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Abstract- Despite impressive results in controlled settings,
EEG-based Brain-Computer Interface (BCI) systems often
falter in real-world scenarios due to challenges such as low
signal-to-noise ratios (SNR), limited subject/trial datasets, poor
cross-subject generalization, lengthy calibration, and lack of
robustness outside the laboratory. Meta-learning (MeL) offers a
compelling solution by enabling models to "learn how to learn,"
with support-query paradigms, fast adaptation, and task-aware
inference. We examine two representative implementations -
Model-Agnostic-Meta-Learning for EEG (MAML-EEG) and
Adaptive Bayesian Meta-Learning (ABML) - demonstrating
strong performance on BCI Competition IV datasets,
outperforming established baselines without subject-dependent
calibration. We conclude by summarizing core contributions,
outlining future research paths, and highlighting the potential of
MeL to unify disparate BCI challenges into an integrated,
scalable framework.
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I. BCI RESEARCH AND THE KEY CHALLENGES

One of the greatest issues machine learning (ML)
researchers face is that the developed research models do not
readily transfer into real-world usage [1-2], [31]. A research
outcome may fail outside controlled conditions for many
reasons, including limited computational resources in common
devices (e.g., PCs or smartphones) or the presence of noisy,
imperfect inputs rather than clean laboratory data. This
challenge is especially common in the broader domain of
EEG-based Brain-Computer Interfaces (BCIs) [3-4], [32],
where systems strive to interpret brain activity in real-time, not
only for controlling computers or robotic agents, but also for
applications in communication, rehabilitation, cognitive
monitoring, and beyond.

BCTI’s leverage non-invasive electroencephalogram (EEG)
signal acquisition, followed by sophisticated signal
processing, feature extraction, and pattern recognition to
transform neural activity into meaningful outputs such as
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controlling commands, diagnostic insights, or providing users
with adaptive feedback as they use BCI systems in dynamic
settings [1-2]. Here we will discuss the five most pressing
issues facing the field, providing an explanation of each and
its impact on BCI research and development.

A. Low Signal to Noise Ratio (SNR)

EEG data is gathered via electrodes placed across the scalp,
detecting weak neural signals that must traverse the skull and
hair that inherently degrade signal quality [3]. To capture these
attenuated signals, electrodes must be highly sensitive, making
EEG recordings prone to contamination from eye blinks,
muscle movement, facial movements, and electrical
interference. Artifact removal is often handled using
Independent Component Analysis (ICA), but this remains
somewhat subjective and heuristic - a concern highlighted by
Urigiien & Garcia-Zapirain in their review [5]. These issues
collectively result in low SNR in EEG datasets, complicating
generalisation and reducing model robustness.

B. Low subject/trial counts

EEG data collection is usually long-period, fatiguing for
participants and vulnerable to recording errors that may only
be discovered during post-processing. Unsurprisingly, both
public and private EEG datasets tend to feature relatively few
subjects and trials, especially when compared to benchmark
datasets in other machine learning domains [6-7], [33-35].
This scarcity of data limits the ability to train models that
generalize well.

C. Generalisation across subject

Models trained under a subject-dependent regime-where
data from the same individual is used for both training and
evaluation, often report inflated performance. However, when
tested using more rigorous approaches like Leave-One-
Subject-Out (LOSO), significant performance drops are
common, underscoring the challenge of cross-subject
generalisation [8]. Efforts to mitigate this have included
transfer learning strategies and domain adaptation, but a recent
review confirms that robust generalisation across diverse
participants remains elusive [9].



D. Adaptation/calibration

Even models that generalise well across participants often
struggle with new subjects, requiring lengthy calibration
sessions to attain reliable performance. Work has been done to
try and overcome this issue. Vidaurre et al. [10] introduced a
co-adaptive calibration framework that begins with a subject-
agnostic classifier, rapidly adapts in-session, and achieves
strong control-sometimes in as little as 3-6 minutes - without
intensive pre-training. Building on this, Huang et al. [11]
reviewed signal-processing approaches, such as transfer
learning and semi-supervised learning, that smartly leverage
prior data to reduce calibration time across sessions, subjects,
and devices — however a clear solution has yet to be found.

E. Real-world robustness

BCI systems developed in the lab benefit from controlled
environments, making them less resilient to the noise and
variability found in real-world settings. Nicolas-Alonso &
Gomez-Gil [4] offer an extensive overview of EEG-BCI
components and emphasise the challenges involved in
transitioning these systems to everyday environments. Recent
trend analyses [13] reinforce that reliably deploying BClIs in
naturalistic contexts remains one of the field’s most pressing
challenges.

Clearly there are multiple issues in the BCI field that
researchers must overcome for further real-world BCI
applications. While progress is being made across all these
issues, this commonly takes the form of models designed to
handle one specific issue, with the wider research community
fracturing solutions across different model designs. Recently,
a new model design approach - Meta-Learning (MeL) - has
grown in popularity for EEG model design, and it is the
author’s view that these models present a new opportunity to
tackle all these issues at once. The rest of this paper is broken
down into three sections. In section 2, we will briefly define
MeL and provide an overview of its broad forms, before
discussing how it deals with the previously mentioned BCI
research issues. Section 3 will showcase two high-performing
MeL models and place them into the broader BCI research
context to understand how they address the BCI research
issues. Section 4 will summarise the paper and provide some
recommendations on the importance and use of MeL for BCI
research going forward [14-15].

II. META-LEARNING AND BCI

Over the past decade, a wide range of Al and machine
learning approaches - including deep neural networks, transfer
learning and domain adaptation - have been applied to address
the persistent challenges of EEG-based BCI. While each of
these paradigms has achieved progress, they remain
conventional models, limited in key respects: struggling to
generalise across subjects, require lengthy calibration, and are
highly sensitive to noise and data scarcity. These limitations
have motivated increasing attention toward meta-learning
(MeL), which offers a principled alternative. Rather than
learning a single task or domain, MeL models instead learn
how to learn [16-17]. Trained over a variety of related tasks,
they aim to adapt efficiently to new, unseen tasks or source
domains with minimal data [16]. Three broad families of MeL
methods are typically distinguished:

- Optimisation-based approaches, which learn an
optimised weight initialization that can be rapidly fine-tuned
to new tasks with only a few gradient updates [18].

- Metric-based approaches, which learn an embedding
space in which new samples are classified by their similarity
to reference examples [19].

- Bayesian/inference-based approaches, which learn to
infer task-specific models directly, often in a single forward
pass, while also modelling predictive uncertainty [20].

Within EEG/BCI research, MeL has gained traction as
researchers are able to frame each subject, or even each EEG
recording session (as noise/artefacts differ between sessions)
as a distinct task that the model is trained to generalise across
[21-22]. This paradigm enables models to meta-learn how to
calibrate for new subjects with only minimal data while
maintaining high predictive performance. In what follows, we
revisit the five key issues in BCI research and examine how
MeL offers potential pathways to address each of them.

A. Low SNR

Traditional EEG models often struggle to cope with the
high variability introduced by artefacts, physiological
impedance, and environmental noise. Within a MeL
framework, these variations can be reframed as task-specific
features rather than confounding factors. By treating each
subject’s noise profile as part of the unique task representation,
MeL models integrate noise adaptation into the process of task
learning itself. In effect, adjusting to different SNR conditions
becomes part of the model’s generalisation ability, enabling
more robust inference across recordings with heterogeneous
noise levels [20], [24], [25].

B.  Low subject/trial counts

Conventional machine learning methods require large
datasets to achieve generalisation; EEG research rarely affords
this luxury. MeL, however, is explicitly designed to learn from
limited data by adopting a support-query training paradigm. A
small subset of trials (the support set) is used to establish a
preliminary task representation, while the remaining data (the
query set) is used to refine and evaluate this representation [19-
21]. Crucially, this paradigm forms the basis of both training
and testing, making effective use of scarce data, as models are
trained to effectively classify data from just a few labelled
trials. While low subject counts remain a constraint, reframing
each subject as a distinct task allows the model to harness
inter-subject variation as a source of learning, rather than
having to overcome it as noise or requiring subject-specific
models [22].

C. Generalisation across subjects

Generalisation remains one of the greatest challenges for
BCI. MeL models are expressly designed to consolidate
knowledge across tasks, and when subjects are defined as
tasks, this capacity directly translates into improved cross-
subject generalisation. In practice, this is often achieved
through support-query sampling [18-20], [23]. Optimization-
based methods like Model-Agnostic-Meta-Learning (MAML)
explicitly simulate subject variation by treating different
individuals as separate meta-tasks, while inference-based
approaches adapt parameters directly to capture task-specific
structure [26]. These mechanisms reduce the risk of overfitting
to a single subject’s idiosyncrasies and instead highlight
features that are broadly useful across individuals. Still,
defining what constitutes a “task” is not trivial; performance
can vary significantly depending on whether tasks are
constructed at the subject, session, or experimental condition
level. Poor task formulation may weaken the ability of MeL to



generalize, making it a crucial design choice in BCI-focused
research [22], [25].

D. Adaptation/Calibration

Calibration time has long been a bottleneck for BCI
adoption outside clinical research. Non-MeL models often
require hours of subject-specific data collection before
achieving reliable performance. By contrast, MeL approaches
are typically evaluated in few-shot settings, where adaptation
occurs with as few as 1-20 labelled trials per class [21], [19].
During training, MeL models are often tested under LOSO
evaluation [22-24]. This mirrors real-world BCI deployment,
where minimal calibration time is critical. As a result, MeL
represents a step toward BCI systems that are immediately
usable after brief calibration sessions. Still, the quality and
representativeness of these few calibration trials is critical;
poorly labelled or unrepresentative support data can
significantly degrade performance, limiting the reliability of
MeL adaptation in uncontrolled environments [21].

E. Real-world robustness

Although MeL does not eliminate the challenges posed by
the gap between clinical and real-world environments, it
provides models with an inherent robustness to variation.
Having already learned to adapt across tasks with differing
levels of noise and artefacts, MeL models are better positioned
to cope with uncontrolled recording conditions. Empirical
studies suggest they outperform conventional models even
without being explicitly designed for real-world deployment
[23], [25].

In summary, while conventional AI and ML methods
continue to provide valuable contributions, MeL models offer
a uniquely coherent framework for addressing the diverse and
persistent challenges of EEG-based BCI research. By
reframing noise, data scarcity, and subject heterogeneity as
integral aspects of task variation, MeL enables models to adapt
quickly and generalise effectively in ways that conventional
approaches struggle to achieve [16-17], [21]. Limitations
remain, particularly in task definition, data quality, and the
demands of real-world deployment. Any of these elements, if
constructed or understood incorrectly, can quickly reduce
model capability. However, the capacity of MeL to unify
solutions across issues as fundamental as low SNR, limited
trials, cross-subject transfer, calibration, and robustness
highlights its importance, and sheds light on its growing
significance in the field. To illustrate these points in practice,
the next section examines two representative MeL models,
MAML-EEG and Adaptive Bayesian Meta-Learning (ABML)
[27], and compares their performance against non-meta-
learning baselines.

III. META-LEARNING COMPARATIVE ANALYSIS

Building on this conceptual foundation, we now turn to
concrete implementations of meta-learning in EEG-based
BCI. By examining two recent meta-learning models,
MAML-EEG and ABML as representative case studies, we
can observe how different strands of MeL, optimization-based
and Bayesian-inference-based, translate these theoretical
advantages into practical performance gains on benchmark
datasets [26-27].

A. MAML-EEG (BCI IV-2b)

MAML-EEG applies a model-agnostic MeL framework to
motor imagery decoding, explicitly addressing the issue of

cross-subject generalisation. By simulating subject shift
during training, constructing virtual meta-tasks by splitting
subjects into pseudo-train and pseudo-test groups, it ensures
that the optimization process is directly oriented toward
robustness on unseen individuals. This design targets two key
challenges:

- Generalisation across subjects: By repeatedly exposing
the model to subject heterogeneity during training,
MAML-EEG avoids overfitting subject-specific
idiosyncrasies.

- Adaptation/Calibration: Unlike conventional
subject-dependent models, MAML-EEG aims for zero-shot
generalisation, requiring no fine-tuning on new subjects.

Applied to BCI Competition IV-2b, MAML-EEG
achieved an average subject-independent accuracy of 83.98%,
substantially higher than many non-meta-learning LOSO
baselines. For comparison, W. Zhao, et al’s Convolutional
Transformer Network (CTNet) reported 76.27% [28], A.
Keutayeva, et al’s Compact Convolutional Transformer
(EEGCCT) achieved 70.12% [29], and even the stronger
SVM-enhanced attention framework reached approximately
81.47% [30]. Thus, MAML-EEG not only outperformed
conventional LOSO approaches but also exceeded the
performance of more complex deep learning architectures, all
while requiring no subject-specific calibration. These results
underscore the value of optimization-based MeL in directly
addressing cross-subject generalisation and reducing the
adaptation burden inherent to most BCI pipelines. Table I lists
comparative results for the discussed models on BCI
Competition IV-2b.

TABLE 1. MAML-EEG BCI ComP IV 2B COMPARISON TABLE
Model Accuracy (%)
MAML-EEG [26] 83.98
SVM-enhanced Attention [30] ~81.47
CTNet [28] 76.27
EEGCCT [29] 70.12

B. ABML (BCI IV-2a)

ABML provides a complementary perspective by
embedding task adaptation within a probabilistic inference
framework. Unlike MAML-EEG’s optimization-driven
adaptation, ABML generates task-specific parameters via
amortized variational inference, enabling flexible and instance
level learning. Its contributions map closely onto several of the
core BCI issues:

- Low SNR: ABML integrates a time and frequency-aware
representation encoder, guided by an information bottleneck
principle, which explicitly disentangles signal features from
noise.

- Low subject/trial counts: By adaptively constructing
support sets matched to the query distribution, ABML
maximises the value of scarce labelled trials.

- Generalisation across subjects: The adaptive task-
construction —mechanism  ensures that inter-subject
heterogeneity is reframed as a meta-learning problem rather
than a confounding factor.



On BCI Competition IV-2a, ABML obtained an average
LOSO accuracy of 81.25%, ranking among the strongest
reported results for this dataset. Compared with
non-meta-learning baselines, ABML clearly surpassed CTNet
(58.64%) [28] and EEGCCT (69.14%) [29] and was
competitive with the SVM-enhanced attention model
(77.43%) [30]. These findings suggest that ABML’s adaptive
task construction and time-frequency aware representation
learning provide a decisive advantage in low-SNR,
data-limited conditions. Importantly, ABML matches or
exceeds the performance of carefully engineered
domain-specific architectures while retaining the flexibility of
a Bayesian meta-learning framework, highlighting its
effectiveness for subject-independent EEG classification.
Table II lists the comparative results for the models discussed
on BCI Competition [V-2a.

TABLE II. ABML BCI ComP IV 2A COMPARISON TABLE
Model Accuracy (%)
ABML [27] 81.25
SVM-enhanced Attention [30] 77.43
CTNet [28] 58.64
EEGCCT [29] 69.14

C. Comparative Perspective

Together, these results reinforce the complementary
strengths of optimization and inference-based MeL strategies.
MAML-EEG  demonstrates  that  optimization-based
meta-learning can achieve state-of-the-art subject-independent
accuracy on BCIIV-2b (83.98%), outperforming both
transformer-style baselines and attention-based CNN-LSTM
models. ABML, meanwhile, shows that Bayesian
inference-driven meta-learning yields highly competitive
results on BCI IV-2a (81.25%), surpassing most conventional
approaches and rivalling advanced attention-enhanced
architectures. In both cases, MeLL models deliver or exceed the
best LOSO accuracies reported by non-meta-learning methods
- both in few and zero shot settings - providing compelling
evidence that meta-learning can unify solutions to the
persistent challenges of subject-independence, noise, and data
scarcity in BCI research.

IV. CONCLUSION

This paper foregrounded five critical barriers in EEG-
based BCI research-low SNR, data scarcity, cross-subject
generalization, calibration demands, and real-world robustness
- underscoring the divide between laboratory performance and
real-world BCI applicability. We believe meta-learning as a
unifying methodological solution: by treating subjects or
sessions as tasks, MeL frameworks can embed noise
adaptation, leverage minimal per-subject data, generate
generalisable representations, and reduce calibration time via
support-query training structures.

Our exploration of MAML-EEG and ABML validated
these claims empirically. MAML-EEG achieved a remarkable
83.98% subject-independent accuracy on BCI IV-2b without
any per-subject fine-tuning, outperforming CTNet, EEGCCT,
and SVM-enhanced attention baselines. Similarly, ABML
delivered 81.25% on BCI IV-2a, excelling in low-SNR and
data-limited regimes and matching sophisticated architectures

with the flexibility of Bayesian inference. Looking forward,
several promising research directions emerge:

- Task Construction and Multi-level Meta-learning:
Investigate continuity across subjects, sessions, and
conditions-possibly using meta-task hierarchies or multi-task
learning synergies.

- Zero-Calibration & Automated Frameworks: Integrate
meta-learning libraries such as EEG-Reptile to streamline
fine-tuning and hyperparameter optimization for practical
deployment.

-Cross-domain and  Out-of-Distribution  Robustness:
Extend the MeL paradigm to other modalities (e.g., P300,
SSVEP) and future real-world scenarios, learning to generalize
across novel noise types and recording conditions.

- Scalability & Efficiency: Emphasize methods that reduce
computational overhead (e.g., first-order approximations,
episodic freezing) and enhance explainability - a key step
towards regulatory and clinical translation.

In summary, MeL not only holds promise as a tool for
addressing individual BCI challenges but also offers a strategic
pathway toward developing EEG-BCI systems that are
adaptable, resilient, and user friendly-paving the way for real-
world neurotechnology applications that can genuinely learn
to learn.
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