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Abstract

Millimetre-wave (mmWave) radars have increasingly become more popular for short-
range object tracking due to their high resolution and robustness in various environ-
mental conditions. Although the literature on single object tracking with mmWave
radar is well-established, multi-object tracking remains a developing field. The cur-
rent leading implementations for mmWave multi-object tracking typically operate
under assumptions that can either limit their adaptability, performance, or accuracy.
The research presented in this thesis aims to enhance the capability and reliability
of mmWave multi-object tracking systems, by unifying traditional tracking method-

ologies with advanced mmWave radar sensing.

To ultimately achieve this, the thesis addresses several key challenges. Firstly, the
feasibility of improving mmWave multi-object tracking performance through envi-
ronmental sensing is explored. A novel tracking algorithm is developed to leverage
the high-resolution of the mmWave radar to define regional trajectory analysis pat-

terns, improving object detection and tracking performance.

Secondly, an approach towards reducing the challenges associated with labelling
mmWave radar data is presented, fundamentally achieved through a sensor fusion
architecture. This proposed approach dramatically improves the accessibility and
feasibility of constructing large scale datasets that can be used to train accurate

mmWave radar deep learning systems.

Thirdly, the research proposes a generalised framework for a joint mmWave radar
sensing and tracking system, incorporating our novel mmWave Convolutional LSTM
Autoencoder (mmCLAE) for rain-induced noise reduction. This framework is de-

signed to be inherently adaptable to various tracking scenarios and environmental
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conditions. The unified framework is validated through an implementation that
estimates rainfall with mmWave radar, while jointly incorporating the impact of
the rainfall and the noise reduction capabilities of mmCLAE to improve the overall

tracking performance.

The results of the research conducted demonstrate a promising approach to yield sig-
nificant improvements in tracking performance, adaptability, and robustness, com-
pared to existing traditional multi-object tracking architectures. The research show-
cases mmWave multi-object tracking systems that can accurately track multiple ob-
jects, even in challenging conditions where objects intermittently leave the radar’s
field of view or the radar data frames are highly congested with complex noise
profiles. The findings of this research have significant implications for a variety of
differing applications, including autonomous vehicles, robotics and surveillance sys-
tems. This thesis contributes to the advancement of mmWave radar technology by
providing a comprehensive study on enhancing the capabilities of mmWave radar
systems for multi-object tracking. The unified tracking and sensing system proposed
offers a foundation for future research towards more advanced and reliable tracking

systems.
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Chapter 1

Introduction

Millimetre Wave (mmWave) radars have been a topic of great interest over recent
years in the field of multi-object tracking and sensing. The potential and motivation
for mmWave radars in this field is primarily driven by the micro-Doppler informa-
tion that can be extrapolated. Micro-Doppler simply refers to the Doppler infor-
mation generated by movements of individual parts of a particular target [1]. The
micro-Doppler features can then be exploited to determine characteristics of mul-
tiple targets for tracking and sensing purposes. The characteristics extracted can
ultimately translate to sub-millimeter individual movements of the targets, due to

the heightened sensitivity of the radar caused by the short wavelength of mmWave.

In the context of this thesis, the term tracking refers to the ability to perform
object detection on multiple targets, as well as maintaining a correlation between
the targets currently detected status and previous detections. Sensing in the context
of this thesis refers to the ability to extrapolate characteristics of multiple targets for
classification and quantification purposes. This ultimately means extracting target
information such as, but not limited to, behavioural patterns, patterns regarding
movement across the field of view, and object signatures that could ultimately equate

to profiling an object [2].



1.1 Background

mmWave refers to the electromagnetic spectrum with wavelengths between 1 mil-
limetre and 10 millimetres, corresponding to frequencies between 30 GHz and 300
GHz. This frequency range is particularly attractive for various applications due
to its ability to provide high-resolution data and its relatively short wavelength,
which allows for the detection of fine details [3]. The use of mmWave technology
has grown rapidly in recent years, driven by advancements in semiconductor tech-
nology and the increasing demand for high-bandwidth communication systems. The
unique properties of mmWave signals, such as their ability to penetrate materials
like clothing and their sensitivity to small movements, make them ideal for a wide

range of sensing and tracking applications.

Omne of the primary applications of mmWave technology is in the field of automotive
radar systems. These systems utilise mmWave sensors to detect and track objects
around a vehicle, providing critical information for advanced driver assistance sys-
tems and autonomous driving [4]. The high resolution of mmWave radar allows
for the detection of small objects and the precise measurement of their speed and
distance, enabling features such as adaptive eruise control, collision avoidance, and
lane change assistance. Additionally, while mmWave radar is still affected by adverse
weather conditions, it is less impacted by environmental factors such as rain, fog,
and dust compared to other sensing modalities like optical cameras and Light Detec-

tion and Ranging (LiDAR), making it a reliable choice for automotive applications

[5].

Another significant application of mmWave technology is in the area of indoor and
outdoor surveillance. mmWave sensors can be used to monitor the movement of peo-
ple and objects in various environments, such as airports, shopping malls, and public
transportation systems. The ability to detect micro-Doppler signatures, which are
the unique patterns of motion generated by different parts of a moving object, allows
for the identification and classification of different types of targets. This capability
is particularly useful for security and surveillance applications, where it is important
to distinguish between different types of objects, track them, and precisely extract

interesting surveillance information [6]-[9].
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In the healthcare sector, mmWave technology is being explored for applications
such as remote patient monitoring and fall detection [10]-[15]. The high sensitivity
of mmWave sensors to small movements makes them suitable for monitoring vital
signs such as respiration and heart rate without the need for direct contact with the
patient. This non-invasive approach is particularly beneficial for elderly patients
or those with chronic conditions, as it allows for continuous monitoring without
causing discomfort. Additionally, mmWave sensors can be used to detect falls and
other sudden movements, providing timely alerts to caregivers and improving the

overall safety of patients.

The use of mmWave technology is also expanding into the field of industrial au-
tomation and robotics. mmWave sensors can be integrated into robotic systems to
enhance their perception capabilities, enabling them to navigate complex environ-
ments and perform tasks with greater precision [16], [17]. For example, mmWave
radar can be used to detect and track objects in a manufacturing facility, allowing
robots to avoid collisions and optimise their movements. The ability to operate
in harsh environments and under challenging conditions makes mmWave sensors a

valuable tool for improving the efficiency and safety of industrial processes.

The unique properties of mmWave signals, specifically their high resolition and sen-
sitivity to small movements, make them ideal for tracking and sensing applications.
As the technology continues to advance, it is expected that the use of mmWave sen-
sors will become increasingly prevalent, driving further innovation and development

in these areas.

1.2 Problem Statement

The research and solutions surrounding multi-object tracking with mmWave are
not as mature as single object tracking. This is primarily due to the complexities
that are involved in the identification of multiple targets, and the ability to per-
sist a correlated track for each of the individual targets. The current state-of-art
mmWave multi-object tracking systems only focus on continuous tracking, and typ-
ically through conventional signal processing techniques. Continuous multi-object

tracking in this context refers to the tracking and association of multiple targets only
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whilst the target is within the field of view of the radar. Discontinuous multi-object
tracking, on the other hand, is one in which the targets can ultimately be uniquely
identified, associated, and tracked despite whether they interrupt their presence
in the field of view of the radar. Discontinuous multi-object tracking has a much
broader range of applications in comparison to continuous tracking. Specifically,
discontinuous multi-object tracking systems would be applicable in extracting per-
sonalised movement characteristics amongst groups of people. In a generalised sense,
a system of this nature can produce applications capable of providing a feedback

mechanism to dynamically tailor an experience for a group, or individual.

In order to accomplish discontinuous multi-object tracking, unique mmWave features
corresponding to targets need to be reliably correlated with the respective target
movement. Inherently, there is a gap in current literature surrounding combined
mmWave sensing and mmWave multi-object tracking systems. As a result, the in-
formation present in the scene that can be extrapolated from sensing methodologies
is not being considered in typical mmWave multi-object tracking architectures. In
order to accomplish a combined mmWave sensing and mmWave multi-object system,
challenges surrounding the unification of the data and projection onto a single plane
will need to be addressed. The research presented in this thesis aims to propose
an approach that provides the theoretical and practical foundations for a unified
mmWave multi-object tracking and sensing system, with a primary goal of accom-
plishing discontinuous multi-object tracking. The proposed work has a key focus on
ensuring the reliant features are generalised to the extent in which environmental

factors result in minimal impact to the performance and accuracy.

1.3 Major Contributions

The primary contributions of this thesis aim to address the problem statement dis-
cussed in the previous section, Section 1.2. One of the main challenges is the accu-
rate and reliable tracking of multiple objects in dynamic and complex environments,
where occlusions and disturbances can significantly degrade performance. Another
challenge is the effective fusion of data from different sensor modalities, such as

mmWave radar and cameras, to improve the accuracy and robustness of derived
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tracking systems. Additionally, adverse weather conditions, such as rain, can intro-
duce noise and artefacts that further complicate the tracking process. This thesis
aims to tackle these challenges by developing novel frameworks and methodologies
that enhance the capabilities of mmWave radar systems.

To address these challenges, this thesis makes several key contributions. Firstly,
we introduce a novel framework for extracting and utilising environmental charac-
teristics from multi-object tracking trajectory data. This framework includes the
generation of regional activity heatmaps and the classification of entry and exit
points using Convolutional Neural Networks (CNNs). Secondly, we present an in-
novative sensor fusion framework that integrates mmWave radar and camera data
to improve multi-object sensing and classification capabilities. Lastly, we then ex-
tend on our learnings from the first two contributions to propose a comprehensive
approach to enhancing mmWave multi-object tracking systems in adverse weather
conditions, focusing on rain-induced noise reduction and rain intensity classification.

The main contributions presented by this thesis are summarised as follows:

¢ We develop a framework for incorporating environmental characteristics from
multi-object tracking trajectory data. This framework leverages the capabil-
ities of mmWave radar to collect detailed trajectory data of multiple objects
within a given environment. The collected data undergoes a pre-processing and
normalisation process to generate regional activity heatmaps, which serve as
the foundation for further analysis. By dividing the observed environment into
a grid and assigning tracked objects to their respective regions, the framework
surfaces the regional trajectory information from the data. A CNN is then
designed and trained to classify the regional activity heatmaps into predefined
classes, specifically identifying entry and exit points within the environment.
This classification is based on a taxonomy of movement patterns, allowing the
framework to extract significant environmental characteristics from the tra-
jectory data. The classified entry and exit points are then projected onto the
multi-object tracking plane, providing a visual representation of the environ-
mental layout. This systematic approach addresses the challenges posed by
occlusions and disturbances. The proposed framework not only improves the

tracking performance in dynamic and complex environments but also provides
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a foundation for future advancements in multi-object tracking technologies by

integrating environmental understanding into the tracking process.

We propose a sensor fusion framework that integrates mmWave radar and
camera data for enhanced multi-object tracking and classification. The frame-
work combines the strengths of both sensor modalities to improve the accuracy
and robustness of tracking systems. By fusing mmWave radar data with cam-
era images, the framework enables accurate object detection, tracking, and
classification in various environments. The integration of camera data pro-
vides additional context and visual information that can be used to enhance
the tracking performance of mmWave radar systems. The proposed sensor fu-
sion framework addresses the challenges associated with labelling and training
deep learning models for mmWave radar data by leveraging the complementary
strengths of mmWave radar and camera sensors. The framework is designed
to be adaptable to different tracking scenarios and environmental conditions,

providing a unified approach to multi-object tracking and sensing.

We research and propose an approach to enhance mmWave multi-object track-
ing systems in adverse weather conditions, focusing on rain-induced noise re-
duction and rain intensity classification. The proposed approach includes a
convolutional Long Short-Term Memory (LSTM) autoencoder, referred to as
mmCLAE, for noise reduction in mmWave radar signals. mmCLAE effectively
removes rain-induced artefacts from the radar data, improving the tracking ac-
curacy and resilience in adverse weather conditions. Additionally, we introduce
a CNN-based model for rain intensity classification, which accurately classifies
the intensity of rainfall based on mmWave radar data. By jointly addressing
noise reduction and rain intensity classification, the proposed approach signif-
icantly improves the performance of mmWave multi-object tracking systems
in challenging weather conditions. The developed methods provide a practical
implementation of deep learning techniques to mitigate the impact of adverse
weather on tracking performance, demonstrating the potential for real-world

applications in dynamic environments.
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Figure 1.1: Thesis organisation.

This thesis is structured into several chapters that address different aspects of
mmWave radar multi-object tracking and sensing, as illustrated in Figure 1.1. The
fisure presents the overall thesis organisation, with our three major contributions

forming the core pillars of this research.

In this chapter, Chapter 1, we introduced the fundamental concepts and motivations
behind mmWave radar technology. We provided a detailed background in Section
1.1, discussing the current applications and advantages of mmWave technology in
various fields. In Section 1.2, we defined the problem statement, highlighting the
challenges and gaps in existing multi-object tracking systems using mmWave radar.
Following this, we outlined the major contributions of this thesis in Section 1.3, sum-
marising the key innovations and methodologies proposed to address the identified
challenges. Finally, we present the overall thesis structure in this section, Section

1.4.

Chapter 2 is structured to provide a comprehensive review of the current state of the
art in mmWave radar multi-object tracking and sensing. The chapter begins with
Section 2.1, which traces the history of multi-object tracking from its inception to
modern advancements. This is followed by Section 2.1.1, which addresses the founda-
tional theories and methodologies that have shaped the field. Section 2.1.2 discusses
the early developments in multi-object tracking, focusing on the implementation of

Kalman filters and particle filters. The chapter then explores recent advances in the
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field in Section 2.1.3, highlighting the impact of deep learning techniques and sensor
fusion. Section 2.2 specifically addresses the challenges and methodologies related
to mmWave radar multi-object tracking. The chapter concludes with Section 2.5,
which summarises the findings and provides concluding remarks on future directions

in this field.

In Chapter 3, we present the first major contribution of this thesis, focusing on the
development of a framework for incorporating environmental characteristics from
multi-object tracking trajectory data. The chapter begins with Section 3.1, which
provides an overview of the proposed framework and its objectives. Section 3.2 de-
tails the architecture of the Regional Dominant Trajectory Pattern (RDTP) multi-
object tracking system, explaining the purpose and function of each stage. Section
3.3 describes the methodology and implementation of the proposed framework, in-
cluding the data collection, pre-processing, and analysis steps. In Section 3.4, we
present the experimental results and analysis, evaluating the performance of the

framework in various scenarios. We conclude the chapter with Section 3.5.

Chapter 4 is structured to present a framework for combining mmWave radar and
camera data to enhance tracking and classification capabilities. The chapter begins
with an introduction in Section 4.1, which outlines the motivation and challenges
associated with sensor fusion. Following this, Section 4.2 reviews existing sensor
fusion architectures, discussing various approaches and their benefits and limita-
tions. Section 4.3 details the proposed methodology for radar training with camera
labelling and supervision, including the problem space and the proposed approach.
The system design and implementation of the proposed framework are discussed in
Section 4.4, providing a practical demonstration of the methodology. Finally, the
chapter concludes with an evaluation of the system’s performance and a discussion

of the results in Section 4.5 and Section 4.6.

In Chapter 5, we discuss our final major contribution to enhance the performance
of mmWave multi-object tracking systems in adverse weather conditions. An in-
troduction to the chapter is provided in Section 5.1, outlining the motivation and
objectives of the proposed approach. Section 5.2 reviews classical methodologies for

noise reduction and rainfall sensing in mmWave radar systems, providing a foun-
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dation for understanding the proposed techniques. The unified system architecture
is detailed in Section 5.3, describing the integration and workflow of the noise re-
duction and rain intensity classification modules. Section 5.4 presents the proposed
noise reduction approach, including the architecture of mmCLAE and its training
process. Section 5.5 describes the CNN-based method for rain intensity classifi-
cation, including the model architecture and training process. The experimental
results are discussed in Section 5.6, demonstrating the effectiveness of the proposed
approaches in enhancing multi-object tracking performance and robustness to rain
artefacts. Finally, the chapter concludes with Section 5.7, summarising the findings

and discussing future research directions.

Lastly, in our final chapter, Chapter 6, we summarise the key findings and contri-
butions of the thesis and provide recommendations for future work in the field of
mmWave radar multi-object tracking and sensing. The chapter begins with Section
6.1, which provides a detailed summary of the significant contributions made by
this thesis, highlighting the advancements in environmental characterisation, sen-
sor fusion, and noise reduction techniques. Following this, Section 6.2 outlines the
recommended future work, categorising potential research directions into advanced
environmental characterisation, improved sensor fusion techniques, enhanced noise

reduction methods, and real-world deployment.



Chapter 2

Literature Review

This chapter provides a comprehensive review of the current state of the art in
mmWave radar multi-object tracking and sensing. The purpose of this chapter is
to lay the foundations for the research conducted in this thesis, by identifying the
primary components and processes involved in mmWave object tracking and sens-
ing systems. This chapter is structured as follows: Section 2.1 provides a historical
overview of multi-object tracking, detailing the foundational theories and early de-
velopments. Section 2.2 focuses on mmWave radar multi-object tracking, outlining
the specific challenges and methodologies associated with this technology. Section
2.3 presents a typical mmWave tracking system architecture, describing the key
components and processes involved. Section 2.4 explores advanced technologies and
methodologies that enhance the capabilities of mmWave tracking systems. Finally,
Section 2.5 summarises the findings and provides concluding remarks on future di-

rections in this field.

2.1 History of Multi-Object Tracking

Multi-object tracking can be traced back from the 1960s to the present. The founda-
tional theories proposed by Pylyshyn and Storm [18] in 1988 introduced the coneept
of parallel tracking processes in humans, ultimately laying the foundations to recog-
nising multi-object tracking as its own field. Early developments in the field saw

the implementation of using Kalman filters and particle filters, which fundamentally
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improved tracking accuracy and reliability, along with data association techniques
like the Joint Probabilistic Data Association (JPDA) algorithm. As we approach
more modern implementations of multi-object tracking, a notable trend can be ob-
served in recent advances being heavily inspired by deep learning techniques, such
as CNNs and Recurrent Neural Networks (RNNs). The remainder of this section

will explore each of these historical developments in more detail.

2.1.1 Foundations of Multi-Object Tracking

Although multi-object tracking has been a concept for several decades, the theory
behind it was first formally introduced as its own field of study following the pub-
lication in 1988 by Pylyshyn and Storm [18]. In Pylyshyn and Storm’s work, they
introduce a model that attempts to describe how multi-object tracking in the visual
field takes place for humans simultaneously. Their work proposes the idea that sug-
gests that tracking multiple targets does not exclusively happen in a serial fashion
and instead, humans make use of a parallel tracking process [18]. Their work de-
scribes a process whereby humans are able to track multiple objects in the field of
view by assigning a unique identifier to each object. This unique identifier is then
cognitively used to maintain a track for the object as it moves through the field of
view. This process is ultimately termed by Pylyshyn and Storm as the Fingers of
Instantiation (FINST), otherwise known as the Visual Indexing Theory [18]. Figure
2.1 illustrates the concept of the FINST model and how cognitively each object is
associated with its own identity that maintains a respective track for the object. The
FINST model was later further refined in future work by Pylyshyn [19][20][21] and
is a key underlying foundation to the domain agnostic research behind multi-object

tracking systems.

2.1.2 Early Developments in Multi-Object Tracking

The early developments in multi-object tracking primarily focused on the implemen-
tation of Kalman filters and particle filters to improve the tracking accuracy and
reliability of systems. Kalman filters, also known as linear quadratic estimation,
were introduced in the 1960s and provided a robust framework for estimating the

state of a dynamic system from a sequence of noisy measurements [22]. In a gener-
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Figure 2.1: Illustration of the FINST model for human visual field multi-object
tracking.

alised form, the Kalman filter can be expressed in two main steps: the prediction
stage and the update stage. In the prediction stage, the filter estimates the state
of the system based on the previous state and dynamics of the system [22]. The

predicted state estimate at time k, denoted by Zx_1, is given by:

Tpk—1 = Frlp_1je—1 + Brt, (2.1)

where Zj._; is the predicted state estimate at time k, F is the state transition
matrix, j_y,—_; i8 the previous state estimate, By, is the control input matrix, and

iy, is the control input at time k.

Similarly, the predicted state covariance at time k, denoted by Pyx_1, is expressed

A8

Pue—1 = FePe_yj1 F{ + Q. (2.2)

where Py, is the predicted state covariance at time k, and ()}, is the process noise

covariance matrix.

In the update stage, the filter utilises new measurements to refine the state estimate

and reduce uncertainty [22]. The Kalman gain at time k, which determines the
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optimal weighting between the predicted state and the measurement, is expressed

as:

Ky = Pyp_1 Hy, (HiPp—1 HY + Ri) 7', (2.3)

where K} is the Kalman gain at time k, Hj is the observation matrix, and R is the

measurement noise covariance matrix.

The updated state estimate at time k, incorporating the new measurement informa-

tion, is given by:

ek = Trppe—1 + Ki(2e — HeZep—1), (2.4)

where Iy, is the updated state estimate at time k, and z; is the measurement at

time k.

Finally, the updated state covariance at time k, reflecting the reduced uncertainty

after incorporating the measurement, is expressed as:

Py = (I — Ky Hy) Pp_1, (2.5)
where Fy;. is the updated state covariance at time k, and [ is the identity matrix.

Kalman filters are particularly effective for linear systems with Gaussian noise and
largely still used in tracking systems to date. However, in complex tracking problems
involving non-linear systems and non-Gaussian noise, particle filters, or otherwise
known as sequential Monte Carlo methods, were proven to be an effective solution.
Particle filters represent the probability distribution of the object’s state with a set
of random samples, ultimately proving to be a more flexible approach to tracking

multiple objects [23].

A generalised approach to particle filters is represented in Algorithm 1, where N is
the mumber of particles, x,(::' represents the state of the i-th particle at time k, and
F(I_;,|I_5:ll] is the state transition model. The weight of the i-th particle at time k is

denoted as wf}, while p{yﬂmfj} represents the likelihood of the observation y given
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the state zfz'. The normalised weight of the i-th particle at time k is TIJE:I, and p(zp)

is the initial state distribution.

Algorithm 1 Generalised Particle Filter
1: Initialise particles {z{’}Y, from p(zq).

2: for time step k do
3: Prediction: :rii:' ~ pl[:rklirﬂl)

4: Update: wf'} = p{yﬂzf}_]
wh)
N

=1

6:  Resample: {z\"}¥, from {z\", @'}V,

5: Normalise: 'tI:E"} =

Wiy

7: end for

In addition to the early adoption of Kalman and particle filters, the development of
data association techniques were pivotal in the advancement of multi-object tracking.
The JPDA algorithm, introduced in the 1970s, provided an approach to associate
measurements with multiple targets, ultimately improving tracking performance in
environments with a high density of targets and/or clutter [24]. The JPDA algorithm
ultimately relies on the basic concept of maintaining multiple hypotheses about the
association of targets to the measurements, fundamentally providing more robust

tracking in complex environments [25].

A generalised approach to JPDA is represented in Algorithm 2, where a;; repre-
sents the prior association probabilities for each measurement-track pair (z;, T3),
and ﬁfl‘gl_l denotes the association probabilities for each measurement-track pair
(27, T;). The predicted state estimates for each target i are denoted as mﬂk_“ while
PEL_I represents the predicted state covariances for each target i. The measurement
is represented by z;, and T; denotes the track for the i-th target. The state estimates
for each target i are denoted as $E|]kﬁ and PFETL represents the state covariances for
each target i. The combined state estimate is represented by :iE‘h and the combined

state covariance is denoted as PA}L

These early developments discussed in the context of multi-object tracking were
foundational in the development of the multi-object tracking systems present in
modern day. The introduction of Kalman filters and particle filters provided stable

mechanisms for state estimation in dynamic systems, ultimately enhancing tracking
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Algorithm 2 Generalised JPDA

1:
2:

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:

Initialisation:

Initialise prior association probabilities a;; for each measurement-track pair

(24, T;), where z; is the measurement and T; is the track for the ith target.

Prediction:
Predict the state estimates $t|]k—l and covariances P,ETL_I for each target i.
Association:

for each measurement 2; do

for each track T; do
I - [i.4] ﬁ[‘j]p{zb]h* - 1;,
Calculate the association probability 5., , = =& |
k=1 = T, ablp(lal, )
end for
[4.7]
Normalise the probabilities ﬁj[:'l’:] L _I_l_l_ﬂ* =
i=1 k|i¢ 1

end for
Combined Update:

for each measurement-track pair (z;, T;) do

Update the state estimates zkllk , and covariances P,ETL 1

Compute the combined state estimate z"] — z["'] = ﬁL’I‘:] | EI‘;:]
Compute the combined covariance P,ETL — PA]L + ,[:if] 1{P5ET}=3] + (z
)@ —&)")
end for
Resample:

[ig] _
K|k

Generate new tracks based on the updated state estimates #; and covariances

F;.
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accuracy and reliability. Data association techniques, such as the discussed JPDA
algorithm, further improved tracking performance in complex environments with
multiple targets and clutter. These advancements have been pivotal in shaping the
direction of multi-object tracking research, more recent techniques that ultimately

build upon these foundations will be discussed in the following section.

2.1.3 Recent Advances in Multi-Object Tracking

In the more recent years, multi-object tracking has seen significant advancements,
specifically in the field of computer vision, with the rapid adoption of deep learn-
ing techniques. Deep learning methodologies, such as CNNs and RNNs, have been
employed to improve object detection, feature extraction, and tracking persistence
[26]. These methods have demonstrated reliability in handling complex scenar-
ins involving occlusions, varying object appearances, and dynamic environments.
For example, the use of Siamese networks for similarity learning has demonstrated
promising results in the potential of re-identifying objects across frames, ultimately
improving the tracking continuity [27][28][29]. Additionally, with the development
of attention mechanisms being included in these models, the networks can be better

focussed on more relevant features to improve tracking accuracy [30].

Another significant direction in the recent research is the integration of sensor fusion
techniques, which combine data from multiple sensors such as cameras, LIDAR, and
mmWave radars [31]. This multi-sensor approach takes advantage of the strengths
of each independent sensor type to provide a more comprehensive perspective of the
environment. As an example, cameras provide high-resolution information in the
visual spectrum, mmWave radars on the other hand reliably provide distance and
velocity measurements, even during conditions that are considered low-visibility,
such as nighttime. The fusion of these data streams can lead to a more reliable and
precise multi-object tracking system that not only improves tracking performance,
but also improves the ability for the system to function in diverse and challenging

environmental conditions.
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2.2 mmWave Radar Multi-Object Tracking

Multi-object tracking, although advanced in some domains such as computer vision,
is still a developing field in mmWave radar. The research and techniques available
for achieving robust and reliable multi-object tracking and sensing, specifically with
mmWave radar, are yet to be consolidated into a unified architecture. Complica-
tions, such as harsh signal propagation environments, make the task of multi-object
tracking and sensing quite difficult [32]. However, it should be highlighted that
tracking and sensing, unspecific to mmWave, is not a new concept in regard to radio
in general. This concept has been proven successful in other types of radios, such
as Impulse Radio Ultra-Wideband (IR-UWB) [33]. Therefore, the findings from
multi-object tracking and sensing with alternate types of radios can be assessed for

the potential to apply similar techniques with mmWave.

mmWave radar related literature can be categorised into continuous and discontinu-
ous multi-object tracking. Continuous tracking refers to the ability to track multiple

targets in an environment only whilst it is in the current field of view of the radar.

2.2.1 Discontinuous Multi-Object Tracking

Discontinuous tracking, on the other hand, is an extension of continuous tracking,
whereby the targets can be tracked whilst in the current field of view and also
correlated to a previous track if it re-appears in the future field of view of the
radar. To clarify the difference between the two types of tracking, consider an
individual, who is currently not in the field of view of the radar, performing the
following sequence of events, which can also be correlated against Figure 2.2 for

further clarity:
1. Moving into the radar’s field of view;
2. Leaving the radar’s field of view;
3. Moving back into the radar’s field of view.

In the described scenario, a solution that is capable of continuous tracking is one
that is capable of detecting and tracking multiple individuals in both event 1 and

3. However, a continuous tracking solution would not be capable of correlating
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Figure 2.2: Iustration of discontinuous tracking in mmWave radar.

individuals being tracked in event 3 with previous tracks in event 1. On the other
hand, a solution that is capable of discontinuous tracking is one that is capable of
detecting and tracking individuals in both event 1 and 3, as well as recognising it is
the same individual across the two events. Thus, a discontinuous tracking solution
is one that can correlate and track multiple targets across a discontinuous sequence

of events.

2.2.2 Applications of mmWave Multi-Object Tracking and

Sensing

A sophisticated combined mmWave multi-object tracking and sensing system, capa-
ble of reliably discontinuously tracking, has numerous applications. Such a system
could serve as a new level of security and surveillance by providing a foundation that
detects threats or concerns not easily identified by vision-based systems, all while
maintaining individual privacy. In the healthcare industry, this technology could
enable mass patient monitoring, allowing for passive and continuous observation of
vital metrics that typically require manual measurement by medical professionals.
This has the potential to lead to earlier detection of patient complications and more
timely interventions. Additionally, a mmWave multi-object tracking and sensing

system could serve as an affordable, wide-scale analytical and auditing platform
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Figure 2.3: mmWave tracking architecture block diagram.

for public spaces like shopping centres and parks. It could provide insights into
optimising space layouts, identifying congestion points, and understanding specific

behaviours triggered by environmental events.

Furthermore, the integration of advanced sensing methodologies, such as micro-
Doppler feature analysis and sensor fusion, can significantly enhance a system's
reliability and accuracy. By combining data from multiple sensors, such as cameras
and mmWave radars, the system can achieve a more comprehensive understand-
ing of the environment. This multi-sensor approach not only improves tracking
performance but also ensures the system’s functionality in diverse and challenging
conditions. The potential to incorporate identification strategies, such as gait recog-
nition and shape profiling, further extends the system'’s capabilities, enabling it to
uniquely identify and track individuals discontinuously. Collectively, these advance-
ments serve as the potential to drive the way for innovative applications in various

fields, from positively developing public safety to improving healthcare outcomes.

2.3 Typical mmWave Tracking System Architec-
ture

An overview of the architectural model for multi-object tracking with mmWave
radar, from data collection to tracked target information, is illustrated in Figure 2.3.
The intention of this architecture depicted in Figure 2.3 is to provide a foundation for
comparing and contrasting mmWave multi-object tracking research, encompassing

both continuous and discontinuous tracking methodologies.
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In order to help understand the events that take place to successfully perform dis-
continuous multi-object tracking with mmWave, the system can be illustrated as a
series of five chained components. These five components and the sequence in which
they are invoked is illustrated in Figure 2.3. The generalised aim of the system is
to comprehend the influence multiple targets simultaneously have on radar chirps.
This signal disturbance translates to information being exploited to initiate or re-
sume a maintained track on an object, whilst it is in the radar’s field of view. The
system should ultimately produce a stream of uniquely identifiable objects along
with their corresponding tracking context. The overall system architecture and se-
quence of components is a well established pattern in radar tracking literature. The
uniqueness of an mmWave tracking system is ultimately held in the implementation
of the system components and the mechanisms that are employed to characterise
the tracked objects. The remainder of this section will explore and describe the

purpose of each stage illustrated in the generalised architecture shown in Figure 2.3.

2.3.1 Radar Architecture

The radar architecture of a typical multi-object tracking system consists of the com-
ponents required to ultimately collect the data describing the observed environment.
Over the last couple of years, single board general-purpose mmWave radars have
become readily available as off the shelf products, such as the Texas Instruments
(TT) family of industrial and automotive mmWave radar sensors. A general archi-
tecture for a single board mmWave radar sensor is illustrated in Figure 2.4. The
architecture of a single board mmWave radar sensor is usually comprised of 4 main
component stacks, the radio components, analog components, digital components,
and the software [34]. The radio components are responsible for ensuring the radar
signals are sent and received. This usually includes Transmitter (Tx) and Receiver
(Rx) antenna arrays, along with the necessary synthesisers and mixers to construct
the Intermediate Frequency (IF) signal. The analog components are responsible
for conditioning the IF signal, which usually involves various amplifiers and filters.
The digital components are responsible for processing the signal, this will require
an Analog-to-Digital Converter (ADC) to convert the IF signal to a digital signal,
along with specialised signal processing units, such as a Digital Signal Processor
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Figure 2.4: Single board mmWave radar sensor architecture.

(DSP), and finally a Microcontroller Unit (MCU). Lastly, the software components
are responsible for managing the overall operation of the radar sensor, this usually
includes the radar sensor firmware and any software that interfaces with the radar

SETISOT.

There are a number of considerations to be made when determining the antenna con-
fisuration to employ for a mmWave radar multi-object tracking system. Specifically,
an acknowledgement should be made regarding the components that contribute to
the instability and non-ideal nature of the transmitted signal [35]. A Multiple In-
put Multiple Output (MIMO) antenna array is the most commonly utilised antenna
configuration in radar systems. This is primarily due to its spatial diversity charac-
teristics, ultimately resulting in a more superior detection performance, compared
to traditional directional or phased-array antenna configurations [36], [37]. A study
conducted in [37] demonstrates statistically the performance advantages of MIMO
systems in comparison to alternate antenna models, highlighting the ability to ex-
ploit the spatial diversity of a MIMO system to ultimately overcome target fading

in radar applications.
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2.3.2 Position and Velocity Estimation

Ongce the appropriate radar architecture has been decided, a strategy for calculating
the estimated position and velocity of reflected points should be determined. It
should be acknowledged that the position of a reflected point is comprised of the

range and azimuth of the reflected point, with respect to the radar.

Frequency Modulated Continuous Wave (FMCW) radar systems are commonly used
in mmWave multi-object tracking systems due to their ability in providing high
resolution range and velocity estimates. The fundamental principle behind FMCW
is the transmission of a frequency-modulated signal, referred to as a chirp, which
ultimately sweeps linearly over a range of frequencies during a specified chirp time

window. A FMCW chirp signal can be mathematically represented as:

s(t) = Acos (ﬂ?r (f.]t - gtﬂ)) \ (2.6)

where A is the amplitude of the signal, fy is the initial frequency of the chirp, S is
the slope of the chirp (frequency gradient), and ¢ refers to time.

The chirp signal starts at frequency f; and increases linearly to f; + B over the
total chirp duration T, where B refers to the bandwidth of the chirp, as illustrated
in Figure 2.5. The slope 5 of the chirp, which defines the rate of frequency change,
is given by:

S=7=. (2.7)

When the transmitted chirp signal reflects off an object, the received signal is a time-
delayed version of the transmitted signal. The time delay 7, which is proportional

to the distance K of the object from the radar, is expressed as:

T=— (2.8)
where ¢ is the speed of light.

The received signal, representing the time-delayed version of the transmitted chirp

after reflection from an object, is mathematically expressed as:
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Figure 2.5: Illustration of a FMCW chirp signal showing the linear frequency sweep

over time.

r(t) = Acos (ﬂ?r ( fo(t —7) + g{t - r]?)) , (2.9)

The received signal is then mixed with the transmitted signal to produce the IF.
The IF signal, obtained by multiplying the transmitted signal s(¢) with the received
signal r(t), is given by:

ITF(t) = s(t)r(t), (2.10)
which represents the fundamental mixing operation in FMCW radar processing.

The IF signal consists of the beat frequency, which is ultimately the difference
between the transmitted and received frequencies. After mathematical simplification

of the mixing operation, the IF signal can be expressed as:

IF(t) = A%cos (Zir (ﬂz - ”"R)) , (2.11)

c c
where the first term represents the beat frequency proportional to range, and the

second term represents the constant phase offset.

In an environment where multiple objects are influencing the IF signal, a Fast Fourier
Transform (FFT) can be performed on the IF signal to derive a frequency domain
expression of the signal. This transformation allows the identification of distinct

frequency peaks, each corresponding to a specific detected object. The distance of
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each detected object can then be calculated based on the frequency present in the
IF signal. This relationship is given by:

[=]

_ Clip
R, = 23 (2.12)

where R, is the distance of the detected object x, fﬁl is the frequency of the detected

object x in the IF signal, ¢ is the speed of light, and 5 is the slope of the frequency

modulation.

Through analysing the frequency peaks in the FFT of the IF signal, otherwise known
as the range-FFT, it is possible to determine the range of multiple objects simulta-
neously. This method is particularly effective in environments with multiple targets,
as it allows for the separation and identification of each object’s distance based on

their unique frequency signature.

The velocity of a detected object can ultimately be obtained by analysing the phase
difference between consecutive chirps corresponding to the same object. In the
situation where multiple objects are present at the same distance from the radar,
the phase difference of the FFT of the IF signal will have multiple objects encoded
within it. As a result, a second FFT should be performed, labelled as the Doppler-
FFT, which will ultimately reveal peaks of phase differences corresponding to the
number of detected objects. The velocity of a given object V., derived from the

Doppler-FFT analysis, is given by:

pYAR
Ve = T (2.13)

where w, is the phase difference of the detected object in the IF signal, A is the

wavelength of the transmitted signal, and T is the chirp duration.

The last component of interest, required for multi-object tracking, that can be de-
rived from the reflected signal is the horizontal angle, relative to the radar, of the
object that caused the signal reflection. This is termed as the Angle of Arrival
(AoA). For two Rx antennas, the AoA of a reflected signal #, is expressed as:

AL
—ain-1 [ A=
#, = sin (Zmi) , (2.14)
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Figure 2.6: Generalised stages of association and tracking in an mmWave tracking

architecture system.

where d is the distance between the two Bx antennas. In an architecture where mul-
tiple Rx antenna pairs are presented, the final AoA can be derived by determining

the average AoA result from all Rx antenna pairs.

The ultimate outcome of this stage in a mmWave tracking system is to obtain the
necessary information to construct a 2-dimensional plot that illustrates the reflec-
tion points in the environment. Estimating the range, angle, and velocity of each
reflection point is sufficient to construct a plot of this nature. The most common
way to illustrate this information is to plot it in a point cloud graph. The position
of each point is determined by the range and AoA, while the colour or size of the

points can be used to represent the velocity of the detected objects.

Combining the range, velocity, and AoA information, the mmWave radar system can
effectively display multiple objects in the environment, providing a comprehensive

visualisation of their positions and movements.

2.3.3 Association and Tracking

The association and tracking component of an mmWave tracking system should
fundamentally consume the information that illustrates reflection points, deduced
in Section 2.3.2 of this chapter. Using this information, usually in point cloud
format, the process illustrated in Figure 2.6 highlights the typical stages involved in

achieving a set of continuously tracked objects from the obtained point cloud data.

The first processing stage illustrated in Figure 2.6, static noise removal, refers to
a process whereby any points in the point cloud data that are present in both

frame N, and N,_; are deemed as static noise and removed from frame N.. This
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noise removal technique is typical in current mmWave multi-object tracking systems.
One key assumption that is made in this noise removal attempt is that targets of
interest must always be moving to be tracked. Therefore, any targets that are mostly
stationary, such as a person sitting at an office desk, cannot reliably maintain a track
under this assumption. This chapter explores advanced strategies in Section 2.4 that

attempt to overcome this assumption when tracking multiple-objects.

Proceeding to the second stage in Figure 2.6, although the static noise has been
removed it cannot be said that the data points present are noise free. Due to the
multi-path theory, it is likely that there will be a number of data points present
that are ghosts of the actual reflected objects [38]. As a result, an appropriate
correlation and clustering algorithm is usually emploved to alleviate this challenge
and gate related reflection points. The most successful clustering algorithm that
is used in point cloud data is the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm, originally presented in [39].

The DBSCAN alpgorithm ultimately groups together points that are closely packed
together, while flagging points that are alone in low-density regions as outliers in
the dataset. The algorithm essentially requires two parameters: the radius € that
defines the region around a point, and the minimum number of points MinPts
required to form what is classified as a dense region [40]. In the context of mmWave
multi-object tracking, the radius € can be considered as the maximum distance
between two points for them to be considered as part of the same cluster. The
minimum number of points MinPts can be considered as the minimum number of
points required to identify as an object. The DBSCAN algorithm can ultimately be

expressed in a generalised form as seen in Algorithm 3.

In DBSCAN, a point P can be considered a core point if its neighbourhood has at
least MinPts points. A point () is considered directly density-reachable from P if )
is within the e-neighborhood of P. Additionally, point ) is density-reachable from
P as long as there is a chain of points Py, P, ..., P, where P, = P and P, = (), and
each P, is also directly density-reachable from F;,. Lastly, point () is considered
density-connected to P providing there is another point O, such that both P and @)

are density-reachable from O.
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Algorithm 3 DBSCAN

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:

18
19

20:
21:
22:
23:
24:
25:
26:
a7
28:
20:

30

Input: Dataset D, radius ¢, minimum points MinPts
Output: Set of clusters '
Initialise C' + @
Mark all points in ) as unvisited
for each point P in D do
if P is unvisited then
Mark P as visited
N + neighbourhood of P using ¢
if |[N| = MinPts then
C; + new cluster containing P
ExpandCluster(C;, P, N, €, MinPts)
Add Ci; to C
else
Mark P as noise
end if
end if
end for
: Procedure ExpandCluster(C;, P, N, e, MinPts)
: for each point P’ in N do
if P’ is unvisited then
Mark P’ as visited
N' + neighbourhood of P' using ¢
if |N'| = MinPts then
N+ NuN'
end if
end if
if P' is not yet part of any cluster then
Add P' to C;
end if

: end for
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mmWave radar tracking systems predominately either use the DBSCAN algorithm
for clustering and association of data points or implement an alternate clustering
algorithm that is typically a variation of the DBSCAN algorithm. The presented
variations of DBSCAN usually outperform the original algorithm in the datasets
specific to the implementation [41]-[45]. Once the point cloud data points have
been correlated and clustered together to form a set of groups, a common strategy
to decide the position of a holistic object is to logically take the centroid of the

respective cluster.

After guaranteeing reliable point cloud associations and clustering has been made
to collate the points associated with the various objects in scene, the next step is
to persist a track for each of these objects across a continuous set of frames. In
the vast majority of mmWave multi-object tracking systems, the tracking aspect
in its simplest form is primarily achieved through the use of a Kalman filter, as
mentioned earlier in Section 2.1.2. Kalman filtering is a widely adopted approach to
efficiently provide tracking and estimations [46]. Many variations of Kalman filters
have been presented in the literature to ultimately optimise the performance and
outcome of tracking an object via mmWave radar. The research conducted by [47]
demonstrates an example where Kalman filtering was applied to successfully track
multiple objects with respect to an mmWave radar. For each object detected by
the radar, an individual Kalman filter is applied for tracking and estimation of the
specific object. Each Kalman filter is then run independently [47]. The authors of
[47] highlight that the success of implementing a Kalman filter to track and estimate
the position of an object is highly dependent on the clustering and data association

techniques that have been employed for object detection.

2.3.4 Sensing and Identification

The final component of a mmWave tracking system is any sensing and identification
strategies that might be employed alongside the tracking architecture. The desired
outcome of this component of the system is to ultimately perform a particular sensing
or identification task and associate the outcomes with the tracked objects. Currently,
there is no typical way this component of a mmWave tracking system is jointly

achieved.
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Specific sensing methodologies can include various techniques, such as micro-Doppler
analysis, which utilises the short wave-length of mmWave to extrapolate fine-grained
motion characteristics of objects. For example, micro-Doppler signatures could be
used to detect human vital signs such as heartbeat and breathing patterns, which
can be particularly useful in healthcare applications [48]. Furthermore, these signa-
tures can also help in distinguishing between different types of movements, such as
walking, running, or even subtle gestures, thereby enhancing the tracking system's

ability to understand the context of the tracked objects.

Identification strategies, on the other hand, focus on uniquely identifying objects
within the radar’s field of view. This can be achieved through methods such as gait
recognition, where the unique walking patterns of individuals are used to identify
them [49]. Another approach could be through the use of Radio Frequency Identi-
fication (RFID) tags or a Reconfigurable Intelligent Surface (RIS) that can encode
a unique signature for each object. Shape profiling is another technique where the
physical dimensions and contours of an object are used to create a unique identifier

[50]-[52].

Sensing and identification components of mmWave tracking can be loosely coupled
with the ability to discontinuously track a particular object. Discontinuous tracking
in the context of this thesis refers to the ability to re-establish or correlate a previous
track of a specific object to a current track. Specific examples of this are explored
in Section 2.4 of this chapter.

2.4 Advanced Technologies and Methodologies

In the previous section of this chapter, a typical mmWave radar multi-object track-
ing system and its components were explored and discussed. This section of the
chapter aims to describe the state-of-the-art advancements in mmWave multi-object
tracking and how it contributes to the generalised multi-object mmWave tracking
architecture explored in Section 2.3. Figure 2.7 highlights the areas that are being
explored in this section of the chapter in contrast to the typical system architecture
presented in Figure 2.3. The system architecture stages radar data collection, posi-

tion and velocity estimation, and gating are all mature with regard to multi-object
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Figure 2.7: Areas explored and discussed in Section 2.4 in contrast to the typical
multi-object mmWave tracking architecture block diagram presented in Figure 2.3.

tracking. The areas which require most attention for developing advanced method-
ologies is object detection, and joint tracking, sensing and identification. These
areas specifically are receiving the most focus primarily due to the limitations that

are faced in the current typical multi-object tracking architectures.

For each of the below subsections, the methodologies presented will be compared
and contrasted with respect to the below criteria. The relevant advantages and
disadvantages for the methodologies discussed will be outlined for each ecriterion.

The criteria that will be used to assess the methodologies is:

Adaptability: The ability to apply the methodology in a generalised form
so that it can contribute to advancing the system architecture presented in

Figure 2.3.

Performance: The overall performance of the methodology with respect to

its suitability for real-time applications.

Accuracy: A consideration regarding the accuracy metric of the techniques

presented in the specific methodology.

Specificity: The sensitivity of the methodology in regard to the particular

event /action being measured or characterised. This criterion provides an op-
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portunity to consider any event overlap that the methodology might have,

such as false positives.

2.4.1 Object Detection Enhancements

One of the fundamental flaws in a typical mmWave tracking system is the reliance
on static noise filtering. This reliance ultimately spawns challenges related to the
reliable tracking of a static object. As a result, a large focus on methodologies and
strategies to alleviate these challenges can be seen in the literature. The two overar-
ching themes that encompass the research direction for addressing these challenges

are sensor fusion and micro-Doppler feature analysis.

Sensor fusion, in the context of this thesis, refers to the combination of data from
additional sensors in addition to a mmWawve sensor. A common approach to this
in the literature is to fuse camera data with the data obtained from the mmWave
sensor to achieve a more coherent and comprehensive object detection algorithm.
One of the primary challenges with fusing camera and mmWave radar detections
is that they are a heterogeneous pair of sensors [53]. The plane in which the radar
detections are alipned with is different to that of the camera detection. Therefore,
this can make associating the detections between the two sensors quite difficult [53].
Research presented by [53] demonstrates a novel approach to solving the association
challenge. In the methodology presented in [53], the authors define the concept of
error bounds to assist with the data association and gating within a fusion Extended
Kalman Filter (EKF'). The concept of error bounds provide a criterion to define the

behaviour of the individual sensors before and after the sensor fusion [53].

In the fusion-EKF presented in [53], the radar point cloud clusters are formed using
an approach similar to the typical architecture discussed in Section 2.3 of this chap-
ter, with DBSCAN. Similarly, the bounding boxes on the image plane are initially
formed in isolation to the radar and then sent to the fusion-EKF to be associated and
tracked with the radar clusters. The plane of the camera data points is transformed
from an image plane to a world plane using a homography estimation method [53].
A warped bird eye view of the camera data points can then be estimated using the

world coordinates. The estimated warped birds eye view can then be compared and
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associated with the radar point cloud data points [53]. In the fusion-EKF presented
by [53], the error bounds are updated using data points from both of the sensors
(as opposed to independently) and the warped bird eye view of the image plane is
calculated for each sample point. As a result, the authors of [53] demonstrate that
although this yields a higher association accuracy, a time synchronisation challenge
is faced between the sensors. This challenge is resolved in the research by ensuring
timeline alignment between the sensors and a synchronisation strategy is employed
by comparing certain regions of the fusion-EKF output with the error bounds [53].
The experimental results presented by [53] appear to demonstrate a higher reliability

in real-time target detection and persisted tracks, compared to a radar alone.

Exploiting micro-Doppler in mmWave radar systems is actively being sought as
another angle to devise methodologies that resolve the challenge of static object
detection and localisation. Specifically in the context of human detection, biomet-
ric information, such as heartbeat and breathing are being explored as potential
features that are measurable through micro-Doppler. A study performed by [54]
demonstrates an algorithm designed to localise multiple static humans using their
individual breathing pattern. The research performed by [54] highlights that the
time of flight of a signal is minimally impacted by the small movements of a breath-
ing chest cavity. As a result, the sub-millimetre movements are lost when performing
static background removal between two consecutive frames, 12.5 milliseconds apart
in the case of the experiment performed by [54]. To counter this loss of information,
the authors in [54] suggest subtracting the static background from a frame that is
a few seconds apart, 2.5 seconds in the case of the research performed by [54]. In
doing this, the sub-millimetre movements are ultimately exaggerated in comparison
to a truly static object and therefore are left intact when performing a removal of

static data points.

The authors of [54] make note that removing static background points from a frame
that is a few seconds apart does not work for a non-static object, such as a per-
son walking. This is due to the principle that the movements appear exaggerated
when compared to a frame a few seconds apart, so [54] notes that walking appears
‘smeared’ in this regard. Based on this differing outcome with static and dynamic

objects, the algorithm presented in [54] employs independent different background
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removal strategies; one for static objects using a long window and one for dynamic
objects using a short window. The experimental results presented in [54] demon-
strate a high accuracy of 95%. It should be noted that the experiments performed
by [54] do not appear to quantify the success of both moving individuals and static
individuals simultaneously within the scene. The radar architecture used in the re-
search presented by [54] is slightly different to the mmWave tracking system that has
been discussed in this chapter. However, the research performed by [54] illustrates
the potential to use vital signs as a means of detecting a static object. It would be of
interest to assess the range potential of implementing a static localisation algorithm

of this nature using a mmWave tracking system architecture.

The literature explored in this chapter regarding vision sensor fusion and biometric
micro-Doppler feature analysis presents viable approaches to enhance traditional
object detection methods. These approaches enable the tracking of objects that
transition between dynamic and static movement states. Table 2.1 outlines the
advantages and disadvantages of the two methodologies with respect to the com-
parison criteria. Although individually both methodologies prove viable, it would
be interesting to consider a combination of both methodologies to compliment each
other. Specifically, incorporating a micro-Doppler feature analysis component to
the vision system could in turn remove the need for utilising the universal back-
ground subtraction algorithm [55] for identifying moving objects in an image. This
could potentially be considered as a three component sensor fusion approach, where

camera data points, static radar data points, and dynamic radar points are fused.

2.4.2 Sensing Methodologies

Sensing is not typically considered a usual aspect that is present in an object tracking
system. However, it is a stream of research that has been investigated independently
and has the potential when integrated with a tracking system to enhance the tracking
systems sensitivity and reliability. An enhancement to the tracking system through
sensing could ultimately spawn through the additional extracted features that the
sensing solution provides, granting more data points that can be incorporated into
the tracking estimation and prediction. The advanced sensing methodologies that

are explored in this section can be classified as either general activity recognition or
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Table 2.1: A comparison of methodologies explored for the enhancement of object

detection in an mmWave tracking architecture.

Criterion | mmWave and Vision Sensor | Breathing Micro-Doppler

Fusion Feature Analysis

Adaptability |v" Low architecture assumptions. |v' Decoupled from architecture

v" Unified sensor point cloud dependencies.
data. x Specialised noise treatment.

»x Unified plane projection over-
head.

Performance |v" Suitability demonstrated in |v No impact to typical multi-
the literature. object detection.

»x Potential time synchronisation | x Immature understanding on
drift. technique overhead.

Accuracy v' Azimuth angle accuracy im- |v" High for multiple dynamic ob-
proved. jects.

v" Multi-object track persistence |v' Uncompromised fixed multi-
improved. object tracking.

»x Immature system understand- | x Immature understanding re-
ing regarding the compromise garding accuracy and range re-
of a single sensor (i.e. dark lationship.
room).

Specificity  |v' All moving objects have a pres- |v' Technique not constrained to

ence in radar and vision that
can be correlated.
«x Fixed objects of interest are

not typically distinguishable.

breathing.
» Immature understanding of si-
multaneous static and fixed

multi-object tracking.
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specialised estimation methodologies.

General activity recognition can be considered as a class of sensing methodologies
that have an underlying objective of classifying a broad set of movements or activ-
ities that a given object in the field of view might exhibit. One stream of research
that dominates this class of sensing methodologies is Human Aectivity Recognition
(HAR). Traditionally, a radar based HAR system relied on machine learning tech-
niques such as random forest classifiers [56], dynamic time warping [57], and Support
Vector Machines (SVMs) [58]. In comparison to a deep learning based approach,
these techniques are usually computationally less taxing due to their lower complex-
ity. However, relying solely on conventional machine learning techniques for HAR
contrastingly presents several limitations. A survey conducted by the authors of [59]
provides a thorough critical analysis over the evolution of radar-based HAR. In [59],
a conventional machine learning approach to HAR is considered to make optimisa-
tion and generalisation of the HAR solution difficult. The authors of [59] highlight
three fundamental limitations of machine learning techniques with respect to a HAR
system. The first acknowledges the approach in which feature extraction takes place,
specifically a manual procedure based on heuristics and domain knowledge which is
ultimately subject to the human’s experience [59]. The second limitation identified
relates to the fact that manually selected features tend to also be accompanied by
specific statistical algorithms that are dependent on the trained dataset. As a result,
when applying the trained model to a new dataset the performance is typically not
as good as the dataset that was used to train the model. Lastly, the authors of [59]
highlighted that the conventional machine learning approaches used in a radar based
HAR system primarily learn on discrete static data. This poses a difference between
the data that is used to train a model and the data that the model is subject to
during real-time testing. The real-time data is principally continuous and dynamic
in nature. The survey conducted by [59] explores the potential for deep learning to

assist in alleviating these limitations in machine learning radar-based HAR systems.

Although there are some limitations with using conventional machine learning ap-
proaches, it should also be acknowledged that there have been successful applications
of radar-based HAR using these techniques. The research presented in [60] identifies

recent work that attempts to classify three different walking /movement patterns:
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Figure 2.8: Walking classification system designs explored in [60]; a) Principal Com-
ponent Analysis (PCA) combined with SVM classification; b) PCA combined with
k-NN classification; ¢) t-Distributed Stochastic Neighbour Embedding (t-SNE) com-
bined with SVM classification; d) t-SNE combined with k-NN classification.

e Slow walk;
o Fast walk;
¢ Slow walk with hands in pockets.

The authors of [60] attempt to classify these walking patterns comparing the per-
formance between an approach using K-Nearest Neighbour (k-NN) and SVM. The
four system designs explored in the work presented by [60] can be seen illustrated
in Figure 2.8. In [60], both the range-Doppler and Doppler-time data is incorpo-
rated into feature extraction. The impact each of the walking patterns have in
the range-Doppler and Doppler-time maps are illustrated in the form of a heatmap
[60]. In this form, it can be seen that the change in walking speed (the difference
between slow and fast walking) results in a dramatic change in the range-Doppler
and Doppler-time maps. Whereas, maintaining a consistent walking speed and with

hands in the pocket has less of a notable difference.

In regard to extracting the features, the authors of [60] explore and compare two
potential approaches, using either PCA or t-SNE. Both of which are non-supervised
transform algorithms. The two feature extraction methods are compared against
each other whilst equally being applied with the two aforementioned classification

methods. The permutations of feature extraction methods with classification algo-

36



rithms explored are shown in Figure 2.8. The results obtained from [60], for each of
the explored system designs in Figure 2.8, demonstrate the capability of classifying
fast and slow walking with high accuracy. Using the feature extraction methods
and classification algorithms explored in [60], the authors note a 72% accuracy in

classifying slow walking with hand in the pocket.

Another piece of leading research in radar-based HAR is RadHAR presented in
[61]. In [61], the authors explore a range of classification approaches, including
both conventional machine learning algorithms and deep learning based algorithms.
The primary objective of the RadHAR system is to classify five human movement

activities; walking, jumping, jumping jacks, squats, and boxing.

Unlike the research presented in [60], in [61] the data that is used for classification
originates from point cloud. The point cloud data is first voxelised to ensure a
uniform frame size, despite the number of points, before feeding to the classification
algorithm. Using the voxelised point cloud data, a SVM, Multi-Layer Perceptron
(MLP), LSTM and CNN combined with LSTM were trained and compared against

each other.

The results of the research conducted in [61] demonstrate that the classification al-
gorithm with the highest accuracy, 90.47%, is that of a combined time-distributed
CNN and bidirectional LSTM. The authors of [61] hypothesise that the high accu-
racy of this approach can be attributed towards the fact that the time-distributed
CNN learns the spatial features of the point cloud data, whilst the bidirectional

LSTM learns the time dependent component of the activities being performed.

Specialised estimation, as opposed to general activity recognition, is a class of sensing
that has a primary focus on a single objective that can be measured. Measurement
of this nature, of course, should be considered as an estimation. This class of sens-
ing has overlap with features that can be used as a criteria for identifying a specific
object. More details on features with the potential to be used as an identification
strategy are addressed in Section 2.4.3 of this chapter. The primary driver behind re-
search in radar-based specialised estimation methodologies originates from a human
health perspective. The ability to determine human vital signs passively is an area

in which mmWave radar is being explored as a viable solution. A study performed in
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[62] demonstrates a solution named ‘mBeats’ which implements a moving mmWave
radar system that is capable of measuring the heartbeat of an individual. The pro-
posed ‘mBeats’ system implements a three module architecture. The first module
is a user tracking module, which the authors of [62] state that the system utilises
a standard point cloud based tracking system, as illustrated in Section 2.3 of this
chapter. The purpose of this module is to ultimately find the target in the room. It
should be noted that in [62] an assumption is made that there will only be one target
in the field of view. The second module proposed in [62] is termed as the ‘mmWave
Servoing’ module. The purpose of this module is to optimise the angle in which
the target is situated from the mmWave radar to give the best heartbeat measure-
ment. To achieve this, the authors of [62] specify the ultimate goal of this module
as obtaining peak signal reflections for the target’s lower limbs, since the mmWave
radar is situated on a robot at ground level. Using the Peak To Average value as
a determinant for the reflected signal strength, the authors define an observation
variable which is incorporated by a feedback Proportional-Derivative controller to

orientate the radar in the direction that yields the highest signal strength.

The last module is the heart rate estimation module, responsible for ultimately de-
termining the target’s heart rate from a set of different poses. The poses consist
of various sitting and lying down positions. The authors of [62] acknowledge that
heartbeats lie in the frequency band of 0.8Hz - 4Hz, and therefore implement a
biquad cascade Infinite Impulse Response (IIR) filter to eliminate unwanted fre-
quencies and extract the heartbeat waveform. A CNN is selected in [62] as the
predictor due to the heartbeat detection problem being considered as a regression
problem. The authors state that a key challenge with using a CNN for this problem
is estimating the uncertainty of the result. Uncertainty in this problem is ultimately
caused by measurement inaccuracies, sensor biases and noise, environment changes,
multipath, and inadequate reflections [62]. To overcome this, the authors of [62]
cast the problem into a Bayesian model, defining the likelihood between the predic-
tion and ground truth (y) as a probability following a Gaussian distribution. This
ultimately results in a loss function that quantifies the uncertainty-aware prediction

error, expressed as:

ly — .‘f||2 +

loss(x) = 552
o

1
Elﬂgaz, (2.15)
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where the CNN predicts a mean ¥ and variance o2. Using this approach the au-

thors of [62] compare the outcome of their model with three other common signal
processing approaches (FFT [63], peak count [64], and auto-correlation [65]) with

accuracy as the metric that is compared.

In the results presented in [62], it can be seen that the other approaches fail to
maintain an accuracy above 90% in all poses, whereas the CNN presented in [62] does
maintain a high accuracy for the selected poses. The authors acknowledge that in
the current system the target must maintain static whilst performing the heartbeat
measurement, and that future work will be focused on measuring a moving object.
It would also be interesting to assess the viability and challenges of this approach

in a multi-person scene.

The underlying theme of the sensing methodologies explored in this chapter is that
independently they are successful in the goal they aim to achieve. However, there
is a lack of acknowledgement in the literature regarding the suitability of these
methodologies in a combined holistic tracking and sensing architecture. It would
not only be interesting to assess their suitability in such a system, but also how
they may contribute to enhance the sophistication and reliability of such a tracking
system. Table 2.2 outlines the advantages and disadvantages of the explored sensing
methodologies, with respect to the comparison criteria. It can be seen in this table
that both methodologies explored fail to address the challenges of operating in a
multi-object environment. In order to achieve a tracking system that completes a
target profile with sensing characteristics, the challenge of sensing multiple objects

and associating the acquired information to a detected target must be solved.

2.4.3 Identification Strategies

The development of identification methodologies is a natural direction for the evo-
lution of mmWave tracking systems. It can be considered a more unique type of
specialised estimation sensing but with the key focus on being able to reliably and
uniquely correlate the sensed information to a tracked object. There are a number
of challenges that need to be considered and overcome in identification approaches,

such as the feasible range, separation of multiple objects, and generalisation of the
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Table 2.2: A comparison of sensing methodologies explored for the enhancement of

tracking reliability in an mmWave tracking architecture.

Criterion

Generalised Activity Recog-

nition

Specialised Estimation

Adaptability

v" Decoupled architecture im-

pact.
Uncertain tracking enhance-

ment reliability.

v~ Trusted point cloud processing

techniques.
Uncertain feedback enhance-

ment reliability.

Performance

Algorithm real-time perfor-
MANCE PrOVENL.

Uncertain system suitability.

Real-time suitability has been
proven viable.
Optimisation overhead to ac-

commaodate.

Accuracy

High pre-defined activity accu-
TACY.
Accuracy dependent on train-

ing environment.

Accuracy high due to the nar-
row focus.

Highly coupled to the training
data.

Specificity

Pre-defined actions
classified.

reliably
Uncertainty of multi-object
suitability.

Simultaneous classification

challenging.

Optimised for estimating a sin-
gle action.

Omne target is considered for es-
timation.

Underdeveloped literature in

mmWave field.
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Figure 2.9: System breakdown of the gait identification methodology presented in
[66].

approach. This section aims to explore the leading identification methodologies of
radar-based tracking systems.

Gait identification approaches rely on the different gait characteristics between in-
dividuals. Gait based identification strategies are the most common passive based
approach to identifying people in a radar or Wi-Fi based tracking system. They
fundamentally leverage that each person typically has a unique pattern in the way
they walk, this pattern is most often identified through a deep learning based tech-
nique. Gait recognition can pose its own challenges, such as inconsistencies and
unpredictable upper limb movements that influence the lower limb signal reflec-
tions. These interferences ultimately reduce the reliability of obtaining a consistent
lower limb gait pattern for a given individual. A recent study performed in [66]
attempts to overcome the challenges associated with upper limb movement interfer-
ence by narrowing the vertical field of view and focusing attention on the finer grain
movements of the lower limbs. The research presented in [66] proposes a system

that consists of three phases, illustrated in Figure 2.9.

In the first phase, the authors of [66] construct a range-Doppler map following the
traditional methodology described in Section 2.3 of this chapter. The stationary
interference in the range-Doppler map is then removed following a technique similar
to the described approach in Section 2.3.3 of this chapter. The stationary reflections
are subtracted from each frame of the range-Doppler frequency responses. The au-
thors of [66] observe that a cumulative deviation of the range-Doppler data occurs
due to the dynamic background noises, which are not eliminated when subtracting
the static interference. To overcome this, a threshold-based high-pass filter is imple-

mented with a threshold 7 of 10dBFS. The filtering operation is mathematically
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defined as:

Ry . Rijm=T
(i.4.k)s ijhk) = 11
Rigm = (2.16)
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where F(; ;) is the range-Doppler domain frequency response at the &y, frame with

range i and velocity j.

The authors of [66] identify that the dominant velocity V; can be used to describe the

targets lower limb velocity in each frame. The calculation of the dominant velocity

is given by:

PR (ﬁmm'f})
Np

where R(i k) 18 the normalised frequency response, V; is the velocity corresponding

-
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to the frequency response Ry; ;;), Nr and Np represent the number of range-FFT

and Doppler-FFT points respectively.

The authors of [66] illustrate the composition of these gait characteristics as a
heatmap corresponding to the actual gait captured with a camera. Using these
extracted gait features, the author of [66] identifies that multiple targets can be
differentiated firstly by range and secondly (if the range is the same) by leveraging
distinct spatial positions. This is ultimately done by projecting the point Ry; ;x) in
the k:h frame to a point f%ﬁ 4.k) in the two-dimensional spatial Cartesian coordinate
system. To differentiate the data points in the spatial Cartesian coordinate system,
[66] implements a K-means clustering algorithm. Each individual gait feature can
be generated as a range-Doppler map by negating the frequency responses that were
not correlated in the K-means clustering [66]. After differentiating the gait features,
the authors of [66] then identify a challenge regarding the segmentation of the actual
step. This is ultimately overcome by using an unsupervised learning technique to

detect the silhouette of the steps [66].

Finally, a CNN-based classifier in the image recognition domain is used to identify
the patterns associated with the gait feature maps. The classifier is assessed with
multiple users and varying steps to determine the overall accuracy of the system.
Owerall, the system demonstrates a high accuracy that marginally decreases in ac-
curacy as the number of users increases but is ultimately corrected as the number

of steps increases.
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Another overarching class of identification strategies being explored are tagging
based approaches. This is not a passive approach, unlike the others mentioned
in this chapter, and involves incorporating a tag on the object so that it can be
uniquely identified. There are two directions in which the literature focuses on in
regard to identification of this nature. The first is RFID. In a chipless based RFID
system, data must be encoded in the signal either by altering the time-domain,
frequency-domain, spatial-domain or a combination of two or more of the domains.
An example of RFID implemented as an identification strategy in mmWave can be
seen in the FerroTag research presented in [67]. The FerroTag system presented in
[67] is a paper-based RFID system. Although the usage of the FerroTag research
is intended for inventory management, it could potentially be adopted as a tagging
strategy for a tracking based system. FerroTag is ultimately based on ferrofluidic ink,
which is a collodial liquid that fundamentally contains magnetic nanoparticles. The
ferrofluidic ink can be printed onto surfaces which in turn will result in embedded
frequency characteristics in the response of a signal. The shape, arrangement, and
size of the printed ferrofluidic ink will ultimately influence the frequency tones that
are applied to the response signal. In order to identify and differentiate the different
signal characteristics caused by the chipless RFID surface, the solution presented by
[67] utilises a random forest as a classifier to identify the corresponding tags present
in the field of view. The second approach to tagging as a means of identification
is through RIS. To the best of our knowledge no system has been presented in the
literature that demonstrates a practical RIS solution for identification purposes in
a mmWave tracking system. Research regarding RIS with respect to mmWave is
predominantly in the communication domain. The challenges and opportunity to
design a RIS based identification system for a mmWave tracking system are yet to
be detailed.

Shape profiling has been implemented in previous mmWave research to identify an
object by the properties of the object’s shape. For example, if the object being
tracked is a human, the height and curvature of the human body can influence the
way in which the mmWave signal is reflected [68]. The authors of [68] demonstrate
how a human being tracked and represented in point cloud form can be identified

based on the shape profile of their body. Using a fixed-size tracking window, the
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related points to the particular human are voxelised to form an occupancy grid [68].
This is then sequenced through a LSTM network to classify the particular human
[68]. This particular identification method is abstracted from the tracking aspect
of the process, therefore making it suitable regardless if there are multiple objects

being tracked.

The research presented in [2] differs to that presented in [68] in the regard that the
tracking data is not used during the identification stage. Instead, the authors in
[2] propose a strategy where once the human has been tracked, the radar steers its
transmit and receive beams towards the tracked human. By doing so, the granular-
ity of the feature set available from the human body is increased. In other words,
more specific profiling can be performed on the individual. The research presented
in [2] demonstrates the ability to characterise the human body by its outline, surface
boundary, and vital signs. Having this granular feature set, and tailored profiling,
provides a stronger ground to positively identify an individual. However, this par-
ticular method does come at the cost of beam steering for identification purposes.
Additionally, the existing research presented in [2] does not make any remarks re-

garding the suitability for this method in real-time applications.

The wvarious identification strategies explored in this section of the chapter each
have their own complexities involved in fundamentally incorporating into a tracking
system. Table 2.3 aims to assist in comparing the various identification methodolo-
gies, to ultimately understand their suitability and limitations around implementing

them in a tracking system.

2.5 Review Summary

This literature review has provided a comprehensive analysis of the current state-of-
the-art in mmWave radar multi-object tracking and sensing. We began by outlining
the historical context and foundational theories of multi-object tracking, highlight-
ing the significant contributions of Kalman filters, particle filters, and data associ-
ation techniques such as the JPDA algorithm. These early developments laid the

groundwork for the sophisticated tracking systems in use today.
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Table 2.3: A comparison of identification methodologies explored for the enhance-

ment of tracking objects discontinuously in an mmWave tracking architecture.

ment  considera-
tions.
% Challenges  with

wider field of view.

positives.
x Undefined chal-
lenges with multi-

object.

Criterion | Gait Tagging Shape Profile
Adaptability|v" Low architecture |v' Loosely coupled to |v* Potential to ex-
impact. tracking architec- tend on point
x* Ability to correlate ture. cloud.
to multiple tracks | x No common data |x Sampling concerns
unknown. plane. with simultaneous
% Specific hardware | x Additional hard- beam steering and
positioning. ware. tracking.
» Challenging multi-
object correlation.
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viahility. pact. x* Suitability un-
» Computational v" Pre-encoded data Proven.
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independently
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x Immature un-
derstanding on
environmental

impacts.
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Recent advances in multi-object tracking, particularly in the field of computer vi-
sion, have been driven by the adoption of deep learning techniques. CNNs and
RNNs have improved object detection, feature extraction, and tracking persistence,
demonstrating reliability in complex scenarios. The integration of sensor fusion tech-
niques, combining data from multiple sensors like cameras, LiDAR, and mmWave
radars, has further enhanced tracking performance and system reliability in diverse

environmental conditions.

The chapter also explored the specific challenges and methodologies associated with
mmWave radar multi-object tracking. Continuous and discontinuous tracking were
defined, with discontinuous tracking being particularly relevant for applications re-
quiring the re-identification of targets that temporarily leave the radar’s field of
view. The potential applications of sophisticated mmWave tracking systems were

discussed, including security, healthcare, and public space analytics.

A typical mmWave tracking system architecture was presented, detailing the com-
ponents involved from radar data collection to position and velocity estimation,
association, tracking, sensing, and identification. Advanced methodologies were ex-
plored to address the limitations of traditional tracking systems, such as sensor fusion
and micro-Doppler feature analysis for object detection, and specialised estimation

techniques for sensing.

Finally, the chapter reviewed various identification strategies, including gait recog-
nition, tagging, and shape profiling, each with its own set of challenges and advan-
tages. The comparison of these methodologies highlighted the complexities involved
in integrating identification strategies into a tracking system and the potential for

enhancing tracking reliability and sensitivity.

In conclusion, the advancements in mmWave radar multi-object tracking and sens-
ing systems have shown significant potential for various applications. However,
challenges remain in achieving robust and reliable tracking, particularly in complex

and dynamic environments.



Chapter 3

Multi-Object Regional Trajectory
Analysis

This chapter presents a detailed exploration of the proposed framework for enhanc-
ing multi-object tracking through environmental characterisation using mmWave
radar. The aim of this chapter is to establish the foundational concepts and method-
ologies that underpin the research presented. The chapter is structured as follows:
Section 3.1 introduces the motivation and objectives of the research, highlighting the
challenges and the need for environmental characterisation. Section 3.2 describes
the architecture of the RDTP multi-object tracking system, outlining the key stages
involved. Section 3.3 details the methodology and implementation of each stage,
including trajectory collection, pre-processing, RDTP analysis, and environmental
association. Section 3.4 presents the experimental results and analysis, demon-
strating the effectiveness of the proposed framework. Finally, Section 3.5 provides

concluding remarks and discusses future directions for research in this area.

3.1 Introduction

Understanding the characteristics of an environment can significantly enhance the
ability to perform more accurate multi-object tracking. In dynamic and complex en-
vironments, traditional multi-object tracking systems often struggle with occlusions

and disturbances caused by non-penetrable objects such as walls, columns, or fur-
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niture. These challenges lead to frequent loss of tracks, re-identification errors, and
overall degradation in tracking performance. To address these issues, a foundational
framework must be established to extract and utilise environmental characteristics

from the observed area.

In this research, we propose an approach to extract entry and exit points for an
environment using multi-object tracking trajectories. The observed environment
is divided into a grid, where regions are defined. The trajectories obtained from
the multi-object tracking data are organised into their respective regions. For each
region, an activity heatmap is formed and classified using a CNN to determine if
the region consists of either an entry or exit point. The classified entry and exit
points are then projected onto the multi-object tracking plane to illustrate the entry
and exit points of the observed environment. This approach provides a foundation
for future work to enhance multi-object tracking capability in real-time through a

greater understanding of the observed environment.

A movement pattern in the context of this chapter can ultimately be explained
as a commonality of transitions between different start and end states. Regional
dominant movement patterns can be defined as the most frequently oceurring tran-
sitional pattern for a given start and end state. The study of regional dominant
movement patterns in trajectory data has been well explored. A study performed
by [69] demonstrates the potential to determine regional dominant movement pat-
terns in trajectory data using a pre-defined taxonomy of trajectory patterns. The
authors in [69] define different types of movement patterns, which are then used as
criteria for a trained CNN to classify trajectory clusters. Another study performed
in [70] demonstrates a novel approach for mining trajectory patterns, as opposed to
utilising a taxonomy of pre-defined patterns. Mining trajectory patterns is a neces-
sary approach to take in situations where the types of trajectory pattern that might
occur is not known. In situations where particular trajectory patterns are known or
searched for, maintaining a taxonomy of those patterns can yield more performant

results.

Applying the concept of regional dominant movement patterns to trajectory data,

termed as RDTPs, will allow for the identification of recurring movements within the
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field of view in which the trajectory data was collected. These movement patterns
fundamentally expose characteristics of the environment that is being sampled in the
field of view. By understanding these patterns, it becomes possible to predict object
trajectories more accurately and adapt multi-object tracking systems to varying

conditions.

The proposed framework involves several stages, starting with the collection of multi-
object tracking trajectory data using a mmWave radar sensor. The collected data
is then pre-processed and normalised to form regional activity heatmaps. These
heatmaps are analysed using a CNN to classify entry and exit points. The classified
points are then projected onto the multi-object tracking plane, providing a visual
representation of the environmental characteristics. This systematic approach aims
to improve the robustness and accuracy of multi-object tracking systems by lever-

aging the extracted environmental characteristics.

This research presents a novel approach to enhance multi-object tracking perfor-
mance by systematically deriving environmental characteristics from trajectory data.
The proposed framework not only addresses the challenges posed by occlusions and
disturbances but also provides a foundation for future advancements in multi-object
tracking technologies. By integrating environmental understanding into multi-object
tracking systems, we can achieve more reliable tracking, reduced errors, and better

handling of complex and dynamic environments.

3.2 RDTP Multi-Object Tracking Architecture

The architecture adopted for the RDTP multi-object tracking environmental char-
acterisation explored in this chapter can be broken into 5 stages. The sequencing
of the 5 stages can be seen in Figure 3.1. The methodology and implementation of
these stages will be explored in Section 3.3 of this chapter. The remainder of this
section of the chapter will describe the purpose of each of the stages depicted in

Figure 3.1 in relation to the problem statement.
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Figure 3.1: Block diagram of overall stages involved in the RDTP multi-object

tracking architecture.

3.2.1 Problem Statement

Multi-object tracking in dynamic environments is inherently challenging due to the
presence of occlusions and disturbances caused by non-penetrable objects such as
walls, columns, or furniture [71]. Traditional systems often lack the capability to
adapt to these complexities, necessitating a framework that can systematically derive

and utilise environmental characteristics to enhance tracking system accuracy.

In more complex environments, the ability to understand and characterise the spatial
layout and the dynamic interactions within the environment is crucial for enhancing
the robustness and accuracy of multi-object tracking systems. Without a founda-
tional framework to extract and utilise environmental characteristics, multi-object
tracking systems are limited in their capacity to adapt to varying conditions and to

predict object trajectories accurately.

The primary problem addressed in this research is the development of a systematic
approach to derive environmental characteristics from multi-object tracking trajec-
tory data. This involves identifying key features of the environment, such as entry
and exit points, and understanding the movement patterns within the observed area.
By establishing a method to classify and project these environmental characteris-
tics onto the multi-object tracking plane, the proposed approach aims to provide
a foundational basis for improving multi-object tracking performance in real-time

applications.

3.2.2 Proposed Framework

The block diagram in Figure 3.1 illustrates the proposed architecture for deriving
environmental characteristics from multi-object tracking trajectory data. The ar-
chitecture is divided into five key stages: Trajectory Collection, Pre-processing and

Normalisation, Trajectory Analysis, Entry and Exit Association, and Projection.
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The Trajectory Collection stage involves using a mmWave radar to collect raw data,
which is then processed to track multiple objects. This stage generates a vector of
tracked objects in the form of trajectories, providing the foundational data required
for subsequent analysis. The process includes transmitting chirp signals, receiving
reflected signals, and calculating the range, velocity, and AoA of detected objects.
The collected data is then organised into a point cloud, with static objects removed
to focus on moving objects. Clustering and association algorithms are applied to
track the movement of objects over time, resulting in a comprehensive trajectory

dataset.

In the Pre-processing and Normalisation stage, the collected trajectory data is then
organised into regional trajectories. The observed environment is divided into a grid,
and tracked objects are assigned to their respective regions. This stage involves
cleaning the data to remove noise and outliers, interpolating missing data, and
normalising the coordinates. The regional trajectories are then transformed into
activity heatmaps, which then serve as input for the subsequent analysis. The
heatmaps are generated by mapping the normalised coordinates of tracked objects
to the cells within each region, with Gaussian smoothing applied to enhance quality.

The Trajectory Analysis stage leverages a CNN to classify the regional trajectories
into predefined patterns. The CNN is trained to recognise entry and exit patterns
based on a taxonomy of movement patterns. The network consists of convolutional
and pooling layers to extract features from the activity heatmaps, followed by a soft-
max layer to classify the patterns. The classifier outputs a probability distribution
over the classes, identifying regions as entry or exit points based on the highest prob-
ability. Data augmentation and dropout layers are used during training to improve

network reliability and prevent overfitting.

The Entry and Ezxit Association stage involves correlating and grouping regions
identified as entry and exit points. This stage maps the classified regions back to
their original spatial coordinates and defines rectangular bounds around the entry
and exit points. The bounding process identifies the minimum and maximum coor-
dinates of tracked objects within each region, creating a clear representation of the

environmental features. This stage helps in understanding the spatial layout and
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identifying non-penetrable objects that can cause occlusions.

Finally, the Projection stage visualises the identified environmental characteristics
on the multi-object tracking plane. The rectangular bounds of entry and exit points
are overlaid onto the visual representation of the environment, providing a compre-
hensive view of the dynamic interactions within the environment. This visualisation
aids in improving the overall performance of the multi-object tracking system by

integrating environmental understanding into the tracking process.

The proposed framework systematically processes multi-object tracking trajectory
data to derive environmental characteristics, enhancing the capability of multi-
object tracking systems to handle complex and dynamic environments. By inte-
grating environmental understanding into the tracking process, the framework aims

to achieve more reliable tracking, reduced errors, and better handling of occlusions.

3.3 Methodology and Implementation

To implement the RD'TP multi-object tracking architecture, a TTI IWR6843 mmWave
sensor was used, as seen in Figure 3.2. The mmWave sensor was installed on a T1
MMWAVEICBOOST evaluation board, in which raw ADC data from the sensor
was streamed via a TI DCA1000EVM. The sensor was mounted on a tripod and po-
sitioned approximately 1.5m above ground. The sensor was also tilted downward at
a 10° angle to achieve the best field of view. This position is in accordance with the
recommendation provided by TI. Figure 3.3 illustrates the positioning of the sensor
in relation to the external environment. The remainder of this section describes the
methodology adopted for each of the RDTP multi-object tracking stages, seen in
Figure 3.1.

3.3.1 Multi-Object Tracking Trajectory Collection

The process of collecting multi-object tracking trajectories begins with the trans-
mission of a ‘chirp’ signal from the mmWave radar. This chirp signal is reflected
off objects in the environment and received back by the radar. The difference in

frequency between the transmitted and received signals is known as the IF signal,
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Figure 322 TI mmWave IWR6843ISK with MMWAVEICBOOST and
DCA1000EVM.
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Figure 3.3: Positioning of the mmWave sensor for RDTP.

as discussed in Section 2.3.2 of this thesis. This IF signal is crucial for determining
the range, velocity, and AoA of the detected objects.

Firstly, the range R, from the radar to the detected object x can be computed
using the IF signal frequency f;r and the frequency slope S of the transmitted
chirp. Recall, this relationship was presented in Section 2.3.2, Equation 2.12. This
equation is derived from the fact that the frequency difference f;p is proportional to
the time delay of the reflected signal, which in turn is proportional to the distance

R,.

Next, the velocity V., of the detected objects is calculated by analysing the phase

shift in the IF signal between two consecutive chirps. The relationship between the

53



velocity and the phase difference is expressed as:

Aw
V. = —— 3.1
T AnT. (3.1)

where A is the wavelength of the transmitted signal, w is the phase difference between
the received signals of the two chirps, and T, is the time interval between consecutive

chirps. This equation is based on the Doppler effect, where the phase shift w is
directly related to the velocity of the moving object.

The AoA #. of the detected object is estimated by averaging the phase differences
across multiple transmitter-receiver pairs. Recall, for a single pair, the phase differ-
ence ¥, can be calculated using Equation 2.14, from Section 2.3.2. This equation
uses the principle of phase difference to determine the angle at which the signal

arrives at the receiver.

Using the range R, velocity V., and AoA #, calculated using Equations 2.12, 3.1,
and 2.14, respectively, a point cloud graph is constructed. This graph represents
the positions of detected objects in the environment. Static objects, which do not
change position between frames, are identified and removed from the point cloud to

focus on moving objects.

The next step involves clustering the point cloud data using the DBSCAN algorithm.
DBSCAN identifies clusters of points that represent individual objects. The com-
putational complexity of DBSCAN is O(Npgints 108 Npgints) f0r Nppines point cloud
points. These clusters are then associated across consecutive frames using the Hun-
garian Algorithm, which matches clusters from the current frame F,, to those from
the previous frame F,,_;. The Hungarian algorithm has a computational complexity
of O(N3jexs) Where Nopjeesa is the number of clusters to be matched. In typical
multi-object tracking scenarios, Napjects Tepresents the number of detected objects

and is generally small, making the algorithm computationally tractable. This asso-

ciation helps in tracking the movement of objects over time.

To improve the accuracy of the tracking, a Kalman filter is applied. The Kalman
filter predicts the future position of each tracked object and corrects the predic-
tion based on the actual measurements, as discussed in Chapter 2. The computa-

tional complexity of the Kalman filter is @(d®) per tracked object, where d is the
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state vector dimension. For Njeqt- tracked objects, the total complexity becomes
E}{Nabjgmda] per frame. The dominant operations are matrix inversions and multi-
plications in the Kalman gain computation and covariance updates. This results in

a more stable and accurate tracking of objects.

A single tracked object i is represented as a tuple structure, defined by the following
expression:

TO; = (p,v), (3.2)

where p is a two-dimensional vector [z,y] representing the current coordinates of

the tracked object, and v is the current velocity vector of the tracked object.

For a given frame j, the set of tracked objects present in that frame is represented
as:

FTO; = {TOy,TO,,....TOy,, .}, (3.3)

where each T'O is a tuple as defined in Equation 3.2, and Ngpjeqs is the total number

of tracked objects in frame j.

Over multiple frames, the sets of tracked objects are persisted, forming a compre-

hensive trajectory dataset expressed mathematically as:
TTO ={FTOy,FTOs,...,FTOn,, ..} (3.4)

where each FT'O represents the set of tracked objects in a single frame, and Nyrames
is the total number of frames. This dataset TT'O provides a comprehensive record
of the movement of objects over time, which is essential for further analysis and

environmental characterisation.

3.3.2 Pre-processing and Normalisation

To prepare for RDTP Analysis, a grid G = (i x j) must be constructed for a field
of view of size (I x w). The terms | and w are expressed in meters, whilst ¢ and j
are the number of cells that [ and w should be split into. Regions are defined as a
collection of adjacent cells from G that form R, = (m x n), where z is the region
number. Region dimension m and n must both be factors of i and j respectively.

Regions must not overlap with each other and must fit into G perfectly.
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For each region K., an activity heatmap of K, is required to perform RDTF Analysis.
In order to construct a heatmap for each R., the vector represented in Equation 3.4
will need to be transformed so that the tracked objects TO are grouped into their
respective region. A given T'O is correlated with an R, through the coordinates it
occupies, present in Equation 3.2. The related FTO that the tracked object took
place at must not be lost when transforming the vector, this information will be
required when performing Environmental Association and Bounding. The set of

regional tracked objects is expressed as a collection of tuples, defined as:
RTO, ={(F,TO),,(F,TO),...,(F,TO),}, (3.5)

where F' is the frame the coupled T'O occurred at, n is the total number of tracked

objects, and z is the region index.

The activity heatmap image can then be constructed for each RTO. expressed by
Equation 3.5. Each T'O equates to activity in a region, activity is positioned at the
coordinates of the respective T'O. The activity heatmap is illustrated as a fixed-sized

image, stored in a set, mathematically expressed as:
RHM ={HM; HM,,....HM_}, (3.6)

where HM is the activity heatmap constructed for the respective RT0, expressed
in Equation 3.5 and n is the total number of regions in <. The tracked regional
trajectory objects RT'O, are ultimately normalised through their illustration as an

activity heatmap.

To ensure the accuracy and consistency of the activity heatmaps, several pre-processing
steps are necessary. First, the raw trajectory data must be cleaned to remove any
noise or outliers that could distort the heatmap. This involves filtering out any
tracked objects that exhibit erratic or implausible movements, which are likely to

be artefacts of the tracking process rather than genuine object movements.

Next, the trajectory data is interpolated to fill in any gaps where objects were
temporarily lost due to occlusions or other tracking failures. This interpolation is
performed using a linear or spline method, depending on the nature of the missing
data. By filling in these gaps, the resulting heatmaps will more accurately reflect

the continuous movement of objects within the environment.
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Once the data is cleaned and interpolated, it is then normalised to ensure that all
trajectories are represented on the same scale. This involves scaling the coordinates
of the tracked objects to fit within the dimensions of the grid G. The normalisation
process ensures that the activity heatmaps are consistent in resolution, which is

crucial for accurate analysis by the CNN.

After normalisation, the trajectory data is divided into individual regions based on
the grid (. Each region R, is processed separately to generate its corresponding
activity heatmap. This involves mapping the normalised coordinates of the tracked
objects to the cells within the region and incrementing the activity count for each
cell. The resulting heatmap is a two-dimensional array where each cell value repre-

sents the level of activity in that cell.

To enhance the quality of the heatmaps, a Gaussian smoothing filter is applied.
This filter helps to reduce noise and create a more continuous representation of the

activity within each region.

Finally, the pre-processed and normalised activity heatmaps are stored in a set
BHM as described in Equation 3.6. These heatmaps serve as the input for the
RDTP Analysis stage, where they will be analysed by the CNN to classify entry
and exit points. The detailed pre-processing steps ensure that the activity heatmaps
are accurate and consistent, providing a solid foundation for the subsequent analysis

and environmental characterisation.

3.3.3 RDTP Analysis

The purpose of the RDTP Analysis is to extract entry and exit points from the
regional trajectories formed by the tracked objects. In order to do so, an idealistic

taxonomy of regional patterns that expose entry and exits should be pre-defined.

Figure 3.4 defines the taxonomy utilised to classify entry and exit trajectories. The
trajectory used to classify an entry movement pattern is illustrated in Figure 3.4 (a),
whilst Figure 3.4 (b) demonstrates the trajectory used to classify an exit movement

pattern.

A single classifier is used to determine the probability that a given activity heatmap,
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Figure 3.4: Trajectory taxonomy.

expressed in the set illustrated in Equation 3.6, is one of the movement patterns
expressed in Figure 3.4. The classifier is ultimately based on the handwritten digit

recognition network presented in [72).

The input shape of the network is a 32 x 32 pixel activity heatmap. A convolutional
and maximum pooling layer is added to extract features from the activity heatmap.
The convolutional layer consists of 16 filters of size 5 x 5. Another convolutional
and maximum pooling layer is added to the network with 32 filters of size 3 x 3.
Finally, a softmax layer of size 3 x 1 is added. The 3 softmax classes (C;, C3 and
C3) are the two movement patterns defined in Figure 3.4, respectively C; and Cs,
and the probability that neither €' nor Cs are correct, respectively C3. The loss
funection utilised to correct weights is the Mean Squared Error (MSE) loss.

For input heatmaps of size H x W with dimensions 32 x 32 pixels, the computational
complexity of the CNN during inference is G{FlfffHW +F2K§H’W’+F1Fg +Fyx3),
where Fy and F5 are the number of filters in the first and second convolutional layers
with values of 16 and 32 respectively, K1 and K are the kernel sizes of 5 x 5 and
3 x 3 respectively, and H'W' represents the reduced spatial dimensions after pooling.
For the fixed input size of 32 x 32 pixels, this evaluates to approximately 4 x 10°

operations per classification.

The training process for the classifier involves feeding the network with labelled
activity heatmaps, where each heatmap is associated with one of the three classes
(Ci, Cq, or C'3). The network identifies the distinguishing features of entry and
exit patterns through backpropagation and gradient descent. During training, the
weights of the convolutional layers are adjusted to minimise the loss function, thereby

improving the accuracy of the classifier.

To ensure robustness and avoid overfitting, the training dataset is augmented with
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various transformations such as rotations, translations, and scaling. This augmen-
tation helps the network generalise better to different scenarios and variations in
the trajectory data. Additionally, dropout layers are incorporated into the network
to further prevent overfitting by randomly deactivating a fraction of the neurons

during training.

Once the classifier is trained, it is used to analyse the activity heatmaps generated
from the regional trajectories. For each heatmap, the classifier outputs a probability
distribution over the three classes. The class with the highest probability is selected
as the predicted label for the heatmap. If the predicted label is C) or Cs, the
corresponding region is classified as an entry or exit point, respectively. If the

predicted label is (5, the region is considered neither an entry nor exit point.

The classified entry and exit points are then used to enhance the understanding of
the environment. By identifying the regions where objects frequently enter or exit,
the system can infer the locations of doors, windows, or other significant features
in the environment. This information is erucial for improving the performance of
multi-object tracking systems, as it allows for better handling of occlusions and more

accurate prediction of object trajectories.

3.3.4 Environmental Association and Bounding

The classified regional activity heatmaps are organised into those that are deemed
either an entry or exit trajectory pattern and those that are not. The regional
activity heatmaps that are not an entry or exit trajectory pattern are negated going
forward. The remaining regional activity maps are correlated back to the individual
tracked objects that constitute the region, illustrated in Equation 3.5. In this state,
the regions that have been classified as entry and exit points of the field of view are

projected onto the multi-object tracking plane and rectangularly bounded.

To achieve this, each classified region K, is mapped back to its corresponding coor-
dinates in the original field of view. This involves translating the grid coordinates
of the region to the actual spatial coordinates in the environment. The bounding
process is performed by identifying the minimum and maximum coordinates of the

tracked objects within each region. These coordinates define the rectangular bounds
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that encapsulate the entry or exit points.

The bounding box for a region R, can be defined by determining the minimum
and maximum x-coordinates (z.;, and z.,,.) and y-coordinates (¥, and Ym,..) of

tracked objects within that region, expressed as:
Lmin = mm(prL Lmax = mm{@:): (ST]

Ymin = Hﬂn(p!.r}? Ymax = max{py], (3'8}

where p, and p, are the r and y coordinates of the tracked objects within the region
R,.. The bounding box is then represented as a rectangle with these minimum and

maximum coordinates.

Once the bounding boxes are determined, they are projected onto the multi-object
tracking plane. This projection involves overlaying the rectangular bounds onto
the wvisual representation of the environment, providing a clear indication of the
entry and exit points. The projection helps in visualising the spatial layout of the

environment and understanding the movement patterns of objects.

The final step involves validating the projected entry and exit points against the
actual layout of the environment. This validation is performed by comparing the
projected points with known entry and exit locations, such as doors and windows.
Any discrepancies are analysed and corrected to ensure the accuracy of the environ-

mental characterisation.

3.4 Experimental Results and Analysis

The methodology and implementation discussed in this chapter were trained and
tested using real data. A dataset of 1100 entry and exit events was collected using the
multi-object tracking trajectory collection process described in the previous section

of this chapter. These events were collected across 5 different environments.

The dataset was then pre-processed and transformed into a collection of activ-
ity heatmaps, as described in the previous section of this chapter. The activity
heatmaps were then manually tagged for identification of entry and exit events. The

training set of data occupied 80% of the tagged dataset. The remaining 20% was
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Figure 3.5: Training and test error rate percentage across epochs.

reserved for testing. After performing 65 epochs, taking 102.39 seconds to complete
training, the average accuracy of the network was 87.18%. Figure 3.5 demonstrates
the change in error over the number of iterations performed. A value of 65 epochs

was deemed appropriate due to the notable convergence evident in Figure 3.5.

The classified entry and exit points are projected onto the multi-object tracking
plane, demonstrated in Figure 3.6 (a) and (b). The projected entry and exit points in
Figure 3.6 (b) can be compared to the image of the observed environment illustrated
in Figure 3.6 (c¢). During multi-object tracking in this environment, at most two
individuals were present in the field of view. The individuals independently walked
around in the field of view, as well as leaving and re-entering through the door on
the left side of the room and ducking behind the couch in the centre of the room.
It is evident that the trained network successfully classified these 4 entry and exit

events through the projections presented in Figure 3.6 (b).

To further analyse the performance of the proposed framework, additional metrics
such as precision, recall, and Fl-score were calculated. These metrics provide a
more comprehensive evaluation of the classifier’s performance. Precision measures
the proportion of true positive classifications among all positive classifications, while
recall measures the proportion of true positive classifications among all actual posi-
tive instances. The Fl-score is the harmonic mean of precision and recall, providing

a single metric that balances both aspects.

The overall precision, recall, and Fl-score for both the entry and exit classification
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Figure 3.6: RDTP multi-object tracking plot with projections and scene.

tasks can be seen in Figure 3.7. These metrics indicate that the classifier performs
well in identifying entry and exit points, with a high level of accuracy and balanced
precision and recall. The average Fl-score of 87.1% further confirms the ability of
the classifier to handle variability in the trajectory data.

Additionally, the impact of different environmental conditions on the classifier’'s per-
formance was analysed. The environments varied in terms of layout complexity, the
presence of occlusions, and the number of moving objects. The classifier's perfor-
mance was consistent across the different environments, with only minor variations
in accuracy. This consistency demonstrates the generalisability of the proposed

framework and its applicability to various real-world scenarios.

3.5 Conclusion

In conclusion, this chapter presented a novel framework for enhancing mmWave
multi-object tracking systems by systematically deriving environmental character-
istics from trajectory data. The proposed approach addresses the challenges posed
by occlusions and disturbances in dynamic environments, which often degrade the

performance of traditional multi-object tracking systems. By leveraging a mmWave
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Figure 3.7: Precision, recall, and Fl-score for entry and exit classification.

radar sensor for trajectory collection, pre-processing and normalising the data into
regional activity heatmaps, and utilising a CNN for RDTP analysis, the framework

effectively identifies entry and exit points within the observed environment.

The methodology and implementation were validated through extensive experi-
ments, demonstrating high accuracy and robustness in classifying entry and exit
points. The experimental results showed an average accuracy of 87.18% after 65
epochs of training, with precision, recall, and Fl-score metrics further confirming

the classifier's performance.

By integrating environmental understanding into the multi-object tracking process,
the proposed framework provides a foundation for future advancements in multi-
object tracking technologies. The enhanced capability to handle complex and dy-
namic environments leads to more reliable tracking, reduced errors, and better han-
dling of occlusions. This research contributes to the advancement of multi-object
tracking systems, by providing a means for improved performance in various applica-

tions, including surveillance, autonomous navigation, and human-robot interaction.
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Chapter 4

Combined mmWave Tracking and
Classification Framework Using
Camera for Labelling and

Supervised Learning

This chapter presents a novel framework for combining mmWave radar and cam-
era data to enhance tracking and classification capabilities. The proposed approach
leverages the strengths of both sensor modalities to address the challenges associ-
ated with labelling and training deep learning models against radar data. By fusing
radar and camera data, we aim to create a system that can accurately classify
and track objects in various environments. The chapter is structured as follows:
Section 4.1 introduces the problem space and the motivation behind using sensor
fusion for labelling and training radar data. Section 4.2 reviews existing sensor
fusion architectures and methodologies, highlighting the challenges and solutions
presented in related literature. Section 4.3 details the proposed methodology for
radar training with camera labelling and supervision, outlining the steps involved
in data collection, correlation, and training. Section 4.4 describes the system design
and implementation of the proposed framework, providing a practical example of its
application. Section 4.5 presents the experimental results and analysis, demonstrat-

ing the effectiveness of the framework. Finally, Section 4.6 concludes the chapter
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with a summary of the contribution and the potential avenues that can be explored

to further progress the research.

4.1 Introduction

The process of training mmWave sensors to solve classification problems is rapidly
becoming more popular and proving to be a promising direction in radar sensing
research. One of the most promising techniques that is being pursued in this field
of research is a deep learning based approach. However, successfully using a deep
learning based approach typically requires an abundant set of training data to ad-
equately teach a model the relevant features that can be relied on for classification
and/or prediction. Constructing a large and meaningful dataset requires a domain
expert to spend the time appropriately labelling the raw data collected from the
sensor. This process can be quite difficult, specifically when dealing with mmWave

raw data that is notoriously not intuitively easy to correctly label.

To solve this challenge, one direction is through information fusion, more specifically
the fusion of mmWave radar and camera. As a result, it is important to understand
the processes involved in general information fusion, with respect to mmWave radar
and camera. Information fusion with mmWave radar and camera refers to the
combination of the two independent streams of data, so that they are presented and
interpreted from a unified perspective [73]. There are a number of different variables
that are involved in achieving this fused state of information. In an attempt to break
down the varying components involved in information fusion [74], the following high-

level characteristics should be considered:
¢ System architecture;
¢ Fusion depth;
¢ Fusion process;
¢ Fusion algorithm.

The system architecture of mmWave radar and camera fusion focuses on the high-

level structure that the fusion process operates on. In a review article presented by
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Table 4.1: Types of mmWave radar and camera fusion system architectures.

Architecture Type Description

Centralised This refers to an architecture where the individual raw data
of both the camera and mmWave radar is obtained inde-
pendently and converged in a central processor for process-

ing.

Distributed This refers to an approach where each the radar and camera
process their own data independently and sends the post-
processed data to a central fusion unit to then before fusion

on post-processed data.

Hybrid The hybrid fusion approach refers to an architecture where
some sensors follow the centralised approach, as defined
above, and others follow the distributed approach, also as
defined above. Measurements from all sensors are com-
bined into a hybrid measurement which in turn is used to

update the final data.

[74], the authors have identified three major fusion structures that are commonly
abstracted in related literature. These three types of fusion system architectures
are depicted in Table 4.1, and their respective benefits and limitations are shown in

Table 4.2,

The three types of fusion architectures presented in Table 4.1 ultimately describe
the major architecture types found in existing research. The rationale responsible
for deciding which architecture type to implement over the others fundamentally

stems from the run-time requirements a given solution must meet.

The next characteristics that can be used to describe mmWave radar and camera
information fusion is the depth of the fusion that is performed. The authors of
[75] and [76] term this characteristic as the level of fusion. This simply refers to
the point in which the mmWave data is fused with the camera data, starting from
the primitive point in which raw data is collected and stemming until a point where

fusion might take place only once several layers of processing has already taken place
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Table 4.2: Benefits and limitations of fusion architectures.

Architecture Type

Benetits & Limitations

Centralised

Benefits: Low information loss, original data preserved,
simple structure, high processing rate.

Limitations: Independent sensor units, large communi-
cation bandwidth required, high computing power needed

by centralised unit, single point of failure.

Distributed

Benefits: Reducing transmission time, reduced pressure
on the fusion centre, higher reliability resistance, low com-
munication bandwidth.

Limitations: Data collection units also require the capa-
bility of processing the data, central processor is operating

on post-processed data resulting in reduced flexibility.

Hybrid

Benefits: Advantages of both centralised and distributed
is retained, flexibility in satisfying varying requirements.

Limitations: Complex data structures, increased com-
putational and communication load, high design require-

ments.
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Table 4.3: Types of mmWave radar and camera fusion depths.

Fusion Depth Description

Low level This class of fusion depth is best consid-
ered to be at the data level. It refers to a
level of fusion that takes the raw data from
each sensor to form a synthetic dataset il-
lustrating a raw fused state, ready to be

further processed.

Medium level  This refers to a class of fusion that takes
place once several primitive features have
been derived for each sensor indepen-
dently and are fused to form a feature su-

perset.

High level This fusion level is considered an advanced
form of fusion. Fusion at this level is
taken place once independent outcomes
have been derived for each sensor and the
fused result is an expression of the com-

bined sensor specific outcomes.

independently, for both/either radar and/or camera.

The authors of [75] and [76] have abstracted these depths of fusion into three pro-
gressive levels. These levels are further described in Table 4.3.

The fusion process is another aspect that can differentiate the fusion that takes
place for mmWave radar and camera. The fusion process ultimately refers to the
basis in which the actual fusion of the two sensors takes place upon. There are
a number of different approaches that can serve as the means to perform fusion.
One method explored and demonstrated by the authors of [77] attempts to spatially
fuse the mmWave radar and camera. This process refers to the mmWave radar and
camera each recording data in their own coordinate system. Following this, each

of the sensor’s coordinate system should be transformed into a world coordinate
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system, which closely depicts the three-dimensional coordinate system we perceive
the world via. Another fusion process that is closely related to spatial fusion, and
perhaps necessary for spatial fusion to take place, is fusion through sensor calibra-
tion. There are a number of varying techniques presented for calibrating mmWave
and camera sensors, such as the work presented by the authors of [78]-[81]. Lastly,
and probably the most simple process in which the basis of fusion can take place
is temporally. Finally, regardless of the basis in which the fusion takes place, an
appropriate correlation and association algorithm needs to be designed and imple-

mented.

The research discussed in this chapter presents a framework for automated labelling
of mmWave radar data using information fusion theory through camera. The re-
search and methodologies we propose in this chapter are novel in three major re-
gards. Firstly, the generalised automated labelling framework we present is one of
the first proposed in the context of mmWave, where an attempt has been made to
abstract the specific teacher and student objectives from the framework. Secondly,
the framework we present is also one of the first of its kind to encompass the com-
plete processing chain for training a standalone mmWave radar classification model
using camera as a teacher. Lastly, the example implementation of the framework
we present demonstrates a novel adaption for the correlation and fusion of camera
and radar data. These primary contributions we present are further explained in

the following:

¢ The radar training with camera labelling framework we present is generalised
by definition as it is not one that is specific to a given classification problem in
either the radar or camera domain. The agnostic nature of the framework we
propose is the first of its kind that we are aware of, in the context of mmWave
radar. Existing approaches are either specific to the task of object detection
or specific to the classification problem the given authors are attempting to

solve.

¢ The framework we present in Section 4.3 is the first of its kind that includes
a suggested approach towards all stages in the processing chain involved in

achieving a radar classifier. Existing approaches usually have a focus on pre-
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senting a framework that only shows a means for labelling camera data, usu-
ally specific to the task at hand, and applying it to either raw or pre-processed
radar data. Our framework also satisfies that objective but takes the labelled
data further and demonstrates how this labelled radar data can be used in a

teacher and student based approach to form a standalone radar classifier.

¢ To demonstrate the feasibility of the framework proposed, we also demonstrate
a practical implementation of our proposed framework. In our example imple-
mentation we demonstrate how a pre-trained camera classifier can be used to
label raw mmWave data for HAR, in conjunction with performing mmWave
multiple object tracking. The correlation technique we devised and utilised is
unique and a looser form of calibration that takes place between the camera
and radar. This removes the need for tight coupling between raw radar points

and points in the vision domain.

4.2 Sensor Fusion Architectures

As increasingly more deep learning based sensing research is being released for
mmWave radar, the difficulties associated with the labelling of mmWave data is
being acknowledged. As a result, a few different labelling strategies have been pre-
sented in recent literature, ultimately demonstrating the feasibility of using another

sensor, such as camera, to label datasets collected by radar.

Omne of the earlier pieces of research that demonstrate a fusion based approach with
radar and camera to classify objects is the work presented by the authors of [82]. The
authors of [82] deconstruct the problem into a two stage approach. The first stage
involves recording the data and performing a typical Kalman filter based approach
to identify objects in the field of view of the radar. This involves using the Kalman
filter to predict the state of a moving object based on previous measurements, which
helps in tracking the object’s position and velocity over time. The mathematical
foundation of the Kalman filter consists of prediction and update steps that can be

expressed through the following set of equations:
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Tppe—1 = FIp_jp_y + Bug, (4.1)

Pyp_1 = FPk—l|k—1FT +@Q, (4.2)
K, = PH;:_IHT[HP;:",_IHT +R)1, (4.3)
Tk = Tepe—1 + Ki(2k — HEgjr—1), (4.4)
P = (I — Ki H) Pyjg—1, (4.5)

where Zj._; is the predicted state, Fjy_; is the predicted covariance, K, is the
Kalman gain, z, is the measurement, F is the state transition model, B is the
control-input model, u, is the control vector, () is the process noise covariance, H

is the observation model, and F is the measurement noise covariance.

In the second stage, the identified radar points are projected onto the camera’s image
plane through a coordinate transformation process. This involves using the intrinsic
and extrinsic parameters of the camera to map the 3D radar points to 2D image
coordinates. The mathematical relationship governing this transformation from 3D

radar points to 2D image coordinates is expressed as:

X
u
t| Y
v| =K ? (4.6)
0 1| |z
1
1

where (u, v) are the image coordinates, K is the camera intrinsic matrix, R is the ro-
tation matrix, t is the translation vector, and (X, Y, Z) are the 3D world coordinates

of the radar points.

Another more recent piece of literature that demonstrates an approach to fusion of
mmWave radar and camera is the work presented in [83]. The approach discussed
by the authors of [83] is largely similar to the technique presented in [82]. The
authors of [83] provide a detailed methodology for the fusion process, which includes
spatial and temporal fusion techniques. The spatial fusion involves converting the

radar’s polar coordinates into the camera’s image plane coordinates using a series of
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transformations, similar to the technique presented by [82]. This is achieved by first
converting the radar’s polar coordinates into a rectangular coordinate system and
then projecting these coordinates onto the image plane using the camera’s intrinsic

and extrinsic parameters.

In addition to spatial fusion, the authors also address the challenge of temporal
fusion. Given that radar and camera sensors may operate at different frequencies, it
is erucial to synchronise the data from both sensors. The authors propose a method
to achieve this by creating radar, camera, and data fusion processing threads. When
the data fusion processing thread is triggered, the system acquires radar data from
the buffer queue that is consistent with the image data in time. This ensures that
the data from both sensors is synchronised, allowing for accurate fusion and object

detection.

The fusion model proposed by [83] presents results that indicate the proposed fusion
method achieves a detection rate of up to 91.6%, demonstrating its effectiveness in
real-world scenarios. The authors also highlight the advantages of their approach,
such as reduced data processing time and improved detection accuracy, by focusing
on the Region of Interest (ROI) generated from the radar data. It is also noted
that [83] makes use of bounding box regression to refine the detected ROIs. This
technique, initially proposed by [84], involves mapping the original window to a
regression window that more closely aligns with the ground truth. The objective
function for this regression process is designed to minimise the difference between
the predicted value and the ground truth, ensuring accurate localisation of objects

within the ROL

Some more recent works presented by the authors of [85] produce a labelled FMCW
dataset correlated with a Inertial Measurement Unit (IMU) sensor and correspond-
ing camera frames. The labelling strategy proposed by the authors of [85] ultimately
relies on time synchronisation between the three sensors. After temporally aligning
the sensors, the authors require spatial calibration between the radar and camera in

order to match detected objects.

The technique used by [85] to spatially calibrate the radar and camera involves

introducing an object that is both distinctly identifiable in vision and reflectivity
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in the radar domain. This spatial calibration process described by [85] essentially
involves the use of a radar corner reflector, which is a well-known object in radar
signal processing due to its strong reflective properties. The reflector is placed at
various locations within the field of view to establish point correspondences between
the radar and camera frames. This calibration process is crucial for accurately
projecting radar detections onto the camera image plane, enabling effective sensor

fusion.

The work of [85] leads to an interesting question regarding the techniques available
to calibrate the mmWave radar and camera sensors. A review presented by [86]
breaks this question down into three overarching components that encompass the

sensor calibration in the context of radar and vision presented in modern literature:

¢ Coordinate calibration - the alignment of individual points in the radar with
objects in the field of view of the camera. This initial stage of calibration can
be seen implemented in three varying mechanisms in the works presented by
[87]-[89].

¢ Radar point filtering - where noise and undesirable data is acknowledged and
filtered from the radar data. The work of [90] presents an approach that
demonstrates calibration involving the filtering of undesired data points based

on speed and angular velocity.

¢ Error calibration - refers to the processes implemented to overcome errors in
the calibrated data. There are many methods that can be devised to attempt
to overcome calibration error. One approach presented by [91] demonstrates a
EKF that is used to model the measurement errors present in the independent

SETS0TS.

The authors of [92] and [93] propose two similar approaches that demonstrate object
detection through the fusion of radar and camera. Both of the techniques demon-
strate an Artificial Neural Network (ANN), where the inputs are pre-processed radar
data and raw camera data. The primary difference between the two techniques is
that the authors of [92] pre-process the radar data to produce range-azimuth images
as an input for the ANN. While, the authors of [93] pre-process the radar data to

form 2D point cloud data and utilise this as the input into the ANN.
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In [92], the authors focus on early fusion of camera and radar sensors to enhance
the accuracy and robustness of object detection in advanced driver assistance sys-
tems. They propose a deep learning architecture called FusionNet, which combines

minimally processed radar signals with corresponding camera frames.

The radar data is fed into the network as a dense 2D range-azimuth image, allowing
the use of feature pyramid network structures, popular in image object detection
networks. The camera data is transformed into Cartesian space using a Inverse

Perspective Mapping (IPM) to align with the radar data.

The FusionNet architecture consists of independent branches for each sensor, fol-
lowed by fusion layers that concatenate the spatially alipned feature maps from both
branches. The network is trained using a unique strategy of partially freezing the
network and fine-tuning to ensure meaningful representations from different signal

S0NICes.

On the other hand, [93] presents a deep learning-based radar and camera sensor
fusion architecture for object detection, called CameraRadarFusionNet (CRF-Net).
The proposed approach enhances current 2D object detection networks by fusing
camera data and projected sparse radar data in the network layers. The CRF-Net
automatically learns the optimal level for sensor data fusion to maximise detection
performance. The radar data is pre-processed to form 2D point clouds, which are

then projected onto the camera image plane.

Lastly, an approach presented by the authors of [94] demonstrates an auto-labelling
framework, achieving a similar goal to what we present in this chapter but through
a different means. The approach presented by [94] uses an active learning system
based on a CNN. Although the technique presented by [94] demonstrates promising
results, it is important to note that the technique requires human input to manually
label ambiguous data. The framework we present in this chapter demonstrates an

approach that requires no human interaction for labelling of radar frames.

T4



4.3 Radar Training with Camera Labelling and
Supervision Methodology

In this section we aim to describe and illustrate a generalised methodology for la-
belling radar data and training a standalone radar model using camera as the ground
truth for the radar model. The purpose of this methodology is to provide a frame-
work for others to follow when attempting to extend camera based models into a
radar based model. The methodology described in this section is practically applied
and demonstrated in Section 4.4 of this chapter.

4.3.1 Problem Space

Raw radar data is notoriously difficult to interpret intuitively without applying pre-
processing techniques to extract the desired information. The radar data typically
consists of range, velocity, and angle information, which can be challenging to visu-
alise and understand without appropriate processing. Furthermore, the labelling of
raw radar data can be a difficult and tedious task for a domain expert, especially
due to the large dataset sizes that are typically involved. This labelling process often
requires manual inspection and annotation, which is time-consuming and prone to
human error. As a result of this labelling difficulty, training a model that utilises
radar data to classify complex events also becomes a difficult task. This problem is
typically addressed in existing literature by reducing the dataset size of the radar
data or restricting the potential of the classifier being trained to only a small set
of classification types. Although this may alleviate the problem, there are negative
implications to the potential of the designed radar model. A reduced dataset size
can lead to overfitting, where the model performs well on the training data but fails
to generalise to new, unseen data. Similarly, restricting the classification types can
limit the applicability and robustness of the model. Therefore, there is an evident
need to devise a solution to simplifying the labelling approach for radar data that
in turn can be utilised to train a classifier without impacting the constraints of the

designed model.

Camera classification networks are a well-defined and researched domain. As seen

in Section 4.2 of this chapter, there are many existing models available that demon-
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strate successful classification capabilities for a variety of complex movements. These
models leverage the rich spatial information awvailable in camera images to per-
form tasks such as object detection, pose estimation, and activity recognition. The
methodology proposed in this chapter uses camera as a means of addressing this
labelling challenge with raw radar data and the inherent training difficulty of stan-
dalone models/classifier networks. By using camera data to label radar data, we can
leverage the strengths of both sensor modalities. However, attempting to ultimately
use vision data to label and act as ground truth for radar data presents two major

challenges that need to be considered.

Firstly, vision data is inherently a snapshot of a horizontal and elevation domain
at a given point in time; in other words, the perspective of the two-dimensional
data is typically considered to be still/static in nature. Radar data, on the other
hand, is typically a perspective of a range/distance and relative angle, or an inferred
horizontal plane. Additionally, radar data in this domain is also typically collected
on moving/dynamic objects. This domain alignment issue between camera and
radar data ultimately poses a challenge, specifically the correlation of static objects
present in vision data with moving objects present in the radar data. To address this
challenge, it is essential to develop techniques that can accurately map the spatial
coordinates of objects detected in camera images to the corresponding coordinates
in radar data. This may involve the use of calibration techniques to align the
coordinate systems of the two sensors and the development of algorithms to track

the movement of objects over time.

The second major challenge identified is also a correlation problem in nature that
presents itself when operating in an environment where multiple objects are simulta-
neously present and /or moving in the field of view. This scenario ultimately surfaces
the challenge of correctly associating the multiple objects in the vision data with the
same objects in the radar data. In environments with multiple objects, it is crucial
to develop robust data association techniques that can accurately match objects
detected by the camera with their corresponding radar detections. Techniques such
as data fusion and sensor fusion can be employed to combine information from both

sensors and improve the overall accuracy and reliability of the system.
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4.3.2 Proposed Approach

This section depicts the proposed solution methodology to the previously discussed
problem space. The methodology proposed in this chapter should be interpreted
as a framework that can be applied to a given camera classification model, so that

radar can achieve an ideally equal performing standalone classification network.
The proposed approach can be conceptually considered in the following three stages:
1. Data collection;
2. Correlation and labelling;
3. Radar training.

Figure 4.1 illustrates the generalised processing chain that is involved throughout the
aforementioned three high-level stages. The data collection stage is an abstraction
in the framework that is responsible for collecting data independently of the radar
and camera. The data collected from each of the different sensors is then undertaken
through the appropriate pre-processing and normalisation methods depending on the
particular application this framework is being applied to. The desired output state
for the radar data is a sequence of radar data frames across the time domain. At
this stage, the camera data should be in a state that is consumable by the particular

camera classifier network that is being applied to train the radar with.

After suceessful data collection and the appropriate transformations, the pre-processed
camera data should then be applied to the camera classifier being implemented to
train the radar. The expectation of the camera classifier is to perform the respective
classifications against the camera data so that a sequence of camera frames with la-
belled classifications can be obtained. The domain in which these camera frames
are obtained can be considered abstract for the definition of this methodology, as

this is dependent on the particular application.

An important part of the proposed methodology is the correlation approach to
synchronise the camera and radar data. The time associated with the sample taken
for the camera data is used as a reference so that the radar data can be extrapolated
in order to synchronise with time. Figure 4.2 demonstrates the time bias that is

present between the radar and camera samples.
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Figure 4.1: Radar training with camera labelling and supervision methodology pro-
cessing chain.
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Figure 4.2: Radar and camera time alignment bias.

Assuming two consecutive radar time stamps are expressed as S,(n—2) and S, (n—1),
the next sample predicted by the radar can be expressed as S;(n). Using the position
and velocity components of the radar data, S.(n — 1) and S¢(n) can be linearly
interpolated to estimate the radar sample at the correlating camera data point

S.(n). The linear interpolation for temporal correlation is expressed as:

St¢(n) — Se(n—1)
Ly —Tpm_1)

S.(n) = S,(n—1) + (te — brint)), (4.7)

where ¢; is the time of the next radar sample, t,;_;, is the time of the previous

radar sample, and ¢, is the time of the camera sample.

Once both radar and camera data have been correlated using the above approach,
a labelled set of radar frames can be formed based on the correlation that was
achieved. The labelled set of frames Fj(n) can then be subjected to training for

classification of the desired feature sets encoded in the radar and camera data.

The classification network applied to the labelled radar data can be an abstracted
problem in the context of the framework proposed in this chapter. The proposed ap-
proach ultimately abstracts the design challenges associated with fusing and labelling
the radar data with camera classifiers. As a result, a generic model can be applied
and trained against the labelled radar frames based on the original camera classifi-
cation network that was selected. The next section of this chapter demonstrates a
practical implementation of the generalised methodology illustrated, showcasing its

effectiveness in training a radar classifier using camera-labelled data.

4.4 System Design and Implementation

This section demonstrates an implementation of the labelling and supervision frame-

work presented in the previous section. As mentioned in Section 4.3, the framework
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Figure 4.3: Radar tracking system design with a human movement pattern classifier

trained with camera labelled frames.

provides a means to training a radar using labelled camera frames. As such, the
design and implementation discussed in this section demonstrates the suitability of
the framework by applying it to train a mmWave tracking system to classify human

movement patterns.

Figure 4.3 illustrates the overall system design that implements the framework dis-
cussed in Section 4.3 and illustrated in Figure 4.1. The system design presented
contains three high-level processing pipelines:

1. Radar Pipeline;
2. Camera Pipeline;
3. Fused Pipeline.

The remainder of this section will continue to break down the system design with

respect to each of the pipelines illustrated in Figure 4.3.
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Figure 4.4: Radar processing pipeline design.

Figure 4.5: Generated radar range-Doppler heatmap.

4.4.1 Radar Pipeline

The radar pipeline concerns itself of the processing required to prepare the radar
data for fusion with the camera frames. As seen in Figure 4.3, it is expected that the
radar pipeline can achieve object detection and tracking. Figure 4.4 further extends
on the high-level aspect of the radar pipeline presented in Figure 4.3.

The radar processing pipeline has been broken down into 4 different submodules.
The Hadar Data Collection module is responsible for collecting the raw ADC data
from the radar. The raw radar data is then processed to perform two FFTs, the
range-FFT followed by the Doppler-FFT. These transformations are necessary so
that the respective range-Doppler heatmaps can be generated for each radar frame.

An example range-Doppler heatmap can be seen in Figure 4.5.

The second module of the radar processing pipeline is the Constant False Alarm Rate
(CFAR) stage, which is ultimately responsible for implementing a CFAR filter for

performing object detection on the range-Doppler heatmaps. It is important to note
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the decision to operate with range-Doppler heatmaps was made primarily for the

later radar classification that will be discussed. The CFAR algorithm dynamically

adjusts the detection threshold based on the noise level in the surrounding cells

of the radar data. Algorithm 4 details the CFAR process implemented for object

detection in the range-Doppler heatmaps.

Algorithm 4 CFAR Process for Object Detection in Range-Doppler Heatmaps

1:

10:
11:
12:
13:
14:

Input: Range-Doppler heatmap H, guard cells &, training cells T', false alarm
rate Py,

Output: Detected objects D

Initialise an empty list I to store detected objects

Calculate the number of cells N in the training window: N = 2T +2G + 1
Calculate the scaling factor o using the false alarm rate FPp,:

a=N (PN -1) (4.8)

for each cell (i, j) in the heatmap H do
Extract the training window around the cell (i, ), excluding the guard cells

Calculate the noise level Z as the average power of the training cells:

z:% S H(m,n) (4.9)

(mn)eT

Calculate the detection threshold T, ,,:
Tefar = 2 (4.10)

if H(i,7) > Tefar then
Add the cell (i, j) to the list of detected objects D
end if
end for

return [J

Following the object detection in the range-Doppler heatmaps, the data is further

processed to be illustrated as a point cloud data so that traditional radar point cloud

clustering and tracking can take place using DBSCAN and a Kalman filter. The

radar hardware architecture used in this system was a TI IWR6843 mmWave radar
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Figure 4.6: Camera processing pipeline design.

with a DCA1000EVM for capturing the raw ADC data of the radar. The complete
radar pipeline is further detailed in Algorithm 5.

The radar pipeline consists of multiple processing stages, each contributing to the
overall computational complexity. The Range-FFT and Doppler-FFT operations
dominate the initial processing stages. For N ADC samples and M chirps, the
FFT complexity is O(NM(log N +log M)). The CFAR processing has complexity
O(W H) for processing the range-Doppler heatmap of dimensions W x H, where the
window operations involve constant-time computations. For point cloud clustering,
DBSCAN has a complexity of @(nlogn) with spatial indexing structures for n
detected points. The Kalman filter tracking operations have complexity O(k x d*)
per frame for k clusters with state dimension d, due to matrix operations in the
prediction and update steps. The total radar pipeline complexity per frame simplifies
to O(NMlog(NM) + WH + nlogn) since the FFT operations dominate when
N,M » W, H > n, and the tracking complexity O(kd®) is typically negligible for

small cluster counts and low-dimensional state spaces.

4.4.2 Camera Pipeline

The camera pipeline is responsible for preparing and labelling the camera frames
for fusion with the radar range-Doppler heatmaps. The data that is recorded from
the camera must first be processed for object detection and each object coordinately
mapped in the field of view. Following this the appropriate movement classifications
can be made and associated with objects in the field of view of the camera. Figure
4.6 illustrates a more granular perspective of the stages involved in the camera

processing pipeline.
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Algorithm 5 Radar Pipeline for Object Detection and Tracking

1:
2:
3

10:
11:
12:
13:
14:
15:
16:
1T:
18&:
19:
20:
21:
22:
23:
24:
25:
26:
27
28:
20:
30:

a1:

Input: Raw radar ADC data R.4., radar hardware parameters
Output: Tracked radar objects T, 4.,
Radar Data Collection:
Collect raw ADC data R, from radar sensors
Range-FFT:
Perform Range-FFT on R,4. to obtain range profiles R,
Doppler-FFT:
Perform Doppler-FFT on R,,,,. to obtain range-Doppler heatmaps H, 4
CFAR Object Detection:
Define guard cells G, training cells T', and false alarm rate Py,
Calculate the number of cells N in the training window: N = 2T +2G + 1
Calculate the scaling factor o using Py, as per Algorithm 4
for each cell (4, j) in the heatmap H,; do
Extract the training window around the cell (i, ), excluding the guard cells
Calculate the noise level Z as the average power of the training cells
Calculate the detection threshold Tz, using Z and a
if H,4(i,7) > T.f4 then
Add the cell (i, j) to the list of detected objects D
end if
end for
Point Cloud Generation:
Convert detected objects D into point cloud data P4
DBSCAN Clustering:
Apply DBSCAN clustering on FPaoug to form clusters Caysiers
Kalman Filter Tracking:
for each cluster ¢ € Cuyaters dO
Predict the next state of the cluster using a Kalman filter
Update the state of the cluster with new measurements
Add the tracked cluster to the list Tqdar
end for

return T, ...
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Figure 4.7: Faster R-CNN model design, used for camera object detection.

As illustrated in Figure 4.6, object detection is the first task that is performed
in the camera processing pipeline. In order to realise camera object detection, a
Faster Region-based Convolutional Neural Network (Faster R-CNN) is implemented.
The structure implemented can be seen in Figure 4.7 and is based on the research

presented in [95].

The generalised loss function adopted for camera object detection follows the multi-
task loss in Faster R-CNN [96]. The multitask loss function combines classification

and regression objectives into a unified optimisation framework, which is defined as:

L{{p:}: {t:}) = (P57

Z * Lreg(ti, ] (4.11)

where i refers to the index of an anchor (noting the definition of an anchor as per
[95]), p; is the predicted probability of anchor i being a detected object, p? is the
ground truth label for the given anchor i (derived as per Equation 4.12), ¢; is the

coordinate vector associated with the bounding box of the predicted anchor i, and
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t¥ is the ground truth of bounding box coordinate vector associated with anchor 4

that is an object.

The ground truth label p? for a given anchor i is binary in value and serves as the

target classification for training. This binary labelling strategy is represented as:

1, anchor i is positive
p; = ; (4.12)

0, otherwise

Furthermore, the terms Ly, and L., refer to the loss functions for the classifier and
regressor respectively, illustrated in Figure 4.7. N, and N,.,, are the normalisation
of these two terms. The classification loss function implements cross-entropy loss to

measure the prediction accuracy, expressed as:

N
Lar(popl) =~y Dopilogp) + (1 —p)logl —p), (413

The regression loss function measures the accuracy of bounding box coordinate

predictions using the smooth L1 loss function, which is defined as:

Lreg(ti:E:) = SmmzhLl(Ei:Ei*): {414]

where the smoothr; function is defined as per [96].

After object detection has been performed, the classification model is then applied
to the cropped detected objects. The purpose of the classification model in this

implementation is to:
1. Formulate a 2D skeleton for each detected object in the field of view;
2. Classify the human activity that using the 2D skeleton.

In order to achieve this, each of the detected objects is run through AlphaPose [97]
to generate the respective 2D skeleton for the detected object. AlphaPose is a state-
of-the-art system for human pose estimation that provides accurate and real-time

multi-person pose estimation. The architecture of AlphaPose consists of several key
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components: a backbone network, a detection module, a pose estimation module, a

pose refinement module, and Pose Non-Maximum Suppression (NMS) [98].

The backbone network, typically a deep CNN like ResNet, extracts high-level fea-
tures from the input image. The detection module, using networks such as Faster
R-CNN or YOLO, detects human bounding boxes in the image [98]. These bound-
ing boxes are used to crop ROIs from the feature maps generated by the backbone

network.

The pose estimation module predicts the key points of human poses within the
detected bounding boxes. It consists of deconvolutional layers that upsample the
feature maps to a higher resolution, followed by convolutional layers that predict
heatmaps for each key point. The Gaussian heatmap representation for each key

point provides a probabilistic estimate of joint locations, expressed as:

(4.15)

H;.,{Ly] = exp (_{$ — Ik)z + {y - yﬁ:)z) ,

272

where (z,y;) is the ground truth position of key point k, and ¢ is the standard

deviation of the Gaussian peak.

The pose refinement module improves the accuracy of the predicted key points using
convolutional layers. The refinement process minimises the distance between the
predicted key points and the ground truth key points. Pose NMS handles redundant
detections and overlapping poses by comparing the similarity of predicted poses and
retaining only the most confident ones. The similarity between two poses is measured

using the Euclidean distance between corresponding key points [98].

During training, AlphaPose uses a combination of heatmap loss and refinement loss

to optimise the network [98]. The total loss function is defined as:

L‘tcrta[ = Lhentmp + }'lLref'iﬂe:. {415)

where Lpeqtmap 18 the loss for the initial heatmap predictions, L, f:n. is the loss for

the pose refinement, and A is a weighting factor.
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During inference, the input image is passed through the backbone network to extract
feature maps. The detection module detects human bounding boxes, which are used
to crop the ROIs from the feature maps. The cropped feature maps are passed
through the pose estimation module to predict the initial key points, which are
then refined using the pose refinement module [98]. Finally, the Pose NMS module

eliminates redundant poses to produce the final pose predictions.

The result of the AlphaPose system is then passed as an image to a CNN that has

been pre-trained to classify poses that are associated with:
¢ Walking;
¢ Running;
¢ Falling.

The pre-trained model is ensured to have an accuracy greater than 92%. The ac-
curacy of this classifier network is important, as it will ultimately be built into the
mmWave classification network during the fusion pipeline. In parallel with the clas-
sification of the detected objects, their location in the field of view is also jointly
estimated using camera calibration. This ultimately results in each detected object
j having a respective given coordinate ( Xz, Y ) for each camera frame k, where X
is used to denote the horizontal coordinate and Y is used to represent the estimated
range of the object (as opposed to height). Finally, a Kalman filter is applied to
predict the detected object’s true location more accurately whilst being tracked in

the field of view. The entire camera pipeline process is detailed in Algorithm 6.

The camera pipeline computational complexity is dominated by deep learning op-
erations that scale with image dimensions and detected objects. The pipeline con-
sists of Faster R-CNN object detection with complexity O(W;H; + A + ng,;) for
image processing, anchor evaluation, and ROI operations, followed by AlphaPose
pose estimation at O(n.; x Wy Hy,) for bounding box processing, activity classi-
fication at O(ng,;), and Kalman filter tracking at (n,), as previously discussed
for low-dimensional state spaces. The total camera pipeline complexity simplifies
to O(WiHy + ng,; x Wy Hy,) since the backbone network and pose estimation op-

erations dominate when processing high-resolution images with multiple detected
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Algorithm 6 Camera Pipeline for Object Detection and Classification

1: Input: Raw camera frames F', pre-trained Faster R-CNN model M, .,,, pre-
trained AlphaPose model M., pre-trained activity classifier M,

2: Output: Labelled objects with activity classifications L

3: Imitialise an empty list L to store labelled objects

4: for each frame f € F do

5: Object Detection:

6: Run Faster R-CNN model M., on frame f to detect objects

T Extract bounding boxes B = {bi,bo,...,b,} and object scores S5 =
{s1,82,..., 8.} from M,on

2 for each bounding box b; € B do

9: Crop the object region O; from frame f using bounding box b;
10: Pose Estimation:

11: Run AlphaPose model M. on cropped object O; to estimate 2D skeleton
12: Extract 2D skeleton key points K; from M.

13: Activity Classification:

14: Convert 2D skeleton key points K; to an image representation I;
15: Run activity classifier M, on image I; to classify activity

16: Extract activity label A; from M.,

17: Object Tracking:

18: Estimate object location (X;, ¥;) using camera calibration

19: Apply Kalman filter to predict true location {I‘:’h f’:]

20: Store Labelled Ohbject:

21: Create labelled object I; = (b, s;, Kz, As, (X, Y2))

29; Add labelled object [; to list L

23: end for
24: end for

25: return L
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objects.

4.4.3 Fused Pipeline

The fusion pipeline is then finally responsible for associating the tracked objects in
the radar domain with the tracked and classified objects in the camera domain. As
mentioned in Section 4.3 of this paper, before fusing the two domains a time bias
between the domain samples needs to be accommodated for. In our implementation,
this is achieved by granulating the radar samples so that positional estimates are
calculated between radar samples. This positional estimates are deduced so that

they correspond with the sampling rate of the camera system.

The association and correlation of the detected objects is then made so that the
tracked objects in the camera domain can be related to the tracked objects in the
radar domain. This correlation is made using the deltas of the velocity and acceler-
ation between the respective predicted locations of the camera and radar tracking
algorithms. For both camera and radar, the displacement vector is used for corre-
lation using Pearson’s Correlation Coefficient. This approach consequently removes
any detected objects that are not commonly identified across domains, accommo-
dating for the scenario where one sensor picks up an object that the other does not.
The mathematical formulation of the displacement vectors for camera and radar

systems is given by:

CP; = [cPn — CPn1, CPn_1 — CPn_2,- -+ , P2 — €D1], (4.17)

R_jjm = [rpﬂ- —TPn_1:TPp1 — TPp_2,--" TP — rpl]a {418]

where U_PI and R_Pm are the displacement vectors for camera and radar respectively,
each for a given camera detected object [ and radar detected object m. For the given
detected object, the delta between all camera positional estimates cp in a sliding
sample window n is calculated. The same is applied to the given detected radar

object and its radar positional estimates rp in the sliding sample window n.

Using the displacement vectors for camera and radar defined above, the Pearson

Correlation Coefficient is calculated for each pair of detected objects in both the
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camera and radar domain. This correlation measure is mathematically expressed

as:

- nY. CPiRPw — (Y. CP) (3 RPm) | (4.19)

VX CP; — (X Py, RP., — (5 BP.n)?]

where r is computed for all combinations of [ and m. The absolute Pearson Corre-
lation Coefficient |ry,,| is taken and the maximal ! and m combination is deemed to

be the correctly correlated pair.

After correlation of the radar and camera domains, we ultimately have a labelled
dataset we can use to train a model against for classification in the radar domain.
The structure of the model used for classification of the radar data is a CNN with
the input shape pertaining to clustered point cloud data for a single detected object.
Algorithm 7 details the fused pipeline process for correlating and labelling the radar

frames.

The computational complexity of the fused pipeline depends primarily on the corre-
lation operations between detected objects across modalities. For n, camera objects
and n, radar objects, computing all pairwise Pearson correlation coefficients has
complexity O(n, x n, x w), where w is the window size for displacement vector
calculation. The displacement vector computation has complexity OQ(w) per ob-
ject pair, and the correlation coefficient calculation requires O(w) operations per
pair. For typical multi-object scenarios with n,.,n, < 10 and window sizes w < 20,
this represents a computationally efficient fusion process. The time synchronization

through linear interpolation has complexity O(n, x w) for radar data granulation.

4.5 Results

The system described in Section 4.4 was experimentally tested in varying environ-
mental conditions to prove its performance. The first task is to collect the necessary
dataset that can be used to train the radar. The dataset compiled needs to jointly
have both camera and radar samples, so that the respective data fusion can take

place. This cannot be collected independently.
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Algorithm 7 Fused Pipeline for Radar and Camera Data Correlation and Labelling

1:

10:
11:
12:
13:
14:
15:
16:
1T:

18:

19:
20:
21:
22:
23:
24:

25:

Input: Radar data R, Camera data C, Radar sampling rate f,, Camera sam-
pling rate f.

Output: Labelled radar frames F;

Initialise an empty list F} to store labelled radar frames

Calculate the time bias At between radar and camera samples:

A=+ _1 (4.20)

A

for each radar frame r € K do

Granulate Radar Samples:
Estimate radar positions rp at camera sampling rate f,. using linear interpo-
lation:
PPn = TPn_1 + (w) At (4.21)
end for
for each camera frame ¢ € C do

Object Detection and Classification:
Detect objects and classify activities in camera frame ¢ using Algorithm 6
Extract detected objects O, = {04,049, .. .,0,} With positions (X, Y,)
end for
for each detected object 0. € O, do
Correlation with Radar Data:
Calculate displacement vectors for camera and radar © Eq. 4.17 and 4.18
Calculate Pearson Correlation Coefficient - Eq. 4.19
Find the maximal |ry,| and correlate the corresponding camera and radar
objects
end for
Label Radar Frames:
for each correlated pair of objects (o, 0,) do
Assign the activity label from camera object o. to radar object o,
Add labelled radar frame Fi(o,) to list F;
end for

return F;




A dataset containing 1000 images was collected across 4 different sessions, where
each session had a different external environment. Two of the sessions were recorded
indoors and the other two were in an outdoor setting. In all recorded sessions, we

ensured we recorded situations that included:
¢ No targets in the field of view;
¢ A single target in the field of view;

¢ Multiple targets in the field of view.

Table 4.4: Distribution of activities in the recorded dataset.

Activity Distribution

Running 26.69%
Walking  25.02%

Falling  23.34%
Unknown 24.95%

Additionally, the four types of activities were distributed along the 1000 images as
per Table 4.4, The frequency in which these activities took place is not a factor of
the 1000 images taken. This is due to the fact that one or more activities could be
present several times in a single image. This is a result of the potential for multiple

objects to be detected and independently processed in a single frame.

The total dataset, and inner classifications, were equally shuffled to prevent a bias of
randomisation between classification types. The shuffled dataset was then divided
into training, validation and testing subsets. The first 60% of the equally randomised
recorded dataset was reserved exclusively for training of the camera classifier and
subsequently the radar classifier. The next 20% was then used for validation of
the trained models, allowing us to further refine the classifiers using the validation
dataset. Lastly, once the best performance was obtained, the classifiers were tested

against the final reserved 20% of the dataset.

The accuracy results of our final trained radar system are presented in Figure 4.8.
The camera trained radar classifier is compared with the accuracy of the trained

standalone camera system and the manually labelled radar classifier, in varying
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Figure 4.8: Camera trained radar system accuracy in contrast to a trained stan-

dalone camera system.

environmental setups. To clarify, each of the aforementioned systems is further
described as:

¢ Camera Trained Radar Classifier: A radar classifier trained using camera
labelled data via the framework proposed in this chapter.

¢ Trained Standalone Camera System: A camera classifier that is used to

label the frames for the camera trained standalone radar classifier.

e Manually Labelled Radar Classifier: A radar classifier, of the same de-
sign as the camera trained standalone radar classifier, trained using manually

labelled radar data.

In Figure 4.8, it can be seen that the radar classifier, that was trained using cam-
era labelled data, produced an outcome similar, and in some circumstances more
superior, to that of the standalone camera classifier. In most “normal” scenarios
the radar classifier performed largely identical to the camera classifier. However,
there are two environmental changes that should be noted as outliers, the first being
objects that are distant.

In the scenario where the camera trained radar classifier was attempted with targets

at a distance greater than 6 meters, the accuracy of the model was 7.66% less,
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Table 4.5: Accuracy similarity between the standalone camera system and camera

trained radar system.

Environment Trained Similarity
Normal lighting indoors 97.69% |

Outdoors with distant objects 92.34% |

Outdoors with near objects  99.55% 1T

Low level lighting indoors 43.16% 1

compared to the camera classifier. On further analysis of the results, it appears this
is likely due to the fact that the point cloud data per cluster (i.e. detected object)
is much leaner compared with objects that are within 6 meters of the radar. The
leaner point cloud data results in a lack of distinguishing features between activities
in the radar domain. This challenge could potentially be overcome through some
additional design considerations with the chirp of the radar.

The second outlier, that is worth noting, is the experiment performed in an indoor
room with low levels of light. As expected, the camera trained radar classifier is
not impacted by the lighting conditions, and as a result demonstrates an accuracy
that is 56.84% higher than the standalone camera classifier in the same lighting

conditions.

Given the radar is being trained using camera labelled data, the best network we
could theoretically achieve with the radar is one that is of equal performance to the
teacher network (the standalone camera system). The exception to this is any sensor
specific characteristics that might inhibit the performance of a given sensor, such as
ambient lighting in the context of camera. This particular regard was evident in the
second outlier identified, where the camera trained radar network was more perfor-
mant than the standalone camera network, simply due to ambient lighting. Whilst
acknowledging the aforementioned outliers, it is evident that the camera trained
radar system performed with a high degree of similarity to the standalone camera
system. The trained similarity between the two systems is summarised in Table
4.5, where a | implies an inferior similarity and a 1 implies a superior similarity,

with respect to the trained radar system. The high degree of similarity between the
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Figure 4.9: Manually labelled trained radar system accuracy in contrast to the

camera trained radar system.

teacher network (the standalone camera system) and the student network (the cam-
era trained radar system) demonstrates the suitability of the proposed generalised
framework toward training a radar model with camera labelled data.

In order to better understand the theoretical potential of the radar classifier, the
camera trained radar classifier was compared against a manually labelled radar
classifier. The purpose of this comparison scheme was to demonstrate the potential
of the implemented radar classifier. The significance of this experiment is to firstly
highlight the capability that could potentially be expected with the design of the
radar classifier, and secondly to gain an understanding of the pre-encoded errors the
camera trained radar classifier incurs as a result of labelling errors in the camera
domain. Figure 4.9 illustrates the accuracy of the manually labelled trained radar
system in contrast to the camera trained radar system. Figure 4.9 highlights the
theoretical potential the radar classifier can achieve when trained with a manually
labelled dataset.

Assuming the manually labelled dataset is not incorrectly labelled, it is expected
that training the radar system with a manually labelled dataset will yield higher
results than a camera trained radar system. This is ultimately due to the fact

that a camera trained radar classifier will incur labelling errors associated with the
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camera classifier. This hypothesis is ultimately supported by the results presented
in Figure 4.9. [t can be seen that the camera trained radar system does not meet the
same performance as the manually labelled radar system. Despite the theoretical
potential of the radar classifier, the performance of the camera trained radar system,
implemented using the proposed framework, is on average 96.52% as performant as
the camera classifier, as seen in Table 4.5 when negating the outperforming low level

lighting environment.

4.6 Conclusion

The research presented in this chapter demonstrates a framework for developing
a classifier for mmWave radars, using camera as a teacher for the mmWave radar
student network. The example implementation, presented in Section 4.4, shows how
the framework can be implemented to achieve a radar classifier that is as accurate
as the teacher camera classifier. This performance is demonstrated without com-
promising on the beneficial characteristics of the radar, such as the non-sensitivity

to illumination.

The proposed camera trained method can achieve a level of performance that ap-
proaches the manually labelled radar system, particularly in cases where the camera
can generate accurate recognition performance. Hence, using the proposed frame-
work can provide a significant saving on manual labelling for radar data. The
performance of the camera-trained method is degraded where camera’s recognition
is limited. This is specifically seen in the results presented for the “Outdoors with

Distant Objects” environment.

In order to further the research presented in this chapter, additional camera based la-
belling networks should be analysed, through the methodology presented in Section
4.3, for their ability to train an equally performant radar network. Furthermore,
it would be of interest in future research to conduct radar classifier design opti-
misations and compare the network performance across a variety of different radar
hardware. Performing such an experiment will allow us to better understand the im-
pact of intrinsic radar characteristics, such as the ADC sampling rate and maximum

resolution, on the generalised performance of the proposed framework.
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The framework presented in Section 4.3 should be considered as a foundation to de-
signing mmWave classifiers. Adopting the framework presented in this chapter can
help researchers alleviate the burden associated with the labelling of mmWave data.
This labelling challenge usually results in researchers under-collecting an adequate
set of training data to design an mmWave classifier. In this scenario, due to the lim-
ited training dataset collected, the classification network attempting to be designed
may not reach its full potential, simply as a result of being deprived of training data.
Hence, the framework we present may assist future research by providing a model
that researchers can follow to remove the need for manual labelling of data when

designing a classifier for mmWave radar.
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Chapter 5

Joint mmWave Sensing and

Tracking with mmCLAE

In this chapter, we present a comprehensive approach to enhancing the performance
of mmWave multi-object tracking systems in adverse weather conditions, partic-
ularly focusing on rain-induced noise reduction and rain intensity classification.
Through the use of deep learning techniques, we propose a Millimetre Wave Convolu-
tional Long Short-Term Memory Autoencoder (mmCLAE) for effective noise reduc-
tion and a CNN for accurate rain intensity classification. The proposed methods are
evaluated through extensive experiments, demonstrating significant improvements

in system robustness and accuracy.

This chapter outlines the motivation, methodology, and experimental results of our
contributions, providing a practical implementation that utilises our research from
prior chapters to produce a unified mmWave tracking and sensing system. The
structure of this chapter is as follows: Section 5.2 reviews classical methodologies
for noise reduction and rainfall sensing in mmWave radar systems. Section 5.3 details
the proposed unified system architecture, including the integration and workflow of
the noise reduction and rain intensity classification modules. Section 5.4 describes
the proposed noise reduction approach, including the architecture mmCLAE and
its training process. Section 5.5 presents the CNN-based method for rain intensity
classification. Section 5.6 presents experimental results demonstrating the effective-

ness of the proposed approaches in enhancing multi-object tracking performance
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and robustness to rain artefacts. Finally, Section 5.7 concludes the chapter with a

discussion on the implications and future research directions.

5.1 Introduction

The utilisation of mmWave radar in multi-object tracking applications has shown
great potential, as already seen from a variety of perspectives throughout this thesis.
However, the external environment and the conditions of this environment can have
a significant impact on the performance of these systems. Rain, in particular, can
introduce noise and artefacts that can severely degrade the accuracy and reliability
of object detection and tracking. Rain-induced noise can manifest in various forms,
including multipath effects, signal attenuation, and speckle noise, which can com-

plicate the tracking process and reduce the overall system performance [99]-[101].

Typical methods for noise reduction in mmWave radar systems often rely on filtering
techniques, such as adaptive filters or wavelet-based denoising algorithms [102]-{104].
Although these methods can be quite effective in reducing noise, they may not be
well-suited to capturing the patterns and relationships present in more complex noise
profiles. With the recent advancements in deep learning literature, it proves to be
a promising avenue in addressing this challenge, with various studies exploring the

application of CNNs and RNNs for noise reduction in mmWave radar signals [105].

In this chapter, we introduce one primary technique to mitigate this challenge dur-
ing tracking, along with a secondary joint sensing proposal. To address the chal-
lenge of rain-induced noise, we present a novel noise reduction technique, mmCLAE,
specifically designed to remove rain-induced artefacts from mmWave signals. The
mmCLAE is trained and evaluated on our own dataset of both simulated and real
mmWave signals with varying levels of noise and rain intensity. Additionally, we
propose a CNN-based method for classifying rain intensities using features extracted
from mmWave radar data. This approach leverages the strengths of CNNs in pro-

cessing the spatially correlated data and detecting relevant patterns.
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5.2 Classical Methodologies

In this section, in order to better understand the domain and solution we arrived
at for mmCLAE, we review classical methodologies on noise reduction and rainfall
sensing in mmWave radar systems. The section is organised into two main subsec-
tions: methodologies of noise reduction in mmWave radar and rainfall sensing in
mmWave radar. We will first discuss traditional signal processing techniques specif-
ically for noise reduction in more details and their associated challenges, followed
by an exploration of deep learning approaches that have shown promising results in
addressing these challenges. Subsequently, we will then discuss various methods for
rainfall sensing, ranging from empirical models to advanced machine learning and

deep learning techniques.

5.2.1 Noise Reduction

Noise reduction in mmWave radar systems is an essential topic to address for ensur-
ing accurate and reliable object detection and tracking. This problem is especially
exacerbated in scenarios where the external environment conditions are adverse,
such as during rain and storms. Traditional signal processing techniques, such as
adaptive filters and wavelet-based denoising, have been widely used to address this
challenge in a more traditional sense [106], [107]. These methods, however, often
struggle to capture the complex patterns and relationships inherent in noise profiles,

particularly in the presence of rain-induced artefacts.

Deep learning has opened up new possibilities for more complex approaches towards
noise reduction in mmWave radar systems. CNNs and RNNs have shown great po-
tential in this domain, ultimately through their ability to learn hierarchical features
and temporal dependencies from raw radar data [108], [109].

Traditional Signal Processing Techniques

Traditional signal processing techniques for noise reduction in mmWave radar sys-
tems stem from the use of adaptive filters, wavelet-based denoising, and typical
statistical methods. Adaptive filters, such as the well known Least Mean Squares
(LMS) and Recursive Least Squares (RLS) algorithms, have been commonly utilised
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to reduce noise by ultimately adjusting filter coefficients dynamically based on the
input signal characteristics. For example, the LMS algorithm, known for its low
computational complexity and stability, has been effectively applied in various sig-
nal processing applications to reduce noise and improve the Signal-to-Noise Ratio

(SNR) [106].

Wavelet denoising techniques decompose the signal into separate frequency compo-
nents to then selectively remove noise by thresholding the wavelet coefficients [110].
These techniques have been effectively applied in various radar systems, including
automotive FMCW radar and atmospheric radar, to fundamentally mitigate noise
and improve the SNR. In automotive radar systems for example, wavelet denocising
has been used to suppress mutual interference by extracting and subtracting inter-
ference signals from the original radar signal [107]. Similarly, in atmospheric radar
systems, multi-band wavelet transforms have been employed to denoise the Doppler

spectrum, ultimately enhancing the detection of wind velocity parameters [111].

Lastly, statistical methods, such as the Kalman filter and its many variants, such
as EKF and Adaptive Kalman Filter (AKF), ultimately make use of probabilistic
models to estimate the true signal from noisy observations, as discussed in Chapter
2. The EKF is particularly useful for a system that is considered nonlinear, as it
linearises the system around the current estimate to provide more accurate predic-
tions [112]. AKF on the other hand, further enhances this by altering the process
noise level in accordance to the dynamics of the system, ultimately making it more

robust to sudden and sporadic changes [113].

Deep Learning Approaches

There have been a number of studies that explore the applications of CNNs and
RNNs for the mitigation of noise in mmWave radar. CNNs have been particularly
effective in encoding spatial correlations within the radar data, that can ultimately
be used for the removal of noise artefacts that traditional methods may find chal-
lenging to isolate. Using the hierarchical feature extraction capabilities of CNNs, it
is possible to design a model that can effectively identify and remove various types
of noise that may be present in mmWave radar signals, as demonstrated in the

research presented by [108], [114].
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In addition to CINNs, RNNs, especially LSTM models, are being used to address
the temporal dependencies naturally inherent in radar signals. LSTMs are especially
well-suited for this due to their ability to maintain and update memory cells, making
them ideal for modelling the temporal information. Through the incorporation of
LSTMs into noise reduction frameworks, it is possible to achieve a noise reduced
filtered signal, while ultimately preserving the temporal characteristics of the natural
radar data [17], [109].

5.2.2 Rainfall Sensing

Rainfall sensing using mmWave radar is an interesting potential for providing ac-
curate and high-resolution precipitation measurements. Several methodologies have
been proposed for estimating rainfall intensity from radar data, including empirical

models, machine learning techniques, and deep learning approaches.

Empirical models, for rainfall sensing with radar, are based on the inherent rela-
tionship between radar reflectivity and the rate of rainfall. The most commonly
used empirical model is the Z-R relationship, which ultimately relates the radar
reflectivity factor Z to the rainfall rate R through a power-law equation [115]. The
parameters used as part of the Z-R relationship are usually determined from exper-
imental data and can widely vary depending on the radar operating frequency and
external environmental conditions. Although empirical models are relatively simple
to implement, the accuracy of these models can be limited by the assumptions and
estimations that are fundamentally encoded in the empirical design of the model
[116].

Machine learning techniques have been employed to improve the accuracy of rain-
fall sensing in mmWave radar by leveraging the rich feature set available in radar
data. SVM, random forest, and k-NN are some machine learning algorithms that
have been used to classify rainfall intensity based on radar reflectivity and other
derived features [117]. These techniques can capture complex relationships between
the radar measurements and rainfall intensity, leading to improved estimation per-

formance compared to empirical models.
A deep learning based approach has shown great potential in rainfall sensing, specif-
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Figure 5.1: Unified system overview architecture for joint mmWave tracking and

sensing with mmCLAE.

ically using mmWave radar, due to their ability to learn inherent relevant features
from raw radar data, whether it be known or hidden in nature. CNNs have been
widely used to determine spatial features from radar images and then classify rain-
fall intensity [118]. RNNs, particularly LSTM networks, have been utilised to model
temporal characteristics of the rainfall artefacts in radar time series data [119].
Lastly, more recently, the use of hybrid architectures that ultimately combine CNNs
and RNNs have been proposed to utilise both the spatial and temporal information
that rainfall leaves in radar data [119].

5.3 Unified System Architecture

In this section, we discuss an overview of the unified system architecture that inte-
grates the proposed joint tracking with mmCLAE and rainfall classification system.
The unified system architecture at a high-level consists of four main components: the
data acquisition module, the noise reduction module (mmCLAE), the rain sensing
classification module, and lastly the tracking module. These components fundamen-
tally integrate with one-another to serve as the wholistic joint tracking and sensing

system, as seen in Figure 5.1.

5.3.1 Integration and Workflow

The integration of the noise reduction and rain intensity classification modules is
achieved through processing the radar data in a parallel fashion, highlighted in

Figure 5.1. The workflow is achieved following the below stream of events:
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1. The mmWave radar data acquisition module captures raw radar signals from

the environment.

2. The pre-processed radar data is fed into mmCLAE to remove rain-induced

noise artefacts.
3. Tracking and sensing are then performed jointly in parallel.

(a) The noise-reduced radar data is fed into the tracking module to perform
multi-object tracking.

(b) Simultaneously, the noise-reduced radar data, along with raw radar data

features, is fed into the rain intensity classification module.

To ensure seamless integration and efficient training pipelines, the system has been
designed as a modular architecture where each component operates independently
but communicates through defined interface. This modularity allows for easy up-
dates and improvements to individual components without affecting the overall sys-
tem. The system also incorporates a feedback loop for future consideration where
the output of the rain intensity classification module could potentially be used to

dynamically optimise the parameters of the tracking module.

5.3.2 Advantages of the Unified System

The proposed unified system architecture offers several technical advantages:

¢ Enhanced Noise Reduction: mmCLAE is specifically designed to address
the complex noise profiles induced by rain in mmWave radar signals. By
leveraging the temporal dependencies captured by LSTM layers and the spa-
tial features extracted by convolutional layers, mmCLAE effectively mitigates
rain-induced noise artefacts. This results in significantly cleaner radar sig-
nals, which directly improves the accuracy and reliability of the multi-object

tracking system.

¢ Precision Rain Intensity Classification: The CNN-based rain intensity
classification module has been trained on a comprehensive dataset of mmWave
data with varying rain intensities, learning to accurately classify different levels

of rain intensity.
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¢ System Robustness and Adaptability: The unified system architecture
is designed to be modular and scalable, allowing for the future integration of
additional sensing and processing modules. The parallel processing of noise
reduction and rain intensity classification ensures that the system can adapt to

a wide range of environmental conditions without compromising performance.

¢ Comprehensive Data Utilisation: Through the integration of both raw
and noise-reduced radar data, the system leverages a richer set of features for
both tracking and classification tasks. This ultimately enhances the system’s
ability to detect and track multiple objects accurately, even in challenging

weather conditions.

The unified system architecture combines the advanced noise reduction capabilities
of mmCLAE with the precise rain intensity classification of the CNN module, pro-
viding a robust and adaptable solution for joint tracking and sensing in mmWave
radar systems. This integrated approach significantly enhances the performance and
reliability of multi-object tracking systems in adverse weather conditions, making
it suitable for a variety of applications, including autonomous driving, surveillance,

and environmental monitoring.

5.4 Proposed Rain-induced Noise Reduction: mm-

CLAE

The proposed noise reduction approach, mmCLAE, employs a convolutional LSTM
autoencoder to remove rain-induced noise artefacts from mmWave radar frames.

This section provides an overview of the architecture and training process for mm-

CLAE.

54.1 mmCLAE Architecture

The mmCLAE architecture is fundamentally a convolutional LSTM autoencoder,
that essentially eliminates the rain-induced noise from the mmWave radar frame by
compressing the radar frame into a rich latent representation and then reconstructing

aradar frame from this latent vector. The architectural design is illustrated in Figure
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Figure 5.2: Architecture of mmCLAE for rain-induced noise reduction in mmWave

radar.

5.2.

The model architecture consists of an encoder and decoder, each consisting of 3
Convolutional Long Short-Term Memory (ConvLSTM) layers. The encoder ConvL-
STM layers all adopt a kernel size of 5 with the first ConvLSTM layer having 128
filters, which is then halved in each subsequent until the repeat vector layer. The
decoder ConvLSTM layers are the reverse of the encoder, with the first ConvLSTM
layer having 32 filters and doubling in each subsequent layer until the final output
layer. The repeat vector layer is used to compress the radar frame into a rich latent

representation, which is then used to reconstruct the radar frame in the decoder.

A key component of the architecture is the ConvLSTM layer which is a variant of
the traditional LSTM layer that is designed to process spatial-temporal data by in-
corporating convolutional operations within the LSTM gates [120]. Our ConvLSTM
layer consists of a ConvLSTM cell, a maximum pooling layer and a dropout layer.

The intrinsic architecture of the ConvLSTM cell is illustrated in Figure 5.3.

Assuming an input sequence X = {X;,Xs,..., Xy}, where each X, € R¥*W*C are
a 3D tensor with height H, width W, and C channels, the ConvLSTM cell calculates
the hidden state H, and cell state C, at each time step t [121]. The hidden state
(H,) in the cell is essentially the short-term memory of the network, retaining the

current output based on the input and previous hidden state. The cell state (C;) on
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the other hand acts as the long-term memory, essentially storing information across
longer sequences and enabling the network to maintain context over time ¢ steps

[122].
The ConvLSTM cell is essentially constructed with three main components:

1. Forget Gate: Responsible for controlling the extent in which the previous

cell state is retained.

2. Input Gate: Responsible for controlling the extent in which the new input

is used to update the new cell state.

3. Output Gate: Responsible for controlling the extent in which the new cell

state is used to compute the hidden state.

The mathematical foundation of these gates, along with the cell state and hidden

state computations, is expressed through the following set of equations [123]:

=0(Wa*x X, + Wy «H, + W, eC_;+b), (5.1)
fi=o(Wep* Xe + Wiy« H + W, ;0 Cpy +by), (5.2)
g¢ = tanh(Wog * Xy + Wiy = Hy 1 + by), (5.3)
Ci=fi ®Cit +1: ® gy, (5.4)
0, =0(Wos X, + Wy, +H, +W_ oC,+b,), (5.5)
H, = o, ® tanh(C,), (5.6)

where i;, f;, 0;, and g; are the input gate, forget gate, output gate, and cell input
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activation, respectively. W, Wry, Wy, and W,, are the convolutional kernels for
the input X;. Whi, Wiy, Wh,, and Wy, are the convolutional kernels for the hidden
state H; 4. by, by, by, and b, are the bias terms. ¢ is the sigmoid activation function,
tanh is the hyperbolic tangent activation function, @ denotes the Hadamard product

(element-wise multiplication) and lastly * denotes the convolution operation.

5.4.2 mmCLAE Training Process

One of the key design advantages of the mmCLAE network is the fact that it can
be trained in an unsupervised manner, where the network is trained to minimise
the MSE between the input and reconstructed radar frames. This is an impor-
tant point when considering the nature and difficulty of curating a large dataset
of mmWave radar frames with varying levels of rain-induced noise. Instead, the
network is trained on a large dataset of “normal” radar signals, where it learns to
reconstruct the input signal without the rain-induced noise. Therefore, when ex-
posed to radar frames with rain-induced noise, the network fundamentally removes
these artefacts as their features are not preserved in the latent representation. The

objective function for mmCLAE is defined as:

N
1 .
T0) = 555 3" (X = Xa)? + NI, (5.7)
n=1

where # represents the model parameters, N is the total number of training samples,
and A is the regularisation strength. The MSE is minimised between the input
radar frame X, and the reconstructed frame ffm while also penalising the model
complexity through the regularisation term ||@]|%.

The autoencoder is trained using backpropagation with Adam optimiser [124] and
a batch size of 128. The learning rate is set to 0.001, and the maximum number of

epochs is 100.

Hyperparameter Tuning

The hyperparameters discussed to this point for mmCLAE were used as a starting
point for the base model trained. The performance of convolutional LSTM autoen-

codrs heavily depends on the configuration of these hyperparameters. In order to
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Algorithm 8 mmCLAE Bayesian Optimisation for Hyperparameter Tuning

1: Input: Initial hyperparameter set H,, objective function J(#), maximum iter-
ations T, convergence threshold ¢

2: Output: Optimal hyperparameters H*

3: Initialise H + Ho

4: Initialise Jh.; + oo

5 fort=1to T do

6: Evaluate J(H:)

7 if J(H:) < Jhest then

8: Jrest — J(H:)
9: H* + H;
10 end if
11: Update the probabilistic model of J(#) = Eq. 5.7
12: Select next hyperparameters H,,; using acquisition function U(H) v Eq.
5.8
13 if [J, — Y| < € then > Eq. 5.9
14: break
15: end if
16: end for

17: return H*

further improve the performance of mmCLAE, we attempt to adopt an algorithmic

optimisation approach towards tuning the model hyperparameters.

In order to achieve this we implement a Bayesian optimisation algorithm, which is
a probabilistic model-based technique that attempts to converge on the optimal set
of hyperparameters by minimising the objective function. The algorithm does this
by constructing a probabilistic model of the objective function and then using this
model to select the next set of hyperparameters to evaluate [125]. This process is
then continuously repeated iteratively until the optimal set of hyperparameters is

found, we present this in Algorithm 8.
The hyperparameters H we tune for are:

¢ o the learning rate;
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¢ [: the number of layers in the convolutional LSTM network;
¢ Fj;: the number of filters in each layer;

e K. the kernel size of the convolutional layers;

¢ E: the number of epochs.

To perform Bayesian optimisation, we use the acquisition function known as the Up-
per Confidence Bound (UCB) function. This acquisition function is mathematically

expressed as:

U(He + 9, LO, K9, K EY) = p(H,) + ko (He), (5.8)

where for a given set of hyperparameter values H;; p is the mean of the predicted
objective function, o is the standard deviation of the predicted objective function,
and k is the exploration parameter. The exploration parameter & is used to balance
between exploration and exploitation, where a higher value of k will encourage more

exploration of the hyperparameter space.

A simple convergence threshold was adopted as a stopping criterion for the hy-
perparameter optimisation process. The mathematical criterion for convergence is

expressed as:

t i—1
I, — I8V < 6, (5.9)

where Jé:it is the best objective function value at iteration f, Jé:;lj is the best

objective function value at iteration ¢ — 1, and € is the convergence threshold.

Rainfall Simulator

In addition to collecting mmWave radar data from real-world scenarios, to evaluate
mmCLAE, we also built a physical rainfall simulator to artificially collect mmWave
radar data with varying levels of rain-induced noise. The rainfall simulator consists
of a water pump, a water tank, and a series of jet nozzles that spray water droplets

into the field of view of the mmWave radar. Additionally, we also installed and

built a rain gauge, based on a tipping bucket sensor, to serve as the ground truth
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Figure 5.4: Architecture of the rainfall simulator for generating mmWave radar data

with varying levels of rain-induced noise.

of the rainfall measurement. This means of ground truth was installed so that the
same simulator could be utilised for our rain intensity classification model, discussed
further in Section 5.5. Figure 5.4 and Figure 5.5 illustrate the setup of the rainfall

simulator.

5.5 Proposed Sensing Method: CNN Rainfall In-

tensity Classification

In this section, we propose a sensing method for rain intensity classification using a
CNN. The CNN-based approach is designed to classify the rain intensity based on the
mmWave radar signal features extracted from the noisy and non-noisy regions. This
approach leverages the high-frequency characteristics of mmWave radar to capture

detailed precipitation features, which is then used to estimate rainfall intensity.

112



Figure 5.5: Physical setup of the rainfall simulator for generating mmWave radar

data with varying levels of rain-induced noise.

5.5.1 Rainfall Classification Architecture

The proposed rainfall classification model is a CNN designed to classify rain intensity
based on mmWave radar signal features. The architectural design of the model is
illustrated in Figure 5.6.

The input to the model is a feature vector derived from the delta of the raw range-
Doppler heatmap and the mmCLAE heatmap, as well as the raw heatmap vector.

The model processes this input through several layers to classify the rain intensity.

The architecture of the rainfall intensity classification model consists of the following

layers:

¢ Convolutional Layers: A total of 4 convolutional layers are used. Each
layer applies a set of learnable filters to the input, performing a dot product
between the filter weights and the input region. This process extracts spatial
features from the input data. The convolutional layers use Rectified Linear
Unit (ReLU) activation functions to introduce non-linearity into the model.
The computational complexity of each convolutional layer is O(F x K? x H x
W x '), where F is the number of filters, K is the kernel size, H x W are the

spatial dimensions, and C' is the number of input channels.
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Figure 5.6: Architecture of the rainfall intensity classification model.

¢ Max Pooling Layvers: Following each pair of convolutional layers, a max
pooling layer is used. These layers reduce the spatial dimensions of the feature
maps, Which helps in reducing the number of parameters and computational
load, as well as mitigating overfitting. Max pooling layers take the maximum
value from each region of the feature map, preserving the most important fea-

tures. The computational complexity is O(H x W x C') for pooling operations.

Dropout Layers: Dropout layers are used after the max pooling layers and
Fully Connected (FC) layers. These layers randomly set a fraction of input
units to zero at each update during training time, which helps prevent overfit-
ting by ensuring that the model does not rely too heavily on any single given

feature.

FC Layers: The data is then flattened and fed into FC layers. These layers
perform high-level reasoning about the input data with complexity O(N,,, x

Nowe) for matrix multiplication operations. The final FC layer uses a softmax



Table 5.1: Rainfall classification types.

Type Rainfall
None < 0.5mm/h

Light 0.5 —2mm/h
Medium 2 —5mm/h

Heavy 5— 10mm/h

Very Heavy | 10 — 20mm /h
Extreme = 20mm/h

activation function to classify the input into a [1 x N] matrix, where N is the

number of rain intensity classes.

The output of this classifier, as seen in Table 5.1, is a classification of rain type, which
could be None, Light, Medium, Heavy, Very Heavy, or Extreme. This architecture
ensures that the classifier can effectively learn from the range-Doppler heatmaps

and accurately classify the rainfall intensity.

Loss Function

The rainfall intensity classification model implements a Weighted Cross-Entropy
(WCE) function to ultimately handle class imbalance in the variations of collected
rainfall data, optimised with the Adam optimiser. The mathematical formulation
of the WCE loss function is:

N
L= > welulog() + (1 uo) log(1 — )] (5.10)

i=1
where N is the total number of training samples, w,, is the weight associated with
the class ¢; of the i** sample, v, is the true label for the i** sample, which is a binary

indicator (0 or 1) if class label ¢; is the correct classification for sample ¢, and g; is

the predicted probability of the i** sample belonging to class c;.

The WCE loss function alters the contribution of each sample to the loss based on
the class weights, therefore it gives more importance to underrepresented classes.

This is particularly useful in our case, as it ensures that the model pays adequate
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Figure 5.7: Training pipeline for rainfall intensity classification.
attention to correctly predicting heavy rainfall events, which are less frequent but
critical for accurate rainfall intensity estimation.

The weights w,, are calculated using the following mathematical relationship:

N

-t 5.11
ICIN., (511)

Wy,

where |C| is the total number of classes, as seen in Table 5.1 and N,, is the number

of samples in class ¢;.

5.5.2 Rainfall Classification Training Process

The training pipeline for the rainfall intensity classification system consists of three
main components: the radar pipeline, the rain gauge pipeline, and the combined

pipeline.
In the radar pipeline, data acquisition is the first step where the radar data is
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collected. The mmWave radar system captures the back scattered signals from the
raindrops. This raw radar data is then processed using FFT for spectral analysis,
and pulse compression for improving range resolution. The processed data undergoes
standard noise filtering to remove unwanted general noise and interference in the
radar frame. At this stage the radar frame is additionally run through mmCLAE
to remove the rain induced noise artefacts. Finally, the radar data is normalised to

ensure consistency and to prepare it for the next steps.

The rain gauge pipeline starts with data collection where rainfall data is collected
from the rain gauge sensor. This data is then cleaned to remove any anomalies
or errors in the readings. The cleaned data is resampled to match the temporal
resolution of the radar data. Similar to the radar pipeline, the rain gauge data is

also normalised to ensure it’s on the same scale as the radar data.

The combined pipeline begins with data integration where the processed radar and
rain gauge data are integrated. This involves the fusion of the radar and rain gauge
data, where each is combined to create a comprehensive dataset. An important
aspect of this integration is time synchronisation, ensuring that the radar and rain
gauge data align correctly in time. This is crucial because the radar and rain gauge
may not record data at the exact same time intervals. We solve this time syn-
chronisation challenge by following a similar methodology to what we presented in
Chapter 4. After the data integration and time synchronisation, relevant features
for rainfall intensity prediction are extracted from the integrated data in the form of
range-Doppler heatmaps. Finally, the dataset is split into training and testing sets
for model development and evaluation. This process is further detailed in Algorithm
9.

5.6 Experimental Results

In this section, we present the experimental results of the joint tracking and sens-
ing framework that utilises mmCLAE and our CNN rainfall intensity classification
network, demonstrating the effectiveness of the proposed approaches in improving

system performance and robustness to noise and rain artefacts.
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Algorithm 9 Rainfall Classification Training Process

1: Input: Raw radar data R, Rain gauge data G
2: Output: Trained CNN model M
3: Radar Pipeline:
4: Collect raw radar data R
5: Process radar data using FFT and pulse compression
6: Apply noise filtering to radar data
7: Apply mmCLAE to remove rain-induced noise artefacts
8: Normalise radar data
9: Rain Gauge Pipeline:
10: Collect rain gauge data G
11: Clean rain gauge data
12: Resample rain gauge data to match radar data temporal resolution
13: Normalise rain gauge data
14: Combined Pipeline:
15: Integrate processed radar data R and rain gauge data G
16: Synchronise radar and rain gauge data in time
17: Extract features from integrated data
18: Split dataset into training and testing sets
19: Training:
20: Initialise CNN model M
21: Define WCE loss function and Adam optimiser
22: for each epoch do
23: Train CNN model M on training set
24: Validate CNN model M on validation set
25: end for
26: Ewvaluation:
27: Evaluate trained CNN model M on testing set
28: Calculate precision, recall, and F1 score for each class
20: return Trained CNN model M
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Figure 5.8: Range-Doppler heatmap illustrating no rainfall.

5.6.1 Multi-Object Tracking Performance Comparison

To evaluate the effectiveness of our proposed noise reduction approach on multi-
object tracking performance, we compare the results with a typical standalone EKF
Bayesian method in both no rain and rain. We use a dataset containing 500 mmWave
radar signals with multiple objects (1-5) in varying environments. The signals are
divided into training (70%), validation (15%), and testing (15%) sets. Figures 5.8
to 5.12 illustrate range-Doppler heatmaps that were collected, highlighting varying
levels of rain intensity with and without the presence of people walking in the field

of view.

We compare the performance of our proposed approach with that of the following
methods:

1. Standalone EKF - No Rain;
2. Standalone EKF - Rain.
The results are presented in Table 5.2.

The results show that our proposed approach significantly outperforms the stan-
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Figure 5.9: Range-Doppler heatmap illustrating light rainfall.
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Figure 5.10: Range-Doppler heatmap illustrating medium rainfall.
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Figure 5.11: Range-Doppler heatmap illustrating medium rainfall with a single per-

son walking.

Table 5.2: mmCLAE multi-object tracking performance comparison.

Method EMSE MAE
Standalone EKF - Rain | 2.15m 165 m
mmCLAFE - Rain 0.25m 0.19m

dalone EKF Bayesian method when tracking objects in rain conditions. Our ap-
proach shows an improvement of 71% in Root Mean Squared Error (RMSE) and
69% in Mean Absolute Error (MAE) compared to the EKF Bayesian method.

Figure 5.13 provides a visual comparison of the multi-object tracking performance
between the different approaches to tracking a person following a predetermined sim-
ple movement path. The figure presents tracking points as a scatter plot with three
distinct sets of data points: the baseline EKF no rain tracking positions, the EKF-
based tracking under rainy conditions, and the mmCLA E-enhanced tracking under
the same rainy conditions. The EKF rain tracking points demonstrate significant
scatter and deviations from the baseline EKF no rain performance, exhibiting erratic

behaviour and substantial positional errors. In contrast, the mmCLAE rain tracking
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Figure 5.12: Range-Doppler heatmap illustrating medium rainfall with two people
walking.

points cluster closely around the baseline EKF no rain path with minimal devia-
tion, demonstrating the effectiveness of the noise reduction approach in maintaining
tracking accuracy even under adverse weather conditions. The visual comparison
clearly illustrates how rain-induced noise severely degrades conventional EKF track-

ing performance, while the mmCLAE approach successfully mitigates these effects.

These results clearly demonstrate the effectiveness of our proposed mmCLAE noise
reduction approach in improving the accuracy and robustness of multi-object track-
ing systems in mmWave radar environments with and without rain. The improved
multi-object tracking performance can be attributed to the effective noise reduction
capabilities of our convolutional LSTM autoencoder, which enables better object
detection and tracking. This, in turn, enhances the overall system robustness to

noise and rain artefacts.

5.6.2 Ewvaluation Metrics

We evaluate the performance of the proposed tracking procedures using two key
metrics: RMSE and MAE.
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Figure 5.13: Multi-object tracking mmCLAE and standalone EKF comparison of a

simple movement path.

RMSE

The RMSE measures the average magnitude of the errors between the predicted and

ground truth positions, expressed as:

N
1.
RMSE = | Y (& — 2a)?, (5.12)

n=1

where %, and z, are the predicted and ground truth positions at radar frame n,
respectively, and IV is the total number of radar frames. An important characteristic
of RMSE is that it is sensitive to large errors, making it useful for highlighting

significant deviations.

MAE

The MAE measures the average absolute difference between the predicted and

ground truth positions. The mathematical formulation is expressed as:

N
1 .
MAE = n§=1: £, — T, (5.13)
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Table 5.3: Rain intensity classification evaluation metrics.

Class Precision Recall F1 Score
No Rain 90.12%  89.85%  0.8995
Light Rain 83.45%  81.3%  0.8236

Moderate Rain 79.43%  78.55%  0.7896
Heavy Rain 81.52% 80.75%  0.8110
Very Heavy Rain  91.35%  90.55%  0.9092
Extreme Rain 88.53% 82.15% 0.8519

where I, and z, are the predicted and ground truth positions at frame n, respec-
tively, and N is the total number of radar frames. MAE provides a straightforward
interpretation of the average error magnitude, making it less sensitive to outliers

when compared to RMSE.

5.6.3 Rain Intensity Classification Evaluation

The evaluation metrics used to assess the performance of our classification model
are precision, recall, and F1 score for each class (No Rain, Light Rain, Moderate
Rain, Heavy Rain, Very Heavy Rain, and Extreme Rain). The results, presented in
Table 5.3, show that our model achieves high levels of precision and recall for most

classes, with an average precision of 85.73%, recall of 83.86%.

The F1 score provides a balanced view of both precision and recall, and our model
achieves an average F1 score of 0.8386 across all classes. This suggests that our
model is able to achieve a good balance between precision and recall, ultimately

demonstrating its reliability in classifying rainfall conditions.

Additionally, the accuracy and loss graphs demonstrate the stable learning rate of

the model. This can be seen in Figure 5.14 and Figure 5.15 respectively.

Ovwerall, the evaluation metrics demonstrate that our classification model performs

well on most classes, with high levels of accuracy and reliability.
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Figure 5.14: Accuracy graph of the rainfall intensity classification model.

5.7 Conclusion

In this chapter, we demonstrated the effectiveness of the proposed approaches in
improving mmWave tracking performance and robustness to noise and rain artefacts.
The results show that mmCLAE is superior to state-of-the-art methods in terms of
noise reduction, while the CWNN-based sensing method produces above 80% accuracy

in rain intensity classification.

While our proposed approaches have demonstrated promising results, there are sev-

eral perspectives that are worth mentioning for further exploration and research:

¢ Adaptation to different environmental conditions: Our approach has
been specifically designed for rain noise reduction and classification. However,
it is essential to investigate the peneralised nature of our method to other

environmental conditions such as fog, snow, or hail.

¢ Integration with advanced sensor fusion techniques: Combining mmWave
radar data with other sensing modalities (e.g., cameras, LiDAR) could further
enhance the robustness and accuracy of the system. This would require ex-
ploring novel approaches to fuse data from different sensors and develop joint
processing pipelines, similar to that presented in Chapter 4.

e Real-time processing and latency optimisation: In applications such as

autonomous vehicles or surveillance systems, real-time processing is a require-
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Figure 5.15: Loss graph of the rainfall intensity classification model.

ment. Therefore, optimising our approach for real-time performance while
maintaining its effectiveness in adverse environmental conditions is a valuable

direction to explore in future research.

The potential applications of this technology are vast, particularly in the context of
autonomous vehicles and other radar based sensing platforms. By integrating our
mmCLAE tracking system and rainfall intensity estimation module, we can improve
the accuracy and reliability of navigation in rainy conditions, ultimately improving

passenger safety and reducing the risk of accidents.
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Chapter 6

Conclusions and Future Work

This chapter concludes this thesis with a summary of the key findings and contri-
butions presented in this thesis, along with recommendations for future work in the
field of mmWave radar multi-object tracking and sensing. The chapter is structured
as follows: Section 6.1 provides a detailed summary of the significant contributions
made by this thesis, highlighting the advancements in environmental characteri-
sation, sensor fusion, and joint tracking and sensing. Following this, Section 6.2
outlines the recommended future work, categorising potential research directions
into advanced environmental characterisation, improved sensor fusion techniques,

enhanced noise reduction methods, and real-world deployment.

6.1 Summary of Contributions

This thesis has made several significant contributions to the field of mmWave radar
multi-object tracking and sensing. The research presented in this thesis addresses
key challenges in the domain, including environmental characterisation, sensor fu-
sion, and noise reduction in adverse weather conditions through joint tracking and
sensing. By developing novel frameworks and methodologies, this work enhances the
robustness, accuracy, and applicability of mmWave multi-object tracking systems in

complex and dynamic environments.

One of the primary contributions of this thesis is the development of a framework

for extracting and utilising environmental characteristics from multi-object trajec-
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tory data. This framework involves the creation of regional activity heatmaps and
the classification of entry and exit points using CNN. By projecting these classified
points onto the multi-object tracking plane, the proposed approach provides a foun-
dational basis for improving mmWave multi-object tracking performance through a
better understanding of the observed environment. This contribution addresses the
challenges posed by occlusions and disturbances, leading to more reliable tracking

and reduced errors in dynamic environments.

Another significant contribution is the integration of mmWave radar and camera
data for enhanced tracking and classification capabilities. The proposed sensor fu-
sion framework leverages the strengths of both modalities to address the challenges
associated with labelling and training deep learning models for radar data. By
fusing radar and camera data, the framework displays accurate classification and
tracking of objects in various environments. This contribution not only improves
the robustness and accuracy of mmWave multi-object tracking systems but also pro-
vides a novel approach to automated labelling of mmWave radar data using camera

information.

Lastly, we present in this thesis a comprehensive approach to enhancing mmWave
multi-object tracking systems in adverse weather conditions, particularly focusing
on rain-induced noise reduction and rain intensity classification. The proposed mm-
CLAE architecture, effectively removes rain-induced artefacts from mmWave sig-
nals, while the CNN-based rainfall intensity model jointly accurately classifies rain
intensities. Through extensive experiments, these methods demonstrate significant
improvements in mmWave multi-object tracking accuracy, providing a practical im-
plementation that utilises deep learning techniques to address the challenges asso-

clated with adverse weather conditions.

In summary, this thesis makes substantial contributions to the field of mmWave
radar multi-object tracking and sensing by addressing key challenges through inno-
vative frameworks and methodologies. The research enhances the understanding of
environmental characteristics, improves sensor fusion techniques, and mitigates the
impact of adverse weather conditions on tracking performance. These contributions

provide a solid foundation for future advancements in mmWave radar technologies,
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providing opportunities for more reliable and accurate joint multi-object tracking

and sensing systems.

6.2 Recommended Future Work

The research presented in this thesis opens several streams for future work that
can further enhance the capabilities and applications of mmWave radar multi-object
tracking and sensing systems. An attempt to illustrate the constellation of potential

future directions is presented in the mind map provided in Figure 6.1.

These potential directions for future research can be categorised into four main
areas: advanced environmental characterisation, improved sensor fusion techniques,
enhanced noise reduction methods, and real-world deployment and validation. The
remainder of this section elaborates on each of these areas and provides specific

recommendations for future work.

6.2.1 Advanced Environmental Characterisation

Future work can focus on developing more sophisticated methods for environmental
characterisation using mmWave radar data. One potential direction is to explore
the use of advanced machine learning techniques, such as Generative Adversarial
Networks (GANs) and reinforcement learning, to dynamically adapt the environ-
mental models based on real-time data. Additionally, incorporating data from other
sensors, such as LIDAR and ultrasonic sensors, can provide a more comprehensive
understanding of the environment, potentially leading to further improvements in
tracking accuracy. Another area of interest is the development of algorithms that
can automatically detect and adapt to changes in the environment, such as the
movement of furniture or the presence of new obstacles, to maintain high tracking

performance in dynamic settings.

6.2.2 Improved Sensor Fusion Techniques

The integration of mmWave radar and camera data demonstrated in this thesis can

be extended to include additional sensor modalities, such as thermal cameras and
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Figure 6.1: Mind map illustrating potential future research opportunities in

mmWave radar multi-object tracking and sensing.
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IMUs. Investigating the development of more advanced algorithms for sensor fusion,
such as Ensemble Kalman Filters (EnKFs) and Unscented Kalman Filters (UKFs),
could potentially leverage the complementary strengths of each sensor to achieve
even higher levels of accuracy in object tracking and classification. Furthermore,
exploring the use of edge computing and distributed processing techniques, such as
parallel sensor data processing across multiple edge nodes and federated learning
for collaborative model updates, can enable real-time sensor fusion and decision-
making, which is critical for applications such as autonomous vehicles and robotics.
Another potential direction is the development of adaptive fusion strategies that
can dynamically adjust the weighting of different sensor inputs based on the current

environmental conditions and task requirements.

6.2.3 Enhanced Noise Reduction Methods

While the proposed mmCLAE has shown promising results in reducing rain-induced
noise, there is still room for improvement in noise reduction techniques for mmWave
radar systems. Future work can explore the use of more advanced deep learning
architectures, such as transformers, Graph Convolutional Networks (GCNs), and
Variational Autoencoders (VAEs), to better capture the complex relationships and
patterns in the radar data. Additionally, developing methods for real-time noise
reduction and adaptive filtering can further enhance the robustness of mmWave
radar systems in adverse weather conditions. Lastly, another potential avenue to
investigate is the use of synthetic data generation and data augmentation techniques
to improve the training of noise reduction models, especially in scenarios where

labelled data is scarce.
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