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Abstract- Despite impressive results in controlled settings, 
EEG-based Brain-Computer Interface (BCI) systems often 
falter in real-world scenarios due to challenges such as low 
signal-to-noise ratios (SNR), limited subject/trial datasets, poor 
cross-subject generalization, lengthy calibration, and lack of 
robustness outside the laboratory. Meta-learning (MeL) offers a 
compelling solution by enabling models to "learn how to learn," 
with support-query paradigms, fast adaptation, and task-aware 
inference. We examine two representative implementations - 
Model-Agnostic-Meta-Learning for EEG (MAML‑EEG) and 
Adaptive Bayesian Meta‑Learning (ABML) - demonstrating 
strong performance on BCI Competition IV datasets, 
outperforming established baselines without subject-dependent 
calibration. We conclude by summarizing core contributions, 
outlining future research paths, and highlighting the potential of 
MeL to unify disparate BCI challenges into an integrated, 
scalable framework. 

Keywords- EEG, brain-computer interface, meta-learning, 
cross-subject transfer, few-shot adaptation 

I. BCI RESEARCH AND THE KEY CHALLENGES 
One of the greatest issues machine learning (ML) 

researchers face is that the developed research models do not 
readily transfer into real-world usage [1-2], [31]. A research 
outcome may fail outside controlled conditions for many 
reasons, including limited computational resources in common 
devices (e.g., PCs or smartphones) or the presence of noisy, 
imperfect inputs rather than clean laboratory data. This 
challenge is especially common in the broader domain of 
EEG-based Brain-Computer Interfaces (BCIs) [3-4], [32], 
where systems strive to interpret brain activity in real-time, not 
only for controlling computers or robotic agents, but also for 
applications in communication, rehabilitation, cognitive 
monitoring, and beyond. 

BCI’s leverage non-invasive electroencephalogram (EEG) 
signal acquisition, followed by sophisticated signal 
processing, feature extraction, and pattern recognition to 
transform neural activity into meaningful outputs such as 
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controlling commands, diagnostic insights, or providing users 
with adaptive feedback as they use BCI systems in dynamic 
settings [1-2]. Here we will discuss the five most pressing 
issues facing the field, providing an explanation of each and 
its impact on BCI research and development. 

A.  Low Signal to Noise Ratio (SNR)  
EEG data is gathered via electrodes placed across the scalp, 

detecting weak neural signals that must traverse the skull and 
hair that inherently degrade signal quality [3]. To capture these 
attenuated signals, electrodes must be highly sensitive, making 
EEG recordings prone to contamination from eye blinks, 
muscle movement, facial movements, and electrical 
interference. Artifact removal is often handled using 
Independent Component Analysis (ICA), but this remains 
somewhat subjective and heuristic - a concern highlighted by 
Urigüen & García-Zapirain in their review [5]. These issues 
collectively result in low SNR in EEG datasets, complicating 
generalisation and reducing model robustness. 

B. Low subject/trial counts  
EEG data collection is usually long-period, fatiguing for 

participants and vulnerable to recording errors that may only 
be discovered during post-processing. Unsurprisingly, both 
public and private EEG datasets tend to feature relatively few 
subjects and trials, especially when compared to benchmark 
datasets in other machine learning domains [6-7], [33-35]. 
This scarcity of data limits the ability to train models that 
generalize well. 

C. Generalisation across subject  
Models trained under a subject-dependent regime-where 

data from the same individual is used for both training and 
evaluation, often report inflated performance. However, when 
tested using more rigorous approaches like Leave-One-
Subject-Out (LOSO), significant performance drops are 
common, underscoring the challenge of cross-subject 
generalisation [8]. Efforts to mitigate this have included 
transfer learning strategies and domain adaptation, but a recent 
review confirms that robust generalisation across diverse 
participants remains elusive [9]. 



   
 

   
 

D. Adaptation/calibration   
Even models that generalise well across participants often 

struggle with new subjects, requiring lengthy calibration 
sessions to attain reliable performance. Work has been done to 
try and overcome this issue. Vidaurre et al. [10] introduced a 
co-adaptive calibration framework that begins with a subject-
agnostic classifier, rapidly adapts in-session, and achieves 
strong control-sometimes in as little as 3-6 minutes - without 
intensive pre-training. Building on this, Huang et al. [11] 
reviewed signal-processing approaches, such as transfer 
learning and semi-supervised learning, that smartly leverage 
prior data to reduce calibration time across sessions, subjects, 
and devices – however a clear solution has yet to be found. 

E. Real-world robustness   
BCI systems developed in the lab benefit from controlled 

environments, making them less resilient to the noise and 
variability found in real-world settings. Nicolás-Alonso & 
Gómez-Gil [4] offer an extensive overview of EEG-BCI 
components and emphasise the challenges involved in 
transitioning these systems to everyday environments. Recent 
trend analyses [13] reinforce that reliably deploying BCIs in 
naturalistic contexts remains one of the field’s most pressing 
challenges. 

Clearly there are multiple issues in the BCI field that 
researchers must overcome for further real-world BCI 
applications. While progress is being made across all these 
issues, this commonly takes the form of models designed to 
handle one specific issue, with the wider research community 
fracturing solutions across different model designs. Recently, 
a new model design approach - Meta-Learning (MeL) - has 
grown in popularity for EEG model design, and it is the 
author’s view that these models present a new opportunity to 
tackle all these issues at once. The rest of this paper is broken 
down into three sections. In section 2, we will briefly define 
MeL and provide an overview of its broad forms, before 
discussing how it deals with the previously mentioned BCI 
research issues. Section 3 will showcase two high-performing 
MeL models and place them into the broader BCI research 
context to understand how they address the BCI research 
issues. Section 4 will summarise the paper and provide some 
recommendations on the importance and use of MeL for BCI 
research going forward [14-15]. 

II. META-LEARNING AND BCI 
Over the past decade, a wide range of AI and machine 

learning approaches - including deep neural networks, transfer 
learning and domain adaptation - have been applied to address 
the persistent challenges of EEG-based BCI. While each of 
these paradigms has achieved progress, they remain 
conventional models, limited in key respects: struggling to 
generalise across subjects, require lengthy calibration, and are 
highly sensitive to noise and data scarcity. These limitations 
have motivated increasing attention toward meta-learning 
(MeL), which offers a principled alternative. Rather than 
learning a single task or domain, MeL models instead learn 
how to learn [16-17]. Trained over a variety of related tasks, 
they aim to adapt efficiently to new, unseen tasks or source 
domains with minimal data [16]. Three broad families of MeL 
methods are typically distinguished: 

- Optimisation-based approaches, which learn an 
optimised weight initialization that can be rapidly fine-tuned 
to new tasks with only a few gradient updates [18]. 

- Metric-based approaches, which learn an embedding 
space in which new samples are classified by their similarity 
to reference examples [19]. 

- Bayesian/inference-based approaches, which learn to 
infer task-specific models directly, often in a single forward 
pass, while also modelling predictive uncertainty [20]. 

Within EEG/BCI research, MeL has gained traction as 
researchers are able to frame each subject, or even each EEG 
recording session (as noise/artefacts differ between sessions) 
as a distinct task that the model is trained to generalise across 
[21-22]. This paradigm enables models to meta-learn how to 
calibrate for new subjects with only minimal data while 
maintaining high predictive performance. In what follows, we 
revisit the five key issues in BCI research and examine how 
MeL offers potential pathways to address each of them. 

A. Low SNR  
Traditional EEG models often struggle to cope with the 

high variability introduced by artefacts, physiological 
impedance, and environmental noise. Within a MeL 
framework, these variations can be reframed as task-specific 
features rather than confounding factors. By treating each 
subject’s noise profile as part of the unique task representation, 
MeL models integrate noise adaptation into the process of task 
learning itself. In effect, adjusting to different SNR conditions 
becomes part of the model’s generalisation ability, enabling 
more robust inference across recordings with heterogeneous 
noise levels [20], [24], [25]. 

B.  Low subject/trial counts   
Conventional machine learning methods require large 

datasets to achieve generalisation; EEG research rarely affords 
this luxury. MeL, however, is explicitly designed to learn from 
limited data by adopting a support-query training paradigm. A 
small subset of trials (the support set) is used to establish a 
preliminary task representation, while the remaining data (the 
query set) is used to refine and evaluate this representation [19-
21]. Crucially, this paradigm forms the basis of both training 
and testing, making effective use of scarce data, as models are 
trained to effectively classify data from just a few labelled 
trials. While low subject counts remain a constraint, reframing 
each subject as a distinct task allows the model to harness 
inter-subject variation as a source of learning, rather than 
having to overcome it as noise or requiring subject-specific 
models [22]. 

C. Generalisation across subjects   
Generalisation remains one of the greatest challenges for 

BCI. MeL models are expressly designed to consolidate 
knowledge across tasks, and when subjects are defined as 
tasks, this capacity directly translates into improved cross-
subject generalisation. In practice, this is often achieved 
through support-query sampling [18-20], [23]. Optimization-
based methods like Model-Agnostic-Meta-Learning (MAML) 
explicitly simulate subject variation by treating different 
individuals as separate meta-tasks, while inference-based 
approaches adapt parameters directly to capture task-specific 
structure [26]. These mechanisms reduce the risk of overfitting 
to a single subject’s idiosyncrasies and instead highlight 
features that are broadly useful across individuals. Still, 
defining what constitutes a “task” is not trivial; performance 
can vary significantly depending on whether tasks are 
constructed at the subject, session, or experimental condition 
level. Poor task formulation may weaken the ability of MeL to 



   
 

   
 

generalize, making it a crucial design choice in BCI-focused 
research [22], [25]. 

D. Adaptation/Calibration   
Calibration time has long been a bottleneck for BCI 

adoption outside clinical research. Non-MeL models often 
require hours of subject-specific data collection before 
achieving reliable performance. By contrast, MeL approaches 
are typically evaluated in few-shot settings, where adaptation 
occurs with as few as 1-20 labelled trials per class [21], [19]. 
During training, MeL models are often tested under LOSO 
evaluation [22-24]. This mirrors real-world BCI deployment, 
where minimal calibration time is critical. As a result, MeL 
represents a step toward BCI systems that are immediately 
usable after brief calibration sessions. Still, the quality and 
representativeness of these few calibration trials is critical; 
poorly labelled or unrepresentative support data can 
significantly degrade performance, limiting the reliability of 
MeL adaptation in uncontrolled environments [21]. 

E. Real-world robustness   
Although MeL does not eliminate the challenges posed by 

the gap between clinical and real-world environments, it 
provides models with an inherent robustness to variation. 
Having already learned to adapt across tasks with differing 
levels of noise and artefacts, MeL models are better positioned 
to cope with uncontrolled recording conditions. Empirical 
studies suggest they outperform conventional models even 
without being explicitly designed for real-world deployment 
[23], [25]. 

In summary, while conventional AI and ML methods 
continue to provide valuable contributions, MeL models offer 
a uniquely coherent framework for addressing the diverse and 
persistent challenges of EEG-based BCI research. By 
reframing noise, data scarcity, and subject heterogeneity as 
integral aspects of task variation, MeL enables models to adapt 
quickly and generalise effectively in ways that conventional 
approaches struggle to achieve [16-17], [21]. Limitations 
remain, particularly in task definition, data quality, and the 
demands of real-world deployment. Any of these elements, if 
constructed or understood incorrectly, can quickly reduce 
model capability. However, the capacity of MeL to unify 
solutions across issues as fundamental as low SNR, limited 
trials, cross-subject transfer, calibration, and robustness 
highlights its importance, and sheds light on its growing 
significance in the field. To illustrate these points in practice, 
the next section examines two representative MeL models, 
MAML-EEG and Adaptive Bayesian Meta‑Learning (ABML) 
[27], and compares their performance against non-meta-
learning baselines. 

III. META-LEARNING COMPARATIVE ANALYSIS 
Building on this conceptual foundation, we now turn to 

concrete implementations of meta‑learning in EEG‑based 
BCI. By examining two recent meta-learning models, 
MAML‑EEG and ABML as representative case studies, we 
can observe how different strands of MeL, optimization‑based 
and Bayesian‑inference‑based, translate these theoretical 
advantages into practical performance gains on benchmark 
datasets [26-27]. 

A. MAML-EEG (BCI IV-2b)   
MAML‑EEG applies a model‑agnostic MeL framework to 

motor imagery decoding, explicitly addressing the issue of 

cross‑subject generalisation. By simulating subject shift 
during training, constructing virtual meta‑tasks by splitting 
subjects into pseudo‑train and pseudo‑test groups, it ensures 
that the optimization process is directly oriented toward 
robustness on unseen individuals. This design targets two key 
challenges: 

- Generalisation across subjects: By repeatedly exposing 
the model to subject heterogeneity during training, 
MAML‑EEG avoids overfitting subject‐specific 
idiosyncrasies. 

- Adaptation/Calibration: Unlike conventional 
subject‑dependent models, MAML‑EEG aims for zero‑shot 
generalisation, requiring no fine‑tuning on new subjects. 

Applied to BCI Competition IV‑2b, MAML‑EEG 
achieved an average subject‑independent accuracy of 83.98%, 
substantially higher than many non‑meta‑learning LOSO 
baselines. For comparison, W. Zhao, et al’s Convolutional 
Transformer Network (CTNet) reported 76.27% [28], A. 
Keutayeva, et al’s Compact Convolutional Transformer 
(EEGCCT) achieved 70.12% [29], and even the stronger 
SVM‑enhanced attention framework reached approximately 
81.47% [30]. Thus, MAML‑EEG not only outperformed 
conventional LOSO approaches but also exceeded the 
performance of more complex deep learning architectures, all 
while requiring no subject-specific calibration. These results 
underscore the value of optimization‑based MeL in directly 
addressing cross‑subject generalisation and reducing the 
adaptation burden inherent to most BCI pipelines. Table I lists 
comparative results for the discussed models on BCI 
Competition IV-2b. 

TABLE I.  MAML-EEG BCI COMP IV 2B COMPARISON TABLE 

Model Accuracy (%) 

MAML-EEG [26] 83.98 

SVM-enhanced Attention [30] ~81.47 

CTNet [28] 76.27 

EEGCCT [29] 70.12 

 

B. ABML (BCI IV-2a)  
ABML provides a complementary perspective by 

embedding task adaptation within a probabilistic inference 
framework. Unlike MAML‑EEG’s optimization‑driven 
adaptation, ABML generates task‑specific parameters via 
amortized variational inference, enabling flexible and instance 
level learning. Its contributions map closely onto several of the 
core BCI issues: 

- Low SNR: ABML integrates a time and frequency‑aware 
representation encoder, guided by an information bottleneck 
principle, which explicitly disentangles signal features from 
noise. 

- Low subject/trial counts: By adaptively constructing 
support sets matched to the query distribution, ABML 
maximises the value of scarce labelled trials. 

- Generalisation across subjects: The adaptive task-
construction mechanism ensures that inter‑subject 
heterogeneity is reframed as a meta‑learning problem rather 
than a confounding factor. 



   
 

   
 

On BCI Competition IV‑2a, ABML obtained an average 
LOSO accuracy of 81.25%, ranking among the strongest 
reported results for this dataset. Compared with 
non‑meta‑learning baselines, ABML clearly surpassed CTNet 
(58.64%) [28] and EEGCCT (69.14%) [29] and was 
competitive with the SVM‑enhanced attention model 
(77.43%) [30]. These findings suggest that ABML’s adaptive 
task construction and time‑frequency aware representation 
learning provide a decisive advantage in low‑SNR, 
data‑limited conditions. Importantly, ABML matches or 
exceeds the performance of carefully engineered 
domain‑specific architectures while retaining the flexibility of 
a Bayesian meta‑learning framework, highlighting its 
effectiveness for subject‑independent EEG classification. 
Table II lists the comparative results for the models discussed 
on BCI Competition IV-2a. 

TABLE II.  ABML BCI COMP IV 2A COMPARISON TABLE 

Model Accuracy (%) 

ABML [27] 81.25 

SVM-enhanced Attention [30] 77.43 

CTNet [28] 58.64 

EEGCCT [29] 69.14 

 

C. Comparative Perspective   
Together, these results reinforce the complementary 

strengths of optimization and inference‑based MeL strategies. 
MAML‑EEG demonstrates that optimization‑based 
meta‑learning can achieve state‑of‑the‑art subject‑independent 
accuracy on BCI IV‑2b (83.98%), outperforming both 
transformer‑style baselines and attention‑based CNN-LSTM 
models. ABML, meanwhile, shows that Bayesian 
inference‑driven meta‑learning yields highly competitive 
results on BCI IV‑2a (81.25%), surpassing most conventional 
approaches and rivalling advanced attention‑enhanced 
architectures. In both cases, MeL models deliver or exceed the 
best LOSO accuracies reported by non‑meta‑learning methods 
- both in few and zero shot settings - providing compelling 
evidence that meta‑learning can unify solutions to the 
persistent challenges of subject‑independence, noise, and data 
scarcity in BCI research. 

IV. CONCLUSION 
This paper foregrounded five critical barriers in EEG-

based BCI research-low SNR, data scarcity, cross-subject 
generalization, calibration demands, and real-world robustness 
- underscoring the divide between laboratory performance and 
real-world BCI applicability. We believe meta-learning as a 
unifying methodological solution: by treating subjects or 
sessions as tasks, MeL frameworks can embed noise 
adaptation, leverage minimal per-subject data, generate 
generalisable representations, and reduce calibration time via 
support-query training structures. 

Our exploration of MAML‑EEG and ABML validated 
these claims empirically. MAML‑EEG achieved a remarkable 
83.98% subject-independent accuracy on BCI IV‑2b without 
any per-subject fine-tuning, outperforming CTNet, EEGCCT, 
and SVM-enhanced attention baselines. Similarly, ABML 
delivered 81.25% on BCI IV‑2a, excelling in low‑SNR and 
data-limited regimes and matching sophisticated architectures 

with the flexibility of Bayesian inference. Looking forward, 
several promising research directions emerge: 

- Task Construction and Multi-level Meta-learning: 
Investigate continuity across subjects, sessions, and 
conditions-possibly using meta-task hierarchies or multi-task 
learning synergies. 

- Zero-Calibration & Automated Frameworks: Integrate 
meta-learning libraries such as EEG‑Reptile to streamline 
fine-tuning and hyperparameter optimization for practical 
deployment. 

-Cross-domain and Out‑of‑Distribution Robustness: 
Extend the MeL paradigm to other modalities (e.g., P300, 
SSVEP) and future real-world scenarios, learning to generalize 
across novel noise types and recording conditions.  

- Scalability & Efficiency: Emphasize methods that reduce 
computational overhead (e.g., first-order approximations, 
episodic freezing) and enhance explainability - a key step 
towards regulatory and clinical translation. 

In summary, MeL not only holds promise as a tool for 
addressing individual BCI challenges but also offers a strategic 
pathway toward developing EEG-BCI systems that are 
adaptable, resilient, and user friendly-paving the way for real-
world neurotechnology applications that can genuinely learn 
to learn. 
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