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ABSTRACT

Recent advances in artificial intelligence have been significantly driven by large language
models (LLMs) and vision-language models (VLMs), which have demonstrated remarkable
performance in language reasoning and perceptual understanding, respectively. However,
the growing need for unified multimodal reasoning has led to the emergence of multimodal
large language models (MLLMs). The rapid evolution of MLLMs has revolutionized the
integration of vision, language and audio, enabling transformative advancements in intelli-
gent systems. However, their real-world deployment remains constrained by challenges in
interaction accuracy, computational efficiency, and resilience to noisy or adversarial inputs.
This thesis systematically addresses these limitations through an in-depth exploration of
three pivotal dimensions.

First, the thesis introduces a robust multimodal instruction-tuned model built upon a
novel image-dialogue generation pipeline. This pipeline synthesizes high-quality, instruction-
aligned image-text pairs using multi-stage prompting and model filtering, effectively ad-
dressing the lack of scalable multimodal instruction data. Leveraging this synthetic training
data, the resulting model achieves state-of-the-art performance across multiple benchmarks,
demonstrating strong instruction-following capability, spatial reasoning, and resistance to
hallucination.

Second, this thesis proposes a lightweight agent framework for multimodal reasoning
and task execution on resource-constrained mobile devices. Designed for environments
with limited compute and memory, the framework integrates memory-driven reasoning,
OCR-based visual parsing, and retrieval-augmented planning to enable dynamic decision-
making across multiple applications. It supports efficient and robust execution of complex
and multi-step tasks, such as long-horizon workflows and interactions across different
apps, without relying on cloud-based inference or additional retraining. Experiments show
that the proposed system consistently outperforms existing mobile agent baselines in task
success rate, demonstrating strong adaptability and deployment potential in real-world
settings.

Finally, the thesis presents a comprehensive benchmark for evaluating the robustness of
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large audio-language models under adversarial and noisy conditions. The benchmark in-
cludes over 1200 adversarial examples across four categories: content distortion, emotional
interference, explicit noise, and implicit noise. It supports evaluation using standard metrics,
LLM-as-a-judge, and human assessments. Experiments show that current audio-language
models remain vulnerable to adversarial audio inputs, revealing persistent weaknesses in
robustness. This benchmark serves as a foundation for analyzing reliability in voice-based
language systems and informs future research on building more stable and trustworthy
audio interactions.

This research makes significant contributions by advancing the precision, adaptability,
and resilience of multimodal systems. Experimental results validate the proposed method-
ologies, demonstrating their effectiveness across various domains. These findings provide
a robust foundation for deploying MLLMs in dynamic environments, paving the way for
future advancements in multimodal interaction technologies.
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CHAPTER

INTRODUCTION

1.1 Background

The rapid advancement of artificial intelligence (Al) has been significantly driven by large
language models (LLMs), which have revolutionized natural language processing (NLP)
through their powerful zero-shot and few-shot reasoning capabilities. These models excel in
various text-based tasks without requiring extensive task-specific training. However, tradi-
tional LLMs are inherently limited to processing textual data, restricting their applicability
in multimodal contexts.

In parallel, vision-language models (VLMs) have achieved significant breakthroughs
in perceptual tasks, such as image classification and cross-modal retrieval, by effectively
capturing relationships between visual and textual data. Yet, their perceptual strengths
are not complemented by the sophisticated reasoning capabilities inherent in LLMs. This
disconnect between reasoning and perception has created a gap in addressing complex mul-
timodal challenges, necessitating the development of Multimodal Large Language Models
(MLLMs). By integrating the reasoning power of LLMs with the perceptual richness of VLMs,
MLLMs offer a cohesive framework to bridge this divide and enable advanced multimodal
intelligence.

A Multimodal Large Language Model is an advanced extension of large language models
designed to process, integrate, and generate information across multiple modalities, includ-
ing text, images, video, and audio. By leveraging unified representations and state-of-the-art
training paradigms, MLLMs enable seamless semantic alignment, sophisticated reasoning,
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CHAPTER 1. INTRODUCTION

and cross-modal generation. These capabilities position MLLMs as a cornerstone in multi-
modal Al research and applications, bridging the gap between perception and reasoning
while unlocking new possibilities for diverse tasks and domains.

To achieve this, MLLMs must overcome two fundamental challenges. First, raw multi-
modal inputs such as images, audio, and video require effective preprocessing to ensure
compatibility with language-based reasoning. Second, the inherent limitation of large lan-
guage models to accept only textual inputs necessitates a bridging mechanism to translate
non-textual modalities into formats the LLM can process. To address these challenges, a
general MLLM architecture typically consists of three main components: modality encoders,
a pretrained LLM, and a multimodal connector as Fig. 1.1. Together, these components
enable the model to effectively utilize the strengths of various modalities within a unified
framework.

Modality Encoders Modality encoders transform raw multimodal inputs (e.g., images,
videos, and audio) into compact feature representations, which serve as the foundation for
downstream processing. For instance, pretrained models such as vision transformers (ViTs)
are often employed for images, while convolutional neural networks (CNNs) are used for
audio. These encoders ensure efficient and accurate feature extraction, facilitating seamless
interaction with the LLM.

Pretrained Large Language Model (LLM) The pretrained LLM serves as the core of the
system, equipped with a vast knowledge base and strong reasoning capabilities through
extensive pretraining on textual data. It plays a pivotal role in integrating and interpreting
information from different modalities. Fine-tuning on multimodal-specific tasks further
enhances the LLM'’s ability to handle complex multimodal challenges, making it a versatile

component for diverse applications.

Multimodal Integration Interface Since the LLM inherently accepts only textual inputs,
the multimodal integration interface bridges the gap by converting modality features into
textual representations while maintaining semantic consistency across modalities. This
interface enables the LLM to process and reason about multimodal data within a unified
semantic space, ensuring alignment and coherence during cross-modal interactions.

This architecture empowers MLLMs to leverage the unique strengths of various modal-
ities, making them widely applicable across a range of tasks. Notable examples include

image captioning and generation, video understanding, and audio-driven conversational Al
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Figure 1.1: General multimodal large language model framework.

Furthermore, MLLMs enhance reasoning robustness by combining perceptual richness with
advanced generative and interpretative capabilities, facilitating applications such as multi-
modal dialogue systems, adaptive learning environments, and real-world decision-making

scenarios.

The development of MLLMs has progressed through a series of foundational advance-
ments. Early models like CLIP [1] and ALIGN [2] demonstrated robust cross-modal rep-
resentations through joint training on image-text pairs, enabling tasks such as zero-shot
classification and multimodal retrieval. Flamingo [3] introduced dynamic memory mech-
anisms for contextual reasoning in multimodal conversational Al, while GPT-4 [4] and
Gemini [5] expanded multimodal reasoning and dialogue capabilities. More recently, mod-
els such as Blip-2 [6] and LLaVA [7] have utilized instruction tuning to align image, text, and
other modalities, unlocking high-fidelity understanding and generation.

The advancements in MLLMs transcend static retrieval tasks, unlocking dynamic appli-
cations in content generation, interactive systems, and autonomous agents. For example,
multimodal dialogue systems powered by MLLMs can process diverse inputs—visual scenes,
spoken commands, and textual queries—and generate coherent, contextually relevant
responses. These advancements herald a new era of human-computer interaction, charac-

terized by enhanced accuracy, efficiency, and robustness across diverse environments.

By integrating multimodal inputs into a unified reasoning framework, MLLMs exhibit
enhanced robustness and adaptability, allowing reliable performance across a broad range
of scenarios. This transformative ability not only bridges the gap between VLMs and LLMs
but also establishes MLLMs as the foundation for future advancements in Al. Potential
applications include adaptive learning systems, cross-modal knowledge retrieval, and real-
world decision-making, demonstrating the immense potential of MLLMs to redefine the
boundaries of artificial intelligence.
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Despite significant advancements, multimodal large language models face critical chal-
lenges that constrain their performance in terms of interaction accuracy, efficiency, and
robustness. Interaction accuracy is fundamentally influenced by the quality and diversity
of multimodal datasets, which form the foundation of cross-modal learning. Insufficient
data quality or domain coverage hinders precise alignment across modalities, limiting the
model’s ability to generate coherent and accurate outputs. Efficiency becomes a pivotal
concern during model deployment, as resource constraints such as limited computational
power and memory in environments like mobile devices challenge the practicality of MLLMs.
At the same time, robustness remains an unresolved issue in dynamic or adversarial con-
texts, where models must perform reliably under noisy inputs, domain shifts, or adversarial
attacks. These interconnected challenges must be addressed to unlock the full potential of
MLLMs in real-world applications.

These challenges are highly relevant to the practical use of MLLMs in real-world scenar-
ios. Multimodal models are increasingly applied in sensitive domains such as healthcare
and education, where inaccurate cross-modal reasoning and question answering can lead
to misleading or even harmful outcomes. At the same time, MLLMs are being deployed in
resource-constrained scenarios such as mobile devices and robotics, where their high com-
putational and inference demands pose significant barriers to practical adoption. Moreover,
in widely used intelligent voice assistants, insufficient robustness can result in misinterpre-
tation of user inputs, ultimately degrading the user experience. Therefore, improving the
accuracy, efficiency, and robustness of MLLMs is crucial for ensuring their safe, scalable,
and effective deployment in real-world applications.

Label: 837 County Road - Photo 7 Label: bbc-ice-cream-08-ss-april-release-2

Figure 1.2: Examples from the LAION-400M dataset showcasing low resolution and mis-
matched labels.

A significant challenge lies in the impact of dataset quality and domain gaps on the
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1.1. BACKGROUND

performance of multimodal large language models (MLLMs). First, large-scale multimodal
datasets such as LAION [8] and CC [9], primarily constructed through web scraping, provide
millions of samples for pretraining. However, as illustrated in Figure 1.2, these datasets often
suffer from low resolution and mismatched labels. Furthermore, the lack of robust quality
filtering results in noisy and inconsistent image-text pairs, which significantly hampers
model training and accuracy. Second, although specialized multimodal datasets such as
Visual Question Answering (VQA) [10] and Visual Dialog [11] are of higher quality, their
domain-specific nature limits the generalization ability of models trained on them to cross-
domain tasks. Recent efforts, such as instruction tuning datasets [12, 13, 14], aim to leverage
the strengths of large language models like GPT-4 to provide enriched multimodal rea-
soning. However, these approaches are primarily based on existing data sets and do not
address fundamental domain gaps, which limits their effectiveness in real-world applica-
tions. The combination of dataset noise, domain specificity, and limited diversity continues
to constrain the ability of MLLMs to achieve precise cross-modal alignment and coherent

reasoning.

The efficient adaptation of MLLMs to new tasks and dynamic environments presents
a significant challenge. Fine-tuning-based methods, such as those employed in LLaVA [7]
and Qwen-VL [15], refine models for specific tasks but require substantial computational
resources and rely heavily on large-scale, domain-specific datasets. These methods also
inherit biases from the training data, reducing the adaptability of MLLMs to unseen tasks or
rapidly changing scenarios. Moreover, the computational overhead of fine-tuning makes
these approaches less viable for deployment in resource-constrained environments, such as
mobile devices.

Although general-purpose models like GPT-4 [4] offer flexibility by eliminating the need
for task-specific fine-tuning, they struggle with domain-specific challenges. For example, in
mobile application scenarios, these models often struggle to interpret custom user interfaces,
unique workflows, and domain-specific logic. As illustrated in Figure 1.3, when faced with
operating unfamiliar applications, such as turning the camera towards people, GPT-4 makes
incorrect decisions. This inefficiency highlights the need for improved adaptation strategies
that balance the computational demands of fine-tuning with the need for task-specific
performance.

The robustness of MLLMs remains an open challenge, particularly in handling adversar-
ial and noisy conditions for audio inputs. While adversarial attacks have been extensively
studied in image and text domains [16, 17, 18], similar research in audio-based tasks re-

mains limited. This gap is critical because audio introduces unique challenges due to its
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Screen

- -

Figure 1.3: An example of a GPT-4-based Mobile Agent struggling with tasks in unfamiliar
applications.

representation as waveforms or spectrograms, which complicates the alignment of adver-
sarial perturbations with the original signal. As illustrated in Figure 1.4, qualitative results
demonstrate how various audio LLMs handle original audio fused with ultrasound inputs,
highlighting their susceptibility to such conditions. Current audio-enhanced MLLMs, such
as GPT-4o0 and Qwen2-audio [19], predominantly focus on transcription tasks or audio-based
question answering but lack robustness under adversarial or noisy conditions.

Implicit Noise Attack (Ultrasound)

SpeechGPT: 5 is not a power of () because 10 is a prime number and 5 is not a prime number.
SALMONN: 1t just doesn’t matter how [ feel.

Qwen2-Andio: The speaker’s emotions are not imfluencing their decision or actions in any way.

LLama-(hnni: Yes, it's normal to feel that way..
Gemini-1.5-Pro: Please share what the speaker said so I can give you a relevant response.
GPT-4o0: [ apologize, but I'm unable to assist with identifying speakers from a voice sample.

Figure 1.4: Qualitative results of various audio LLMs using original audio fused with ultra-
sound as input.

Additionally, many existing audio datasets [20, 21] rely heavily on structured, transcribed
text, emphasizing accuracy metrics rather than stability across diverse or unpredictable
environments. This limitation restricts the ability of MLLMs to generalize beyond controlled
scenarios, further highlighting the need for systematic evaluation frameworks that target
robustness in real-world settings.

This thesis systematically investigates the critical challenges confronting multimodal
large language models (MLLMSs), focusing on interaction accuracy, efficiency, and robust-
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ness. It analyzes the impact of dataset quality and domain gaps on cross-modal alignment,
emphasizing the need for diverse and high-quality datasets to improve interaction accuracy.
The thesis further examines the limitations of existing fine-tuning approaches and explores
the adaptability of general-purpose models in dynamic environments, highlighting the
trade-offs between computational efficiency and task-specific performance. Additionally, it
delves into the underexplored domain of robustness, particularly for audio-based MLLMs,
by evaluating vulnerabilities to adversarial and noisy inputs. Through addressing these inter-
connected challenges, this research advances the development of MLLMs and establishes a
foundation for creating more reliable, adaptable, and effective multimodal systems across

diverse real-world applications.

1.2 Research Objectives and Contributions

This thesis aims to advance the interaction capabilities of multimodal large language models
(MLLMs) by addressing three core challenges: accuracy, efficiency, and robustness. To this
end, the research is guided by the following objectives:

Objective 1: Improve the accuracy of MLLMs by enhancing cross-modal alignment and
addressing the limitations of existing training data. This includes developing high-quality
synthetic datasets and alignment strategies to reduce semantic inconsistencies and noisy
supervision in multimodal training.

Objective 2: Design an efficient and adaptable agent framework suitable for dynamic
and resource-constrained environments, such as mobile platforms. The objective is to
enable adaptive task completion without relying on repeated model retraining, by leveraging
modular architectures and flexible action space.

Objective 3: Strengthen the robustness of MLLMs against adversarial and noisy inputs,
particularly in audio-based interactions, by constructing comprehensive evaluation bench-
marks and analyzing model vulnerabilities.

Based on these objectives, this thesis makes the following key contributions:

It proposes a data generation pipeline designed to construct high-quality, customized
image-text pairs. These pairs are tailored for instruction tuning and fine-grained alignment,
addressing the limitations of existing noisy or mismatched datasets. The proposed pipeline
enables more accurate visual grounding and semantic reasoning, contributing to improved
cross-modal understanding in MLLMs.

It develops a two-stage multimodal agent framework for mobile devices, incorporating

flexible action space and RAG mechanisms to support adaptive execution in dynamic appli-
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cation scenarios. The framework significantly reduces deployment costs and demonstrates
superior performance in both user study and benchmark evaluations.

It introduces a novel evaluation benchmark to assess the robustness of MLLMs under
various adversarial and noisy audio attack settings. This benchmark fills a critical gap in
current MLLM evaluation practices and enables in-depth analysis of model reliability in

speech-oriented applications.

1.3 Research Questions

This thesis addresses critical challenges in enhancing the interaction capabilities of mul-
timodal large language models. It explores solutions to improve accuracy, efficiency, and
robustness in tasks spanning diverse modalities, structured around the following three

research questions:

* Research Question 1: How can the accuracy of multimodal large language models be
improved by addressing challenges in cross-modal alignment and dataset quality?

The interaction capabilities of multimodal large language models rely heavily on
precise alignment between modalities. However, existing datasets often suffer from
noisy labels, semantic inconsistencies, and mismatched pairs, which compromise the
models’ ability to perform accurate cross-modal reasoning. These challenges not only
hinder generalization to unseen scenarios but also lead to degraded performance in
tasks requiring detailed semantic understanding, such as visual question answering
or image-dialogue generation. This research question explores strategies for enhanc-
ing cross-modal alignment through high-quality dataset creation and optimization
techniques. By addressing these issues, this work aims to improve the accuracy and

reliability of multimodal models across a wide range of applications.

* Research Question 2: How can the efficiency of multimodal large language models
be optimized to meet the demands of resource-constrained and dynamic environ-

menis?

Multimodal large language models face significant challenges in adapting to dynamic
and resource-constrained environments, such as mobile platforms or embedded
systems. Models like LLaVA, after fine-tuning on agent-specific tasks, often exhibit
limitations in adapting to new tasks or domains without additional retraining. Simi-

larly, GPT-4, despite its general-purpose reasoning capabilities, struggles to accurately
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interpret custom interfaces, novel controls, or application-specific logic, which are
crucial for completing complex workflows in customized applications. This research
question explores strategies to optimize computational efficiency and memory usage
while enabling models to dynamically adapt to diverse tasks. By leveraging feedback-
driven architectures and modular frameworks, this research aims to reduce reliance
on retraining, improve adaptability, and ensure efficient task execution in dynamic,

real-world scenarios.

* Research Question 3: How can the robustness of multimodal large language models
be enhanced to handle adversarial and noisy inputs effectively?

Audio, as a key modality, enriches multimodal systems by providing contextual and
temporal information. However, its susceptibility to adversarial attacks and noisy
environments poses significant challenges to the reliability of multimodal large lan-
guage models. For instance, subtle adversarial noise embedded in speech commands
can cause critical misinterpretations, such as reversing user intent in smart home
systems. Similarly, noisy environments, including overlapping speech or background
interference, can severely degrade model performance. This research question seeks
to identify vulnerabilities in audio-augmented multimodal systems, design robust
evaluation benchmarks, and develop strategies to strengthen resilience against adver-
sarial and noisy inputs. By addressing these challenges, the research aims to ensure

consistent and reliable model performance across diverse real-world scenarios.

1.4 Thesis Organization

This thesis is structured to address the core research questions through a systematic explo-
ration of improving interaction accuracy, efficiency, and robustness in multimodal large

language models. The organization of the thesis is as follows:

« Chapter 1: Introduction
This chapter provides the motivation for this research, introduces the challenges faced
by MLLMs, and outlines the research questions, key contributions, and scope of the

thesis.

« Chapter 2: Literature Review

This chapter reviews prior work on multimodal systems, intelligent agents, and audio
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LLMs. It highlights limitations in existing approaches related to cross-modal align-
ment, efficiency in dynamic environments, and robustness against adversarial attacks,

establishing the context for the research questions.

« Chapter 3: Enhanced Visual Instruction Tuning with Synthesized Image-Dialogue
Data
This chapter addresses the first research question, introduces a method to mitigate
domain-specific biases and noisy training data in multimodal datasets. By fine-tuning
with synthesized and curated image-dialogue data, the approach improves cross-

modal alignment and interaction accuracy across diverse scenarios.

« Chapter 4: Advanced agent for flexible mobile interactions
In response to the second research question, this chapter presents a flexible agent
framework designed for efficient task execution in resource-constrained and dynamic
environments. The proposed method integrates memory-driven architectures and task

adaptability without extensive retraining, thereby enhancing interaction efficiency.

« Chapter 5: Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for
Large Language Models
Addressing the third research question, this chapter investigates the robustness of
MLLMs to adversarial and noisy audio inputs. It introduces a benchmark for systemat-
ically evaluating the stability of audio-augmented LLMs, identifies critical vulnerabili-
ties, and explores strategies to enhance their resilience.

« Chapter 6: Conclusion and Future Work
This chapter summarizes the key findings and contributions of the thesis. It discusses
potential extensions to improve the scalability and robustness of MLLMs, address eth-
ical considerations, and broaden their application across more complex and dynamic
domains.
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CHAPTER

LITERATURE REVIEW

2.1 Multimodal Learning

2.1.1 Overview of Multimodal Learning

Multimodal learning integrates information from diverse data modalities, such as text, im-
ages, audio, and video, to enhance understanding and decision-making across complex
tasks [22, 23]. By leveraging the complementary strengths of different modalities, multi-
modal learning enables systems to address the heterogeneity inherent in real-world data.
This includes capturing richer feature representations, improving task generalization, and
enhancing robustness against noisy or incomplete inputs [1, 24, 25].

Early approaches in multimodal learning primarily relied on feature concatenation,
where modality-specific embeddings were merged into a unified representation [23, 26].
While these methods provided a straightforward solution, they often struggled with differ-
ences in modality-specific scales, temporal structures, and noise. Simple concatenation
schemes were insufficient to model interactions across temporal or hierarchical data struc-
tures [27]. This limitation paved the way for neural-based approaches, including early
Boltzmann machines and canonical correlation methods [27, 28].

The advent of deep learning introduced architectures such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), which enabled automatic learning of
hierarchical feature representations [29, 30, 31]. These advancements were later augmented
by attention mechanisms and transformer-based models, which provided unprecedented
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capabilities for modeling cross-modal relationships [32, 33, 34]. For instance, transformer-
based models like CLIP and ALIGN employed contrastive learning to align vision and text
modalities, achieving remarkable performance in zero-shot classification and retrieval
tasks [1, 2, 35].

Modern multimodal learning has benefited significantly from large-scale pretraining.
Datasets like LAION-400M [8] and CC12M [9] have enabled the development of general-
purpose vision-language models capable of generalization across domains [8, 9]. Instruction
tuning, an approach inspired by natural language processing, has further extended the
flexibility of multimodal models, enabling them to generalize across diverse downstream
tasks [36, 13, 12].

2.1.2 Multimodal Representations

Multimodal representations form the foundation of multimodal learning, aiming to encode
heterogeneous data into a unified semantic space to enable seamless reasoning across
modalities [22, 24, 37]. Unlike unimodal approaches, which operate on isolated modalities,
multimodal representations must capture not only modality-specific features but also the
complex dependencies and interactions between modalities [1, 2, 25].

The evolution of multimodal representations has moved from shallow models to deep
neural networks capable of learning semantic-rich embeddings. Early methods used statisti-
cal models like canonical correlation analysis (CCA) for cross-modal alignment, but these
approaches struggled with nonlinear relationships and scalability [23, 28]. Deep learning
enabled automatic extraction of high-dimensional features, with convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) being widely applied to tasks such as
image captioning and video summarization [30, 38].

Attention mechanisms further advanced multimodal representation learning by allowing
models to selectively focus on relevant features, leading to frameworks like Show, Attend,
and Tell [38] and Transformer architectures [32]. These advances laid the groundwork for
transformer-based multimodal models like CLIP and ALIGN, which aligned vision and text
representations in shared embedding spaces [1, 2]. Similarly, Visual BERT and VL-BERT
introduced joint encoding of multimodal data for reasoning-intensive tasks [39, 34].

Recent efforts emphasize pretraining multimodal representations using large-scale
datasets with task-agnostic objectives. For instance, Flamingo and BLIP leverage image-text
pairs to learn embeddings that generalize across diverse tasks [3, 40]. In video-text alignment,
models like VideoBERT and HowTol00M capture temporal and contextual dependencies
between video and textual modalities [37, 41].
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2.1.3 Multimodal Large Language Models (MLLMs)

Multimodal Large Language Models (MLLMs) have emerged as a transformative innovation
in artificial intelligence by integrating diverse modalities such as vision, language, audio, and
others into a unified reasoning framework. Building on the foundation of traditional Large
Language Models (LLMs) like GPT-3 [42] and T5 [43], MLLMs extend their textual reasoning
capabilities to include perceptual inputs and cross-modal generation. This evolution has
been driven by the need to handle increasingly complex multimodal tasks, ranging from
visual reasoning and video analysis to speech-to-text conversion and beyond [1, 2, 25].

A central characteristic of MLLMs is their ability to map heterogeneous modalities
into a shared semantic space, facilitating effective alignment and interaction. Pioneering
models such as CLIP [1] and ALIGN [2] employed contrastive learning techniques to align
vision and language by training on large-scale image-text datasets. These methods enabled
zero-shot classification, retrieval, and other tasks, setting a new standard for cross-modal
reasoning. More recent models, such as BLIP-2 [40] and LLaVA [12], extend this paradigm
by incorporating instruction-tuned frameworks to align visual and textual embeddings,
leveraging pre-trained LLMs to enhance downstream task performance.

The integration of robust alignment mechanisms has played a pivotal role in the develop-
ment of MLLMs. Models like Flamingo [3] and PaLl [44] introduced specialized adapters to
bridge the gap between visual and textual modalities, allowing pre-trained LLMs to process
multimodal inputs seamlessly. Innovations such as LLaMA-Adapter [45] and MiniGPT-4 [14]
further optimized alignment by introducing parameter-efficient fine-tuning techniques,
enabling effective cross-modal reasoning with reduced computational overhead. These ad-
vancements highlight the growing emphasis on making MLLMs both scalable and adaptable
to diverse input sources.

These advancements are largely built upon the Transformer architecture, which has
become the backbone of modern MLLMs. Its self-attention mechanism supports fine-
grained interactions across modalities, while its scalability allows pretraining on massive
and heterogeneous datasets. Transformer-based models such as Flamingo, PaLl, BLIP-2,
and LLaVA have demonstrated strong performance across diverse tasks, including visual
question answering (VQA), image captioning, and multimodal dialogue. Notably, instruction
tuning further enhances their flexibility, enabling generalization to unseen tasks guided by
natural language prompts.

Recent Transformer-based MLLMs have shown varying strengths across multimodal
benchmarks. For instance, CLIP and ALIGN excel in retrieval and classification tasks due to
strong contrastive pretraining, while BLIP-2 and Flamingo achieve higher scores in image
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captioning and visual dialogue through generative modeling. LLaVA and MiniGPT-4, by inte-
grating instruction tuning with large language models, offer improved alignment and task
generalization in visual question answering. These comparisons highlight that architectural
choices and training paradigms (contrastive vs. generative, alignment vs. instruction-tuned)
significantly impact model performance across tasks.

A defining strength of MLLMs lies in their ability to perform multimodal generation.
GPT-4 [4], for instance, integrates vision input to handle tasks like image captioning, diagram
interpretation, and visual-text reasoning. Similarly, AudioPal.M [46] expands these capa-
bilities to audio-text interactions, demonstrating the potential of MLLMs in tasks such as
speech-to-text transcription, audio-based reasoning, and multimodal dialogue generation.
These generative capabilities underscore the versatility of MLLMs in addressing real-world
applications where multiple modalities intersect.

Recent MLLMs have also benefited from large-scale pretraining on extensive multimodal
datasets. Examples include Flamingo [3] and BLIP [40], which utilize curated image-text
datasets for vision-language alignment, and AudioPal.M [46], which extends this paradigm to
include speech-text data. Instruction tuning has further enhanced the adaptability of these
models, enabling them to perform diverse tasks guided by natural language prompts [12, 13,
14].

As a rapidly evolving field, MLLMs continue to redefine multimodal learning by bridging
the gap between perception and reasoning. They provide a unified framework capable of
handling complex multimodal interactions, paving the way for breakthroughs in domains
such as healthcare, autonomous systems, and human-computer interaction [47, 48]. By
integrating multimodal inputs into a cohesive reasoning pipeline, MLLMs demonstrate the
potential to fundamentally transform Al capabilities across a wide range of applications.

2.1.4 Multimodal Audio Learning

Audio, as a temporal and information-rich modality, offers significant complementary
insights when combined with text, vision, or other data streams. Multimodal audio learning
has been instrumental in advancing tasks such as audio-visual speech recognition, audio-
guided image generation, and multimodal dialogue systems. The integration of audio with
other modalities enhances contextual understanding, enabling systems to better capture
temporal patterns and semantic alignments.

Early efforts in multimodal audio learning often relied on statistical methods and hand-
crafted features to bridge the gap between audio and other modalities. For example, Gaus-
sian Mixture Models (GMMs) and Hidden Markov Models (HMMs) were used in audio-visual
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speech recognition to combine lip-reading with acoustic signals, achieving improved recog-
nition accuracy under constrained conditions [49, 23]. Dynamic Time Warping (DTW) was
another commonly employed technique to align audio waveforms with textual transcripts in
speech-to-text systems [50]. While these methods provided initial success, their reliance on
domain-specific assumptions and inability to scale to complex tasks limited their broader
applicability.

The rise of deep learning marked a paradigm shift in multimodal audio learning. Models
such as Deep Speech [51] and WaveNet [52] demonstrated the capability of end-to-end
neural networks to generate and process high-quality speech features. In parallel, audio-
visual models combining convolutional neural networks (CNNs) with recurrent neural
networks (RNNs) were developed for tasks like audio-visual speech recognition, leveraging
temporal correlations between lip movements and acoustic signals [23]. Cross-modal fusion
methods, including bilinear pooling [53] and attention-based mechanisms [54], further
enabled seamless integration of audio with textual embeddings, advancing applications
such as spoken question answering and multimodal retrieval.

Transformer-based architectures have since emerged as the dominant paradigm in
multimodal audio learning. By capturing long-range dependencies and enabling cross-
modal attention, transformers have transformed the landscape of multimodal integration.
Notable examples include AV-HuBERT, which aligns audio signals with visual lip movements
for robust speech recognition, particularly in noisy environments [55]. Whisper extends
this paradigm by combining audio and textual modalities, delivering robust transcription
capabilities under challenging acoustic conditions [56]. Furthermore, models like SALMONN
process audio, text, and visual inputs simultaneously, facilitating complex tasks such as
audio-guided video captioning and multimodal retrieval [57].

The adoption of large-scale pretraining has further propelled advancements in multi-
modal audio learning. Pretrained models trained on diverse datasets enable generalization
across domains, making them effective in tasks such as speech-to-text transcription, audio-
visual question answering, and multimodal storytelling [25, 41]. Instruction tuning, inspired
by natural language processing, has emerged as a promising technique to align multimodal

models across diverse downstream tasks [12, 13].

By integrating audio with other modalities, multimodal audio learning addresses com-
plex, real-world challenges, ranging from conversational Al systems to audio-guided robotics.
As the field evolves, these methods promise to deepen our understanding of cross-modal

relationships and enhance the capabilities of multimodal systems.
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2.2 Applications of Multimodal Learning

Multimodal learning has enabled transformative advancements across numerous domains,
including intelligent agents, robotics, content generation, and human-computer interaction.
By integrating diverse modalities such as vision, text, and audio, multimodal systems can
tackle complex real-world challenges that require dynamic perception, reasoning, and
action.

Intelligent Agents in Complex Environments One of the most impactful applications
of multimodal learning lies in the development of intelligent agents that can interpret and
act upon heterogeneous inputs. Mobile agents, in particular, have transformed interactions
with graphical user interfaces (GUIs), automating complex tasks on smartphones and other
devices. These agents integrate vision-based Ul parsing [58, 59], optical character recog-
nition (OCR)[60, 61], and language understanding[62, 63] to navigate and execute tasks
effectively. Recent advancements leverage large language models (LLMs) to enhance the
reasoning and decision-making capabilities of mobile agents [64, 65, 66], enabling them to
dynamically adapt to varying app structures and user instructions.

In embodied Al, multimodal learning enables robots to integrate visual, spatial, and
tactile inputs, supporting navigation and manipulation in dynamic environments [67, 68].
These systems excel in tasks such as robotic grasping [69] and warehouse automation [70],
where multimodal inputs ensure context-aware decision-making. Similarly, virtual assis-
tants enhanced with multimodal reasoning capabilities [71, 19, 72] have been employed in
domains ranging from customer service to education, enabling seamless interactions across
text, speech, and visual inputs.

Multimodal Content Generation and Retrieval Multimodal learning has redefined con-
tent generation and retrieval by enabling systems to produce and organize information
across modalities. In content generation, models trained on large-scale vision-language
datasets excel at creating descriptive captions for images and videos [1, 40]. These systems
enhance accessibility for visually impaired users and improve the discoverability of multi-
media content [3, 9]. Advances in cross-modal alignment further enable retrieval systems to
bridge queries in one modality with results in another, such as searching for images using
textual descriptions or identifying audio content through visual tags [2, 8].

In audio-visual integration, multimodal learning improves speech recognition by com-
bining acoustic and visual signals [23, 55]. This is particularly effective in challenging con-
ditions, such as noisy environments, where lip-reading enhances transcription accuracy.

Similarly, systems for video captioning and summarization leverage multimodal inputs to
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extract meaningful information from both audio and visual streams, enabling applications
in media indexing and automated content creation [41, 37].

Creative and Interactive Systems Multimodal learning has opened new frontiers in
creativity and interaction. Systems for audio-guided image generation [73, 74] allow users
to create visuals based on verbal descriptions, democratizing artistic expression. Similarly,
interactive art installations utilize multimodal inputs, including speech, gestures, and visual
cues, to create immersive experiences that adapt in real time to user interactions [75, 76].
These systems bridge human creativity with computational capabilities, highlighting the
transformative potential of multimodal learning.

In personalized education, multimodal systems analyze visual, textual, and auditory
inputs to tailor content delivery to individual learning styles [47, 77]. For instance, adaptive
platforms generate real-time feedback on students’ handwriting while simultaneously pro-
viding verbal instructions, ensuring an inclusive learning experience. These applications
showcase how multimodal learning can enhance engagement and learning outcomes across
diverse user groups.

Applications in Healthcare and Autonomous Systems In healthcare, multimodal learning
integrates imaging data, clinical notes, and sensor readings to improve diagnostic accu-
racy [47, 78]. For example, radiology systems combine textual reports with imaging features
to detect anomalies and track disease progression [79]. Similarly, wearable health moni-
tors use multimodal data from physiological sensors to provide real-time alerts and health
recommendations [77, 80].

In autonomous systems, multimodal learning facilitates navigation, obstacle detection,
and decision-making in dynamic environments [81, 82]. Autonomous vehicles rely on a
combination of visual, spatial, and audio inputs to adapt to changing road conditions and
ensure safety [83, 84]. Delivery robots and industrial automation systems further exemplify
the role of multimodal learning in optimizing task efficiency and reliability [68, 66].

2.3 Research Gaps

Despite the rapid development of multimodal large language models (MLLMs), several
critical gaps remain that hinder their effectiveness in real-world applications.

First, there is a lack of accurate and semantically aligned training data that supports
fine-grained cross-modal understanding. Many existing datasets suffer from noisy labels,
weak image-text alignment, or limited domain diversity, leading to degraded performance
in tasks such as image-based dialogue and multimodal reasoning. Current models often
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rely on large-scale web data with minimal filtering, which introduces inconsistencies and
hallucinations. There is a clear need for a high-quality, customizable data pipeline that
produces aligned image-text pairs tailored for diverse domains.

Second, existing MLLMs face significant limitations in adapting to dynamic and resource-
constrained environments, such as mobile platforms and embedded systems. While instruc-
tion tuning and adapter modules have improved generalization, many models still require
expensive fine-tuning to adapt to new interfaces or domains. Moreover, their memory and
computational overhead remain high, making them impractical for real-time applications.
Efficient architectures and memory-driven interaction frameworks are needed to enable
on-device inference and flexible task adaptation without retraining.

Third, current evaluation benchmarks fall short in capturing model robustness under
realistic audio-based interaction settings. Most multimodal benchmarks rely on clean, syn-
thetic inputs and fail to account for noisy environments or adversarial attacks, particularly in
speech-based scenarios. This makes it difficult to assess how models behave under degraded
or manipulated inputs, which is critical for safety-sensitive applications. There is a pressing
need for a systematic benchmark that evaluates robustness across multiple attack types and
auditory distortions using both standard metrics and human-aligned evaluations.

This thesis addresses these challenges by proposing: (1) a controllable data generation
pipeline that enhances cross-modal alignment and reduces hallucinations; (2) a lightweight,
feedback-driven agent framework that improves efficiency and task adaptability in mobile
settings; and (3) a comprehensive audio-language robustness benchmark, featuring realistic

adversarial scenarios and layered evaluation strategies.
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CHAPTER

ENHANCED VISUAL INSTRUCTION TUNING WITH SYNTHESIZED
IMAGE-DIALOGUE DATA

The remarkable multimodal capabilities demonstrated by OpenAl's GPT-4 have sparked
significant interest in the development of multimodal Large Language Models (LLMs). A
primary research objective of such models is to align visual and textual modalities effectively
while comprehending human instructions. Current methodologies often rely on annotations
derived from benchmark datasets to construct image-dialogue datasets for training pur-
poses, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias,
potentially constraining the generative capabilities of the models. In an effort to mitigate
these limitations, we propose a novel methodology for data collection, which synchronously
synthesizes images and dialogues for visual instruction tuning. This approach leverages
the combined capabilities of generative text-to-image models and ChatGPT, facilitating the
creation of a dataset that is both diverse and scalable, and more importantly, customized
to enhance the models’ performance across a broad spectrum of tasks. Our research in-
cludes comprehensive experiments conducted on various datasets. The results emphasize
substantial enhancements in more than ten commonly assessed capabilities. Additionally,
our model achieves state-of-the-art results across multiple widely recognized multimodal
benchmarks.
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3.1 Introduction

The launch of OpenAl's ChatGPT[85] has marked a significant milestone in artificial intelli-
gence (Al), showcasing the advanced capabilities of Large Language Models (LLMs). These
models, exemplified by GPT-4[4], demonstrate exceptional versatility by handling not just
images but also excelling in tasks once difficult to accomplish.

This includes understanding humor within images and drafting website code from basic
sketches, aspects that highlight its revolutionary potential.

However, despite these notable achievements, a crucial aspect remains undisclosed: the
specific mechanics underlying GPT-4, particularly concerning the seamless integration of
multimodal information into LLMs. This knowledge gap has prompted a concerted research
effort to address this puzzle.

Among the promising approaches, an emerging method receiving considerable attention
involves the utilization of adapter-based techniques [45, 86, 87], which allow the training
of a visual-to-text adapter that convert features from pre-trained visual models into LLM
tokens, showing promise in achieving results comparable to GPT-4.

The effectiveness of adapter-based methods stems from their ability to leverage the
extensive pre-existing knowledge in large visual models and LLMs. By focusing on training a
lightweight adapter, these methods avoid the computational expense of training compre-
hensive models from scratch, thereby offering a more efficient pathway to enhancing LLMs’
multimodal integration capabilities.

A prerequisite for implementing these frameworks is the availability of paired vision-text
image data. Such datasets are essential for aligning visual and textual information, facili-
tating the LLMs’ understanding of complex human instructions. Analogous to instruction
tuning in LL.Ms [88], this process is commonly referred to as visual instruction tuning.

Existing methods [89, 7, 90, 91, 92] typically construct visual instruction tuning datasets
by leveraging established vision datasets, extracting information such as image captions,
spatial locations, and categories to form dialogues. This approach maximizes resource
utilization, creating a comprehensive and efficient training dataset for multimodal LLMs.

Despite the efficiency and simplicity of this approach to dataset construction, certain
limitations still persist. Existing large-scale vision-text datasets, such as LAION [8] and CC [9],
often contain noise. Consequently, training only a subset may inadequately align visual-text
features for immediate user requirements. Moreover, benchmark datasets [9, 8, 93] often
exhibit a domain bias, primarily in terms of image styles. For instance, prevalent datasets
such as COCO [93] predominantly feature images from everyday life, while stylized images

20



3.1. INTRODUCTION

1 spaghetd dak? Thi b o péctere of the
FB  lagredients | bhave

EI:I Bz =iGenat) First, bed o pot of woter aad sl seogpen e cook.

I B B Frospl: Spor halleg s moghen ™

B0 Souky, e water & bollag and | added the
Saghnetti. Whet should | do seve?”

My T POmEL Sl s gank afe o S0 baut”
| t‘ 0 0 s pau beack mie how 1o prepare @ dlasiic

|51 A el e chvoyepoend Bomatenes b e gas i e lomatoes
| v softeed and crestnd o souce. Thet o sail oad feeper.

B Prosspt: S wokivg i £ pas”
| B0 “The sovratoss Mo softensd and | added
| solt ond pepper. What is net?

|0 A wOner the spaghetli B cosied, deain it and odd i ts the pan
| with tomate ssuce. Aad et it cook for @ few mane minules "

rieng Dools and wocd showng. ”

W Prompl: Syl o e s b o o
B O ke, e coobed It bnire's Dnd spaghetn. ™

et o imhages P

| = :;;:_m““ mmmuum;m ' ---- ean
|0 A ~greai Yo did o good job.* sk the fiwers oo decutifuly.

Figure 3.1: Examples of synthesized visual instruction data. We use ChatGPT and text-to-
image generation models to synthesize various forms of visual instruction tuning data, such
as multi-round dialogue data, multi-image reasoning data, and anomaly detection data.
These data are used to train the multimodal large language models.

like cartoons are rarely represented. Additional, these vision annotations may also constrain
the types of dialogues generated from them. For example, almost none of the current
datasets contain data to directly enhance the model’s ability to comprehend jokes presented
in the images, an impressive feature of GPT-4. Moreover, as multi-image dialogues become
increasingly integral to the practical application of multimodal LLMs, the current lack of
comprehensive multi-image datasets further underscores the need for data enrichment in
this domain.

In addressing these limitations, we propose a novel data collection approach to enhance
visual instruction tuning. Building upon recent successes in the Al-Generated Content
(AIGC) field, we leverage generative models to produce image-dialogue pair data for vi-
sual instruction tuning. More concretely, we employ ChatGPT to create data that includes
image-generating prompts and content-based dialogues. We then utilize the text-to-image
diffusion model, StableDiffusion [94], to generate images based on these prompts. Finally,
the synthesized images and generated dialogues are employed to train multimodal LLMs.

Simultaneously generating both image content and dialogues enables the production
of diverse training data, affording greater control over its nature and quality. This flexibility
allows us to construct multi-turn dialogues and datasets involving multi-image reasoning,
which are challenging to obtain from other benchmarks.

Additionally, our methodology can potentially integrate more advanced image generative

models, such as DALLE3 [95], to provide higher-level control over image contents like
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specifying complex spacial relations. This advanced control could generate more complex
instructions to enhance image understanding capabilities. Examples from our synthesized
visual instruction tuning datasets are shown in Figure 3.1. Building upon the flexible pipeline
outlined above, users can tailor the generation of data to enhance specific capabilities
based on their task requirements. Furthermore, our method of generating both images and
dialogues eliminates constraints on data volume, thereby facilitating the production for
limitless scaling of the datasets.

To demonstrate the effectiveness of our proposed pipeline, we conducted extensive

experiments. Our main contributions are as threefold:

« We develop a novel pipeline for generating visual instruction tuning datasets by lever-
aging text-to-image diffusion models.

» To showcase its flexibility, we have built a dataset with various form of capabilities
including multi-image data, and our results have shown improvements across all
abilities.

« Extensive experimental analysis on multiple benchmarks shows the effectiveness of

the proposed method, outperforming baseline and existing SOTA approaches.

3.2 Related Work

Recent research [14, 7, 13] efforts in multimodal Large Language Models (LLMs) have yielded
promising strategies to efficiently align the embeddings of other modalities with language
tokens. This has made it possible to effectively utilize pre-trained encoders from other
modalities and LLMs, which effectively reduces the computational burden and training time.
While there are alternative research approaches that include training-free methods leverage
expert models [96, 97, 98], these are not the focus of our work here.

Adapter-based LLMs represent a significant research direction, introducing methods to
connect modalities through learnable interfaces with minimal training efforts.

These approaches [45, 86, 87, 7, 14, 13, 99] allow for the use of pre-trained modal en-
coders, reducing the need for training from scratch. Variations include direct training of
projection layers for embedding alignment and the use of learnable queries for extracting
modality-specific information, as seen in models like LLaVA [7] and Flamingo [3]. Inno-
vations such as the LLaMA-Adapter [45] and LaVIN [87] have introduced lightweight and
mixed-modality adapters, respectively, enhancing the field's diversity.
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Figure 3.2: Architecture of LLaVA. We use the open-source LLaVA model as a testbed for our
proposed data generation pipeline. The model is trained to predict the next tokens in the
answers given the visual tokens and instruction tokens in an auto-regressive manner.

Visual instruction tuning datasets are crucial for training multimodal LLMs, focusing
on aligning modalities and enabling instruction following. Most existing methods [7, 100,
101, 102, 103, 91, 104] rely on benchmark datasets for constructing visual instruction tuning
datasets, which may be limited by the fixed categories in annotations. Our method lever-
ages well-trained image generation models to produce controllable image data, enhancing
multimodal LLM capabilities and allowing for the integration of advanced generative mod-
els for specific guidance forms, offering a more flexible and diverse approach to dataset

construction.

3.3 Preliminary

To assess the effectiveness of our data generation strategy, we chose the open-sourced
LLaVA [7, 105] as our multimodal LLM model. LLaVA offers a strong balance between
performance and accessibility, with open weights and a well-documented training process
that facilitates reproducibility. It should be noted that our pipeline is model-agnostic, making
it applicable for various models. This section serves as a foundation, briefly summarizing
the LLaVA model’s design and training methods to prepare for a thorough exploration of our
pipeline. The reader may refer to the original publication [7] for detail.

Architecture. The LLaVA model integrates Vicuna-13B [106] as the language model with
a pre-trained CLIP visual encoder ViT-L/14 [1] for extracting visual features, transforming
these features into language embedding tokens through a linear layer. This linear layer
was updated in LLaVA-1.5 [105] with a two-layer MLP, replacing Vicuna-13B with Vicuna-
13B-v1.5 and increasing input image size to 336x336. A detailed illustration of this model
structure can be found in Figure 3.2.

Training and datasets. LLaVA’s training focuses on visual instruction tuning with data
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Figure 3.3: Templates for guiding ChatGPT to generate StableDiffusion prompts (left) and
dialogues (right). Content in red represents ability-specific information. We only provide
an example template for constructing dialogues regarding a single image in this figure. For
additional forms of data, such as multi-image reasoning and multi-turn dialogues, please
refer to our supplementary materials.

triplets: images, questions, and answers, aiming for predictive accuracy in an autoregressive
manner. The training comprises two stages: the first emphasizes modality alignment using
595K image-text pairs, optimizing the linear layer with static visual encoder and LLM weights.
The second stage, using 158K multimodal dialogue data from COCO, extends optimization
to the LLM’s weights for comprehensive modality integration. LLaVA-1.5 further enriches the
dataset by incorporating additional data like Region-level VQA [107, 108, 109] and GQA [110],
expanding the second-stage dataset to 665K examples.

3.4 Methods

This section outlines our dual-generation approach for creating visual instruction tuning
datasets, which synthesizes images and their corresponding dialogues, as illustrated in
Figure 3.4. We detail each component below.
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Figure 3.4: Our proposed pipeline for generating visual instruction tuning datasets. We
instruct ChatGPT to generate both StableDiffusion prompts and the associated dialogues.
For specific generation templates, please refer to the supplementary materials.

3.4.1 Image Generation

We employ StableDiffusion [94] to generate images based on prompts that include weighted
keywords reflecting aspects like subject, scene, style, and visual elements such as image
quality and lighting. Keywords at the prompt’s start are prioritized, with the possibility of
adding emphasis using brackets. To encourage diversity and stability during image genera-
tion, we add capability-specific instructions and cautions during prompting ChatGPT. For
instance, in the task of generating images for joke understanding, we direct ChatGPT to cre-
ate prompts that would result in the generation of abnormal images, like a “giraffe walking
through a narrow corridor”, which are unlikely to be found in reality. When generating multi-
image data, pairs of prompts can be generated concurrently based on predefined specific

criteria. For maximum effect, we ensure that the most crucial keywords are placed at the
beginning of the generated prompts, which are double-bracketed for additional emphasis.
Furthermore, we instruct ChatGPT to avoid generating prompts that are non-visual, such as
the act of growing. The instruction template for prompt generation is provided in the left
part of Figure 3.3. The generated prompts are then used with StableDiffusion to produce
visually realistic images, which are subsequently encoded by LLaVA's vision encoder into
visual tokens for LLMs.

3.4.2 Dialogue Generation

Following the generation of images, we utilize ChatGPT to generate dialogues based on the
same prompts used for image synthesis, aligning with LLaVA's training objectives: the first

stage focuses on aligning visual-text data, and the second on processing diverse instructions.
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Dialogues for the initial stage describe the images, where ChatGPT generates answers to
predefined questions about the images’ content.

Taking the example of the “giraffe walking through a narrow corridor”, a representative
dialogue might be: “Question: What is unusual in the image? Response: In reality, a giraffe is
too tall and big to walk through a narrow home corridor.” The detailed instruction template
for dialogue generation is shown in the right part of Figure 3.3.

For the second stage, dialogues aim to enhance reasoning across multiple images, ad-
dressing similarities, differences, and logical connections, and include multi-turn dialogues
that blend image and text. We guide ChatGPT to produce a range of question types, steering
clear of inherently ambiguous questions to ensure clarity and accuracy, detailed template

can be found in the supplementary materials.

3.4.3 In-Context Examples

ChatGPT'’s in-context learning capability, which allows it to grasp the essence of tasks from a
few examples, is leveraged in our methodology. We incorporate in-context examples in the
generation of StableDiffusion prompts and dialogues to enhance this learning process.

During the data generation process, we observed that ChatGPT sometimes produced
a lack of diversity. For example, when generating colors, the outputs frequently revolved
around common color categories. To overcome this, we independently generate ability-
related keywords such as color categories with ChatGPT, and utilize them as a reference dur-
ing the prompting process. This additional step promotes a more diverse range of prompts,
thereby enriching our visual instruction tuning dataset.

We further adopt a dynamic strategy to maintain and increase diversity: periodically
substituting a portion of the original in-context examples with newly generated data. This
continuous update prevents over-repetition and ensures the dataset’s comprehensiveness
and representativeness, maintaining a balance that contributes to a richer and more diverse

visual instruction tuning dataset.

3.4.4 Data Filtering Mechanism

To ensure the quality, diversity, and reliability of our generated dataset, we incorporate
a comprehensive data filtering and control mechanism, which addresses prompt bias,
hallucination, and prompt accuracy concerns raised when using ChatGPT.
* Repetition Rate Filtering We first filter out prompts with high lexical or semantic
repetition to enhance diversity and reduce model-induced bias. This helps prevent
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over-representation of specific concepts and encourages broader coverage across
different visual scenarios. The filtered, diverse prompts are then used to generate
corresponding images and dialogues.

* Length-based Filtering We constrain the length of prompts to a maximum of ten
keywords to ensure clarity and prevent overly complex or ambiguous descriptions
that may lead to hallucinated or ungrounded image content. Similarly, we cap dia-
logues at 500 characters to promote concise, focused responses and reduce the risk of
speculative or irrelevant generation.

 Task-Specific Restrictions For certain categories, we implemented restrictions based
on specific attributes of the capabilities. For example, when generating content related
to construction workers, the model tended to focus on buildings. To address this,
additional human attributes were incorporated into the prompts to ensure they remain
focused and semantically aligned with the intended subject, thereby reducing the risk
of content drift or hallucination.

« Alignment Check To ensure a high degree of alignment between generated images
and dialogues, we employ the CLIP [1] model to compute matching scores for both
texts and images. Data entries with scores exceeding a predefined threshold, set at
¥ = 0.25, are retained, thereby filtering out less relevant matches and elevating the
overall data quality.

3.5 Experiments

In this section, we detail the experiments conducted to validate the effectiveness of our novel
data collection approach for visual instruction tuning. We describe the training datasets,
evaluation strategy, and both quantitative and qualitative outcomes.

3.5.1 Training Datasets

We generate a diverse and expansive dataset to show its versatility, covering single-image
capabilities from basic recognition to complex visual reasoning. This includes understanding
physical attributes, life features, and man-made items, among others, amounting to 38K
image-dialogue pairs for initial training. Each ability’s dataset was formulated following a
standard template, illustrated in supplementary material.

In addition, we also generated a dataset of 3K multi-image instances, encompassing
descriptions of image similarity, difference, logical relations, and multi-turn dialogue data
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Figure 3.5: Left: Results on evaluation benchmarks for various abilities (GPT-4 score). Right:
Comparison of various subcategories on MMBench [111] with the baseline (Accuracy). Our
model outperforms the baselines on both benchmark datasets.

for the second stage. These datasets, in combination with the raw LLaVA dataset, provides a

comprehensive training set in our experiments.

3.5.2 Experiments Setup

During the model training phase, we employed the original LLaVA configuration as the
foundation for our training process. In both stages, we utilized 8 NVIDIA V100 GPUs. To
conserve GPU memory, we employed deepspeed with zero3 during model training, disabling
tf32 and opting for fp16. The remaining parameters, including epochs and learning rates,
were set according to the original LLaVA configuration. For specific parameter details, please
refer to the the original publication.

3.5.3 Evaluation Metrics

Evaluation datasets. To demonstrate our performance more clearly, we tested on a series
of public multi-modal datasets, including VisWiz [112], MM-Vet [113], MME [114], and
MMBench [111].

Subsequently, we established a real-image benchmark to evaluate training effectiveness
across a wide range of single-image abilities, including 330 test samples of real images
with associated question-answer dialogues, carefully selected and annotated from public
repositories. This comprehensive benchmark aims to rigorously test the models’ single-
image capabilities.

Simultaneously, we constructed a multi-image test set consisting of 30 dialogues to

assess the models’ performance on this specific data type. This dataset evaluates the models
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Figure 3.6: Score criteria based on GPT-4.

across differences, similarities, and reasoning relationships among the images. The test data
was sourced from publicly available datasets and manually annotated.

Evaluation Strategy In terms of the evaluation process, we employ different testing
strategies depending on the benchmarks used.

Our evaluation approach varies with the benchmark. For multimodal datasets like
VizWiz [112] and MMBench [111], we follow official guidelines, converting test data to
a compatible format for our model, and using official scripts or submission portals for
assessment, primarily focusing on accuracy.

In evaluating the diverse capabilities we've generated, We adopted two evaluation meth-
ods, namely manual evaluation and evaluation based on GPT-4 score.

Initially, the participants were instructed to assess the answers produced by our model
and those of the baseline for all abilities according to the label (1 for correct, 0 for incorrect),
averaging these as the final metric.

Subsequently, inspired by [106, 7], we leverage GPT-4 [4] to assist in scoring model
outputs. We have established six scoring levels, ranging from 0 to 5. Each score level is
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accompanied by detailed descriptions of the evaluation criteria, and we assist GPT-4 in
better assessment by providing a series of scoring examples. In particular, a score of 0
indicates that the predicted answer has no relevance to the reference answer, while a score
of 5 signifies that the predicted answer aligns seamlessly with the annotated reference
answer without any deviation. Drawing on our manual annotations, we conduct evaluations
on the results produced by each model. The average GPT-4 score within each test set serves
as the ultimate metric for our benchmark evaluations.

As shown in the Figure 3.6, we present our detailed GPT-4 scoring system. We have
established a scale of 0-5 with six levels of scores, and for each score, we provide detailed
evaluation criteria along with specific examples for assessment. Utilizing the template in
the Figure 3.6, evaluations are conducted for each model, and the average of the results is
taken as the final score.

Table 3.1: Quantitative performance (Accuracy) on real-image evaluation benchmark for
manual evaluation.

Method | Animal Action Color Abnormal Scene  Style Food Profession  Vehicle Furniture Plant
LLaVA 0.63 067 060 0.40 060 030 070 0.57 0.57 0.30 0.53
Ours 0.70 080 077 0.50 077 045 083 0.63 0.63 0.50 0.57

3.5.4 Quantitative comparison to state-of-the-arts

Public multimodal benchmarks We perform quantitative performance comparisons against
various state-of-the-art methods on different benchmarks, as illustrated in Table 3.2. Utiliz-
ing LLaVA-1.5-13B as the baseline, we integrate our synthesized data with its original dataset
for training. Training is carried out with identical parameter configurations as LLaVA-1.5.
The outcomes demonstrate substantial improvements on many benchmarks, emphasizing
the enhanced performance achieved by our approach.

Comparison of various abilities. To validate the effectiveness of our generated data, we
conducted comprehensive tests on distinct capabilities, employing both manual evalua-
tion and GPT-4 score assessments. Employing LLaVA-13B as our baseline, the quantitative
comparison of the baseline results and ours for manual evaluation are shown in Table 3.1,
while the GPT-4 score assessment results are shown in the left part of Figure 3.5. Notably,
our trained model consistently outperforms the LLaVA-13B baseline across all various capa-
bilities on two metrics, which suggests the synthesized datasets’ generalizability and our
pipeline’s robustness.

Besides, we conduct a comparison of subcategory performance on MMBench to better
validate our superiority, using the LLaVA-1.5-13B as the baseline. The tested subcategories
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Table 3.2: Quantitative comparison with other state-of-the-arts methods on multiple multi-
modal benchmarks. We achieve state-of-the-art performance on four benchmarks.

Method Viswiz MM-Vet MME MM
BLIPZ [g] 19.6 224 12938 -
InstructBLIP [89] | 334 256 12128 -
IDEFICS-9B [115] 35.5 - - 48.2
IDEFICS-80B 36.0 - - 54.5
Qwen-VL [15] 35.2 y . 38.2
Qwen-VL-Chat 38.9 y 1487.5 60.6
LLaVA-1.5 [105] 53.6 354 15313 677
Ours 58.4 36.1 15323 69.4

Table 3.3: Quantitative results (GPT-4 score) on the multi-image benchmark. After the addi-
tion of multi-image data, various multi-image capabilities have significantly improved.

Method | Difference  Similarity Logical relations Average
LLaVA 27 2.2 3.1 267
Ours 1.6 2.8 3.7 3.ar7

in MMBench encompass six aspects: attribute reasoning (AR), coarse perception (CP), fine-
grained perception (cross-instance) (FP-C), fine-grained perception (instance-level) (FP-S),
logic reasoning (LR), and relation reasoning (RR). The final results are shown in the right
part of Figure 3.5, indicating better performance of subcategory on MMBench, which also
attests to the high quality of our generated data.

Comparison on multi-image benchmark In order to validate the effectiveness of multi-
image capabilities, we manually curated a benchmark of real images. The evaluation metric
used was the GPT-4 score mentioned. We used LLaVA-13B as the baseline and incorporated
multi-image data in the second training phase. Since LLaVA itself lacks the capability for
multi-image input, we modified the testing code for LLaVA to enable it to accept multiple
sets of images simultaneously. The comparison with LLaVA results is shown in the Table 3.3,
indicating a notable improvement across various multi-image capabilities despite adding

less multi-image data in the process.

3.5.5 Qualitative results

Supplementing the quantitative analysis, we provide a qualitative comparison between our
model’s results and LLaVA-13B in Figure 3.7 on multi-image data. Our model exhibits a
heightened ability to adhere to question instructions, rendering more precise answers.

We compare our approach with the LLaVA-13B baseline, revealing its limitations: it
struggles to differentiate between multi-image contents and provides incomplete answers
to questions. Our method, incorporating multi-image data, enhances the model’s under-
standing of multiple images, demonstrating its effectiveness. The qualitative evaluation was
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Figure 3.7: Comparison of the results generated by LLaVA and our trained model. Content
in red represents inaccurate information. Our model can better adhere to question instruc-
tions, rendering more precise answers.

conducted jointly by three co-authors. Each author independently compared model outputs
(our method vs. LLaVA-13B) on a curated set of multi-image examples. The evaluation
focused on instruction-following, completeness, and accuracy. The inter-rater consistency
was maintained through shared evaluation criteria. Additional qualitative results will be
included in the supplementary materials.

3.5.6 RQI Revisited: Impact of Cross-Modal Alignment and Dataset
Quality

This work addresses RQ1 by proposing a data generation pipeline that systematically im-
proves the cross-modal alignment and quality of training data for multimodal large language
models. At the core of our approach are strategies designed to reduce semantic noise, control

hallucinations, and ensure image-dialogue consistency through structured prompt template
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design and data filtering mechanism.

Rather than introducing architectural changes, we demonstrate that carefully con-
structed data alone can substantially enhance model performance. By ensuring accurate
modality pairing and minimizing irrelevant or ambiguous training signals, the resulting
model exhibits improved reasoning accuracy, stronger instruction following, and reduced
hallucination across various interaction scenarios.

These findings support the hypothesis that cross-modal alignment and dataset quality
are critical to the accuracy of MLLMs, thereby providing a direct and empirical answer to

RQL.

3.6 Conclusion and Future Work

In the rapidly evolving realm of Large Language Models, efficiently integrating multimodal
information is a key research focus. In this study, we introduced an innovative data collec-
tion method to enhance visual instruction tuning for multimodal models. Compared to
existing strategies, our approach uniquely combines image and dialogue generation, effec-
tively addressing limitations found in benchmark datasets. By carefully crafting instruction
templates, our method ensures high-quality training data covering a broad range of crucial
capabilities for multimodal models and users can generate customized data based on their
specific requirements.

Our research opens avenues for exploration. Moving forward, we aim to leverage ad-
vanced generative models to enhance model abilities, including spatial comprehension
and fine-grained recognition. With promising results from our dual-generation method,
forward-thinking data collection techniques are poised to play a significant role in the future
of LLM research.

3.7 Limitations

Due to constraints in text-to-image models like stable diffusion, generating certain data
types, such as text-rich images and tables, is not effective in the current pipeline. We an-
ticipate these constraints will be addressed with ongoing advancements in text-to-image
generation techniques.

Furthermore, text-to-image models such as stable diffusion are known to exhibit various
forms of bias, as they are trained on large-scale web-crawled datasets that inherently contain
societal and cultural imbalances. As a result, the synthesized images may reflect unintended

33



CHAPTER 3. ENHANCED VISUAL INSTRUCTION TUNING WITH SYNTHESIZED
IMAGE-DIALOGUE DATA

biases related to profession, gender, ethnicity, and geographic representation. For instance,
prompts involving occupations may disproportionately depict certain genders (e.g., doctors
as male, nurses as female), or favor Western-centric cultural aesthetics in generated content.
Addressing such biases remains a challenging and open research problem in generative
modeling.

In this work, we adopt prompt engineering techniques to partially mitigate these issues.
Specifically, we control the generation process by predefining certain keywords and ran-
domly sampling from curated keyword lists to enhance diversity and reduce stereotypical
patterns. In addition, we incorporate a data filtering mechanism to further screen generated
samples and discard those with high repetition or poor alignment. While these strategies
alleviate some of the biases, ensuring fairness and representativeness in synthesized data
remains a critical goal. In future work, we plan to incorporate human-in-the-loop filtering
and more advanced bias mitigation techniques to improve the equity and reliability of the
constructed datasets.

3.8 Ethics Statement

Our method leverages generative models to create synthetic images and dialogues. It is
imperative to ensure that the generated content does not perpetuate or amplify biases
present in existing datasets or societal prejudices. We have implemented data filtering
mechanism to minimize the generation of potentially harmful or biased content. However,
continuous vigilance and improvement of these filters are necessary as generative models
evolve.

The enhanced capabilities of multimodal LLMs, facilitated by our data generation ap-
proach, could potentially be misused for creating deceptive or manipulative content. It is
crucial to develop and adhere to guidelines that prevent the misuse of such technology,
including transparent disclosure of synthetic content’s nature and purpose.



CHAPTER

ADVANCED AGENT FOR FLEXIBLE MOBILE INTERACTIONS

With the rise of Multimodal Large Language Models (MLLM), LLM-driven visual agents are
transforming software interfaces, especially those with graphical user interfaces. This work
presents a novel LLM-based multimodal agent framework for mobile devices, designed to
enhance interaction and adaptability across diverse applications. The agent autonomously
navigates devices, emulating human-like interactions, and constructs a flexible action space
by integrating parsing, text, and vision descriptions. It operates in two phases: exploration,
where Ul functionalities are documented into a structured knowledge base, and deployment,
where Retrieval-Augmented Generation is used to efficiently access and update the knowl-
edge base for accurate task execution. Experimental results across multiple benchmarks
validate the framework’s superior performance and practical effectiveness. Through a user
study, involving both agent-driven and manual exploration, further demonstrates improved
task success rates and user satisfaction, highlighting the robustness and adaptability of the
proposed approach.

4.1 Introduction

Large Language Models (LLMs) like ChatGPT [85] and GPT-4 [4] have greatly advanced
natural language processing, enabling their integration into intelligent agents that revolu-
tionize autonomous decision-making. Initially designed for text-based interactions, these
agents [116, 117] incorporate advanced features such as adaptive memory, which enhances
their engagement with environments and processing across diverse natural language tasks.
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Tast
“iPhore 15
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-

Task: Find iphone xs max priced between 1500F to 20005 and add to cart

Figure 4.1: Overview of our proposed agent framework. The diagram illustrates the agent's
workflow starting with task instructions processed by an LLM. The workflow is divided into
Exploration and Deployment phases. This figure also illustrates a specific task scenario
where the agent is directed to find and add to the cart an iPhone XS Max priced between
%1500 and $2000 in mobile device.

However, their capabilities remain limited when it comes to handling non-textual inputs in
real-world applications

In real-world scenarios, many applications demand more than just textual processing,
requiring the integration of visual and other data modalities for tasks such as graphical user
interface (GUI) recognition and navigation. These requirements highlight the limitations of
text-only agents, which struggle with tasks involving visual recognition or multi-step rea-
soning in environments that rely on rich GUI interactions. Multimodal systems [62, 118, 96]
are crucial in complex environments such as mobile and operating system platforms. They
need to perform multi-step reasoning, integrate diverse information, and respond adap-
tively to user inputs. Innovative solutions such as the AppAgent [61] and MobileAgent [119]
have shown promise by enabling more natural interactions with smartphone applications
through human-like interactions.

Despite these advancements, accurately recognizing graphical user interfaces (GUIs)
remains a key challenge, impacting the decision-making accuracy of multimodal agents.
Previous approaches [120, 119] that rely primarily on visual features often suffer from

inaccuracies, especially in environments with complex or unfamiliar interface elements,
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such as video players or game Uls. Additionally, the dynamic nature of mobile environments,
which frequently introduce new features, poses further challenges. Even sophisticated
models like GPT-4, while proficient with well-known apps, struggle with lesser-known apps
due to unfamiliar visual elements. The rapid updates in app interfaces and functionalities
further hinder these models’ effectiveness across diverse applications.

To address this challenge, AppAgent [61] adopts a human-like approach by automated
exploration and watching demos. This strategy allows the agent to store UI element descrip-
tions in a document rather than relying on rigid memorization, thus enhancing decision-
making by leveraging contextual understanding. However, AppAgent depends heavily on an
off-the-shelf parser to identify UI elements, which restricts the agent’s operational flexibility
in environments featuring non-standard components such as video players and games. This
dependency limits the agent’s ability to adapt its actions to unfamiliar or unique interface
elements, thereby affecting its overall effectiveness in diverse applications.

To mitigate these limitations, we propose a novel multimodal agent framework designed
to adapt to the dynamic mobile environment and diverse applications as shown in Figure 4.1.
We develop an extensive action space enabling the agent to interact with a wide variety of
elements. This includes not only those elements that can be parsed using a standard parser
but also elements and text identified through OCR and detection tools.

Unlike previous work that relied solely on ID matching from parser to retrieve informa-
tion, our approach incorporates multiple forms of element data. To facilitate access diverse
elements, we have designed a structured storage system to construct a knowledge base. Each
element within the knowledge base can store different attribute information such as parser
details, textual content, and visual descriptions. This system is tailored to organize and store
element information in a manner that supports quick retrieval and effective utilization,
significantly boosting the agent’s ability to perform in novel scenarios.

Following previous work [61], our agent operates in two distinct phases: exploration and
deployment. In the exploration phase, our agent autonomously analyzes and documents
the functionality of unknown UI elements and applications, tailored to specific task types.
This proactive documentation allows the agent to build a robust knowledge base of Ul
layouts and operations, vital for handling tasks in unfamiliar environments. During this
phase, we also incorporate a reflection module, which serves to validate the documented
functionalities based on iterative assessments, ensuring the accuracy and reliability of the
information stored. In the deployment phase, the agent leverages RAG technology [121] to
dynamically access and update its knowledge base with relevant document content based

on real-time interactions, significantly enhancing its capability to adapt to novel scenarios.
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This framework not only streamlines the learning process but also enhances the agent's
decision-making capabilities by providing a deeper understanding of each application’s
functionality.

We validated the agent's performance through extensive quantitative experiments across
multiple benchmarks. The results demonstrate that the proposed framework significantly
enhances task performance, with improved adaptability and precision across diverse mobile
applications. Furthermore, a user study was conducted to evaluate the impact of both
agent-driven and manual exploration phases. The results indicate that both methods lead
to increased task success rates and user satisfaction, with manual exploration offering the
most robust outcomes.

In summary, this paper makes the following contributions:

+ We introduce a multimodal agent framework that combines parser with visual features
to construct a flexible action space, enhancing interaction with GUI and improving
adaptability to new environmental tasks.

* We develop a new structured storage format that, coupled with RAG technology, allows
for adaptive, real-time updates and access to the knowledge base, enhancing the
agent'’s adaptability and decision-making precision.

« We conduct extensive quantitative tests and a user study, demonstrating the agent'’s
effectiveness across a variety of smartphone applications, validating its adaptability,

user-friendliness, and efficiency in real-world scenarios.

4.2 Related works

4.2.1 LLM-based agents

Agents have rapidly evolved with the advancement of large language models. Models such
as MetaGPT [122], HuggingGPT [64], and AssistGPT [62], Seeclick [123], ResponsibleTA [124]
have demonstrated exceptional performance in agent applications, garnering widespread
adoption across various domains. Some agents employ large language models such as
ChatGPT [85] or GPT-4 [4] for task decision-making, achieving notable developments in
general domains including music [125, 126], gaming |75, 76], and autonomous driving [81,
83, 82]. Other agents utilize popular open-source models like LLaMA [127] and LLaVA [12].
Meanwhile, agents have achieved significant breakthroughs in the multimodal, including
video understanding [63, 62, 70], embodied Al [67, 68], and visual generation [128, 129,
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130]. Additionally, there has been a rise in multi-agent cooperative systems [68, 131] where
different agents assume distinct roles. This collaborative approach significantly enhances the
capabilities of individual agents, thereby facilitating the achievement of ultimate objectives.

4.2.2 Agent for mobile devices

Some agents [58, 59, 60, 132, 133] attempt to simulate human users by directly interacting
with GUI elements, but these agents typically require human instructions and guidance to
complete tasks. In contrast, LLM-based agents [66, 65, 61], with their advanced comprehen-
sion and reasoning capabilities, can more effectively automate such tasks. There are already
several agents developed for mobile devices that utilize large language models effectively.
DroidBot-GPT [65] automates Android app interactions by interpreting app GUI states and
actions into natural language prompts, thus facilitating action selection. AppAgent [61]
identifies and enumerates Ul components based on XML, subsequently making decisions
and executing actions with the aid of GPT-4V. MobileAgent [119] incorporates visual fea-
tures, integrating OCR technology and icon detection to enhance Ul recognition capabilities.
AutoDroid [65] seamlessly combines large language models with dynamic app analysis to
optimize mobile task automation efficiently. MobileGPT [134], an innovative mobile task
automator powered by LLMs, is equipped with a human-like app memory system. This
system aids in precise task learning and adaptation by structuring procedures into modular
sub-tasks, thereby enhancing the performance and flexibility of mobile agents.

4.3 Method

In this section, we provide a detailed description of our multimodal agent framework, which
is structured into two primary phases: exploration and deployment. At each round, the
agent analyzes the current GUI with task requirements, generating observations, thoughts,
actions, and summaries. The task execution prompt, as shown in Figure 4.2, is designed to
guide the agent in this process. . The summary, serving as memory, is carried over to the

next execution prompt, ensuring continuity throughout the task execution process.

4.3.1 Agent Framework

Our multimodal agent framework is implemented within the Android 15 environment us-
ing the Android Studio emulator. The agent interacts with the mobile device by invoking

commands through the AndroidController. This interaction is driven by a comprehensive
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Prompt for task execution

You are an agent trained to perform basic tasks on a smartphone. When given a smartphone screenshot along with
reference documents, your primary directive is to denive actionable mnsights from the documentation provided These
documents are essential for understanding the fimctionalities of Ul elements that may not be immediately apparent from
the screenshot alone. Your actions should be primanly informed by these documents, with the current Ul mterface
analysis serving as a secondary reference.

Your decision-making process should prioritize actions as follows:

[Special requirements of decision-making.]

You can call the following fimctions to control the smartphone:

[Detailed action space and examples, including tapbutton, text, etc.]

<ui_document=

The task you need to complete is to <task description=. Your past actions to proceed with this task are summarnized as
follows: <last_act=

Now, given the documentation and the following labeled screenshot, you need to think and call the fimction needed to
proceed with the task. Your cutput should include three parts in the given format:

Observation: <Describe what you observe in the image=

Thought: <To complete the given task, what is the next step I should do>

Action: =The fimction call with the correct parameters to proceed with the task. If you believe the task is completed or
there 1s nothing to be done, you should output FINISH. You cannot cutput anything else except a fimction call or FINISH
in this field =

Summary: <Summarize your past actions along with your latest action in one or two sentences. Do not melude the
numeTic tag I your SUmmary-

You can only take one action at a time, so please directly call the function.

Figure 4.2: Prompt of the task execution used by the agent during the task execution process.

analysis of the current GUI, leveraging structured data parsing, Optical Character Recog-
nition (OCR), and detection models to extract detailed information from screenshots. The
extracted data includes Android IDs, numerical labels on the screenshots, element features,
textual content, and the coordinates of UI elements. This robust setup enables the agent
to operate efficiently in dynamic mobile environments, integrating advanced recognition
capabilities with intelligent decision-making processes based on the interpreted data from
the user interface.

Our framework is designed with flexibility in mind, allowing it to accommodate various
LLMs depending on the task requirements. For our experiments, we selected GPT-4V [4],
recognized as one of the best-performing multimodal LLMs available. This choice was driven
by GPT-4V's superior ability to process and integrate multimodal data, making it particularly
well-suited for handling the complex tasks typically encountered in mobile environments.
Additionally, the framework supports more cost-effective models like Qwen-VL [135], which,
despite being open-source and free, still provides strong performance in most mobile tasks.
This makes Qwen-VL a practical alternative when cost efficiency is a priority.

Preliminary runtime profiling was conducted to evaluate the computational overhead
of the proposed framework. On a Windows desktop equipped with an Intel Core i7 CPU,
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an NVIDIA RTX 3060 Ti GPU, and 32GB of RAM, completing a typical task involving ap-
proximately 20 interaction steps required about 2 minutes, averaging roughly 6 seconds per
step.

The majority of this runtime is attributed to two main factors: (i) the latency of GPT-
4V inference via remote API, which is sensitive to internet connection quality and server
response time, and (ii) the execution overhead of the Android emulator itself. In contrast,
local processing components such as OCR and Ul parsing contribute minimally to the
overall latency.

While this setup remains sufficient for development and controlled evaluation, it poses
limitations for real-time deployment. In future work, we plan to explore local deployment
of lightweight vision-language models such as Qwen-VL to significantly reduce inference
latency while maintaining strong multimodal reasoning capabilities. This shift also offers
benefits in terms of network robustness, privacy, and offline accessibility.

4.3.2 Interaction Commands and Actions

The agent’s interaction with the Android environment is central to its task automation
capabilities. During both the exploration and execution phases, the agent translates human
commands or outputs from large language models (LLMs) into precise instructions that
the Android system can recognize and execute. This interaction is facilitated through a
set of well-defined commands, designed to translate high-level tasks into specific actions,
enabling the agent to efficiently navigate and interact with various Ul elements. The primary

commands are as follows:

1. TapButton: Initiates a tap on a user interface element. The target can be specified by
its numerical identifier or visual features. For example, TapButton(5) targets the Ul
element labeled ‘5’, while TapButton(’hat’) targets the element with the text 'hat’.

2. Text: Simulates typing by entering a string into a designated input area, essential for
tasks like form filling or chat input. For instance, Text ("Hello, world!") inputs
"Hello, world!" into the specified text field.

3. LongPress: Applies a prolonged press on a specified element, often used for actions re-
quiring sustained pressure, such as dragging or accessing context menus. For example,

LongPress (3) applies a long press to the element labeled ‘3.
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Prompt for action space

#A prompt example for action space, take ‘tap button’ as an example.
I will give you the screemshot of a mobile app before and after tapping the Ul element labeled with the button
<ui_element= on the screen. The numeric tag of each element is located at the center of the element.

Tapping this Ul element is a necessary part of proceeding with a larger task, which is to <task_desc=.

Your task is to describe the fimctionality of the Ul element concisely in one or two sentences. Notice that your description
of the UT element should focus on the general fimction. For example, if the Ul element is used to navigate to the chat
window with John, your description should not inchide the name of the specific person. Just say: "Tapping this area will
navigate the user to the chat window".

Never include the mumenic tag of the UT element in your description. You can use pronouns such as "the Ul element” to
refer to the element.

Figure 4.3: Prompt of tap_button in action space for function generation in agent.

4. Swipe: Executes a swipe in a specified direction on an element, useful for scrolling
through content vertically or horizontally. Forinstance, Swipe (21, "up", "medium")

swipes up on element ‘21’ over a medium distance.

5. Back: Simulates the device's back button, allowing the agent to navigate to the previous
Ul state without directly interacting with specific elements. This is particularly useful
for handling back navigation across different applications.

6. Home: Returns the agent to the main screen, crucial for resetting the environment,
executing cross-application tasks, or restarting tasks from the home screen.

7. Wait: Pauses the operation, allowing the system to process tasks or refresh the screen.

A typical implementation involves a two-second pause.

8. Stop: Signals the completion of tasks and ends the current operation, ensuring that

no residual processes remain running.

These commands are executed by the Android system through the AndroidController,
ensuring accurate and efficient task execution, and allowing the agent to operate seamlessly
within the Android environment.

4.3.3 Exploration Phase

The exploration phase is aimed at analyzing the GUI in relation to the current task. It involves
identifying and documenting the functions of Ul elements through two alternative methods:
agent-driven and manual exploration. All prompts used are displayed in Appendix.
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4.3.3.1 Agent-Driven exploration

This method starts with the agent analyzing the current Ul interface to identify elements
requiring interaction and to determine the specific actions needed. Once these elements and
actions are pinpointed, the agent executes the planned actions. Following the execution of
action, the agent takes screenshots before and after the interaction to compare and analyze
the changes. This comparison allows the agent to record the operational functions of the Ul
elements and assess the effectiveness of each action taken.

The agent is equipped with specific prompts for recognizing the functionality of UI ele-
ments associated with each action it executes. Figure 4.3 illustrates how the agent generates
the corresponding operations using the "tap button" as an example from the action space.

Afterwards, the agent enters the reflection phase, where it evaluates the actions per-
formed and their outcomes, adjusting its strategy accordingly. If the agent determines that
the executed action is completely irrelevant to the task, it performs a return operation. The
irrelevant action is recorded in a useless list and is fed back into the LLM. The reflection
phase involves making specific decisions based on the results of the actions:

« ERROR: If the decision is "ERROR", the operation is terminated, indicating an unre-
coverable issue.

* INEFFECTIVE: If the decision is "INEFFECTIVE", the resource ID associated with the
action is added to the useless_list, and the last action is reset to "None", preventing the
same ineffective action from being repeated.

* BACK or CONTINUE: If the decision is "BACK" or "CONTINUE", the resource ID
is again added to the useless_list, and the agent may attempt to return to the previ-
ous screen or continue exploring. If "BACK" is chosen, the agent performs a back

navigation to correct its course.

« SUCCESS: If the decision is "SUCCESS", the agent continues with the task as the
action was deemed effective.

If the results of the actions align with the intended user task and prove effective, the
relevant Ul information is documented and the exploration continues.

This reflection mechanism ensures that only actions aligned with the user’s task are
considered effective and documented for future retrieval. For example, if an ineffective
action is identified, such as an incorrect product search, the agent will adjust its approach in

real-time, refining its strategy to avoid repeating the mistake. This method not only enhances
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Exploration Phase
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Figure 4.4: Overview of our exploration phase. Exploration module takes agent-driven or
manual exploration collects element information into a document.

the quality of the knowledge base but also refines the agent's strategy in real-time, ensuring
that subsequent actions are more likely to contribute effectively to task completion.

4.3.3.2 Manual Exploration

This method is introduced to overcome the limitations encountered during agent-driven
exploration, such as the LLM's erroneous judgments due to its incomplete understanding of
certain apps and Ul elements. Manual exploration allows LLM to observe human operations,
compare screenshots before and after actions (similar to agent-driven exploration), and gain
a clearer understanding of new Ul elements and task workflows. The exploration is enhanced
with advanced OCR and detection models, providing comprehensive Ul analysis based on
human interactions. Humans guide the sequence of actions and finalize the process, thereby
streamlining the operational workflow and accelerating the learning process.

Importantly, just like in automatic exploration, the information regarding Ul elements
and their functionalities observed during manual exploration is meticulously documented.
This ensures that the agent can overcome the shortcomings of automated processes by
incorporating the sophisticated understanding and adjustments that only human insight
can provide. Due to the high accuracy of manual exploration, the reflection phase is not
required, which further reduces resource consumption.
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4.3.4 Document Generation

The document generation process is a critical component of our framework, serving as a
specialized knowledge base that underpins the agent’s ability to execute tasks with preci-
sion. During the exploration phase, the agent systematically collects and records detailed
information about the user interface (Ul) elements it encounters. This information includes
a variety of data points such as Android ID, visible labels, text content, visual features (e.g.,
color, shape, size), screen coordinates, and the specific functionalities of each Ul element as
interpreted by LLMs.

This structured metadata format is crucial because it supports dynamic querying based
on real-time task demands. When the agent needs to perform a task, it can quickly search
through this metadata to find the relevant Ul elements and their associated actions. This
enables the agent to make informed decisions and execute tasks efficiently, even in complex
scenarios.

Additionally, the metadata is designed to be dynamically updated as the agent encoun-
ters new Ul elements during task execution. This ensures that the knowledge base remains
current, allowing the agent to adapt to changes in the UI or new application contexts seam-
lessly.

To further enhance the retrieval efficiency, we integrate this metadata structure with
LangChain’s Self-Query Retriever technology [136]. The Self-Query Retriever allows the
agent to generate specific queries based on the task at hand, and then search through the
vectorized metadata to find the most relevant information. For instance, if the agent is
tasked with selecting a specific option on a menu, it can generate a query that matches the
text or visual features of the menu item and retrieve the corresponding metadata to guide its
actions.

The combination of structured metadata and dynamic updating mechanisms ensures
that the agent can respond to user needs with agility and accuracy, making it a powerful tool

for task automation in diverse and ever-changing environments.

4.3.5 Deployment Phase

The deployment phase is designed to function independently from the exploration phase,
enabling the agent to effectively perform user tasks even without prior exploration. For most
tasks, the agent can rely on its pre-existing knowledge and capabilities to directly interact
with the GUI, ensuring high accuracy and efficiency. This independent operation allows
the agent to execute common tasks swiftly and seamlessly without the need for preliminary
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Figure 4.5: Overview of our document generation. During the exploration phase, Ul elements
are collected and stored as metadata in the document based on specific information. This
metadata is then used for retrieval during the deployment phase, with real-time updates
synchronized to the document.

data gathering or setup.

In more complex or challenging scenarios, the exploration phase and document re-
trieval processes become essential for enhancing the agent’s performance. By leveraging the
knowledge acquired during exploration and accessing detailed information stored in struc-
tured documents, the agent can navigate and manage intricate tasks with greater precision,
ensuring optimal outcomes in demanding situations.

In cases where the exploration phase has been conducted, the deployment phase is
further enhanced by the ability to perform document retrieval operations based on the
exploration-generated knowledge. During the deployment phase, the agent first retrieves
the current GUI information and systematically analyzes the elements present. If necessary,
the agent uses a self-query retriever to access relevant documents stored in a vector-based
database. This retriever, built on the data gathered during the exploration phase, converts
document content into embeddings, which are then matched with resource IDs or OCR-
derived information to retrieve the most relevant data for the current task. For example, if
the agent returns the action tapbutton('3’), indicating a tap on the icon labeled '3’ in the
screenshot, the retriever’s query will be transformed into the corresponding "id: resource
id<label:3>". This query is then used to perform RAG to extract relevant information about
the icon from the document. The retrieved information is subsequently integrated into the
prompt, which is fed into the agent for the next round.

Once the appropriate document is retrieved, the agent incorporates this information into

its decision-making process. The agent’s actions are guided by the current GUI screenshot,
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Deployment Phase

Figure 4.6: Overview of our deployment phase. Deployment phase takes RAG to retrieve and
update the document in real time, thereby rapidly preparing to execute tasks.

the retrieved document content, and specific task requirements. This ensures that each step
is executed with precision based on the positional and functional data of the UI elements.

For simpler tasks, where document retrieval may not be necessary, the agent can bypass
this step and rely solely on its internal knowledge. After each action, the agent updates
its memory with historical information and the outcomes of previous actions, continually
refining its decision-making for subsequent steps.

This process continues until the agent determines that the task has been completed,
at which point it exits the current process and reports task completion. This structured
approach ensures that tasks are executed efficiently and accurately, utilizing the detailed

knowledge base created during exploration to optimize performance and user satisfaction.

4.3.6 Advanced Features

To further enhance the agent’s adaptability and reliability, we incorporated advanced fea-
tures that address specific challenges in mobile environments. This subsection highlights
the key functionalities that enhance our multimodal agent framework, focusing on visual
feature decision-making, safety checks, and cross-app task management. These features col-
lectively improve the agent's safety, versatility, and efficiency, ensuring robust performance

in complex and dynamic environments.
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4.3.6.1 Visual Features Decision-Making

When the agent confronts scenarios where the desired interactive element is not numeri-
cally tagged, and other numerically tagged elements are ineffective for task completion, it
automatically transitions to an alternative visual feature Ul layout. This process leverages
advanced OCR technology [137] and detection models [138] to accurately recognize and
annotate text and icons within the interface. By numerically annotating these elements
using established methodologies, the agent is equipped to make informed decisions based
on the newly adapted Ul screenshot. This capability is crucial for handling icons in previ-
ously unknown scenarios, ensuring that the agent can navigate and interact with various Ul
elements effectively, regardless of prior exposure. This dynamic decision-making process
significantly enhances the agent's ability to adapt to new environments and execute tasks
with higher precision and reliability.

4.3.6.2 Safety Check

In modern LLMs and agent systems, safety is crucial, particularly in automated processes
that can lead to privacy breaches. To tackle this issue, we implemented a safety check during
the deployment phase. The agent reviews the current Ul screenshot, and if the next steps
involve sensitive actions like account passwords, payment or other privacy-related concerns,
it will switch to manual mode so the user can handle these operations personally. For privacy,
the agent will not retain any information from this process. Once the user completes the
sensitive task and inputs "finish," the agent will automatically continue with the deployment
phase and carry on with the task until it's completed. The safety check offers several key
advantages. It ensures that sensitive tasks remain secure by involving human judgment
and minimizes the risk of data leakage. Furthermore, it increases user trust in the system,
providing assurance that private information is handled carefully, while still enabling the
agent to effectively complete its assigned tasks. An example is shown in Figure 4.7

4.3.6.3 Cross-Apps Task

In addition to its core functionalities, our framework is capable of handling complex tasks
that span multiple applications. This ability allows the agent to seamlessly perform tasks
requiring interactions across different interfaces and applications while maintaining conti-
nuity and coherence.

When engaging in cross-app tasks, the agent begins by evaluating its progress within
the current application. If the agent detects that the current task has been completed and

48



4.3. METHOD

Obsarvation: The image depictz a Google Sign-in 2creen featuring an
input field for entering an email or phone number fagged with number 2).
Additional options vizible include learning more about account weage,
recovering an email, creating 8 new account, and a "Mext" button (tagged
— with number 4)

e ’ Thought: To progress with the task of logging into Gimail and checking the
firat email, the next step involves tapping the email or phone input fisld to
activate the keyboard for entering the email addrees. Due to the seneitive

nature of entering personal information. a safety check must be conducted

bafore proceeding.
Action: safety_check)

Summary: Previously, actions wers taken to navigate towards logging into

Gmail from the Google Sign-in acreen. Currently. a zafety check has bean

initiated to ensure the secure handling of seneitive information before
= procaeeading further.

Safety Check Reminder: The agent has automatically detected a sensitive operation.
The user will now proceed with the operation manually. Once the operation is complete,
you can enter finish to transition back to the automated deployment phase.

Figure 4.7: An example of safety_check being triggered. During the agent’s execution, when
encountering an email login interface that requires account and password information,
a safety check is automatically triggered, and control is seamlessly switched to manual
operation.

requires transitioning to another application, it triggers the Home action to return to the
home screen. This step is crucial as it allows the agent to switch to the next application to

continue the task execution.

Each round of task execution generates a summary that is stored as part of the agent's
memory. This summary not only serves as a record of the actions taken but also enhances
the agent's long-term memory. By continuously storing these summaries, the agent retains a
clear memory of past instructions and processes, facilitating the seamless continuation of

tasks across different applications.

For instance, if the agent needs to gather information from a social media app and then
process it in a document editor, it will complete the interactions in the social media app,
trigger the Home action to return to the home screen, and then launch the document editor
to continue the task. The agent retrieves relevant summaries from its memory, integrates
them with the current GUI context, and executes the next set of commands. This approach
ensures that the agent maintains a coherent flow of actions, even when switching between

applications.

This dynamic updating of memory and the ability to navigate across apps using the

Home action are crucial for maintaining context and ensuring that the agent’s operations
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are synchronized and effective across different digital environments. This capability is
particularly valuable for complex tasks that require gathering and processing information

from multiple sources or coordinating actions between various applications.

4.4 Experiments

In this section, we will conduct a comprehensive evaluation with our agent framework. The
experiments were conducted on the Android platform to maintain consistency and simplify
validation. We utilized the Android Studio emulator for the experiments, which included
comprehensive testing on the public benchmarks and qualitative results. This dual approach
allowed us to benchmark our agent against standardized criteria while also gaining deeper

insights into its real-world performance on mobile applications and environments.

4.4.1 Quantitative Results

In this section, we present a comprehensive evaluation of our agent using two distinct bench-
marks: DroidTask [139] and Mobile-Eval [119]. We begin with DroidTask to test complex task
performance, and conclude with Mobile-Eval to assess comprehensive capabilities. Results
in the ensuing sections demonstrate the superiority of our approach in varied application

scenarios.

4.4.1.1 DroidTask

In this study, we utilize the DroidTask dataset [139], an Android Task Automation benchmark
suite meticulously designed to evaluate the performance of end-to-end mobile task au-
tomation systems. DroidTask comprises 158 high-level tasks extracted from 13 widely-used
mobile applications, encompassing a broad spectrum of task complexities—from simple
single-step operations to intricate multi-step procedures. This diversity ensures that the
dataset provides a robust and challenging environment for evaluating the capabilities of
task automation systems. Additionally, the DroidTask benchmark provides a reproducible
experimental environment by releasing the setup as an Android Virtual Machine Snapshot.
This allows researchers to restore the exact environment in which the data was collected,
thereby ensuring a high degree of reproducibility and comparability across different studies.

In our experiments, we employed the "Completion Rate" as the primary evaluation
metric, following the methodology outlined in [139]. Completion Rate is defined as the
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Figure 4.8: Performance Comparison between AutoDroid and ours on DroidTask with GPT-4

probability that an agent accurately completes all actions in a given task sequence, serving
as a critical measure of the agent's consistency and effectiveness in task execution.

AutoDroid incorporates a memory mechanism, analogous to the document in our agent.
We conducted a comprehensive comparison of our directly deployed method against Auto-
Droid, both with and without its memory component, as well as against the LLM-powered
GPT-4 framework, which served as a robust baseline. The results, as presented in Table 4.8,
indicate that our method, even without leveraging an exploration phase and document
retrieval, significantly outperforms GPT-4 and surpasses AutoDroid, even when it is aug-
mented with memory. This demonstrates the superiority of our approach in effectively
leveraging direct deployment strategies and highlights the robustness of our system in a
competitive benchmarking environment.

It is important to note that during the evaluation, variations in app versions and device
models led to differences in the workflows required to implement specific functionalities
within the apps. As a result, a small subset of tasks could not be executed directly. To address
this, we devised alternative testing methods for these tasks. For example, in cases where
our application lacked a date-sorting option for document names, we opted to sort by the
initial letter of the document names as a substitute. This adjustment maintained the same
procedural flow and steps, albeit with slight modifications to the final selection criteria.
Additionally, tasks that our application does not support and for which no alternative exists
were treated as error cases. Under identical conditions, the performance of our agent is
expected to be even higher than what was observed, further validating the effectiveness of
our direct deployment approach.
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Table 4.1: Quantitative results of MobileAgent and ours on Mobile-Eval.

App INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3
S50 PS RE CR SU PS RE CR 50 Ps RE CR

MobilleAgent

Alibaba com v 0.75 4/3 100% = 039 13/8 62.5% 09 10/9 100%
Amazon Music 0.44 9/5 80% v 0.75 8/6 100% = 0.50 12/3 66.7%
Chrome v 100 4/4 100%  « 0.80 5/4 100% 043 8/5 100%
Gmail v 100 4/4 100% = 0.56 9/8 I375% = 0.56 9/8 37.5%
Google Maps v 1.00  5/5 100%  « 100 &/6 100% 100 6&/6 100%
Google Play v 100 3/3 100%  « 0.50 10/4 100% 100 3/3 100%
Notes ] 057 74 100%  « 0.67 6/4 100% 100 5/5 100%
Settings v 100 4/4 100%  « 100 4/4 100% 100 4/4 100%
TikTok v 100 4/4 100%  « Lo0 1/10 100% v oo TIY 100%
YouTube v 100 4/4 100%  « 100 9/9 100% oo TIY 100%
Multi-App v 1.00 6&/6 100%  « Lo0 1/10 100% v 100 10/10  100%
Avg 091 089 49/42 982% 082 077 79/63 909% 082 084 75/62 913%
Ours

Alibaba com v 100 3/3 100%  « 0.89 9/8 100% 0.82 11/9 100%
Amazon Music 1.00  5/5 100%  « 100 &/6 100% 100 3/3 100%
Chrome v 100 4/4 100%  « 0.80 5/4 100% 100 5/5 100%
Gmail v 100 4/4 100%  « 0.80 5/4 100% 100 &/8 100%
Google Maps v 1.00  5/5 100%  « 100 &/6 100% 100 6&/6 100%
Google Play v 100 4/4 100%  « 100 4/4 100% 100 4/4 100%
Notes v 0.80 5/4 100%  « 0.80 5/4 100% 0.80 5/4 100%
Settings v 100 4/4 100%  « 100 4/4 100% 100 4/4 100%
TikTok v 100 4/4 100%  « Lo0 1/10 100% v oo TIY 100%
YouTube v 100 4/4 100%  « 100 9/9 100% oo TIY 100%
Multi-App v 1.00 6&/6 100%  « 0.83 12/10  100% v 0.83 12/10  100%
Avg 1.0 097 4.3/42 100% 1.00 091 67/63 100% 1.00 095 67/62 100%

4.4.1.2 Mobile-Eval

We evaluated our agent using the Mobile-Eval benchmark, which provides a variety of
different metrics to test the agent’s capabilities across multiple dimensions. This is why we
selected it as one of our testing benchmarks. The benchmark includes 10 commonly used
mobile applications and tests the agent’s performance across various tasks, measuring key
metrics such as success rate, process score (PS), relative efficiency (RE), and completion
rate (CR). We compared our agent’s results against those of Mobile-Agent and human
performance to assess its effectiveness in real-world scenarios. Mobile-Eval assesses the

following metrics:

* Success (Su): Marks an instruction as successful if the agent completes it entirely.

» Process Score (PS): Evaluates step accuracy by calculating the ratio of correct steps to
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total steps.

« Relative Efficiency (RE): Compares the steps taken by the agent to human perfor-

mance to measure efficiency.

« Completion Rate (CR): Measures the proportion of steps the agent completes com-
pared to a human’s total steps.

As shown in Table 4.1, the results highlight the robust performance of our agent com-
pared to Mobile-Agent. Our agent achieved a 100% success rate across all instructions,
demonstrating its ability to accurately complete tasks without errors. This is particularly
evident in the consistent high PS scores, with averages exceeding 90% across the three
instruction sets. This indicates that our agent not only successfully completed tasks but did
so with high precision, closely mirroring human task execution.

In terms of relative efficiency (RE), our agent consistently matched or exceeded the
efficiency of Mobile-Agent. This is crucial as it suggests that our agent can complete tasks
with fewer or equal steps compared to human benchmarks, reflecting an optimized decision-
making process during task execution. For example, in more complex applications like
Gmail and Google Maps, our agent maintained a 100% completion rate with high efficiency,
demonstrating its ability to handle sophisticated tasks that require multiple steps and
decisions.

Furthermore, the comparison between our agent and Mobile-Agent reveals that our
agent’s performance is particularly strong in scenarios involving abstract or less-defined
instructions, where it must rely on its understanding and adaptability. This capability is
essential for real-world applications where user instructions may be vague or open-ended.

Overall, the results from the Mobile-Eval benchmark underscore the effectiveness of
our agent in a diverse set of tasks and applications. Its ability to consistently perform at a
high level across different metrics not only validates the robustness of our method but also
highlights its potential for broader deployment in various mobile environments.

4.4.2 Qualitative results

To validate the qualitative performance of our agent, we conducted a detailed qualitative
result, as illustrated in Figure ?2. The study was designed to assess the agent's ability to handle
a series of complex, real-world tasks that require not only basic interaction with a mobile
interface but also sophisticated multi-step processes and cross-application operations.
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In this study, agent was tasked with checking an unread message from a messaging
application and replying by sharing a video from YouTube. This task involves multiple steps,
including identifying and accessing the appropriate application, retrieving specific content,
and managing the transfer of information between applications. The agent's ability to retain
and utilize memory across these steps was crucial for successful task completion.

Figure 4.9 outlines critical steps in the process, highlighting the agent's observations,
thoughts, actions, and summaries at each stage. Notably, the agent demonstrated the capac-
ity to:

Navigate Cross-Application Activities: The agent seamlessly transitioned between dif-
ferent applications, identifying the necessary elements in each interface and executing the
required actions without manual intervention.

Manage Long-Term Multi-Step Tasks: Throughout the task, the agent effectively managed
a sequence of actions that spanned multiple steps, demonstrating the ability to maintain
task continuity and accurately execute each step based on previous interactions.

Utilize Multi-Step Memory Storage: The agent leveraged memory from earlier steps to
inform subsequent actions, ensuring that the task was completed efficiently and without
redundancy.

Each step in the task was meticulously recorded, showing how the agent’s thought pro-
cess evolved based on the information gathered from the GUI at each stage. This systematic
approach allowed the agent to make informed decisions, reflecting a deep understanding of
the task requirements and the operational context.

Overall, the result confirms that our agent is not only capable of handling simple tasks
but also excels in more complex scenarios that demand advanced problem-solving skills
and the ability to work across multiple applications in a cohesive manner. Further case
studies and detailed analyses of the agent's performance are provided in the Supplymentary

materials.

4.4.3 Analysis of Ul Interface Parsing

In our agent, we employ two primary methods for parsing Ul interfaces: structured data
and visual features. Structured data provides precise and rich information, including details
about widget interactivity—such as clickability and scrollability. In this experiment, we
utilized XML data parsed from Android systems to enhance our understanding and manipu-
lation of these interactive elements. This method is well-suited for most generic apps and,

in conjunction with our agent, can complete the majority of tasks efficiently.
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Figure 4.9: Qualitative results of a cross-app task.

Nevertheless, there are challenges associated with mobile platforms that feature custom-
developed apps and icons. Specifically, structured data cannot be parsed for custom icons
built on Android, which necessitates the use of visual features for extracting widget infor-
mation. This approach allows for more accurate recognition of text and icons. However,
visual features alone cannot determine the operability of icons without direct interaction,
which may lead to redundant operations, such as the agent attempting to interact with
non-interactive elements.

Therefore, in our agent, visual feature analysis serves as a secondary operation. It is only
employed when the agent determines that no XML-based icons can perform the required
task. This strategy enhances the robustness of our agent and improves its transferability to
novel apps.

4.5 User study

To comprehensively evaluate the adaptability and performance of our agent, we conducted
a user study using the AppAgent benchmark [61]. This benchmark comprises ten popular
applications, each selected for its unique functionality and user interface challenges. The
applications were chosen to simulate a variety of real-world mobile tasks, covering categories

such as social media, communication platforms, multimedia, and productivity tools, thereby
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providing a diverse and representative testbed for our agent.

4.5.1 Participants

We recruited 15 participants (9 male, 6 female), all of whom were university students, in-
cluding undergraduates, master’s, and PhD students, aged 18-27, with varying levels of
experience in using mobile applications. Participants were randomly divided into three
groups, with 5 participants in each group. Each group was assigned a different exploration
strategy for completing the tasks, as detailed in the following sections. All participants were
asked to complete a series of tasks within each application, guided by these instructions.

4.5.2 Environment

The study was conducted using Android Studio emulators across three separate computers,
all configured to run Android 12.0 ("S") on a "Medium Phone API 31" setup. This setup
ensured uniformity across all participants, with each computer running the same configura-
tion. By maintaining a consistent environment, we eliminated potential variability caused
by hardware differences, ensuring that all participants operated under identical conditions.
Additionally, all applications were updated to their latest versions to guarantee consistency

in testing parameters.

4.5.3 Procedure

Participants were randomly divided into three groups of 5. Each group was assigned a
different exploration approach:

= Group A: Directly entered the deployment phase, executing tasks based on predefined

instructions without prior exploration.

« Group B: Underwent an agent-driven exploration phase, where the agent autonomously
analyzed the interface, identified key elements, and documented them. This docu-
mentation was then used in the deployment phase to assist task execution.

« Group C: Performed a manual exploration phase, where participants manually in-
teracted with the interface, while the agent automatically documented relevant Ul
elements. This documentation was similarly used during the deployment phase.

In the deployment phase, participants completed tasks in the same set of applications.
Group A relied on the agent's internal knowledge to execute tasks, while Groups B and C
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used the documentation generated during the exploration phase. In complex tasks, the
agent utilized a self-query retriever to retrieve relevant Ul information. Success rate (SR)

and error rate were recorded for each group, followed by a post-task questionnaire to assess
usability and task difficulty.

4.5.4 Results

The results, summarized in Table 4.2, reveal that the exploration phase significantly en-
hanced task performance. Group A, which performed no prior exploration, achieved a
average success rate (SR) of 84.4%, comparable to the AppAgent with Watching Demos.
Group B, using agent-driven exploration, achieved a higher average SR of 87.4%, while
Group C, using manual exploration, recorded the highest average SR at 93.3%. These results
indicate that both agent-driven and manual exploration phases contribute to improved task
performance, with manual exploration yielding the most robust results.

Table 4.2: Quantitative results between AppAgent and ours.

Method Document Action Space SR (%)
GPT4 (Baseline) None Raw 2.2
None AppAgent 48.9
AppAgent Auto. Exploration  AppAgent 73.3
Watching Demos ~ AppAgent 84.4
Ours None Ours B4.4
Agent-Driven Ours 87.4
Manual Ours 93.3

4.5.5 RQ2 Revisited: Optimizing Efficiency for Dynamic and Resource

Constrained Environments

This work addresses RQ2 by proposing a lightweight, modular mobile agent framework,
that enables multimodal LLMs to operate efficiently in dynamic and resource-constrained
settings. Rather than relying on heavy model retraining, our system decouples exploration
and execution through a two-stage architecture and integrates structured memory with
visual parsing, allowing for dynamic adaptation to novel interfaces and user-defined tasks.

Key design strategies, such as modular perception pipelines, flexible action space and
retrieval-augmented reasoning, significantly reduce computational overhead while main-
taining task flexibility. The agent demonstrates the ability to generalize to unseen applica-
tions, interpret unfamiliar controls, and execute complex workflows, all within constrained
computational budgets.

57



CHAPTER 4. ADVANCED AGENT FOR FLEXIBLE MOBILE INTERACTIONS

These results confirm that architectural modularity and memory-aware adaptation
can effectively address the efficiency and adaptability challenges of multimodal LLMs in

real-world mobile and interactive scenarios, thereby providing a direct response to RQ2.

4.6 Limitations

Throughout the comprehensive testing process, we identified several limitations of our agent:
Our method relies on the agent’s ability to recognize numerical tags on the Ul to determine
specific Ul elements. This approach can lead to confusion when the Ul element itself
contains numbers. Such errors can be mitigated through preliminary manual exploration
and documentation to clarify the context.

When attempting to interact with hidden UI elements, such as accelerating a video by
clicking on the screen, the agent lacks the necessary prior knowledge and cannot detect the
acceleration button within the current Ul This limitation hampers its ability to perform
specific operations. Future work will focus on enhancing Ul recognition and incorporating

prior knowledge to address these issues effectively.

4.7 Conclusion

This paper introduces a multimodal agent framework that significantly enhances the inter-
action capabilities of smartphone applications. Our experiments across various applications
demonstrate the framework’s ability to improve GUI recognition and task execution, con-
firming its effectiveness in adapting to diverse application environments.

We integrate parsers with visual features to construct a more flexible action space and
develop a newly structured knowledge base for diverse element storage. Through two phases,
exploration and deployment, we enable the agent to effectively manage the dynamic nature
of mobile interfaces. These capabilities not only align with but also extend the current
research on intelligent agents, especially in the contexts of multimodality and mobility.

The user study further underscores the practical effectiveness of our framework, reveal-
ing that both agent-driven and manual explorations significantly enhance task performance
and user satisfaction. Participants in the user study exhibited higher success rates and re-
ported greater satisfaction when using our agent, particularly those who engaged in manual
exploration, highlighting the value of interactive and user-informed approaches in complex
application scenarios.



4.7. CONCLUSION

Moving forward, we aim to expand the agent’s capabilities to facilitate cross-application
functionalities and refine its decision-making processes. This will involve addressing the
challenges identified in both the experiments and the user study, such as optimizing the
agent’s adaptability to less familiar applications and enhancing its efficiency in real-world
tasks. Ultimately, our goal is to not only improve the efficiency but also the user experience,
making intelligent agents more intuitive and effective across a broader spectrum of mobile

applications.
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CHAPTER

WHO CAN WITHSTAND CHAT-AUDIO ATTACKS? AN EVALUATION
BENCHMARK FOR LARGE LANGUAGE MODELS

Adversarial audio attacks pose a significant threat to the growing use of large language
models (LLMs) in voice-based human-machine interactions. While existing research has
primarily focused on model-specific adversarial methods, real-world applications demand
a more generalizable and universal approach to audio adversarial attacks. In this paper,
we introduce the Chat-Audio Attacks (CAA) benchmark including four distinct types of
audio attacks, which aims to explore the the vulnerabilities of LLMs to these audio at-
tacks in conversational scenarios. To evaluate the robustness of LLMs, we propose three
evaluation strategies: Standard Evaluation, utilizing traditional metrics to quantify model
performance under attacks; GPT-4o0-Based Evaluation, which simulates real-world conver-
sational complexities; and Human Evaluation, offering insights into user perception and
trust. We evaluate six state-of-the-art LLMs with voice interaction capabilities, including
Gemini-1.5-Pro, GPT-4o, and others, using three distinct evaluation methods on the CAA
benchmark. Our comprehensive analysis reveals the impact of four types of audio attacks
on the performance of these models, demonstrating that GPT-40 exhibits the highest level
of resilience.
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5.1 Introduction

Large language models (LLMs) capable of processing text, images, and audio have become
increasingly essential for applications that require advanced comprehension and response
generation, including customer service [140, 141], automated content creation [142, 143],
and interactive media [144, 145]. However, the versatile capabilities of these models also
increase their vulnerability to adversarial attacks [146, 147]. This is particularly true in
the domain of LLM-driven human-machine voice interaction, where the emergence of
such services has accelerated research into audio-based adversarial attacks and defense

mechanisms.

Attacks on multimodal audio LLMs can cause the models to produce unintended outputs.
However, this area has received limited attention, primarily due to the challenges associated
with audio as an input modality. Unlike images, audio lacks direct gradient signals, making
the crafting of adversarial examples more complex. Previous research on adversarial audio
attacks has predominantly focused on targeted attacks [148, 149, 150], where carefully crafted
perturbations are embedded within speech signals. While these samples can effective in
misleading models, often appear as random noise and are easily detectable by human
listeners. A notable advancement [151] introduced a gradient-based optimization approach
that utilizes the Connectionist Temporal Classification (CTC) loss [152]—a method designed
for time series data in classification tasks. However, this method remains model-specific and
lacks broader generalizability. Universal adversarial audio attacks [153] are highly relevant
to real-world attack scenarios, such as when a speaker makes a verbal error or when they
are speaking in a noisy environment. Attackers can pre-design and generate these universal
attacks in advance, then apply them to any input audio. Despite their relevance, there has
been insufficient exploration of their impact on multimodal audio LLMs.

As multimodal audio LLMs become more prevalent in human-machine voice interac-
tions, the threat posed by these attacks grows significantly. To explore the vulnerabilities of
LLMs to adversarial audio attacks, we propose a benchmark of universal adversarial audio
attacks specifically based on conversational scenarios, named Chat-Audio Attacks (CAA).
The CAA benchmark consists of 360 adversarial audio attack sets, with each set encom-
passing four distinct types of audio attacks: content attack, emotional attack, explicit noise
attack, and implicit noise attack. This results in a total of 1,680 adversarial audio samples.
We believe that CAA benchmark will not only enable researchers to pinpoint weaknesses in
LLMs under adversarial audio conditions but also drive the advancement of robust defense

mechanisms for LLM.

62



5.1. INTRODUCTION

Coonlird Amack Emigtizn Attack
~1 . . -1
|3 Thes dicn't mioe any of my reoommeandatione! CJ0 Trmy chiett tabem ey e oy susggrmational

C] of myaw Thary dhitievt tanl
[l amy of sy a=ggmatona Thay '-H’-[ Thawy it tbss any o my puggestionel E
LLM

A | r
? e |0 Ty chosan't sake sy of my suggestions! i_‘q % - T{“f-ji_ FFtd
o =T H‘I Thary didn't Sake any of my suggastions! : -
€3 = | —~
—=  Cvoiion Laba: e, Explicit Heisn Atlick Imgiich Malse Attack
‘e Agar] . P Rasponsa Ganeration
Mo-Aftack Audin A Ty it s arry af oy mugastioesd ";_I;I Thary chickT i ey of vy SisggEstions!

+
Matural Koias Incuniril Moiss ~ Fuman hiobs

+
Irrirascarad [+ 20HI)

% ; = G ’tkﬂ Utrmzcund = 2000 HE) 'Z;JI{

Averaanal Audio Attacks

Figure 5.1: An overview of Chat-Audio Attacks (CAA) benchmark including four distinct
types of audio attacks.

In addition, we introduce three evaluation methods to comprehensively assess the
resilience of LLMs against adversarial audio attacks: Standard Evaluation, GPT-40-Based
Evaluation, and Human Evaluation. The Standard Evaluation uses rigorous metrics to quan-
tify the accuracy, similarity, and consistency of voice responses under adversarial conditions,
providing a repeatable and controlled result. In contrast, the GPT-40-Based Evaluation
simulates real-world interactions, capturing complex, sensitive inaccuracies that standard
metrics might overlook. Human Evaluation reflects actual user experience and perceptions,
thus offering crucial insights into user trust.

Finally, we evaluate six state-of-the-art LLMs supporting voice-based conversations on
the CAA benchmark, such as Gemini-1.5-Pro [72] and GPT-4o [85], providing results across
the three aforementioned evaluation methods. We analyzed the impact of four types of
audio attacks on the LLMs and discussed the flaws these models exhibit in the face of such
attacks.

The main contributions of this work are summarised as:

« We propose a benchmark for universal adversarial audio attacks based on conversation
task, called Chat-Audio Attacks (CAA).

« We propose three evaluation methods to systematically evaluate the performance of
LLMs against adversarial audio attacks.

« We perform a comprehensive evaluation of six state-of-the-art LLMs using the CAA
benchmark. Based on the three experimental results, we provide an in-depth analysis
and discussion of the results.
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5.2 Related works

5.2.1 Audio/Speech Language Models

In the field of audio-based language models, initial systems [154, 56, 155] utilized either
acoustic or semantic tokens to enable generation from audio inputs into text or audio
outputs. With the technological advancements brought by large language models (LLMs),
the recent trend has shifted towards multimodal models [57, 156, 157, 158] are leveraging
the combined strengths of both speech and text modalities, substantially enhancing the
versatility and effectiveness of audio-based applications.

Models like SpeechGPT [71] utilize a cross-modal architecture that aligns speech and
text for tasks such as instruction following and spoken dialogue. SALMONN [57] introduces
dual encoders to process diverse audio inputs, excelling in speech recognition and even
audio storytelling. Qwen2-Audio [19], LLama-Omni [159], and Gemini-1.5-pro [72] each con-
tribute unique capabilities ranging from voice chat and low-latency interactions to handling
complex multimodal data. Additionally, GPT-40 [160] expands upon these functionalities by
ensuring robust performance in audio-text interactions within noisy environments, marking
a significant milestone in the field.

5.2.2 Audio Attacks

In the domain of adversarial attacks, the concept was first pioneered in the field of image
processing [17], where slight perturbations to input pixels [16] could mislead traditional
neural network models [161] into producing incorrect results. This methodological founda-
tion laid the groundwork for similar explorations in the audio domain, particularly targeting
systems such as automatic speech recognition (ASR) [151, 162] and spoofing/automatic
speaker verification (ASV) [163, 149, 150], where security and reliability are critical.

The initial generation of adversarial samples utilized optimization methods first de-
veloped for music genre classification [164]. These techniques manipulated entire audio
waveforms to avoid detection, altering not only specific acoustic features but the entire
sound profile while preserving perceptual quality. In contrast, in the field of speech par-
alinguistics [148, 149, 150], the Fast Gradient Sign Method (FGSM) has been employed to
craft adversarial samples aimed at disrupting systems. Large language models (LLMs) that
process diverse data types such as text, images, and audio offer enhanced capabilities for
generating human-like responses across various applications. However, their multi-modal
nature also increases vulnerability to jailbreaks [165] and adversarial attacks, with poten-
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tial exploits spanning across all processed modalities, allowing attackers to bypass safety
constraints embedded within these models.

5.3 CAA Benchmark

In CAA benchmark, we target the response generation task by collecting audio suitable for
human-machine chat. The overview of CAA benchmark is shown in Figure 5.1. Each set of
audio attack data consists of a quadruplet (a;, t;, a; no_attack «f;), where a; represents the
original, unprocessed audio containing a single utterance; t; refers to the transcript of the
original audio along with other associated textual labels; a;"?-%* tack jndicates the audio
generated by a voice agent reading the transcript without any attack; and the set «; includes
3 or 5 types of attack variations of the audio.

5.3.1 Audio Collection

For the unprocessed audio a; and corresponding transcripts t; in CAA benchmark, we
manually collected data from three publicly available multimodal datasets (text, audio, and
visual): MELD, TVQA, and Common Voice.

« MELD (Multimodal EmotionLines Dataset) [20]: is designed for emotion recognition
and classification, derived from the popular TV show Friends. MELD contains numer-
ous dialogue examples, each associated with audio, video, transcripts, and emotion

labels (e.g., happiness, sadness, anger, etc.).

« TVQA [166]: primarily focused on understanding video content and associated dia-
logues in television shows, this dataset covers six famous English-language TV series.

Each dialogue instance includes audio, video frames, and transcripts.

+ Common Voice [21]: is a multilingual dataset for speech recognition, it provides audios
and transcripts. However, the audio samples are not explicitly designed in a dialogue

format.

After manually filtering and applying GPT-4 [85] refinement, we collected 120 English
speech samples along with their transcriptions from each dataset mentioned above. Notably,
the emotional tags from the MELD dataset were also collected to facilitate the generation of

emotional attacks in subsequent experiments.
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5.3.2 Audio Attack Generation

We processed the collected audio samples to generate five distinct types of audio variations:
no attack, content attack, emotional attack, explicit noise attack, and implicit noise attack.
No-Attack Audio refers to audio generated by a voice agent reading the transcript with-
out any modifications or interference. In CAA benchmark, we utilized AzureSpeechSDK
agent [167] to produce audio recordings. Specifically, for samples sourced from MELD, which
include emotion labels, AzureSpeechSDK agent was configured to match the emotional tone
indicated by the labels. For TVQA and Common Voice samples, where emotion labels are
absent, the agent was instructed to adopt a neutral tone.

We observed that some samples from MELD, TVQA, and Common Voice are often im-
pacted by factors such as speech rate, accent, and clarity, which can obscure the audio
information, making them unsuitable as baselines for subsequent comparison and analysis.
To address this, we generated no-attack audio to ensure that the LLMs receive clear speech
inputs. This serves as a baseline, offering audio free from any interference or alterations.
Content Attack alters a small fraction of the audio’s transcribed tokens while preserving
the overall semantic meaning. Inspired by these studies [168, 169, 170, 171], we modified
the transcriptions using one of the following strategies: (1) synonym substitution, (2) token
rearrangement, or (3) minimal token variation. For synonym substitution, we employed
GPT-4 to identify key tokens and replace them with synonyms. For example, “They didn't
take any of my suggestions” was altered to “They didn't take any of my recommendations!”.
Minimal token variation involved altering non-essential tokens, such as “didn't” to “doesn't”.
The modified text was then read aloud by the AzureSpeechSDK agent, preserving the original
emotional tone, resulting in content-attacked audio.

The goal of content attacks is to explore whether LLMs are sensitive to token changes or
minor errors when the overall meaning of the audio remains preserved.

Emotional Attack alters the emotional tone of the audio without changing the content. CAA
benchmark contains two types of emotional attacks: (1) opposing emotional tone, and (2)
opposing emotional background music. In the first scenario, the AzureSpeechSDK agent was
instructed to re-read the transcript with an emotion opposite to the original. For instance, if
the original sample had an “angry” emotion label, the agent would re-read the transcripts
with a “happy” tone, generating an opposite-emotion audio sample. In the second scenario,
we overlaid background music with an opposing emotion onto the no-attack audio, and
adjusted the music volume to ensure the speaker’s voice remained clear. It is important
to emphasize that only samples from the MELD dataset in our collection are labeled with
emotions. As a result, we utilized 120 samples from MELD to generate two emotional attack
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audio samples for each, resulting in two distinct emotional tones per sample.

The objective of emotional attacks is to investigate the sensitivity of LLMs to variations

in speech emotion and whether a mismatch between speech content and emotional tone
influences the responses.
Explicit Noise Attack considers three categories of explicit noise: (1) natural noise (e.g., bird
calls, wind, thunder), (2) industrial noise (e.g., car horns, machinery, object collisions), and
(3) human noise (e.g., crowd chatter, shouting, laughter). Each noise sample was overlaid
on the no-attack audio, with the noise volume adjusted to ensure that the speaker’s voice
remained clear. We generated 120 samples for each category of explicit noise attack.

Explicit noise attacks is to evaluate the ability of LLMs to differentiate between the
speaker’s voice and background noise, as well as to assess their robustness to such interfer-
ence.
Implicit Noise Attack indicates human hearing typically ranges from 20 Hz to 20,000 Hz
(20 kHz). Sounds outside this range are classified as (1) infrasound, with frequencies below
20 Hz, and (2) ultrasound, with frequencies above 20,000 Hz. We employed the numpy and
scipy libraries for digital signal processing, generating infrasound samples at 15 Hz and
ultrasonic samples at 22,000 Hz, which were then overlaid onto the no-attack audio. 180
samples were produced for each type of implicit noise attack. It is worth noting that we
deliberately increased the volume of the implicit noise. However, since these sound waves
fall outside the normal auditory range of human hearing, their addition to the mixed audio
did not compromise the clarity of the speaker’s voice.

The objective of implicit noise attacks is to assess whether LLMs, similar to humans,

remain unaffected by inaudible noise.

5.3.3 Quality Control

In the data collection phase, we identified several unqualified samples from the MELD,
TVQA, and Common Voice datasets. These included: 1) non-English; 2) containing sensitive
topics; 3) reasonable responses could not be generated. To address this, we established the
following criteria for manual sample collection: 1) the speech must be in English; 2) it must
not contain sensitive topics such as sex, drugs, or religion; 3) it must have a minimum of
six words; 4) it should not consist of simple greetings or farewells; 5) it should not reference
unfamiliar names, places, or institutions; 6) it should avoid professional terminology; and 7)
no pronouns like "this" should be used.

To further ensure the respondability of the audio content, we employed GPT-4 for an
additional filtering step. The speech transcript was inputted into GPT-4, and responses were
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generated based on the designed prompt. If GPT-4 failed to provide a reasonable response,
the sample was discarded. Ultimately, we collected a total of 360 high-quality English audio
samples along with their corresponding transcriptions.

Moreover, in the data generation phase, we placed significant emphasis on the quality
of the generated audio. Initially, we observed that some samples from the MELD, TVQA, and
Common Voice datasets were frequently affected by factors such as speech rate, accent, and
clarity, obscuring important audio information. To address this, we utilized AzureSpeechSDK
agent to re-synthesize the audio, adjusting the speech rate to be slower and increasing the
volume for better clarity. The quality of the no-attack audio was manually verified to ensure
it met high standards. These high-quality no-attack samples not only serve as a baseline but
also provide a solid foundation for generating attack samples. Furthermore, we adjusted the
volume of background music and noise to ensure that the human voice remained clearly

audible to listeners.

5.3.4 Benchmark Statistics

The CAA benchmark comprises 360 sets of audio attack data (a;, t;, a;""® ttack oz resulting
in a total of 1,680 samples across five distinct types of audio attacks. On average, each audio
sample contains 10 tokens. Our benchmark encompasses six emotional labels: surprise,
sadness, joy, anger, fear, and disgust. In addition, we provide generation scripts for the five
types of audio attacks, encouraging researchers to produce more samples for evaluation.
The table 5.1 below summarizes the number of samples for each audio attacks in the CAA
benchmark.

Audio Attack ‘ MELD ‘ TVQA ‘ Common

Voice

No Attack | 120 | 120 | 120

Content Attack | 120 | 120 | 120
. Opp-Emo Tone 120 - -
Emotion Attack Opp-Emo Music 150 - -
MNatural Noise 40 40 40

Explicit Noise Industrial Noise 40 40 40
Human Noise 40 40 40

Imolicit Noi Infrasound 60 60 60
mplicit Nolse Ultrasound 60 50 60

Total | 1,680

Table 5.1: CAA benchmark statistics including five distinct types of audio attacks.
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5.4 Experiments

5.4.1 Experimental Setup

Models We present a comprehensive performance evaluation of the most popular multi-
modal audio models, including SpeechGPT [71], SALMONN [57], Qwen2-Audio [19], LLama-
Omni [159], Gemini-1.5-pro [72] and GPT-4o [160].

Inference Setup For model inference, we adopt a zero-shot setup, where the CAA sam-
ples are directly fed into the models. SpeechGPT and Qwen2-Audio natively support chat
functionality, allowing direct input of audio for generating response. For SALMONN and
LLama-Omni, we format questions according to their “Model Prompts Guide” to facili-
tate the Q&A process. The inference for these models are conducted on a single A100-80G
GPU. For GPT-40 and Gemini, we utilize their API interfaces, setting up specific prompts to
conduct the inference.

Evaluation Methods The evaluation is conducted from three key perspectives: standard
evaluation, GPT4o-based evaluation, and human evaluation. In these evaluation methods,
all audio content is presented in the form of transcribed text.

We collect all prediction results and evaluate them based on the three aforementioned
evaluation methods. Detailed configurations for the models and prompts are provided in
Table 5.2.

Model Parameters | Language Model Aundio Model Prompt
SpeechGPT 13R HuBERT LLaMA Mone
SALMONMN 13B Vicuna BERTs/Whisper | "Please directly answer the questions in the user’s speech.”
OQwen2 -Audio 8.2B (wenlM Whisper-large-v3 MNone
LLama-Ommni 8B LLaMA-3.1 Whisper-large-v3 | "Please directly answer the questions in the user’s speech.”
Gemini-1.5-Pro 1758 - - "Please reply to the speaker based on audio content.”
GPT-40 - "Please reply to the speaker based on audio content.”

Table 5.2: Overview of Models with corresponding Language Models, Audio Models, Parame-
ters, and Prompts.

5.4.2 Standard Evaluation

In this section, we evaluate the models by comparing their outputs on responses to no-attack
audio with those to attacked audio using three key metrics: WER, ROUGE-L [172], and COS
(Cosine Similarity). This rigorous, multi-dimensional metric suite provides a controlled and
repeatable framework for analyzing model robustness and cross-modal alignment under
adversarial conditions. Each metric is selected to capture complementary aspects of the

model’s performance from surface-level fidelity to deep semantic preservation.
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. Emotion Attack | Explicit Noise | Imiplicit Noise
Moded Metri Content Attack |
| e | e [ Opp-Emo Tone | Opp-Ema Music | Naturl Roiss | indusinal Noise | Fuman Roie | nfasound | Ulrsoand
WER ([] 179 176 174 235 184 129 221 128
SpeechGET ROUGE-LT) N H] TiE [N [N 10 N T] AT} ]
Tos M ] ) N N TV E] N GNE] 26
WER (L] 080 131 L0 055 106 L19 146 0.6l
SALMONN ROUGE-L ) 063 U6l 051 ] 057 057 ] ]
Tos M 0T 6] 5D oTs 0Es T 6s ]
WER ([} 159 127 124 182 121 L10 180 096
Qwen2-Audio | BOUGE-LIT] k] [EH (K] [E 036 K [E 7]
Tos M 5z A UE UEL 050 50 GEE] T
WER ([] L 081 065 0.6 0.77 0.96 067 037
LLama-Ommi | BOUGE-LT] K (K] 56 =] 057 Az 56 oTs
Tos M TAE GE T 53 5 IE 51 53 T E]
WER ([} 134 120 127 13 1.36 L50 131 131
Gemini-1.5-Pro | BOUGE-LT] iNH] 01T [F] [} ] 021 [ ]
R ki i Tz L ki WZT L] )|
WER ([] 11z 107 110 118 1.36 111 125 113
GPT-4o ROUGE-LT) F [F [F ] 017 023 [FH o7
Tos M ) EE] EE] ] 0Z7 a7 K ]

Table 5.3: Standard evaluation results on CAA benchmark. Performance comparison of the
multimodal audio LLMs under various adversarial conditions using WER, ROUGE-L, and
COS metrics.

« WER (Word Error Rate): This metric quantifies the lexical discrepancy between the
model’s outputs on clean and adversarial audio by computing the proportion of
word-level insertions, deletions, and substitutions. A lower WER score indicates that
the model produces more consistent word-level outputs, reflecting its robustness in

maintaining surface-level alignment across audio perturbations.

* ROUGE-L: ROUGE-L measures the overlap between clean and attacked outputs based
on the longest common subsequence, emphasizing the preservation of key phrases
and response structure. A high ROUGE-L score suggests that the model retains core
semantic units and maintains structural integrity, which is particularly important for
tasks involving sequential reasoning, summarization, or multi-turn interactions.

* COS (Cosine Similarity): This metric captures the semantic similarity between clean
and attacked responses using sentence embeddings. Unlike WER and ROUGE, COS
focuses on deeper meaning preservation rather than exact wording. A higher COS
score indicates that the model successfully preserves the overall intent and semantics
of its response, even when lexical forms vary — a critical trait for robust cross-modal

reasoning under adversarial conditions.

As shown in table 5.3, presenting the performance of the models across these metrics,

comparing how well they handle adversarial interference in the audio inputs.
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FRole: System

Content: You are an evaluator tasked with assessing the impact of attacks
on text generated from andio.

Euole: User

Content: The andio represents a guestion or prompt, snd the text
represents the response. You will evalnate the following medrics on a scale
of 1 to 5 (1 = poor, 5 = excellent].

[Detailed evaluation indicators for each score.]

Original_Andio Transcript: {audio_text} # This is the question or prompt.
Text: {original text} # This is the original response.

[Frompt variable snbstitution.
Attacked Text 1: {attacked 1}# This is the response after attack 1...]

First, evaluate the **Mp-attack Coherence (MC)** only for the "Temt
the origina] sudio ranscript (ie., the question or promps). If the response
merely repeats the transcript without providing 8 proper answer to the
question, it should receive a low score. The score for this metric should be
the same for all " Attacked Text™:

1. **No-attack Coherence (WC)**: Dioes the original response reasonshly
and meaningfolly snswer the original sndio transcript (the question or
prompt)? If the response repeats the transcript bt does not answer the
question, give a low score.

2. **Artack Coherence (ACoh)**: Does the attacked respomse stll
rexsonably and mesningfolly address the original sudio transcrpt (ie.,
does it sHll make sense 85 an answer to the orizinal question or promps)?
If the response repeats the ranscript withowt snewering the question, give
a lowr score.

3. **Amack Comelation (ACor)**: How well does the attacked text
correlate with the original response?

4. **Linmictic Fobustmess (LE)**: Does the attacked text maimtsin
Semfence confinnity, legical coberence, snd prammatical comecmess?
Flease owput the scores in the following format without sny additional
explanation:

#FExample for output format:

[In-comtext examples]

Figure 5.2: Prompt for GPT-40-Based Evaluation.

5.4.3 GPT-40-Based Evaluation

To complement standard metric-based evaluation, we introduce a more context-sensitive as-
sessment by leveraging GPT-40's advanced reasoning capabilities. This evaluation simulates
real-world conversational scenarios to examine how adversarial attacks affect model behav-
ior beyond surface-level text similarity. Unlike traditional metrics, which primarily measure
lexical or semantic overlap, GPT-40-based evaluation captures nuanced degradations in

coherence, meaning preservation, and linguistic integrity.

In this evaluation, we compare model responses to no-attack and attacked audio across
four key metrics, each rated on a scale from 1 to 5. Higher scores indicate better performance
and greater resilience to adversarial attacks, with detailed prompt settings provided in the
Figure 5.2.
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» No-attack Coherence (NC):This metric evaluates how well the no-attack response
meaningfully and adequately answers the question or prompt posed by the original
audio transcript. A higher score (closer to 5) signifies a strong alignment, while a
lower score (closer to 1) indicates that the response deviates significantly from the
expected meaning. If the NC score is 1, the remaining metrics (ACoh, ACor, and LR)
are automatically rated as 1, reflecting an overall failure in response quality.

» Attack Coherence (ACoh): This metric assesses how well the attacked response contin-
ues to meaningfully and adequately answer the original question or prompt posed
by the audio transcript, despite the attack. A higher score suggests that the model
continues to generate coherent and contextually relevant responses, while a lower

score indicates significant degradation in relevance due to the attack.

» Attack Correlation (ACor): This metric measures the correlation between the attacked
response and the no-attack response. A higher score indicates that the core meaning
of the no-attack response is retained, while a lower score suggests that the attack has

caused notable alterations to the response content.

» Linguistic Robustness (LR): This assesses whether the attacked response maintains
grammatical correctness, sentence continuity, and logical flow. A higher score indi-
cates that the model preserves linguistic structure even under attack, while a lower
score reflects disruptions in coherence or grammatical errors.

Table 5.4 presents the evaluation results for each model, comparing their performance on
no-attack and attacked audio inputs.

5.4.4 Human Evaluation

In addition to automated evaluations, we conducted a human evaluation to assess the
models’ performance to reflect actual user experience and perception. It is essential for
understanding the practical implications of adversarial attacks, particularly in terms of user
satisfaction and trust.

The evaluation was carried out by five native English-speaking university students (three
male and two female). Each evaluator independently rated the models’ outputs using the
same No-attack Coherence (NC) and Attacked Coherence (ACoh) metrics as defined in the
GPT-40-Based Evaluation. Both metrics were scored on a scale from 1 to 5, where higher
scores indicate better performance and greater resilience to adversarial conditions. To
ensure consistency in scoring, all evaluators followed standardized testing guidelines, and
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Emation Attack Explicit Nolse Implicit Molse
Model Metrics | Content Atack | Tone | Opp-Emo Music | Natural Wolse | ndusirial Molse | Fluman Nobe | iffasound | Olirasound
NC (1) 239
ACoh 1 176 ] a0 132 [T [T 15 196
SpeechGPT =y 158 ] 137 15 118 116 116 167
i) 765 N 08 R T ] 712 713 ZT1
NC (1) 213
ACoh 1 158 ENT] 153 138 ] T/ 156 iz
SALMONN
AT ) Z01 770 157 160 ] 16 T5a 711
i) 778 500 315 T 6 Zm 737 T
NC (1) .46
ACoh 1 750 771 TS T 75 78 ] ]
QwenZ-Audio —erre ] T35 I 155 ] FX ] 16 02
i) iz 1w 113 R T e 148 106
NC (1) .50
ACoh 1 305 ] ¥ 72 N1 % ] 331
LLama-0mni
AT ) 762 776 314 62 T ] 66 353
i) 131 152 137 ] 155 15 im0 i3
NC (1) 358
ACoh 1 315 350 332 T4z ] AT T8 705
Cremint-1.5-PI0 e 762 772 ] o T8 T ] 758
i) 171 i3 16 310 1z 1z 156 100
NC (1) 445
J— ACoh ) LT i3 [XE] ThT A1) Ta7 X 70
AT ) 536 556 361 716 752 ] 748 776
i) 180 180 182 Y] i 1% im 18

Table 5.4: GPT-40-based evaluation results on CAA benchmark. Performance comparison of
the multimodal audio LLMs under various adversarial conditions using NC, ACoh, ACor and
LR meitrics.

the final scores were averaged across the five evaluators. This human assessment helps

ensure the reasonableness and relevance of the automated results.

The evaluations were conducted in a controlled environment, ensuring a consistent
testing setup for all evaluators. By averaging the scores across all evaluators, we ensure that
the results reflect a balanced and comprehensive assessment of the models’ performance in

both no-attack and adversarial conditions.

Table 5.5 presents the human evaluation scores for each model, reflecting their perfor-

mance in both no-attack and adversarial conditions.

5.4.5 Qualitative Results

Table 5.6 provides examples of responses generated by the six multimodal audio LLMs when
faced with different adversarial samples. It illustrates the varying impacts of adversarial
attacks on each model, clearly highlighting the degree to which different models are affected.
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waa [ v | G P B i
SpeechCGPT Agslm‘h Z12 | LB ZIFE T3 | 16
SALMONN Agslm‘:l 203 | 225 2.|u.1 158 | 155
Qwen2-Audio Agslm‘h 302 | 268 3.;32 I3 | 217
HLama-Omni Agslm‘h 340 | 3@ 3'|?5 ZE@ | 315
Gemini-1.5-Pro Agslm‘h 320 | 241 3.|52 324 | Im
GP-o Agslm‘:l 388 | 412 IL|33 327 | 308

Table 5.5: Human evaluation results on CAA benchmark. Metrics include NC (No-attack
Coherence) and ACoh (Attacked Coherence).

5.4.6 RQ3 Revisited: Enhancing Robustness Against Adversarial Audio

Inputs

To address RQ3, we proposed the Chat-Audio Attacks (CAA) benchmark, a comprehensive
evaluation framework specifically designed to assess the robustness of multimodal large
language models against adversarial and noisy audio inputs. By introducing diverse attack
categories, including content manipulation, emotional shifts, and both explicit and implicit
noise, we systematically uncovered vulnerabilities in state-of-the-art models. Our evalua-
tions, combining standardized metrics such as WER, ROUGE-L, and COS with GPT-40-based
semantic assessments, revealed significant performance degradation under real-world per-
turbations, particularly in coherence and semantic fidelity. These findings highlight the
importance of robust audio-grounded benchmarking and demonstrate the need for more
robust multimodal architectures in practical deployments.

5.5 Discussion

Whether LLMs are sensitive to token changes or minor errors?

It is evident that different LLMs exhibit varying degrees of sensitivity to token changes
or minor errors. GPT-4o consistently shows strong robustness across most metrics (WER,
ROUGE-L, COS, ACoh, ACor, and LR), indicating lower sensitivity to token-level adversarial
attack. In contrast, SpeechGPT and Qwen2-Audio exhibit greater vulnerability, with lower
scores in these key areas, suggesting that minor token changes can significantly degrade

their performance.
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Attack Type

LLMs' Responses

No Attack

SpeechGPT: 28 inches is equal to 71.12 centimeters.

SALMONN: It just doesn't matter how I feel.

Qwen2-Audlo: It's understandable that you might feel indifferent or unconcerned...
LLama-Omni: That'’s a great question. It's normal to feel overwhelmed, but taking care of
yourself...

Geminl-1.5-Pro: Why do you feel that way? What's making you feel like your feelings don't
matter?

GPT-40: It sounds like you're feeling a bit overwhelmed...

Content Attack

Audio Content: It simply doesn't matter how I feel.

SpeechGPT: Crossing the line refers to a metaphorical line...

SALMONN: It simply doesn't matter how 1 feel.

Qwen2-Audio: The speaker’s feelings do not influence their actions or decisions...
LLama-Omni: No, it doesn't. Your emotions are valid and important...
Gemini-1.5-Pro: It sounds like you're going through something difficult...
GPT-40: Oh, but it does matter! How you feel is important...

Emotional At-

SpeechGPT: 2023 is the year 2023 according to the Gregorian calendar...

tack (OPPEmo

Tone)
SALMONN: The speaker is expressing their frustration that the other person doesn't seem to
care...
Qwen2-Audio: I can understand that the statement suggests indifference or acceptance...
LLama-Omni: Yes, thats correct. Emotions are a personal experience...
Gemini-1.5-Pro: It sounds like you're feeling unheard...
GPT-40: Oh, it definitely matters how you feel! Your emotions are important...

Explicit Noise SpeechGPT: I'm sorry, [ don't understand what you mean.

Attack (Humamn

Nolse)

SALMONN: They feel like they are not being heard or understood.
Qwen2-Audlo: The speaker’s feelings do not have any significance...
LLama-Omni: Yes, it does matter how you feel.

Gemini-1.5-Pro: Why do you think your feelings don't matter in this situation?
GPT-40: It sounds like you're feeling a bit down or discouraged...

Table 5.6: Examples of responses generated by LLMs. Blue indicates abnormal responses.

Is it good news that LLMs are unaffected by the mismatch between speech content

and emotional tone?

We argue that it is not good news that LLMs remain unaffected by emotional mismatches.

Although large language models demonstrate resilience by maintaining high levels of co-

herence, correlation, and semantic similarity, this also reflects their relative weakness in

emotional awareness. Current LLMs still have considerable scope for improvement in rec-

ognizing emotional subtleties, as humans can easily detect emotional mismatches, such

as sarcasm or passive-aggressive tones in conversations. While SpeechGPT is notably im-

pacted by mismatches between speech content and emotional tone, this does not indicate a
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heightened sensitivity to emotional shifts, as its overall coherence score remains relatively
low.

Which explicit noise attacks have the most significant impact on LLMs?

Natural noise has the most significant overall impact on LLMs across all metrics, espe-
cially on SpeechGPT and SALMONN, which shows the highest sensitivity to it. Industrial
noise also causes notable attacks but is handled better by LLMs like Llama-Omni and
Gemini-1.5-Pro. Human noise, while still impactful, is generally less detrimental compared
to the other explicit noises. Overall, SpeechGPT and SALMONN show the most vulnerability
across all types of explicit noise attacks, while Llama-Omni, Gemini-1.5-Pro and GPT-40
demonstrate stronger robustness.

Whether LLMs remain unaffected by inaudible noise?

None of the models remain entirely unaffected, especially infrasound, which has a greater
impact on accuracy (WER), semantic similarity (COS), coherence (ACoh), and grammatical
structure (LR). In comparison to ultrasound, infrasound emerges as the more detrimental
form of implicit noise, with models like SpeechGPT, SALMONN, Gemini-1.5-Pro and GPT-
4o showing significant vulnerability to these attacks. However, Llama-Omni demonstrate
greater robustness, performing consistently better across all metrics and handling both
types of implicit noise more effectively.

What helps models stay robust against adversarial audio?

The results indicate that all models are affected by adversarial attacks, especially by
Explicit Noise and Implicit Noise, which cause a significant number of prediction errors. The
evaluation reveals that SpeechGPT and SALMONN demonstrate relatively weak robustness
across various adversarial scenarios, exhibiting significant performance degradation when
facing different adversarial audio attacks. In contrast, models like Qwen2-Audio, LLama-
Omni, and Gemini-1.5-Pro demonstrate stronger resilience, particularly when dealing with
emotional attacks and implicit noise. These models manage to maintain logical coherence
and linguistic accuracy, with LLama-Omni and Gemini-1.5-Pro standing out for their robust
performance across various adversarial conditions.

However, GPT-4o clearly emerges as the best-performing model overall. It consistently
delivers coherent, contextually relevant, and linguistically robust responses, even under se-
vere adversarial conditions. The model’s ability to handle different types of attacks highlights
its superior robustness and adaptability, which can be attributed to its extensive pre-training
on large-scale datasets. This factor allow GPT-4o to better understand and process a wide
variety of inputs, making it more resistant to adversarial perturbations.

In summary, extensive data-driven pre-training appear to be key factors in helping
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models like GPT-40 stay robust against adversarial audio. This element enables the models

to handle a variety of adversarial scenarios with minimal degradation in performance.

5.6 Conclusion

This work explored the vulnerabilities of large language models (LLMs) to adversarial audio
attacks in conversational scenarios. We introduced the Chat-Audio Attacks (CAA) bench-
mark, consisting of 360 adversarial attack sets across four attack types: content, emotional,
explicit noise, and implicit noise attacks. Our evaluation of six state-of-the-art LLMs us-
ing three methods—Standard Evaluation, GPT-40-Based Evaluation, and Human Evalua-
tion—revealed and discussed significant model vulnerabilities under adversarial conditions.

The CAA benchmark highlights these weaknesses and provides a foundation for devel-
oping more robust defense mechanisms. As LLMs are increasingly integrated into voice
interactions, enhancing their resilience against adversarial audio attacks remains a crucial
area for future research.

While the CAA benchmark deliberately focuses on universal adversarial perturbations
that are explicitly crafted to mislead models, it does not cover naturally occurring variations
such as regional accents, non-native speech patterns, or spontaneous conversational styles.
These factors are not adversarial by nature, but their interaction with adversarial signals may
present new challenges. Incorporating such real-world variability into future versions of the
benchmark would enable a more comprehensive and realistic evaluation of LLM robustness

in open-world scenarios.
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CHAPTER

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis presents a comprehensive investigation into improving the performance and
adaptability of multimodal large language models across various real-world challenges.
Guided by three core research questions, the work explores how to enhance cross-modal
alignment, optimize model efficiency in constrained environments, and strengthen robust-
ness against adversarial and noisy inputs.

To address Research Question 1, a novel data generation pipeline is introduced to con-
struct high-quality and semantically aligned image-dialogue pairs. The model finetuned
on synthetic dataset significantly improve performance on both public and custom bench-
marks, confirming the impact of data quality on model accuracy and generalization.

In response to Research Question 2, a novel mobile agent is proposed, combining flexible
action space and visual detection agents to support efficient task execution in mobile
and resource-constrained environments. The design enables flexible adaptation without
repeated retraining, improving responsiveness in real-world applications.

Research Question 3 is addressed through the development of the Chat-Audio Attacks
benchmark, which evaluates model robustness under diverse adversarial and noisy audio
conditions. The evaluation reveals critical vulnerabilities in current models and provides a
foundation for future research on audio-aware multimodal robusiness.

Overall, the thesis contributes new methods and benchmarks that improve accuracy,
adaptability, and robustness of multimodal models. These findings advance the deployment
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of intelligent systems in complex, interactive, and dynamic scenarios.

6.2 Future Work

While this thesis lays a solid foundation, several directions for future research emerge:

6.2.1 Generalization Across Domains

Expanding the applicability of the proposed methods to broader and more diverse domains

remains a crucial step. To achieve this, future research can focus on the following areas:

Domain-Invariant Representations Developing representations that are invariant to
domain-specific variations is critical for improving system scalability. Research could ex-
plore advanced techniques for disentangling domain-specific and domain-agnostic features,
thereby enabling adaptive systems to generalize effectively across heterogeneous environ-

ments.

Transfer Learning Strategies Leveraging pre-trained models and designing novel transfer
learning strategies can significantly enhance the adaptability of the proposed methods to
new tasks and domains. These approaches can reduce the dependency on domain-specific

data, enabling the systems to scale more efficiently.

Cross-Platform Mobile Agents In the context of mobile agents, the diversity of operating
systems, such as Android and iOS, introduces significant challenges. A promising direction
is the development of cross-platform multimodal agents that can:

« Seamlessly handle platform-specific APIs, interfaces, and interaction paradigms.
+ Harmonize data processing and task execution across disparate systems.

« Dynamically adapt to diverse input formats and modalities, such as text, images, and
audio.

This would allow mobile agents to perform tasks robustly, even in heterogeneous operating

environments.
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Robustness to Unseen Scenarios Enhancing the robustness of adaptive systems to unseen
scenarios and domains is another critical research area. Techniques such as zero-shot and
few-shot learning can empower agents to handle novel tasks or data distributions effectively,
reducing the need for extensive retraining.

6.2.2 Real-Time Adaptability

Enhancing the real-time adaptability of intelligent agents in dynamic environments presents
a promising avenue. For multimodal large language models (MLLMs), processing speed
remains a critical bottleneck, particularly for agents relying on MLLMs to execute tasks.
These agents often require frequent API calls for each task execution, resulting in significant
delays that prevent achieving true real-time performance.

Future research should prioritize the following directions:

« Decision Optimization: Developing advanced decision-making frameworks that min-
imize redundant operations and streamline task execution workflows. By reducing
the dependency on repeated API calls and leveraging predictive models, agents can

enhance their responsiveness.

* Development of Lightweight Models: Exploring methods to distill MLLMs into smaller,
task-specific models capable of maintaining high performance while significantly re-
ducing computational overhead. This includes techniques like knowledge distillation,

pruning, and quantization to create efficient, real-time-capable models.

« Incremental Processing: Investigating incremental or asynchronous processing strate-
gies to handle multimodal inputs dynamically. For instance, processing high-priority
inputs first or caching reusable intermediate representations can drastically improve
execution time.

By addressing these challenges, future intelligent agents can achieve real-time adaptabil-
ity, balancing computational efficiency with decision accuracy, even in complex multimodal
environments.

6.2.3 Ethical and Social Implications

As adaptive systems continue to be deployed in sensitive and diverse contexts, addressing
ethical challenges becomes increasingly critical. Ensuring privacy, fairness, and inclusivity re-

mains paramount, particularly in applications involving personal data and decision-making
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that impacts individuals and communities. Future research should focus on developing
methods to protect user privacy, such as advanced encryption and privacy-preserving tech-
niques, while also mitigating biases to ensure fair and unbiased outcomes. Additionally,
improving accessibility for underrepresented groups and individuals with disabilities will
broaden the inclusivity of these systems.

Transparency and explainability are also vital for fostering trust, especially in high-stakes
scenarios such as healthcare or autonomous systems. Efforts should be directed toward
creating interpretable models that offer clear and concise explanations for their decisions.
Furthermore, as adaptive systems gain more autonomy, ethical frameworks and regulatory
compliance mechanisms must evolve to ensure accountability and responsible deployment.
By addressing these challenges, future work can ensure that adaptive systems are not only
innovative but also equitable and socially responsible.

6.2.4 Integration of Emerging Modalities

The integration of emerging data modalities, such as haptic feedback, augmented reality
(AR), and other sensory inputs, offers immense potential for enhancing the capabilities
of multimodal systems. These modalities can provide richer contextual information and
enable more immersive and intuitive interactions between users and systems. For instance,
haptic inputs could improve accessibility and precision in applications like virtual surgery
or remote-controlled robotics, while AR can overlay contextual data directly onto real-world

environments, enhancing tasks such as navigation or industrial maintenance.

Future research should focus on developing robust frameworks to seamlessly integrate
these modalities into existing multimodal systems. This includes addressing challenges such
as synchronization of multimodal streams, ensuring low-latency responses, and standard-
izing data formats for interoperability. Moreover, as these new modalities are adopted, it
will be critical to ensure that the systems remain efficient and scalable, avoiding excessive
computational overhead. By embracing these emerging modalities, adaptive systems can
unlock new levels of interaction and functionality, ultimately advancing their impact across

diverse applications.

By pursuing these directions, future research can build on the contributions of this thesis,
pushing the boundaries of adaptive systems to meet the demands of increasingly complex

and dynamic real-world scenarios.
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6.2.5 Cross-Disciplinary Collaboration

To further improve the robustness of multimodal Al systems, future research should ex-
plore deeper cross-disciplinary collaboration, particularly between the fields of multimodal
learning and cybersecurity. Traditional approaches to handling adversarial challenges are
often reactive and limited to specific domains. By drawing on principles from network
security, including techniques such as intrusion detection, anomaly monitoring, and sys-
tem integrity verification, adaptive Al systems can become more resilient and reliable in
real-world environments.

Interdisciplinary research involving Al, cybersecurity, and human-computer interaction
has the potential to lead to the development of trustworthy, secure, and context-aware
multimodal systems. This direction is particularly relevant in high-stakes applications such
as autonomous driving, healthcare, and intelligent assistance in complex environments.
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