vulnerabilities of models used 
in various tasks, including information retrieval, conversational agents, 
and machine comprehension. To address this, we introduced QA-Attack, 
which leverages Hybrid Ranking Fusion (HRF) to conduct effective at-
tacks by identifying and modifying the most critical tokens in the input 
text. Through a combination of attention-based and removal-based rank-
ing strategies, QA-Attack successfully disrupts model predictions while 
maintaining high levels of semantic and linguistic coherence. Extensive 

3 Different sizes of BERT models can be obtained from https://github.com/
google-research/bert/

experiments have demonstrated that our method outperforms existing 
attack techniques regarding attack success, fluency, and consumption 
across various datasets, confirming its efficacy in undermining the ro-
bustness of state-of-the-art QA models.

While adversarial attacks such as QA-Attack expose vulnerabilities in 
QA systems, they simultaneously provide valuable opportunities to eval-
uate and enhance model robustness. Moving forward, we plan to focus 
our research on developing effective defense strategies that can mitigate 
these identified vulnerabilities. In future work, we intend to expand our 
investigation beyond the current word-level perturbation constraints 
by incorporating sentence-level attacks, which will provide deeper in-
sights into the impact of more extensive modifications on QA model 
performance. Additionally, we plan to extend QA-Attack to handle in-
creasingly complex and diverse QA scenarios, including multiple-choice 
questions and multi-hop reasoning tasks (Yu et al., 2020). Moreover, we 
intend to investigate targeted attacks designed to provoke model hallu-
cinations, with the goal of understanding and mitigating the factors that 
lead models to generate unsupported responses beyond QA scenarios.

CRediT authorship contribution statement

Jiyao Li: Conceptualization, Methodology, Writing – original draft;
Mingze Ni: Investigation, Visualization; Yongshun Gong: Writing – re-
view & editing; Wei Liu: Writing - review & editing, Methodology.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References

Antaki, F., Milad, D., Chia, M. A., Giguère, C.-É., Touma, S., El-Khoury, J., Keane, P. A., 
& Duval, R. (2024). Capabilities of GPT-4 in ophthalmology: An analysis of model 
entropy and progress towards human-level medical question answering. British Journal 
of Ophthalmology, 108(10), 1371–1378.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning 
to align and translate. CoRR, abs/1409.0473

Bongini, P., Becattini, F., & Del Bimbo, A. (2022). Is GPT-3 all you need for visual ques-
tion answering in cultural heritage? In European conference on computer vision (pp. 
268–281). Springer.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., 
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, 
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Lan-
guage models are few-shot learners. In Advances in neural information processing systems 
(pp. 1877–1901). Curran Associates, Inc. (vol. 33).

Cao, Y., Li, D., Fang, M., Zhou, T., Gao, J., Zhan, Y., & Tao, D. (2022). TASA: Deceiving 
question answering models by twin answer sentences attack. In Proceedings of the 2022 
conference on empirical methods in natural language processing (pp. 11975–11992). Abu 
Dhabi, United Arab Emirates: Association for Computational Linguistics.

Chen, Q., Zhang, Z., Liu, Z., Zhang, H., Liu, Y., & Huang, M. (2022). FinQA: A dataset of 
numerical reasoning over financial data. In Proceedings of the 60th annual meeting of 
the association for computational linguistics (ACL).

Cheng, M., Yi, J., Chen, P.-Y., Zhang, H., & Hsieh, C.-J. (2020). Seq2sick: Evaluating the 
robustness of sequence-to-sequence models with adversarial examples. Proceedings of 
the AAAI Conference on Artificial Intelligence, 34(04), 3601–3608.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., & Toutanova, K. (2019). 
BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of 
the 2019 conference of the North American chapter of the association for computational lin-
guistics: Human language technologies, volume 1 (long and short papers) (pp. 2924–2936). 
Minneapolis, Minnesota: Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep 
bidirectional transformers for language understanding. In Proceedings of the 2019 con-
ference of the North American chapter of the association for computational linguistics: Hu-
man language technologies (pp. 4171–4186). Minneapolis, Minnesota: Association for 
Computational Linguistics.

Dong, H., Dong, J., Yuan, S., & Guan, Z. (2022). Adversarial attack and defense on nat-
ural language processing in deep learning: A survey and perspective. In International 
conference on machine learning for cyber security (pp. 409–424). Springer.

Neural Networks 194 (2026) 108105 

13 

https://github.com/google-research/bert/
https://github.com/google-research/bert/
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0005
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0005
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0005
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0009
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0009
http://refhub.elsevier.com/S0893-6080(25)00985-2/sbref0009


J. Li et al.

Dong, Z., & Dong, Q. (2003). Hownet-a hybrid language and knowledge resource. In In-
ternational conference on natural language processing and knowledge engineering, 2003. 
proceedings. 2003 (pp. 820–824). IEEE.

Ebrahimi, J., Rao, A., Lowd, D., & Dou, D. (2018). HotFlip: White-box adversarial examples 
for text classification. In Proceedings of the 56th annual meeting of the association for 
computational linguistics (volume 2: Short papers) (pp. 31–36). Melbourne, Australia: 
Association for Computational Linguistics.

Galassi, A., Lippi, M., & Torroni, P. (2021). Attention in natural language processing. IEEE 
Transactions on Neural Networks and Learning Systems, 32(10), 4291–4308.

Garg, S., & Ramakrishnan, G. (2020). Bae: Bert-based adversarial examples for text clas-
sification. In Proceedings of the 2020 conference on empirical methods in natural language 
processing (EMNLP) (pp. 6174–6181). Association for Computational Linguistics.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial 
examples. In 3rd international conference on learning representations (ICLR) (p. online).

Goyal, S., Doddapaneni, S., Khapra, M. M., & Ravindran, B. (2023). A survey of adversarial 
defenses and robustness in nlp. ACM Computing Surveys, 55(14s), 1–39.

Guo, M., Ainslie, J., Uthus, D., Ontanon, S., Ni, J., Sung, Y.-H., & Yang, Y. (2022). LongT5: 
Efficient text-to-text transformer for long sequences. In Findings of the association for 
computational linguistics: NAACL 2022 (pp. 724–736). Seattle, United States: Associa-
tion for Computational Linguistics.

Hathaliya, J. J., Tanwar, S., & Sharma, P. (2022). Adversarial learning techniques for 
security and privacy preservation: A comprehensive review. Security and Privacy, 5(3), 
e209.

Iyyer, M., Wieting, J., Gimpel, K., & Zettlemoyer, L. (2018). Adversarial example gen-
eration with syntactically controlled paraphrase networks. In Proceedings of the 2018 
conference of the North American chapter of the association for computational linguistics: 
Human language technologies, volume 1 (long papers) (pp. 1875–1885). New Orleans, 
Louisiana: Association for Computational Linguistics.

Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading comprehension 
systems. In Proceedings of the 2017 conference on empirical methods in natural language 
processing (pp. 2021–2031). Copenhagen, Denmark: Association for Computational 
Linguistics.

Jin, D., Jin, Z., Zhou, J. T., & Szolovits, P. (2020). Is BERT really robust? A strong baseline 
for natural language attack on text classification and entailment. Proceedings of the 
AAAI Conference on Artificial Intelligence, 34(05), 8018–8025.

Jin, D., Pan, E., Oufattole, N., Weng, W.-H., Fang, H., & Szolovits, P. (2021). What disease 
does this patient have? a large-scale open domain question answering dataset from 
medical exams. Applied Sciences, 11(14), 6421.

Kann, K., Rothe, S., & Filippova, K. (2018). Sentence-level fluency evaluation: References 
help, but can be spared! In Proceedings of the 22nd conference on computational natu-
ral language learning (pp. 313–323). Brussels, Belgium: Association for Computational 
Linguistics.

Khashabi, D., Min, S., Khot, T., Sabharwal, A., Tafjord, O., Clark, P., & Hajishirzi, H. 
(2020). UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings 
of the association for computational linguistics: EMNLP 2020 (pp. 1896–1907). Online: 
Association for Computational Linguistics.

Klein, T., & Nabi, M. (2019). Learning to answer by learning to ask: Getting the best of 
gpt-2 and bert worlds. arXiv preprint arXiv:1911.02365

Klopfenstein, L. C., Delpriori, S., Malatini, S., & Bogliolo, A. (2017). The rise of bots: 
A survey of conversational interfaces, patterns, and paradigms. In Proceedings of the 
2017 conference on designing interactive systems DIS ’17 (p. 555-565). New York, NY, 
USA: Association for Computing Machinery.

Ko, M., Lee, J., Kim, H., Kim, G., & Kang, J. (2020). Look at the first sentence: Position 
bias in question answering. In Proceedings of the 2020 conference on empirical meth-
ods in natural language processing (EMNLP) (pp. 1109–1121). Online: Association for 
Computational Linguistics.
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