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Abstract

Composite overwrapped pressure vessels (COPVs) have become the core unit for high-
pressure hydrogen storage and transportation. However, excessive autofrettage pressure
could induce unilateral buckling damage of the metal liner because of large rebound
compressive stress induced by large plastic deformation in the depressurization stage.
When the liner contains initial defects, its critical unilateral buckling pressure would
be further reduced. In this paper, a critical buckling pressure calculation formula was
established by finite element analysis and theoretical derivation. Firstly, the classical
theoretical calculation models and research methods were analyzed and discussed. Then,
by discussing the key influencing parameters, a semi-empirical calculation formula of
nonlinear confined buckling pressure of a metal liner with ovality defects was established.
Finally, the proposed semi-empirical formula was used to predict the critical internal
pressure of a Type-III COPV, and the predicted value was compared with the experimental
result. The predicted result was higher than the experimental result and the error range was
−2.8%~−23%. The proposed semi-empirical formula of nonlinear confined buckling could
provide theoretical support for designing the autofrettage pressure of Type-III COPVs and
help to reduce the uncertainty and repeated test cost in the design process.

Keywords: COPVs; thin-walled metal liner; nonlinear confined buckling; elastic buckling;
ovality defect; finite element analysis

1. Introduction
Hydrogen energy is regarded as one of the most promising secondary energy sources

in the 21st century because of its advantages of zero pollution, renewability, storability
and wide sources [1]. At present, the composite overwrap pressure vessel (COPV) has
become the core equipment for hydrogen gas storage and transportation [2,3]. For a
COPV subjected to internal pressure loading, the metal liner—due to its relatively low
yield strength—often yields before the fiber reinforcement layer fails. This results in
circumferential and axial plastic deformation in the liner while the fiber winding layer
remains in the elastic deformation stage. Upon pressure relief, the elastic recovery of the
fiber overwrap induces an equivalent external pressure on the expanded liner, placing the
metal liner in compression and the fiber layer in tension under zero-pressure conditions.
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Consequently, when the vessel is repressurized to working pressure, the liner operates at a
reduced stress level, thereby enhancing its fatigue life. This stress redistribution mechanism
is the fundamental principle behind overpressure autofrettage technology.

During the overpressure autofrettage process, if the equivalent external pressure
induced by the elastic recovery of the fiber reinforcement layer exceeds a critical threshold,
the inner liner may experience inward collapse. Upon repressurization, the collapsed
section is forced back into position. This cyclic buckling and rebuckling behavior during
repeated loading–unloading operations can lead to premature fatigue failure of the liner.
Jahromi et al. [4] investigated the stress and strain distribution in Type III COPV liners
resulting from autofrettage and developed a theoretical model for residual stress assessment.
Hu et al. [5] established a finite element model about the autofrettage of the composite
cylinder’s liner with different defects. By simulating the autofrettage process, it was
found that the autofrettage of the liner can significantly improve the fracture resistance
of the pressure vessel. Li et al. [6] studied the influence of different stacking sequences
of winding layers on the bursting pressure, and established a model by FEM to predict
the bursting pressure through the progressive damage model. Wu et al. [7] determined
the optimum range of autofrettage pressure through FEM, and discussed the influence of
self-strengthening pressure, metal lining thickness and fiber thickness on the fatigue life of
vessels. According to the principle of minimum potential energy, Li et al. [8] derived the
elastic analytical solution of a thin-walled liner with initial deflection, ovality and other
defects. At present, the relevant design standards do not put forward corresponding design
criteria for the buckling damage of the liner. The standards mainly focus on strength,
fatigue life and fiber utilization (fiber stress ratio), which increases the uncertainty in the
design process of COPVs. Therefore, predicting the critical buckling pressure of COPVs
liners has an important influence on the life and reliability.

Due to the circumferential constraint of the carbon fiber layer, the instability direction
of the metal liner is toward the inside, which belongs to the research category of confined
buckling or instability. Confined buckling/confined instability refers to the phenomenon
that the stressed components cannot deform freely due to the outer wall’s constraint. Such
problems often occur in buried pipelines [9], steel lining shells of nuclear reactors [10],
pipeline liners [11] and anti-corrosion linings of urea synthesis towers [12]. Different from
the free deformation of single thin, in order to achieve the minimum energy balance, the
inner liner constrained by the outer wall usually exhibits the deformation characteristics of
one-way buckling to the inside. Usually, in order to preventing leakage or corrosion, the
liner is mainly made of thin-walled plastic or metal materials, and it is generally considered
that the plastic liner mainly buckles elastically. The metal liner usually reflects the elastic–
plastic buckling. With the deepening of research, the initial defects of the liner also have an
important influence on its buckling, and scholars have carried out a lot of research work on
the restrained buckling of the liner.

In this paper, as shown in Figure 1, a calculation model was established by finite
element analysis and theoretical derivation. Then, the key influencing parameters were
discussed, and a semi-empirical formula for predicting the critical buckling pressure of the
liner was proposed. To verify the reliability of a proposed prediction model, the predicted
value was compared with the experimental result.
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Figure 1. General drawing of the research logic and the typical application.

2. Theoretical Calculated Models of Elastic and Nonlinear Confined
Buckling of Liner
2.1. Elastic Confined Buckling Theory Calculated Models

Elastic confined buckling means that the stress–strain relationship of the metal liner
always maintains a linear elastic state, so the theoretical objects are usually very thin
metal plates, shells and plastic liners. There are two main research methods for elastic
confined buckling for thin-walled liners. One is the thin-walled confined buckling theory
of short cylindrical shells, and the other is the circular confined buckling theory of long
cylindrical shells.

The confined buckling theory of thin shells focuses primarily on the critical instability
behavior of short cylindrical structures supported by rigid outer walls or elastic media.
Under rigid outer wall conditions, the theoretical approach for analyzing confined buckling
in such shells bears resemblance to the computational procedure for free buckling of thin
shells. Leveraging the principle of minimum potential energy, the simplified Donnell defor-
mation equation serves to compute critical loads encompassing both axial compression and
external pressure. Meanwhile, the Donnell nonlinear large-deflection deformation equation
is employed to investigate the post-buckling behavior of thin shells that exhibit initial
deflections [13]. Different from free buckling, the confined buckling deflection function
of thin shells must reflect that the buckling waveform is limited by circumferential and
longitudinal constraint. For example, Lin Yantian [14] uses three displacement functions
of radial direction, tangential direction and axial direction to represent three modes of
axial unilateral buckling, circumferential unilateral buckling and mixed unilateral buckling.
Then, the Rayleigh–Ritz energy method was applied to calculate the confined buckling
of the thin-walled shell under external pressure. Moore et al. [15] used Fourier series to
expand the buckling displacement of the ring, and obtained a buckling eigenvalue of the
corrosion-resistant thin-walled metal liner under vacuum or thermal stress by the Sanders
nonlinear deflection equation.

For long cylindrical shells, what the researchers detected through experiments [16–19]
was the circumferential inward single buckling waveform of the liner, which constitutes a
distinctive buckling mode characteristic of thin-walled confined liners. Therefore, based on
this single-wave buckling mode of long cylindrical shells, Glock [20] derived the theoretical
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calculation formula of critical elastic buckling pressure of the thin-walled liner in rigid
body by using the ring theory which is based on the plane strain assumption. Glock obtains
the circumferential strain energy Uε of the buckling and unbending parts of the whole ring,
the bending strain energy Uk of the buckling part of the ring, and the work W performed
by external pressure, thus the total potential energy Π of the liner is shown in Equation (1).

Π = Uk + Uε − W (1)

In view of the universality elastic confined buckling with single wave mode, Glock
further puts forward the radial deflection curve equation about w, shown in Equation (2), in
which the variables of w0 and ϕ0 are the maximum deflection and the maximum deflection
boundary, respectively.

w = w0 cos2 πϕ

2ϕ0
; 0 ≤ ϕ ≤ ϕ0 (2)

Substituting Equation (2) into Equation (1) and based on the principle of minimum po-
tential energy, the classical Glock critical external pressure calculation formula can be finally
obtained, as shown in Equation (3), in which the variables of E, ν, t and R are the elastic
modulus, Poisson’s ratio, wall thickness and mid-plane radius of the liner, respectively.

PGlock =
E

1 − ν2

(
t

2R

)2.2
(3)

For an ideal long cylindrical shell, the classical Glock’s formula exhibits high predictive
accuracy and has gained widespread acceptance. Building upon the derivational procedure
of Glock’s critical formula, Boot [21] put forward the hypothesis of double-wave elastic
buckling, which extended the classical Glock’s theory. Li et al. [22] derived the theoretical
calculation formula of critical external pressure for elastic confined buckling with uneven
thickness liner, while Omara [16] and Jing Yingdong [11] derived the theoretical calculation
formula for ovality liner under rigid outer wall. Therefore, Glock’s critical buckling external
pressure formula has been widely adopted and has established itself as a foundational
basis for numerous theoretical investigations.

2.2. Nonlinear Confined Buckling Theoretical Calculated Models of Confined Thin-Walled Liner

For metal liners, material yielding behavior typically takes place prior to elastic buck-
ling, resulting in a nonlinear response throughout the entire buckling process. Consequently,
elastic theory is no longer applicable.

As a first approximation, Montel [23] proposed that the critical external pressure
corresponds to the pressure causing the metal liner to undergo initial yielding. Based
on this concept, a semi-empirical formula was developed by incorporating Timoshenko’s
deflection solution [24] and experimental findings [25], as presented in Equation (4). Within
this formula, denotes the yield strength of the metal liner, while the influences of the
liner’s initial deflection and initial clearance on the nonlinear critical buckling pressure are
accounted for.

P M =
14.1σy

(2R/t)1.5[1 + 1.2(δ0 + 2g)/t]
(4)

Based on numerical simulation findings, Vasilikis et al. [26] incorporated the plastic
hinge into the buckling analysis for confined metal liners, and considered that the moving
plastic hinge and the static plastic hinge in the middle section were generated. It was
assumed that the rest parts except the plastic hinge were rigid and plastic, and then the
critical external pressure for nonlinear buckling was obtained according to the fact that the
plastic work was equal to the external work. However, this theory fails to account for the
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additional energy required for the plastic hinge to move at both ends, resulting in a certain
discrepancy between theoretical predictions and experimental observations.

In addition, as the upper limit of nonlinear critical buckling pressure, based on the
Mises strength criterion, the critical pressure at which the entire wall thickness of the metal
liner enters the yield state also plays a significant role in deriving empirical formulas, as
presented in Equation (5).

P y = 2
σy√

1 − ν + ν2

(
t

2R

)
(5)

2.3. Confined Buckling Analysis Method of Liners with Defects
2.3.1. Elastic Confined Buckling Theory with Initial Defects

In the process of engineering application, the thin-walled liner structure will produce
some defects due to some objective reasons during installation and use. According to the
characteristics of these defects, the researchers combed and summarized that the main
defects of the liner are initial deflection, initial clearance, ovality shape defects and uneven
wall thickness and so on. Based on the ring theory and finite element calculation model,
researchers have carried out a lot of research on these defects, respectively. In the early
theoretical research, it is usually difficult to obtain the theoretical formula for calculating
the critical external pressure of a thin-walled liner with initial defects. Zhang [27] used
Equation (4) to predict the critical buckling pressure of the metal liner of the COPV. The
theoretical buckling pressure of S30408 stainless steel liner was about 14.4 MPa, while the
experimental results showed that the critical buckling pressure was between 15~18 MPa,
and the error range between theoretical calculation results and experimental measurement
outcomes was 4–20%. Primary factors contributing to these errors include insufficient
accuracy of experimental measurements, failure to consider the compression effect of the
initial winding tension of the fiber winding layer on the liner, the influence on the bond
strength of the liner and the initial ovality defect of the metal liner.

Benefiting from the development of the technology of FEM, El-Sawy et al. [28] first
adopted finite element technology to establish a finite calculation model with various
defects. According to the calculation results, the corresponding semi-empirical expressions
of attenuation coefficients are put forward, and these attenuation coefficients usually have
high calculation accuracy and are widely recognized. Therefore, in order to facilitate
engineering calculation, most of the proposed calculation models are empirical formulas
and semi-empirical formulas [29–34]. For example, when Omara et al. [16] studied the
influence of ovality defects, some secondary factors were ignored, and some unknown
parameters were linearized according to the experimental results, so a semi-empirical
calculation formula was obtained.

2.3.2. Nonlinear Confined Buckling Theory with Initial Defects

Because the buckling process of metal liner is usually accompanied by plastic hinge,
the whole buckling process is nonlinear. When considering the initial defects of metal
liner, it is more difficult to obtain the critical buckling internal pressure of metal liner by
theoretical research. At present, there is little research work on this kind of problem, and
the existing research works tend to adopt the method of FEM [35,36].

For Type-III COPV, among several common defects of metal liner, ovality defect is
the most easily overlooked and difficult to be accurately measured, and the influencing
mechanism has not been found yet. Based on the above research status, this paper focuses
on the influence of ovality defects on the nonlinear confined buckling of thin-walled metal
liner installed inside the composite overwrapped pressure vessel. Firstly, combined with
finite element analysis method, The predictive accuracy of several empirical formulas
for elastic buckling with ovality defects is evaluated and compared. Building upon this
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analysis, an empirical formula for nonlinear confined buckling involving ovality defects is
developed. Leveraging the deformation mechanism of composite overwrapped pressure
vessels, a theoretical model for calculating the critical buckling pressure of thin-walled
metal liners with ovality defects is established, with theoretical calculation results and
experimental data subsequently compared and analyzed.

3. Confined Buckling of Thin-Walled Metal Liner with Ovality Defects
According to the above discussion, in the design process, there are few reports on

the nonlinear confined buckling of thin-walled metal liners with ovality defects. For the
composite overwrapped pressure vessel, the COPV’s inner vessel is usually formed by
cold drawing, extrusion or cold and hot reverse extrusion molding, and then it is prepared
by forging, spinning or welding techniques to form domes at both ends of the cylinder.
These processing techniques require extremely high stability of the system, and the inner is
very prone to some initial damage, such as ovality deformation, local depression, surface
scratches and other initial defects.

Therefore, in this section, firstly, the prediction accuracy of various theoretical formulas
about elastic confined buckling of the inner with ovality defects is compared with the finite
element calculation results. On the basis of the existing empirical formulas of elastic
confined buckling, the influence of ovality defects on nonlinear confined buckling of liner is
discussed through the finite element calculation model, and a simple and effective empirical
formula of nonlinear confined buckling with ovality defects was proposed.

3.1. Calculation Model of Elastic Confined Buckling of Thin-Walled Liner with Ovality Defect
3.1.1. Finite Element Calculation Model and Basic Assumptions

This paper discusses the influence of different ovality defects and material nonlinearity
on the confined buckling of the liner through a two-dimensional plane finite element
calculation model. The two-dimensional plane finite element model described in this paper
is based on the following assumptions:

(1) Assuming that the pipeline is infinitely long (the length-diameter ratio is greater than
6) [36], ignoring the axial deformation of the liner, the buckling deformation of the
pipeline’s liner satisfies the assumption of plane strain condition.

(2) It is assumed that the liner bears uniform annular outward pressure.
(3) The interface between the liner and the outer tube is smooth and frictionless, so there

is no shear stress to do work during the buckling of the liner.

The above basic assumptions are similar to those of Glock’s elastic buckling theory,
and the finite element model is a two-dimensional ring under the condition of plane strain.
Based on the cross sections of the inner and the outer base pipe, the two-dimensional
plane finite element calculation model is shown in Figure 1. In order to meet the basic
assumptions of Glock theory, 8-node reduced integral plane strain element (CPE8R) is
adopted for both the liner and the base pipe. In order to meet the assumed conditions,
the contact surface between the liner and the base pipe adopts frictionless normal and
tangential contact pair attributes. The number of circumferential grids of the liner is
500, and the number of grids in the thickness direction of the liner is 3; The number of
circumferential grids in the base pipe is 400, and the number of grids in the thickness
direction is 5, among which the number of circumferential grids of inner or base pipe is not
fixed, which plays a great role in the convergence of the model. Debugging the number of
circumferential grids is helpful to calculate the convergence of the model.

It is worth noting that this model usually has no ellipse or other defects, and the
single-wave buckling mode is difficult to occur when the liner is subjected to external
pressure by using Riks Algorithm iterative control technology. However, when the ovality
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defect is large, it is very easy for the ovality liner to buckle at two positions of the short
semi-axis at the same time, and the strain energy dissipated by double-wave buckling is
greater than that of single-wave buckling. Therefore, the calculation results of single-wave
buckling mode are conservative. In order to obtain single-wave, there are two steps in
the ABAQUS models and the implicit analysis step is added before the Riks analysis step.
For implicit analysis step, a concentrated force with the size of 0.01 N is applied to the
corresponding node of the short semi-axis of the ovality liner, as shown in Figure 2. For the
Riks analysis step, a uniform annular outward pressure is applied to the corresponding
node of the short semi-axis of the liner, and the concentrated force is removed, so that the
initial disturbance caused by the concentrated force can be transmitted to Riks analysis
step. Non frictional contact is set between the inner and the base pipe. At the same time,
the Y-direction displacement of the corresponding node is output, which is used to record
the equilibrium path of the liner in the buckling process.

Figure 2. Two-dimension plane finite element calculation model of confined instability of liner.

For the composite overwrapped pressure vessel, the buckling of the inner liner is in-
stantaneous, and the circumferential pressure between the liner and the base pipe is caused
by the circumferential contraction of the fiber layer. The ultimate buckling deformation of
the liner will keep the whole system at the lowest energy state. Through a large number of
finite element models, it can be found that the Riks analysis step is difficult to converge
when the stiffness and thickness of the base pipe are small. However, when the modulus of
the base pipe is one tenth of that of the liner, it has little influence on the buckling damage
of the liner [26]. Therefore, this paper holds that the critical buckling pressure of the liner
is not affected by the interaction between the liner and the base pipe during the buckling
deformation. In the finite element model, only the buckling deformation of the liner in the
rigid base pipe is considered, so this goal can be achieved by imposing full constraints on
the base pipe, shown as Figure 2.

This section takes the steel liner as the research object, and its elastic modulus is
210,000 MPa and Poisson’s ratio is 0.3. Firstly, a finite element calculation model without
ovality defects is established. In the model, the radius R of the steel liner is 500 mm, and
R/t is 100, where t is the wall thickness of the steel liner. As shown in Figure 3a,b, the
elastic buckling process of the steel liner mainly includes three stages. First, under the
action of internal pressure, the steel liner generates uniform compression deformation in
the arc near the initial disturbance point, and the initial disturbance point generates radial
displacement of w0 towards the center of the circle. At this time, the region still has a certain
curvature, and the curvature of the liner remains basically unchanged under the support of
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the base pipe. However, when the external pressure continues to increase, the arc near the
initial disturbance point begins to appear as a platform segment, at this time, the rigidity of
the arc against external pressure deformation is reduced to the minimum, so the liner enters
the second stage. As can be seen from Figure 3b, this stage reaches the critical buckling
state with the highest pressure, but a slight increase in external pressure can break this
balance, leading to the third stage of collapse of the liner, which is characterized by a large
concave deformation of the liner and the release of strain energy to maintain a new one.

(a) 
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Figure 3. Instability process and buckling equilibrium path of liner. (a) Instability process of liner,
(b) Buckling equilibrium path of liner.

Further, three finite element calculation models with R/t of 100, 75 and 50 with differ-
ent diameter–thickness ratios are established. The buckling equilibrium paths of the three
calculation models are shown in Figure 4. With the increase of wall thickness, the critical
pressure of the inner tank arc also increases. Among them, the error between the maximum
critical buckling pressure of the three models and Glock’s elastic confined buckling theory
results is shown in Table 1, and the maximum error is 1.95%. Therefore, Glock elastic
buckling theory formula based on plane strain assumption has high calculation accuracy.

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries.

R0 (mm) R0/t q Pmax (MPa) PGlcok (MPa) Error

500 100 0 1.961 2 1.95%
500 75 0 3.723 3.765 1.1%
500 50 0 9.192 9.187 −0.54%

Note: When R/t is 75 and 50, the stiffness of the liner increases, and the magnitude of concentrated force in the
finite element calculation model is 0.02 N and 0.03 N, respectively, to generate the initial disturbance that induces
single-wave buckling.
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Figure 4. Buckling equilibrium path of liner with different diameter thickness ratio.

3.1.2. Calculation Results and Discussion of Elastic Confined Buckling with Ovality Defects

Based on the above finite element calculation model, the influence of ovality on elastic
buckling is discussed. In order to express the degree of ovality deformation of pipes, the
concept of ovality q defined in reference [28] is introduced in this paper, as shown in
Equation (6).

q =
R − b

R
o r q =

a − R
R

o r q =
a − b
a + b

(6)

Among them, a is the long semi-axis of the ellipse, b is the short semi-axis of the ellipse,
and R represents the radius of the same circle as ellipse circumference, R = a+b

2 ; In this
paper, the simplified calculation formula of ellipse circumference is Cellipse = π(a + b).
When b/a > 0.885, the error between the calculation result of this ellipse circumference
formula and the actual ellipse circumference is less than 0.001. Therefore, this simplified
formula can achieve high engineering calculation accuracy.

When the liner has ovality defects, the closed calculation formula of the critical buck-
ling pressure of the ovality liner cannot be deduced theoretically, which is very unfavorable
for engineering application. Therefore, the main method adopted at present is to propose
an attenuation coefficient C related to defects such as ellipses, local depressions and initial
gaps on the basis of Glock theoretical formula to quantitatively describe the influence of
defect size parameters on the critical buckling pressure, as shown in Equation (7).

Pcr = C ∗ PGlock = C ∗ E
1 − ν2

(
t

2R0

)2.2
(7)

When the liner only has ovality defects, there are currently four empirical expressions
of attenuation coefficient C related to ovality defects, as shown in Table 2.

Table 2. Empirical calculation formula of different attenuation coefficients related to ovality defects.

Attenuation Coefficient
C/(Pcr/PGlock) Formula Source

(1 + q)−
8
5 (1 − q)−

1
5 Chicurel [37][

(1 − q)/(1 + q)2
]3 ASTM F1216-93 [38]

e−5.556∗q Vasilikis [35][
1 −

(
3q − q3)× (

4×q
π − 2q + 1

)]1.8 Omara [16]
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In order to compare the prediction accuracy of these four empirical coefficients, refer-
ring to the finite element model in Section 3.1.1, this paper established several groups of
finite element calculation models for liners with R = 100, R/t = 150, 100 and 50, respectively,
in the range of defects with ovality of q = 0~0.1. The ratio between the finite element
critical buckling pressure calculation result Pcr(oval) and the Glock buckling theory result
PGlcok(circle) of the circular liner with the same circumference as the ovality liner is shown
in Tables 3–5. It can be found that with the increase of ovality, the critical load decreases
gradually, and the Pcr(oval)

PGlcok(circle) value of different R/t liners has little difference under the
same ovality.

Table 3. Critical buckling attenuation coefficient under different ovality defects (R/t = 150).

q R = a+b
2 R/t Pcr(oval) (MPa) PGlcok(circle) (MPa) C = Pcr(oval)

PGlcok(circle)

0 500 150 0.801 0.819 0.978
0.01 500 150 0.759 0.819 0.927
0.02 500 150 0.718 0.819 0.877
0.03 500 150 0.681 0.819 0.831
0.04 500 150 0.646 0.819 0.789
0.05 500 150 0.613 0.819 0.748
0.06 500 150 0.581 0.819 0.709
0.07 500 150 0.551 0.819 0.673
0.08 500 150 0.522 0.819 0.637
0.09 500 150 0.496 0.819 0.606
0.1 500 150 0.470 0.819 0.574

Table 4. Critical buckling attenuation coefficient under different ovality defects (R/t = 100).

q R = a+b
2 R/t Pcr(oval) (MPa) PGlcok(circle) (MPa) C = Pcr(oval)

PGlcok(circle)

0 500 100 1.961 2 0.981
0.01 500 100 1.861 2 0.931
0.02 500 100 1.765 2 0.883
0.03 500 100 1.674 2 0.837
0.04 500 100 1.587 2 0.794
0.05 500 100 1.508 2 0.754
0.06 500 100 1.43 2 0.715
0.07 500 100 1.357 2 0.679
0.08 500 100 1.287 2 0.644
0.09 500 100 1.221 2 0.611
0.1 500 100 1.159 2 0.580

Table 5. Critical buckling attenuation coefficient under different ovality defects (R/t = 50).

q R = a+b
2 R/t Pcr(oval) (MPa) PGlcok(circle) (MPa) C = Pcr(oval)

PGlcok(circle)

0 500 50 9.192 9.187 1.00
0.01 500 50 8.74 9.187 0.951
0.02 500 50 8.29 9.187 0.902
0.03 500 50 7.84 9.187 0.853
0.04 500 50 7.453 9.187 0.811
0.05 500 50 7.08 9.187 0.771
0.06 500 50 6.69 9.187 0.728
0.07 500 50 6.34 9.187 0.690
0.08 500 50 6.03 9.187 0.656
0.09 500 50 5.727 9.187 0.623
0.1 500 50 5.364 9.187 0.584
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By comparing the sizes of the four attenuation coefficients shown in Table 2 under
different ovality defects with the finite element calculation results in Tables 4–6, as shown
in Figure 5, it can be observed that, The size of R/t has a certain impact on the size of
C = Pcr(oval)

PGlcok(circle) , but the impact is relatively low. Although the attenuation coefficient
proposed by Khaled M. El-S [28] did not take this factor into account, from a conservative
perspective, Khaled M. El-S [28] takes the lower limit of Pcr(oval)

PGlcok(circle) with respect to the
R/t curve, which makes the calculation results biased towards conservatism. However,
overall, the attenuation coefficients related to ovality proposed by Khaled M. El-S [28] and
Omara [16] have higher prediction accuracy. Considering that the attenuation coefficient
expression proposed by Khaled M. El-S [28] is relatively simple and convenient, this paper
intends to refer to the empirical formula for elastic confined buckling of metal liners
containing ovality defects shown in Equation (8). to provide support for the study of
elastic–plastic buckling of metal liners in the following text.

Table 6. Size of dependent parameters of η under different parameter conditions.

q R/t σy/E σy (MPa) Py (MPa) PGlock (MPa) λ Pmax (MPa) η

0 25 0.0014 294 13.231 42.213 0.560 11.339 1.134
0.01 30 0.00142 298.2 11.183 28.265 0.629 8.491 1.539
0.02 35 0.00144 302.4 9.721 20.135 0.695 6.624 1.713
0.03 40 0.00146 306.6 8.624 15.010 0.758 5.297 1.795
0.04 45 0.00148 310.8 7.771 11.584 0.819 4.339 1.813
0.05 50 0.0015 315 7.088 9.187 0.878 3.584 1.819
0.06 55 0.00152 319.2 6.530 7.449 0.936 2.988 1.809
0.07 60 0.00154 323.4 6.064 6.151 0.993 2.517 1.785
0.08 65 0.00156 327.6 5.670 5.158 1.048 2.145 1.750
0.09 70 0.00158 331.8 5.333 4.382 1.103 1.834 1.715
0.10 75 0.0016 336 5.040 3.765 1.157 1.574 1.677
0.05 80 0.00162 340.2 4.784 3.267 1.210 1.755 1.524
0.05 85 0.00164 344.4 4.559 2.859 1.263 1.588 1.487
0.05 90 0.00166 348.6 4.358 2.521 1.315 1.436 1.456
0.05 95 0.00168 352.8 4.178 2.238 1.366 1.315 1.419
0.05 100 0.0017 357 4.017 1.999 1.417 1.205 1.386
0.05 105 0.00172 361.2 3.870 1.796 1.468 1.106 1.356
0.05 110 0.00174 365.4 3.737 1.621 1.518 1.017 1.327
0.05 115 0.00176 369.6 3.616 1.470 1.568 0.941 1.297
0.05 120 0.00178 373.8 3.505 1.339 1.618 0.871 1.270

0 125 0.0018 378 3.402 1.224 1.667 1.018 1.215
0.01 130 0.00182 382.2 3.308 1.123 1.717 0.904 1.201
0.02 135 0.00184 386.4 3.220 1.033 1.765 0.805 1.184
0.03 140 0.00186 390.6 3.139 0.954 1.814 0.717 1.166
0.04 145 0.00188 394.8 3.063 0.883 1.863 0.639 1.147
0.05 150 0.0019 399 2.993 0.819 1.911 0.571 1.126
0.06 155 0.00192 403.2 2.927 0.762 1.959 0.509 1.106
0.07 160 0.00194 407.4 2.865 0.711 2.007 0.455 1.085
0.08 165 0.00196 411.6 2.807 0.664 2.055 0.408 1.064
0.09 170 0.00198 415.8 2.752 0.622 2.103 0.366 1.043
0.1 175 0.002 420 2.700 0.584 2.151 0.328 1.023
0.02 100 0.0017 357 4.017 1.999 1.417 1.364 1.353
0.04 100 0.0017 357 4.017 1.999 1.417 1.258 1.375
0.06 100 0.0017 357 4.017 1.999 1.417 1.112 1.418
0.08 100 0.0017 357 4.017 1.999 1.417 1.054 1.420
0.1 100 0.0017 357 4.017 1.999 1.417 0.956 1.444
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Figure 5. Comparison between finite element calculation results and empirical formula of attenuation
coefficient under ovality defect.

Based on the above simulation results, comparing the differences between the sizes
of the four attenuation coefficients shown in Table 2 under different ovality defects and
the finite element calculation results, as shown in Figure 5, it can be found that the size
of R/t has a certain impact on the size of C = Pcr(oval)

PGlcok(circle) , but the impact is relatively low.
Although the attenuation coefficient proposed by Khaled M. El-S [28] did not take this factor
into account, Khaled M. El-S [28] conservatively takes the lower limit of Pcr(oval)

PGlcok(circle) on the
R/t curve, which makes the calculation results biased towards conservatism. However,
overall, the attenuation coefficients related to ovality proposed by Khaled M. El-S [28] and
Omara [16] have higher prediction accuracy. Considering that the attenuation coefficient
expression proposed by Khaled M. El-S [28] is relatively simple and convenient, this paper
intends to refer to the empirical formula for elastic confined buckling of metal liners with
ovality defects as shown in Equation (8), providing support for the study of elastic–plastic
buckling of metal inner liners in the following text.

Pcr(oval) = e−5.556∗q ∗ E
1 − ν2

(
t

2R

)2.2
(8)

3.2. Nonlinear Confined Buckling Calculation Model of Thin-Walled Metal Liner with Ovality Defects

The elastic confined buckling theory including ovality defects is applicable to metal
film liners or plastic liners. In the elastic buckling deformation process of actual metal
liners, the Mises equivalent stress of the liner usually exceeds the yield strength of the
material and is in a very high stress level state. However, when considering the elasticity
and plasticity of the material, the liner will be unstable under lower external pressure,
as shown in Figure 6a. For the metal liners with the same structural parameters, When
the liner is made of pure elastic material and elastic–plastic material (the yield strength is
310 MPa), the subsequent buckling equilibrium paths are obviously different. The pure
elastic material is smoother than the ideal elastic–plastic material at the initial stage of
buckling, because the ideal elastic–plastic material produces a plastic hinge at the position
where concave buckling occurs, as shown in Figure 6b.

Through the above analysis, it can be found that the nonlinearity of metal liner has a
very important influence on the buckling of the liner. At present, it is difficult to obtain its
closed analytical formula considering both the nonlinearity of the material and the ovality
defect. In light of these complexities, an empirical formula is developed based on finite
element simulations, aiming to provide a practical solution for engineering scenarios.
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(a) 

(b) 

Figure 6. Finite element results of confined buckling. (a) Post buckling equilibrium path of elastic–
plastic liner and pure elastic liner. (b) Plastic hinge.

3.2.1. Criteria for Judging Nonlinear Confined Buckling

In order to study the influence of the nonlinearity of the liner material on the critical
buckling pressure, Vasilikis et al. [26] first proposed a parameter λ as shown in Equation (9)
to determine the characteristics of the liner: thin-walled liner (elastic instability) and thick-
walled liner (plastic instability), where Py = 2 σy√

1−ν+ν2

( t
2R

)
is the critical external pressure

when the liner yields under external pressure, and the factor 1/
√

1 − ν + ν2 considers
the influence of plane strain conditions on yield strength. Therefore, the parameter λ is
determined by the uniaxial tensile yield stress σy of the liner material and the diameter–
thickness ratio R

t of the liner.

λ =

√
Py

PGlock
=

√
2σy(1 − ν2)

E
√

1 − ν + ν2

(
2R
t

)1.2
(9)

It can be found that the parameter λ is directly proportional to the σy
E and R

t . For a
circular liner without ovality defects, when the σy

E and R
t of the liner are relatively large, the

parameter λ would greater than a certain critical value λp, and the liner will probably buckle
elastically. At this stage, the critical buckling pressure of the metal liner coincides with
Glock’s theoretical value (Pcr = PGlock). Equation (9) can be reformulated as Equation (10).

Pcr

Py
=

1
λ2 , (λ > λp) (10)
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When the liner is elastically buckled and contains initial defects, the critical external
pressure of the liner is estimated by using the attenuation coefficient C, as shown in the
Equation (11).

Pcr

Py
=

C
λ2 , (λ > λp) (11)

Vasilikis et al. [26] also stipulated that when λ ≤ λ0, the liner will enter the overall
yield state, as shown in the Equation (12).

Pcr

Py
= 1, (λ ≤ λ0) (12)

However, when λ0 ≤ λ ≤ λp, the liner is in the nonlinear buckling stage, which is
different from the whole buckling stage. During the nonlinear buckling stage, material
points at the liner’s buckling location undergo yielding, resulting in a localized stiffness
reduction that accelerates the buckling process. Consequently, both the yield stress and
the diameter-to-thickness ratio of the liner jointly influence the critical buckling pressure.
As nonlinear liner buckling lacks a closed-form solution, the European Committee for
Standardization [39] adopted Equation (4).

Pcr

Py
= 1 − β

(
λ − λ0

λp − λ0

)η

, (λ0 ≤ λ ≤ λp) (13)

Among them, β = 1 − C/λ2
p and C are the attenuation coefficients represented by

various defects related to the liner. η is a dependent parameter related to the defect size of
the liner and the structural parameters of the liner.

For the circular steel liner without defects, Vasilikis et al. [26] have determined the
upper and lower limits of the parameter λ related to the nonlinear confined buckling,
which are λ0 = 0.25 and λp = 2.2, respectively. Since these boundary values have been
well-defined in previous work, their derivation is not repeated here. Instead, this study
focuses on investigating nonlinear buckling behavior in metal liners with ovality defects,
using these established bounds as the basis for analysis.

3.2.2. Calculated Models for Nonlinear Confined Buckling of Metal Liner with Ovality Defects

For metal liners with ovality defects, the condition 0.25 < λ < 2.2 indicates operation
within the nonlinear confined buckling regime. Building upon the empirical formulation for
nonlinear critical buckling established by the European Committee for Standardization [39],
and this chapter develops an enhanced empirical formula incorporating the dependent
parameter η as a key factor. Furthermore, we introduce an ovality defect attenuation
coefficient to account for geometric imperfections. The resulting empirical formulation for
nonlinear confined buckling of ovalized metal liners is presented in Equation (14).

C =
Pcr

Py
= 1 −

(
1 − e−5.556∗q

2.22

)(
λ − λ0

λp − λ0

)
∗ η, (λ0 ≤ λ ≤ λp) (14)

In Equation (14), the dependent parameter η is the only unknown parameter. Therefore,
the finite element model of metal liner is established and the expressions of dependent
parameter η about ovality q and liner’s structural parameter λ are fitted according to
the obtained critical buckling calculation results. Firstly, the expression of dependent
parameter η as shown in Equation (15) is obtained by transforming Equation (14). Then, by
establishing 36 groups of finite element calculation models as shown in Table 6, the size of
dependent parameter η is calculated by Equation (15), where Pmax represent the maximum
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pressure (as exemplified by the peak point in Figure 6a) obtained through Riks analysis
in ABAQUS.

η =

(
1 − Pmax

Py

)
/
[(

1 − e−5.556∗q

2.22

)(
λ − 0.25

2.2 − 0.25

)]
(15)

As shown in Table 6, R/t and σy/E are two groups of dimensionless data, namely,
the specific thickness of metal liner radius and the specific elastic modulus of plastic yield
stress. In order to simulate the metal liner with ovality defects, the value range of ovality q
is set at 0~0.1.

Through curve fitting, the corresponding coefficient is derived in the form of
η = 1/

(
26.42q2 − 0.01λ2 − 8.56q + 0.16λ + 3.38qλ + 0.63

)
. Based on this formulation, the

nonlinear buckling external pressure for metal liners with ovality defects can be empirically
expressed as given in Equation (16).

5.556*

2

cr 2 2

5.556*

2

0.25

e 0.25
1

2.2 0.252.2
1 * 0.25 2.2
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(16) (16)

In order to test the prediction accuracy of the empirical formula, five groups of
finite element calculation models with ovality defects and different parameters λ were
established. The parameters of the finite element model, the maximum calculated pressure
Pmax calculated by Riks analysis step and the predicted result Pcr of empirical formula are
shown in Table 7. The error between the predicted result and the simulated result of finite
element is relatively low, with a maximum of 4.98%. Therefore, the empirical formula
shown in Equation (16) can well describe the attenuation of critical buckling pressure
caused by structural parameters and ovality defects of the liner.

Table 7. Comparison between prediction results of empirical formula and finite element calcula-
tion results.

q R/t σy/E σy
(MPa)

Py
(MPa)

PGlock
(MPa) λ

Pmax
(MPa)

Pcr
(MPa)

Pmax−Pcr
Pmax

0.05 50 0.0017 357 8.033 9.187 0.935 3.873 3.834 1.00%
0.05 75 0.0017 357 5.355 3.765 1.193 2.004 1.976 1.40%
0.05 100 0.0017 357 4.017 1.999 1.417 1.205 1.177 2.30%
0.05 125 0.0017 357 3.213 1.224 1.620 0.795 0.755 4.98%
0.05 150 0.0017 357 2.678 0.819 1.808 0.524 0.504 3.71%

4. Experimental Validation
4.1. Test Parameters

To validate the proposed nonlinear buckling pressure equation (Equation (16) in
Section 3.2.2), this chapter compares and analyzes experimental data from Zhang et al. [27].
Their study investigated the mechanical behavior of thin-walled S30408 stainless steel



J. Compos. Sci. 2025, 9, 480 16 of 19

liners inside the COPVs, developing a method to calculate the critical internal pressure that
prevents liner buckling.

Zhang et al. [27] employed a semi-empirical formula (Equation (4)) originally proposed
by Montel [23], which was derived from Timoshenko’s thin ring deflection theory [24] and
experimental data [25]. However, this formulation only accounts for initial deflection and
clearance effects, neglecting the influence of ovality defects on nonlinear confined buckling.

Notably, integrating Zhang et al.’s theoretical approach with the semi-empirical for-
mula proposed in this study enables accurate prediction of critical internal pressures for
Type-III COPVs with ovality defects. Their experimental work involved S30408 stain-
less steel liners wrapped with carbon fiber layers. Through load–unload cycle testing,
they observed buckling initiation at 15–18 MPa, characterized by circumferential inward
single-wave deformation of the liner.

4.2. Comparison of Experimental and Theoretical Calculation Results

According to the structural parameters of the Type-III COPV described by Zhang [27],
the ovality defect of their liner is 0.01. Combined with the empirical calculation formula
of critical buckling pressure of metal liner with ovality defect proposed in this paper, as
shown in Equation (16), and the calculation method of critical internal pressure when
the liner buckled proposed by Zhang. Substituting the parameters of the tested Type-III
COPV [27] into the proposed semi-empirical formula of Equation (16), when the liner
is subjected to nonlinear confined buckling, the theoretical critical internal pressure is
18.5 MPa, in which the error range of the calculation result based on the semi-empirical
formula proposed in this paper is −2.8%~−23%. For comparison, the calculation result of
Zhang et al. based on Equation (4) is 4%~20%. The error between the two formulas and the
experimental results is shown in Table 8. The error range of the semi-empirical formula
based on Equation (16) shows that the prediction result is slightly higher than the tested
value. The main reason could be that the metal lining used by the experimental subjects
may have other unobserved initial defects, such as initial deflection, uneven wall thickness,
etc. Current research [8,13,22,23] indicates that these defects can lead to a reduction in
the critical confined buckling pressure of the inner. Nowadays, the coupling mechanism
of these defects is not yet clear, but the empirical formula established based on the finite
element method in this paper provides a new solution path.

Table 8. Comparison of calculation results of different empirical formulas.

Semi-Empirical Formula Calculated Results Errors

Equation (4) 14.4 MPa 4~20%
Proposed formula (Equation (16)) 18.5 MPa −2.8~−23%

Note: Experimental value [27]: 15~18 MPa.

5. Conclusions and Outlook
In this paper, the nonlinear confined buckling pressure of thin-walled metal liner with

initial ovality defect is studied through finite element analysis and theoretical derivation.
The nonlinear confined buckling pressure of metal liner with ovality defects is discussed
by finite element analysis method, and a semi-empirical calculation formula of nonlinear
confined buckling pressure of metal liner with ovality defects was established, by 36 sets
of parameterized finite element calculation data. The error range between the theoretical
prediction results and the experimental results is −2.8~−23%.

The finite element calculation model can perfectly predict the critical pressure of
elastic confined buckling. The coupling mechanism of these defects is not yet clear, but the
empirical formula established based on the finite element method in this paper provides
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a new solution path. In this paper, the finite element calculation model is based on a 2D
plane strain model, without fully considering the influence conditions in the axial direction
of the liner. Therefore, the finite element calculation results are only applicable to pipelines
with a large aspect ratio. For axially discontinuous inner lining structures such as reducers
or bends, it is recommended to use a three-dimensional model for calculation.

The fabrication of metal liner test specimens incorporating diverse initial defects, along
with real-time monitoring of their buckling behavior, is crucial for validating and refin-
ing accurate finite element models. Further investigations are required to systematically
address these research gaps.

Author Contributions: Conceptualization, F.G.; Data curation, H.X.; Formal analysis, F.G.; Inves-
tigation, F.G., H.W. and Y.J.; Methodology, F.G.; Resources, Z.C. and X.L.; Software, F.G. and K.S.;
Supervision, Z.C.; Validation, K.S.; Visualization, H.W. and X.L.; Writing—original draft, F.G. and
H.X.; Writing—review and editing, Z.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Postgraduate Practice Innovation Program of Jiangsu
University of Technology grant number [XSJCX24_73], the Changzhou Sci&Tech Program grant
number [CJ20240029], the Changzhou Leading Talent Program Project of D Category grant number
[CQ20240098] and Jiangyin Hengdu Machinery Co., Ltd. Grant number [2024320400002666].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Yaguo Jin was employed by the company Jiangsu Ankura intelligent
electric Co., Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Zhou, G.; Niu, Y.; Zhao, J.; Wang, Y. Multi-objective optimization design of NPR protection shell for hydrogen storage tank. Mech.

Adv. Mater. Struct. 2024, 32, 1–14. [CrossRef]
2. Ahmad, S.; Ullah, A.; Samreen, A.; Qasim, M.; Nawaz, K.; Ahmad, W.; Alnaser, A.; Kannan, A.M.; Egilmez, M. Hydrogen

production, storage, transportation and utilization for energy sector: A current status review. J. Energy Storage 2024, 101, 113733.
[CrossRef]

3. Choi, B.H.; Kwon, I.B. Damage mapping using strain distribution of an optical fiber embedded in a composite cylinder after
low-velocity impacts. Compos. Part B Eng. 2019, 173, 107009. [CrossRef]

4. Jahromi, B.H.; Ajdari, A.; Nayeb-Hashemi, H.; Vaziri, A. Autofrettage of layered and functionally graded metal–ceramic composite
vessels. Compos. Struct. 2010, 92, 1813–1822. [CrossRef]

5. Hu, J.; Chandrashekhara, K. Fracture analysis of hydrogen storage composite cylinders with liner crack accounting for autofrettage
effect. Int. J. Hydrogen Energy 2009, 34, 3425–3435. [CrossRef]

6. Li, C.; Qin, Z.; Li, Y.; Chen, Z.; Liu, J.; Liang, J.; Feng, J. Investigation on mechanical behaviors under fatigue load of stacking
sequences considering autofrettage process for highly reliable hydrogen storage vessel. J. Energy Storage 2024, 82, 110538.
[CrossRef]

7. Wu, E.; Zhao, Y.; Zhao, B.; Xu, W. Fatigue life prediction and verification of high-pressure hydrogen storage vessel. Int. J. Hydrogen
Energy 2021, 46, 30412–30422. [CrossRef]

8. Zhang, Q.; Yang, D.; Shen, M.; Li, Z. Analytical and numerical predictions of elastoplastic buckling behaviors of the subsea lined
pipelines with ovality defects under hydrostatic pressure. Thin-Walled Struct. 2024, 205, 112584. [CrossRef]

9. Xia, Y.; Jiang, N.; Yao, Y.; Sun, J.; Zhang, Z. Theoretical and numerical methods for analyzing the dynamic response of buried
pipelines under blasting vibrations. Eng. Fail. Anal. 2025, 170, 109322. [CrossRef]

10. Hongli, D. Theoretical and Experimental Study on Elastic and Plastic Thermal Buckling of Steel Lining Shell; Tsinghua University:
Beijing, China, 1996.

11. Yingdong, J. Study on Buckling Behavior of Defective Lining; China Geo University: Beijing, China, 2016.

https://doi.org/10.1080/15376494.2024.2382360
https://doi.org/10.1016/j.est.2024.113733
https://doi.org/10.1016/j.compositesb.2019.107009
https://doi.org/10.1016/j.compstruct.2010.01.019
https://doi.org/10.1016/j.ijhydene.2009.01.094
https://doi.org/10.1016/j.est.2024.110538
https://doi.org/10.1016/j.ijhydene.2021.06.177
https://doi.org/10.1016/j.tws.2024.112584
https://doi.org/10.1016/j.engfailanal.2025.109322


J. Compos. Sci. 2025, 9, 480 18 of 19

12. Guo, Z. Study on Limited Instability of Thin-Walled Cylindrical Shells; Fuzhou University: Fuzhou, China, 2013.
13. Yamamoto, Y.; Matsubara, N. Buckling strength of metal lining of a cylindrical pressure vessel. Trans. Jpn. Soc. Mech. Eng. Ser. A

1969, 45, 421–429. [CrossRef]
14. Yantian, L.; Li, Z. Stability calculation of external pressure cylindrical shell with rigid outer wall. J. Wuhan Inst. Chem. Technol.

1991, 28–35. [CrossRef]
15. Moore, I.D.; Haggag, A.; Selig, E.T. Buckling strength of flexible cylinders with nonuniform elastic support. Int. J. Solids Struct.

1994, 31, 3041–3058. [CrossRef]
16. Omara, A.-A.M.; Guice, L.K.; Straughan, W.T.; Akl, F. Instability of thin pipes encased in oval rigid cavity. J. Eng. Mech. 2000, 126,

381–388. [CrossRef]
17. Blanc-Vannet, P.; Papin, P.; Weber, M.; Renault, P.; Pepin, J.; Lainé, E.; Tantchou, G.; Castagnet, S.; Grandidier, J.-C. Sample scale

testing method to prevent collapse of plastic liners in composite overwrapped pressure vessels. Int. J. Hydrogen Energy 2019, 44,
8682–8691. [CrossRef]

18. Rueda, F.; Marquez, A.; Otegui, J.; Frontini, P. Buckling collapse of HDPE liners: Experimental set-up and FEM simulations.
Thin-Walled Struct. 2016, 109, 103–112. [CrossRef]

19. Wang, J.H.; Koizumi, A. Experimental investigation of buckling collapse of encased liners subjected to external water pressure.
Eng. Struct. 2017, 151, 44–56. [CrossRef]

20. Glock, D. Überkritisches verhalten eines starr ummantelten kreisrohres bei wasserdrunck von aussen und temperaturdehnung
(post-critical behavior of a rigidly encased circular pipe subject to external water pressure and thermal extension). Der Stahlbau
1977, 7, 212–217.

21. Boot, J.C. Elastic buckling of cylindrical pipelings with small imperfections subjected to external pressure. Trenchless Technol. Res.
1998, 12, 3–15. [CrossRef]

22. Li, Z.; Wang, L.; Guo, Z.; Shu, H. Elastic buckling of cylindrical pipe linings with variable thickness encased in rigid host pipes.
Steel Constr. 2012, 51, 10–19. [CrossRef]

23. Montel, R. Formule semi-empirique pour la détermination de la pression extérieure limite d’instabilité des conduites métalliques
lisses noyées dans du béton. La Houille Blanche 1960, 46, 560–568. [CrossRef]

24. Timoshenko, S.P. Theory of Elastic Stability; McGraw-Hill: Moscow, Russia, 1936.
25. Borot, M. Essais des Conduits Metálliques Noyées Dans du Béton. La Houille Blanche 1957, 6, 881–887. [CrossRef]
26. Vasilikis, D.; Karamanos, S.A. Stability of confined thin-walled steel cylinders under external pressure. Int. J. Mech. Sci. 2009, 51,

21–32. [CrossRef]
27. Zhang, P.; Gu, F.; Cao, Z.; Wang, H.; Chen, Z.; Xiao, H.; Wang, X.; Ma, G. Theoretical and experimental research on the critical

buckling pressure of the thin-walled metal liner installed in the composite overwrapped pressure vessel. Int. J. Press. Vessel. Pip.
2024, 212, 105335. [CrossRef]

28. Elsawy, K.; Moore, I.D. Parametric study for buckling of liners: Effect of liner geometry and imperfections. In Trenchless Pipeline
Projects; ASCE: Reston, VA, USA, 2014. [CrossRef]

29. Kyriakides, S.; Youn, S.K. On the collapse of circular confined rings under external pressure. Int. J. Solids Struct. 2015, 20, 699–713.
[CrossRef]

30. Lo, K.H.; Zhang, J.Q. Collapse Resistance Modeling of Encased Pipes; Shell Development Company: Houston, TX, USA, 1994.
31. Li, J.Y.; Guice, L.K. Buckling of encased elliptic thin ring. J. Eng. Mech. 1995, 121, 1325–1329. [CrossRef]
32. El-Sawy, K.; Moore, I.D. Stability of loosely fitted liners used to rehabilitate rigid pipes. J. Struct. Eng. 1998, 124, 1350–1357.

[CrossRef]
33. Jaganathan, A.; Allouche, E.; Baumert, M. Experimental and numerical evaluation of the impact of folds on the pressure rating of

CIPP liners. Tunn. Undergr. Space Technol. 2007, 22, 666–678. [CrossRef]
34. El-Sawy, K.M.; Sweedan, A. Effect of local wavy imperfections on the elastic stability of cylindrical liners subjected to external

uniform pressure. Tunn. Undergr. Space Technol. 2010, 25, 702–713. [CrossRef]
35. Vasilikis, D.; Karamanos, S.A. Buckling design of confined steel cylinders under external pressure. J. Press. Vessel Technol. 2011,

133, 11205. [CrossRef]
36. El-Sawy, K.M. Inelastic stability of liners of cylindrical conduits with local imperfection under external pressure. Tunn. Undergr.

Space Technol. 2013, 33, 98–110. [CrossRef]
37. Chicurel, R. Shrink Buckling of Thin Circular Rings. J. Appl. Mech. 1968, 35, 608–610. [CrossRef]

https://doi.org/10.1299/jsme1958.12.421
https://doi.org/10.19843/j.cnki.cn42-1779/tq.1991.02.005
https://doi.org/10.1016/0020-7683(94)90040-X
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(381)
https://doi.org/10.1016/j.ijhydene.2018.10.031
https://doi.org/10.1016/j.tws.2016.09.011
https://doi.org/10.1016/j.engstruct.2017.08.008
https://doi.org/10.1016/S0886-7798(98)00018-2
https://doi.org/10.1016/j.tws.2011.11.003
https://doi.org/10.1051/lhb/1960048
https://doi.org/10.1051/lhb/1957061
https://doi.org/10.1016/j.ijmecsci.2008.11.006
https://doi.org/10.1016/j.ijpvp.2024.105335
https://doi.org/10.1061/9780784402443.052
https://doi.org/10.1016/0020-7683(84)90025-8
https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1325)
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1350)
https://doi.org/10.1016/j.tust.2006.11.007
https://doi.org/10.1016/j.tust.2010.04.002
https://doi.org/10.1115/1.4002540
https://doi.org/10.1016/j.tust.2012.09.004
https://doi.org/10.1115/1.3601259


J. Compos. Sci. 2025, 9, 480 19 of 19

38. Plastics, D.O. Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated
Tube; ASTM: West Conshohocken, PA, USA, 2024.

39. Rotter, J.M.; Schmidt, H. European Convention for Constructional Steelwork. Buckling of Steel Shells; European Design Recommenda-
tions; ECCS: Brussels, Belgium, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Theoretical Calculated Models of Elastic and Nonlinear Confined Buckling of Liner 
	Elastic Confined Buckling Theory Calculated Models 
	Nonlinear Confined Buckling Theoretical Calculated Models of Confined Thin-Walled Liner 
	Confined Buckling Analysis Method of Liners with Defects 
	Elastic Confined Buckling Theory with Initial Defects 
	Nonlinear Confined Buckling Theory with Initial Defects 


	Confined Buckling of Thin-Walled Metal Liner with Ovality Defects 
	Calculation Model of Elastic Confined Buckling of Thin-Walled Liner with Ovality Defect 
	Finite Element Calculation Model and Basic Assumptions 
	Calculation Results and Discussion of Elastic Confined Buckling with Ovality Defects 

	Nonlinear Confined Buckling Calculation Model of Thin-Walled Metal Liner with Ovality Defects 
	Criteria for Judging Nonlinear Confined Buckling 
	Calculated Models for Nonlinear Confined Buckling of Metal Liner with Ovality Defects 


	Experimental Validation 
	Test Parameters 
	Comparison of Experimental and Theoretical Calculation Results 

	Conclusions and Outlook 
	References

