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Abstract
The recently proposed Bayesian Flow Networks (BFNs) show great

potential in modeling parameter spaces via a diffusion process,

offering a unified strategy for handling continuous, discrete data.

However, these parameter diffusion models cannot learn high-level

semantic representation from the parameter space since common

encoders, which encode data into one static representation, can-

not capture semantic changes in parameters. This motivates a new

direction: learning semantic representations hidden in the param-

eter spaces to characterize noisy data. Accordingly, we propose a

representation learning framework named SepDiff which operates

in the parameter space to obtain parameter-wise latent semantics

that exhibit progressive structures. Specifically, SepDiff proposes

a self-encoder to learn latent semantics directly from parameters,

rather than from observations. The encoder is then integrated into

parameter diffusion model, enabling representation learning with

various formats of observations. Mutual information terms further

promote the disentanglement of latent semantics and capture mean-

ingful semantics simultaneously. We illustrate seven representation

learning tasks in SepDiff via expanding this parameter diffusion

model, and extensive quantitative experimental results demonstrate

the superior effectiveness of SepDiff in learning parameter repre-

sentation.

CCS Concepts
• Diffusion models, autoencoder, representation learning,
hierarchical structures;

Keywords
Diffusion; Representation Learning
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1 Introduction
Representation learning [5], which aims at learning low-dimensional

latent semantics from high-dimensional observations, offers an

unsupervised approach to discovering high-level semantics in ob-

servations. It has been widely applied in areas such as computer

vision [12, 26, 63], and data analytics [33, 45, 51]. While most rep-

resentation learning methods [9, 21, 31, 52] work on continuous-

valued observations, different non-trivial methods are needed to

discover semantics for discrete data [2, 10, 36, 48]. Consequently,

these individual efforts might face issues such as inconsistent dis-

coveries within the data [66] or repeated modelling efforts [24, 62].

On the other hand, Bayesian Flow Networks (BFNs) [15, 42, 56]

have been recently proposed as promising Parameter Diffusion

Models (PDMs). By operating in the parameter space, PDMs design

a multi-step mechanism to approximate the ground-truth param-

eters of observation sequentially. As a result, a uniform strategy

may be adopted to deal with continuous, discrete data while simul-

taneously maintaining fast sampling. Pilot studies of PDMs have

shown promising results in modelling different data formats.

Leveraging PDMs , this paper introduces SepDiff , a novel pa-

rameter space representation learning framework that employs a

unified strategy to extract meaningful high-level semantics from

continuous and discrete data. Specifically, a self-encoder is designed
to encode step-wise parameters into low dimensional semantic la-

tents, capturing gradual semantic changes throughout the multi-

step generation process. These semantic latents are then integrated

into a neural network architecture to form the parameters for an

output distribution that simulates observations. Furthermore, mu-

tual information is introduced to enhance the disentanglement of

latent semantics, promoting the capture of distinct and meaningful

representations.

SepDiff is applied on benchmark datasets and verifies its effective-

ness in obtaining meaningful high-level semantics for discrete and

continuous-valued observations. Sampling and reverse-sampling

procedures are developed here to complete conditional image re-

construction and generation tasks. In particular, our developed

self-encoder discovers interesting progressive semantics along with

the flow steps. That is, our SepDiff obtains meaningful,clearer dis-

entangled representations while maintaining high sample quality.

The main contributions of this work can be summarized as fol-

lows: (1) A parameter space representation learning framework

3273
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Bayesian Update Function                   generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

  Conditional Decoder                                 decoding  t-step parameters          to generate t-step  intermediate latents 

Figure 1: Our understanding of PDMs serves as an alternative notation for vanilla BFNs. Each step consists of a conditional
decoder 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 ) (in blue rectangle) and a Bayesian update function ℎ(·) (in peach rectangle). In training PDMs , dashed
arrows (between conditional decoder and {x𝑡 }𝑇𝑡=1

) are non-existent as {x𝑡 }𝑇𝑡=1
refers to observations. The dashed arrows become

solid for sample generation, representing the decoder generates x𝑡 in sample generation.

Table 1: A comparative assessment of SepDiff and various
sample based generative models focuses on high-quality gen-
eration and key representation learning capabilities, includ-
ing low-dimensional (capturing compact and meaningful
latent representations), smooth (ensuring small input varia-
tions lead to gradual output transitions), continuous (main-
taining consistency in the latent space to prevent abrupt
changes), and time-specific (preserving temporal correlations
among data features). To systematically evaluate these prop-
erties, we design specific experiments: sample quality task
and unconditional generation task can illustrate high-quality
generation, latent classification task and attributes encoding
task evaluate low-dimensional representation learning, la-
tent space interpolation task measures smooth transitions,
disentanglement task examines the continuity of the latent
space, and time-varying generation task investigates time-
specific semantics.

Modelling Methods
Generation Representation

High Low Smooth Conti- Time-
Space Quality Dimensional nuous Specific

Sample

AE [30] (2014) × ✓ × × ×

VAE [23] (2014) × ✓ × × ×

GAN [14] (2014) × × × × ×

DDPM [20] (2020) ✓ × × ✓ ×

DDIM [41] (2021) ✓ × ✓ ✓ ×

LDM [37] (2022) ✓ ✓ × ✓ ×

DiffAE [35] (2022) ✓ ✓ ✓ × ×

PDAE [61] (2022) ✓ ✓ ✓ × ×

InfoDiff [49] (2023) ✓ ✓ ✓ ✓ ×

DisDiff [57] (2023) ✓ ✓ ✓ × ×

DiTi [59] (2024) ✓ ✓ ✓ × ×

HDAE [28] (2024) ✓ ✓ ✓ × ×

DBAE [22] (2025) ✓ ✓ ✓ × ×

Parameter PDM [15] (2024) ✓ × × × ×

SepDiff (Ours) ✓ ✓ ✓ ✓ ✓

introduces a uniform strategy for modelling continuous and dis-

crete observations; (2) A self-encoder encodes step-wise parameters

into step-wise semantics to reveal a series of gradually changing

latent semantics; (3) A mutual information term promotes latent

semantics being disentangled and storing meaningful semantics

simultaneously; (4) Sampling and reverse-sampling methods are

developed, and generation and reconstruction tasks are completed

in the parameter space. (5) We comprehensively evaluate SepDiff

across seven representation learning tasks, including two newly

designed tasks. Table 1 concludes the advance of SepDiff compared

with SOTA generative models.

2 Understanding Parameter Diffusion Model -
An Alternative View of Bayesian Flow
Networks

Parameter Diffusion Models (PDMs), a.k.a Bayesian Flow Networks

(BFNs) [15, 42, 56], serve as deep generative models with the pri-

mary objective of learning an output distribution for generating

observations. The distribution’s parameters are learned by a neural

network, which takes the posterior parameters of observations of

inputs. Here, we try to understand PDMs from an alternative pa-

rameter perspective since these (posterior) parameters play a key

role in PDMs . PDMs involves concepts such as input distribution,

sender distribution and receiver distribution, to introduce PDMs ,

making it less accessible to readers unfamiliar with PDMs . Inter-

ested readers may refer to Appendix A.1 and [15] for the original

illustrations.

Figure 1 shows 𝑇 steps of training and sample generation in

PDMs , similar to diffusion models [20, 41]. To train PDMs , we min-

imize the divergence between the ground-truth data distribution

and the evolving output distributions over 𝑇 steps. At each step

𝑡 ∈ {𝑇, . . . , 1}, an intermediate (posterior) parameter 𝜽 𝑡 is first up-
dated using a Bayesian update function ℎ(·) as 𝜽 𝑡 = ℎ(𝜽 𝑡+1, x𝑡+1),
where x𝑡+1 is the observation at step 𝑡 + 1. 𝜽 𝑡 is then fed into a

neural network𝜓 (·) to form the parameters of output distribution,

i.e., a decoder 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 ), for model training. After training, these

intermediate output distributions can be employed to simulate ob-

servations during the sample generation process, replacing the

actual observations at each step 𝑡 .

By working in the parameter space, PDMs can uniformly model

continuous and discrete observations. For example, PDMs can use
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the mean of Gaussian distributions as parameter 𝜽 to model contin-

uous data or use the event probabilities of categorical distributions

as 𝜽 to study discrete data (see detailed settings for distributions

in Appendix Table 3). However, PDMs cannot produce meaningful

latent semantics capturing high-level concepts in the observations,

such as hair colors in portrait images.

3 SepDiff : Parameter Space Representation
Learning

Here, we explain the framework of SepDiff and specific design

mechanisms.

3.1 The SepDiff Framework
The framework and workflow of SepDiff are in Figure 2. SepDiff

leverages the parameter space for representation learning by ex-

tracting low-dimensional latent semantics from high-dimensional

data. Different from PDMs in approximating data distribution 𝑝 (x0),
SepDiff learns the joint distribution over observation x0 and a se-

ries of latent semantics {z𝑡 }𝑇𝑡=1
, with |z𝑡 | ≪ |x0 |,∀𝑡 ∈ {1, . . . ,𝑇 }.

That is, SepDiff seeks to reconstruct x0 while obtaining meaningful

low-dimensional latent semantics {z𝑡 }𝑇𝑡=1
.

Building on PDMs , SepDiff consists of four main components:

(1) A self-encoder, conditioning on the intermediate (posterior)

parameters 𝜽 𝑡 to generate progressive latent semantics z𝑡 ,
described in Section 3.2.

(2) A conditional decoder, using a neural network on latent se-

mantics z𝑡 and intermediate parameters 𝜽 𝑡 to form the out-

put distribution for subsequent steps, detailed in Section 3.3.

(3) A sampling and reverse-sampling process, facilitating tasks

such as image reconstruction and interpolation, outlined in

Section 3.4.

(4) A training and testing procedure, as discussed in Section 3.5,

optimizing latent semantics z𝑡 and ensuring an effective

model generalization.

Together, SepDiff forms a robust framework to capture and utilize

latent semantics and to improve the performance of tasks including

unconditional image generation and reconstruction.

3.2 Parameter Encoding through A Self-encoder
The self-encoder, denoted as 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡), progressively encodes in-

termediate parameters 𝜽 𝑡 into low-dimensional latent semantics

z𝑡 , which facilitates representation learning from high-dimensional

data at each step 𝑡 . [4] has shown that upsampling layers from a

U-Net in pretrained diffusion models [37] may capture meaningful

semantic information. Inspiring from this discovery and in train-

ing SepDiff we adopt approaches similar to [29] to parameterize

𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡). Through 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡), the intermediate parameter 𝜽 𝑡
effectively encodes itself into z𝑡 , together they form𝜓 (𝜽 𝑡 , z𝑡 ) for
the output distribution.

Ideally, the latent semantics z𝑡 should provide low-dimensional

semantics distinct from the intermediate parameters 𝜽 𝑡 in PDMs

but without compromising the data reconstruction process. To learn

high-quality latent semantics, a smooth, learnable latent space is

necessary, which is ensured by integrating the prior distribution

𝑝 (z𝑡 ) into a robust probabilistic framework, allowing efficient sam-

pling of x0. For simplicity and efficiency, we assume 𝑝 (z𝑡 ) follows
a Gaussian distribution.

Here,𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) differs from traditional auto-encoders𝑞𝝓 (z|x0)
in two key aspects:

• 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) is conditioned on the intermediate parameter

𝜽 𝑡 , rather than being conditioned on x0. This summarizes

information from all previous steps to enable generating

latent semantic z𝑡 through all the 𝑇 steps.

• The self-encoder generates a step-wise semantic z𝑡 , which
is tailored to the dynamic behavior of variables over time 𝑡 .

This series of latent semantics {z𝑡 }𝑇𝑡=1
are expected to exhibit

progressive semantic behaviors (such as gradual changes in

age, smile, or skin color) throughout the generation process

(as illustrated in the right panel of Figure 5).

When observations x0 are unavailable, e.g. sample generation

tasks, it is alsoworth noting that directly using regular auto-encoders

like𝑞𝝓 (z|x0) to generate latent semantics is infeasible. Theymay re-

quire an additional module to generate latent semantics [35], while

training such modules would introduce computational overhead.

However, in their case, not using auto-encoders 𝑞𝝓 (z|x0) would
lead to inefficient resource use.

3.3 Conditional Decoder
The conditional decoder refers to the output distribution 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 , z𝑡 ))
which conditions on latent semantics z𝑡 and intermediate parameter

𝜽 𝑡 to simulate x𝑡 . The condition𝜓 (𝜽 𝑡 , z𝑡 ) explicitly incorporates

z𝑡 as part of its conditioning mechanism. Following the settings in

diffusion models [20, 41], we use the U-Net architecture with the

Cross-Attention in each layer specified as:

Cross-Attention(𝜽 𝑡 , z𝑡 ) = softmax(QK
⊤

√
𝑑

)V, (1)

where Q = W𝑄𝜽 𝑡 ,K = W𝐾 z𝑡 ,V = W𝑉 z𝑡 and W𝑄 ,W𝐾 ,W𝑉
are

the query, key and value weight matrix, respectively. See the de-

tailed U-Net architecture.

Since z𝑡 works together with the corresponding intermediate

parameter 𝜽 𝑡 , it is expected that z𝑡 aligns well with the progres-

sively structured parameter 𝜽 𝑡 . Lower-level intermediate latent x𝑡
(such as hair texture) is progressively incorporated. The proposed

self-encoder works consistently with the conditional decoder here

as both work on 𝜽 𝑡 , see Figure 6 (b).

3.4 Sampling and Reverse-sampling Processes
After training SepDiff , the sampling and reverse-sampling pro-

cesses play a crucial role in generating and reconstructing data,

which is essential for tasks such as image generation and inter-

polation. Generating samples begins with an initial guess of the

intermediate parameters 𝜽𝑇+1. From 𝜽𝑇+1, this sampling process

sequentially generates x𝑇 , x𝑇−1, . . . , x0. Specifically, given the pa-

rameter 𝜽 𝑡 at each step 𝑡 , we have:

z𝑡 ∼ 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡), x𝑡 ∼ 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 , z𝑡 )), 𝜽 𝑡−1 = ℎ(𝜽 𝑡 , x𝑡 ) . (2)

We use the trained encoder 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) to replace the prior 𝑝 (z𝑡 ) of
z𝑡 for improving the sampling quality. After 𝜽 0 is obtained, a sample

can be generated as z0 ∼ 𝑞𝝓 (z0 |𝜽 0, 0), x0 ∼ 𝑝O (x0 |𝜓 (𝜽 0, z0)).
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  Self-Encoder                           encode t-step        and t-step parameters        to generate t-step low-dimensional latent semantics      
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Bayesian Update Function                   generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

Figure 2: The framework of SepDiff . Each step consists of a self-encoder 𝑞𝜙 (z𝑡 |𝜽 𝑡 , 𝑡) (pink rectangle), a conditional decoder
𝑝O (x𝑡 |𝜓 (z𝑡 , 𝜽 𝑡 )) (blue rectangle), and Bayesian update ℎ(·) (peach rectangle). During the reverse-sampling stage, the self-encoder
𝑞𝜙 encodes intermediate parameters 𝜽 𝑡 into a time-specific latent semantic z𝑡 , and 𝑝O (x𝑡 |𝜓 (z𝑡 , 𝜽 𝑡 )) generates x𝑡 .
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Figure 3: The reverse-sampling process in SepDiff .

However, the reverse-sampling process, which transits the ob-

servation x0 through the intermediate latents x1, x2, . . . , x𝑇−1 until

x𝑇 , is not as straightforward as the sampling procedure. Without a

clearly defined reverse-sampling process, it would be challenging

to perform tasks such as image reconstruction and interpolation.

In fact, by taking the inverse of the Bayesian update function ℎ(·)
as 𝜽 𝑡 = ℎ−1 (𝜽 𝑡−1, x𝑡−1), the intermediate latent x𝑡−1 can transit

to x𝑡 as:

𝜽 𝑡 = ℎ
−1 (𝜽 𝑡−1, x𝑡−1), z𝑡 ∼ 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡), x𝑡 ∼ 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 , z𝑡 )).

(3)

Given the straightforward definition of Bayesian update function

ℎ(·), its inverse operation is generally easy to derive. Furthermore,

this developed reverse-sampling process can be naturally extended

to PDMs . Transiting x𝑡−1 to x𝑡 at time 𝑡 can be performed as

𝜽 𝑡 = ℎ−1 (𝜽 𝑡−1, x𝑡−1), with x𝑡 sampled as x𝑡 ∼ 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 )). With

this approach, PDMs can effectively perform downstream tasks like

image reconstruction and interpolation, which were difficult or

even impossible by previous PDMs . Figure 3 shows the reverse-

sampling process of SepDiff . The PDMs version is provided in

Figure 7 in Appendix A.

3.5 Training and Test with SepDiff
Here, we outline the process of training and testing SepDiff by

focusing on optimizing SepDiff to learn meaningful latent seman-

tics while ensuring effective reconstruction of observations. The

training process involves variational inference to approximate the

joint distribution of latent variables, and a mutual information term

is integrated into improving the quality of learned latent semantics

by strengthening the relationship between intermediate parameters

and latent semantics.
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Variational Inference for Intractable Joint Distribution In

SepDiff , the joint distribution over x0, intermediate latents {x𝑡 }𝑇𝑡=1

and latent semantics {z𝑡 }𝑇𝑡=1
can be defined as𝑝 (x0, {x𝑡 }𝑇𝑡=1

, {z𝑡 }𝑇𝑡=1
|−) =

𝑝O (x0 |𝜓 (𝜽 0, z0))·
∏𝑇
𝑡=1

[
𝑝 (z𝑡 )E𝑝O (x𝑡 |𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 |x𝑡 )]

]
, where

the output distribution 𝑝O (x0 |𝜓 (𝜽 0, z0)) at step 0 is used to model

observation x0, and E𝑝O (x𝑡 |𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 |x𝑡 )] follows the defi-
nition of PDMs to model intermediate latent x𝑡−1, and 𝑝S (x𝑡−1 |x𝑡 )
is a noisy distribution of x𝑡 .

With 𝑞𝝓 (z𝑡 | 𝜽 𝑡 , 𝑡) defined as the encoder for z𝑡 and 𝑝S (x𝑡−1 |x𝑡 )
defined as the variational distribution for x𝑡−1, the evidence lower

bound (elbo) on the marginal log-likelihood of observation x0 is

Eq. 4 (see the full derivation in Appendix B.1).

Maximizing elbo is equivalent to performing amortized infer-

ence [23] through encoders 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) and learning likelihood

function through decoders [64]. When the encodable posterior

𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) is used to infer high-level semantics z𝑡 , those interme-

diate latents {x𝑡 }𝑇𝑡=1
contain low-level information in generating

the observations. In SepDiff , the parameters of the output dis-

tribution are learned through iteratively proceeding the Bayesian

updating functions and a learned noise model𝜓 (𝜽 , z) parameterized

by neural networks𝜓 .

Mutual Information Regularization Ideally, during the train-

ing phase, we want to acquire the latent semantic z𝑡 by the self-

encoder 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) and achieve high-quality reconstruction x̂0 by

the decoder (i.e., the output distribution 𝑝O (x0 |𝜓 (𝜽 0, z0))). How-
ever, there exists a trade-off between inference and learning [38, 50]

coherent in optimizing the elbo in Eq. (4). In most cases, optimizing

elbo favours fitting likelihood rather than inference [64]. Based

on the rate-distortion theory [1, 3], the rate, represented by the KL

divergence term constrained by the encoders, compresses sufficient

information to minimize the distortion, or reconstruction error,

while simultaneously limiting the informativeness to promote a

smooth latent space.

To remedy the insufficient representation learning during the

inference stage, we want to increase the dependence between in-

termediate parameters 𝜽 𝑡 and latent semantics z𝑡 by maximizing

their mutual information𝑀𝐼 (𝜽 𝑡 , z𝑡 ). We can rewrite the tractable

learning object in SepDiff by adding the mutual information maxi-

mization term as

elbo+ = elbo+ 𝛾
𝑇

∑︁
𝑡

𝑀𝐼𝑞 (𝜽 𝑡 ; z𝑡 ) = LD −LR + 𝛾
𝑇

∑︁
𝑡

𝑀𝐼𝑞 (𝜽 𝑡 ; z𝑡 )

(5)

where 𝛾 is the trade-off parameter, LD is distoration term and LR
is the rate term. Considering that we cannot optimize this object

directly, we can rewrite it by factorizing the rate term into mutual

information and total correlation (TC) to acquaire the final training

object:

LSepDiff+ =

−
𝑇∑︁
𝑡=1

E𝑝F (𝜽 𝑡 |−)E𝑞𝝓 (z𝑡 ) {𝐷KL [𝑝S (x𝑡−1 | x0;𝛼𝑇 :𝑡 )∥𝑝R (x𝑡−1;𝜓 (𝜽 𝑡 , z𝑡 ), 𝛼𝑡 )]

−1 − 𝛾
𝑇

𝐷KL [𝑞𝝓 (z𝑡 | 𝜽 𝑡 )∥𝑝 (z)] −
𝛾 + 𝜆 − 1

𝑇
𝐷KL [𝑞𝝓 (z𝑡 )∥𝑝 (z)]

}
+ E𝑞𝝓 (z0,𝜽 0 ) [ln 𝑝O (x0;𝜓 (𝜽 0, z0))] , (6)

where 𝜆 is the scale parameter of 𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 )∥𝑝 (𝑧𝑡 )]. The full

derivation is in Appendix B.

4 Experiments
We present two variants of SepDiff operating in different parame-

ter spaces: SepDiff𝑑 with discrete input distributions for discrete

datasets, and SepDiff𝑐 with continuous input distributions for con-

tinuous datasets, respectively. In addition, we evaluate the rep-

resentation and generative capabilities of SepDiff in seven tasks,

including latent classification task , latent space interpolation
task , disentanglement task , attributes encoding task and

sample quality task . Furthermore, we propose a novel time-
varying generation task and demonstrate that SepDiff can per-

form unconditional generation task directly, where samples are

generated solely by the decoder using a given prior. Specifically, to

comprehensively evaluate the generative and representation learn-

ing capabilities of SepDiff , we devised seven tasks to address the

following research questions:

• RQ1:What performance improvements does SepDiff achieve

over state-of-the-art (SOTA) generative representation learn-

ing frameworks?

• RQ2: What novel property does SepDiff introduce to gen-

erative representation learning models, and how can it be

empirically validated?

• RQ3: How does SepDiff enhance generative models by in-

troducing new features?

• RQ4: How can we verify that the low-dimensional features

learned by SepDiff capture meaningful semantic informa-

tion?

• RQ5: How can we assess the probabilistic properties of the

low-dimensional features learned by SepDiff, particularly

their smoothness and continuity, as reflected in latents z𝑡 ∼
𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡)?

• RQ6: How does SepDiff compare to existing generative rep-

resentation learning frameworks in terms of time efficiency

during training and inference?

• RQ7:What is the contribution of each component in SepDiff

to its overall performance, as demonstrated through ablation

studies?

4.1 Experimental Setup
The Choices of Baselines and Datasets We conduct a two-fold

comparison to evaluate the performance of SepDiff variants. Firstly,

we compare our parameter-based models (SepDiff𝑐 and SepDiff𝑑)

with established sample-based representation learning baselines, in-

cluding AE and VAE-basedmodels such as 𝛽-VAE [19], infoVAE [64],

and diffusion-based models such as DiffAE [35] and InfoDiff [49].

These models represent key advancements in the field: 𝛽-VAE in-

troduce disentanglement into VAE, infoVAE incorporates MMD

for balancing generation and representation, while DiffAE and

InfoDiff explore the integration of AEs and VAEs into diffusion

models to learn encodable latents and disentangled representations,

respectively. Secondly, we compare the performance of SepDiff𝑐

and SepDiff𝑑 across various input distributions for continuous and

discrete data, respectively. The discrete datasets include binarized

versions of MNIST (𝑏MNIST ) [11], FashionMNIST (𝑏FashionMNIST
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log 𝑝 (x0) ≥ −
𝑇∑︁
𝑡=1

E𝑝F (𝜽 𝑡 |−)E𝑞𝝓 (z𝑡 |𝜽 𝑡 ,𝑡 )
{
𝐷KL [𝑝S (x𝑡−1 | x0)∥E𝑝O (x𝑡 |𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 |x𝑡 )]]

−𝐷KL [𝑞𝝓 (z𝑡 | 𝜽 𝑡 , 𝑡)∥𝑝 (z𝑡 )]
}
+ E𝑝𝐹 (𝜽 0 |−)𝑞𝝓 (z0 |𝜽 0,0) [ln𝑝O (x0 |𝜓 (𝜽 0, z0))] := elbo. (4)

) [54], while the continuous datasets include CelebA [27], CIFAR-

10 [25], 3DShapes [6]
1
and FFHQ-64. This comparison allows for a

detailed examination of how different parameter space assumptions

impact the representation learning of discrete and continuous data.

Metrics, Deep Structures and Hyperparameters. To ensure

reproducibility and comprehensive understanding of the experimen-

tal setup. We detailed the metrics for evaluation in Appendix B.3.

4.2 RQ1: SOTA Performance
Downstream Classification for Representation Learning To

evaluate the representation capability of our SepDiff, we design

downstream classifier-based latent classification task and re-

port the AUROC to measure the quality of the learned latent z0.

From Figure 4 (a) for the discrete datasets and Table 2 the contin-

uous datasets, we can conclude that both SepDiff𝑐 and SepDiff𝑑

can achieve a higher AUROC, suggesting that the learned latent

z0 contain more low-dimensional semantics about the data, which

is general and transferable [13]. More about AUROC and experi-

mental details can be seen in the Appendix B.3. In Figure 4 (a), we

can see that the SepDiff𝑑 with discrete assumption achieves the

best performance in two datastes. Additionally, we report SepDiff𝑐

results on continuous datasets in Table 2. We can see that for the

continuous data, the SepDiff𝑐s with Delta distribution can achieve

the highest AUROC, capturing the most informative semantics for

classification in three datasets.

Generation Ability In addition to evaluating the classification

based representation ability, we also conduct sample quality task
against baselines. For discrete data, we report the FID in Figure 4 (a).

For continuous data, we report the FID in Table 2. We can conclude

that the SepDiff𝑐 with Delta distribution can achieve the lowest FID

value for three datasets. The description and configuration details

for the FID metric used are provided in the Appendix B.3.

4.3 RQ2: New Time-Varying Task
We extend the representation learning scope on existing frame-

works for attributes encoding task and propose a new time-
varying generation task , to evaluate the effectiveness of the

progressive latent semantics learned by the self-encoder.

Attributes Encoding in Representation Learning Figure 5

(a) demonstrates that attributes are captured by the learned latent

semantics {z𝑡 }𝑇𝑡=1
in attributes encoding task . This is illustrated

by a set of latent-sample pairs < {z𝑖𝑡 }𝑇𝑡=1
, x𝑖, 𝑗
𝑇

>, where {z𝑖𝑡 }𝑇𝑡=1
are

obtained by reverse-sampling from the 𝑖-th input image through the

trained SepDiff , and x𝑖, 𝑗
𝑇

is the 𝑗-th sample fromN(0, I) correspond-
ing to the 𝑖-th input image. Concurrently, the inherent attributes

of samples, such as local attributes in images (e.g., Narrow_Eyes,

Mouth_Slightly_Open, Blond_Hair), are characterized by x𝑖, 𝑗
𝑇
.

1
For the discrete version, continuous data (𝑘-bit images) can be discretized into 2

𝑘

bins by dividing the data range [−1, 1] into 𝑘 intervals, each of length 2/𝑘 .

NewTime-VaryingTaskWe illustrate the learned time-varying

semantics by time-varying generation task on Figure 4 (b), and

Figure 5 (b). Specifically, a latent sample pair < {zfixed𝑡 }𝑇
𝑡=1
, xfixed
𝑇

>

is first obtained by applying the reverse sampling process in trained

SepDiff on an image. Then, we use the latent semantics at step

𝑡∗ to replace other steps’ ones and “reconstruct” the image as

x𝑡 ∼ 𝑝O (x𝑡 |𝜓 (𝜽 𝑡 , zfixed𝑡∗ )), 𝜽 𝑡−1 = ℎ(𝜽 𝑡 , x𝑡 ),∀𝑡 = 𝑇, . . . , 1. In that

case, the attributes vary due to the semantics evolution encoded by

time-specific latent.

4.4 RQ3: New Paradigm for Unconditional
Generation

We introduce new paradigm for unconditional generation task
without relying on training additional deep modules. Refer to Al-

gorithm 1 in Appendix for more information. We can conclude

that VAE-based models still produce blurry reconstructions, while

diffusion-based and parameter-based models can build near-exact

reconstructions.

4.5 RQ4: Time-dependent semantics guided
interpolation

latent space interpolation task [14, 19] is commonly used to

validate the smoothness, continuity, and semantic coherence of the

learned latent semantics in generative models. Typically, two sam-

ples are embedded into the latent space, and interpolating between

the latent variables generates interpolated representations. The

reconstructed outputs produced by the sampling process reveal the

semantic richness of the latent space. Demonstration of the image

interpolation is detailed in Appendix B.4.

SepDiff achieves near-exact reconstruction, in contrast to the

downgraded performance of VAE variants such as (a) vanilla VAE,

and (b) 𝛽-VAE. Compared with diffusion models (c) DiffAE and

(d) InfoDiff, SepDiff characterizes a smoother and more consistent

latent space.

4.6 RQ5: Time-dependent semantic encoding
for disentanglement

We perform latent traversals on the FFHQ-64 and CelebA datasets

to evaluate the disentanglement task of our trained SepDiff . In

this process, we modify one dimension of the learned latent se-

mantics {z𝑡 }𝑇𝑡=1
each step, and replace it with𝑀 evenly distributed

numbers within a standardized range (e.g., −3 to +3), while keeping

the other dimensions fixed. After decoding these adjusted latent se-

mantics, we evaluate the generated samples for changes in specific

attributes. Successful disentanglement is verified when manipulat-

ing one single dimension alters only one distinguishable attribute,

such as age, while leaving all other attributes unchanged. SepDiff
effectively isolates and controls individual data attributes in both
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Table 2: Comparison of representation learning algorithms on continuous data by disentanglement performance (mean ± std)
and classification. The quantitative results for each algorithm are averaged over five trials. Notations: Modeling on data space
D, parameter space P. Prior distributions: Gaussian g, Categorical c, Delta d. ↑: higher better, ↓: lower better. Color: Top-1,
Top-2.

Prior
on

Prior
type Methods CelebA 3DShapes CIFAR-10

TAD ↑ ATTRS ↑ FID ↓ AUROC ↑ DCI ↑ AUROC ↑ FID ↓ AUROC ↑

D

- AE 0.042 ±0.004 1.0 ±0.0 90.4±1.8 0.759 ±0.003 0.219 ±0.001 0.796±0.007 169.4±2.4 0.721±0.001

g VAE [23] 0.000 ±0.000 0.0 ±0.0 94.3±2.8 0.770 ±0.002 0.276 ±0.001 0.799±0.002 177.2±3.2 0.743±0.002

g 𝛽-VAE [7] 0.088 ±0.051 1.6 ±0.8 99.8±2.4 0.699 ±0.001 0.281 ±0.001 0.801±0.001 183.3±3.1 0.769±0.003

g InfoVAE [64] 0.000 ±0.000 0.0 ±0.0 77.8±1.6 0.757 ±0.003 0.134 ±0.001 0.829±0.003 160.7±2.5 0.814±0.006

g DiffAE [35] 0.155 ±0.010 2.0 ±0.0 22.7±2.1 0.799 ±0.002 0.196 ±0.001 0.899±0.001 32.1±1.1 0.859±0.002

g InfoDiff [49] 0.299 ±0.006 3.0 ±0.0 23.8±1.6 0.848 ±0.001 0.342 ±0.002 0.882±0.001 32.4±1.8 0.886±0.004

P
c

SepDiff
(𝛾 = 1, 𝜆 = 0.01)

0.261 ±0.01 5.0 ±0.0 22.6±1.2 0.846 ±0.009 0.477 ±0.002 0.901±0.007 31.8±1.1 0.892±0.004

d
SepDiff

(𝛾 = 0.9, 𝜆 = 0.01)

0.302 ±0.005 4.0 ±0.0 22.1±1.6 0.850 ±0.006 0.567 ±0.005 0.902±0.001 31.2±1.1 0.901±0.001

d
SepDiff

(𝛾 = 1, 𝜆 = 0.01)

0.368 ±0.005 3.0 ±0.0 21.6±1.1 0.865±0.004 0.485 ±0.009 0.931±0.001 31.1±1.1 0.911±0.002
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(a): Comparison on discrete data by classification accuracy and generation performance.(b): Time-varying representation learning of SepDiff

Figure 4: Quantitative comparison over generative representation learning models on discrete data (a). SepDiff demonstrates
competitive performance in capturing latent for classification, achieving approximately 0.84 AUROC for 𝑏FashionMNIST and
0.91 for 𝑏MNIST . Additionally, it shows robust generative capabilities, with FID values ranging from 0.5 to 0.6 for 𝑏MNIST and
around 5 for 𝑏FashionMNIST . Among SepDiffs, SepDiff𝑑 with a categorical distribution is particularly effective in modelling
discrete data distributions, yielding lower FID values of 0.5 for 𝑏MNIST and 4.2 for 𝑏FashionMNIST . As shown in (b), the learned
semantics exhibit progressive, time-varying changes. By varying time encodes at 200, 300, 400 time steps, more attributes
will be influenced in the reconstruction stage: the Wavy_hair, Brown_hair, Arched_Eyebrows attributes in the first line, the
Double_Chin, Mustache, Goatee attributes in the second line and the Young, High_Cheekbones, Arched_Eyebrows attributes in
the third line. Notations: [AUROC, FID]; [(•, 𝑏MNIST ), (■, 𝑏FashionMNIST )]; [(−, SepDiff𝑑 ),(− · −, SepDiff𝑐 )].

FFHQ-64 and CelebA. For example, on FFHQ-64, manipulating la-

tent dimensions controls attributes like Mustache, Brown Hair,
and Eyeglasses, while other attributes remain constant. Similarly,

on CelebA, attributes such as Smiling, Pale Skin, and Big Nose
are independently manipulated without affecting others.

4.7 RQ6: Time Efficiency
We report the time efficiency in the training and inference phases.

Training Efficiency When compared to BFN, SepDiff incurs

an additional time complexity due to the new self-encoder module

with a lightweighted U-Net network. Assuming this light-weighted

U-Net network has four layers, with the neuron counts being

ℎ1, ℎ2, ℎ3, ℎ4 , the additional time complexity would be O(ℎ1 +ℎ2 +
ℎ3 + ℎ4). These three methods share the same U-Net architecture.

The training is conducted on two NVIDIA H100 GPUs, each with

80 GB of memory, to ensure sufficient computational resources for

handling large-scale datasets. From this table, we can see SepDiff

requires around 25% more training time than DDIM, largely due

to the additional semantic encoder. However, the training speed of

SepDiff is comparable to that of DiffAE, owing to the lightweighted

modules integrated within the encoder.

Inference Efficiency The SepDiff also needs the steps for a

generation like the diffusion model. We evaluate the impact of

steps (𝑛 = 100, 500, 1000) on sampling speed with the experiments

conducted on one H100 GPU with 80GB of memory. We illustrate

some results, each value represents the number of 64x64 images

generated per second at the current time step.
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Fixed ,  varying encoding

Image Reconstruction(d,e,f) by time varying encoding  and fixed  

Input

Image Generation (a,b,c) by stochastic       and deterministic encoding

(b)

Fixed varyingencoding

(a)

(c)

(d)

(e)

(f)

Figure 5: The left panel (a-b) shows high-level latent semantic captured by zsem from SepDiff ’s encoders. By fixing zsem, the
global characters of the images are invariant. By varying the stochastic x𝑇 , the local attributes in the corresponding generated
images may vary, such as the Narrow_Eyes attribute in (a), the Blond_Hair attribute in (b), and the Mouth_Slightly_Open attribute
in (c). The right panel (d-f) illustrates the time-varying changes that SepDiff ’s progressive encodes interfaced. By varying time
encodes at 100, 200, 300 time steps, more attributes will be influenced in the reconstruction stage: the Big_Lips, Pointy_Nose
attributes in (d), the Blond_Hair, Bald attributes in (e) and the Wavy_Hair, High_Cheekbones attributes in (f).

4.8 RQ7: Ablation Studies
The coefficients 𝛾, 𝜆 in Eq. 6 will regulate the information flow from

𝜽 to z by the variational bottleneck rule [7, 38, 50], resulting in the

tradeoff between generation and representation learning.

5 Related Works on Generative Representation
Learning Models

In this section, we categorize sample-based generative representa-

tion learning models into three distinct groups and compare with

our SepDiff , a variant of PDM , to highlight promising advantages.

Diffusion Models Recent advances have demonstrated that

diffusion models [20, 41] are capable of generating high-quality

data. Nonetheless, compared to the autoencoder framework, the

intermediate outputs in diffusion stages are high-dimensional and

lack smoothness, making them unsuitable for representation learn-

ing. Contemporary research focuses on encoding a conditional

latent space to acquire low-dimensional semantic representations.

However, those sample based models [35, 49], such as VAEs and

diffusion models, exhibit limitations when applied to discrete data.

Deep Hierarchical VAEs Deep hierarchical VAEs have seen

progress in capturing latent dependence structures for encoding an

expressive posterior, statistically or semantically. VQVAE-based [36,

48] models have local-to-global features-based explanatory hierar-

chies at the image level, forming a codebook-based discrete poste-

rior. In [40, 44], recursive latent structures in multi-layer networks

form an aggregated posterior. NVAE [47] demonstrates that depth-

wise hierarchies encoded by residual networks can approximate

the posterior precisely despite using shallow networks. Unlike the

observation-based encoder, where the information flow between

input and latent is maximized in encoding-decoding pipelines in the

sample space, SepDiff uses progressive encoders in the parameter

space to capture the dynamic semantics.

Pretrained Diffusion Models Pretrained diffusion models [37],

[4] have shown that the upsampling features from a U-Net can

capture semantic information useful for downstream tasks. This

discovery has sparked increasing research in leveraging these up-

sampling features of pretrained diffusion models across various

applications, including classification [32, 53], semantic segmen-

tation [4, 65], panoptic segmentation [55], semantic correspon-

dence [17, 29, 43, 60], and image editing [18, 46]. In most of these

approaches, identifying the optimal denoising step and upsampling

layer is crucial for achieving high predictive performance. These

approaches do not suggest fundamental changes to model architec-

tures or training methodologies, leaving the specific architectural

components and techniques for learning useful semantic represen-

tations unclear. SepDiff uses these discoveries to construct efficient

self-encoders.

6 Conclusion and Future Directions
In this work, we introduce SepDiff , a novel unified parameter-space

representation learning framework designed to handle both contin-

uous and discrete data. Unlike traditional encoder-based methods

that map observations into static latent semantics, SepDiff employs

a self-encoder to iteratively derive structured latent semantics from

intermediate parameters at each step of the generation process. This

approach enables more effective representation learning across di-

verse data types. We developed new sampling and reverse-sampling

methods for SepDiff to support downstream generation and recon-

struction tasks in the parameter space. We validate SepDiff through

experiments spanning seven representation and generation tasks

across two variants. The results demonstrate its superior ability to

extract low-dimensional, smooth, and time-varying semantics, lead-

ing to unified representations and a clearer semantic understanding

of the underlying data.
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A Preliminaries
A.1 Parameter Diffusion Models
In [15], PDMs assume two types of distributions: a simple input
distribution 𝑃I (·) representing the initial belief about observations

and an output distribution 𝑃O (·) simulating the observation dis-

tribution. The parameters of input distribution are first updated

through a Bayesian inference scheme and then passed into a neural

network𝜓 (·) to form the parameters of output distributions. The

main objective of PDMs is to minimize the divergence between the

ground-truth data distribution and the output distribution, ensuring

that the output distribution closely approximates the ground-truth

data distribution.

Following the notations in diffusion models, we denote x0 as the

observations. There are𝑇 reverse steps in PDMs which gradually re-

veals the information of x0 through {x𝑇 , x𝑇−1, . . . , x1} to the input

distribution
2
. At each step 𝑡 , x𝑡 is first noised through a sender dis-

tribution 𝑝S (𝑥𝑡 | x𝑡 ;𝛼𝑡 ), with 𝛼𝑡 denoting the precision. Combined

with input distribution 𝑝I (x𝑡 ;𝜽 𝑡+1), the posterior distribution of

x𝑡 is obtained as 𝑝 (x𝑡 ;ℎ(𝜽 𝑡+1, 𝑥𝑡 , 𝛼𝑡 )) ∝ 𝑝I (x𝑡 ;𝜽 𝑡+1)𝑝S (𝑥𝑡 | x𝑡 ;𝛼𝑡 ),
where 𝜽 𝑡 = ℎ(𝜽 𝑡+1, 𝑥𝑡 , 𝛼𝑡 ) is the Bayesian update function. By

feeding this intermediate (posterior) parameter 𝜽 𝑡 into a neural

network 𝜓 (·), x𝑡 ’s output distribution 𝑝O (·) is parameterized as

𝑝O (x𝑡 ;𝜓 (𝜽 𝑡 )). Finally, a receiver distribution 𝑝R (·) is defined as the

expectation of the sender distribution with respect to the output

distribution, i.e., 𝑝R (𝑥𝑡 ;𝜓 (𝜽 𝑡 ), 𝛼𝑡 ) := E𝑝O (x𝑡 ;𝜓 (𝜽 𝑡 ) ) [𝑝S (𝑥𝑡 | x𝑡 ;𝛼𝑡 )].
See Figure 6 (a) for a visualization of the relationships between

these distributions.

In PDMs , the joint distribution over the observation x0 and the

intermediates {x𝑡 }𝑡 is defined as:

𝑝 (x0, {x𝑡 }𝑡 |−) := 𝑝O (x0;𝜓 (𝜽 0))
𝑇∏
𝑡=1

𝑝R (𝑥𝑡 ;𝜓 (𝜽 𝑡 ), 𝛼𝑡 ) (7)

. This intractable joint distribution can be approximated under the

variational inference framework as follows:

2
It is noted that the index 𝑡 is used reversely in [15]. We make such changes to be

consistent with the diffusion model settings [20, 41].

log 𝑝 (x0)

≥ E𝑝F (𝜽 1:𝑇 |−)𝑝S ({x𝑡 }𝑡 |−)

[
log

𝑝O (x0;𝜓 (𝜽 0))
∏𝑇
𝑡=1

𝑝R (𝑥𝑡 ;𝜓 (𝜽 𝑡 ), 𝛼𝑡 )∏𝑇
𝑡=1

𝑝S (𝑥𝑡 | x𝑡 ;𝛼𝑡 )

]
= −

𝑇∑︁
𝑡=1

E𝑝𝐹 (𝜽 𝑡 |−)𝐷KL𝑝S (𝑥𝑡 | x0;𝛼𝑇 :𝑡 )𝑝R (𝑥𝑡 ;𝜓 (𝜽 𝑡 ), 𝛼𝑡 )︸                                                          ︷︷                                                          ︸
LR

𝑡 (x)

+ E𝑝𝐹 (𝜽 0 |−) ln𝑝O (x0;𝜓 (𝜽 0))︸                              ︷︷                              ︸
LD (x)

, (8)

where 𝑝F (𝜽 𝑡 |−) is the distribution of 𝜽 𝑡 (see Appendix A.2 for a

detailed calculation). Maximizing Eq. 8 equals minimizing the dis-

crepancy LR
𝑡 (x) between the sender and receiver distributions and

penalizing Distortion LD (x) to maximize the likelihood distribu-

tion over data.

A.2 Bayesian Flow Distribution
Bayesian flow distribution 𝑝F (· | x; 𝑡) is the marginal distribution

over input parameters at time 𝑡 , given prior distribution, accuracy

schedule 𝛼 and Bayesian update distribution 𝑝𝑈 (· | 𝜽 , x;𝛼), as
follows:

𝑝F (𝜽 | x; 𝑡) = 𝑝𝑈 (𝜽 | 𝜽 0, x; 𝛽 (𝑡)) . (9)

B Proofs
B.1 Derivation of ELBO for SepDiff
We derive the ELBO of SepDiff defined in Eq. (4) in Eq. (12).

We can obtain the expectation of the prior matching term over

the 𝑞(𝜽𝑡 ) as
− E𝑞 (𝜽𝑡 )𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 |𝜽𝑡 )∥𝑝 (𝑧𝑡 )]

=E𝑞 (𝜽𝑡 ) [E𝑞 (𝑧𝑡 |𝜽𝑡 ) [log 𝑝 (𝑧𝑡 ) − log𝑞𝝓 (𝑧𝑡 |𝜽𝑡 )]]

=E𝑞 (𝑧𝑡 ,𝜽𝑡 )

[
log

𝑝 (𝑧𝑡 )
𝑞𝝓 (𝑧𝑡 , 𝜽𝒕 )

+ log𝑞(𝜽𝒕 )
]

=E𝑞 (𝑧𝑡 ,𝜽𝑡 )

[
log

𝑝 (𝑧𝑡 )
𝑞𝝓 (𝑧𝑡 )

+ log

𝑞𝝓 (𝑧𝑡 )
𝑞𝝓 (𝑧𝑡 |𝜽𝒕 )

]
= − 𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 )∥𝑝 (𝑧𝑡 )] −𝑀𝐼𝑧𝑡 ,𝜽𝑡 .

(10)

Next, we give the scale parameters 𝜆 and𝛾 for𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 )∥𝑝 (𝑧𝑡 )]
and𝑀𝐼𝑧𝑡 ,𝜽𝑡 , respectively. The Eq. (10) can be rewritten as

− 𝜆𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 )∥𝑝 (𝑧𝑡 )] −𝑀𝐼𝑧𝑡 ,𝜽𝑡 + 𝛾𝑀𝐼𝑧𝑡 ,𝜽𝑡

=E𝑞𝝓 (𝑧𝑡 ,𝜽𝑡 )

[
− 𝜆 log

𝑞𝝓 (𝑧𝑡 )
𝑝 (𝑧𝑡 )

− (𝛾 − 1) log

𝑞𝝓 (𝑧𝑡 )
𝑞𝝓 (𝑧𝑡 |𝜽𝑡 )

]
= − (𝜆 + 𝛾 − 1)𝐷𝐾𝐿 [𝑞𝝓 (𝑧𝑡 )∥𝑝 (𝑧𝑡 )]
− (1 − 𝛾)E𝑞 (𝜽𝑡 )

[
𝐷𝐾𝐿 [𝑞𝜽 (𝑧𝑡 |𝜽𝑡 )∥𝑝 (𝑧𝑡 )]

]
.

(11)

B.2 Mutual Information Learning
Unlike the rest of the terms that can be optimized directly using

reparameterization tricks, the TC term cannot be directly optimized

due to intractable marginal distribution 𝑞𝝓 (z𝑡 ). Here, we follow the

guidance in [64] to replace the TC term with any strict divergence

𝐷 , where 𝐷
(
𝑞𝝓 (z)∥𝑝 (z)

)
= 0 iff 𝑞𝝓 (z) = 𝑝 (z). We implement the

Maximum-Mean Discrepancy (MMD) [64] from the divergence
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Table 3: Examples of detailed distribution formats in PDMs . 𝜽 𝑡+1 = {𝜇𝑡+1, 𝜌
−1

𝑡+1
}).

Data type 𝑝I (x𝑡 |𝜽 𝑡+1) 𝑝S (𝑥𝑡 |x𝑡 ;𝛼𝑡 ) 𝜽 𝑡 = ℎ(𝜽 𝑡+1, 𝑥𝑡 , 𝛼𝑡 )
Continuous data N(x𝑡 ; 𝜇𝑡+1, 𝜌

−1

𝑡+1
) N (𝑥𝑡 ; x, 𝛼−1

𝑡 ) 𝜇𝑡 =
𝛼𝑡𝑥𝑡+𝜌𝑡+1𝜇𝑡+1

𝛼𝑡+𝜌𝑡+1

Discrete data Cat(x𝑡 ; 1

𝐾
· 1) N (𝑥𝑡 ;𝛼𝑡𝐾ex𝑡 − 𝛼𝑡 , 𝛼𝑡𝐾I) 𝜽 𝑡 =

𝑒𝑥𝑡 𝜽 𝑡+1∑
𝑘 𝑒

x𝑡−1,𝑘 𝜃𝑡+1,𝑘

Data type 𝑝O (x𝑡 |𝜽 𝑡 ) 𝑝R (𝑥𝑡 |𝜓 (𝜽 𝑡 ), 𝛼𝑡 )
Continuous data 𝛿 (x𝑡 −𝜓 (𝜽 𝑡 )) N (𝑥𝑡 ;𝜓 (𝜽 𝑡 ), 𝛼−1

𝑡 )
Discrete data Cat(softmax(𝜓 (𝜽 𝑡 )))

∑
𝑘 𝑝𝑂 (𝑘 ;𝜓 (𝜽 𝑡 ))N (𝑥𝑡 ;𝛼𝑡𝐾e𝑘 − 𝛼𝑡 , 𝛼𝑡𝐾I)

(a)  Probabil ist ic Graphic Structure of PDMs (b)  Probabil ist ic Graphic Structure of SepDiff

Figure 6: The relationships between distributions in PDMs (a) and SepDiff (b).

Conditional
Decoder...

...

t=T t=1 t=0

  Conditional Decoder                             decoding  t-step parameters      and low-dimensional latent semantics     to generate t-step  intermediate latents 

Bayesian Update Function                     generate the (t-1)-step parameters         based on the t-step parameters       and  intermediate latents 

Figure 7: Reverse-sampling process in PDMs .

family. MMD is a statistical measure that quantifies the difference

between two probability distributions by comparing their mean

embeddings in a high-dimensional feature space. By defining the

kernel function 𝜅 (·, ·), 𝐷MMD is denoted as:

𝐷MMD (𝑞(·)∥𝑝 (·))
= E𝑝 (z),𝑝 (z′ )

[
𝜅
(
z, z′

) ]
− 2E𝑞 (z),𝑝 (z′ )

[
𝜅
(
z, z′

) ]
+ E𝑞 (z),𝑞 (z′ )

[
𝜅
(
z, z′

) ]
.

(13)

B.3 Evaluation Metrics
FID for Generation We employ clean-fid [34] in

3
to evaluate

the unconditional generation task and sample quality task
quality. The Fréchet Inception Distance (FID) evaluation process can

be outlined as follows: First, a raw sample set is derived from the

dataset, typically comprising collected and downsampled samples

that may undergo resizing and compression before training. Second,

3
https://github.com/GaParmar/clean-fid

the generated image set is prepared, where images are often stored

as unsigned 16-bit integers, introducing quantization and potential

additional compression. FID assesses how effectively a generative

model replicates the training distribution by approximating real

and generated samples as Gaussians in the feature space of an In-

ception Network and computing their Wasserstein distance. As a

distributional metric, FID highlights both sample fidelity and di-

versity. In Tables 2, we measure FID between 10k random samples

from raw dataset and 10k randomly generated samples. DCI and
TAD for Disentanglement For comprehensive and fair quanti-

tative evaluation, we select the following measures guided by [8]

to assess the disentanglement task : (1) prediction-based met-

ric: Disentanglement, Completeness and Informativeness (DCI) (2)

information-based metric: Total AUROC Difference (TAD) [58].

AUROC for Classification To assess latent classification task
performance, we train a logistic regression model on the auxiliary

latent encodings of images to predict labels. The evaluation metric

is AUROC, and in cases where multiple annotations are present,

3283

https://github.com/GaParmar/clean-fid


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Zhangkai Wu, Xuhui Fan, Jin li, Zhilin Zhao, Hui Chen and Longbing Cao

log𝑝 (x0)

= log

∫
{z𝑡 }𝑡

∫
{x𝑡 }𝑡

𝑝 (x0, {x𝑡 }𝑡 , {z𝑡 }𝑡 | 𝜽 0, 𝛼) d{z𝑡 }𝑡d{x𝑡 }𝑡

= log

∫
{z𝑡 }𝑡

∫
{x𝑡 }𝑡

∫
{𝜽 𝑡 }𝑡

𝑝 ({𝜽 𝑡 }𝑡 |−)𝑝O (x0;𝜓 (𝜽 0, z0))
1∏
𝑡=𝑇

𝑝 (z𝑡 )E𝑝O (x𝑡 ;𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )]

d{z𝑡 }𝑡d{x𝑡 }𝑡d{𝜽 𝑡 }𝑡

= log

∫
{z𝑡 }𝑡

∫
{x𝑡 }𝑡

∫
{𝜽 𝑡 }𝑡

𝑝 ({𝜽 𝑡 }𝑡 |−)
𝑝O (x0;𝜓 (𝜽 0, z0))

∏
1

𝑡=𝑇
𝑝 (z𝑡 )E𝑝O (x𝑡 ;𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )]∏𝑇

𝑡=1
𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡)

·
𝑇∏
𝑡=1

𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡)d{z𝑡 }𝑡d{x𝑡 }𝑡d{𝜽 𝑡 }𝑡

≥ E∏𝑇
𝑡=1

𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )𝑞𝝓 (z𝑡 |𝜽 𝑡 ,𝑡 )𝑝 (𝜽 𝑡 |−)

[
log

𝑝O (x0;𝜓 (𝜽 0, z0))
∏

1

𝑡=𝑇
𝑝 (z𝑡 )E𝑝O (x𝑡 ;𝜓 (𝜽 𝑡 ,z𝑡 ) ) [𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )]∏𝑇

𝑡=1
𝑝S (x𝑡−1 | x𝑡 ;𝛼𝑡 )𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡)

]
=

𝑇∑︁
𝑡=1

E𝑝𝐹 (𝜽 𝑡 |−)E𝑞𝝓 (z𝑡 )

{
E𝑝S (x𝑡−1 | x0;𝛼𝑇 :𝑡 )

[
log

𝑝S (x𝑡−1 | x0;𝛼𝑇 :𝑡 )
𝑝R (x𝑡−1;𝜓 (𝜽 𝑡 , z𝑡 ), 𝛼𝑡 )

]
−E𝑞𝝓 (z𝑡 | 𝜽 𝑡 )

[
log

𝑞𝝓 (z𝑡 | 𝜽 𝑡 )
𝑝 (z𝑡 )

]}
+ E𝑞𝝓 (z0,𝜽 0 ) [ln 𝑝O (x0;𝜓 (𝜽 0, z0))]

= −
𝑇∑︁
𝑡=1

E𝑝𝐹 (𝜽 𝑡 |−)E𝑞𝝓 (z𝑡 ) {𝐷KL [𝑝S (x𝑡−1 | x0;𝛼𝑇 :𝑡 )∥𝑝R (x𝑡−1;𝜓 (𝜽 𝑡 , z𝑡 ), 𝛼𝑡 )]

−𝐷KL [𝑞𝝓 (z𝑡 | 𝜽 𝑡 )∥𝑝 (z𝑡 )]
}
+ E𝑞𝝓 (z0,𝜽 0 ) [ln 𝑝O (x0;𝜓 (𝜽 0, z0))] := LELBO (12)

we report the average accuracy/AUROC across all predicted labels.

The dataset is split, with 80% allocated for training and the remain-

ing 20% reserved for testing. Performance is measured on the test

set using AUROC. To ensure robustness, this evaluation follows a

5-fold cross-validation protocol, with the final results presented as

the mean ± one standard deviation.

B.4 Interpolation
The latent space interpolation task can be described as follows.

Firstly, we noise source images to generate latent pairs by sender

distribution, < x1

1
, x2

1
>, where x1

1
∼ 𝑞(· | x1

𝑁
) and x2

1
∼ 𝑞(· |

x2

𝑁
). Then, we implement two methods from [39] to generate four

interpolated latent pairs x̄1:4, i.e., linear interpolation, and spherical

interpolation:

x̄𝑖 = (1 − 𝜆inter)x1

0
+ 𝜆interx2

0
,

x̄𝑖 =
sin((1 − 𝛼inter)𝜃inter)

sin(𝜃inter)
x1

0
+ sin(𝛼inter𝜃inter)

sin(𝜃inter)
x1

0
,

(14)

where 𝜆inter is the scale coefficient, 𝛼inter ∈ [0, 1] denotes the

interpolation steps, and 𝜃inter = arccos

(
(x1

0
)⊤x2

0

∥x1

0
∥∥x2

0
∥

)
is the angle

between x1

0
and x2

0
.

B.5 Model Structures
Encoder Architecture In our proposed encoder architecture, the

self-encoder 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) also conditions on step (𝑡 + 1)’s upsam-

pling layers {u𝑡+1,𝑙 }𝐿𝑙=1
, where 𝐿 is the number of layers in the

Algorithm 1: Unconditional generation process of SepDiff.

Input: number of steps 𝑇 ∈ N, 𝜎1 ∈ R+, optimized

parameters 𝝓, 𝜽 .
Output: 𝜽 0.

1 𝜽𝑇 ∼ N(𝜽𝑇 ; 0, I)
2 for 𝑡 = 𝑇 to 1 do
3 z𝑡 ∼ 𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡)
4 𝜽 𝑡−1 ∼ 𝑝𝜽 (𝜽 𝑡−1 |𝜽 𝑡 , z𝑡 )
5 end
6 Return 𝜽 0

U-Net architecture. For the 𝑙-th upsampling layer u𝑡+1,𝑙 at step

𝑡 + 1, we upsample it to the size of x𝑡 , update by the Bayesian up-

date function, and pass through a bottleneck layer 𝐵𝑙 (·) [16] to the

low-dimensional size. As a result, the self-encoder is defined as:

𝑞𝝓 (z𝑡 |𝜽 𝑡 , 𝑡) = N
(
z𝑡 ;𝑔𝜇 (𝜽 𝑡 , {u𝑡+1,𝑙 }𝐿𝑙=1

, 𝑡), 𝑔𝜎 (𝜽 𝑡 , {u𝑡+1,𝑙 }𝐿𝑙=1
, 𝑡)2

)
,

(15)

where 𝑔𝜇 (·), 𝑔𝜎 (·) use the same structure as:

𝑔𝜇 (𝜽 𝑡 , {u𝑡+1,𝑙 }𝐿𝑙=1
, 𝑡), 𝑔𝜎 (𝜽 𝑡 , {u𝑡+1,𝑙 }𝐿𝑙=1

, 𝑡) (16)

:=

𝐿∑︁
𝑙=0

𝜔𝑙 · 𝐵𝑙 (ℎ(x𝑡 , u𝑡+1,𝑙 )) + 𝜔𝐿+1 · 𝐵𝐿+1 (𝜽 𝑡 ),

where 𝜔𝑙 is the mixing weight of the 𝑙-th layer.
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