

“© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

iFuzzyTL: Interpretable Fuzzy Transfer Learning for Steady-state Visual Evoked Potentials Brain-Computer Interfaces System

Xiaowei Jiang^{1†}, Beining Cao^{1†}, Liang Ou¹, Yu-Cheng Chang¹, Thomas Do¹, Chin-Teng Lin^{*1}

¹Computational Intelligence and Brain Computer Interface Lab, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney

1 Abstract—The rapid evolution of Brain-Computer Interfaces (BCIs) has significantly influenced the domain of human-computer interaction, with Steady-State Visual Evoked Potentials (SSVEP) emerging as a notably robust paradigm. This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL) to enhance the adaptability and performance of SSVEP-based systems. Recent efforts have strengthened to reduce calibration requirements through innovative transfer learning approaches, which refine cross-subject generalizability and minimize calibration through strategic application of domain adaptation and few-shot learning strategies. Pioneering developments in deep learning also offer promising enhancements, facilitating robust domain adaptation and significantly improving system responsiveness and accuracy in SSVEP classification. However, these methods often require complex tuning and extensive data, limiting immediate applicability. iFuzzyTL introduces an adaptive framework that combines fuzzy logic principles with neural network architectures, focusing on efficient knowledge transfer and domain adaptation. iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms. This approach bolsters the model's precision and aligns with real-world operational demands by effectively managing the inherent variability and uncertainty of EEG data. The model's efficacy is demonstrated across three datasets: 12JFPM (89.70% accuracy for 1s with an information transfer rate (ITR) of 149.58), Benchmark (85.81% accuracy for 1s with an ITR of 213.99), and eldBETA (76.50% accuracy for 1s with an ITR of 94.63), achieving state-of-the-art results and setting new benchmarks for SSVEP BCI performance.

31 Index Terms—Brain-computer interface, SSVEP, fuzzy logic, transfer learning, attention mechanisms

33

I. INTRODUCTION

34 **B**RAIN-COMPUTER interfaces (BCIs) have become increasingly popular in human-computer interaction (HCI) 35 due to their intuitive nature[1–4]. BCIs allow for direct 36 extraction of user intentions from the brain, bypassing the 37 peripheral nervous system and muscle tissue[5]. Among the 38 various non-invasive EEG-based BCI paradigms, such as steady- 39 state visual evoked potentials (SSVEP)[6, 7], P300[8], and 40 motor imagery (MI)[9]. SSVEP is particularly noted for its high 41 accuracy and robustness. In SSVEP BCIs, users focus on visual 42 stimuli flickering at different frequencies, and their intent is 43

44 deciphered by identifying the frequency of the observed flicker. 45 Remarkably, research in this field has advanced to where forty 46 commands can be distinguished within just one second of EEG 47 data[10].

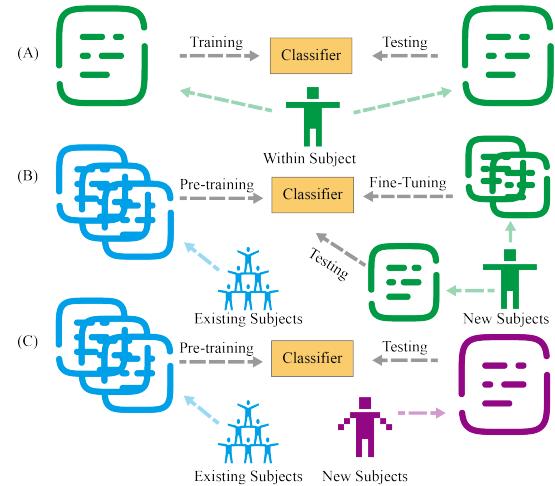


Fig. 1: The diagram of three classification scenarios. (A) intra-subject classification; (B) inter-subject few-shot classification; (C) inter-subject zero-shot classification.

48 Classification methods for SSVEP are broadly categorized 49 into unsupervised and supervised techniques. Canonical cor- 50 relation analysis (CCA)[11] and Filter-bank CCA[12] are 51 traditional unsupervised methods that determine the target 52 frequency by measuring the correlation between EEG signals 53 and predefined reference signals. Although effective, their 54 performance lags behind supervised methods, particularly with 55 shorter EEG segments[13] in the intra-subject classification 56 task, as shown in Fig. 1(A). Consequently, supervised methods 57 such as extended CCA (eCCA)[14], task-related component 58 analysis (TRCA)[15], and complex-spectrum convolutional 59 neural networks (CCNN)[16] have been developed, significantly 60 outperforming unsupervised approaches. However, these high- 61 performing supervised methods require extensive data collec- 62 tion for model training or user-specific calibration, hindering 63 their immediate usability[17, 18]. As a result, transfer learning 64 has emerged as a key research area in SSVEP studies[19, 20]. 65 This approach leverages knowledge gained from the source

[†]Xiaowei Jiang and Beining Cao contributed equally to this work.

^{*}Corresponding author: Chin-Teng Lin. Email: chin-teng.lin@uts.edu.au

66 subjects to improve performance on new subjects [21], mini-¹²⁴fuzzy rules and membership functions to process inputs, thereby
 67 minimizing the need for extensive calibration typically required for ¹²⁵maintaining a logical structure that is both transparent and
 68 personalized BCIs. Techniques such as domain adaptation are ¹²⁶intuitive. This method contrasts sharply with more opaque
 69 employed to modify models developed on one individual's data ¹²⁷models, clearly visualizing how inputs are transformed into
 70 for use with another's, significantly enhancing cross-subject ¹²⁸outputs through human-understandable rules, thus helping
 71 generalizability[22, 23]. In SSVEP, some transfer learning ¹²⁹user optimize the BCI system. Drawing on the principles of
 72 methods based on CCA using the spatial filter and templates ¹³⁰fuzzy logic [43], particularly the Takagi–Sugeno–Kang (TSK)
 73 to learn the knowledge from existing domains [13, 19] ¹³¹inference systems [44], our work introduces the interpretable
 74 Additionally, fine-tuning deep learning models pre-trained on ¹³²fuzzy transfer learning (iFuzzyTL) model—a novel Fuzzy
 75 large datasets in a domain-specific manner can substantially ¹³³Inference Systems (FISs) based on fuzzy set theory [44],
 76 reduce the discrepancy between training and implementation ¹³⁴tailored for the SSVEP task.

77 environments, offering a robust solution for SSVEP BCI ¹³⁵ FISs have been further developed into a neural network
 78 applications[16, 24]. Hybrid strategies that combine classical ¹³⁶architecture known as FNN, which can be trained using gradient
 79 signal processing with advanced machine learning techniques ¹³⁷descent optimization, providing good interpretability. A recent
 80 also play a crucial role [25–27]. These methods preprocess ¹³⁸study, KAN [45], highlights that learning dimension-specific
 81 EEG signals to extract features more invariant across subjects ¹³⁹activation functions introduces "internal degrees of freedom," a
 82 before training classifiers, thereby balancing performance with ¹⁴⁰concept naturally realized in the TSK model through centroid
 83 computational efficiency essential for real-time applications. ¹⁴¹and width parameters, distinguishing it from linear-based

84 Recent advances have focused on reducing the need for ¹⁴²models like Transformers and CNNs. One study demonstrates
 85 calibration through few-shot learning approaches, as shown ¹⁴³that introducing a Fuzzy Attention Layer significantly enhances
 86 in Fig. 1(B). Pioneering work by Chi Man Wong et al.¹⁴⁴the network's approximation capabilities by leveraging internal
 87 introduced a subject transfer-based CCA (stCCA), which ¹⁴⁵degrees of freedom [46]. Inspired by these findings, our
 88 utilizes cross-subject spatial filters and SSVEP templates to ¹⁴⁶model is derived from these fuzzy systems studies. It is
 89 enhance transferability[28]. This method achieved an impres-¹⁴⁷designed to learn robust knowledge by exploiting extensive
 90 sive information transfer rate of 198.18 ± 59.12 bits/min with ¹⁴⁸evidence and enables significant adaptation in environments
 91 minimal calibration trials for a 40-target task, Benchmark[10].¹⁴⁹characterized by limited data availability, and handle uncertainty
 92 Further, numerous modified CCA methods have been proposed ¹⁵⁰and variability[47]. Furthermore, fuzzy rule-based transfer
 93 to refine few-shot learning in SSVEP[29–32]. Alternatively, ¹⁵¹learning models, including ours, have demonstrated remarkable
 94 deep learning (DL) frameworks are renowned for their efficacy ¹⁵²capabilities in addressing the challenges posed by small
 95 in utilizing previously acquired knowledge to address chal-¹⁵³source datasets in transfer learning scenarios, ensuring reliable
 96 lences in transfer learning and domain adaptation, effectively ¹⁵⁴performance even when existing data resources are sparse [48–
 97 managing uncertainties and enhancing predictive accuracy ¹⁵⁵52], especially the application in brain signal processing [53–
 98 across related domains [21, 33]. In SSVEP, DL is also ¹⁵⁶56], and EEG-based BCI system [57].

99 being explored for their potential in few-shot SSVEP transfer ¹⁵⁷ In addressing the challenges of domain adaptation, iFuzzyTL
 100 learning, such as convolutional neural network (CNN)[34, 35] ¹⁵⁸modifies the source domain model's input and/or output spaces
 101 or Transformer-based[24], although they still necessitate some ¹⁵⁹through spatial transformations. This ensures that the fuzzy
 102 degree of calibration.

103 However, while few-shot learning approaches significantly ¹⁶¹the model's robustness even with minimal available data.
 104 reduce the reliance on extensive calibration, they do not ¹⁶²Furthermore, the capacity of fuzzy logic to cluster data
 105 eliminate it entirely. Consequently, the development of zero-¹⁶³and facilitate the separation of classes during the domain
 106 shot learning scenarios for SSVEP is crucial, as illustrated ¹⁶⁴transfer process has been proved by unsupervised transfer
 107 in Fig. 1(C). Signal correlation analysis (CA) methods, such ¹⁶⁵learning models [49, 58, 59]. Following the idea of clustering,
 108 as CCA and TRCA, which leverage parameters solely from ¹⁶⁶iFuzzyTL calculates the membership degree based on the
 109 the source domain [20, 36, 37], demonstrate the capacity for ¹⁶⁷distance between input features and the centroid of fuzzy
 110 zero-shot learning. While zero-shot CA methods generally ¹⁶⁸sets. Each centroid represents a prototype characteristic of
 111 underperform compared to their few-shot counterparts, DL-¹⁶⁹its cluster, and the distances are measured using a suitable
 112 based transfer learning techniques, using architectures like long ¹⁷⁰metric, typically Euclidean[60]. The closer an input feature is
 113 short-term memory (LSTM) and Transformers, have shown ¹⁷¹to a fuzzy centroid, the higher its membership grade is to that
 114 promising results in achieving higher accuracy[35, 38]. Despite ¹⁷²centroid. The membership grade determines the firing strength
 115 these advancements, DL methods are often criticized for their ¹⁷³of the fuzzy rules associated with the corresponding center,
 116 lack of interpretability compared to the transparent calculations ¹⁷⁴with the rule strength computed using a fuzzy operation (e.g.,
 117 of CA methods[39]. Interpretability helps explain model ¹⁷⁵sum, product, min, or max) applied to the input membership
 118 failures and enhances system stability, therefore, developing ¹⁷⁶grades. This approach enables the system to process inputs
 119 an interpretable DL framework that elucidates the underlying ¹⁷⁷that exhibit varying degrees of similarity to known categories,
 120 mechanisms remains a critical challenge in the field.

121 The Fuzzy Neural Network (FNN) [40–42] stands out as ¹⁷⁹functions makes the approximation of real-world data more
 122 a potential framework that combines the robustness of neural ¹⁸⁰robust [61], thereby accommodating real-world data's inherent
 123 networks with the clarity of fuzzy logic systems. FNNs utilize ¹⁸¹uncertainty and fuzziness. As a result, iFuzzyTL provides

182 a robust, human-interpretable, and adaptable framework for 237 the stimulus frequency f_s and its harmonic frequencies $k f_s$
 183 applications requiring nuanced decision-making processes. 238 (where k is a positive integer) [68].

184 To further refine the model's capabilities, the dual-filter 239 The most commonly used stimulus is flicker, whose chromi-
 185 structure, which includes both spatial and temporal filters as 240 nance value can be modulated sinusoidally to achieve a fixed
 186 applied by EEGNET [62], demonstrates significant enhance- 241 frequency change:

187 ments in processing EEG data. iFuzzyTL incorporates Fuzzy

188 Attention Layers [46] as spatial and temporal filters to capture

189 and generalize the central fuzzy rules within the network.

190 This architecture effectively learns the domain knowledge of

191 both spatial and temporal dependencies in the brain signals,

192 enabling more accurate and robust feature extraction and 242 Here, $C(t)$ represents the chrominance value at time t , f_s is

193 domain adaptation, especially in transfer learning scenarios. 243 the frequency of the visual stimuli which can also be defined

194 These filters in iFuzzyTL integrate fuzzy set theory with neural 244 as y in the prediction task, ϕ is the phase shift, and n denotes

195 network architectures to model SSVEP signal sequences as 245 the number of target frequencies corresponding to n stimuli.

196 fuzzy sets. This approach parallels the mechanism of vanilla 246 By decoding the EEG frequency response of the subject, one

197 dot-product self-attention [63–65], enhancing the robustness 247 can infer the target f_k that the subject is focusing on, thereby

198 and flexibility of the model in neurophysiological applications. 248 revealing their intentions.

199 By melding fuzzy logic with advanced attention mechanisms, 249 By watching the flicker and recording the EEG signal from

200 iFuzzyTL facilitates efficient knowledge transfer across varying 250 the occipital cortex, the ideal recorded brain response $x(t)$ can

201 domains and sets a new benchmark in the field of computational 251 be expressed as [69]:

202 intelligence-based transfer learning, especially for tasks involv-

203 ing complex signal patterns like SSVEP. Our model achieves the

204 highest ITR and accuracy in three datasets as zero-shot learning,

205 12JFPM(89.70% for 1s with ITR=149.58), Benchmark(85.81%

206 for 1s with ITR=213.99), and eldBETA(76.50% for 1s with 252 where A_k is the amplitude of the response at each harmonic

207 ITR=94.63), and is the State Of The Art (SOTA) model in 253 k and θ_k represents the phase associated with each harmonic

208 the SSVEP transfer learning issue. We also demonstrate how 254 frequency. This formulation highlights how the brain responds

209 the iFuzzyTL model enhances interpretability by revealing 255 to the specific frequencies of visual stimuli, allowing for

210 the temporal dynamics of firing strength and its harmonic 256 effective communication of the subject's focus.

211 relationships with target frequencies in the SSVEP task.

212 The contributions of this study are outlined as follows:

213 1) **Development of iFuzzyTL:** We introduce a novel 258 We explore the domain of SSVEP tasks, incorporating data
 214 fuzzy logic-based attention mechanism called iFuzzyTL, 259 from N subjects to employ transfer learning techniques. The
 215 designed to enhance transferability in SSVEP BCI tasks. 260 objective is to pretrain a model that adapts to new subjects under
 216 This development significantly reduces the need for user- 261 a zero-shot learning framework. Let $\mathcal{S} = \{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_N\}$
 217 specific calibration, facilitating a more efficient "plug- 262 represent the source domains, with each \mathcal{S}_n comprising pairs
 218 and-play" experience in BCI systems. 263 $\{(x_{\mathcal{S}_n}^i, y_{\mathcal{S}_n}^i) \mid x_{\mathcal{S}_n}^i \in X_n, y_{\mathcal{S}_n}^i \in Y\}_{i=1}^{m_n}$. The target domain \mathcal{T} ,

219 2) **Enhancement of Interpretability:** Our approach im- 264 which consists of unlabeled samples $\{x_{\mathcal{T}}^j \in X_{\mathcal{T}}\}_{j=1}^{m_{\mathcal{T}}}$, aims to
 220 proves the interpretability of BCI systems by integrating 265 adapt using the learned knowledge from \mathcal{S} to predict labels
 221 fuzzy logic with neural networks. We utilize a human- 266 $\{y_{\mathcal{T}}^j \in Y\}_{j=1}^{m_{\mathcal{T}}}$ effectively, achieving zero-shot learning.

227 3) **Advancements in Practical Usability:** The study show- 267 C. The proposed iFuzzyTL
 228 cases the model's enhanced capability to adapt to new 268 1) *Fuzzy Inference Systems and Their Attention Mechanisms:*
 229 subjects without the need for retraining or recalibration, 269 FISs play a crucial role in modeling uncertainty and imprecision
 230 markedly boosting its practical usability and reliability 270 in numerous fields, providing a sophisticated framework to
 231 in various real-world settings. 271 manage complex and ambiguous data sets [70–73]. At the core
 232
 233 II. METHODS AND MATERIALS
 234
 235 A. Explanation of SSVEP Principles and Stimulus Frequency
 236 Modulation
 237 The principle behind SSVEP can be understood as a response
 238 of the sensory cortex to visual stimuli presented at specific
 239 frequencies, such as flicker [66] or other reversal patterns [67].
 240 This interaction results in an oscillatory brain response at both
 241

$$C(t) = \begin{bmatrix} 255 \\ 255 \\ 255 \end{bmatrix} \times \left(\frac{1 + \sin(2\pi f_s t + \phi)}{2} \right) \quad (1)$$

$$x(t) = \sum_{k=1}^n A_k \sin(2\pi k f_s t + \theta_k) \quad (2)$$

257 B. Task Definition and Data Structure

258 We explore the domain of SSVEP tasks, incorporating data
 259 from N subjects to employ transfer learning techniques. The
 260 objective is to pretrain a model that adapts to new subjects under
 261 a zero-shot learning framework. Let $\mathcal{S} = \{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_N\}$
 262 represent the source domains, with each \mathcal{S}_n comprising pairs
 263 $\{(x_{\mathcal{S}_n}^i, y_{\mathcal{S}_n}^i) \mid x_{\mathcal{S}_n}^i \in X_n, y_{\mathcal{S}_n}^i \in Y\}_{i=1}^{m_n}$. The target domain \mathcal{T} ,
 264 which consists of unlabeled samples $\{x_{\mathcal{T}}^j \in X_{\mathcal{T}}\}_{j=1}^{m_{\mathcal{T}}}$, aims to
 265 adapt using the learned knowledge from \mathcal{S} to predict labels
 266 $\{y_{\mathcal{T}}^j \in Y\}_{j=1}^{m_{\mathcal{T}}}$ effectively, achieving zero-shot learning.

267 C. The proposed iFuzzyTL

268 1) *Fuzzy Inference Systems and Their Attention Mechanisms:*
 269 FISs play a crucial role in modeling uncertainty and imprecision
 270 in numerous fields, providing a sophisticated framework to
 271 manage complex and ambiguous data sets [70–73]. At the core
 272 of these systems lie the concepts of fuzzy sets and membership
 273 functions, where the degree of membership $\mu_A(x)$ quantifies
 274 how closely an element x conforms to a fuzzy set A . The TSK
 275 model is a prevalent form of FIS [44], characterized by its
 276 use of IF-THEN rules to articulate the relationships between
 277 inputs and outputs. Specifically, a $Zero^{th}$ order TSK system
 278 utilizes the following rule structure:

$$\text{If } x_1 \text{ is } A_{1,r} \text{ and } \dots \text{ and } x_D \text{ is } A_{D,r}, \quad (3)$$

$$\text{then } y = u_r, \quad r = 1, \dots, R, \quad (4)$$

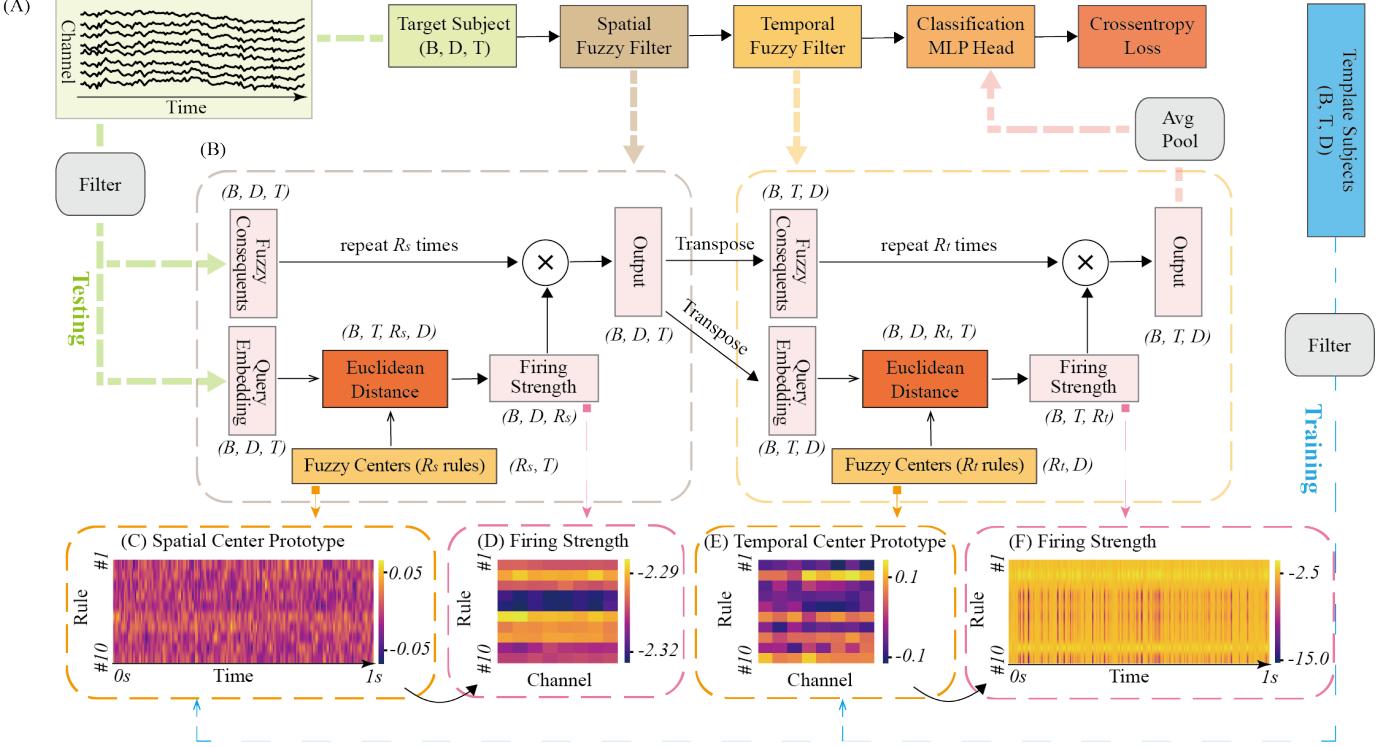


Fig. 2: Illustration of the architecture for predicting target frequencies in an SSVEP task using the proposed iFuzzyTL model. **(A)** Main structure of the iFuzzyTL model, where B represents the batch size, D denotes the number of feature dimensions, and T indicates the number of time points. **(B)** Design of the spatial and temporal fuzzy filters, where R_s and R_t denote the total number of rules for the spatial and temporal fuzzy filters, respectively. **(C)** Detected center using the spatial fuzzy filter. **(D)** Firing strength of a demonstration sample to show the learned neural pattern as identified by the spatial fuzzy filter. **(E)** Detected center using the temporal fuzzy filter. **(F)** Firing strength of a demonstration sample to show the learned neural pattern as identified by the temporal fuzzy filter.

where x_i denotes the input variables, D represents the number of feature dimensions, R denotes the total number of rules, u_r is the consequent of the r^{th} rule, and $A_{i,r}$ are the fuzzy sets corresponding to the r^{th} rule for i^{th} sample. Each fuzzy set is defined by the membership functions $A_{i,r}(x_i)$, where i ranges from 1 to D .

The firing strength α_r for rule r , which quantifies the degree to which the rule's conditions are satisfied and directly influence the rule's impact on the model's output, is computed as the product of the membership values for all input variables:

$$\alpha_r(x) = \prod_{i=1}^D A_{i,r}(x_i), \quad (5)$$

To facilitate a probabilistic interpretation of the outputs, the TSK FIS normalizes the firing strength α_r as \bar{f}_r , treating the normalized values as a probability distribution:

$$\bar{f}_r(x) = \frac{\alpha_r(x)}{\sum_{i=1}^R \alpha_i(x)} \quad (6)$$

where R is the number of rules.

The aggregated output y of the TSK FIS is then computed using a weighted average of the rule outputs:

$$y = \sum_{j=1}^R \frac{\alpha_j(x)u_j}{\sum_{i=1}^R \alpha_i(x)}, \quad (7)$$

$$\alpha_r(x) = \prod_{d=1}^D \exp\left(-\frac{(x_d - m_{r,d})^2}{2\sigma_{r,d}^2}\right) \quad (8)$$

$$= \exp\left(-\sum_{d=1}^D \frac{(x_d - m_{r,d})^2}{2\sigma_{r,d}^2}\right) \quad (9)$$

Here, r indexes the fuzzy rules, $m_{r,d}$ and $\sigma_{r,d}$ denote the centers and widths of the Gaussian fuzzy sets for the feature dimension d of each rule r , respectively. Both parameters $m_{r,d}$ and $\sigma_{r,d}$ are learnable and are optimized during training.

The normalized firing strength $\bar{f}_r(x)$ can be then simplified to:

$$\begin{aligned} \bar{f}_r(x) &= \frac{\alpha_r(x)}{\sum_{i=1}^R \alpha_i(x)} \\ &= \frac{\exp\left(-\sum_{d=1}^D \frac{(x_d - m_{r,d})^2}{2\sigma_{r,d}^2}\right)}{\sum_{i=1}^R \exp\left(-\sum_{d=1}^D \frac{(x_d - m_{i,d})^2}{2\sigma_{i,d}^2}\right)} \\ &= \text{softmax}\left(-\sum_{d=1}^D \frac{(x_d - m_{r,d})^2}{2\sigma_{r,d}^2}\right) \end{aligned} \quad (10)$$

306 Incorporated within this framework is an attention mechanism that enhances the interpretability and effectiveness of the FIS [46]. This mechanism is formally defined by the following equation:

$$\text{Attention}(x) = \text{softmax}(f(x)) \cdot g(x), \quad (11)$$

310 where $f(x)$ denotes the mapping from inputs to attention scores within the TSK FIS, specifically corresponding to the normalized firing strength $\bar{f}_r(x)$. The function $g(x)$ represents the transformation applied to the inputs, which modulates the influence of each input based on the computed attention scores.

315 Here, $g(x)$ effectively utilizes the consequents u_r associated with each rule, thereby influencing the output based on the

317 degree of relevance as determined by the attention mechanism.

318 2) *Fuzzy Attention Layer as an Adaptive Spatial Filter in Signal Processing:* Consider an input signal $x(t)$ processed

320 through an adaptive filter. The output $Y(t)$ at time t is modeled as an adaptive linear combiner (ALC):

$$Y(t) = W_S^T \cdot x(t)$$

322 where $x(t)$ denotes the input feature vector at time t , and W_S represents the adaptive weights for all channels as a spatial filter.

325 By incorporating this fuzzy attention mechanism, we assign the adaptive weights as $W_S^T = \bar{f}_r(x(t))$, following the eq. (7) for each rule r and the filter's output $Y_S(t)$ becomes:

$$Y_S(t) = \sum_{r=1}^R \bar{f}_r(W_r^Q x(t)) \cdot W_r^V x(t) \quad (13)$$

328 where the projections are parameter matrices W_r^V and W_r^Q for rule r . This formulation enables the filter to adaptively modulate the importance of different features of $x(t)$ based on their alignment with the fuzzy rule centers. The fuzzy attention mechanism dynamically adjusts the attention weights in response to the proximity of the input features to the fuzzy set centers, effectively allowing the filter to highlight or suppress certain signal features according to their fuzzy membership values.

337 3) *Fuzzy Attention as an Adaptive Temporal Filter:* Here, fuzzy attention also functions as a temporal filter. The output Y for each channel c is given by:

$$Y(c) = W_T^T x(c) \quad (14)$$

340 where $x(c)$ represents the input feature matrix for channel c , and W_T is the adaptive weight vector. This vector modulates the attention mechanism in the time domain, corresponding to each channel c .

344 Thus, the temporal filter's output becomes:

$$Y_T(c) = \sum_{r=1}^R \bar{f}_r(W_r^Q x(c)) \cdot W_r^V x(c) \quad (15)$$

345 where the projections are parameter matrices W_r^V and W_r^Q corresponding to rule r . This configuration allows the Fuzzy Attention Layer to adaptively weigh time points based on their proximity to the fuzzy rule centers. This enhances

349 the filter's ability to selectively focus on the most relevant temporal features for each channel c , thus improving the signal's interpretability and the overall accuracy of the analysis.

352 4) *Input Recovery in Single-Layer Linear Networks:* This

353 section demonstrates that the original input of a single-layer linear transformation, referred to as a projector, can be

355 reconstructed from its output, termed the query. This recovery is contingent on the condition that the transformation matrix

356 W is non-singular. The invertibility of W thus ensures the feasibility of interpretability within the iFuzzyTL framework.

359 Consider the linear transformation defined by:

$$y = Wx + b \quad (16)$$

360 where y represents the output query, x the original input, W the transformation matrix, and b the bias vector.

362 To retrieve x from y , rearrange the above equation to:

$$Wx = y - b \quad (17)$$

363 Given W is non-singular, the inversion of W is feasible, allowing for the calculation of x by:

$$x = W^{-1}(y - b) \quad (18)$$

365 This illustrates that the original input x is retrievable directly from the output y when W is invertible.

367 For scenarios where W is singular or not a square matrix, the recovery of x employs the Moore-Penrose pseudoinverse $368 W^+$:

$$x = W^+(y - b) \quad (19)$$

370 The computation of W^+ utilizes the Singular Value Decomposition (SVD) of W :

$$W = U\Sigma V^T \quad (20)$$

372 where U and V are orthogonal matrices, and Σ contains the singular values.

374 The pseudoinverse W^+ is then:

$$W^+ = V\Sigma^+ U^T \quad (21)$$

375 with Σ^+ derived by inverting the non-zero singular values of Σ and taking the transpose.

377 This approach guarantees that if the dimensions of the input data and the output query match, the reconstructed input will correspond to the original input.

380 In conclusion, under the condition that W is either invertible or suitably approximated via its pseudoinverse, the reversibility of the input from the output in a single-layer linear model is effectively demonstrated.

384 5) *Fuzzy Attention for SSVEP Transfer Learning:* Our proposed model, iFuzzyTL, integrates three key components

386 tailored for SSVEP signal processing: the spatial fuzzy filter, the temporal fuzzy filter, and the classification head. Both fuzzy filters follow the design as the adaptive filers in eqs. (13) and (15).

389 The model architecture is depicted in Fig. 2(A). The spatial fuzzy filter initially processes the data, considering

391 channel-like centers (R_s, C), followed by a transpose operation.

392 Subsequently, the temporal fuzzy filter applies, which adapts

393 to signal-like centers (R_t, S), where R_s and R_t denote the

total number of rules for the spatial and temporal fuzzy filters, and 2 s included to evaluate model performance over extended durations. The results indicate that iFuzzyTL consistently encode both spatial and temporal dimensions of the SSVEP outperforms other baseline methods, achieving the highest signals effectively. The structure of the spatial and temporal fuzzy filters are shown in Fig. 2(B).

The classification head consists of a 2-layer Multi-Layer Perceptron (MLP) model with ReLU (Rectified Linear Unit) to iFuzzyTL.

activation and a dropout rate of 0.3 during training. The number of output nodes in the classification head corresponds to the number of labels.

The primary goal is to classify the SSVEP target frequencies accurately. We employ a multiclass cross-entropy loss function for this purpose, defined as:

$$\text{loss}(y_{o,c}, p_{o,c}) = - \sum_{c=1}^M y_{o,c} \log(p_{o,c}) \quad (22)$$

Where $y_{o,c}$ denotes the true label, $p_{o,c}$ represents the predicted probability for class c , and M is the total number of classes or target frequencies in the classification schema. This loss function quantifies the discrepancy between predicted probabilities and the actual class labels, facilitating practical model training to recognize SSVEP frequencies.

414 D. Evaluation Metrics

To evaluate the performance of each method, we used two primary metrics: classification accuracy and ITR. Classification accuracy is defined as the ratio of correctly classified samples to the total number of test samples.

The ITR, measured in bits per minute (bits/min), quantifies the speed and accuracy of a brain-computer interface and is computed as follows [74]:

$$\text{ITR} = \frac{60}{T + T_{run}} [\log_2 N + P \log_2 P + (1 - P) \log_2 \frac{1 - P}{N - 1}] \quad (23)$$

where T is the average time required for each selection operation, T_{run} is the running time, N represents the number of possible classes, and P is the classification accuracy. Following previous studies [15, 69], an additional 0.5 s was included in T to account for gaze shift time. For example, if the data length is 1 s, T is set to 1.5 s for the ITR calculation using the formula above.

In this study, we focused on zero-shot inter-subject classification experiments. We employed the leave-one-out cross-validation method, where the data from one subject was used as the test set while the data from all other subjects formed the training set, as shown in Fig. 1(C) and 2(A). This process was repeated until each subject had been used as the test subject once, ensuring a complete evaluation.

The baseline model and dataset description are in Supplementary Sections 1.1 and 1.2, respectively.

III. RESULTS

The average classification accuracies and ITR of the seven methods on the 12JFPM dataset are presented in Table I and Supplementary Table I, respectively. Data lengths range from 0.5 s to 1.2 s in 0.1 s intervals, with additional lengths of 1.5 s and 2 s. For classification accuracies, a two-way repeated measures ANOVA (rm-ANOVA) revealed significant main effects of data length ($F(9, 81) = 244.49, p < 0.001$) and method ($F(7, 63) = 7.17, p < 0.001$), as well as a significant interaction effect between them ($F(63, 567) = 15.39, p < 0.001$). Paired t-tests were conducted at each data length to compare iFuzzyTL with baseline methods, with statistical results summarized in Table I. iFuzzyTL showed significant improvements over all methods for data lengths ranging from 0.5 s to 1.1 s. When the data lengths are longer than 1.2 s, the accuracy of FB-SSVEPformer is higher than that of iFuzzyTL ($p > 0.05$). Regarding ITR, the rm-ANOVA also indicated significant main effects of data length ($F(9, 81) = 13.86, p < 0.001$) and method ($F(7, 63) = 7.01, p < 0.001$), along with a significant interaction effect between them ($F(63, 567) = 6.76, p < 0.001$). The detailed statistical results by paired t-tests are presented in Supplementary Table I. The results revealed that iFuzzyTL outperformed all baseline methods.

The average classification accuracies and ITR for the seven methods on the eldBETA dataset are shown in Table II and Supplementary Table II, respectively. Data lengths span from 0.5 s to 1.2 s in 0.1 s intervals, with additional evaluations at 1.5 s and 2 s. The two-way rm-ANOVA for classification accuracies revealed significant main effects of data length ($F(9, 891) = 530.76, p < 0.001$) and method ($F(7, 693) = 29.28, p < 0.001$), with a significant interaction effect ($F(63, 6237) = 18.32, p < 0.001$). Paired t-tests further indicated significant differences between iFuzzyTL and other methods, except some data lengths of CCNN, SSVEPformer, and FB-SSVEPformer. Particularly, iFuzzyTL significantly outperformed CCNN at 0.5 s, 0.7 s, 1.1 s, 1.5 s, and 2.0 s ($p < 0.05$) and FB-SSVEPformer at 0.7 s ($p < 0.05$). For ITR, significant main effects of data length ($F(9, 891) = 72.93, p < 0.001$) and method ($F(7, 693) = 31.71, p < 0.001$), as well as a significant interaction effect ($F(63, 6237) = 29.80, p < 0.001$) were found. The detailed statistical results by paired t-tests are presented in Supplementary Table II. The ITR of iFuzzyTL is higher than others at 1.5 s and 2.0 s ($p < 0.05$). The average classification accuracies and ITR on the Benchmark dataset are reported in Table ?? and Supplementary Table III, respectively. Data lengths range from 0.5 s to 1.2 s, with additional evaluations at 1.5 s and 2 s. For classification accuracies, the two-way rm-ANOVA showed significant main effects of data length ($F(9, 306) = 550.93, p < 0.001$) and method ($F(238) = 16.55, p < 0.001$), and a significant interaction effect ($F(63, 2142) = 20.29, p < 0.001$). Paired t-tests indicated significant differences between iFuzzyTL and TRCA, eCCA, EEGNET, SCCA_qr methods ($p < 0.001$). As for CCNN, the accuracy of iFuzzyTL is higher at the data length longer than 0.8 s ($p < 0.05$). There is no significant difference among iFuzzyTL, SSVEPformer,

501 and FB-SSVEPformer ($p > 0.05$) of accuracy. Regarding ITR, 557 achieved by our model significantly surpassed that of TRCA, 502 significant main effects of data length ($F(9, 306) = 46.20$, 558 EEGNet, SCCA_qr, and SSVEPformer ($p < 0.05$), as shown 503 $p < 0.001$) and method ($F(7, 238) = 25.60$, $p < 0.001$), as 559 in Fig. 4.

504 well as a significant interaction effect ($F(63, 2142) = 22.81$,

505 $p < 0.001$), were observed. Paired t-tests indicated significant 560

506 differences between iFuzzyTL and TRCA, eCCA, EEGNET,

507 SCCA_qr ($p < 0.001$). the ITR of iFuzzyTL is higher

508 than CCNN ($p < 0.05$) except at 0.6 s, 0.7 s, and 0.8 s

509 ($p > 0.05$). There is no significant difference among iFuzzyTL,

510 SSVEPformer, and FB-SSVEPformer ($p > 0.05$) of ITR.

511 Our method exhibited a gradual decline in performance

512 across three datasets as the input length decreased. From a

513 signal processing perspective, shorter window lengths result

514 in a reduced number of periodic components, leading to

515 inadequate frequency resolution that affect the recognition

516 of target frequencies [75, 76]. For model training, the limited

517 frequency information contained in shorter data sequences

518 results in a diminished quality of the training dataset. During

519 the training process, the model may rely on features which are

520 unrelated to SSVEP, resulting in overfitting and a subsequent

521 decrease in validation set accuracy.

522 IV. REAL-TIME FEASIBILITY EVALUATION

523 To evaluate the feasibility of the proposed model in real- 524 world applications, we conducted an online experiment con- 525 sisting of a data collection session and an online test session. 526 The descriptions of Experiment Design, Participants and Data 527 Acquisition, Procedure for Training Data Collection, and Data 528 Preprocessing are presented in Supplementary Material Section 529 II.

530 During the online testing phase, we adopted a 'leave-one-out' 531 cross-validation strategy for evaluation. Specifically, the model

532 was trained using data from five out of six trained subjects, 533 with the remaining subject's data reserved for testing. This 534 pre-trained model was then incorporated into our online BCI 535 system.

536 Each online trial commenced with the presentation of a cue, 537 directing the subject to focus on a designated flashing flicker. 538 The onset of the flicker was marked by a 'start' signal sent to the 539 system terminal via UDP, initiating the recording of task-related

540 EEG data. Upon completion of the flicker sequence, lasting 541 1.5 seconds, an 'end' marker was transmitted, signaling the 542 cessation of data recording and the start of data segmentation. 543 Considering that spontaneous EEG signals in the initial phase 544 may introduce noise and variability [69], our model utilized 545 EEG data from the 0.5 to 1.5 second interval for input.

546 Each subject participated in three rounds of the experiment, 547 yielding a total of 36 trials per subject. The performance 548 evaluation of our model was based on the accuracy and 549 ITR recorded during these 1-second real-time experiments. 550 Additionally, any trials experiencing dropped frames in the 551 AR interface were excluded from the analysis to maintain the 552 integrity and consistency of the dataset.

553 The results demonstrated a high level of effectiveness, with 554 an average accuracy of $90.13\% \pm 2.27\%$, and an ITR of 555 164.93 ± 9.11 bits/min. After this, the baseline performances 556 are tested based on the recorded data. Notably, the accuracy

V. DISCUSSION

561 In the iFuzzyTL framework, the *center* plays a key role by 562 encapsulating domain knowledge derived from source domains. 563 It acts as a general *template*, effectively capturing the essence 564 of the source domain characteristics. By computing the distance 565 between this learned center and incoming data points, the model 566 robustly leverages the underlying domain knowledge to make 567 informed decisions. This mechanism facilitates robust decision- 568 making and significantly enhances the model's transferability 569 across different SSVEP tasks. Incorporating the center as a 570 template proves advantageous for SSVEP applications, where 571 the ability to generalize across varying conditions and subjects 572 is crucial. Consequently, iFuzzyTL offers an improved approach 573 to handling the inherent variability in SSVEP signals, ensuring 574 higher performance and reliability in real-world scenarios.

575 A. Sample-wised Interpretability Analysis

576 1) Demo Analysis of SSVEP Target Frequency Identification

577 *Using iFuzzyTL Model:* To provide an intuitive understanding 578 of how the iFuzzyTL model identifies the SSVEP target 579 frequency, we present a demo sample from the best-performing 580 subject (S8) in the 12JFPM dataset, with a target frequency of 581 9.25 Hz, as shown in Fig. 2(A). Fig. 2(C) illustrates that the 582 spatial fuzzy filter's center pattern resembles the EEG signal, 583 with distinct phases for each rule. In Fig. 2(D), the border firing 584 strength indicates that the contributions of rules #4 and #5 for

585 this sample are minimal, while channels 1 and 2 contribute 586 significantly to rule #6. After applying the spatial filter, Fig. 2(E) demonstrates the 587 center of the temporal fuzzy filter for subject S8, displaying the 588 neural patterns captured across 10 separate rules. Particularly, 589 rule #2 shows a high contribution in most channels, whereas 590

591 rules #1 and #5 exhibit the lowest contribution. Additionally, 592 Fig. 2(F) reveals that the firing strength in the temporal fuzzy 593 filter indicates a stable pattern for rules #4-8 and #10 in this 594 sample.

595 *2) Analysis of Temporal Firing Strength Features in the* 596 *Frequency Domain:* To further investigate how the fuzzy rules 597 learn features in the time domain, we compute the FFT of 598 the input feature that triggered the fuzzy rules in the proposed 599 temporal filter. The results indicate that the firing strength 600 exhibits peaks at harmonic frequencies in correct case, as

601 demonstrated in Fig. 5. In the left panel, corresponding to a target frequency of 602 9.25 Hz, a prominent peak is observed at 28 Hz. This shift is 603 attributed to the relatively low sample rate, which causes the 604 harmonic frequencies in the FFT to exhibit slight displacements. 605 The middle panel illustrates a target frequency of 10.25 Hz, with 606 peaks observed at both 10.5 Hz and 41.5 Hz. In contrast, the 607

608 right panel presents a less favorable case with a target frequency 609 of 13.25 Hz, where peaks near 27 Hz are detected across several 610 rules, indicating that not all rules accurately capture the target 611 frequency, although some rules remain effective.

TABLE I: Average accuracies (%) across subjects for six methods at different data lengths on Dataset 12JFPM. Asterisks indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$). The percentages in brackets is standard deviation.

Model	0.5s	0.6s	0.7s	0.8s	0.9s	1.0s	1.1s	1.2s	1.5s	2.0s
TRCA	18.33% (6.32%) ***	22.94% (9.16%) ***	30.89% (12.52%) ***	36.61% (15.98%) ***	45.67% (18.27%) ***	52.94% (22.06%) ***	57.61% (22.83%) ***	62.11% (24.00%) ***	74.39% (23.63%) **	84.39% (19.72%) *
eCCA	54.94% (21.86%) *	61.11% (25.97%) *	64.39% (27.22%) **	67.78% (28.34%) *	73.11% (27.47%) *	75.56% (26.35%) *	77.44% (26.92%) *	79.78% (24.80%) *	85.28% (21.88%)	88.06% (20.34%)
CCNN	64.61% (23.43%) ***	66.56% (23.43%) ***	72.33% (23.23%) ***	77.36% (18.06%) ***	82.50% (18.06%) ***	84.00% (18.09%) ***	86.11% (14.72%) ***	88.83% (13.54%) ***	92.39% (10.46%)	95.44% (7.86%)
EEGNET	50.11% (17.58%) **	56.00% (23.12%) **	62.94% (21.36%) ***	66.44% (23.31%) ***	70.28% (23.60%) ***	75.11% (22.46%) **	77.61% (21.88%) *	79.72% (22.35%) *	87.28% (15.46%)	90.44% (13.17%)
SCCA_qr	54.83% (21.93%) *	61.44% (24.54%) *	66.89% (26.25%) **	72.39% (27.99%) *	76.44% (27.26%) *	78.83% (25.84%) *	81.72% (25.07%)	84.17% (22.66%)	88.78% (16.72%)	93.44% (12.85%)
SSVEPformer	66.22% (22.40%)	68.67% (22.12%)	75.22% (21.91%)	78.67% (21.58%)	82.11% (19.61%)	84.06% (18.17%)	86.06% (16.79%)	88.56% (14.32%)	92.61% (11.08%)	95.00% (8.36%)
FB-SSVEPformer	65.83% (22.98%)	72.39% (22.99%)	77.44% (21.49%)	82.17% (20.30%)	85.83% (18.87%)	87.61% (17.45%)	89.39% (15.99%)	91.28% (13.85%)	94.78% (9.82%)	96.00% (9.12%)
iFuzzyTL	67.92% (12.59%)	75.29% (15.28%)	81.91% (16.42%)	84.76% (15.36%)	88.64% (16.10%)	89.70% (14.89%)	90.22% (13.99%)	90.14% (13.88%)	91.97% (15.42%)	92.41% (14.26%)

Note: Entries in bold indicate the model with the best performance.

TABLE II: Average accuracies (%) across subjects for six methods at different data lengths on Dataset eldBETA. Asterisks indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$). The percentages in brackets is standard deviation.

Model	0.5s	0.6s	0.7s	0.8s	0.9s	1.0s	1.1s	1.2s	1.5s	2.0s
TRCA	42.05% (19.30%) ***	44.17% (20.15%) ***	45.75% (20.98%) ***	48.40% (21.45%) ***	51.14% (22.69%) ***	52.54% (23.20%) ***	55.17% (23.26%) ***	56.51% (23.68%) ***	60.48% (24.23%) ***	61.86% (24.63%) ***
eCCA	46.60% (19.35%) ***	51.16% (20.26%) ***	55.52% (21.57%) ***	58.73% (22.32%) ***	62.60% (22.47%) ***	65.54% (22.62%) ***	68.16% (22.32%) ***	70.54% (21.74%) ***	75.30% (20.66%) ***	80.14% (19.25%) ***
CCNN	62.29% (21.09%) **	65.05% (21.14%)	68.63% (21.52%) ***	70.90% (21.52%)	73.05% (21.62%)	74.95% (21.04%)	76.30% (20.70%) **	77.63% (20.47%)	81.14% (19.04%) ***	83.98% (17.97%) **
EEGNET	57.51% (21.14%) ***	59.46% (22.38%) ***	62.00% (23.06%) ***	64.37% (22.63%) ***	65.97% (23.22%) ***	67.25% (23.43%) ***	68.65% (23.20%) ***	69.24% (23.76%) ***	71.76% (23.29%) ***	74.13% (22.87%) ***
SCCA_qr	41.70% (19.48%) ***	49.22% (21.13%) ***	53.84% (22.04%) ***	57.92% (22.37%) ***	61.38% (22.69%) ***	64.75% (22.68%) ***	67.35% (22.56%) ***	69.30% (22.63%) ***	74.62% (21.52%) ***	81.00% (18.90%) ***
SSVEPformer	62.73% (23.12%)	65.71% (23.18%)	69.49% (22.72%)	71.25% (22.62%)	73.48% (22.60%)	75.41% (21.89%)	76.79% (21.08%)	77.84% (21.69%)	81.33% (19.85%)	83.97% (18.31%)
FB-SSVEPformer	61.14% (23.97%)	64.27% (23.75%)	67.13% (23.79%) *	69.89% (23.55%)	72.43% (23.07%)	73.97% (22.72%)	75.54% (22.21%)	76.98% (22.13%)	80.14% (20.94%)	83.30% (19.67%)
iFuzzyTL	66.48% (15.09%)	66.85% (15.46%)	74.02% (16.91%)	71.45% (17.40%)	74.00% (17.54%)	76.50% (17.19%)	80.17% (17.34%)	78.82% (18.05%)	84.16% (16.35%)	86.70% (15.67%)

Note: Entries in bold indicate the model with the best performance.

TABLE III: Average accuracies (%) across subjects for six methods at different data lengths on Dataset Benchmark. Asterisks indicate significant differences between iFuzzyTL and the other methods, as assessed by paired t-tests (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$). The percentages in brackets is standard deviation.

Model	0.5s	0.6s	0.7s	0.8s	0.9s	1.0s	1.1s	1.2s	1.5s	2.0s
TRCA	42.05% (19.30%) ***	44.17% (20.15%) ***	45.75% (20.98%) ***	48.40% (21.45%) ***	51.14% (22.69%) ***	52.54% (23.20%) ***	55.17% (23.26%) ***	56.51% (23.68%) ***	60.48% (24.23%) ***	61.86% (24.63%) ***
eCCA	46.60% (19.35%) ***	51.16% (20.26%) ***	55.52% (21.57%) ***	58.73% (22.32%) ***	62.60% (22.47%) ***	65.54% (22.62%) ***	68.16% (22.32%) ***	70.54% (21.74%) ***	75.30% (20.66%) ***	80.14% (19.25%) ***
CCNN	62.29% (21.09%) **	65.05% (21.14%)	68.63% (21.52%) ***	70.90% (21.52%)	73.05% (21.62%)	74.95% (21.04%)	76.30% (20.70%) **	77.63% (20.47%)	81.14% (19.04%) ***	83.98% (17.97%) **
EEGNET	57.51% (21.14%) ***	59.46% (22.38%) ***	62.00% (23.06%) ***	64.37% (22.63%) ***	65.97% (23.22%) ***	67.25% (23.43%) ***	68.65% (23.20%) ***	69.24% (23.76%) ***	71.76% (23.29%) ***	74.13% (22.87%) ***
SCCA_qr	41.70% (19.48%) ***	49.22% (21.13%) ***	53.84% (22.04%) ***	57.92% (22.37%) ***	61.38% (22.69%) ***	64.75% (22.68%) ***	68.65% (23.20%) ***	69.24% (23.76%) ***	71.76% (23.29%) ***	74.13% (22.87%) ***
SSVEPformer	62.73% (23.12%)	65.71% (23.18%)	69.49% (22.72%)	71.25% (22.62%)	73.48% (22.60%)	75.41% (21.89%)	76.79% (21.08%)	77.84% (21.69%)	81.33% (19.85%)	83.97% (18.31%)
FB-SSVEPformer	61.14% (23.97%)	64.27% (23.75%)	67.13% (23.79%) *	69.89% (23.55%)	72.43% (23.07%)	73.97% (22.72%)	75.54% (22.21%)	76.98% (22.13%)	80.14% (20.94%)	83.30% (19.67%)
iFuzzyTL	66.48% (15.09%)	66.85% (15.46%)	74.02% (16.91%)	71.45% (17.40%)	74.00% (17.54%)	76.50% (17.19%)	80.17% (17.34%)	78.82% (18.05%)	84.16% (16.35%)	86.70% (15.67%)

Note: Entries in bold indicate the model with the best performance.

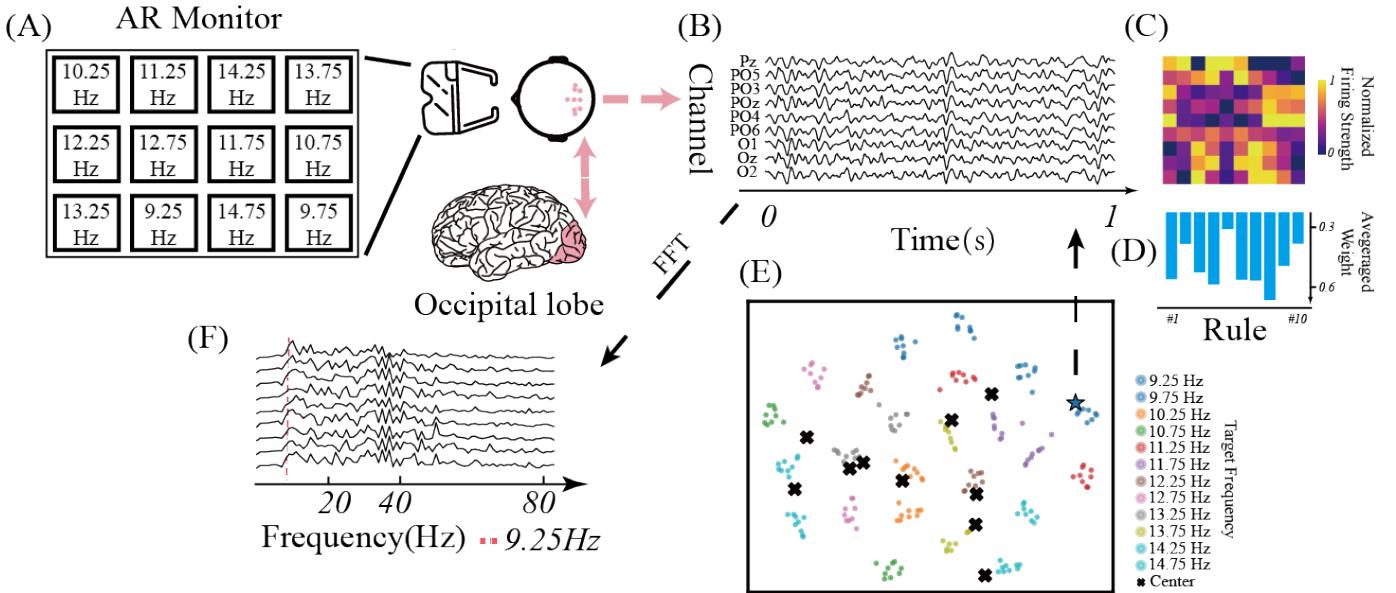


Fig. 3: Detailed illustration of a real-time SSVEP experiment setup. (A) Demonstration setup for the experiment. The EEG channels are located in the occipital lobe. (B) Example of a filtered EEG signal used in the demo. (C) Min-max normalized firing strength across the rules. (D) Averaged weight distribution among the rules (without normalization). (E) Data distribution following the application of the spatial filter. (F) Fourier Transform results of the demo EEG signal.

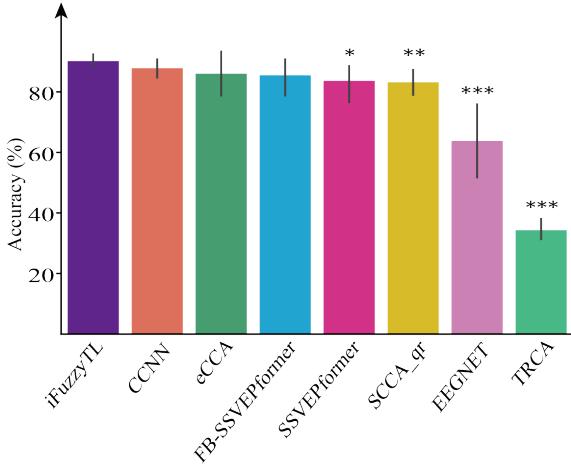


Fig. 4: Comparison of the model with other SOTA models in the online experiment. The significant differences between iFuzzyTL model and other models are highlighted by paired t-tests ($*p < 0.05$, $**p < 0.01$, $***p < 0.001$).

612 B. Deeper Analysis of Correct and Incorrect Cases

613 For deeper understanding of correct and incorrect cases of iFuzzyTL model, we randomly select one sample from the 614 same target frequency (11.75 Hz) from three subjects (S2, S6, 615 and S8) who exhibited varying performance levels (input data 616 length as 1s: S2: 55.12%, S6: 96.95%, S8: 99.17%; input data 617 length as 2s: S2: 55.12%, S6: 100%, S8: 100%). Subject S8 618 demonstrated the best performance among all subjects in the 619 12JFPM dataset across all tested models, while subject S6 620 performed better than subject S2 but worse than subject S8. 621

622 Subject S2 showed the worst performance across all models. 623 Then, we compare how the iFuzzyTL model processes the 624 EEG signal in three different-quality subjects.

625 As shown in Fig. 6(A), the data distribution after applying 626 the spatial filter for subject S8 is highly clustered and distinct, 627 whereas subject S6 shows a less distinct clustering pattern 628 and subject S2 exhibits the weakest clustering. For subject 629 S8, the fuzzy centers are mostly located within the clusters 630 corresponding to each target frequency, whereas for subjects 631 S6 and S2, the center alignment is less clear.

632 In Fig. 6(C), The firing strength of the spatial fuzzy filter for 633 the selected sample of subject S8 is more consistent across the 634 rules, with Channels 6 and 7 significantly contributing to the 635 decision-making process. As for subject S6, the contributions 636 vary more across different rules, with Channels 7 and 8 being 637 important overall, while Channels 2, 3, and 5 play key roles in 638 specific rules (#4, #1&2, and #6&10, respectively). In contrast, 639 the firing strength of subject S2 has an unclear pattern. Channels 640-8 show major contributions across different rules.

641 To better understand these differences, we refer to Fig. 6(B). 642 It is well-known that FFT features are crucial for SSVEP. 643 In subject S8, the signal quality across all channels in this 644 sample is high, enabling the spatial filter to effectively select 645 the optimal channels for adaptive filtering, thereby enhancing 646 model prediction accuracy. As for subject S6, the channel 647 quality is moderate, as evidenced by multiple peaks in the 648

FFT, which include both target and harmonic frequencies. 649 Consequently, the filter relies on information from more 650 channels to achieve satisfactory results and eventually make 651 correct predictions. Conversely, subject S2 exhibits poor overall 652 channel quality, with detectable peaks in Channels 6, 7, 8, 9, 653 and 10 in the FFT though the peak is not clear. However, 654 Channels 1, 2, and 3 display multiple unclear frequency peaks. 655 This causes the spatial filter to apply different rules when 656 selecting these channels. Thus, distinctive rules are created in 657 a fragmented manner, and incorrect predictions are made in 658 subject S2.

659 Similarly, in our real-time test, as shown in Figs. 3(B) (raw 660 signal) and 3(F) (FFT result), the FFT peaks of Channels Pz 661 and PO5 are prominent, and their contribution in Rule #4 is 662 substantial. The data distribution for this scenario is also as 663 clear as that of subject S8 in the 12JFPM dataset, as illustrated 664 in Fig. 3(E). Particularly, during the application of the spatial 665 filter, the fuzzy attention mechanism may not strictly filter 666 channels. For example, as shown in Fig. 3(D), Rule #8 has the 667 highest average weight, yet it selects Channels PO3, POz, and 668 PO4, which are not strongly indicated by FFT. This discrepancy 669 may be attributed to the limited diversity of the small training 670 set.

671 In summary, these findings suggest that iFuzzyTL can better 672 learn the knowledge from the source domain and predict the 673 result if the signal is clear; otherwise, iFuzzyTL can effectively 674 select high-quality channels by the spatial filter through a 675 combination of rules, thus enhancing the filtering of input 676 signals, but may cause the incorrect predictions.

677 C. Ablation Study

678 The ablation study was meticulously designed to rigorously 679 evaluate the influence of various parameters and modules of 680 our proposed Fuzzy rule-based framework, iFuzzyTL, on its 681 performance. This systematic examination helps uncover the 682 contributions of individual components and configurations to 683 the overall efficacy and operational dynamics of the model. 684 All statistical comparisons were conducted using paired t-tests 685 to assess the significance of differences.

686 1) *Filter Effect Analysis*: In this study, we assessed the 687 performance impact of various configurations and types of 688 fuzzy filters on signal processing. The primary motivation was 689 to elucidate the relative importance of spatial versus temporal 690 filtering and to determine the influence of their application 691 sequence on the quality of the resultant data. The significance 692 test and result are shown in Fig. 7.

693 a) *Impact of Filter Application Order*: Our experimental 694 setup tested two different sequences of applying filters to 695 ascertain their influence on signal integrity and feature isolation. 696 The first sequence involved applying a spatial filter followed 697 by a temporal filter aimed at reducing spatial noise to enhance 698 signal clarity before isolating temporal features. The alternative 699 sequence started with a temporal filter intended to highlight 700 temporal dynamics, followed by a spatial filter to refine the 701 signal's spatial characteristics. Notably, significant differences 702 were observed predominantly in the eldBETA dataset ($p < 0.05$), where the spatial filter followed by the temporal filter

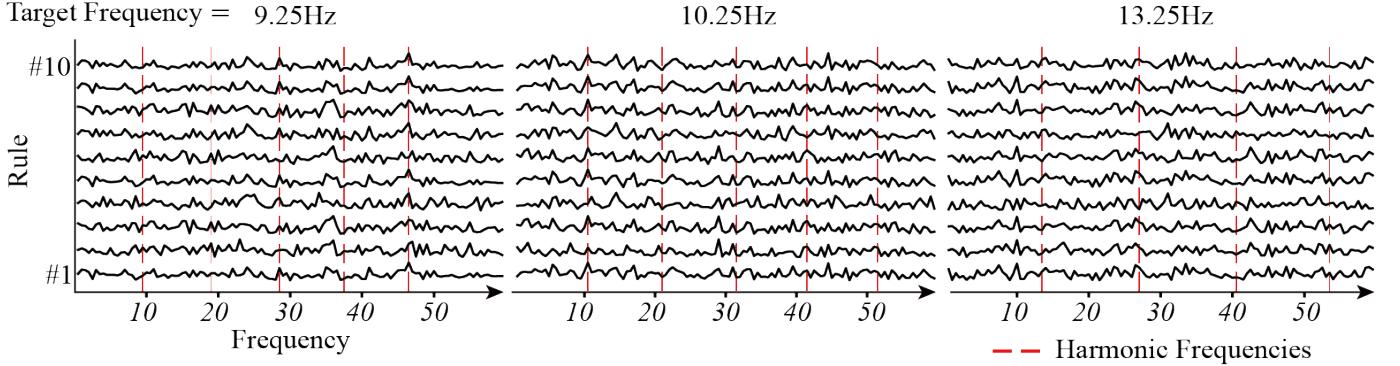


Fig. 5: FFT features that triggered each fuzzy rule across different target frequencies, illustrating the identification of harmonic peaks.

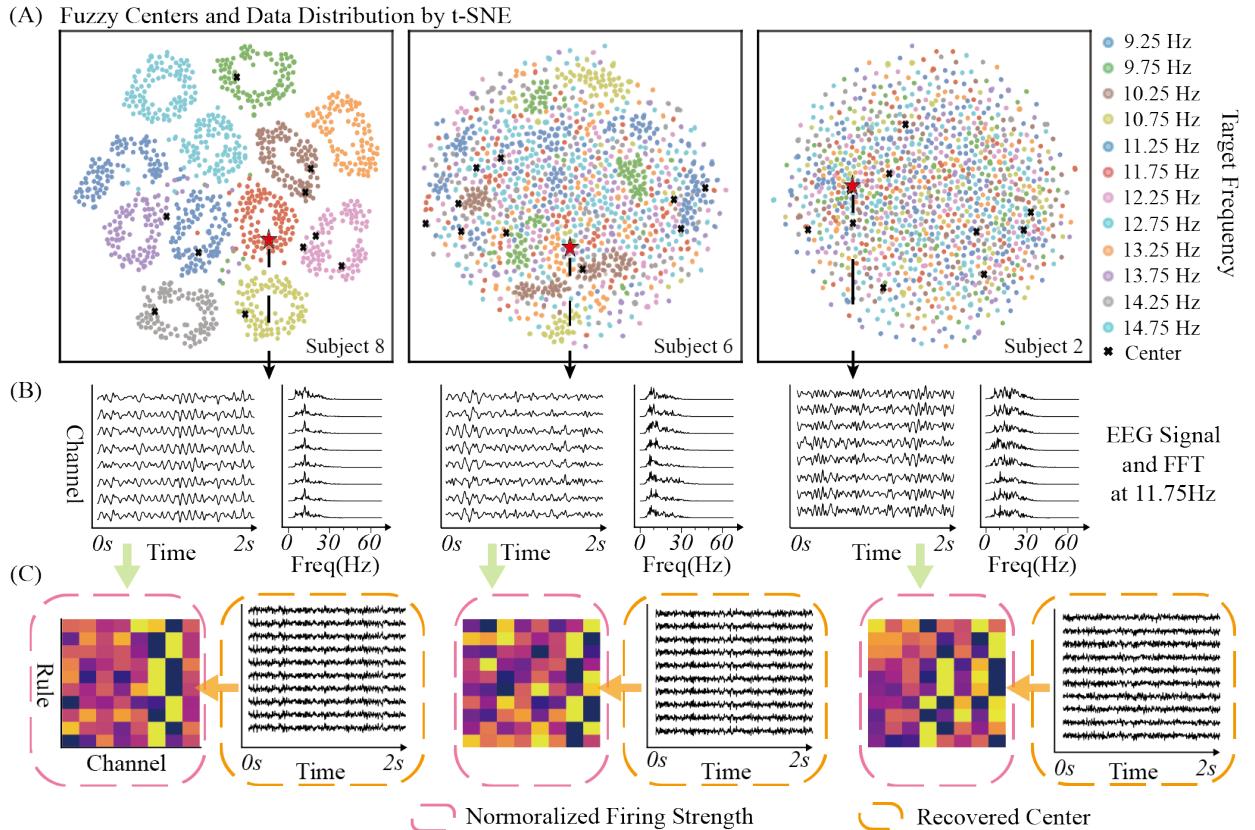


Fig. 6: Visualization of demographic subjects from the 12JFPM dataset (2s) illustrating what iFuzzyTL learned. (A) Data distribution post-application of the spatial filter, highlighting the position (Red Star) of a sample needing explanation at 11.75Hz. (B) Filtered EEG signals and their Fourier Transform to display the data characteristics. (C) Representation of firing strength and the center, using min-max normalization across the channel dimension to accentuate differences within one rule. The center is reconstructed from the query space to the raw EEG signal space as described in Section II-C4.

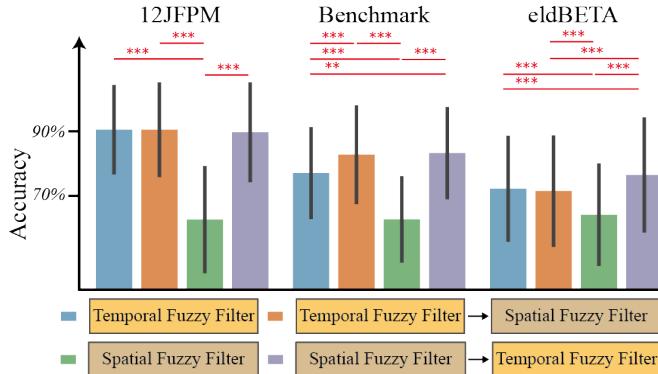


Fig. 7: Variation in accuracy as a function of different configurations of two fuzzy filter modules across three datasets. This figure illustrates the significant impact of filter type and sequence on model performance. $**p < 0.01$, $***p < 0.001$

the 12JFPM, Benchmark, and eldBETA datasets with varying rule counts of 3, 5, 10, 15 and 20. Our results indicate that an increase from 3 to 10 rules generally enhances accuracy across all evaluated datasets ($p < 0.05$). Particularly, the Benchmark dataset shows the most significant enhancements when the rule count is increased from 3 to 5 and subsequently from 5 to 10, with all transitions showing statistical significance ($p < 0.05$). However, when rule counts are bigger than 10, there is no significant improvement ($p > 0.05$). This suggests that a moderate increase in model complexity can positively affect the model's transfer learning capabilities but not beyond a certain point. Meanwhile, the 12JFPM and eldBETA datasets display significant improvements predominantly for transitions from 5 to 10 and 3 to 10 ($p < 0.05$). Summarily, incorporating more rules extends the knowledge coverage, thereby increasing the capacity for domain adaptation, which is critical for effective transfer learning.

sequence exhibited superior performance compared to the reverse sequence.

b) *Evaluating Single Filter Types*: The investigation also explored the effects of using each type of filter independently. The application of only a spatial filter was to evaluate the consequences of omitting temporal filtering, whereas using only a temporal filter was intended to assess whether spatial information alone could suffice for specific analytical tasks. The findings revealed that the exclusive use of a spatial filter significantly reduced performance across all datasets ($p < 0.05$). In contrast, employing only a temporal filter maintained relatively high performance, though it was slightly outperformed by the combined filter sequences in the Benchmark dataset.

After that, the comparison of the single filter with a combination of two filters is also tested. The results show that the bi-directional combination of two filters (*temporal filter* → *spatial filter* and reversed) is significantly better than the single spatial filter ($p < 0.05$) in three datasets. the Benchmark dataset shows a significant improvement from a single temporal filter to the bi-directional combination of two filters($p < 0.05$), and the eldBETA dataset shows a significant improvement from a single temporal filter to *spatial filter* → *temporal filter* combination of two filters ($p < 0.05$).

The results underscore the indispensable nature of the temporal filter, whereas the spatial filter, though beneficial, proved less critical. The sequence of filter application did not significantly impact performance, except in certain datasets where the spatial filter followed by temporal filter configuration slightly outperformed others. These findings contrast traditional approaches such as CCA, which primarily relies on spatial filtering. Moreover, recent methodologies that integrate temporal filters, such as TRCA and ECCA, further validate the relevance

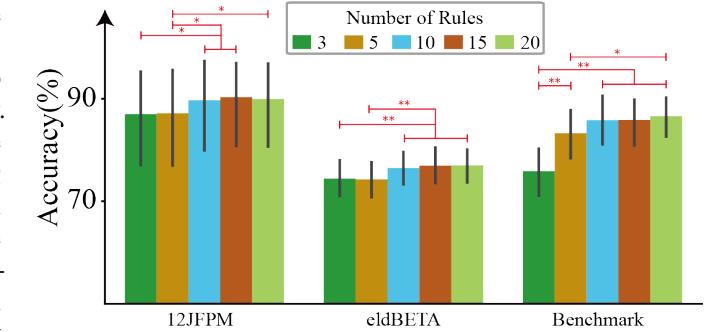


Fig. 8: Accuracy variation as a function of the number of rules across three datasets, highlighting the impact of rule number on model performance. $*p < 0.05$, $**p < 0.01$

VI. LIMITATIONS

Our study has identified several limitations with the iFuzzyTL model. Firstly, the model (rule count is 10) comprises approximately 400K parameters, which leads to longer training times, potentially limiting its efficiency in scenarios requiring quick deployment and can not automatically select the number of rules. Secondly, iFuzzyTL cannot be directly tested with a different set of devices if the electrode channel locations vary, as the model's performance is contingent on specific channel configurations. Lastly, the model does not support direct testing with different target frequencies without adjustments, which may restrict its application across diverse BCI setups where frequency variations are common.

VII. FUTURE WORK

Future work can further investigate methods to reduce the parameter count while maintaining or enhancing performance, automatically decide the number of rules, explore adaptable channel configuration strategies for greater device compatibility, and develop frequency-independent processing techniques to accommodate varying target frequencies such as regression model. To further enhance discrimination accuracy for short-duration SSVEP signals, initial efforts could focus on strengthening the

of our results [77]. To summarize, the proposed scheme employs spatial and temporal filters to significantly enhance interpretability by explicitly capturing neural activation patterns across both domains, thereby improving pattern recognition and facilitating transfer learning across subjects.

2) *Number of Rule Effect Analysis*: In this ablation study, which examines the impact of the number of rules within our model, Fig. 8 demonstrates the variability in accuracy across SSVEP signals, initial efforts could focus on strengthening the

783 preprocessing stage, such as introducing more features into 838
 784 the SSVEP paradigm or signal decomposition method. This 839
 785 will potentially broaden the applicability of iFuzzyTL across a 840
 786 wider range of BCI systems and real-world scenarios. 841

787 VIII. CONCLUSION

788 We propose iFuzzyTL, a fuzzy logic-based attention mecha- 844
 789 nism that enhances transfer learning in SSVEP BCI systems, 845
 790 significantly reducing user-specific calibration. By integrating 846
 791 fuzzy logic with neural networks, iFuzzyTL improves trans- 847
 792 ferability and interpretability, crucial for zero-shot learning. 848
 793 Experiments confirm superior recognition accuracy in zero- 849
 794 calibration scenarios, outperforming real-time benchmarks. 850
 795 Its plug-and-play design enables deployment in dynamic 851
 796 environments without retraining, addressing key challenges 852
 797 in practical BCI applications. iFuzzyTL thus offers a high- 853
 798 performance, low-calibration solution for real-world SSVEP- 854
 799 based BCIs. 855

800 REFERENCES

801 [1] N. Guo, X. Wang, D. Duanmu, X. Huang, X. Li, Y. Fan, 859
 802 H. Li, Y. Liu, E. H. K. Yeung, M. K. T. To *et al.*, 860
 803 “Ssvep-based brain computer interface controlled soft 861
 804 robotic glove for post-stroke hand function rehabilitation,” 862
 805 *IEEE Transactions on Neural Systems and Rehabilitation 863*
Engineering, vol. 30, pp. 1737–1744, 2022. 864

807 [2] X. Chen, X. Huang, Y. Wang, and X. Gao, “Combination 865
 808 of augmented reality based brain-computer interface and 866
 809 computer vision for high-level control of a robotic arm,” 867
 810 *IEEE Transactions on Neural Systems and Rehabilitation 868*
Engineering, vol. 28, no. 12, pp. 3140–3147, 2020. 869

812 [3] B. Cao, H. Niu, J. Hao, and G. Wang, “Building eeg- 870
 813 based cad object selection intention discrimination model 871
 814 using convolutional neural network (cnn),” *Advanced 872*
Engineering Informatics, vol. 52, p. 101548, 2022. 873

816 [4] C.-T. Lin and T.-T. N. Do, “Direct-sense brain–computer 874
 817 interfaces and wearable computers,” *IEEE Transactions 875*
on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, 876
 819 pp. 298–312, 2020. 877

820 [5] S. Samejima, A. Khorasani, V. Ranganathan, J. Nakahara, 878
 821 N. M. Tolley, A. Boissenin, V. Shalchyan, M. R. Daliri, 879
 822 J. R. Smith, and C. T. Moritz, “Brain-computer-spinal 880
 823 interface restores upper limb function after spinal cord 881
 824 injury,” *IEEE Transactions on Neural Systems and Reha- 882*
bilitation Engineering, vol. 29, pp. 1233–1242, 2021. 883

826 [6] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and 884
 827 implementation of a brain-computer interface with high 885
 828 transfer rates,” *IEEE transactions on biomedical engineer- 886*
ing, vol. 49, no. 10, pp. 1181–1186, 2002. 887

830 [7] E. Yin, Z. Zhou, J. Jiang, Y. Yu, and D. Hu, “A dy- 888
 831 namically optimized ssvep brain–computer interface (bci) 889
 832 speller,” *IEEE Transactions on Biomedical Engineering*, 890
 833 vol. 62, no. 6, pp. 1447–1456, 2015. 891

834 [8] H. Cecotti and A. Graser, “Convolutional neural networks 892
 835 for p300 detection with application to brain-computer 893
 836 interfaces,” *IEEE transactions on pattern analysis and 894*
machine intelligence, vol. 33, no. 3, pp. 433–445, 2010. 895

838 [9] A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, 839
 838 “Characterization of four-class motor imagery eeg data for 840
 839 the bci-competition 2005,” *Journal of neural engineering*, 841
 840 vol. 2, no. 4, p. L14, 2005.

843 [10] B. Liu, X. Huang, Y. Wang, X. Chen, and X. Gao, “Beta: 844
 843 A large benchmark database toward ssvep-bci application,” 845
Frontiers in neuroscience, vol. 14, p. 627, 2020.

846 [11] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency 847
 846 recognition based on canonical correlation analysis for 848
 847 ssvep-based bcis,” *IEEE transactions on biomedical 849*
engineering, vol. 54, no. 6, pp. 1172–1176, 2007.

848 [12] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter 849
 848 bank canonical correlation analysis for implementing a 850
 849 high-speed ssvep-based brain–computer interface,” *Journal 851*
of neural engineering, vol. 12, no. 4, p. 046008, 2015.

850 [13] P. Yuan, X. Chen, Y. Wang, X. Gao, and S. Gao, 851
 850 “Enhancing performances of ssvep-based brain–computer 852
 851 interfaces via exploiting inter-subject information,” *Journal 852*
of neural engineering, vol. 12, no. 4, p. 046006, 2015.

851 [14] M. Nakanishi, Y. Wang, Y.-T. Wang, Y. Mitsukura, and 852
 851 T.-P. Jung, “A high-speed brain speller using steady-state 853
 852 visual evoked potentials,” *International journal of neural 854*
systems, vol. 24, no. 06, p. 1450019, 2014.

852 [15] M. Nakanishi, Y. Wang, X. Chen, Y.-T. Wang, X. Gao, 853
 852 and T.-P. Jung, “Enhancing detection of ssveps for a high- 854
 853 speed brain speller using task-related component analysis,” 855
IEEE Transactions on Biomedical Engineering, vol. 65, 856
 854 no. 1, pp. 104–112, 2017.

853 [16] A. Ravi, N. H. Beni, J. Manuel, and N. Jiang, “Comparing 854
 853 user-dependent and user-independent training of cnn for 855
 854 ssvep bci,” *Journal of neural engineering*, vol. 17, no. 2, 856
 855 p. 026028, 2020.

854 [17] R. Luo, X. Xiao, E. Chen, L. Meng, T.-P. Jung, M. Xu, and 855
 854 D. Ming, “Almost free of calibration for ssvep-based brain- 856
 855 computer interfaces,” *Journal of Neural Engineering*, 857
 856 vol. 20, no. 6, p. 066013, 2023.

855 [18] X. Mai, X. Sheng, X. Shu, Y. Ding, X. Zhu, and J. Meng, 856
 855 “A calibration-free hybrid approach combining ssvep and 857
 856 eog for continuous control,” *IEEE Transactions on Neural 858*
Systems and Rehabilitation Engineering, 2023.

856 [19] K.-J. Chiang, C.-S. Wei, M. Nakanishi, and T.-P. Jung, 857
 856 “Boosting template-based ssvep decoding by cross-domain 858
 857 transfer learning,” *Journal of Neural Engineering*, vol. 18, 859
 858 no. 1, p. 016002, 2021.

857 [20] P. R. Bassi, W. Rampazzo, and R. Attux, “Transfer 858
 857 learning and specaugment applied to ssvep based bci 859
 858 classification,” *Biomedical Signal Processing and Control*, 860
 859 vol. 67, p. 102542, 2021.

858 [21] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” 859
 858 *IEEE Transactions on Knowledge and Data Engineering*, 860
 859 vol. 22, no. 10, pp. 1345–1359, 2010.

859 [22] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and 860
 859 M. Grosse-Wentrup, “Transfer Learning in Brain- 861
 860 Computer Interfaces Abstract\uFFFDThe performance 861
 860 of brain-computer interfaces (BCIs) improves with the 862
 861 amount of avail,” *IEEE Computational Intelligence Mag- 862*
azine, vol. 11, no. 1, pp. 20–31, 2016.

860 [23] P. Wang, J. Lu, B. Zhang, and Z. Tang, “A review on trans-

fer learning for brain-computer interface classification," in *2015 5th International Conference on Information Science and Technology (ICIST)*. IEEE, 2015, pp. 315–322.

[24] J. Chen, Y. Zhang, Y. Pan, P. Xu, and C. Guan, "A transformer-based deep neural network model for ssvep classification," *Neural Networks*, vol. 164, pp. 521–534, 2023.

[25] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, and D. Hu, "A speedy hybrid bci spelling approach combining p300 and ssvep," *IEEE Transactions on Biomedical Engineering*, vol. 61, no. 2, pp. 473–483, 2014.

[26] E. Yin, T. Zeyl, R. Saab, T. Chau, D. Hu, and Z. Zhou, "A hybrid brain–computer interface based on the fusion of p300 and ssvep scores," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 23, no. 4, pp. 693–701, 2015.

[27] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, and D. Hu, "A novel hybrid bci speller based on the incorporation of ssvep into the p300 paradigm," *Journal of neural engineering*, vol. 10, no. 2, p. 026012, 2013.

[28] C. M. Wong, Z. Wang, B. Wang, K. F. Lao, A. Rosa, P. Xu, T.-P. Jung, C. P. Chen, and F. Wan, "Inter-and intra-subject transfer reduces calibration effort for high-speed ssvep-based bcis," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 28, no. 10, pp. 2123–2135, 2020.

[29] W. Lan, R. Wang, Y. He, Y. Zong, Y. Leng, K. Iramina, W. Zheng, and S. Ge, "Cross domain correlation maximization for enhancing the target recognition of ssvep-based brain-computer interfaces," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 2023.

[30] H. Wang, Y. Sun, F. Wang, L. Cao, W. Zhou, Z. Wang, and S. Chen, "Cross-subject assistance: Inter-and intra-subject maximal correlation for enhancing the performance of ssvep-based bcis," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 29, pp. 517–526, 2021.

[31] C. M. Wong, Z. Wang, M. Nakanishi, B. Wang, A. Rosa, C. P. Chen, T.-P. Jung, and F. Wan, "Online adaptation boosts ssvep-based bci performance," *IEEE Transactions on Biomedical Engineering*, vol. 69, no. 6, pp. 2018–2028, 2021.

[32] J. Du, Y. Ke, S. Liu, S. Chen, and D. Ming, "Enhancing cross-subject transfer performance for ssvep identification using small data-based transferability evaluation," *Biomedical Signal Processing and Control*, vol. 94, p. 106282, 2024.

[33] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, "Transfer learning using computational intelligence: A survey," *Knowledge-Based Systems*, vol. 80, pp. 14–23, 2015.

[34] H. Xiong, J. Song, J. Liu, and Y. Han, "Deep transfer learning-based ssvep frequency domain decoding method," *Biomedical Signal Processing and Control*, vol. 89, p. 105931, 2024.

[35] J. Liu, R. Wang, Y. Yang, Y. Zong, Y. Leng, W. Zheng, and S. Ge, "Convolutional transformer-based cross subject model for ssvep-based bci classification," *IEEE Journal of Biomedical and Health Informatics*, 2024.

[36] J. Huang, Z.-Q. Zhang, B. Xiong, Q. Wang, B. Wan, F. Li, and P. Yang, "Cross-subject transfer method based on domain generalization for facilitating calibration of ssvep-based bcis," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 2023.

[37] X. Wang, A. Liu, L. Wu, L. Guan, and X. Chen, "Improving generalized zero-shot learning ssvep classification performance from data-efficient perspective," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 2023.

[38] O. B. Guney and H. Ozkan, "Transfer learning of an ensemble of dnns for ssvep bci spellers without user-specific training," *Journal of Neural Engineering*, vol. 20, no. 1, p. 016013, 2023.

[39] R. Vinuesa and B. Sirmacek, "Interpretable deep-learning models to help achieve the sustainable development goals," *Nature Machine Intelligence*, vol. 3, no. 11, pp. 926–926, 2021.

[40] C.-T. Lin and C. G. Lee, *Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems*. Prentice-Hall, Inc., 1996.

[41] L. Ou, Y.-C. Chang, Y.-K. Wang, and C.-T. Lin, "Fuzzy centered explainable network for reinforcement learning," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 1, pp. 203–213, 2024.

[42] C.-T. Lin and C. Lee, "Neural-network-based fuzzy logic control and decision system," *IEEE Transactions on Computers*, vol. 40, no. 12, pp. 1320–1336, 1991.

[43] J. Lu, G. Ma, and G. Zhang, "Fuzzy Machine Learning: A Comprehensive Framework and Systematic Review," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 7, pp. 3861–3878, 2024.

[44] K. Shihabudheen and G. N. Pillai, "Recent advances in neuro-fuzzy system: A survey," *Knowledge-Based Systems*, vol. 152, pp. 136–162, 2018.

[45] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halversson, M. Soljačić, T. Y. Hou, and M. Tegmark, "Kan: Kolmogorov-arnold networks," *arXiv preprint arXiv:2404.19756*, 2024.

[46] X. Jiang, L. Ou, Y. Chen, N. Ao, Y.-C. Chang, T. Do, and C.-T. Lin, "A fuzzy logic-based approach to predict human interaction by functional near-infrared spectroscopy," *IEEE Transactions on Fuzzy Systems*, pp. 1–15, 2025.

[47] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, "Fuzzy Regression Transfer Learning in Takagi–Sugeno Fuzzy Models," *IEEE Transactions on Fuzzy Systems*, vol. 25, no. 6, pp. 1795–1807, 2017.

[48] H. Zuo, J. Lu, G. Zhang, and W. Pedrycz, "Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces," *IEEE Transactions on Fuzzy Systems*, vol. 27, no. 2, pp. 348–361, 2019.

[49] F. Liu, J. Lu, and G. Zhang, "Unsupervised Heterogeneous Domain Adaptation via Shared Fuzzy Equivalence Relations," *IEEE Transactions on Fuzzy Systems*, vol. 26, no. 6, pp. 3555–3568, 2018.

[50] J. Lu, H. Zuo, and G. Zhang, "Fuzzy Multiple-Source Transfer Learning," *IEEE Transactions on Fuzzy Systems*,

1012 vol. 28, no. 12, pp. 3418–3431, 2020. 1070

1013 [51] X. Zhu, D. Wang, W. Pedrycz, and Z. Li, “Design and 1071
1014 Development of Granular Fuzzy Rule-Based Models for 1072
1015 Knowledge Transfer,” *IEEE Transactions on Systems, 1073
1016 Man, and Cybernetics: Systems*, vol. 53, no. 2, pp. 704–1074
1017 715, 2023. 1075

1018 [52] H. Zuo, J. Lu, G. Zhang, and F. Liu, “Fuzzy Transfer 1076
1019 Learning Using an Infinite Gaussian Mixture Model and 1077 [66]
1020 Active Learning,” *IEEE Transactions on Fuzzy Systems*, 1078
1021 vol. 27, no. 2, pp. 291–303, 2019. 1079

1022 [53] Y.-C. Chang, Y.-K. Wang, N. R. Pal, and C.-T. Lin, “Ex-1080
1023 ploring covert states of brain dynamics via fuzzy inference1081
1024 encoding,” *IEEE Transactions on Neural Systems and 1082 [68]
1025 Rehabilitation Engineering*, vol. 29, pp. 2464–2473, 2021. 1083

1026 [54] T. K. Reddy, Y.-K. Wang, C.-T. Lin, and J. Andreu-1084
1027 Perez, “Joint approximate diagonalization divergence1085
1028 based scheme for eeg drowsiness detection brain computer1086 [69]
1029 interfaces,” in *2021 IEEE International Conference on 1087
1030 Fuzzy Systems (FUZZ-IEEE)*. IEEE, 2021, pp. 1–6. 1088

1031 [55] M. Hu, Y. Zhong, S. Xie, H. Lv, and Z. Lv, “Fuzzy1089
1032 system based medical image processing for brain disease1090 [70]
1033 prediction,” *Frontiers in Neuroscience*, vol. 15, p. 714318, 1091
2021. 1092

1035 [56] M. F. Zarandi, M. Zarinali, and M. Izadi, “Systematic1093
1036 image processing for diagnosing brain tumors: A type-ii1094
1037 fuzzy expert system approach,” *Applied soft computing*, 1095
1038 vol. 11, no. 1, pp. 285–294, 2011. 1096 [71]

1039 [57] H. Chen and J. Xie, “EEG-based TSK fuzzy graph neural1097
1040 network for driver drowsiness estimation,” *Information1098
1041 Sciences*, vol. 679, p. 121101, 2024. 1099

1042 [58] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, 1100 [72]
1043 “Granular Fuzzy Regression Domain Adaptation in Tak-1101
1044 agi–Sugeno Fuzzy Models,” *IEEE Transactions on Fuzzy1102
1045 Systems*, vol. 26, no. 2, pp. 847–858, 2018. 1103

1046 [59] J. Tahmoresnezhad and S. Hashemi, “Visual domain1104 [73]
1047 adaptation via transfer feature learning,” *Knowledge and 1105
1048 Information Systems*, vol. 50, no. 2, pp. 585–605, 2017. 1106

1049 [60] D. Dubois and H. Prade, “Chapter 6 - pattern classifi-1107
1050 cation with fuzzy sets,” in *Fuzzy Sets and Systems*, ser. 1108 [74]
1051 Mathematics in Science and Engineering. Elsevier, 1980, 1109
1052 vol. 144, pp. 317–334. 1110

1053 [61] L. Zhang, Y. Shi, Y.-C. Chang, and C.-T. Lin, “Robust1111
1054 fuzzy neural network with an adaptive inference engine,” 1112 [75]
1055 *IEEE Transactions on Cybernetics*, 2023. 1113

1056 [62] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. 1114
1057 Gordon, C. P. Hung, and B. J. Lance, “EEGNet: A 1115 [76]
1058 compact convolutional neural network for EEG-based 1116
1059 brain–computer interfaces,” *Journal of Neural Engineer-1117
1060 ing*, vol. 15, no. 5, p. 056013, 2018. 1118

1061 [63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, 1119 [77]
1062 A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention 1120
1063 is all you need,” in *Advances in Neural Information 1121
1064 Processing Systems*, I. Guyon, U. V. Luxburg, S. Bengio, 1122
1065 H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 1123
1066 Eds., vol. 30. Curran Associates, Inc., 2017.

1067 [64] J. Cheng, L. Dong, and M. Lapata, “Long short-term 1124
1068 memory-networks for machine reading,” 2016.

1069 [65] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced 1125
1070 model for abstractive summarization,” in *International 1126
1071 Conference on Learning Representations*, 2018.

1072 G. R. Müller-Putz, R. Scherer, C. Brauneis, and 1127
1073 G. Pfurtscheller, “Steady-state visual evoked potential 1128
1074 (ssvep)-based communication: impact of harmonic 1129
1075 frequency components,” *Journal of neural engineering*, 1130
1076 vol. 2, no. 4, p. 123, 2005.

1077 N. R. Waytowich, Y. Yamani, and D. J. Krusienski, “Opti-1131
1078 mization of checkerboard spatial frequencies for steady- 1132
1079 state visual evoked potential brain–computer interfaces,” 1133
1080 *IEEE Transactions on Neural Systems and Rehabilitation 1134
1081 Engineering*, vol. 25, no. 6, pp. 557–565, 2016.

1082 S. Moratti, B. A. Clementz, Y. Gao, T. Ortiz, and A. Keil, 1135
1083 “Neural mechanisms of evoked oscillations: stability and 1136
1084 interaction with transient events,” *Human brain mapping*, 1137
1085 vol. 28, no. 12, pp. 1318–1333, 2007.

1086 X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, 1138
1087 and S. Gao, “High-speed spelling with a noninvasive 1139
1088 brain–computer interface,” *Proceedings of the National 1140
1089 Academy of Sciences*, vol. 112, no. 44, 2015.

1090 V. Cherkassky, “Fuzzy inference systems: A critical re-1141
1091 view,” in *Computational Intelligence: Soft Computing and 1142
1092 Fuzzy-Neuro Integration with Applications*, O. Kaynak, 1143
1093 L. A. Zadeh, B. Türkşen, and I. J. Rudas, Eds. Berlin, 1144
1094 Heidelberg: Springer Berlin Heidelberg, 1998, pp. 177– 1145
1095 197.

1096 S. R. Chaudhari and M. E. Patil, “Study and review of 1146
1097 fuzzy inference systems for decision making and control,” 1147
1098 in *American International Journal of Research in Science, 1148
1099 Technology, Engineering & Mathematics*, 2014.

1100 S. Guillaume, “Designing fuzzy inference systems from 1150
1099 data: An interpretability-oriented review,” *IEEE Trans- 1151
1099 actions on Fuzzy Systems*, vol. 9, no. 3, pp. 426–443, 1152
2001.

1101 L. Jouffe, “Fuzzy inference system learning by reinforce-1153
1099 ment methods,” *IEEE Transactions on Systems, Man, and 1154
1099 Cybernetics, Part C (Applications and Reviews)*, vol. 28, 1155
1099 no. 3, pp. 338–355, 1998.

1102 J. R. Wolpaw, N. Birbaumer, D. J. McFarland, 1156
1099 G. Pfurtscheller, and T. M. Vaughan, “Brain–computer 1157
1099 interfaces for communication and control,” *Clinical Neu- 1158
1099 rophysiology*, vol. 113, no. 6, pp. 767–791, 2002.

1103 M. Koch, D. M. Mittleman, J. Ornik, and E. Castro- 1159
1099 Camus, “Terahertz time-domain spectroscopy,” *Nature 1160
1099 Reviews Methods Primers*, vol. 3, no. 1, p. 48, 2023.

1104 A. Luo and T. J. Sullivan, “A user-friendly ssvep-based 1161
1099 brain–computer interface using a time-domain classifier,” 1162
1099 *Journal of neural engineering*, vol. 7, no. 2, p. 026010, 1163
2010.

1105 L. Ou, T. Do, X.-T. Tran, D. Leong, Y.-C. Chang, Y.-K. 1164
1099 Wang, and C.-T. Lin, “Improving cca algorithms on ssvep 1165
1099 classification with reinforcement learning based temporal 1166
1099 filtering,” in *Australasian Joint Conference on Artificial 1167
1099 Intelligence*. Springer, 2023, pp. 376–386.