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Abstract—The paper proposes a robust online adaptive 
neural network control scheme for an automated treadmill 
system. The proposed control scheme is based on Feedback-
Error Learning Approach (FELA), by using which the plant 
Jacobian calculation problem is avoided. Modification of the 
learning algorithm is proposed to solve the overtraining issue, 
guaranteeing to system stability and system convergence. As an 
adaptive neural network controller can adapt itself to deal with 
system uncertainties and external disturbances, this scheme is 
very suitable for treadmill exercise regulation when the model 
of the exerciser is unknown or inaccurate.  In this study, 
exercise intensity (measured by heart rate) is regulated by 
simultaneously manipulating both treadmill speed and gradient 
in order to achieve fast tracking for which a single input multi 
output (SIMO) adaptive neural network controller has been 
designed. Real-time experiment result confirms that robust 
performance for nonlinear multivariable system under model 
uncertainties and unknown external disturbances can indeed be 
achieved.      

I. INTRODUCTION 
egular exercises and physical activities are beneficial 
for long-term health and well-being. This study 
investigates the regulation of treadmill exercises by 

feedback control of exercisers’ heart rate. For the regulation 
of heart rate during exercises, there are several existing 
methods in literature. For example, in [1], a support vector 
machine (SVM) based nonlinear control approach has been 
developed. Paper [2] developed a nonlinear Model 
Predictive Controller for safe rehabilitation exercises. 
However, the above mentioned methodologies are all using 
SISO controller for which the manipulated variable is 
treadmill speed. In order to reach the subject's limit of 
tolerance for exercise testing and rehabilitation of subjects 
with impaired exercise tolerance, ramp type protocols were 
proposed by simultaneously manipulating both speed and 
gradient (without feedback) in [3, 4]. In [5], a multi-loop 
PID controller based HR tracking system has been presented 
which independently adjusts both treadmill speed and 
gradient in closed loop, and achieved good performance. 
However, the multi-loop PID controller designed in [5] may 
need re-tuning of parameters for different exercisers, which 
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generates extra supervision task for individual exercises.  In 
order to overcome this deficiency, this study developed an 
adaptive neural network controller, which is capable of self-
tuning controller parameters based on its learning ability.  

Neural networks are equipped with many desirable 
properties, including learning by experience, the ability to 
map nonlinear functions, the ability to generalize, as well as 
demonstrating robustness with noise and multivariable 
interactions. As such, neural networks have provided 
effective solutions for complex and nonlinear control 
problems, both with and without uncertainties [6-8]. In most 
neural network control structures, a neural network 
controller is connected serially to an unknown plant. It 
therefore faces the problem of unknown plant Jacobian, 
which is defined as the partial derivative of a plant’s outputs 
with respect to its inputs when propagating the control error 
using back propagation method to the adjustable coefficients 
of the neural controller. This adjustment leads to error 
reduction. 

Due to the complexity of an unknown plant, it is difficult 
or even impossible to calculate a plant Jacobian. Several 
methods have been proposed for finding a plant Jacobian, 
though none have proven effectiveness. These methods 
include the online approximation method [9], the plant 
Jacobian sign calculation [10], direct calculation from the 
plant model [11], the Inverse Transfer Matrix scheme [6], 
gain layer schemes  [12, 13], and the use of trained neural 
networks as identifier [11]. To avoid the calculation of a 
plant Jacobian, an adaptive updating law has been proposed 
by Fierro and Lewis [14]. This adaptive updating law is 
based on Lyapunov theory. Although this method guarantees 
the stability of the controlled system, the proposed updating 
rules are too complicated for a real-time system. 

To solve the plant Jacobian problem, the robust neuro-
sliding mode multivariable control strategy is proposed by 
T.N. Nguyen (an author of this article) in [15]. This control 
strategy effectively deals with multivariable control problem 
based on the combination of decoupling technique and 
neuro-sliding mode control. However, this control strategy 
requires that the number of inputs and outputs of a 
multivariable system are the same.  

Another solution to deal with plant Jacobian problem is to 
utilize Feedback Error Learning Approach (FELA) for 
neural network control design [16, 17]. Several works using 
neural network control scheme based FELA for control 
applications have been published [18-20]. However, none of 
these articles discuss on the overtraining problem issue, 
which may lead to system unstable condition.    
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In this paper, we propose a robust online adaptive neural 
network control scheme for a multivariable control problem, 
and this proposed scheme can be applicable for a multiple 
input single output system. The proposed control scheme is 
based on FELA, thus the calculation of plant Jacobian is not 
required. A modification of learning algorithm is proposed 
to solve the overtraining problem, thus guarantees the 
system stability and convergence. The effectiveness of the 
proposed control scheme is proved via real-time control of 
the automated treadmill system. 

The paper is organized as follows. In Section II, Robust 
on-line adaptive neural network control scheme is presented 
in detail. Real-time experimental results for treadmill control 
system and discussions are shown in Section III. The 
conclusion is given in Section IV. 

II. ROBUST ON-LINE ADAPTIVE NEURAL 
NETWORK CONTROL 

The on-line adaptive neural network control scheme is 
shown in figure 2.1. The objective is to train the neural 
network controller online so that the output of the unknown 
plant (y) can track the reference profile (yd) in shortest period 
of time (T0). In this control scheme, the neural network 
controller is Multilayer-FeedForward neural network, where 
its structure is illustrated in figure 2.2. In order to be suitable 
for dynamics control purpose, first derivative and second 
derivative of reference yd and error (e) are selected as neural 
network inputs [19]. 

For a given neural network structure, the output of the 
neural network can be calculated by using the following 
formula: 

ேேݑ ൌ ଶ݂ൣ ഥܹ . ଵ݂ሺܹ. ݌ ൅ ܾሻ ൅ തܾ൧            (2.1) 
where, f1 and f2 are activation function of the input-hidden 
layer and hidden-output layer, defined in equations (2.2) and 
(2.3), ܹ א ܴௌ௫ோ, ഥܹ א ܴொ௫ௌ, ܾ א ܴௌ௫ଵ, തܾ א ܴொ௫ଵ, ݌ א ܴோ௫ଵ , 
and ݑேே א ܴொ௫ଵ, and R is number of input nodes, S is 
number of hidden nodes, and Q is number of output nodes.  

ଵ݂ሺ݊ሻ ൌ ଵି௘షమ೙

ଵା௘షమ೙                               (2.2) 

ଶ݂ሺ݊ሻ ൌ ݊                                       (2.3) 
The cost function, therefore, is defined as the following 
equation: 

ܬ ൌ ଵ
ଶ

ሾݕௗ െ ሿଶݕ ൌ ଵ
ଶ

ሾ݁ሿଶ                    (2.4) 
where, ݕ א ܴ௓௫ଵ, ௗݕ א ܴ௓௫ଵ, ݁ א ܴ௓௫ଵ. Z is number of the 
unknown plant’s output. 
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Figure 2.1: Online-adaptive neural network control scheme 
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Figure 2.2: Neural Network Control structure 

  
 Based on the control scheme in the figure 2.1, the 
following formulas are obtained: 

஼ݑ ൌ .ܭ ݁ ൌ ݑ െ  ேே                       (2.5)ݑ
 Multiple H with both sides of the equation (2.5), 
following formula is obtained:   

.ܪ .ܭ ݁ ൌ ݑሺܪ െ  ேேሻ                       (2.6)ݑ
  where ܭ א ܴொ௫௓, ܪ א ܴ௓௫ொ . 
  Define:       ܶ ൌ .ܪ ܶ where ,ܭ א ܴ௓௫௓. 
 Thus,  

 ݁ ൌ ܶିଵ. .ܪ ሺݑ െ  ேேሻ                         (2.7)ݑ
 To minimize the cost function J, it is necessary to change 
the weights of the neural network controller to the direction 
of a negative gradient. Applying the chain rule, the results 
are obtained as follows: 
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 From equation (2.1), the third terms in the equations (2.8)-
(2.11) can be easily obtained as follows: 

డ௨ಿಿ
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ᇱሺܹ݌ ൅ ܾሻ ഥܹ .  (2.12)   ݌
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 Finally, the updating rules for neural network controller 
are in the following formulas: 

௜ܹ,௝ ൌ ቊ ௜ܹ,௝ െ .ߤ ∆ ௜ܹ,௝, ห∆ ௜ܹ,௝ห ൏ 30%. ௜ܹ,௝

௜ܹ,௝, ݁ݏ݅ݓݎ݄݁ݐ݋      (2.16) 

ܾ௜ ൌ ൜ܾ௜ െ .ߤ ∆ܾ௜, |∆ܾ௜| ൏ 30%. ܾ௜
ܾ௜, ݁ݏ݅ݓݎ݄݁ݐ݋                      (2.17) 

ഥܹ௜,௝ ൌ ቊ
ഥܹ௜,௝ െ .ߤ ∆ ഥܹ௜,௝, ห∆ ഥܹ௜,௝ห ൏ 30%. ഥܹ௜,௝

ഥܹ௜,௝, ݁ݏ݅ݓݎ݄݁ݐ݋
    (2.18) 



  

തܾ௜ ൌ ቊ
തܾ௜ െ .ߤ ∆തܾ௜, ห∆തܾ௜ห ൏ 30%. തܾ௜

തܾ௜, ݁ݏ݅ݓݎ݄݁ݐ݋
                    (2.19) 

where, µ is learning rate, which is chosen relatively small, 
௜ܹ,௝ , ഥܹ௜,௝are the element (i,j) of the respecting weight 

matrices and ܾ௜, തܾ௜ are the element (i) of the weight vectors 
of the neural network controller.  

These proposed updating rules will prevent a large change 
in the direction of a negative gradient, thus in turn over 
training problem will be avoided and prevented. 

To guarantee that neural network controller can drive the 
plant outputs to track their references in desirable time T0, an 
off-line training scheme may be applied. The purpose of the 
off-line training is to find relatively optimal weights for the 
neural controller which guarantees fast convergence on the 
on-line control scheme in figure 2.1. 

III. REAL-TIME EXPERIMENTAL RESULTS AND DISCUSSIONS 
Hardware setup: 
The block diagram of the treadmill control system is 

shown in figure 3.1. A subject’s heart-rate is measured and 
transferred to the computer system via Bluetooth technology 
with sampling rate as 300 [samples/second]. In the computer 
system, online adaptive neural network controller is 
implemented in LabVIEW software using equations from 
(2.1) to (2.19). The sampling rate in the software is chosen 
as 50 [ms]. The treadmill interfaces with the computer 
system via R232 communication. A special protocol for the 
treadmill is provided by the treadmill provider 
(TrackMaster) so that the computer system can control 
treadmill speed and its gradient via RS232 port.  

As the treadmill system consists of two inputs (velocity 
and gradient) and one output (heart rate), the neural network 
structure is (6,3,2) which is equivalent to 6 input nodes, 3 
hidden nodes, and 2 output nodes. The hidden nodes are 
chosen by trial and error to obtain optimal performance of 
the control system. The learning rate (µ) is chosen as 0.0001, 
the gain K and H are in equation (3.1). 

ܭ ൌ ቂ0.5
0.5ቃ ; ܪ ൌ ሾ1 1ሿ                           (3.1) 

 
 

Figure 3.1: The block diagram of treadmill control system 

 
 

 
Figure 3.2: Heart rate tracking result, set-point is 135[bpm] 

 
Experiment 1: 
This experiment tests the performance of the treadmill 

control system with the proposed robust on-line adaptive 
neural network controller. A subject aged 29 was 
participated in this experiment. The desired heart rate set-
point was set to be 135 beats per minute (bpm). The 
objective is to control both speed and gradient of the 
treadmill so that the subject heart-rate can track the set-point 
in a desirable time (T0≤100 [s]).     

Discussion: 
The experiment result is shown in figure 3.2. As seen in 

the obtained result, the performance of the treadmill system 
controlled by the proposed neural network controller is 
significant improved compared to the MISO method 
presented in [5]. The output response is obtained with no 
overshoot, and setting time T0 = 38[s]. The advantage of the 
proposed method is that no plant model is required as the 
adaptive neural network controller is learnt online to 
adaptive with system dynamics changes. As a result, the 
neural network controller can deal with system uncertainties 
and reject external disturbances.  

 
Experiment 2:  
This experiment tests the adaptation ability of the online 

adaptive neural network controller when system parameters 
are changed. Four subjects aged from 29 to 34 year olds 
were participated in this experiment as shown in table 3.1. 
The set-point heart rate was set to be 145[bpm]. The 
objective of this experiment is to maintain the system 
performance with a different set-point and different subjects 
involved in the exercise. 
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Figure 3.3: Heart rate tracking results of four subjects,  

set-point is 145[bpm] 
 

Subject ID Age Height (cm) Weight (kg) 
Subject 1 29 165 62 
Subject 2 31 170 68 
Subject 3 33 168 65 
Subject 4 34 180 85 

Table 3.1: Participated subjects’ characteristics 
 

Heart-rate 
Set-point 

Overshoot % Rise time [s] Settling 
time[s] 

135 [bpm] 0 27 38 
145 [bmp] 0 34 48 

Table 3.2: System performance with different set-points for subject 1 
(age 29), according to Figure 3.2 and Figure 3.3 results. 

 
Discussion: 
The results of the four subjects’ heart rate tracking were 

shown in figure 3.3. Clearly, the robust online adaptive 
neural network controller still guarantees the system 
performance with no overshoot and settling time T0 < 50 [s] 
regardless of different testing conditions and different plant 
models (Table 3.1 and 3.2). This result proves the 
effectiveness the proposed control scheme even under 
condition of system uncertainties and external disturbances.  

Note: In these real-time experiments, online adaptation 
scheme is applied directly without requiring offline-training 
scheme. For other systems which require faster dynamics 
response, the offline training scheme may be applied. 

IV. CONCLUSION 
This study explores the regulation of treadmill exercisers 

by simultaneously adjusting treadmill speed and gradient. 
We have proposed a robust online adaptive neural network 
control scheme for unknown multivariable systems based on 
Feedback-Error Learning Approach. In the proposed control 
scheme, modified learning algorithm for an adaptive neural 
network controller is also proposed to guarantee system 
stability and performance. To obtain fast convergence, off-
line training scheme can be introduced to obtain optimal 
weights before on-line adaptation scheme is used. Real-time 
implementation of the proposed control scheme on the 
automated treadmill system has been conducted to prove 
effectiveness of this scheme. Obtained results of real time 
experiments show that the proposed control scheme 

guarantees desirable system performance under model 
uncertainty and external disturbance conditions.   
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