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1 Abstract—The rapid evolution of Brain-Computer Interfaces
2(BCIs) has significantly influenced the domain of human-computer
sinteraction, with Steady-State Visual Evoked Potentials (SSVEP)
semerging as a notably robust paradigm. This study explores
sadvanced classification techniques leveraging interpretable fuzzy
stransfer learning (iFuzzyTL) to enhance the adaptability and
7performance of SSVEP-based systems. Recent efforts have
sstrengthened to reduce calibration requirements through innova-
stive transfer learning approaches, which refine cross-subject gener-
oalizability and minimize calibration through strategic application
110f domain adaptation and few-shot learning strategies. Pioneering
12developments in deep learning also offer promising enhancements,
sfacilitating robust domain adaptation and significantly improving
1asystem responsiveness and accuracy in SSVEP classification. How-
1sever, these methods often require complex tuning and extensive
edata, limiting immediate applicability. iFuzzyTL introduces an
i7adaptive framework that combines fuzzy logic principles with
isneural network architectures, focusing on efficient knowledge
wtransfer and domain adaptation. iFuzzyTL refines input signal
20processing and classification in a human-interpretable format by
21integrating fuzzy inference systems and attention mechanisms.
22This approach bolsters the model’s precision and aligns with real-
2aworld operational demands by effectively managing the inherent
asvariability and uncertainty of EEG data. The model’s efficacy is
2sdemonstrated across three datasets: 12JFPM (89.70% accuracy for
261s with an information transfer rate (ITR) of 149.58), Benchmark
27(85.81% accuracy for 1s with an ITR of 213.99), and eldBETA
28(76.50% accuracy for 1s with an ITR of 94.63), achieving state-
200f-the-art results and setting new benchmarks for SSVEP BCI
soperformance.

31 Index Terms—Brain-computer interface, SSVEP, fuzzy logic,
s2transfer learning, attention mechanisms

I. INTRODUCTION

33

34 RAIN-COMPUTER interfaces (BCIs) have become in-
35B creasingly popular in human-computer interaction (HCI)
ssdue to their intuitive nature[lH4]. BCIs allow for direct
srextraction of user intentions from the brain, bypassing the
ssperipheral nervous system and muscle tissue[5]. Among the
ssvarious non-invasive EEG-based BCI paradigms, such as steady-
sostate visual evoked potentials (SSVEP)[6, [7], P300[8]], and
«wmotor imagery (MI)[9]. SSVEP is particularly noted for its high
s2accuracy and robustness. In SSVEP BCls, users focus on visual
ssstimuli flickering at different frequencies, and their intent is
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adeciphered by identifying the frequency of the observed flicker.
ssRemarkably, research in this field has advanced to where forty
sscommands can be distinguished within just one second of EEG
szdata[10].
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Fig. 1: The diagram of three classification scenarios. (A) intra-
subject classification; (B) inter-subject few-shot classification;
(C) inter-subject zero-shot classification.

4 Classification methods for SSVEP are broadly categorized
ssinto unsupervised and supervised techniques. Canonical cor-
sorelation analysis (CCA)[L1] and Filter-bank CCA[12] are
sitraditional unsupervised methods that determine the target
s2frequency by measuring the correlation between EEG signals
ssand predefined reference signals. Although effective, their
ssperformance lags behind supervised methods, particularly with
ssshorter EEG segments[13]] in the intra-subject classification
sstask, as shown in Fig. [I(A). Consequently, supervised methods
s7such as extended CCA (eCCA)[14], task-related component
ssanalysis (TRCA)[15)], and complex-spectrum convolutional
ssneural networks (CCNN)[L6] have been developed, significantly
sooutperforming unsupervised approaches. However, these high-
s1performing supervised methods require extensive data collec-
e2tion for model training or user-specific calibration, hindering
sstheir immediate usability[[17, [18]. As a result, transfer learning
sshas emerged as a key research area in SSVEP studies[/19, 20].

es This approach leverages knowledge gained from the source



sssubjects to improve performance on new subjects [21], mini-2sfuzzy rules and membership functions to process inputs, thereby
s7mizing the need for extensive calibration typically required for izsmaintaining a logical structure that is both transparent and
sspersonalized BCIs. Techniques such as domain adaptation are +zsintuitive. This method contrasts sharply with more opaque
ssemployed to modify models developed on one individual’s data 1zmodels, clearly visualizing how inputs are transformed into
7ofor use with another’s, significantly enhancing cross-subject isoutputs through human-understandable rules, thus helping
71generalizability[22, 23]]. In SSVEP, some transfer learning rsuser optimize the BCI system. Drawing on the principles of
7zmethods based on CCA using the spatial filter and templates s0fuzzy logic [43l], particularly the Takagi—Sugeno—Kang (TSK)
7sto learn the knowledge from existing domains [13, [19] ss1inference systems [44], our work introduces the interpretable
7#Additionally, fine-tuning deep learning models pre-trained on :2fuzzy transfer learning (iFuzzyTL) model—a novel Fuzzy
rslarge datasets in a domain-specific manner can substantially ssInference Systems (FISs) based on fuzzy set theory [44],
rsreduce the discrepancy between training and implementation atailored for the SSVEP task.

r7environments, offering a robust solution for SSVEP BCI s  FISs have been further developed into a neural network
zsapplications[16} 24]. Hybrid strategies that combine classical isarchitecture known as FNN, which can be trained using gradient
resignal processing with advanced machine learning techniques 1:7descent optimization, providing good interpretability. A recent
soalso play a crucial role [25H27]]. These methods preprocess 1ssstudy, KAN [45]], highlights that learning dimension-specific
st EEG signals to extract features more invariant across subjects sactivation functions introduces “internal degrees of freedom,” a
s2before training classifiers, thereby balancing performance with 1soconcept naturally realized in the TSK model through centroid
sscomputational efficiency essential for real-time applications. iand width parameters, distinguishing it from linear-based
s« Recent advances have focused on reducing the need for 1.2models like Transformers and CNNs. One study demonstrates
sscalibration through few-shot learning approaches, as shown sssthat introducing a Fuzzy Attention Layer significantly enhances
ssin Fig. [[{B). Pioneering work by Chi Man Wong et al.wusthe network’s approximation capabilities by leveraging internal
szintroduced a subject transfer-based CCA (stCCA), which isdegrees of freedom [46]. Inspired by these findings, our
ssutilizes cross-subject spatial filters and SSVEP templates to smodel is derived from these fuzzy systems studies. It is
ssenhance transferability[28]]. This method achieved an impres-+47designed to learn robust knowledge by exploiting extensive
sosive information transfer rate of 198.18 £ 59.12 bits/min with usevidence and enables significant adaptation in environments
srminimal calibration trials for a 40-target task, Benchmark[10]. 1sscharacterized by limited data availability, and handle uncertainty
s2Further, numerous modified CCA methods have been proposed 1soand variability[47]]. Furthermore, fuzzy rule-based transfer
ssto refine few-shot learning in SSVEP[29132]]. Alternatively, 1s1learning models, including ours, have demonstrated remarkable
ssdeep learning (DL) frameworks are renowned for their efficacy s2capabilities in addressing the challenges posed by small
esin utilizing previously acquired knowledge to address chal-isssource datasets in transfer learning scenarios, ensuring reliable
sslenges in transfer learning and domain adaptation, effectively sssperformance even when existing data resources are sparse [48-
symanaging uncertainties and enhancing predictive accuracy 552], especially the application in brain signal processing [53-
ssacross related domains [21, [33]. In SSVEP, DL is also 1s656], and EEG-based BCI system [57].

sobeing explored for their potential in few-shot SSVEP transfer 1s7 In addressing the challenges of domain adaptation, iFuzzyTL
iolearning, such as convolutional neural network (CNN)[34} [35]] 1ssmodifies the source domain model’s input and/or output spaces
wror Transformer-based[24]], although they still necessitate some 1sethrough spatial transformations. This ensures that the fuzzy
wzdegree of calibration. worules align more precisely with the target data, enhancing
1s  However, while few-shot learning approaches significantly s1the model’s robustness even with minimal available data.
iareduce the reliance on extensive calibration, they do not iezFurthermore, the capacity of fuzzy logic to cluster data
seliminate it entirely. Consequently, the development of zero-+esand facilitate the separation of classes during the domain
weshot learning scenarios for SSVEP is crucial, as illustrated estransfer process has been proved by unsupervised transfer
107in Fig. [I[{C). Signal correlation analysis (CA) methods, such isslearning models [49, (58| 59]]. Following the idea of clustering,
weas CCA and TRCA, which leverage parameters solely from issiFuzzyTL calculates the membership degree based on the
ethe source domain [20, [36, 37], demonstrate the capacity for s7distance between input features and the centroid of fuzzy
1ozero-shot learning. While zero-shot CA methods generally sessets. Each centroid represents a prototype characteristic of
mrunderperform compared to their few-shot counterparts, DL-1eeits cluster, and the distances are measured using a suitable
1zbased transfer learning techniques, using architectures like long 17ometric, typically Euclidean[60]. The closer an input feature is
nashort-term memory (LSTM) and Transformers, have shown i71to a fuzzy centroid, the higher its membership grade is to that
napromising results in achieving higher accuracy(35) [38]]. Despite i72centroid. The membership grade determines the firing strength
nsthese advancements, DL methods are often criticized for their 17sof the fuzzy rules associated with the corresponding center,
nelack of interpretability compared to the transparent calculations 7awith the rule strength computed using a fuzzy operation (e.g.,
n7of CA methods[39]. Interpretability helps explain model 7ssum, product, min, or max) applied to the input membership
nsfailures and enhances system stability, therefore, developing i7sgrades. This approach enables the system to process inputs
nean interpretable DL framework that elucidates the underlying i77that exhibit varying degrees of similarity to known categories,
rzomechanisms remains a critical challenge in the field. izsand the nonlinearity provided by the Gaussian membership
121 The Fuzzy Neural Network (FNN) [40-42] stands out as i7efunctions makes the approximation of real-world data more
122a potential framework that combines the robustness of neural sorobust [61]], thereby accommodating real-world data’s inherent
izsnetworks with the clarity of fuzzy logic systems. FNNs utilize s1uncertainty and fuzziness. As a result, iFuzzyTL provides



1eza robust, human-interpretable, and adaptable framework for =7the stimulus frequency fs and its harmonic frequencies k f;
isaapplications requiring nuanced decision-making processes.  =s(where k is a positive integer) [68]].

1« To further refine the model’s capabilities, the dual-filter2se The most commonly used stimulus is flicker, whose chromi-
sssstructure, which includes both spatial and temporal filters as 2«onance value can be modulated sinusoidally to achieve a fixed
issapplied by EEGNET [62], demonstrates significant enhance-24frequency change:

iezments in processing EEG data. iFuzzyTL incorporates Fuzzy

issAttention Layers [46]] as spatial and temporal filters to capture 255 )
ioand generalize the central fuzzy rules within the network. C(t) = |255| x (1 + sin(27 fst + ¢>> (1
190 This architecture effectively learns the domain knowledge of 255 2

1e1both spatial and temporal dependencies in the brain signals,

wzenabling more accurate and robust feature extraction and 2 Here, C(t) represents the chrominance value at time ¢, fs is
ssdomain adaptation, especially in transfer learning scenarios.z«the frequency of the visual stimuli which can also be defined
14 These filters in iFuzzyTL integrate fuzzy set theory with neural 2+4as y in the prediction task, ¢ is the phase shift, and n denotes
isnetwork architectures to model SSVEP signal sequences as 2sthe number of target frequencies corresponding to n stimuli.
wefuzzy sets. This approach parallels the mechanism of vanilla 26By decoding the EEG frequency response of the subject, one
isrdot-product self-attention [63-63], enhancing the robustness 2+7can infer the target fj that the subject is focusing on, thereby
ieand flexibility of the model in neurophysiological applications.2erevealing their intentions.

100By melding fuzzy logic with advanced attention mechanisms,2¢ By watching the flicker and recording the EEG signal from
200iFuzzyTL facilitates efficient knowledge transfer across varying 2sothe occipital cortex, the ideal recorded brain response z(t) can
20rdomains and sets a new benchmark in the field of computational 2s1be expressed as [69]:

az2intelligence-based transfer learning, especially for tasks involv-

203ing complex signal patterns like SSVEP. Our model achieves the n
20shighest ITR and accuracy in three datasets as zero-shot learning, z(t) = Z A sin(2mk fst + O) (2
2051 2JFPM(89.70% for 1s with ITR=149.58), Benchmark(85.81% k=1

asfor 1s with ITR=213.99), and eldBETA(76.50% for 1s with .5, where Ay, is the amplitude of the response at each harmonic
27ITR=94.63), and is the State Of The Art (SOTA) model in .3k and 6;, represents the phase associated with each harmonic
2osthe SSVEP transfer learning issue. We also demonstrate how s frequency. This formulation highlights how the brain responds
asthe iFuzzyTL model enhances interpretability by revealing ,ssto the specific frequencies of visual stimuli, allowing for
zothe temporal dynamics of firing strength and its harmonic ,effective communication of the subject’s focus.
a11relationships with target frequencies in the SSVEP task.

The contributions of this study are outlined as follows: ..
2 y es7B. Task Definition and Data Structure

23 1) Development of iFuzzyTL: We introduce a novel . . .
214 fuzzy logic-based attention mechanism called iFuzzyTL, z We explore the domain of SSVEP tasks, incorporating data

asefrom IV subjects to employ transfer learning techniques. The

215 designed to enhance transferability in SSVEP BCI tasks. Lo . .

e This development significantly reduces the need for user- 2600bjective is to pret.ram a model that adapts to new subjects under

217 specific calibration, facilitating a more efficient "plug—zma zero-shot learning framr.awork: Let & = {81’82.’ L ’S]Y}

e and-play” experience in BCI systems sezrepresent the source domains, with each S, comprising pairs
: 7 7 i 7 My .

219 2) Enhancement of Interpretability: Our approach im-zss{(x_sn’ysn), | 75, € Xn,ys, €V ]The targeytngom.am T

220 proves the interpretability of BCI systems by integrating zsWhich cqnsmt:l Of unlabelli:d sa{nples f{mT iXT}j:l.’ allms tlo

221 fuzzy logic with neural networks. We utilize a human- Zﬁsad?pt usmngt € earped now nge Tom o to prec.hct abels

222 understandable center for clustering and learning, which 2o {y7 € Y}j) effectively, achieving zero-shot learning.

223 allows for clearer insights and better design of the

224 mechanisms driving BCI technology. 267C. The proposed iFuzzyTL

s 3) Advanﬁemengs lm Prlzllctlca(ll Usabl;l.llt.y: The ;tudy show-,.,  J ) Fuzzy Inference Systems and Their Attention Mechanisms:

226 ESZ?:CES ewriltll?ojt fhznn::(fiorcfelzsaizltl}; t(())r ieaclgltitt)(r)agz: 260 FISs play a crucial role in modeling uncertainty and imprecision

27 M ! = 1P o0in numerous fields, providing a sophisticated framework to

228 .marke'dly boolstmg lijts prz.lctlcal usability and reliability manage complex and ambiguous data sets [70H73]. At the core

229 1n various real-world settings.

2720f these systems lie the concepts of fuzzy sets and membership
erafunctions, where the degree of membership 4 (z) quantifies
250 II. METHODS AND MATERIALS 2zahow closely an element x conforms to a fuzzy set A. The TSK

arsmodel is a prevalent form of FIS [44], characterized by its
a1A. Explanation of SSVEP Principles and Stimulus Frequency ysuse of IF-THEN rules to articulate the relationships between
zzModulation zrinputs and outputs. Specifically, a Zero™ order TSK system

23 The principle behind SSVEP can be understood as a response 27¢utilizes the following rule structure:

23¢0f the sensory cortex to visual stimuli presented at specific If 2, is A, and

. . o ..
assfrequencies, such as flicker [66] or other reversal patterns [[67].
236 This interaction results in an oscillatory brain response at both then y =u,, r=1,... R, (@)

.and zp is Ap ,, 3)
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Fig. 2: Tllustration of the architecture for predicting target frequencies in an SSVEP task using the proposed iFuzzyTL model.
(A) Main structure of the iFuzzyTL model, where B represents the batch size, D denotes the number of feature dimensions,
and T indicates the number of time points. (B) Design of the spatial and temporal fuzzy filters, where Rs and R; denote the
total number of rules for the spatial and temporal fuzzy filters, respectively. (C) Detected center using the spatial fuzzy filter.
(D) Firing strength of a demonstration sample to show the learned neural pattern as identified by the spatial fuzzy filter. (E)
Detected center using the temporal fuzzy filter. (F) Firing strength of a demonstration sample to show the learned neural pattern
as identified by the temporal fuzzy filter.

20where x; denotes the input variables, D represents the number 26s  In our study, Gaussian membership functions were chosen
ss10f feature dimensions, R denotes the total number of rules, u, ss7following the neuroscience study [46], due to the ability
22is the consequent of the r'" rule, and A; , are the fuzzy sets 2ssto accurately represent the normally distributed nature of
asscorresponding to the 7" rule for i" sample. Each fuzzy set 2sbiological and neural data observed in neuroscience:

284 A; . is defined by the membership functions A; . (z;), where D
2851 ranges from 1 to D. ap(z) = H exp | — (€ — T“d) ®)
256 The firing strength o, for rule r, which quantifies the degree =1 207 4
2s7to0 which the rule’s conditions are satisfied and directly influence D
2ssthe rule’s impact on the model’s output, is computed as the =exp | — Z w ©)
as9product of the membership values for all input variables: d=1 20,4
s0  Here, r indexes the fuzzy rules, m, 4 and o, 4 denote the
= H A (z4), (5) so1centers and widths of the Gaussian fuzzy sets for the feature

sedimension d of each rule r, respectively. Both parameters m, 4

200 To facilitate a probabilistic interpretation of the outputs, the wsand oy q are learnable and are optimized during training.
2'TSK FIS normalizes the firing strength . as f,, treating the %¢ The normalized firing strength f, fr(x) can be then simplified

2e2normalized values as a probability distribution: 30st0:
e o ()
v ap(z) fr(@) = —g———
fr(z) = 723 i) (6) Yoisq i)
= (za—m,q)?
ssswhere R is the number of rules. P ( Yy gt dd )
20« The aggregated output y of the TSK FIS is then computed - ZR exp (7 ZD (za— mi,d)z)
20susing a weighted average of the rule outputs: i=1 d=1 " 207,
D 2
R _
y = Z o (2)u; ) = softmax | — Z M (10)

—5 20
o e i) d=1 ek



s Incorporated within this framework is an attention mecha-asthe filter’s ability to selectively focus on the most relevant
so7nism that enhances the interpretability and effectiveness of the ssostemporal features for each channel ¢, thus improving the
308 FIS [46l]. This mechanism is formally defined by the following ssisignal’s interpretability and the overall accuracy of the analysis.
sssequation: a2 4) Input Recovery in Single-Layer Linear Networks: This
ssssection demonstrates that the original input of a single-
ss«layer linear transformation, referred to as a projector, can be
sowhere f(x) denotes the mapping from inputs to attention sssreconstructed from its output, termed the query. This recovery
siscores within the TSK FIS, specifically corresponding to the ss¢is contingent on the condition that the transformation matrix
srenormalized firing strength f,.(2). The function g(x) represents 37/ is non-singular. The invertibility of W thus ensures the
sisthe transformation applied to the inputs, which modulates the sssfeasibility of interpretability within the iFuzzyTL framework.
suinfluence of each input based on the computed attention scores.sss Consider the linear transformation defined by:

sisHere, g(x) effectively utilizes the consequents u, associated y=Wz+b (16)
siswith each rule, thereby influencing the output based on the

sivdegree of relevance as determined by the attention mechanism.ssowhere y represents the output query, = the original input, W
sis  2) Fuzzy Attention Layer as an Adaptive Spatial Filter in ssi1the transformation matrix, and b the bias vector.

swwSignal Processing: Consider an input signal x(t) processed sz To retrieve = from y, rearrange the above equation to:
szothrough an adaptive filter. The output Y (¢) at time ¢ is modeled Wa—u—b (17
s21as an adaptive linear combiner (ALC): =Y

Attention(x) = softmax(f(z)) - g(x), (11)

ss Given W is non-singular, the inversion of W is feasible,

Y(t)=WsT - z(t) (12) sssallowing for the calculation of x by:
sewhere x(t) denotes the input feature vector at time ¢, and Wy =Wy —b) (18)
ssrepresents the adaptive weights for all channels as a spatial

ses This illustrates that the original input x is retrievable directly
sssfrom the output y when W is invertible.

s7 For scenarios where W is singular or not a square matrix,
sssthe recovery of x employs the Moore-Penrose pseudoinverse
369 W+Z

aufilter.

35 By incorporating this fuzzy attention mechanism, we assign
ssthe adaptive weights as Ws” = f,.(x(t)), following the eq.
serfor each rule r and the filter’s output Ys(¢) becomes:

r=WT(y—0) (19)

R
o v

Z: r(W, W () (13) s The computation of W7 utilizes the Singular Value Decom-

B snposition (SVD) of W:
wswhere the projections are parameter matrices W)Y and W<
sofor rule r. This formulation enables the filter to adaptively w=usv’ (20)
somodulate the importance of different features of x(t) based
ssron their alignment with the fuzzy rule centers. The fuzzy
s2attention mechanism dynamically adjusts the attention weights
as3in response to the proximity of the input features to the fuzzy set
ssacenters, effectively allowing the filter to highlight or suppress wt=vstu” (21)
ssscertain signal features according to their fuzzy membership
assvalues.
a7 3) Fuzzy Attention as an Adaptive Temporal Filter: Here,
ssfuzzy attention also functions as a temporal filter. The output
a9 Y for each channel c is given by:

szwhere U and V' are orthogonal matrices, and 3 contains the
arssingular values.
sa  The pseudoinverse W™ is then:

sswith X7 derived by inverting the non-zero singular values of

a2, and taking the transpose.

a7 This approach guarantees that if the dimensions of the input

srsdata and the output query match, the reconstructed input will

srecorrespond to the original input.

Y(c) = Wole (©) (14) s In F:onclusion, u.nder the .co‘ndition thgt W is either inve?rt.il?le
ss10r suitably approximated via its pseudoinverse, the reversibility

a0 where z(c) represents the input feature matrix for channel c,s20f the input from the output in a single-layer linear model is
ssrand W is the adaptive weight vector. This vector modulates ssseffectively demonstrated.

se2the attention mechanism in the time domain, corresponding to s« 5) Fuzzy Attention for SSVEP Transfer Learning: Our
asseach channel c. sssproposed model, iFuzzyTL, integrates three key components

ss Thus, the temporal filter’s output becomes: assstailored for SSVEP signal processing: the spatial fuzzy filter,
ss7the temporal fuzzy filter, and the classification head. Both fuzzy
R _ v sssﬁlters follow the design as the adaptive filers in eqgs. and

Z £ (W, W a(e) 5) 2e0((T3).
r=1 s0 The model architecture is depicted in Fig. [2(A). The
ss  where the projections are parameter matrices W,”' and serspatial fuzzy filter initially processes the data, considering
s W corresponding to rule r. This configuration allows the sschannel-like centers (R, C), followed by a transpose operation.
arFuzzy Attention Layer to adaptively weigh time points based ses Subsequently, the temporal fuzzy filter applies, which adapts
ason their proximity to the fuzzy rule centers. This enhances ssto signal-like centers (R;,S), where Ry and R; denote the



ssstotal number of rules for the spatial and temporal fuzzy filters,«sand 2 s included to evaluate model performance over extended
sssrespectively. This dual filtering strategy enables the model to ssdurations. The results indicate that iFuzzyTL consistently
ssvencode both spatial and temporal dimensions of the SSVEP wsoutperforms other baseline methods, achieving the highest
ssssignals effectively. The structure of the spatial and temporal «saverage classification accuracies and ITR for data lengths
s fuzzy filters are shown in Fig. EKB). srunder 1.1 s. However, for lengths of 1.2s, 1.5 s and 2 s, FB-
a0 The classification head consists of a 2-layer Multi-Layer s SSVEPformer demonstrated superior performance compared
a0t Perceptron (MLP) model with ReLU (Rectified Linear Unit) «sto iFuzzyTL.

s2activation and a dropout rate of 0.3 during training. The number ss0  For classification accuracies, a two-way repeated measures
ssof output nodes in the classification head corresponds to the 51 ANOVA (rm-ANOVA) revealed significant main effects of
sanumber of labels. szdata length (F'(9,81) = 244.49, p < 0.001) and method
w5 The primary goal is to classify the SSVEP target frequencies 4s3(F'(7,63) = 7.17, p < 0.001), as well as a significant inter-
ssaccurately. We employ a multiclass cross-entropy loss function sssaction effect between them (F'(63,567) = 15.39, p < 0.001).
so7for this purpose, defined as: sssPaired t-tests were conducted at each data length to compare
ss61FuzzyTL with baseline methods, with statistical results sum-
ss7marized in Table [l} iFuzzyTL showed significant improvements
sssover all methods for data lengths ranging from 0.5 s to 1.1 s.
ssswhen the data lengths are longer than 1.2 s, the accuracy of
ws Where y,. denotes the true label, p, . represents the  pp gSVEPformer is higher than that of iFuzzyTL (p > 0.05).
aspredicted probability for class ¢, and M is the total number , Regarding ITR, the rm-ANOVA also indicated significant

a00f classes or target frequencies in the classification schema. . < offects of data length (F(9,81) = 13.86, p < 0.001)
«1This loss function quantifies the discrepancy between predicted , .4 method (F(63) = 7.01 p7 < 0.001) a’long with a

sizprobabilities and the actual class labels, facilitating practical wssignificant interaction effect between them (F(63,567) = 6.76
sismodel training to recognize SSVEP frequencies. ’

M
loss(yo,c, po,c) = - Z Yo,c IOg(po,c) (22)
c=1

asp < 0.001). The detailed statistical results by paired t-tests are
ssspresented in Supplementary Table I. The results revealed that
suD. Evaluation Metrics s671iFuzzyTL outperformed all baseline methods.

ss  To evaluate the performance of each method, we used two 4 The average classification accuracies and ITR for the
seprimary metrics: classification accuracy and ITR. Classification 4¢seven methods on the eldBETA dataset are shown in Table

saccuracy is defined as the ratio of correctly classified samples +dl]] and Supplementary Table II, respectively. Data lengths
wsto the total number of test samples. snspan from 0.5 s to 1.2 s in 0.1 s intervals, with additional
se  The ITR, measured in bits per minute (bits/min), quantifies 4z€valuations at 1.5 s and 2 s. The two-way rm-ANOVA for

aothe speed and accuracy of a brain-computer interface and is +3classification accuracies revealed significant main effects of
«rcomputed as follows [[74]: sadata length (F'(9,891) = 530.76, p < 0.001) and method

as(F'(7,693) = 29.28, p < 0.001), with a significant interaction

60 1—P arseffect (F'(63,6237) = 18.32, p < 0.001). Paired t-tests further

ITR = WUO&N + Plog, P+(1—P)log, ﬁ} (23) s77indicated significant differences between iFuzzyTL and other
e . ) _«smethods, except some data lengths of CCNN. SSVEPformer,

@2 where T is the average time required for each selection . \ny FB-SSVEPformer. Particularly, iFuzzyTL significantly
ssoperation, 1., is the running time, IV represents the number of sooutperformed CCNN at 0.5 s, 0.7 s, 1.1 s, 1.5 s, and 2.0
azapossible classes, and P is the classification accuracy. Following ¢ (» < 0.05) and FB-SSVEPformer at 0.7 s (p < 0.05). For
asprevious studies [15} |69]], an additional 0.5 s was included in «ITR, significant main effects of data length (F/(9, 891) = 72.93,
426" to account for gaze shift time. For example, if the data wsp < 0.001) and method (F(7,693) = 31.71, p < 0.001), as
arlength is 1 s, T' is set to 1.5 s for the ITR calculation using el as a significant interaction effect (F(63,6237) = 29.80,
«sthe formula above. sssp < 0.001) were found. The detailed statistical results by paired

429 In. this stud'y, we focused on zero-shot inter-subject ClaSSi'4set—tests are presented in Supplementary Table IL the ITR of
aofication experiments. We employed the leave-one-out CrOSS-,. iFuzzyTL is higher than others at 1.5 s and 2.0 s (p < 0.05).
ssrvalidation method, where the data from one subject was used

a2as the test set while the data from all other subjects formed the
straining set, as shown in Fig. [T{C) and [2{A). This process was

a5 The average classification accuracies and ITR on the Bench-
ssomark dataset are reported in Table ?? and Supplementary
i ) W a0 Table III, respectively. Data lengths range from 0.5 s to
surepeated until each subject had been used as the test subject w12 s, with additional evaluations at 1.5 s and 2 s. For
wsonce, ensuring a complete evaluation. , seclassification accuracies, the two-way rm-ANOVA showed
a6 The basehpe model and dataset de§cr1pt10n are in SuPple'4gssigniﬁcant main effects of data length (F(9,306) = 550.93,
47 mentary Sections 1.1 and 12, reSpeCthely. wp < 0001) and method (F(238) = 16.55, p < 0001)’

ssand a significant interaction effect (F'(63,2142) = 20.29,
. III. RESULTS wsp < 0.001). Paired t-tests indicated significant differences
a9 The average classification accuracies and ITR of the seven ss7between iFuzzyTL and TRCA, eCCA, EEGNET, SCCA_gr
somethods on the 12JFPM dataset are presented in Table [| and ss(p < 0.001). As for CCNN, the accuracy of iFuzzyTL is
a1 Supplementary Table I, respectively. Data lengths range from sohigher at the data length longer than 0.8s (p < 0.05). There
420.5 s to 1.2 s in 0.1 s intervals, with additional lengths of 1.5 s sw0is no significant difference among iFuzzyTL, SSVEPformer,



sorand FB-SSVEPformer (p > 0.05) of accuracy. Regarding ITR, ss7achieved by our model significantly surpassed that of TRCA,
sesignificant main effects of data length (F(9,306) = 46.20,ss EEGNet, SCCA_gr, and SSVEPformer (p < 0.05), as shown
siap < 0.001) and method (F(7,238) = 25.60, p < 0.001), as ssein Fig.

siswell as a significant interaction effect (F'(63,2142) = 22.81,

sosp < 0.001), were observed. Paired t-tests indicated significant g V. DISCUSSION

sosdifferences between iFuzzyTL and TRCA, eCCA, EEGNET, .
500SCCA_qr (p < 0.001). the ITR of iFuzzyTL is higher
sisthan CCNN (p < 0.05) except at 0.6 s, 0.7 s, and 0.8 s
soo(p > 0.05). There is no significant difference among iFuzzyTL,
s10SSVEPformer, and FB-SSVEPformer (p > 0.05) of ITR.

st Our method exhibited a gradual decline in performance

5128CTOSS three dgtasets as th.e tnput lengtl? decreased. From a __i.¢med decisions. This mechanism facilitates robust decision-
swsignal processing perspective, shorter window lengths result sssmaking and significantly enhances the model’s transferability
sein a reduced number of pepodlc components, leadmg. 10 ssacross different SSVEP tasks. Incorporating the center as a
sisinadequate frequency resolution that affect the recognition sotemplate proves advantageous for SSVEP applications, where
seof target fre':quenmes RS 76]', For model training, the limited sr1the ability to generalize across varying conditions and subjects
s7frequency information contained in shorter data sequences _ .. ... »° Consequently, iFuzzyTL offers an improved approach

51aresults‘ H,l a diminished quality of the training dataset. Dl}llrmg s73to handling the inherent variability in SSVEP signals, ensuring
siothe training process, the quel may rely on features which are srahigher performance and reliability in real-world scenarios.
ssounrelated to SSVEP, resulting in overfitting and a subsequent

se1decrease in validation set accuracy.

In the iFuzzyTL framework, the center plays a key role by
ss2encapsulating domain knowledge derived from source domains.
se3lt acts as a general femplate, effectively capturing the essence
se« of the source domain characteristics. By computing the distance
sesbetween this learned center and incoming data points, the model
sssrobustly leverages the underlying domain knowledge to make

ssA. Sample-wised Interpretability Analysis

s76 1) Demo Analysis of SSVEP Target Frequency Identification
s7Using iFuzzyTL Model: To provide an intuitive understanding
523 To evaluate the feasibility of the proposed model in real-5,50f how the iFuzzyTL model identifies the SSVEP target
seworld applications, we conducted an online experiment con-s,sfrequency, we present a demo sample from the best-performing
sessisting of a data collection session and an online test session.sssubject (S8) in the 12JFPM dataset, with a target frequency of
s2s The descriptions of Experiment Design, Participants and Data 5,9.25 Hz, as shown in Fig. EKA), Fig. EKC) illustrates that the
ser Acquisition, Procedure for Training Data Collection, and Data ssspatial fuzzy filter’s center pattern resembles the EEG signal,
s2s Preprocessing are presented in Supplementary Material Section ssswith distinct phases for each rule. In Fig. 2[D), the border firing
seo Il ssestrength indicates that the contributions of rules #4 and #5 for
sso  During the online testing phase, we adopted a ’leave-one-out’ sesthis sample are minimal, while channels 1 and 2 contribute
ss1 cross-validation strategy for evaluation. Specifically, the model ssssignificantly to rule #6.

sewas trained using data from five out of six trained subjects,s;; ~ After applying the spatial filter, Fig. 2JE) demonstrates the
siswith the remaining subject’s data reserved for testing. This ssscenter of the temporal fuzzy filter for subject S8, displaying the
ssapre-trained model was then incorporated into our online BCI sssneural patterns captured across 10 separate rules. Particularly,
sssSystem. sorule #2 shows a high contribution in most channels, whereas
sss  Bach online trial commenced with the presentation of a cue,seirules #1 and #5 exhibit the lowest contribution. Additionally,
s7directing the subject to focus on a designated flashing flicker.se-Fig. 2{F) reveals that the firing strength in the temporal fuzzy
sss The onset of the flicker was marked by a ’start’ signal sent to the sesfilter indicates a stable pattern for rules #4-8 and #10 in this
ssesystem terminal via UDP, initiating the recording of task-related seasample.

s0EEG data. Upon completion of the flicker sequence, lasting ss 2) Analysis of Temporal Firing Strength Features in the
sn1.5 seconds, an ’end’ marker was transmitted, signaling the sesFrequency Domain: To further investigate how the fuzzy rules
sizcessation of data recording and the start of data segmentation.se7learns features in the time domain, we compute the FFT of
sssConsidering that spontaneous EEG signals in the initial phase sisthe input feature that triggered the fuzzy rules in the proposed
siumay introduce noise and variability [[69], our model utilized ssstemporal filter. The results indicate that the firing strength
sss EEG data from the 0.5 to 1.5 second interval for input. soexhibits peaks at harmonic frequencies in correct case, as
se6  Each subject participated in three rounds of the experiment, sordemonstrated in Fig. [5]

se7yielding a total of 36 trials per subject. The performance sz In the left panel, corresponding to a target frequency of
sisevaluation of our model was based on the accuracy and ew9.25 Hz, a prominent peak is observed at 28 Hz. This shift is
sl TR recorded during these 1-second real-time experiments.soattributed to the relatively low sample rate, which causes the
ssoAdditionally, any trials experiencing dropped frames in the sssharmonic frequencies in the FFT to exhibit slight displacements.
ss1AR interface were excluded from the analysis to maintain the ss The middle panel illustrates a target frequency of 10.25 Hz, with
ss2integrity and consistency of the dataset. eso7peaks observed at both 10.5 Hz and 41.5 Hz. In contrast, the
ss3 The results demonstrated a high level of effectiveness, with esright panel presents a less favorable case with a target frequency
ssean average accuracy of 90.13% + 2.27%, and an ITR of swof 13.25 Hz, where peaks near 27 Hz are detected across several
555164.93 £ 9.11 bits/min. After this, the baseline performances siworules, indicating that not all rules accurately capture the target
sssare tested based on the recorded data. Notably, the accuracy 11 frequency, although some rules remain effective.

522 IV. REAL-TIME FEASIBILITY EVALUATION



TABLE I: Average accuracies (%) across subjects for six methods at different data lengths on Dataset 12JFPM. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (*p < 0.05, **p < 0.01,
*##%p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s Lls 1.2s 1.5s 2.0s
TRCA 18.33% (6.32%) *** 22.94% (9.16%) *** 30.89% (12.52%) *** 36.61% (15.98%) *** 45.67% (18.27%) *** 52.94% (22.06%) *** 57.61% (22.83%) *** 62.11% (24.00%) *** 74.39% (23.63%) ** 84.39% (19.72%) *
eCCA 54.94% (21.86%) * 61.11% (25.97%) *  64.39% (27.22%) ** 67.78% (28.34%) *  73.11% (27.47%) *  75.56% (26.35%) *  77.44% (26.92%) *  79.78% (24.80%) *  85.28% (21.88%)  88.06% (20.34%)
CCNN 64.61% (22.29%)  66.56% (23.43%) *** 72.33% (23.23%) *  77.36% (15.20%) *** 82.50% (18.60%) 84.00% (18.09%) 86.11% (14.72%) *** 88.83% (13.54%) 92.39% (10.46%)  95.44% (7.86%)
EEGNET 50.11% (17.58%) ** 56.00% (23.12%) ** 62.94% (21.36%) *** 66.44% (23.31%) *** 70.28% (23.60%) ** 75.11% (22.46%) ** 77.61% (21.88%) *  79.72% (22.35%) *  87.28% (15.46%)  90.44% (13.17%)
SCCA_gr 54.83% (21.93%) * 61.44% (24.54%) *  66.89% (26.25%) ** 72.39% (27.99%) *  76.44% (27.26%) *  78.83% (25.84%) *  81.72% (25.07%) 84.17% (22.66%) 88.78% (16.72%)  93.44% (12.85%)
SSVEPformer  66.22% (22.40%)  68.67% (22.12%) 75.22% (21.91%) 78.67% (21.58%) 82.11% (19.61%) 84.06% (18.17%) 86.06% (16.79%) 88.56% (14.32%) 92.61% (11.08%)  95.00% (8.36%)

FB-SSVEPformer 65.83% (22.98%)

iFuzzyTL

67.92% (12.59%)

82.17% (20.30%)
84.76% (15.36%)

72.39% (22.90%)
75.29% (15.28%)

77.44% (21.49%)
81.91% (16.42%)

85.83% (18.87%)
88.64% (16.10%)

87.61% (17.45%)
89.70% (14.89%)

89.39% (15.99%)
90.22% (13.99%)

91.28% (13.85%)
90.14% (13.88%)

94.78% (9.82%)
91.97% (15.42%)

96.00% (9.12%)
92.41% (14.26%)

Note: Entries in bold indicate the model with the best performance.

TABLE II: Average accuracies (%) across subjects for six methods at different data lengths on Dataset eldBETA. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (*p < 0.05, **p < 0.01,
**%p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s Lls 1.2s 1.5s 2.0s
TRCA 42.05% (19.30%) *** 44.17% (20.15%) *** 45.75% (20.98%) *** 48.40% (21.45%) *** 51.14% (22.69%) *** 52.54% (23.20%) *** 55.17% (23.26%) *** 56.51% (23.68%) *** 60.48% (24.23%) *** 61.86% (24.63%) ***
eCCA 46.60% (19.35 ## 51.16% (20.26%) *** 55.52% (21.57%) *** 58.73% (22.32%) *** 62.60% (22.47%) *** 65.54% (22.62%) *** 68.16% (22.32%) *** 70.54% (21.74%) *** 75.30% (20.66%) *** 80.14% (19.25%) ***
CCNN 62.29% (21.09%) ** 65.05% (21.14%) 68.63% (21.52%) *** 70.90% (21.52%) 73.05% (21.62%) 74.95% (21.04%) 76.30% (20.70%) ** 77.63% (20.47%) 81.14% (19.04%) ** 83.98% (17.97%) **
EEGNET 57.51% (21.14%) *** 59.46% (22.38%) *** 62.00% (23.06%) *** 64.37% (22.63%) *** 65.97% (23.22%) *** 67.25% (23.43%) *** 68.65% (23.20%) *** 69.24% (23.76%) *** 71.76% (23.29%) *** 74.13% (22.87%) ***
SCCA_gr 41.70% (19.48%) *** 49.22% (21.13%) *** 53.84% (22.04%) *** 57.92% (22.37%) *** 61.38% (22.69%) *** 64.75% (22.68%) *** 67.35% (22.56%) *** 69.30% (22.63%) *** 74.62% (21.52%) *** 81.00% (18.90%) ***
SSVEPformer  62.73% (23.12%) 65.71% (23.18%) 69.49% (22.72%) 71.25% (22.62%) 73.48% (22.60%) 75.41% (21.89%) 76.79% (21.08%) 77.84% (21.69%) 81.33% (19.85%) 83.97% (18.31%)

80.14% (20.94%)
84.16% (16.35%)

83.30% (19.67%)
86.70% (15.67%)

69.89% (23.55%) 72.43% (23.07%) 73.97% (22.72%) 75.54% (22.21%)
71.45% (17.40%)  74.00% (17.54%)  76.50% (17.19%) 80.17% (17.34%)

Note: Entries in bold indicate the model with the best performance.

76.98% (22.13%)
78.82% (18.05%)

67.13% (23.79%) *
74.02% (16.91%)

FB-SSVEPformer 61.14% (23.97%)
iFuzzyTL 66.48% (15.09%)

64.27% (23.75%)
66.85% (15.46%)

TABLE III: Average accuracies (%) across subjects for six methods at different data lengths on Dataset Benchmark. Asterisks
indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (¥*p < 0.05, **p < 0.01,
**%*p < 0.001). The percentages in brackets is standard deviation.

Model 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s L1s 1.2s 1.5s 2.0s
TRCA 42.05% (19.30%) *** 44.17% (20.15%) *** 45.75% (20.98%) *** 48.40% (21.45%) *** 51.14% (22.69%) *** 52.54% (23.20%) *** 55.17% (23.26%) *** 56.51% (23.68%) *** 60.48% (24.23%) *** 61.86% (24.63%) ***
eCCA 46.60% (19.35%) *** 51.16% (20.26%) *** 55.52% (21.57%) *** 58.73% (22.32%) *** 62.60% (22.47%) *** 65.54% (22.62%) *** 68.16% (22.32%) *** 70.54% (21.74%) *** 75.30% (20.66%) *** 80.14% (19.25%) ***
CCNN 62.29% (21.09%) ** 65.05% (21.14%) 68.63% (21.52%) *** 70.90% (21.52%) 73.05% (21.62%) 74.95% (21.04%) 76.30% (20.70%) ** 77.63% (20.47%) 81.14% (19.04%) ** 83.98% (17.97%) **
EEGNET 57.51% (21.14%) *** 59.46% (22.38%) *** 62.00% (23.06%) *** 64.37% (22.63%) *** 65.97% (23.22%) *** 67.25% (23.43%) *** 68.65% (23.20%) *** 69.24% (23.76%) *** 71.76% (23.29%) *** 74.13% (22.87%) ***
SCCA_gr 41.70% (19.48%) *** 49.22% (21.13%) *** 53.84% (22.04%) *** 57.92% (22.37%) *** 61.38% (22.69%) *** 64.75% (22.68%) *** 67.35% (22.56%) *** 69.30% (22.63%) *** 74.62% (21.52%) *** 81.00% (18.90%) ***
SSVEPformer  62.73% (23.12%) 65.71% (23.18%) 69.49% (22.72%) 71.25% (22.62%) 73.48% (22.60%) 75.41% (21.89%) 76.79% (21.08%) 77.84% (21.69%) 81.33% (19.85%) 83.97% (18.31%)

76.98% (22.13%)
78.82% (18.05%)

80.14% (20.94%)
84.16% (16.35%)

83.30% (19.67%)

67.13% (23.79%) *
86.70% (15.67%)

74.02% (16.91%)

69.89% (23.55%) 72.43% (23.07%) 73.97% (22.72%) 75.54% (22.21%)
71.45% (17.40%)  74.00% (17.54%)  76.50% (17.19%) 80.17% (17.34%)

ote: Entries in bold indicate the model with the best performance.

FB-SSVEPformer 61.14% (23.97%)
iFuzzyTL 66.48% (15.09%)

64.27% (23.75%)
66.85% (15.46%)
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Fig. 3: Detailed illustration of a real-time SSVEP experiment setup. (A) Demonstration setup for the experiment. The EEG
channels are located in the occipital lobe. (B) Example of a filtered EEG signal used in the demo. (C) Min-max normalized
firing strength across the rules. (D) Averaged weight distribution among the rules (without normalization). (E) Data distribution
following the application of the spatial filter. (F) Fourier Transform results of the demo EEG signal.



A es FFT, which include both target and harmonic frequencies.

ok s9Consequently, the filter relies on information from more

— ssochannels to achieve satisfactory results and eventually make

est correct predictions. Conversely, subject S2 exhibits poor overall

es2channel quality, with detectable peaks in Channels 6, 7, 8, 9,

essand 10 in the FFT though the peak is not clear. However,

ook es¢Channels 1, 2, and 3 display multiple unclear frequency peaks.

ess This causes the spatial filter to apply different rules when

essselecting these channels. Thus, distinctive rules are created in

es7a fragmented manner, and incorrect predictions are made in
esssubject S2.

B o) [
e < 29

Accuracy (%)

N
<

& roSs & & &
@& QQ%% QC)G ;@6‘& &0&‘& CY} 0%{" @9 sso  Similarly, in our real-time test, as shown in Figs. 3[B) (raw
§ & & &g seosignal) and 3[F) (FFT result), the FFT peaks of Channels Pz
g @ estand POS are prominent, and their contribution in Rule #4 is

< es2substantial. The data distribution for this scenario is also as

Fig. 4: Comparison of the model with other SOTA models sssclear as that of subject S8 in the 12JFPM dataset, as illustrated
in the online experiment. The significant differences between sesin Fig. B(E). Particularly, during the application of the spatial
iFuzzyTL model and other models are highlighted by paired essfilter, the fuzzy attention mechanism may not strictly filter
t-tests (xp < 0.05, * x p < 0.01, * x xp < 0.001). ssschannels. For example, as shown in Fig. 3{D), Rule #8 has the
ee7highest average weight, yet it selects Channels PO3, POz, and
ess PO4, which are not strongly indicated by FFT. This discrepancy
s12B. Deeper Analysis of Correct and Incorrect Cases essmay be attributed to the limited diversity of the small training
) ) 670 SEt.
s For deeper understanding of correct and incorrect cases of _ 1, summary, these findings suggest that iFuzzyTL can better
euiFuzzyTL model, we randomly select one sample from the . 1o the knowledge from the source domain and predict the
s155ame target frequ'eq(:y (11.7:5 Hz) from three sub]ect.s (82, S6, ., result if the signal is clear; otherwise, iFuzzyTL can effectively
seand S8) who exhibited varying performance levels (1.nput data _, calect high-quality channels by the spatial filter through a
evlength as 1s: 82: 55.12%, S6: 96.95%, S8: 99.17%; 1nput data . .ombination of rules, thus enhancing the filtering of input
sislength as 2s: S2: 55.12%, S6: 100%, S8: 100%). Subject S8 swosignals, but may cause the incorrect predictions.
stodemonstrated the best performance among all subjects in the
620 2JFPM dataset across all tested models, while subject S6
ez performed better than subject S2 but worse than subject S$8.677C. Ablation Study

s22Subject S2 showed the worst performance across all models.s;;  The ablation study was meticulously designed to rigorously
s2Then, we compare how the iFuzzyTL model processes the gsevaluate the influence of various parameters and modules of
s24EEG signal in three different-quality subjects. ssoour proposed Fuzzy rule-based framework, iFuzzyTL, on its
s2s  As shown in Fig. [6fA), the data distribution after applying e performance. This systematic examination helps uncover the
sesthe spatial filter for subject S8 is highly clustered and distinct, es2contributions of individual components and configurations to
sevwhereas subject S6 shows a less distinct clustering pattern essthe overall efficacy and operational dynamics of the model.
ssand subject S2 exhibits the weakest clustering. For subject es4All statistical comparisons were conducted using paired t-tests
62958, the fuzzy centers are mostly located within the clusters gsto assess the significance of differences.

swocorresponding to each target frequency, whereas for subjects es 1) Filter Effect Analysis: In this study, we assessed the
63156 and S2, the center alignment is less clear. se7performance impact of various configurations and types of
sz In Fig. [f(C), The firing strength of the spatial fuzzy filter for sssfuzzy filters on signal processing. The primary motivation was
sssthe selected sample of subject S8 is more consistent across the ssoto elucidate the relative importance of spatial versus temporal
ssaTules, with Channels 6 and 7 significantly contributing to the ewfiltering and to determine the influence of their application
sssdecision-making process. As for subject S6, the contributions es1 sequence on the quality of the resultant data. The significance
sssvary more across different rules, with Channels 7 and 8 being estest and result are shown in Fig. [7]

es7important overall, while Channels 2, 3, and 5 play key roles in g3 a) Impact of Filter Application Order: Our experimental
sssspecific rules (#4, #1&2, and #6&10, respectively). In contrast, ssssetup tested two different sequences of applying filters to
ssothe firing strength of subject S2 has an unclear pattern. Channels sss ascertain their influence on signal integrity and feature isolation.
s«04-8 show major contributions across different rules. sss The first sequence involved applying a spatial filter followed
st To better understand these differences, we refer to Fig. [6fB).es7by a temporal filter aimed at reducing spatial noise to enhance
ezt is well-known that FFT features are crucial for SSVEP.esssignal clarity before isolating temporal features. The alternative
essln subject S8, the signal quality across all channels in this ssssequence started with a temporal filter intended to highlight
ssssample is high, enabling the spatial filter to effectively select zotemporal dynamics, followed by a spatial filter to refine the
essthe optimal channels for adaptive filtering, thereby enhancing 701signal’s spatial characteristics. Notably, significant differences
essmodel prediction accuracy. As for subject S6, the channel rwere observed predominantly in the eldBETA dataset (p <
ssrquality is moderate, as evidenced by multiple peaks in the 730.05), where the spatial filter followed by the temporal filter
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Fig. 6: Visualization of demographic subjects from the 12JFPM dataset (2s) illustrating what iFuzzyTL learned. (A) Data
distribution post-application of the spatial filter, highlighting the position (Red Star) of a sample needing explanation at 11.75Hz.
(B) Filtered EEG signals and their Fourier Transform to display the data characteristics. (C) Representation of firing strength
and the center, using min-max normalization across the channel dimension to accentuate differences within one rule. The center
is reconstructed from the query space to the raw EEG signal space as described in Section E}



12JFPM Benchmark eldBETA 7aathe 12JFPM, Benchmark, and eldBETA datasets with varying

Fkok sokk Kk ok

R ek bk o nsrule counts of 3, 5, 10, 15 and 20. Our results indicate that an
- = 5"~ usincrease from 3 to 10 rules generally enhances accuracy across

n7all evaluated datasets (p < 0.05). Particularly, the Benchmark
nsdataset shows the most significant enhancements when the
nerule count is increased from 3 to 5 and subsequently from
705 to 10, with all transitions showing statistical significance
751(p < 0.05). However, when rule counts are bigger than 10, there
75218 no significant improvement (p > 0.05). This suggests that a
7ssmoderate increase in model complexity can positively affect the
7samodel’s transfer learning capabilities but not beyond a certain
| Sptiel Fuzzy Filts | = | Spatal Fuzey Filts | —|Tewporal Fuzzy Fils] .. i Meanwhile, the 12JFPM and eldBETA datasets display

Fig. 7: Variation in accuracy as a function of different % significant improvements predominantly for transitions from 5

configurations of two fuzzy filter modules across three datasets.”>’t0 10 and 3 to 10 (p < 0.05). Summarily, Incorporating more

This figure illustrates the significant impact of filter type and msrules extends the knowledge coverage, thereby increasing the

sequence on model performance. **p < 0.01, ***p < 0.001 7secapacity for domain adaptation, which is critical for effective
motransfer learning.

90%

70%
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Accuracy

|Temporal Fuzzy Filter| |Temporal Fuzzy Filter| —>| Spatial Fuzzy Filter |

nssequence exhibited superior performance compared to the A o — Number of Rules

705Teverse sequence. 1 B3 5 W10 BE15 20 .
706 b) Evaluating Single Filter Types: The investigation also ETE—

rzexplored the effects of using each type of filter independently.
78 The application of only a spatial filter was to evaluate the
reconsequences of omitting temporal filtering, whereas using
noonly a temporal filter was intended to assess whether spatial
71information alone could suffice for specific analytical tasks. The
n2findings revealed that the exclusive use of a spatial filter signif-
nisicantly reduced performance across all datasets (p < 0.05). In
7acontrast, employing only a temporal filter maintained relatively
nshigh performance, though it was slightly outperformed by the Fig. 8: Accuracy variation as a function of the number of rules
necombined filter sequences in the Benchmark dataset. across three datasets, highlighting the impact of rule number
717 After that, the comparison of the single filter with a combi- on model performance. *p < 0.05, **p < 0.01

nsnation of two filters is also tested. The results show that the

nebi-directional combination of two filters (temporal filter —

rospatial filter and reversed) is significantly better than the ; VI. LIMITATIONS

r21single spatial filter (p < 0.05) in three datasets. the Benchmark
722dataset shows a significant improvement from a single temporal
7afilter to the bi-directional combination of two filters(p < 0.05),
722and the eldBETA dataset shows a significant improvement from
752 single temporal filter to spatial filter — temporal filter
rscombination of two filters (p < 0.05).

727 The results underscore the indispensable nature of the
nstemporal filter, whereas the spatial filter, though beneficial,
roproved less critical. The sequence of filter application did not
nosignificantly impact performance, except in certain datasets
7s1where the spatial filter followed by temporal filter configuration
7a2slightly outperformed others. These findings contrast traditional
zssapproaches such as CCA, which primarily relies on spatial fil-
ratering. Moreover, recent methodologies that integrate temporal
zssfilters, such as TRCA and ECCA, further validate the relevance 7*
760f our results [77]. To summarize, the proposed scheme s Future work can further investigate methods to reduce the
zemploys spatial and temporal filters to significantly enhance 7zsparameter count while maintaining or enhancing performance,
rsinterpretability by explicitly capturing neural activation patterns 777automatically decide the number of rules, explore adaptable
7eacross both domains, thereby improving pattern recognition 7zschannel configuration strategies for greater device compatibility,
noand facilitating transfer learning across subjects. meand develop frequency-independent processing techniques to ac-
741 2) Number of Rule Effect Analysis: In this ablation study, zsocommodate varying target frequencies such as regression model.
r2which examines the impact of the number of rules within our 71 To further enhance discrimination accuracy for short-duration
zsmodel, Fig. [ demonstrates the variability in accuracy across 72 SSVEP signals, initial efforts could focus on strengthening the

O
(@)

]
(@)

Accuracy(%)

12JFPM eldBETA Benchmark

Our study has identified several limitations with the iFuzzyTL
rwsmodel. Firstly, the model (rule count is 10) comprises approxi-
reemately 400K parameters, which leads to longer training times,
respotentially limiting its efficiency in scenarios requiring quick
medeployment and can not automatically select the number of
rerrules. Secondly, iFuzzyTL cannot be directly tested with a
msdifferent set of devices if the electrode channel locations vary,
meas the model’s performance is contingent on specific channel
7oconfigurations. Lastly, the model does not support direct testing
mwith different target frequencies without adjustments, which
7zmay restrict its application across diverse BCI setups where
msfrequency variations are common.

VII. FUTURE WORK



7sspreprocessing stage, such as introducing more features into sss [9] A. Schlogl, F. Lee, H. Bischof, and G. Pfurtscheller,
7sathe SSVEP paradigm or signal decomposition method. This ss
7sswill potentially broaden the applicability of iFuzzyTL across a s«

newider range of BCI systems and real-world scenarios. 841
sa2[10]
787 VIII. CONCLUSION 843

788

We propose iFuzzyTL, a fuzzy logic-based attention mecha- o
7sonism that enhances transfer learning in SSVEP BCI systems,84

s[11]

. . . . . . . . 846
rosignificantly reducing user-specific calibration. By integrating
. . . . 847
r1fuzzy logic with neural networks, iFuzzyTL improves trans-

oy . oy . . 848
re2ferability and interpretability, crucial for zero-shot learning.
res Experiments confirm superior recognition accuracy in zero-

sa9[12]

reacalibration scenarios, outperforming real-time benchmarks. **
H . . 1
7es1ts plug-and-play design enables deployment in dynamic ®

reenvironments without retraining, addressing key challenges .
7o7in practical BCI applications. iFuzzyTL thus offers a high-

sss[13]

resperformance, low-calibration solution for real-world SSVEP-*

reebased BClIs.
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