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Abstract—For patients with Type 1 Diabetes Mellitus, 
hypoglycemia is a very common but dangerous complication 
which can lead to unconsciousness, coma and even death. The 
variety of hypoglycemia symptoms is originated from the 
inadequate supply of glucose to the brain. In this study, we 
explored the connection between hypoglycemia episodes and 
the electrical activity of neurons within the brain or EEG 
signals. By analyzing EEG signals from a clinical study of five 
children with T1DM, associated with hypoglycemia at night, we 
found that under hypoglycemia conditions, some EEG 
parameters changed significantly. Based on these results, we 
proposed a method of detecting hypoglycemic episodes using 
EEG signals, including a feed-forward multi-layer neural 
network algorithm for classifying. The classification results are 
72% sensitivity and 55% specificity when using the signals 
from 2 electrodes C3 and O2. We also used signals from 
different channels to see the contribution of each to 
performance of classifying. The results of the study show the 
potentiality of our method and will be improved and developed 
in the near future.   

I. INTRODUCTION 

CORRDING  to the Diabetes Control and Complications 
Trial Research Group [1], intensive insulin therapy is 

an effective treatment for Type 1 diabetes mellitus (T1DM) 
patients which can significantly delay the appearance as well 
as reduce the risk of acute diabetic complications like 
retinopathy, nephropathy and neuropathy. However, it also 
increases threefold the incidence of hypoglycemia among 
T1DM patients over conventional therapy. Hypoglycemia 
which is the medical term of the state of low blood glucose 
level (BGL) is the most dangerous complication for 
individuals with T1DM and an important barrier which 
limits the application of glycemic control therapies for 
diabetes patients.  

Hypoglycemia can produce a variety of symptoms, from 
mild to severe episodes [2, 3]. Mild hypoglycemia causes 
sweating, nervousness, heart plumping, confusion, anxiety, 
etc. It can be fixed by eating or drinking glucose-rich food. 
If left untreated, hypoglycemia can become severe and lead 
to seizures, coma, and even death. Hypoglycemia reduces 
the quality of life for patients as well as carers by causing 
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chronic anxiety about future potential hypoglycemic 
episodes [4]. 

One of the most dangerous effects of hypoglycemia is 
hypoglycemia unawareness. This effect is caused because 
frequent episodes of hypoglycemia can cause to changes in 
the response of patients’ bodies. In unawareness situations, 
patients’ bodies do not release the hormone epinephrine 
which is the origin of early warnings signs for patients like 
sweating, hunger, anxiety [3, 5]. Because of no signs, 
patients normally cannot realize the occurrence of 
hypoglycemia until it becomes severe and could lead to fatal 
damage. Nocturnal hypoglycemia is especially fearful for 
T1DM patients as sleep can make the symptoms unclear. 
Because of its severity, a large number of studies have been 
conducted to develop a system that can detect hypoglycemic 
episodes and give an alarm in time for patients with T1DM.        

Currently there are some devices using different 
techniques to detect hypoglycemia available in the market. 
Some of them require gradually taking patients’ blood 
samples to determine the blood glucose level. This method 
can give relatively exact information about hypoglycemia 
state. However, taking blood is uncomfortable for patients 
and continuous monitoring is very inconvenient, especially 
during night. Obviously, non-invasive technique is the best 
solution for these disadvantages.  
    Recently, we have successfully developed an effective 
and sensitive system to monitor hypoglycemia non-
invasively using physiological parameters like heart rate, 
skin impedance and ECG parameters [6, 7]. However, 
although hypoglycemia can produce a large number of 
symptoms, like sweating or increased cardiac output, the 
principal problems arise from an inadequate supply of 
glucose, which is the primary metabolic fuel to the brain [5]. 
Since the electroencephalogram (EEG) signal is directly 
related to the metabolism of brain cells, hypoglycemia is 
believed to cause early changes in EEG that can be non-
invasively detected.  

Previous studies have attempted to find out EEG changes 
caused by hypoglycemia [8-10]. Nevertheless, most of them 
stopped at pointing out some spontaneous changes during 
hypoglycemic episodes as well as permanent changes after 
hypoglycemia without proposing a method of detecting 
hypoglycemia in real-time.  

The recent study developed a portable apparatus to record 
EEG and a methodology using digital signal processing and 
artificial neural network to detect hypoglycemia [11]. This 
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study led to the result of 49.2% accuracy, 76% sensitivity 
and 32.5% specificity when the neural network was trained 
and validated with different subject groups. In a recent 
study, EEG was used as the physiological parameters to 
detect hypoglycemia [12]. Although this study has produced 
a real-time system that can detect hypoglycemia, it used 
implanted electrodes to record EEG signals. Recently, we 
proposed a Bayesian neural network algorithm for the 
detection of hypoglycemia using EEG signals and surface 
EEG electrodes [13]. 

In this study, we aim to explore the effects of nocturnal 
hypoglycemia on different EEG parameters as well as the 
responses from different positions of the brain. We then 
propose a method including spectral analysis using Fast 
Fourier Transform (FFT) and classification using neural 
network to detect hypoglycemia from EEG signals. Section 
II provides an overview of the methodology used in our 
study. Results of the study will be mentioned in Section III. 
Section IV provides a conclusion for this study and gives 
some suggestions to improve the results in future studies.  

II. METHODS 

A. Study 

Five T1DM adolescents (between the ages of 12 and 18 
year old) volunteered for the overnight hypoglycemia study 
at the Princess Margaret Hospital for Children in Perth, 
Australia. During the study,  EEG signals were continuously 
recorded and stored using a Compumedics system with the 
sampling rate of 128 Hz. The EEG electrodes were 
positioned at O1, O2, C3 and C4 according to the 
international 10/20 system, referenced to Cz. We also placed 
2 electrodes at patient’s chin to acquire the electro-myogram 
(EMG) signal and 2 electrodes near patients’s eyes to 
measure the electro-oculogram (EOG) signal. The actual 
blood glucose levels (BGL) were routinely collected to be 
used as reference using Yellow Spring Instruments with the 
general sampling period of 5 minutes. Data were collected 
with the approval of the Women’s and Children’s Health 
Service, Department of Health, Government of Western 
Australia, and with informed consent.  

B. Feature extraction 

After finalizing the signal acquiring step, signal 
processing was carried out using EEGLAB [14]. In 
EEGLAB, EEG signals from patients were filtered using an 
IIR highpass filter with a cut-off frequency of 2 Hz to get rid 
of low frequency artifacts and a notch filter at 50Hz to 
remove power noise. The data after pre-processing which 
consist of two phases (normal and hypoglycemia) was 
segmented into 5-second epochs. A visual artifact rejection 
method was used to exclude epochs contaminated with 
artifacts. Segments containing significant artifacts were 
dicarded based on EMG and EOG signals. Finally, the non-
artifact signals were transformed into the frequency domain 
using Fast Fourier Transform (FFT). This transformation 
resulted in the power spectral density P(f) which then was 

subdivided into 3 frequency bands: theta (θ: 3.5-7.5Hz), 
alpha (α: 8-13 Hz) and beta (β: 13.5-30Hz).  

The final extracted feature set includes 6 parameters at 
each electrode position or channel.  The power level within 
each band at each channel is calculated using a numerical 
integration technique (the trapezoidal rule). The centroid 
frequency is defined as the center gravity of each frequency 
band which subdivides the area under the spectral curve into 
two identical parts.  

The Student’s t-test was then applied to every feature to 
estimate the differences between pre-hypoglycemic and 
hypoglycemic conditions. Probability values less than 0.05 
were considered to be significant. The statistically 
significant features will be used as inputs for the 
classification. Moreover, in our study, we also explored the 
differences between electrode positions to find out whether 
the responses to hypoglycemia of different channels are 
similar or not.   

C. Classification 

Artificial neural networks [15, 16] have been employed 
popularly in biomedical area as a powerful tool of 
classification and pattern recognition. It has been recognized 
that the use of neural networks is a very successful method 
in classifying complex situations in which neural networks 
can model non-linear relationships between inputs and 
outputs effectively.  

In this study, for classification purposes, we developed a 
neural network with the feed-forward multi-layer structure. 
This neural network was trained using the Levenberg-
Marquardt algorithm which is a popular and effective 
training algorithm for feed-forward neural network. It 
consists of one input layer which includes the features 
extracted from EEG signals, one hidden layer and one output 
layer. The output layer has one node which indicates the 
state of hypoglycemia or non-hypoglycemia. In our study, 
the BGL threshold for defining hypoglycemia state is set at 
3.3mmol/l. We used 30 data points from each patient for 
comparison and classification, corresponding to the 5-minute 
duration of each blood glucose assessment point. At each 
blood sampling point, a 30-second non-artifact signal 
fragment was used and divided into six 5-second epochs for 
the feature extraction. The overall data were grouped into a 
training set, a validation set and a test set. The final neural 
network was obtained from the training set with a stopping 
procedure determined by the validation set. The test set was 
then used to test the generalization of the derived neural 
network. 

III.  RESULTS 

The responses of five patients show significant changes 
during the hypoglycemia state against pre-hypoglycemia 
state. The actual BGL profiles used in the study are shown in 
Fig. 1.  
 
 



  

 
 
 
 
 
 
 
 
 

 
 

 
 

    Fig. 1.  Actual blood glucose level profiles in 5 T1DM children 
 

Statistical results at each channel are presented in Tables 
I-IV. Significant features are reported in bold. Because the 
power levels are very different between patients, an 
appropriate normalization strategy was used to reduce the 
variability of this feature and to enable group comparison. 
To do this, we normalize each patient’s power levels against 
their corresponding values at time zero. There are some 
slight changes in alpha power and theta power at channel O1 
and O2. The beta power levels at all channels except C3 do 
not change significantly between normal and hypoglycemia 
states. Because these responses are not consistent with all 
patients, possibly they are caused by the changes in sleep 
stages of patients during night. The study shows that the 
centroid alpha frequency is the most significant feature. 
Under hypoglycemic conditions, the centroid alpha 
frequency of 5 patients reduces significantly at all four 
channels (p ≤ 0.0001). The results also show an increase in 
centroid theta frequency at all channels (p = 0.026 at O2, 
0.007 at C3 and 0.006 at C4). There is no significant change 
in the centroid beta frequency across all four channels (p = 
0.037 at channel C3 and p > 0.05 at others). These results 
demonstrate that during the hypoglycemia onset, possibly 
there is a power shift to the border area between alpha band 
and theta band in the power spectra of EEG signals. This can 
be an important sign that will be explored more in future 
studies to find other features that can enhance the 
performance of our method. 

Based on these statistical results, we choose the most 
significant features to use as inputs of classification. The 
final set has 8 features including the centroid theta 
frequency, the centroid alpha frequency at each channel. A 
neural network is developed using these features as inputs. 

 
TABLE I 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL C3 

Feature Normal State Hypoglycemia State p-value 

Power θθθθ 1.5435 ±±±± 0.7411 1.4107 ±±±± 0.6309 p = 0.01 
Power α 0.8802 ± 0.3596 0.8510 ± 0.3147 p = 0.242 

Power β 0.7694 ±±±± 0.1965 0.8284 ± 0.4013 p = 0.011 
CF θ 5.2347 ±±±± 0.2304 5.2800 ± 0.2323 p = 0.007 
CF α 10.2910 ±±±± 0.3107 10.1531 ± 0.3415 p ≤ 0.0001 
CF β 19.8080 ±±±± 0.7664 19.9430 ±±±± 0.8253 p = 0.037 

 

 
TABLE II 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL C4 

Feature Normal State Hypoglycemia State p-value 

Power θ 1.3392 ± 0.7256 1.3177 ± 0.7793 p = 0.691 

Power α 1.1012 ± 0.4812 1.0982 ± 0.4117 p = 0.928 

Power β 0.8907 ± 0.2827 0.9305 ± 0.3601 p = 0.078 

CF θ 5.2318 ±±±± 0.2128 5.2757 ±±±± 0.2377 p = 0.006 
CF α 10.2688 ±±±± 0.3136 10.1619 ±±±± 0.3221 p ≤ 0.0001 
CF β 20.0541 ± 0.8664 20.1644 ± 0.8197 p=0.074 

 
TABLE III 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL O1 

Feature Normal State   Hypoglycemia State p-value 

Power θθθθ 1.6606 ±±±± 0.9692 1.5098 ±±±± 0.8384 p    = = = = 0.025 
Power α 0.7080 ±±±± 0.4129 0.7950 ±±±± 0.5205 p    = = = = 0.008 
Power β 0.7866 ± 0.3459 0.8348 ± 0.4015 p = 0.069 

CF θ 5.2586 ± 0.2260 5.2897± 0.2375 p = 0.095 

CF α 10.2369 ±±±± 0.3046 10.0835±±±± 0.3160 p ≤ ≤ ≤ ≤ 0.0001 
CF β 19.8029 ± 0.8032 19.8078± 0.7550 p = 0.932 

 
TABLE IV 

CHANGES UNDER HYPOGLYCEMIA CONDITION – CHANNEL O2 

Feature Normal State Hypoglycemia State p-value 

Power θθθθ 1.6249±±±± 0.9068 1.4449 ±±±± 0.7043 p = 0.003 
Power α 0.7717 ±±±± 0.3769 0.8838 ±±±± 0.4971 p ≤ 0.001 
Power β 0.7659 ± 0.3246 0.8081 ± 0.3617 p = 0.084 

CF θ 5.2592 ±±±± 0.2077 5.2948 ±±±± 0.2433 p = 0.026 
CF α 10.2110 ±±±± 0.2929 10.0883 ±±±± 0.3224 p ≤ 0.0001 
CF β 19.7804 ± 0.7880 19.7957 ± 0.6643 p = 0.779 

 
The overall data were grouped into a training set, a 

validation set and a test set, with ratio of 2:1:2 patients. The 
corresponding Receive Operating Characteristic (ROC) 
Curve for the combined training/validation dataset is shown 
in Fig. 2. Based on this ROC curve, the most suitable cut-off 
point is selected as the threshold to distinguish between the 
hypoglycemia and normal states. To make the comparison 
between cases easier, we choose the point that gives the 
result of 70% sensitivity for the training/validation set.  
After training, the test set is used to find the sensitivity and 
specificity of the neural network. All results are reported in 
Table V. The reported number of hidden nodes is selected as 
the one that gives best classification results.  

In this study, we also aim to find out how the responses of 
different channels contribute to the performance of 
classification. To do this, we develop different neural 
networks with inputs corresponding to data from only one 
EEG channel or from two EEG channels separately. For the 
consideration of the results from two EEG channels, we 
evaluate the results from various two channels at different 
sides and different areas of the brain (C3 and O2, C4 and 
O1).  

 

 



  

TABLE V 
CLASSIFICATION RESULTS  

Inputs 
Number of 

Hidden node 
ROC 
area 

Cut-off 
point 

Sensitivity 
(%) 

Specificity 
(%) 

O1,O2,C3,C4 8 0.72 -0.3537 70 55 

O1 10 0.64 -0.3370 74 49 

O2 7 0.69 -0.3494 70 51 

C3 7 0.66 -0.3343 78 37 

C4 8 0.61 -0.3422 75 36 

O2,C3 9 0.71 -0.3133 72 55 

O1,C4 9 0.68 -0.4072 71 47 

 
The classification using data from all four channels results 

in a sensitivity of 70% and specificity of 55% which indicate 
a potential ability of detecting hypoglycemia. With this 
result, it is proved that the centroid theta frequency and 
centroid alpha frequency are two important features in 
hypoglycemia detection. When using the features of one 
channel only, the classification results are very similar 
between O1 and O2 as well as C3 and C4. The results are 
better at O1 and O2 against those at C3 and C4. 
Hypoglycemia classifications using data from the two EEG 
channels with electrodes positioned at O2, C3 yield the best 
result with 72% sensitivity and 55% specificity. These 
results demonstrate that neural network algorithms can be 
developed to provide good detection of hypoglycemic 
episodes using only two EEG channels or even one EEG 
channel. With the final aim of developing a real-time EEG 
system to detect early detection of hypoglycemic episodes in 
patients with diabetes, reducing the number of features as 
well as electrodes is very important for effective real-time 
implementation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  ROC Plot 

IV.  CONCLUSION 

In this paper, we explored the changes of EEG parameters 
associated with hypoglycemia in T1DM patients. A neural 
network algorithm was developed to detect hypoglycemic 
episodes based on EEG signals. With classification resuls of 
72% sensitivity and 55% specificity derived from two 
channels C3 and O2, we have shown that hypoglycemia can 
be detected non-invasively and effectively using EEG 
signals. However, the overall accuracy including both 

sensitivity and specificity would need to be improved. To do 
this, a post-classification stage which involves some 
effective trending strategies could be developed. In the 
future, with the applications of more advanced 
computational intelligence algorithms, the results could be 
improved significantly.  
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