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Abstract—The rapid evolution of Brain-Computer Interfaces1

(BCIs) has significantly influenced the domain of human-computer2

interaction, with Steady-State Visual Evoked Potentials (SSVEP)3

emerging as a notably robust paradigm. This study explores4

advanced classification techniques leveraging interpretable fuzzy5

transfer learning (iFuzzyTL) to enhance the adaptability and6

performance of SSVEP-based systems. Recent efforts have7

strengthened to reduce calibration requirements through innova-8

tive transfer learning approaches, which refine cross-subject gener-9

alizability and minimize calibration through strategic application10

of domain adaptation and few-shot learning strategies. Pioneering11

developments in deep learning also offer promising enhancements,12

facilitating robust domain adaptation and significantly improving13

system responsiveness and accuracy in SSVEP classification. How-14

ever, these methods often require complex tuning and extensive15

data, limiting immediate applicability. iFuzzyTL introduces an16

adaptive framework that combines fuzzy logic principles with17

neural network architectures, focusing on efficient knowledge18

transfer and domain adaptation. iFuzzyTL refines input signal19

processing and classification in a human-interpretable format by20

integrating fuzzy inference systems and attention mechanisms.21

This approach bolsters the model’s precision and aligns with real-22

world operational demands by effectively managing the inherent23

variability and uncertainty of EEG data. The model’s efficacy is24

demonstrated across three datasets: 12JFPM (89.70% accuracy for25

1s with an information transfer rate (ITR) of 149.58), Benchmark26

(85.81% accuracy for 1s with an ITR of 213.99), and eldBETA27

(76.50% accuracy for 1s with an ITR of 94.63), achieving state-28

of-the-art results and setting new benchmarks for SSVEP BCI29

performance.30

Index Terms—Brain-computer interface, SSVEP, fuzzy logic,31

transfer learning, attention mechanisms32

I. INTRODUCTION33

BRAIN-COMPUTER interfaces (BCIs) have become in-34

creasingly popular in human-computer interaction (HCI)35

due to their intuitive nature[1–4]. BCIs allow for direct36

extraction of user intentions from the brain, bypassing the37

peripheral nervous system and muscle tissue[5]. Among the38

various non-invasive EEG-based BCI paradigms, such as steady-39

state visual evoked potentials (SSVEP)[6, 7], P300[8], and40

motor imagery (MI)[9]. SSVEP is particularly noted for its high41

accuracy and robustness. In SSVEP BCIs, users focus on visual42

stimuli flickering at different frequencies, and their intent is43
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deciphered by identifying the frequency of the observed flicker.44

Remarkably, research in this field has advanced to where forty45

commands can be distinguished within just one second of EEG46

data[10].47

Fig. 1: The diagram of three classification scenarios. (A) intra-
subject classification; (B) inter-subject few-shot classification;
(C) inter-subject zero-shot classification.

Classification methods for SSVEP are broadly categorized48

into unsupervised and supervised techniques. Canonical cor-49

relation analysis (CCA)[11] and Filter-bank CCA[12] are50

traditional unsupervised methods that determine the target51

frequency by measuring the correlation between EEG signals52

and predefined reference signals. Although effective, their53

performance lags behind supervised methods, particularly with54

shorter EEG segments[13] in the intra-subject classification55

task, as shown in Fig. 1(A). Consequently, supervised methods56

such as extended CCA (eCCA)[14], task-related component57

analysis (TRCA)[15], and complex-spectrum convolutional58

neural networks (CCNN)[16] have been developed, significantly59

outperforming unsupervised approaches. However, these high-60

performing supervised methods require extensive data collec-61

tion for model training or user-specific calibration, hindering62

their immediate usability[17, 18]. As a result, transfer learning63

has emerged as a key research area in SSVEP studies[19, 20].64

This approach leverages knowledge gained from the source65
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subjects to improve performance on new subjects [21], mini-66

mizing the need for extensive calibration typically required for67

personalized BCIs. Techniques such as domain adaptation are68

employed to modify models developed on one individual’s data69

for use with another’s, significantly enhancing cross-subject70

generalizability[22, 23]. In SSVEP, some transfer learning71

methods based on CCA using the spatial filter and templates72

to learn the knowledge from existing domains [13, 19]73

Additionally, fine-tuning deep learning models pre-trained on74

large datasets in a domain-specific manner can substantially75

reduce the discrepancy between training and implementation76

environments, offering a robust solution for SSVEP BCI77

applications[16, 24]. Hybrid strategies that combine classical78

signal processing with advanced machine learning techniques79

also play a crucial role [25–27]. These methods preprocess80

EEG signals to extract features more invariant across subjects81

before training classifiers, thereby balancing performance with82

computational efficiency essential for real-time applications.83

Recent advances have focused on reducing the need for84

calibration through few-shot learning approaches, as shown85

in Fig. 1(B). Pioneering work by Chi Man Wong et al.86

introduced a subject transfer-based CCA (stCCA), which87

utilizes cross-subject spatial filters and SSVEP templates to88

enhance transferability[28]. This method achieved an impres-89

sive information transfer rate of 198.18 ± 59.12 bits/min with90

minimal calibration trials for a 40-target task, Benchmark[10].91

Further, numerous modified CCA methods have been proposed92

to refine few-shot learning in SSVEP[29–32]. Alternatively,93

deep learning (DL) frameworks are renowned for their efficacy94

in utilizing previously acquired knowledge to address chal-95

lenges in transfer learning and domain adaptation, effectively96

managing uncertainties and enhancing predictive accuracy97

across related domains [21, 33]. In SSVEP, DL is also98

being explored for their potential in few-shot SSVEP transfer99

learning, such as convolutional neural network (CNN)[34, 35]100

or Transformer-based[24], although they still necessitate some101

degree of calibration.102

However, while few-shot learning approaches significantly103

reduce the reliance on extensive calibration, they do not104

eliminate it entirely. Consequently, the development of zero-105

shot learning scenarios for SSVEP is crucial, as illustrated106

in Fig. 1(C). Signal correlation analysis (CA) methods, such107

as CCA and TRCA, which leverage parameters solely from108

the source domain [20, 36, 37], demonstrate the capacity for109

zero-shot learning. While zero-shot CA methods generally110

underperform compared to their few-shot counterparts, DL-111

based transfer learning techniques, using architectures like long112

short-term memory (LSTM) and Transformers, have shown113

promising results in achieving higher accuracy[35, 38]. Despite114

these advancements, DL methods are often criticized for their115

lack of interpretability compared to the transparent calculations116

of CA methods[39]. Interpretability helps explain model117

failures and enhances system stability, therefore, developing118

an interpretable DL framework that elucidates the underlying119

mechanisms remains a critical challenge in the field.120

The Fuzzy Neural Network (FNN) [40–42] stands out as121

a potential framework that combines the robustness of neural122

networks with the clarity of fuzzy logic systems. FNNs utilize123

fuzzy rules and membership functions to process inputs, thereby124

maintaining a logical structure that is both transparent and125

intuitive. This method contrasts sharply with more opaque126

models, clearly visualizing how inputs are transformed into127

outputs through human-understandable rules, thus helping128

user optimize the BCI system. Drawing on the principles of129

fuzzy logic [43], particularly the Takagi–Sugeno–Kang (TSK)130

inference systems [44], our work introduces the interpretable131

fuzzy transfer learning (iFuzzyTL) model—a novel Fuzzy132

Inference Systems (FISs) based on fuzzy set theory [44],133

tailored for the SSVEP task.134

FISs have been further developed into a neural network135

architecture known as FNN, which can be trained using gradient136

descent optimization, providing good interpretability. A recent137

study, KAN [45], highlights that learning dimension-specific138

activation functions introduces ”internal degrees of freedom,” a139

concept naturally realized in the TSK model through centroid140

and width parameters, distinguishing it from linear-based141

models like Transformers and CNNs. One study demonstrates142

that introducing a Fuzzy Attention Layer significantly enhances143

the network’s approximation capabilities by leveraging internal144

degrees of freedom [46]. Inspired by these findings, our145

model is derived from these fuzzy systems studies. It is146

designed to learn robust knowledge by exploiting extensive147

evidence and enables significant adaptation in environments148

characterized by limited data availability, and handle uncertainty149

and variability[47]. Furthermore, fuzzy rule-based transfer150

learning models, including ours, have demonstrated remarkable151

capabilities in addressing the challenges posed by small152

source datasets in transfer learning scenarios, ensuring reliable153

performance even when existing data resources are sparse [48–154

52], especially the application in brain signal processing [53–155

56], and EEG-based BCI system [57].156

In addressing the challenges of domain adaptation, iFuzzyTL157

modifies the source domain model’s input and/or output spaces158

through spatial transformations. This ensures that the fuzzy159

rules align more precisely with the target data, enhancing160

the model’s robustness even with minimal available data.161

Furthermore, the capacity of fuzzy logic to cluster data162

and facilitate the separation of classes during the domain163

transfer process has been proved by unsupervised transfer164

learning models [49, 58, 59]. Following the idea of clustering,165

iFuzzyTL calculates the membership degree based on the166

distance between input features and the centroid of fuzzy167

sets. Each centroid represents a prototype characteristic of168

its cluster, and the distances are measured using a suitable169

metric, typically Euclidean[60]. The closer an input feature is170

to a fuzzy centroid, the higher its membership grade is to that171

centroid. The membership grade determines the firing strength172

of the fuzzy rules associated with the corresponding center,173

with the rule strength computed using a fuzzy operation (e.g.,174

sum, product, min, or max) applied to the input membership175

grades. This approach enables the system to process inputs176

that exhibit varying degrees of similarity to known categories,177

and the nonlinearity provided by the Gaussian membership178

functions makes the approximation of real-world data more179

robust [61], thereby accommodating real-world data’s inherent180

uncertainty and fuzziness. As a result, iFuzzyTL provides181
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a robust, human-interpretable, and adaptable framework for182

applications requiring nuanced decision-making processes.183

To further refine the model’s capabilities, the dual-filter184

structure, which includes both spatial and temporal filters as185

applied by EEGNET [62], demonstrates significant enhance-186

ments in processing EEG data. iFuzzyTL incorporates Fuzzy187

Attention Layers [46] as spatial and temporal filters to capture188

and generalize the central fuzzy rules within the network.189

This architecture effectively learns the domain knowledge of190

both spatial and temporal dependencies in the brain signals,191

enabling more accurate and robust feature extraction and192

domain adaptation, especially in transfer learning scenarios.193

These filters in iFuzzyTL integrate fuzzy set theory with neural194

network architectures to model SSVEP signal sequences as195

fuzzy sets. This approach parallels the mechanism of vanilla196

dot-product self-attention [63–65], enhancing the robustness197

and flexibility of the model in neurophysiological applications.198

By melding fuzzy logic with advanced attention mechanisms,199

iFuzzyTL facilitates efficient knowledge transfer across varying200

domains and sets a new benchmark in the field of computational201

intelligence-based transfer learning, especially for tasks involv-202

ing complex signal patterns like SSVEP. Our model achieves the203

highest ITR and accuracy in three datasets as zero-shot learning,204

12JFPM(89.70% for 1s with ITR=149.58), Benchmark(85.81%205

for 1s with ITR=213.99), and eldBETA(76.50% for 1s with206

ITR=94.63), and is the State Of The Art (SOTA) model in207

the SSVEP transfer learning issue. We also demonstrate how208

the iFuzzyTL model enhances interpretability by revealing209

the temporal dynamics of firing strength and its harmonic210

relationships with target frequencies in the SSVEP task.211

The contributions of this study are outlined as follows:212

1) Development of iFuzzyTL: We introduce a novel213

fuzzy logic-based attention mechanism called iFuzzyTL,214

designed to enhance transferability in SSVEP BCI tasks.215

This development significantly reduces the need for user-216

specific calibration, facilitating a more efficient "plug-217

and-play" experience in BCI systems.218

2) Enhancement of Interpretability: Our approach im-219

proves the interpretability of BCI systems by integrating220

fuzzy logic with neural networks. We utilize a human-221

understandable center for clustering and learning, which222

allows for clearer insights and better design of the223

mechanisms driving BCI technology.224

3) Advancements in Practical Usability: The study show-225

cases the model’s enhanced capability to adapt to new226

subjects without the need for retraining or recalibration,227

markedly boosting its practical usability and reliability228

in various real-world settings.229

II. METHODS AND MATERIALS230

A. Explanation of SSVEP Principles and Stimulus Frequency231

Modulation232

The principle behind SSVEP can be understood as a response233

of the sensory cortex to visual stimuli presented at specific234

frequencies, such as flicker [66] or other reversal patterns [67].235

This interaction results in an oscillatory brain response at both236

the stimulus frequency fs and its harmonic frequencies kfs237

(where k is a positive integer) [68].238

The most commonly used stimulus is flicker, whose chromi-239

nance value can be modulated sinusoidally to achieve a fixed240

frequency change:241

C(t) =

255255
255

×
(
1 + sin(2πfst+ ϕ)

2

)
(1)

Here, C(t) represents the chrominance value at time t, fs is242

the frequency of the visual stimuli which can also be defined243

as y in the prediction task, ϕ is the phase shift, and n denotes244

the number of target frequencies corresponding to n stimuli.245

By decoding the EEG frequency response of the subject, one246

can infer the target fk that the subject is focusing on, thereby247

revealing their intentions.248

By watching the flicker and recording the EEG signal from249

the occipital cortex, the ideal recorded brain response x(t) can250

be expressed as [69]:251

x(t) =

n∑
k=1

Ak sin(2πkfst+ θk) (2)

where Ak is the amplitude of the response at each harmonic252

k and θk represents the phase associated with each harmonic253

frequency. This formulation highlights how the brain responds254

to the specific frequencies of visual stimuli, allowing for255

effective communication of the subject’s focus.256

B. Task Definition and Data Structure257

We explore the domain of SSVEP tasks, incorporating data258

from N subjects to employ transfer learning techniques. The259

objective is to pretrain a model that adapts to new subjects under260

a zero-shot learning framework. Let S = {S1,S2, . . . ,SN}261

represent the source domains, with each Sn comprising pairs262

{(xi
Sn

, yiSn
) | xi

Sn
∈ Xn, y

i
Sn

∈ Y }mn
i=1. The target domain T ,263

which consists of unlabeled samples {xj
T ∈ XT }mT

j=1, aims to264

adapt using the learned knowledge from S to predict labels265

{yjT ∈ Y }mT
j=1 effectively, achieving zero-shot learning.266

C. The proposed iFuzzyTL267

1) Fuzzy Inference Systems and Their Attention Mechanisms:268

FISs play a crucial role in modeling uncertainty and imprecision269

in numerous fields, providing a sophisticated framework to270

manage complex and ambiguous data sets [70–73]. At the core271

of these systems lie the concepts of fuzzy sets and membership272

functions, where the degree of membership µA(x) quantifies273

how closely an element x conforms to a fuzzy set A. The TSK274

model is a prevalent form of FIS [44], characterized by its275

use of IF-THEN rules to articulate the relationships between276

inputs and outputs. Specifically, a Zeroth order TSK system277

utilizes the following rule structure:278

If x1 is A1,r and . . . and xD is AD,r, (3)
279

then y = ur, r = 1, . . . , R, (4)
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Fig. 2: Illustration of the architecture for predicting target frequencies in an SSVEP task using the proposed iFuzzyTL model.
(A) Main structure of the iFuzzyTL model, where B represents the batch size, D denotes the number of feature dimensions,
and T indicates the number of time points. (B) Design of the spatial and temporal fuzzy filters, where Rs and Rt denote the
total number of rules for the spatial and temporal fuzzy filters, respectively. (C) Detected center using the spatial fuzzy filter.
(D) Firing strength of a demonstration sample to show the learned neural pattern as identified by the spatial fuzzy filter. (E)
Detected center using the temporal fuzzy filter. (F) Firing strength of a demonstration sample to show the learned neural pattern
as identified by the temporal fuzzy filter.

where xi denotes the input variables, D represents the number280

of feature dimensions, R denotes the total number of rules, ur281

is the consequent of the rth rule, and Ai,r are the fuzzy sets282

corresponding to the rth rule for ith sample. Each fuzzy set283

Ai,r is defined by the membership functions Ai,r(xi), where284

i ranges from 1 to D.285

The firing strength αr for rule r, which quantifies the degree286

to which the rule’s conditions are satisfied and directly influence287

the rule’s impact on the model’s output, is computed as the288

product of the membership values for all input variables:289

αr(x) =

D∏
i=1

Ai,r(xi), (5)

To facilitate a probabilistic interpretation of the outputs, the290

TSK FIS normalizes the firing strength αr as fr, treating the291

normalized values as a probability distribution:292

fr(x) =
αr(x)∑R
i=1 αi(x)

(6)

where R is the number of rules.293

The aggregated output y of the TSK FIS is then computed294

using a weighted average of the rule outputs:295

y =

R∑
j=1

αj(x)uj∑R
i=1 αi(x)

, (7)

In our study, Gaussian membership functions were chosen296

following the neuroscience study [46], due to the ability297

to accurately represent the normally distributed nature of298

biological and neural data observed in neuroscience:299

αr(x) =

D∏
d=1

exp

(
− (xd −mr,d)

2

2σ2
r,d

)
(8)

= exp

(
−

D∑
d=1

(xd −mr,d)
2

2σ2
r,d

)
(9)

Here, r indexes the fuzzy rules, mr,d and σr,d denote the300

centers and widths of the Gaussian fuzzy sets for the feature301

dimension d of each rule r, respectively. Both parameters mr,d302

and σr,d are learnable and are optimized during training.303

The normalized firing strength fr(x) can be then simplified304

to:305

fr(x) =
αr(x)∑R
i=1 αi(x)

=
exp

(
−
∑D

d=1
(xd−mr,d)

2

2σ2
r,d

)
∑R

i=1 exp
(
−
∑D

d=1
(xd−mi,d)2

2σ2
i,d

)
= softmax

(
−

D∑
d=1

(xd −mr,d)
2

2σ2
r,d

)
(10)
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Incorporated within this framework is an attention mecha-306

nism that enhances the interpretability and effectiveness of the307

FIS [46]. This mechanism is formally defined by the following308

equation:309

Attention(x) = softmax(f(x)) · g(x), (11)

where f(x) denotes the mapping from inputs to attention310

scores within the TSK FIS, specifically corresponding to the311

normalized firing strength fr(x). The function g(x) represents312

the transformation applied to the inputs, which modulates the313

influence of each input based on the computed attention scores.314

Here, g(x) effectively utilizes the consequents ur associated315

with each rule, thereby influencing the output based on the316

degree of relevance as determined by the attention mechanism.317

2) Fuzzy Attention Layer as an Adaptive Spatial Filter in318

Signal Processing: Consider an input signal x(t) processed319

through an adaptive filter. The output Y (t) at time t is modeled320

as an adaptive linear combiner (ALC):321

Y (t) = WS
T · x(t) (12)

where x(t) denotes the input feature vector at time t, and WS322

represents the adaptive weights for all channels as a spatial323

filter.324

By incorporating this fuzzy attention mechanism, we assign325

the adaptive weights as WS
T = fr(x(t)), following the eq. (7)326

for each rule r and the filter’s output YS(t) becomes:327

YS(t) =

R∑
r=1

fr(W
Q
r x(t)) ·WV

r x(t) (13)

where the projections are parameter matrices WV
r and WQ

r328

for rule r. This formulation enables the filter to adaptively329

modulate the importance of different features of x(t) based330

on their alignment with the fuzzy rule centers. The fuzzy331

attention mechanism dynamically adjusts the attention weights332

in response to the proximity of the input features to the fuzzy set333

centers, effectively allowing the filter to highlight or suppress334

certain signal features according to their fuzzy membership335

values.336

3) Fuzzy Attention as an Adaptive Temporal Filter: Here,337

fuzzy attention also functions as a temporal filter. The output338

Y for each channel c is given by:339

Y (c) = WT
Tx(c) (14)

where x(c) represents the input feature matrix for channel c,340

and WT is the adaptive weight vector. This vector modulates341

the attention mechanism in the time domain, corresponding to342

each channel c.343

Thus, the temporal filter’s output becomes:344

YT (c) =

R∑
r=1

fr(W
Q
r x(c)) ·WV

r x(c) (15)

where the projections are parameter matrices WV
r and345

WQ
r corresponding to rule r. This configuration allows the346

Fuzzy Attention Layer to adaptively weigh time points based347

on their proximity to the fuzzy rule centers. This enhances348

the filter’s ability to selectively focus on the most relevant349

temporal features for each channel c, thus improving the350

signal’s interpretability and the overall accuracy of the analysis.351

4) Input Recovery in Single-Layer Linear Networks: This352

section demonstrates that the original input of a single-353

layer linear transformation, referred to as a projector, can be354

reconstructed from its output, termed the query. This recovery355

is contingent on the condition that the transformation matrix356

W is non-singular. The invertibility of W thus ensures the357

feasibility of interpretability within the iFuzzyTL framework.358

Consider the linear transformation defined by:359

y = Wx+ b (16)

where y represents the output query, x the original input, W360

the transformation matrix, and b the bias vector.361

To retrieve x from y, rearrange the above equation to:362

Wx = y − b (17)

Given W is non-singular, the inversion of W is feasible,363

allowing for the calculation of x by:364

x = W−1(y − b) (18)

This illustrates that the original input x is retrievable directly365

from the output y when W is invertible.366

For scenarios where W is singular or not a square matrix,367

the recovery of x employs the Moore-Penrose pseudoinverse368

W+:369

x = W+(y − b) (19)

The computation of W+ utilizes the Singular Value Decom-370

position (SVD) of W :371

W = UΣV T (20)

where U and V are orthogonal matrices, and Σ contains the372

singular values.373

The pseudoinverse W+ is then:374

W+ = V Σ+UT (21)

with Σ+ derived by inverting the non-zero singular values of375

Σ and taking the transpose.376

This approach guarantees that if the dimensions of the input377

data and the output query match, the reconstructed input will378

correspond to the original input.379

In conclusion, under the condition that W is either invertible380

or suitably approximated via its pseudoinverse, the reversibility381

of the input from the output in a single-layer linear model is382

effectively demonstrated.383

5) Fuzzy Attention for SSVEP Transfer Learning: Our384

proposed model, iFuzzyTL, integrates three key components385

tailored for SSVEP signal processing: the spatial fuzzy filter,386

the temporal fuzzy filter, and the classification head. Both fuzzy387

filters follow the design as the adaptive filers in eqs. (13) and388

(15).389

The model architecture is depicted in Fig. 2(A). The390

spatial fuzzy filter initially processes the data, considering391

channel-like centers (Rs, C), followed by a transpose operation.392

Subsequently, the temporal fuzzy filter applies, which adapts393

to signal-like centers (Rt, S), where Rs and Rt denote the394
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total number of rules for the spatial and temporal fuzzy filters,395

respectively. This dual filtering strategy enables the model to396

encode both spatial and temporal dimensions of the SSVEP397

signals effectively. The structure of the spatial and temporal398

fuzzy filters are shown in Fig. 2(B).399

The classification head consists of a 2-layer Multi-Layer400

Perceptron (MLP) model with ReLU (Rectified Linear Unit)401

activation and a dropout rate of 0.3 during training. The number402

of output nodes in the classification head corresponds to the403

number of labels.404

The primary goal is to classify the SSVEP target frequencies405

accurately. We employ a multiclass cross-entropy loss function406

for this purpose, defined as:407

loss(yo,c, po,c) = −
M∑
c=1

yo,c log(po,c) (22)

Where yo,c denotes the true label, po,c represents the408

predicted probability for class c, and M is the total number409

of classes or target frequencies in the classification schema.410

This loss function quantifies the discrepancy between predicted411

probabilities and the actual class labels, facilitating practical412

model training to recognize SSVEP frequencies.413

D. Evaluation Metrics414

To evaluate the performance of each method, we used two415

primary metrics: classification accuracy and ITR. Classification416

accuracy is defined as the ratio of correctly classified samples417

to the total number of test samples.418

The ITR, measured in bits per minute (bits/min), quantifies419

the speed and accuracy of a brain-computer interface and is420

computed as follows [74]:421

ITR =
60

T + Trun
[log2N+P log2P+(1−P )log2

1−P

N−1
] (23)

where T is the average time required for each selection422

operation, Trun is the running time, N represents the number of423

possible classes, and P is the classification accuracy. Following424

previous studies [15, 69], an additional 0.5 s was included in425

T to account for gaze shift time. For example, if the data426

length is 1 s, T is set to 1.5 s for the ITR calculation using427

the formula above.428

In this study, we focused on zero-shot inter-subject classi-429

fication experiments. We employed the leave-one-out cross-430

validation method, where the data from one subject was used431

as the test set while the data from all other subjects formed the432

training set, as shown in Fig. 1(C) and 2(A). This process was433

repeated until each subject had been used as the test subject434

once, ensuring a complete evaluation.435

The baseline model and dataset description are in Supple-436

mentary Sections 1.1 and 1.2, respectively.437

III. RESULTS438

The average classification accuracies and ITR of the seven439

methods on the 12JFPM dataset are presented in Table I and440

Supplementary Table I, respectively. Data lengths range from441

0.5 s to 1.2 s in 0.1 s intervals, with additional lengths of 1.5 s442

and 2 s included to evaluate model performance over extended443

durations. The results indicate that iFuzzyTL consistently444

outperforms other baseline methods, achieving the highest445

average classification accuracies and ITR for data lengths446

under 1.1 s. However, for lengths of 1.2s, 1.5 s and 2 s, FB-447

SSVEPformer demonstrated superior performance compared448

to iFuzzyTL.449

For classification accuracies, a two-way repeated measures450

ANOVA (rm-ANOVA) revealed significant main effects of451

data length (F (9, 81) = 244.49, p < 0.001) and method452

(F (7, 63) = 7.17, p < 0.001), as well as a significant inter-453

action effect between them (F (63, 567) = 15.39, p < 0.001).454

Paired t-tests were conducted at each data length to compare455

iFuzzyTL with baseline methods, with statistical results sum-456

marized in Table I. iFuzzyTL showed significant improvements457

over all methods for data lengths ranging from 0.5 s to 1.1 s.458

when the data lengths are longer than 1.2 s, the accuracy of459

FB-SSVEPformer is higher than that of iFuzzyTL (p > 0.05).460

Regarding ITR, the rm-ANOVA also indicated significant461

main effects of data length (F (9, 81) = 13.86, p < 0.001)462

and method (F (63) = 7.01, p < 0.001), along with a463

significant interaction effect between them (F (63, 567) = 6.76,464

p < 0.001). The detailed statistical results by paired t-tests are465

presented in Supplementary Table I. The results revealed that466

iFuzzyTL outperformed all baseline methods.467

The average classification accuracies and ITR for the468

seven methods on the eldBETA dataset are shown in Table469

II and Supplementary Table II, respectively. Data lengths470

span from 0.5 s to 1.2 s in 0.1 s intervals, with additional471

evaluations at 1.5 s and 2 s. The two-way rm-ANOVA for472

classification accuracies revealed significant main effects of473

data length (F (9, 891) = 530.76, p < 0.001) and method474

(F (7, 693) = 29.28, p < 0.001), with a significant interaction475

effect (F (63, 6237) = 18.32, p < 0.001). Paired t-tests further476

indicated significant differences between iFuzzyTL and other477

methods, except some data lengths of CCNN. SSVEPformer,478

and FB-SSVEPformer. Particularly, iFuzzyTL significantly479

outperformed CCNN at 0.5 s, 0.7 s, 1.1 s, 1.5 s, and 2.0480

s (p < 0.05) and FB-SSVEPformer at 0.7 s (p < 0.05). For481

ITR, significant main effects of data length (F (9, 891) = 72.93,482

p < 0.001) and method (F (7, 693) = 31.71, p < 0.001), as483

well as a significant interaction effect (F (63, 6237) = 29.80,484

p < 0.001) were found. The detailed statistical results by paired485

t-tests are presented in Supplementary Table II. the ITR of486

iFuzzyTL is higher than others at 1.5 s and 2.0 s (p < 0.05).487

The average classification accuracies and ITR on the Bench-488

mark dataset are reported in Table ?? and Supplementary489

Table III, respectively. Data lengths range from 0.5 s to490

1.2 s, with additional evaluations at 1.5 s and 2 s. For491

classification accuracies, the two-way rm-ANOVA showed492

significant main effects of data length (F (9, 306) = 550.93,493

p < 0.001) and method (F (238) = 16.55, p < 0.001),494

and a significant interaction effect (F (63, 2142) = 20.29,495

p < 0.001). Paired t-tests indicated significant differences496

between iFuzzyTL and TRCA, eCCA, EEGNET, SCCA_qr497

(p < 0.001). As for CCNN, the accuracy of iFuzzyTL is498

higher at the data length longer than 0.8s (p < 0.05). There499

is no significant difference among iFuzzyTL, SSVEPformer,500
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and FB-SSVEPformer (p > 0.05) of accuracy. Regarding ITR,501

significant main effects of data length (F (9, 306) = 46.20,502

p < 0.001) and method (F (7, 238) = 25.60, p < 0.001), as503

well as a significant interaction effect (F (63, 2142) = 22.81,504

p < 0.001), were observed. Paired t-tests indicated significant505

differences between iFuzzyTL and TRCA, eCCA, EEGNET,506

SCCA_qr (p < 0.001). the ITR of iFuzzyTL is higher507

than CCNN (p < 0.05) except at 0.6 s, 0.7 s, and 0.8 s508

(p > 0.05). There is no significant difference among iFuzzyTL,509

SSVEPformer, and FB-SSVEPformer (p > 0.05) of ITR.510

Our method exhibited a gradual decline in performance511

across three datasets as the input length decreased. From a512

signal processing perspective, shorter window lengths result513

in a reduced number of periodic components, leading to514

inadequate frequency resolution that affect the recognition515

of target frequencies [75, 76]. For model training, the limited516

frequency information contained in shorter data sequences517

results in a diminished quality of the training dataset. During518

the training process, the model may rely on features which are519

unrelated to SSVEP, resulting in overfitting and a subsequent520

decrease in validation set accuracy.521

IV. REAL-TIME FEASIBILITY EVALUATION522

To evaluate the feasibility of the proposed model in real-523

world applications, we conducted an online experiment con-524

sisting of a data collection session and an online test session.525

The descriptions of Experiment Design, Participants and Data526

Acquisition, Procedure for Training Data Collection, and Data527

Preprocessing are presented in Supplementary Material Section528

II.529

During the online testing phase, we adopted a ’leave-one-out’530

cross-validation strategy for evaluation. Specifically, the model531

was trained using data from five out of six trained subjects,532

with the remaining subject’s data reserved for testing. This533

pre-trained model was then incorporated into our online BCI534

system.535

Each online trial commenced with the presentation of a cue,536

directing the subject to focus on a designated flashing flicker.537

The onset of the flicker was marked by a ’start’ signal sent to the538

system terminal via UDP, initiating the recording of task-related539

EEG data. Upon completion of the flicker sequence, lasting540

1.5 seconds, an ’end’ marker was transmitted, signaling the541

cessation of data recording and the start of data segmentation.542

Considering that spontaneous EEG signals in the initial phase543

may introduce noise and variability [69], our model utilized544

EEG data from the 0.5 to 1.5 second interval for input.545

Each subject participated in three rounds of the experiment,546

yielding a total of 36 trials per subject. The performance547

evaluation of our model was based on the accuracy and548

ITR recorded during these 1-second real-time experiments.549

Additionally, any trials experiencing dropped frames in the550

AR interface were excluded from the analysis to maintain the551

integrity and consistency of the dataset.552

The results demonstrated a high level of effectiveness, with553

an average accuracy of 90.13% ± 2.27%, and an ITR of554

164.93± 9.11 bits/min. After this, the baseline performances555

are tested based on the recorded data. Notably, the accuracy556

achieved by our model significantly surpassed that of TRCA,557

EEGNet, SCCA_qr, and SSVEPformer (p < 0.05), as shown558

in Fig. 4.559

V. DISCUSSION560

In the iFuzzyTL framework, the center plays a key role by561

encapsulating domain knowledge derived from source domains.562

It acts as a general template, effectively capturing the essence563

of the source domain characteristics. By computing the distance564

between this learned center and incoming data points, the model565

robustly leverages the underlying domain knowledge to make566

informed decisions. This mechanism facilitates robust decision-567

making and significantly enhances the model’s transferability568

across different SSVEP tasks. Incorporating the center as a569

template proves advantageous for SSVEP applications, where570

the ability to generalize across varying conditions and subjects571

is crucial. Consequently, iFuzzyTL offers an improved approach572

to handling the inherent variability in SSVEP signals, ensuring573

higher performance and reliability in real-world scenarios.574

A. Sample-wised Interpretability Analysis575

1) Demo Analysis of SSVEP Target Frequency Identification576

Using iFuzzyTL Model: To provide an intuitive understanding577

of how the iFuzzyTL model identifies the SSVEP target578

frequency, we present a demo sample from the best-performing579

subject (S8) in the 12JFPM dataset, with a target frequency of580

9.25 Hz, as shown in Fig. 2(A). Fig. 2(C) illustrates that the581

spatial fuzzy filter’s center pattern resembles the EEG signal,582

with distinct phases for each rule. In Fig. 2(D), the border firing583

strength indicates that the contributions of rules #4 and #5 for584

this sample are minimal, while channels 1 and 2 contribute585

significantly to rule #6.586

After applying the spatial filter, Fig. 2(E) demonstrates the587

center of the temporal fuzzy filter for subject S8, displaying the588

neural patterns captured across 10 separate rules. Particularly,589

rule #2 shows a high contribution in most channels, whereas590

rules #1 and #5 exhibit the lowest contribution. Additionally,591

Fig. 2(F) reveals that the firing strength in the temporal fuzzy592

filter indicates a stable pattern for rules #4-8 and #10 in this593

sample.594

2) Analysis of Temporal Firing Strength Features in the595

Frequency Domain: To further investigate how the fuzzy rules596

learns features in the time domain, we compute the FFT of597

the input feature that triggered the fuzzy rules in the proposed598

temporal filter. The results indicate that the firing strength599

exhibits peaks at harmonic frequencies in correct case, as600

demonstrated in Fig. 5.601

In the left panel, corresponding to a target frequency of602

9.25 Hz, a prominent peak is observed at 28 Hz. This shift is603

attributed to the relatively low sample rate, which causes the604

harmonic frequencies in the FFT to exhibit slight displacements.605

The middle panel illustrates a target frequency of 10.25 Hz, with606

peaks observed at both 10.5 Hz and 41.5 Hz. In contrast, the607

right panel presents a less favorable case with a target frequency608

of 13.25 Hz, where peaks near 27 Hz are detected across several609

rules, indicating that not all rules accurately capture the target610

frequency, although some rules remain effective.611
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TABLE I: Average accuracies (%) across subjects for six methods at different data lengths on Dataset 12JFPM. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (*p < 0.05, **p < 0.01,
***p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s 1.1s 1.2s 1.5s 2.0s

TRCA 18.33% (6.32%) *** 22.94% (9.16%) *** 30.89% (12.52%) *** 36.61% (15.98%) *** 45.67% (18.27%) *** 52.94% (22.06%) *** 57.61% (22.83%) *** 62.11% (24.00%) *** 74.39% (23.63%) ** 84.39% (19.72%) *
eCCA 54.94% (21.86%) * 61.11% (25.97%) * 64.39% (27.22%) ** 67.78% (28.34%) * 73.11% (27.47%) * 75.56% (26.35%) * 77.44% (26.92%) * 79.78% (24.80%) * 85.28% (21.88%) 88.06% (20.34%)
CCNN 64.61% (22.29%) 66.56% (23.43%) *** 72.33% (23.23%) * 77.36% (15.20%) *** 82.50% (18.60%) 84.00% (18.09%) 86.11% (14.72%) *** 88.83% (13.54%) 92.39% (10.46%) 95.44% (7.86%)

EEGNET 50.11% (17.58%) ** 56.00% (23.12%) ** 62.94% (21.36%) *** 66.44% (23.31%) *** 70.28% (23.60%) ** 75.11% (22.46%) ** 77.61% (21.88%) * 79.72% (22.35%) * 87.28% (15.46%) 90.44% (13.17%)
SCCA_qr 54.83% (21.93%) * 61.44% (24.54%) * 66.89% (26.25%) ** 72.39% (27.99%) * 76.44% (27.26%) * 78.83% (25.84%) * 81.72% (25.07%) 84.17% (22.66%) 88.78% (16.72%) 93.44% (12.85%)

SSVEPformer 66.22% (22.40%) 68.67% (22.12%) 75.22% (21.91%) 78.67% (21.58%) 82.11% (19.61%) 84.06% (18.17%) 86.06% (16.79%) 88.56% (14.32%) 92.61% (11.08%) 95.00% (8.36%)
FB-SSVEPformer 65.83% (22.98%) 72.39% (22.90%) 77.44% (21.49%) 82.17% (20.30%) 85.83% (18.87%) 87.61% (17.45%) 89.39% (15.99%) 91.28% (13.85%) 94.78% (9.82%) 96.00% (9.12%)

iFuzzyTL 67.92% (12.59%) 75.29% (15.28%) 81.91% (16.42%) 84.76% (15.36%) 88.64% (16.10%) 89.70% (14.89%) 90.22% (13.99%) 90.14% (13.88%) 91.97% (15.42%) 92.41% (14.26%)

Note: Entries in bold indicate the model with the best performance.

TABLE II: Average accuracies (%) across subjects for six methods at different data lengths on Dataset eldBETA. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (*p < 0.05, **p < 0.01,
***p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s 1.1s 1.2s 1.5s 2.0s

TRCA 42.05% (19.30%) *** 44.17% (20.15%) *** 45.75% (20.98%) *** 48.40% (21.45%) *** 51.14% (22.69%) *** 52.54% (23.20%) *** 55.17% (23.26%) *** 56.51% (23.68%) *** 60.48% (24.23%) *** 61.86% (24.63%) ***
eCCA 46.60% (19.35%) *** 51.16% (20.26%) *** 55.52% (21.57%) *** 58.73% (22.32%) *** 62.60% (22.47%) *** 65.54% (22.62%) *** 68.16% (22.32%) *** 70.54% (21.74%) *** 75.30% (20.66%) *** 80.14% (19.25%) ***
CCNN 62.29% (21.09%) ** 65.05% (21.14%) 68.63% (21.52%) *** 70.90% (21.52%) 73.05% (21.62%) 74.95% (21.04%) 76.30% (20.70%) ** 77.63% (20.47%) 81.14% (19.04%) ** 83.98% (17.97%) **

EEGNET 57.51% (21.14%) *** 59.46% (22.38%) *** 62.00% (23.06%) *** 64.37% (22.63%) *** 65.97% (23.22%) *** 67.25% (23.43%) *** 68.65% (23.20%) *** 69.24% (23.76%) *** 71.76% (23.29%) *** 74.13% (22.87%) ***
SCCA_qr 41.70% (19.48%) *** 49.22% (21.13%) *** 53.84% (22.04%) *** 57.92% (22.37%) *** 61.38% (22.69%) *** 64.75% (22.68%) *** 67.35% (22.56%) *** 69.30% (22.63%) *** 74.62% (21.52%) *** 81.00% (18.90%) ***

SSVEPformer 62.73% (23.12%) 65.71% (23.18%) 69.49% (22.72%) 71.25% (22.62%) 73.48% (22.60%) 75.41% (21.89%) 76.79% (21.08%) 77.84% (21.69%) 81.33% (19.85%) 83.97% (18.31%)
FB-SSVEPformer 61.14% (23.97%) 64.27% (23.75%) 67.13% (23.79%) * 69.89% (23.55%) 72.43% (23.07%) 73.97% (22.72%) 75.54% (22.21%) 76.98% (22.13%) 80.14% (20.94%) 83.30% (19.67%)

iFuzzyTL 66.48% (15.09%) 66.85% (15.46%) 74.02% (16.91%) 71.45% (17.40%) 74.00% (17.54%) 76.50% (17.19%) 80.17% (17.34%) 78.82% (18.05%) 84.16% (16.35%) 86.70% (15.67%)
Note: Entries in bold indicate the model with the best performance.

TABLE III: Average accuracies (%) across subjects for six methods at different data lengths on Dataset Benchmark. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (*p < 0.05, **p < 0.01,
***p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s 1.1s 1.2s 1.5s 2.0s

TRCA 42.05% (19.30%) *** 44.17% (20.15%) *** 45.75% (20.98%) *** 48.40% (21.45%) *** 51.14% (22.69%) *** 52.54% (23.20%) *** 55.17% (23.26%) *** 56.51% (23.68%) *** 60.48% (24.23%) *** 61.86% (24.63%) ***
eCCA 46.60% (19.35%) *** 51.16% (20.26%) *** 55.52% (21.57%) *** 58.73% (22.32%) *** 62.60% (22.47%) *** 65.54% (22.62%) *** 68.16% (22.32%) *** 70.54% (21.74%) *** 75.30% (20.66%) *** 80.14% (19.25%) ***
CCNN 62.29% (21.09%) ** 65.05% (21.14%) 68.63% (21.52%) *** 70.90% (21.52%) 73.05% (21.62%) 74.95% (21.04%) 76.30% (20.70%) ** 77.63% (20.47%) 81.14% (19.04%) ** 83.98% (17.97%) **

EEGNET 57.51% (21.14%) *** 59.46% (22.38%) *** 62.00% (23.06%) *** 64.37% (22.63%) *** 65.97% (23.22%) *** 67.25% (23.43%) *** 68.65% (23.20%) *** 69.24% (23.76%) *** 71.76% (23.29%) *** 74.13% (22.87%) ***
SCCA_qr 41.70% (19.48%) *** 49.22% (21.13%) *** 53.84% (22.04%) *** 57.92% (22.37%) *** 61.38% (22.69%) *** 64.75% (22.68%) *** 67.35% (22.56%) *** 69.30% (22.63%) *** 74.62% (21.52%) *** 81.00% (18.90%) ***

SSVEPformer 62.73% (23.12%) 65.71% (23.18%) 69.49% (22.72%) 71.25% (22.62%) 73.48% (22.60%) 75.41% (21.89%) 76.79% (21.08%) 77.84% (21.69%) 81.33% (19.85%) 83.97% (18.31%)
FB-SSVEPformer 61.14% (23.97%) 64.27% (23.75%) 67.13% (23.79%) * 69.89% (23.55%) 72.43% (23.07%) 73.97% (22.72%) 75.54% (22.21%) 76.98% (22.13%) 80.14% (20.94%) 83.30% (19.67%)

iFuzzyTL 66.48% (15.09%) 66.85% (15.46%) 74.02% (16.91%) 71.45% (17.40%) 74.00% (17.54%) 76.50% (17.19%) 80.17% (17.34%) 78.82% (18.05%) 84.16% (16.35%) 86.70% (15.67%)
Note: Entries in bold indicate the model with the best performance.

Fig. 3: Detailed illustration of a real-time SSVEP experiment setup. (A) Demonstration setup for the experiment. The EEG
channels are located in the occipital lobe. (B) Example of a filtered EEG signal used in the demo. (C) Min-max normalized
firing strength across the rules. (D) Averaged weight distribution among the rules (without normalization). (E) Data distribution
following the application of the spatial filter. (F) Fourier Transform results of the demo EEG signal.
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Fig. 4: Comparison of the model with other SOTA models
in the online experiment. The significant differences between
iFuzzyTL model and other models are highlighted by paired
t-tests (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

B. Deeper Analysis of Correct and Incorrect Cases612

For deeper understanding of correct and incorrect cases of613

iFuzzyTL model, we randomly select one sample from the614

same target frequency (11.75 Hz) from three subjects (S2, S6,615

and S8) who exhibited varying performance levels (input data616

length as 1s: S2: 55.12%, S6: 96.95%, S8: 99.17%; input data617

length as 2s: S2: 55.12%, S6: 100%, S8: 100%). Subject S8618

demonstrated the best performance among all subjects in the619

12JFPM dataset across all tested models, while subject S6620

performed better than subject S2 but worse than subject S8.621

Subject S2 showed the worst performance across all models.622

Then, we compare how the iFuzzyTL model processes the623

EEG signal in three different-quality subjects.624

As shown in Fig. 6(A), the data distribution after applying625

the spatial filter for subject S8 is highly clustered and distinct,626

whereas subject S6 shows a less distinct clustering pattern627

and subject S2 exhibits the weakest clustering. For subject628

S8, the fuzzy centers are mostly located within the clusters629

corresponding to each target frequency, whereas for subjects630

S6 and S2, the center alignment is less clear.631

In Fig. 6(C), The firing strength of the spatial fuzzy filter for632

the selected sample of subject S8 is more consistent across the633

rules, with Channels 6 and 7 significantly contributing to the634

decision-making process. As for subject S6, the contributions635

vary more across different rules, with Channels 7 and 8 being636

important overall, while Channels 2, 3, and 5 play key roles in637

specific rules (#4, #1&2, and #6&10, respectively). In contrast,638

the firing strength of subject S2 has an unclear pattern. Channels639

4-8 show major contributions across different rules.640

To better understand these differences, we refer to Fig. 6(B).641

It is well-known that FFT features are crucial for SSVEP.642

In subject S8, the signal quality across all channels in this643

sample is high, enabling the spatial filter to effectively select644

the optimal channels for adaptive filtering, thereby enhancing645

model prediction accuracy. As for subject S6, the channel646

quality is moderate, as evidenced by multiple peaks in the647

FFT, which include both target and harmonic frequencies.648

Consequently, the filter relies on information from more649

channels to achieve satisfactory results and eventually make650

correct predictions. Conversely, subject S2 exhibits poor overall651

channel quality, with detectable peaks in Channels 6, 7, 8, 9,652

and 10 in the FFT though the peak is not clear. However,653

Channels 1, 2, and 3 display multiple unclear frequency peaks.654

This causes the spatial filter to apply different rules when655

selecting these channels. Thus, distinctive rules are created in656

a fragmented manner, and incorrect predictions are made in657

subject S2.658

Similarly, in our real-time test, as shown in Figs. 3(B) (raw659

signal) and 3(F) (FFT result), the FFT peaks of Channels Pz660

and PO5 are prominent, and their contribution in Rule #4 is661

substantial. The data distribution for this scenario is also as662

clear as that of subject S8 in the 12JFPM dataset, as illustrated663

in Fig. 3(E). Particularly, during the application of the spatial664

filter, the fuzzy attention mechanism may not strictly filter665

channels. For example, as shown in Fig. 3(D), Rule #8 has the666

highest average weight, yet it selects Channels PO3, POz, and667

PO4, which are not strongly indicated by FFT. This discrepancy668

may be attributed to the limited diversity of the small training669

set.670

In summary, these findings suggest that iFuzzyTL can better671

learn the knowledge from the source domain and predict the672

result if the signal is clear; otherwise, iFuzzyTL can effectively673

select high-quality channels by the spatial filter through a674

combination of rules, thus enhancing the filtering of input675

signals, but may cause the incorrect predictions.676

C. Ablation Study677

The ablation study was meticulously designed to rigorously678

evaluate the influence of various parameters and modules of679

our proposed Fuzzy rule-based framework, iFuzzyTL, on its680

performance. This systematic examination helps uncover the681

contributions of individual components and configurations to682

the overall efficacy and operational dynamics of the model.683

All statistical comparisons were conducted using paired t-tests684

to assess the significance of differences.685

1) Filter Effect Analysis: In this study, we assessed the686

performance impact of various configurations and types of687

fuzzy filters on signal processing. The primary motivation was688

to elucidate the relative importance of spatial versus temporal689

filtering and to determine the influence of their application690

sequence on the quality of the resultant data. The significance691

test and result are shown in Fig. 7.692

a) Impact of Filter Application Order: Our experimental693

setup tested two different sequences of applying filters to694

ascertain their influence on signal integrity and feature isolation.695

The first sequence involved applying a spatial filter followed696

by a temporal filter aimed at reducing spatial noise to enhance697

signal clarity before isolating temporal features. The alternative698

sequence started with a temporal filter intended to highlight699

temporal dynamics, followed by a spatial filter to refine the700

signal’s spatial characteristics. Notably, significant differences701

were observed predominantly in the eldBETA dataset (p <702

0.05), where the spatial filter followed by the temporal filter703
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Fig. 5: FFT features that triggered each fuzzy rule across different target frequencies, illustrating the identification of harmonic
peaks.

Fig. 6: Visualization of demographic subjects from the 12JFPM dataset (2s) illustrating what iFuzzyTL learned. (A) Data
distribution post-application of the spatial filter, highlighting the position (Red Star) of a sample needing explanation at 11.75Hz.
(B) Filtered EEG signals and their Fourier Transform to display the data characteristics. (C) Representation of firing strength
and the center, using min-max normalization across the channel dimension to accentuate differences within one rule. The center
is reconstructed from the query space to the raw EEG signal space as described in Section II-C4.
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Fig. 7: Variation in accuracy as a function of different
configurations of two fuzzy filter modules across three datasets.
This figure illustrates the significant impact of filter type and
sequence on model performance. **p < 0.01, ***p < 0.001

sequence exhibited superior performance compared to the704

reverse sequence.705

b) Evaluating Single Filter Types: The investigation also706

explored the effects of using each type of filter independently.707

The application of only a spatial filter was to evaluate the708

consequences of omitting temporal filtering, whereas using709

only a temporal filter was intended to assess whether spatial710

information alone could suffice for specific analytical tasks. The711

findings revealed that the exclusive use of a spatial filter signif-712

icantly reduced performance across all datasets (p < 0.05). In713

contrast, employing only a temporal filter maintained relatively714

high performance, though it was slightly outperformed by the715

combined filter sequences in the Benchmark dataset.716

After that, the comparison of the single filter with a combi-717

nation of two filters is also tested. The results show that the718

bi-directional combination of two filters (temporalfilter →719

spatialfilter and reversed) is significantly better than the720

single spatial filter (p < 0.05) in three datasets. the Benchmark721

dataset shows a significant improvement from a single temporal722

filter to the bi-directional combination of two filters(p < 0.05),723

and the eldBETA dataset shows a significant improvement from724

a single temporal filter to spatialfilter → temporalfilter725

combination of two filters (p < 0.05).726

The results underscore the indispensable nature of the727

temporal filter, whereas the spatial filter, though beneficial,728

proved less critical. The sequence of filter application did not729

significantly impact performance, except in certain datasets730

where the spatial filter followed by temporal filter configuration731

slightly outperformed others. These findings contrast traditional732

approaches such as CCA, which primarily relies on spatial fil-733

tering. Moreover, recent methodologies that integrate temporal734

filters, such as TRCA and ECCA, further validate the relevance735

of our results [77]. To summarize, the proposed scheme736

employs spatial and temporal filters to significantly enhance737

interpretability by explicitly capturing neural activation patterns738

across both domains, thereby improving pattern recognition739

and facilitating transfer learning across subjects.740

2) Number of Rule Effect Analysis: In this ablation study,741

which examines the impact of the number of rules within our742

model, Fig. 8 demonstrates the variability in accuracy across743

the 12JFPM, Benchmark, and eldBETA datasets with varying744

rule counts of 3, 5, 10, 15 and 20. Our results indicate that an745

increase from 3 to 10 rules generally enhances accuracy across746

all evaluated datasets (p < 0.05). Particularly, the Benchmark747

dataset shows the most significant enhancements when the748

rule count is increased from 3 to 5 and subsequently from749

5 to 10, with all transitions showing statistical significance750

(p < 0.05). However, when rule counts are bigger than 10, there751

is no significant improvement (p > 0.05). This suggests that a752

moderate increase in model complexity can positively affect the753

model’s transfer learning capabilities but not beyond a certain754

point. Meanwhile, the 12JFPM and eldBETA datasets display755

significant improvements predominantly for transitions from 5756

to 10 and 3 to 10 (p < 0.05). Summarily, incorporating more757

rules extends the knowledge coverage, thereby increasing the758

capacity for domain adaptation, which is critical for effective759

transfer learning.760

Fig. 8: Accuracy variation as a function of the number of rules
across three datasets, highlighting the impact of rule number
on model performance. *p < 0.05, **p < 0.01

VI. LIMITATIONS761

Our study has identified several limitations with the iFuzzyTL762

model. Firstly, the model (rule count is 10) comprises approxi-763

mately 400K parameters, which leads to longer training times,764

potentially limiting its efficiency in scenarios requiring quick765

deployment and can not automatically select the number of766

rules. Secondly, iFuzzyTL cannot be directly tested with a767

different set of devices if the electrode channel locations vary,768

as the model’s performance is contingent on specific channel769

configurations. Lastly, the model does not support direct testing770

with different target frequencies without adjustments, which771

may restrict its application across diverse BCI setups where772

frequency variations are common.773

VII. FUTURE WORK774

Future work can further investigate methods to reduce the775

parameter count while maintaining or enhancing performance,776

automatically decide the number of rules, explore adaptable777

channel configuration strategies for greater device compatibility,778

and develop frequency-independent processing techniques to ac-779

commodate varying target frequencies such as regression model.780

To further enhance discrimination accuracy for short-duration781

SSVEP signals, initial efforts could focus on strengthening the782
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preprocessing stage, such as introducing more features into783

the SSVEP paradigm or signal decomposition method. This784

will potentially broaden the applicability of iFuzzyTL across a785

wider range of BCI systems and real-world scenarios.786

VIII. CONCLUSION787

We propose iFuzzyTL, a fuzzy logic-based attention mecha-788

nism that enhances transfer learning in SSVEP BCI systems,789

significantly reducing user-specific calibration. By integrating790

fuzzy logic with neural networks, iFuzzyTL improves trans-791

ferability and interpretability, crucial for zero-shot learning.792

Experiments confirm superior recognition accuracy in zero-793

calibration scenarios, outperforming real-time benchmarks.794

Its plug-and-play design enables deployment in dynamic795

environments without retraining, addressing key challenges796

in practical BCI applications. iFuzzyTL thus offers a high-797

performance, low-calibration solution for real-world SSVEP-798

based BCIs.799
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