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Abstract—Edge artificial intelligence (Edge Al) has
emerged as a transformative paradigm for enhancing the
performance, portability, and autonomy of brain—~computer
interface (BCl) systems. By integrating advanced Al
capabilities directly into electroencephalography (EEG)-
based devices, Edge Al enables real-time signal pro-
cessing, reduces dependence on external computational
resources, and improves data privacy. However, deploying
Al on resource-constrained hardware introduces chal-
lenges related to computational capacity, power consump-
tion, and system latency. This survey provides a com-
prehensive examination of Edge Al-enabled BCI systems,
covering the full pipeline from EEG hardware specifications
and on-device data acquisition to signal preprocessing
techniques and lightweight deep learning models optimized
for embedded platforms. We review existing frameworks,
specialized hardware accelerators, and energy-efficient Al
approaches that facilitate real-time BCI processing at the
edge. Furthermore, the paper reviews state-of-the-art solu-
tions, examines key technical challenges, and outlines
future research directions in hardware—software co-design
and application development. This work aims to serve as
a reference for researchers and practitioners seeking to
design efficient, portable, and practical Edge Al-powered
BClI systems.

Index Terms— Brain—-computer interfaces (BCIs), elec-
troencephalography (EEG), edge artificial intelligence
(Edge Al), embedded systems, deep learning, real-time pro-
cessing, on-device Al, neural signal processing.

|. INTRODUCTION

RAIN Computer Interface (BCI) systems have seen
remarkable advancements in recent years, expanding
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their role beyond traditional applications in assistive tech-
nology [1], [2], [3] to emerging fields such as image and
video reconstruction [4], [5], [6], text and speech synthesis
[71, [8], [9], and action [10] decoding from brain activity.
Additionally, BCIs have demonstrated significant potential in
neurorehabilitation [11], [12], [13], cognitive driving [14],
[15], physical navigation [16], [17], and human-computer
interaction [18]. These systems enable direct communication
between the human brain and external devices, facilitating
control without needing conventional motor functions [19].
The integration of artificial intelligence (AI) and embedded
computing has further enhanced BCI performance [20], [21],
improving response times for communication with external
devices and increasing the overall portability of the sys-
tem. However, the deployment of Al-powered BCI systems
presents several challenges, particularly concerning hardware
constraints, real-time processing requirements, and the balance
between computational efficiency and power consumption. To
address these limitations, Al-integrated BCIs must be opti-
mized for real-time processing and resource efficiency. This
paper reviews the current advancements in edge Al-powered
BClIs, highlighting recent progress, existing challenges, and
future research directions. Integration of Al models directly
within embedded BCI devices enhances real-time signal pro-
cessing, improves classification accuracy, and enables more
efficient brain-controlled interfaces for medical and consumer
applications.

A typical BCI system consists of several essential elements,
including signal acquisition, preprocessing, feature extraction,
classification, and output generation. Among non-invasive
methods, electroencephalography (EEG) has emerged as the
predominant technique for recording neural activity due to
its high temporal resolution, ease of implementation, and
ability to provide a safe and effective alternative to invasive
approaches [22]. The quality of EEG data acquisition is
critically dependent on hardware specifications, necessitat-
ing an analog-to-digital conversion (ADC) resolution of at
least 16 bits and a minimum sampling rate of 250 Hz for
research applications. Preprocessing is a fundamental step
in BCI pipelines, as EEG signals are inherently susceptible
to noise from muscle artifacts, power-line interference, and
environmental factors. Filtering techniques are employed to
isolate specific frequency bands of interest, including theta
(4-8 Hz), alpha (8-12 Hz) [23], and beta (13-30 Hz) [24],
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Fig. 1. Edge Al — Brain-Computer Interfaces: A Conceptual Overview. The figure illustrates key components of an Edge Al-powered BCI system.

Abbreviations: BCI - Brain-Computer Interfaces, EEG - Electroencephalogram, Al - Artificial Intelligence, ADC — Analog-to-Digital Converter,

BPF — Band-Pass Filter.

which are commonly associated with cognitive and motor
functions. Recent advancements in Al-based feature extraction
and classification have demonstrated significant improvements
in BCI performance. However, deploying these models on
resource-constrained platforms, such as microcontroller units
(MCUgs), introduces additional considerations regarding com-
putational complexity and energy efficiency. A comparative
assessment of MCUs and single-board computers (SBCs)
highlights the trade-offs between low-power operation and
enhanced processing capabilities, influencing the selection
of appropriate hardware for real-time BCI applications. As
illustrated in Figure 1, Edge Al enables a shift from traditional

BCI architectures, where signal processing and classification
are performed on external PCs, to a more compact and efficient
system. By integrating these tasks into an Edge Al module,
the overall system size is reduced, enhancing portability and
usability, while also preserving data privacy by avoiding the
transmission of sensitive neural data to external servers. How-
ever, running Al workloads on resource-constrained MCUs
must be carefully optimized to operate within strict computa-
tional and power budgets.

This paper presents a thorough examination of Al-
powered BCI systems, encompassing hardware design, data
acquisition, preprocessing methodologies, and deep learning
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Fig. 2. System-level overview of EEG acquisition and on-device inference in Edge Al-powered BCls.

models tailored for real-time applications. section II outlines
system-level considerations for EEG acquisition, emphasizing
how specifications such as channel count, sampling rate, and
ADC resolution influence the quality of neural data and the
feasibility of on-device Al inference. section III discusses
data acquisition and preprocessing techniques, focusing on
noise reduction and feature extraction.section IV highlights
advancements in edge Al for efficient BCI processing, focus-
ing on emerging frameworks and on-device computation
techniques that enhance system performance and portability.
section V provides a comprehensive review of recent advance-
ments in on-device Al for BCI, summarizing key research
efforts, novel hardware-software co-design strategies, and real-
world demonstrations of TinyML-enabled BCI applications.
section VI presents real-world applications of edge Al-
powered BCI systems, showcasing their potential to enable
real-time processing, reduce reliance on external infrastructure,
and enhance privacy. Finally, section VII concludes with key
findings and potential directions for further investigation.

[1. SYSTEM-LEVEL CONSIDERATIONS FOR EEG
ACQUISITION IN EDGE Al-POWERED BCIs

A. System-Level Overview

Figure 2 illustrates the end-to-end acquisition pipeline in
a typical Edge Al-powered BCI system. Each stage in the
signal chain, including electrodes, analog front-end (AFE),

digitization, and embedded processing, impacts the fidelity,
latency, and interpretability of neural signals used for Al-based
inference.

Edge Al-powered BCI systems introduce additional design
constraints compared to traditional laboratory setups. These
systems must operate under limited power budgets, main-
tain compact hardware footprints, and preserve robust signal
fidelity in mobile or wearable contexts. To meet these
requirements, designers must carefully consider both the AFE
characteristics and the configuration of the ADC.

Three analog performance metrics such as input impedance,
input-referred noise, and amplifier input range significantly
affect signal fidelity prior to digitization. These metrics are
influenced not only by the design of the AFE but also by
how programmable gain and ADC resolution are configured
in practice. High input impedance (typically greater than
100 MQ, and often in the GQ range for modern dry or semi-
dry electrodes [25]) helps prevent signal attenuation caused
by variable skin—electrode contact. Input-referred noise deter-
mines the minimum resolvable signal amplitude and should
remain below 1 uV,s across the EEG bandwidth to preserve
microvolt-level features [26], [27], [28]. The amplifier input
range, determined by gain and reference voltage settings, must
be sufficiently wide to accommodate both the EEG signals
and larger electrode-induced offsets or artifacts. Practical
guidelines recommend a minimum of +50 mV in DC-coupled
mode [29], while classical designs specify tolerance of up to
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4200 mV without saturation [30]. Ensuring such headroom
prevents clipping from large offsets and allows optimal uti-
lization of the ADC’s dynamic range [31], [32].

Aside from analog fidelity, three critical ADC-related
factors, including number of channels, sampling rate, and reso-
lution, directly influence the quality and quantity of neural data
available for on-device inference. Systems with higher channel
counts and sampling rates offer richer spatial and temporal
resolution, but they also increase data volume, energy con-
sumption, and processing complexity. Conversely, low-density
systems with modest sampling rates can better support real-
time inference on constrained hardware by reducing latency
and computational load. These digital acquisition parameters
are tightly coupled with analog fidelity metrics and collectively
determine the overall quality of data available for Edge Al
processing.

A comprehensive survey by Niso et al. [33] systemat-
ically compares wireless EEG acquisition systems across
consumer, research, and clinical domains. The review details
key hardware specifications, including electrode type, number
of channels, sampling frequency, ADC resolution, and con-
nectivity protocol, making it a valuable reference for selecting
acquisition platforms compatible with Edge Al-powered BCI
applications.

B. Number of Channels

The number of EEG channels is a critical factor in deter-
mining how many scalp locations can be simultaneously
monitored. A higher channel count improves the spatial resolu-
tion of brain activity data, enabling more detailed insights into
neural dynamics. However, it also increases system complexity
and resource requirements. Channel selection is often applied
to reduce dimensionality and improve computational efficiency
by excluding redundant or noisy signals, thereby minimizing
overfitting in machine learning pipelines [34].

Low-density EEG (LD-EEG), typically using 8 to 32 chan-
nels [35], [36], is sufficient for many research and clinical
applications, including sleep studies and general neurological
assessments. In contrast, high-density EEG (HD-EEG) sys-
tems may employ 64, 128, or even 256 electrodes [37], [38],
and are ideal for applications requiring fine-grained spatial
resolution, such as localizing epileptogenic zones [39] or
mapping motor areas in cognitive tasks involving physical
movement like walking [40] and driving [14], [41].

The placement of the reference electrode also plays a crucial
role, as all recorded potentials are measured relative to it.
Improper placement can introduce artifacts or obscure signal
clarity, significantly affecting signal interpretability [42].

Increased channel count enhances decoding potential but
also amplifies the volume of data to be processed and trans-
mitted. This places greater demands on memory, processing
throughput, and power consumption, which are factors that
must be carefully balanced in edge Al systems with limited
hardware resources.
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Fig. 3. The transformed EEG signal in both the time and its correspond-
ing Fast Fourier Transform (FFT) power spectrum.
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Fig. 4.  Comparison of EEG signals sampled at 125Hz, 250Hz, and
500 Hz. Left: Time-domain EEG signals at different sampling rates.
Right: Corresponding power spectra computed using FFT.

C. Sampling Rate

The sampling rate of an EEG system defines how frequently
the signal is digitized, directly influencing both temporal reso-
lution and frequency resolution. A higher sampling rate allows
for more precise capture of rapid time-domain fluctuations and
more accurate representation of high-frequency components.

To illustrate the effects of resampling, Figure 3 presents
a simulated EEG signal derived from a 30-second segment
of slow-wave sleep data originally sampled at 100 Hz [43].
This signal was resampled to 3000 Hz and compressed to
1 second, which proportionally shifted the dominant frequency
from 1 Hz to 30 Hz. The amplitude was also adjusted to
20u V to simulate beta-band activity. This transformation
highlights how sampling rate affects both temporal compres-
sion and spectral scaling, and serves as a basis for evaluating
signal processing parameters such as sampling rate and ADC
resolution.

Figure 4 compares EEG recordings sampled at 125 Hz,
250 Hz, and 500 Hz. The signal acquired at 125 Hz exhibits
broadened and distorted spectral peaks, whereas those sampled
at 250 Hz and 500 Hz more accurately preserve the waveform
morphology and spectral characteristics.

Although higher sampling rates improve frequency reso-
lution and temporal detail, they also increase data volume
and computational load during signal acquisition and prepro-
cessing. In edge Al applications, where latency and energy
consumption are critical design factors, it is important to
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Fig. 5. Quantization effects at different ADC resolutions (14-bit, 16-bit,
and 24-bit). Left: Time-domain representation of the quantization noise,
computed as the difference between the original signal and its quantized
version. Right: Frequency-domain spectrum (FFT) of the quantized
signal, illustrating distortion introduced by quantization noise.

select the lowest sampling rate that still preserves task-relevant
spectral information. This ensures a balance between signal
fidelity and system efficiency.

D. ADC Resolution

Analog-to-digital converter (ADC) resolution defines the
number of discrete levels used to digitize continuous EEG
voltages. Higher resolutions reduce quantization noise and pre-
serve subtle signal variations, which is particularly important
when working with low-amplitude EEG features. Lower res-
olution not only increases quantization noise but also directly
reduces the effective signal-to-noise ratio (SNR), potentially
masking meaningful neural activity in the digitized signal.

Figure 5 shows the impact of quantization across 14-bit,
16-bit, and 24-bit ADCs. The 14-bit resolution introduces
noticeable time-domain distortion and frequency-domain arti-
facts, including spurious components near 42 Hz that obscure
the original spectral peak at 30 Hz. The mathematical deriva-
tion of quantization error and its relationship to ADC bit depth
is provided in Appendix. Lower resolution not only increases
quantization noise but also directly reduces the effective
signal-to-noise ratio (SNR), potentially masking meaningful
neural activity in the digitized signal.

While 16-bit or 24-bit resolution is recommended for high-
fidelity EEG acquisition, higher resolution also results in
more data per sample. This increases memory usage, transfer
bandwidth, and computational overhead, which can stress the
limited resources of edge Al platforms unless efficient data
handling strategies are implemented

E. System-Level Trade-Offs in Edge Al-Powered BCI
Systems

The acquisition parameters discussed in the previous sub-
sections, namely the number of EEG channels, sampling
rate, ADC resolution, and trial length, influence not only

signal quality and decoding performance but also the overall
feasibility of deploying BCI models on edge AI hardware.
To meet real-time requirements within limited computational
resources, these parameters must be co-optimized with model
complexity and processing latency.

In embedded BCI systems, the total processing time per
trial includes the time required for signal acquisition Tacquisitions
preprocessing Tpreproc, and model inference Tipference- This total
latency Tior must not exceed the trial duration Ty, in order
to maintain continuous real-time operation. This constraint can
be expressed as follows:

Ttotal = Tacquisilion + Tpreproc + Tinference < Ttrial (1)

Reducing the trial length is a common strategy to improve
information transfer rate and responsiveness. However, shorter
trials also reduce the time available for data handling and
inference. This places a practical lower bound on trial duration,
particularly in systems with limited compute or memory
resources.

The complexity of the Al model further influences feasibil-
ity. Models with a large number of parameters and a high count
of multiply-accumulate operations require more processing
cycles, which increases inference latency. In such cases, signal
acquisition parameters may need to be adjusted. For example,
reducing the number of EEG channels or lowering the sam-
pling rate can help keep data volume within the processing
capacity of the hardware.

The total volume of raw data acquired during each trial can
be estimated as follows:

Data Volume(bits) = Tiyja X (NEEG - fs - Rapc

+ Nivu - fimu 'RIMU) 2
—_————
optional if IMU is used

where:

Twiar: trial duration in seconds

Nggg: number of EEG channels

fs: EEG sampling rate in Hz

Rapc: EEG ADC resolution in bits

Nmvu: total number of IMU data channels (e.g., 3 per
accelerometer, 3 per gyroscope, 3 per magnetometer)

e fimu: IMU sampling rate in Hz

e Rmvu: IMU resolution in bits

These relationships highlight that trial length, signal acquisi-
tion settings, and model architecture are tightly interdependent.
Reducing trial duration, increasing channel count, or raising
the sampling rate all increase the volume of data that must be
handled within a fixed latency budget. Meanwhile, selecting a
more complex model reduces the available margin for acqui-
sition and preprocessing. Achieving real-time performance
on embedded hardware requires a co-design approach that
jointly optimizes signal fidelity, computational efficiency, and
responsiveness across the entire data pipeline.

I1l. EEG DATA ACQUISITION AND PREPROCESSING

Accurate EEG data acquisition and effective preprocessing
are critical steps in ensuring the reliability and responsiveness
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TABLE |
IMPEDANCE THRESHOLDS FOR WET AND DRY ELECTRODES

Sensor Type | Acceptable Impedance Faulty Threshold

Wet Below 5 k€2 [48] to 10 k2 | Above 10 k2
[44], [45]

Dry Below 150 k€2 [46], [47] Above 150 k2

of BCI systems. While hardware characteristics govern sig-
nal fidelity (as outlined in Section II), this section focuses
on maintaining data quality during signal acquisition and
transforming raw EEG data into clean, structured formats
suitable for downstream AI processing. Raw EEG signals
are frequently contaminated by muscle activity (EMG), eye
movements (EOG), or electrical interference, which poses
challenges for real-time or edge deployment. To address these
issues, preprocessing methods such as filtering, artifact rejec-
tion, and normalization are employed to enhance signal quality
and improve model compatibility. This section first discusses
signal integrity at the electrode interface, then examines Al
learning strategies for EEG decoding, followed by an overview
of widely used preprocessing pipelines with an emphasis on
their feasibility for Edge Al applications.

A. Electrode Interface and Impedance Monitoring

While Section II described the complete signal acquisition
chain, this section focuses specifically on the interface between
electrodes and the scalp, and how impedance affects signal
integrity. The quality of the electrode—skin contact can degrade
over time due to factors such as movement, sweat, or drying
conductive gel, which may lead to increased impedance and
adversely affect the quality of recorded signals.

To ensure the reliability of data acquisition, EEG systems
must incorporate a lead-off detection feature, also referred
to as electrode-off detection, which continuously monitors
the electrode connections. This feature provides users with
real-time feedback on the validity of the recorded data by
identifying whether an electrode is functioning properly. The
lead-off detection works by injecting a small excitation current
into each electrode and measuring the resulting voltage. The
impedance is then calculated to assess the electrode’s status.

If the impedance exceeds a threshold value, typically 10 kQ
[44], [45] for wet electrodes and 150 kQ [46], [47] for dry
electrodes, the electrode connection is identified as faulty.
These threshold values are based on established practices and
supported by prior studies, as summarized along with their cor-
responding References in Table 1. This ensures transparency

Ry
Cable
c EEG readout
Rg
<
(a)
Cable

EEG readout

Fig. 7. The typical block diagram of (a) active electrode and (b) passive
electrode.

regarding the source of these thresholds and reinforces their
use in evaluating electrode performance. The table also helps
determine when an electrode is functioning properly or needs
attention, with thresholds varying depending on the sensor
type and the equipment used. This mechanism ensures that
users can detect and address broken leads, thereby maintaining
the quality of EEG recordings. The principal diagram of this
detection process is depicted in Figure 6.

When the lead-off detection feature is enabled, a small
excitation current is injected into the circuit. This current flows
through a filter resistor at the positive input pin (INP), passes
through the impedance between two electrodes (representing
the patient-electrode connection), and then returns via a filter
resistor at the negative input pin (INN). If the connection
between the electrodes is intact, the impedance has a finite
value, allowing the current to flow. The resulting voltage dif-
ference between the INP and INN pins reflects the impedance
of the electrode connection and is converted into a digital value
by the ADC. This process can be enhanced by injecting a small
excitation current with a fixed frequency, enabling additional
information to be extracted from the EEG data. By applying a
band-pass filter tuned to the frequency of the excitation signal,
the root mean square (RMS) voltage of the response signal
caused by the injected current can be calculated. Consequently,
the impedance can be continuously measured in real-time over
a specific window of EEG samples. This impedance is then
compared against a predefined threshold to determine if the
connection is valid. However, if the connection is broken (e.g.,
due to poor electrode contact), the impedance between the
two electrodes approaches infinity. In this case, no current
flows, and the voltage difference between INP and INN is
dictated primarily by the circuit’s open-loop behavior. The
ADC output will indicate an abnormally high impedance,
signaling that either the INP or the INN is disconnected. To
minimize interference with EEG signals, an excitation current
amplitude of 6 nA is typically used for lead-off detection
[49]. This careful management of excitation currents not only
preserves signal integrity but also influences the choice of
electrode type for EEG acquisition [50]. Depending on the
design and application, different electrode configurations, such
as active or passive, can further enhance signal quality and
stability.

Active electrodes have a pre-amplifier circuit mounted on
the electrode that amplifies signals before they are passed on
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to an amplifier. On the other hand, passive electrodes collect
signals at the scalp and then transmit them to an amplifier
integrated into the EEG readout device. The typical design of
designing an active and passive electrode has been shown in
Figure 7. In both diagrams, a cable connects the electrode to
the EEG readout device. A long cable can act as an antenna,
picking up electromagnetic interference as noise, which can
significantly affect the transmitted signals. For passive elec-
trodes, both the EEG signal and the noise introduced by
the cable are amplified at the EEG device. This makes the
signal more susceptible to noise and degradation, especially
over long cable lengths. In contrast, active electrodes address
this limitation by buffering the signal at the source using a
unity-gain amplifier, thereby minimizing the transmission of
the non-buffered, high-impedance signal between the electrode
and the processing circuitry. This impedance buffering reduces
susceptibility to noise and motion artifacts introduced by long
cables. Additionally, the amplifier’s low output impedance
reduces the impact of cable motion artifacts, eliminating the
need for shielded cables and lowering overall system cost
[51]. Even while active electrodes’ signal quality has greatly
improved, both active and passive electrodes operate similarly
in optimal laboratory environments when conductive gel is
used to create low electrode impedance [52]. However, adding
the preamplifier circuit to the electrode makes it heavier, which
may limit participant and device mobility. Active electrodes
also require additional energy to power the preamplifier cir-
cuits, leading to higher power consumption. Furthermore, the
inclusion of these circuits increases the cost of the electrodes.
Therefore, the choice between active and passive electrodes
depends on the specific EEG application, the available budget,
and the mobility requirements of the system.

B. Machine Learning Approaches in Al-Powered BCI
Systems

Within the domain of Al-driven BCI systems, this sec-
tion elucidates the pivotal contributions of machine learning
(ML) and deep learning (DL) algorithms to the decoding
of EEG data. Two predominant methodologies govern the
application of ML and DL to EEG signal processing: feature-
based techniques and end-to-end deep learning frameworks
[53]. Feature-based approaches involve the extraction of multi-
faceted features from EEG signals spanning temporal, spectral,
and spatial domains, which are subsequently input into conven-
tional classifiers or regressors optimized for specific decoding
objectives. This methodology necessitates rigorous preprocess-
ing of EEG data to optimize feature integrity [54], [55] and
suppress artifactual interference [56], rendering it particularly
advantageous in contexts characterized by constrained EEG
datasets, such as those with limited subject cohorts or trial
numbers, and restricted computational resources.

This advantage of feature-based methods becomes more
apparent when considering that, unlike vision or speech
domains, EEG datasets are often small and heterogeneous
due to inter-subject variability, session-to-session differences,
and the cost of extensive data collection [57]. This scarcity
poses a significant limitation for deploying high-capacity deep

learning models in BCI applications, as large labeled datasets
are typically required to achieve robust performance. The
lack of sufficient data can limit model generalization and
robustness, particularly for end-to-end architectures directly
adapted from other fields. To mitigate this challenge, strategies
such as transfer learning, data augmentation, and domain adap-
tation have been explored to enable effective model training
and deployment, including in resource-constrained Edge Al
scenarios.

Conversely, end-to-end deep learning paradigms minimize
preprocessing demands, frequently leveraging raw EEG data
[58] to achieve robust decoding performance. The streamlined
data processing architecture inherent to DL-based systems
enhances their applicability to real-time BCI implementa-
tions [59]. Nevertheless, these approaches are contingent
upon extensive EEG datasets and substantial computational
infrastructure for both training and inference phases, pos-
ing significant challenges for deployment in resource-limited
settings. The ensuing section will present a comprehensive
review, concentrating predominantly on deep learning method-
ologies within BCI systems, and delineating their recent
advancements and prospective capabilities.

IV. EDGE Al FOR EFFICIENT BC| PROCESSING

The incorporation of Al capabilities into BCI systems has
significantly improved both the response time of BCIs when
interacting with external devices and the overall portability
of the system. Traditional Al models are often trained and
executed on high-performance computing platforms. However,
with the rise of edge computing, deploying Al models directly
on embedded devices has become increasingly feasible. To
achieve efficient on-device inference, several lightweight Al
frameworks have been developed, optimizing deep learning
models for resource-constrained hardware.

A. Edge Al Framework

ESP-DL (launched on April 2, 2021) is a lightweight
and efficient neural network inference framework tailored for
Espressif’s ESP series System on Chips (SoCs), making Al
application development simple and fast [60]. It provides
intuitive APIs for loading, debugging, and running Al models,
while seamlessly integrating with other Espressif SDKs. With
ESP-PPQ, ESP-DL supports quantizing models from ONNX,
PyTorch, and TensorFlow into its efficient ESP-DL Stan-
dard Model Format, which uses FlatBuffers for lightweight,
zero-copy deserialization. The framework is optimized for per-
formance with features like efficient operator implementation,
a static memory planner that allocates resources based on
internal RAM size, and dual-core scheduling for computa-
tionally intensive tasks such as Conv2D, Gemm. Additionally,
ESP-DL accelerates inference by implementing activation
functions (except ReLU and PReLU) using an 8-bit Look-Up
Table (LUT), ensuring high efficiency without compromising
flexibility. Designed specifically for resource-constrained envi-
ronments, ESP-DL is the ideal choice for deploying Al models
on ESP series chips.
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TABLE Il
COMPARISON OF EDGE Al FRAMEWORKS

and NXP platforms

Pi, Texas Instruments

Key parameters | ESP-DL STM32.A1 TFLite Micro Edge Impulse ARM CMSIS-NN
Provider Espressif Systems STMicroelectronics Google Edge Impulse ARM
Target Hardware ESP32-S3,  ESP32- | STM32 MCUs and | Cross-platform edge | Cross-platform edge | ARM Cortex-M mi-
P4, ESP32, ESP32- | MPUs devices, including | devices, including | crocontrollers
C3 STM32, ESP, Nordic, | STM32, ESP, Nordic,
Texas  Instruments, | Infineon, Raspberry

Model Format

Pytorch, TensorFlow
Lite and ONXX

Pytorch, TensorFlow
Lite, Keras, ONNX,
Scikit learn

TensorFlow Lite

TensorFlow, Tensor-
Flow Lite, ONNX

TensorFlow, Tensor-
Flow Lite

ESP32 platforms

on STM32 with good

optimization and high

across platforms

Quantization INTS, INT16 [68] INTS [69] INT8, FP16, Mixed | INTS8 [71] INTS, INT16 [67]
Support (INTS: weights,
INT16: activations)
[70]
Ease of Use Moderate Moderate Easy Easy Diffcult
Applications ESP32-specific appli- | Applications on | General-purpose Rapid prototyping | Performance-critical
cations, such as Im- | STM32 platform | ML applications on | and deployment of | applications  where
age and object recog- | such as Object | resource-constrained ML models in IoT | maximizing the
nition detection, Audio | devices; suitable for | and edge applications | efficiency of neural
event detection, | a wide array of IoT network inference
Image classification applications on ARM Cortex-M
devices is essential
Licensing Free and Open-source | Free but Proprietary Free and Open- | Free for Individuals, | Free —and  Open-
Source Paid for Enterprise Source
Suitability for | Suitable for | Suitable for | Suitable for | Highly suitable | Highly suitable for
BCI embedded BCI | lightweight BCI | lightweight BCI tasks | for prototyping | performance-critical
systems with strict | tasks (e.g., motor | across platforms | lightweight BCI tasks | BCI on Cortex-M
power constraints on | imagery  decoding) | with moderate | (e.g., motor imagery) | with high efficiency

power efficiency

flexibility

STM32.Al (introduced in 2019) is a framework devel-
oped by STMicroelectronics to facilitate the deployment of
machine learning models on STM32 microcontrollers [61]. It
supports model conversion from popular frameworks like Ten-
sorFlow, PyTorch, and ONNX, optimizing them for STM32
hardware accelerators such as Chrom-ART and DSP units.
STM32.Al integrates seamlessly with STM32CubeMX and
STM32Cube.Al, providing developers with tools for model
conversion, validation, and performance benchmarking. This
framework is ideal for applications requiring efficient Al
deployment on STM32 devices.

TensorFlow Lite (first committed on April 9, 2021) for
Microcontrollers (TFLM) is a lightweight version of Ten-
sorFlow Lite designed to run machine learning models on
microcontrollers and other devices with limited resources
[62]. It supports post-training quantization (INT8) and prun-
ing, which help reduce model size and improve inference
speed, making it suitable for low-power, resource-constrained
devices. TFLite Micro is hardware-agnostic and portable,
supporting a wide range of microcontrollers, including those
from NXP [63], Texas Instruments [64], and Espressif Chipsets
[65]. The framework provides an interpreter to efficiently
run models on-device and tools for model conversion and
optimization.

Edge Impulse (founded in 2019) is an end-to-end platform
for developing and deploying machine learning models on
edge devices [66]. It provides cloud-based tools for data
collection, labeling, model training, and deployment, mak-
ing it accessible even to those without extensive machine
learning expertise. Edge Impulse supports a wide range
of hardware platforms and is particularly suited for rapid

prototyping and development of edge AI applications. The
platform also provides support for various deployment targets,
including microcontrollers and other resource-constrained
devices.

ARM Common Microcontroller Software Interface Standard
neural network (CMSIS-NN, introduced in 2017) is a col-
lection of highly optimized neural network kernels designed
for ARM Cortex-M microcontrollers [67]. As part of the
CMSIS, it supports INT8 and INT16 quantization and focuses
on low-latency, low-memory inference. CMSIS-NN provides
efficient implementations of common neural network opera-
tions, enabling developers to achieve significant performance
improvements in Al applications on ARM Cortex-M devices.
It is particularly beneficial for applications requiring real-time
processing with minimal resource consumption.

As Edge AI frameworks advance to allow AI models
to operate effectively on embedded devices, the next stage
of innovation prioritizes creating specialized hardware and
optimized architectures to boost BCI applications. Current
trends highlight the importance of real-time AI processing
on devices, bespoke Al accelerators, and energy-efficient Al
models tailored for low-power BCI devices. To assess the
adequacy of current frameworks in meeting these require-
ments, Table II provides a comparison of major Edge Al tools,
namely ESP-DL, STM32.Al, TFLite Micro, Edge Impulse and
ARM CMSIS-NN, focusing on their compatibility with vari-
ous hardware, their optimization methods, and their suitability
for BCI applications. These frameworks guarantee low-latency
processing, enhanced privacy, and real-time adaptability by
harnessing their distinct advantages, unlocking novel pathways
for on-device Al applications in BCls.
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TABLE IlI
RECENT ADVANCES IN ON-DEVICE Al FOR BRAIN-COMPUTER INTERFACES

Note: Data volume values are expressed in kilobytes (kB), converted from bits as kB =

While Table II outlines the capabilities of popular edge Al
frameworks and their compatibility with various embedded
platforms, it is important to assess whether these frameworks
are practically sufficient for real-time BCI applications. To
address this, we surveyed recent studies where Al models
were deployed on embedded platforms for specific BCI tasks.
These studies, summarized in Table III, provide empirical
evidence of the feasibility of on-device Al in real-world BCI
scenarios. They illustrate how frameworks such as TFLite
Micro, STM32.Al, and GAP SDKs (e.g., DORY) have been
used to achieve low-latency and energy-efficient inference
across various use cases, including motor imagery classifica-
tion, driver drowsiness detection, and biometric identification.
This connection between general-purpose frameworks and
real-world BCI deployment helps demonstrate the evolving
readiness of Edge AI for BCI tasks.

B. On-Device Al for Real-Time BCI Processing

Traditional BCI systems often rely on local computers or
cloud-based computing to process neural signals and generate
predictions. However, the shift towards on-device Al is becom-
ing increasingly prominent, allowing real-time inference with

Study | System Components Framework | Model Accuracy | Latency | Data Volume & Task
[87] Custom Device: TFLM Quantized CNN 96.11% 25.44 ms | Data Volume: 24 (kB)
e SoC: nRF52840 (MCU @64MHz & BLE 5.3) Task: Driver Drowsiness
e AFE: ADS1299 (24-bit), 250 SPS Detection (DDD)
o Dry sensors, 4 channels
[88] Custom Device: - Nearest Centroid 83% - Data Volume: -
e SoC: nRF52832 (MCU @64MHz & BLE 5.2) Classifier (NCC) Task: Drowsiness detec-
e AFE: ADS1298 (24-bit), 1 kSPS tion using EEG and IMU
e IMU: TDK InvenSense MPU-9150 (16-bit) signals
e Dry sensors, 3 channels
[89] Custom Device: DORY MI-BMlInet 90.88% 21.5 ms Data Volume: 46.875 (kB)
e MCU: GAP9 (10 cores @240 MHz) (lightweight Task: Motor Movement /
e BLE: nRF52811 CNN) Motor Imagery Classifica-
o AFE: ADS1298 (24-bit), 500 SPS tion
e Active sensors, 8 channels
[90] Custom Device: DORY EPIDENET 99.74% 4.58 ms Data Volume: 46.875 (kB)
e MCU: GAP9 (10 cores @240 MHz) Task: EEG-based biomet-
e BLE: nRF52811 ric subject recognition (al-
o AFE: ADS1298 (24-bit), 500 SPS pha waves, SSVEP, and
e Semi-dry sensors, 8 channels motor movement classifi-
cation)
[91] Custom Device: DORY VOWELNET 42.8% 40.9 ms Data Volume: 58.594 (kB)
¢ MCU: GAP9 (10 cores @240 MHz) Task: 13-class imagined
e BLE: nRF52811 speech classification
o AFE: ADS1298 (24-bit), 500 SPS (vowels, commands, rest)
o Dry sensors, 8 channels
[92] Custom Device: STM32.Al 1D-CNN 99.3% 200 ms Data Volume: 1.172 (kB)
e MCU: STM32L476RG (ARM Cortex M4 Task: Mobile Robot Con-
@80 MHz) trol via Eyeblinks and
e AFE: ADS1299 (24-bit), 250 SPS ‘Winks
e Dry sensors, 2 channels
bits

8 x 1024

minimal latency [72]. By processing neural signals directly
on the device, on-device Al eliminates the need to transmit
data to remote servers, enabling real-time inference. This is
particularly critical for applications such as prosthetic control
or neurofeedback, where even minor delays can disrupt user
experience or compromise functionality. Additionally, privacy
and security are greatly enhanced, as sensitive neural data
remains on the device and is not exposed to potential breaches
during transmission or cloud storage [73]. This is espe-
cially important for medical and personal BCI applications,
where data confidentiality is paramount. Furthermore, modern
microcontrollers and Al-enabled chips are designed to be
energy-efficient [74], [75], making them ideal for wearable
BCI devices that require long battery life. Finally, on-device Al
enables offline functionality, allowing BCI systems to operate
in environments with limited or no internet connectivity, such
as remote areas or industrial settings.

Implementing on-device Al for BCI systems faces various
challenges. Typically, microcontrollers and edge devices are
constrained by limited memory, processing capabilities, and
energy availability. As a result, hardware restrictions are a
primary limitation, making it more challenging to deploy
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sophisticated Al models due to the need for extensive process-
ing with high-dimensional neural data. To address this issue,
approaches such as model optimization through quantization
[76], pruning [77], and distillation [78] are used to diminish
the size and computational demands of Al models without
sacrificing their accuracy. Another challenge is ensuring real-
time processing, as BCI applications require consistent and
rapid inference to provide meaningful feedback to users. Addi-
tionally, adaptability is a concern, as neural signals can vary
significantly between individuals [79]. Developing Al models
that can generalize across users while also personalizing to
individual neural patterns remains an ongoing area of research.

Recent advancements in hardware and software have paved
the way for on-device Al in BCI systems. One key innovation
is the development of Al-enabled chips, such as neuromorphic
processors [80], [81] (e.g., Intel’s Loihi), Tensor Processing
Units (TPUs) by Google [82], and Neural Processing Units
(NPUs) [83] found in Qualcomm’s Snapdragon platforms.
These specialized hardware platforms are designed to perform
Al inference efficiently, even on resource-constrained devices,
enabling real-time processing of neural signals. Another break-
through is the emergence of Tiny Machine Learning (TinyML),
a field focused on deploying machine learning models on
ultra-low-power microcontrollers like the Arm Cortex-M series
or Espressif’s ESP32. Frameworks such as TensorFlow Lite
for Microcontrollers and Edge Impulse have become popular
for developing TinyML applications, allowing BCI systems
to leverage Al capabilities without compromising battery life
or device portability. Additionally, federated learning offers
a promising approach to training Al models across multiple
devices without sharing raw data [84]. This decentralized
method, supported by frameworks like PySyft [85] and Tensor-
Flow Federated [86], enhances privacy while improving model
performance, making it particularly suitable for BCI applica-
tions where data sensitivity is a concern. These technologies
collectively represent significant achievements in enabling
efficient, secure, and scalable on-device Al for real-time BCI
processing.

V. RECENT WORKS ON-DEVICE Al FOR BCI

This section highlights recent advancements in on-device
Al for BCI, focusing on its transformative applications and
benefits across various domains, such as driver drowsiness
detection (DDD), motor movement classification, and robotic
control.

One of the most promising applications of on-device
Al in BCI is driver drowsiness detection. For instance,
Nguyen et al. [87] proposed a novel behind-the-ear (BTE)
EEG-based DDD system that leverages TinyML for on-device
processing. The system utilizes a wearable headband device
equipped with dry sensors to collect EEG signals from four
BTE locations. These signals are preprocessed on-device,
and Welch’s method is applied to extract the relative power
spectral density ratio of theta, alpha, and beta EEG bands. Two
neural network approaches, namely a multilayer perceptron
(MLP) and a CNN, were developed and evaluated by the
authors. These were compared with a support vector machine

(SVM) for detecting drowsiness. The CNN model, which was
quantized and implemented on an nRF52840 SoC (64 MHz
MCU) utilizing TensorFlow Lite for Microcontrollers (TFLM),
showed a remarkable accuracy of 96.11% with a latency
of merely 25.44 ms. This system exemplifies the potential
of on-device Al for low-power, real-time, and privacy-
responsible drowsiness detection, providing a viable approach
for enhancing road safety in everyday scenarios. In addition,
Kartsch et al. [88] introduced an energy-efficient wearable
platform for drowsiness detection that prioritizes low power
consumption and minimal latency. The system integrates dry
EEG sensors alongside IMU sensors to capture both neural
and behavioral signals. The processing is performed using
Mr. Wolf, an 8-core ultra-low-power digital platform, running
a Nearest Centroid Classifier (NCC) trained with a semi-
supervised algorithm. While the system achieved a slightly
lower accuracy of 83%, it offers a key advantage in real-
time detection with minimal latency, making it highly suitable
for real-world deployment where immediate responsiveness
is critical. Furthermore, its design emphasizes wearability
and extended battery life, addressing common limitations of
EEG-based drowsiness detection systems.

Several studies have leveraged the GAP9 microcontroller
and the DORY deployment framework to enable real-
time, energy-efficient on-device Al for diverse BCI tasks.
Mei et al. [89] demonstrated high-accuracy motor
imagery classification (90.88%) using a lightweight CNN
(MI-BMlnet), achieving only 21.5 ms latency and 0.45 m]
per inference. Frey et al. [90] introduced GAPSes, a
wearable smart glasses platform that achieved 99.74%
accuracy in EEG-based biometric recognition using just
8 channels, with an ultra-low energy footprint of 121 wJ
per inference. Extending the capabilities of this ecosystem,
Ingolfsson et al. [91] tackled the complex task of imagined
speech decoding. Their system used a low-channel dry EEG
headset and a compact neural model (VOWELNET) to
classify 13 speech imagery classes (vowels, commands, and
rest), achieving 42.8% average accuracy with 40.9 ms latency
while consuming only 25.93 mW. These studies showcase
the flexibility and practicality of GAP9-based platforms for
supporting a wide spectrum of cognitive and motor BCI
applications in real-world settings.

Outside the GAPY9 ecosystem, other platforms have also
demonstrated compelling applications of on-device Al for
BCI. For instance, Chepyk et al. [92] proposed a novel system
that uses four types of electrooculography (EOG) signals—Ieft
and right winks, voluntary blinks, and involuntary blinks—to
control a remote robotic platform. The system differentiates
between voluntary and involuntary blinks to avoid unintended
commands, ensuring robust and accurate control. A tinyML
algorithm is employed to analyze and interpret the EOG
signals in real-time, making the system suitable for resource-
constrained environments. The proposed solution includes an
event detection algorithm to select signal segments and a 1D
CNN for classification. The entire system is embedded on a
custom-made board featuring an STM32L476RG MCU, which
handles all processing without the need for external devices.
This setup achieves an impressive 99.3% average classification
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accuracy for the four classes of EOG signals, enabling precise
three-degrees-of-freedom control of a robotic platform. The
system has been tested by multiple users, who reported high
accuracy and ease of use when controlling a three-wheeled
robot.

These advancements underscore the transformative poten-
tial of on-device AI in BCI systems, paving the way for
innovative applications that improve safety, accessibility, and
human-machine interaction. Table III summarizes the key con-
tributions from recent studies, including system components,
frameworks, models, accuracy, latency, and BCI tasks.

V1. REAL-WORLD APPLICATIONS OF EDGE
Al-PowERED BCls

The deployment of edge Al-powered BCI systems opens
new possibilities across various fields by enabling real-time
processing, reducing reliance on external infrastructure, and
enhancing privacy. These advantages are particularly critical
in applications where latency, data security, and operational
independence are paramount. Below, we explore how these
benefits manifest in human-robot, medical, consumer, and
industrial applications.

A. Human-Robot Teaming

Edge Al-powered BCI systems revolutionize human-robot
teaming by enabling seamless collaboration between humans
and robots through direct neural control. This eliminates the
need for traditional interfaces like joysticks or keyboards. This
collaborative effort merges the intuitive sense, adaptability, and
decision-making capabilities of humans with the precision,
strength, and stamina of robots. The principal benefits of edge
Al, namely real-time processing, diminished dependency on
external infrastructure, and enhanced privacy, are crucial in
scenarios requiring swift responses, operational independence,
and data protection, rendering these systems revolutionary
across various sectors. In the manufacturing sector, employees
using BCIs can manage robotic arms for activities like precise
assembly and material handling. Edge Al facilitates rapid
interpretation of neural signals, enabling swift and precise
robotic actions that enhance efficiency and reduce mistakes
[93]. The independence from external networks enables unin-
terrupted operation in large factories or areas with limited
connectivity, enhancing scalability and reliability. Addition-
ally, on-device processing protects proprietary data, such as
worker performance metrics, from external breaches. In space
exploration, BCIs enable astronauts to control robots for tasks
such as sample collection or maintenance, particularly in long-
duration missions where communication delays with Earth can
be significant. For example, research emphasizes the potential
of BClIs to reduce astronauts’ mental burden, thereby aiding
space exploration missions and improving overall health [94].
In search and rescue, responders deploy robots into haz-
ardous environments, such as collapsed buildings or disaster
zones, to locate survivors or assess damage. Edge Al-powered
BClIs enable real-time navigation and decision-making, crucial
for time-sensitive missions [95]. These applications under-
score how edge BCI devices optimize human-robot teaming

by providing swift, protected, and self-sufficient function-
alities, significantly boosting performance and coordination
across space exploration, manufacturing, and search and
rescue.

B. Emotion-Aware BCI Applications

Affective computing focuses on the development and inter-
action with systems that can recognize, interpret, respond to,
and even influence human emotions [96]. As a core component
of affective computing, emotion recognition plays a vital
role in enabling machines to understand emotional states,
which, despite its complexity, provides significant value across
various real-world domains, including healthcare, education,
and security [96], [97], [98], [99], [100].

Emotion recognition has advanced considerably with the
emergence of wearable BCI technologies, which provide a
practical and non-invasive means of capturing neural responses
in everyday settings [100], [101]. Recent research increasingly
emphasizes integrating these systems into real-time, portable
platforms to improve usability and responsiveness.

Several studies have proposed algorithmic innovations
to enhance EEG-based emotion recognition. For instance,
Li et al. proposed a model that combines attention mecha-
nisms with Bidirectional Long Short-Term Memory (BiLSTM)
networks to extract temporal dynamics from EEG signals,
aligned with Russell’s circumplex model of affect [102].
Their system achieved promising binary classification results,
with accuracies of 0.833 for arousal and 0.794 for valence.
Haipeng et al. later introduced a hybrid 1DCNN-BiLSTM
model that improved performance further, achieving 0.916 for
arousal and 0.915 for valence [103]. Similarly, Shadi et al.
developed the SS4-STANN architecture, reporting accuracies
of 0.830 for arousal and 0.827 for valence [104].

On-device and system-level implementations are gaining
increasing attention due to their relevance to real-world
deployment. For example, Mai et al. developed a real-time, on-
chip machine learning-based wearable EEG system positioned
behind the ear for continuous emotion monitoring, enabling
high performance within a compact, low-power embedded
platform [105]. Luo et al. presented a portable and afford-
able four-channel EEG system that leverages self-supervised
learning for efficient emotion recognition with minimal labeled
data, demonstrating feasibility for edge computing envi-
ronments [106]. Similarly, Li et al. proposed a real-time
wireless emotion-aware system based on a Body Area Net-
work (BAN), optimized for low-latency processing in IoMT
applications [107]. In another hardware-oriented approach,
Ezilarasan and Leung implemented emotion classification on
an FPGA, highlighting the potential of reconfigurable plat-
forms for power-efficient EEG signal analysis in embedded
systems [108].

Other advanced methods have also pushed algorithmic
boundaries. Garcia-Moreno et al. applied Gradient Boosting
(GB) and showed that wearable BCIs can achieve perfor-
mance comparable to traditional wet-electrode systems [98].
Wang et al. employed an Extra Trees Classifier for emo-
tion polarity classification with an accuracy of 0.883 [109].
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Mai et al. also introduced the EEER framework using Vision
Transformers (ViT) with Spatial-Temporal Processing (STP)
and Locality Self-Attention (LSA), achieving an accuracy of
0.9239 [110].

Crucially, recent studies emphasize that generic deep learn-
ing models from domains such as computer vision or speech
may not capture the neurophysiological dynamics inherent
in EEG signals. To address this limitation, brain-inspired
model architectures, such as graph neural networks (GNNs),
are being explored. For example, Li et al. introduced BF-
GCN, a cognition-inspired graph learning framework that
integrates both data-driven features and functionally informed
brain network priors. This hybrid model models the brain’s
cognitive pathways and spatial connectivity, achieving robust
and interpretable EEG-based emotion recognition [111]. The
incorporation of such neurophysiological priors marks a sig-
nificant step toward models that are not only accurate but also
aligned with the underlying structure of emotional processing
in the brain.

Together, these advances reflect a broader shift in Emotion-
Aware BCI applications, moving from algorithm-centric
studies toward real-world, on-device, and neurophysiologically
informed systems. This progression supports the vision of
practical, user-centric, and context-aware affective computing
platforms.

C. Medical Application

Edge BCI devices facilitate real-time neurorehabilitation
and assistive communication without depending on external
systems. This independence is critical for patients with motor
impairments or neurological conditions, especially in envi-
ronments with unstable internet connectivity. By leveraging
on-device Al processing, these systems ensure low-latency
responses, data security, and continuous functionality, making
them indispensable in modern healthcare. In assistive tech-
nologies for disabilities, BCIs allow individuals with paralysis,
amyotrophic lateral sclerosis, or spinal cord injuries to control
prosthetic limbs, wheelchairs, or communication devices using
brain signals [112], [113], [114]. Edge Al ensures low-latency
interpretation of neural data, enabling seamless interaction,
while on-device processing guarantees uninterrupted function-
ality in areas with poor connectivity and safeguards sensitive
neural data from breaches [115]. For neurorehabilitation,
BCIs monitor brain activity during stroke recovery, providing
real-time feedback to therapists and patients [116]. Edge
Al eliminates the need for cloud-based processing, ensuring
continuous operation and compliance with healthcare privacy
regulations [73]. In epilepsy and seizure detection, wearable
BCIs with edge Al detect and predict seizures in real-time,
offering immediate alerts even in remote settings [117]. By
processing data locally, these systems reduce reliance on
external infrastructure and protect sensitive health informa-
tion [118]. Together, these applications highlight how edge
Al-powered BCIs are transforming healthcare by delivering
real-time, secure, and independent solutions for patients and
practitioners alike.

D. Consumer Electronics

Wearable edge BCI systems enable seamless interaction
with augmented/virtual environments, allowing users to con-
trol applications through brain signals without requiring
continuous internet access or external computing power. This
on-device processing capability improves user mobility and
responsiveness, particularly in gaming and augmented reality
(AR) contexts. In gaming and entertainment, edge Al ensures
low-latency interpretation of brain signals, enabling instanta-
neous control and immersive experiences, while eliminating
the need for cloud-based processing [119]. For wearable
devices, such as smart headbands and EEG-based wearables,
edge AI monitors focus, stress, and sleep patterns in real-
time, providing users with actionable insights without relying
on external servers [120]. This offline functionality ensures
accessibility in areas with limited connectivity, while local-
ized processing protects sensitive user data. In personalized
learning and training, BCIs adapt educational content based
on the user’s cognitive state, with edge Al delivering real-
time feedback and maintaining data security through on-device
computation [121]. Additionally, in brain-controlled smart
home devices, edge Al enables users to control appliances
like lights and thermostats through brain signals, reducing
reliance on external infrastructure and ensuring privacy [122].
These applications demonstrate how edge Al-powered BCIs
are enhancing user experiences by delivering real-time, secure,
and independent solutions in consumer electronics.

E. Industrial Use

Edge BCIs improve worker monitoring in high-risk envi-
ronments, enhancing focus assessment and reducing accidents.
The elimination of external processing requirements minimizes
latency, enabling more accurate real-time interventions in
industrial applications. In worker safety and fatigue moni-
toring, edge Al analyzes cognitive states to detect fatigue or
stress, providing instant alerts to prevent accidents [123]. By
processing data on-device, these systems ensure continuous
operation in remote or hazardous environments with unstable
connectivity while safeguarding sensitive biometric data. For
human-machine collaboration, BCIs allow workers to control
machinery or robots using brain signals, with edge Al enabling
low-latency responses for precise operations. The elimination
of external processing requirements ensures reliability and
reduces dependency on cloud infrastructure [124]. In training
and skill development, edge Al-powered BCIs provide real-
time feedback during employee training by analyzing cognitive
engagement, and accelerating skill acquisition while main-
taining data confidentiality [125]. Finally, in remote operation
of equipment, BCIs enable operators to control machinery in
hazardous environments (e.g., mining, oil rigs) using brain sig-
nals. Edge Al ensures real-time control and minimizes latency,
enhancing operational safety and efficiency without relying
on external networks [126]. These applications highlight how
edge Al-powered BClIs are improving productivity, safety, and
efficiency in industrial settings through real-time, secure, and
independent solutions.
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VIlI. CONCLUSION AND FUTURE OUTLOOK

This paper has provided a comprehensive review of
Al-powered BCI systems, covering key components such as
hardware design, data acquisition, preprocessing techniques,
and deep learning models optimized for real-time, on-device
applications. A critical factor in BCI performance is the acqui-
sition of high-fidelity EEG signals, which typically requires
an ADC resolution of at least 16 bits and a minimum sam-
pling rate of 250 Hz. Preprocessing techniques, including
noise reduction and feature extraction, remain essential for
improving signal quality and ensuring accurate classification.
Recent advancements in Al, edge computing, and specialized
hardware are enabling next-generation BCI systems that are
more portable, energy-efficient, and responsive.

From an embedded systems perspective, the challenge is
not simply to “fit” a model on a device, but to design a
closed-loop pipeline where every stage, from electrode—skin
contact and analog front-end configuration to feature extraction
and inference, is co-optimized for latency, accuracy, and
power. This calls for a shift from maximizing accuracy in
unconstrained environments to optimizing accuracy under the
realities of mobile, resource-limited hardware.

Future research should prioritize several directions. First,
optimizing Al models for embedded systems through quanti-
zation, pruning, architectural simplification, and EEG-specific
accelerators will enable efficient deployment in resource-
constrained environments. Second, improving real-time signal
processing and data streaming pipelines will enhance respon-
siveness and reliability, particularly in wearable or mobile
use cases. Third, personalization through continual on-device
learning, transfer learning, and adaptive interfaces can address
inter-subject and session-to-session variability while preserv-
ing user privacy by avoiding cloud-based retraining.

Looking ahead, the next breakthroughs in Al-on-device
BCIs will likely be driven by three converging trends:

1) EEG-aware hardware accelerators: Custom low-power
NPUs and neuromorphic processors tuned for the
temporal-spectral characteristics of EEG could run
compact convolutional or transformer-based models
at milliwatt-level power. Research prototypes already
demonstrate  FPGA-based CNN inference accelera-
tors for real-time EEG classification [127], hybrid
CNN-LSTM EEG decoders for drowsiness detection
[128], and ASIC-like EEGNet processors optimized for
low-power deployment [129]. These platforms integrate
both signal conditioning and inference on a single chip,
offering notable gains in latency and energy efficiency.

2) Continual, privacy-preserving learning: Lightweight
adaptation methods such as federated learning, few-shot
transfer, or session-specific calibration layers can keep
BCIs accurate over time without transmitting sensitive
neural data to external servers. These approaches could
transform BClIs from static classifiers into adaptive part-
ners that grow with the user.

3) Sensor fusion at the edge: Combining EEG with
IMU, EMG, or eye-tracking sensors directly on-device
can significantly improve robustness in uncontrolled

environments. Embedded-friendly fusion techniques,
from early-layer multimodal networks to low-latency
filtering, are emerging as practical solutions for real-
time, context-aware BClIs.

In the longer term, Edge Al-powered BCIs may evolve from
research prototypes into ubiquitous, wearable companions that
adapt in real time, operate seamlessly in the background,
and provide intuitive control over digital systems without
frequent recalibration. Achieving this vision will require sus-
tained collaboration between neuroscience, embedded systems
engineering, Al research, and human—computer interaction. By
embracing hardware—software co-design, efficient modeling,
and user-centered adaptability, the field can move toward
BCIs that are smaller, smarter, always available, and deeply
integrated into everyday life.

APPENDIX
ADC QUANTIZATION DERIVATION

To understand why higher resolution leads to better accu-
racy, the size of one code (LSB) in ADC can be calculated as
shown in Eq. 3.

Vref

LSB = N

3)

where Vi is the reference voltage of the ADC, and N is
the ADC resolution. The quantized output voltage (Vguantized)
captured by ADC can be expressed as Eq. 4.

Vo
Vquantized = d| —= ) xLSB 4
quantized = TOuUn (LSB) 4
Here, V, represents the real input voltage. Hence, the
quantization error E, can be defined in Eq. 5:

Eq =Vy- unantized )

Since the quantization error is limited to a range of iLSTB,
therefore the boundary of E, can be defined as Eq. 6:

LSB
0<|E) < == (6)

Substituting the LSB from Eq. 3 to Eq. 6, the relationship
between quantization error bound and ADC resolution is
obtained in Eq. 7.

Vr f
0 <IE| < 5557 )
Taking the limit as N — co:
. . Vet
0< lim |E| < lim ZN‘_eH =0 (8)

As the ADC resolution (N) increases, the quantization error
decreases, improving the accuracy of EEG signal recording
(Eq. 8). In the theoretical limit where N — co, the quanti-
zation error approaches zero, allowing for near-perfect signal
reconstruction.
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