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Abstract

The recently proposed Bayesian Flow Networks (BFNs) show great
potential in modeling parameter spaces via a diffusion process,
offering a unified strategy for handling continuous, discrete data.
However, these parameter diffusion models cannot learn high-level
semantic representation from the parameter space since common
encoders, which encode data into one static representation, can-
not capture semantic changes in parameters. This motivates a new
direction: learning semantic representations hidden in the param-
eter spaces to characterize noisy data. Accordingly, we propose a
representation learning framework named SepDiff which operates
in the parameter space to obtain parameter-wise latent semantics
that exhibit progressive structures. Specifically, SepDiff proposes
a self-encoder to learn latent semantics directly from parameters,
rather than from observations. The encoder is then integrated into
parameter diffusion model, enabling representation learning with
various formats of observations. Mutual information terms further
promote the disentanglement of latent semantics and capture mean-
ingful semantics simultaneously. We illustrate seven representation
learning tasks in SepDiff via expanding this parameter diffusion
model, and extensive quantitative experimental results demonstrate
the superior effectiveness of SepDiff in learning parameter repre-
sentation.
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1 Introduction

Representation learning [5], which aims at learning low-dimensional
latent semantics from high-dimensional observations, offers an
unsupervised approach to discovering high-level semantics in ob-
servations. It has been widely applied in areas such as computer
vision [12, 26, 63], and data analytics [33, 45, 51]. While most rep-
resentation learning methods [9, 21, 31, 52] work on continuous-
valued observations, different non-trivial methods are needed to
discover semantics for discrete data [2, 10, 36, 48]. Consequently,
these individual efforts might face issues such as inconsistent dis-
coveries within the data [66] or repeated modelling efforts [24, 62].

On the other hand, Bayesian Flow Networks (BFNs) [15, 42, 56]
have been recently proposed as promising Parameter Diffusion
Models (PDMs). By operating in the parameter space, PDMs design
a multi-step mechanism to approximate the ground-truth param-
eters of observation sequentially. As a result, a uniform strategy
may be adopted to deal with continuous, discrete data while simul-
taneously maintaining fast sampling. Pilot studies of PDMs have
shown promising results in modelling different data formats.

Leveraging PDMs , this paper introduces SepDift , a novel pa-
rameter space representation learning framework that employs a
unified strategy to extract meaningful high-level semantics from
continuous and discrete data. Specifically, a self-encoder is designed
to encode step-wise parameters into low dimensional semantic la-
tents, capturing gradual semantic changes throughout the multi-
step generation process. These semantic latents are then integrated
into a neural network architecture to form the parameters for an
output distribution that simulates observations. Furthermore, mu-
tual information is introduced to enhance the disentanglement of
latent semantics, promoting the capture of distinct and meaningful
representations.

SepDiff is applied on benchmark datasets and verifies its effective-
ness in obtaining meaningful high-level semantics for discrete and
continuous-valued observations. Sampling and reverse-sampling
procedures are developed here to complete conditional image re-
construction and generation tasks. In particular, our developed
self-encoder discovers interesting progressive semantics along with
the flow steps. That is, our SepDiff obtains meaningful,clearer dis-
entangled representations while maintaining high sample quality.

The main contributions of this work can be summarized as fol-
lows: (1) A parameter space representation learning framework
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I
| Bayesian Update Function /(6,,x,) generate the (t-1)

step parameters 0;_ based on the t-step parameters 6, and intermediate latents X; |

Figure 1: Our understanding of PDMs serves as an alternative notation for vanilla BFNs. Each step consists of a conditional
decoder po(x:|Y/(0;) (in blue rectangle) and a Bayesian update function k(-) (in peach rectangle). In training PDMs , dashed
arrows (between conditional decoder and {Xf}thl) are non-existent as {Xt}zT=1 refers to observations. The dashed arrows become
solid for sample generation, representing the decoder generates x; in sample generation.

Table 1: A comparative assessment of SepDiff and various
sample based generative models focuses on high-quality gen-
eration and key representation learning capabilities, includ-
ing low-dimensional (capturing compact and meaningful
latent representations), smooth (ensuring small input varia-
tions lead to gradual output transitions), continuous (main-
taining consistency in the latent space to prevent abrupt
changes), and time-specific (preserving temporal correlations
among data features). To systematically evaluate these prop-
erties, we design specific experiments: sample quality task
and unconditional generation task can illustrate high-quality
generation, latent classification task and attributes encoding
task evaluate low-dimensional representation learning, la-
tent space interpolation task measures smooth transitions,
disentanglement task examines the continuity of the latent
space, and time-varying generation task investigates time-
specific semantics.
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introduces a uniform strategy for modelling continuous and dis-
crete observations; (2) A self-encoder encodes step-wise parameters
into step-wise semantics to reveal a series of gradually changing
latent semantics; (3) A mutual information term promotes latent
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semantics being disentangled and storing meaningful semantics
simultaneously; (4) Sampling and reverse-sampling methods are
developed, and generation and reconstruction tasks are completed
in the parameter space. (5) We comprehensively evaluate SepDiff
across seven representation learning tasks, including two newly
designed tasks. Table 1 concludes the advance of SepDiff compared
with SOTA generative models.

2 Understanding Parameter Diffusion Model -
An Alternative View of Bayesian Flow
Networks

Parameter Diffusion Models (PDMs), a.k.a Bayesian Flow Networks
(BFNs) [15, 42, 56], serve as deep generative models with the pri-
mary objective of learning an output distribution for generating
observations. The distribution’s parameters are learned by a neural
network, which takes the posterior parameters of observations of
inputs. Here, we try to understand PDMs from an alternative pa-
rameter perspective since these (posterior) parameters play a key
role in PDMs . PDMs involves concepts such as input distribution,
sender distribution and receiver distribution, to introduce PDMs ,
making it less accessible to readers unfamiliar with PDMs . Inter-
ested readers may refer to Appendix A.1 and [15] for the original
illustrations.

Figure 1 shows T steps of training and sample generation in
PDMs, similar to diffusion models [20, 41]. To train PDMs , we min-
imize the divergence between the ground-truth data distribution
and the evolving output distributions over T steps. At each step
t € {T,..., 1}, an intermediate (posterior) parameter 6; is first up-
dated using a Bayesian update function h(-) as 0; = h(0r41, X¢+1),
where x;41 is the observation at step ¢ + 1. 0; is then fed into a
neural network i/(-) to form the parameters of output distribution,
i.e., adecoder po(x¢|¥(0;), for model training. After training, these
intermediate output distributions can be employed to simulate ob-
servations during the sample generation process, replacing the
actual observations at each step ¢.

By working in the parameter space, PDMs can uniformly model
continuous and discrete observations. For example, PDMs can use
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the mean of Gaussian distributions as parameter 6 to model contin-
uous data or use the event probabilities of categorical distributions
as 0 to study discrete data (see detailed settings for distributions
in Appendix Table 3). However, PDMs cannot produce meaningful
latent semantics capturing high-level concepts in the observations,
such as hair colors in portrait images.

3 SepDiff : Parameter Space Representation
Learning

Here, we explain the framework of SepDiff and specific design
mechanisms.

3.1 The SepDiff Framework

The framework and workflow of SepDiff are in Figure 2. SepDiff
leverages the parameter space for representation learning by ex-
tracting low-dimensional latent semantics from high-dimensional
data. Different from PDMs in approximating data distribution p(xo),
SepDiff learns the joint distribution over observation xo and a se-
ries of latent semantics {Zf}thl’ with |z;| < |xo|,Vt € {1,...,T}.
That is, SepDiff seeks to reconstruct xo while obtaining meaningful
low-dimensional latent semantics {Zf}thl‘
Building on PDMs , SepDiff consists of four main components:

(1) A self-encoder, conditioning on the intermediate (posterior)
parameters 6; to generate progressive latent semantics z;,
described in Section 3.2.

(2) A conditional decoder, using a neural network on latent se-
mantics z; and intermediate parameters ; to form the out-
put distribution for subsequent steps, detailed in Section 3.3.

(3) A sampling and reverse-sampling process, facilitating tasks
such as image reconstruction and interpolation, outlined in
Section 3.4.

(4) A training and testing procedure, as discussed in Section 3.5,
optimizing latent semantics z; and ensuring an effective
model generalization.

Together, SepDiff forms a robust framework to capture and utilize
latent semantics and to improve the performance of tasks including
unconditional image generation and reconstruction.

3.2 Parameter Encoding through A Self-encoder

The self-encoder, denoted as q¢(z¢|0;, t), progressively encodes in-
termediate parameters 0; into low-dimensional latent semantics
z;, which facilitates representation learning from high-dimensional
data at each step t. [4] has shown that upsampling layers from a
U-Net in pretrained diffusion models [37] may capture meaningful
semantic information. Inspiring from this discovery and in train-
ing SepDiff we adopt approaches similar to [29] to parameterize
q¢(2¢104,1). Through q¢(z¢|6;, t), the intermediate parameter 6,
effectively encodes itself into z;, together they form /(0;, z;) for
the output distribution.

Ideally, the latent semantics z; should provide low-dimensional
semantics distinct from the intermediate parameters 6; in PDMs
but without compromising the data reconstruction process. To learn
high-quality latent semantics, a smooth, learnable latent space is
necessary, which is ensured by integrating the prior distribution
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p(z;) into a robust probabilistic framework, allowing efficient sam-
pling of x. For simplicity and efficiency, we assume p(z;) follows
a Gaussian distribution.

Here, q¢(2¢|0;, t) differs from traditional auto-encoders q¢ (z[xo)
in two key aspects:

® qp(zt|0:,t) is conditioned on the intermediate parameter
6;, rather than being conditioned on x¢. This summarizes
information from all previous steps to enable generating
latent semantic z; through all the T steps.

o The self-encoder generates a step-wise semantic z;, which
is tailored to the dynamic behavior of variables over time t.
This series of latent semantics {z; }thl are expected to exhibit
progressive semantic behaviors (such as gradual changes in
age, smile, or skin color) throughout the generation process
(as illustrated in the right panel of Figure 5).

When observations xq are unavailable, e.g. sample generation
tasks, it is also worth noting that directly using regular auto-encoders
like g4 (z|x0) to generate latent semantics is infeasible. They may re-
quire an additional module to generate latent semantics [35], while
training such modules would introduce computational overhead.
However, in their case, not using auto-encoders g (z|xo) would
lead to inefficient resource use.

3.3 Conditional Decoder

The conditional decoder refers to the output distribution po (x;|/(0;, z¢))

which conditions on latent semantics z; and intermediate parameter
6; to simulate x;. The condition (6, z;) explicitly incorporates
z; as part of its conditioning mechanism. Following the settings in
diffusion models [20, 41], we use the U-Net architecture with the
Cross-Attention in each layer specified as:

QK™
v,
Vi )

Cross-Attention(60, z;) = softmax( (1)
where Q = W90;,K = WKz, V = WVz; and WO, WK, WV are
the query, key and value weight matrix, respectively. See the de-
tailed U-Net architecture.

Since z; works together with the corresponding intermediate
parameter 6y, it is expected that z; aligns well with the progres-
sively structured parameter ;. Lower-level intermediate latent x;
(such as hair texture) is progressively incorporated. The proposed
self-encoder works consistently with the conditional decoder here
as both work on 6y, see Figure 6 (b).

3.4 Sampling and Reverse-sampling Processes

After training SepDiff , the sampling and reverse-sampling pro-
cesses play a crucial role in generating and reconstructing data,
which is essential for tasks such as image generation and inter-
polation. Generating samples begins with an initial guess of the
intermediate parameters O1.1. From 07,1, this sampling process
sequentially generates xr,X7_1, .. ., Xo. Specifically, given the pa-
rameter 6; at each step ¢, we have:

2t ~ (2101, 1), Xt ~ po(Xe[Y(Or,2¢)), Or-1 = h(0r,x1). (2)

We use the trained encoder g¢(z¢|6;, t) to replace the prior p(z¢) of
z; for improving the sampling quality. After 6 is obtained, a sample
can be generated as zg ~ qg(20/60,0), X0 ~ po(x0[¥(8o, 20)).
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Figure 2: The framework of SepDiff . Each step consists of a self-encoder g, (z:|0:,t) (pink rectangle), a conditional decoder
po (x¢|¥(zs, 6;)) (blue rectangle), and Bayesian update h(-) (peach rectangle). During the reverse-sampling stage, the self-encoder
qy encodes intermediate parameters 0; into a time-specific latent semantic z;, and po (x¢|/(z¢, 0;)) generates x;.

=T t=1

=0

Conditional
Decoder

| Self -Encoder gy (z | 6;,t)

encode t-step t and t-step parameters 6, to generate t-step low-dimensional latent semantics z; 1

Figure 3: The reverse-sampling process in SepDiff .

However, the reverse-sampling process, which transits the ob-
servation xg through the intermediate latents x1, Xa, . . ., X7—1 until
XT, is not as straightforward as the sampling procedure. Without a
clearly defined reverse-sampling process, it would be challenging
to perform tasks such as image reconstruction and interpolation.
In fact, by taking the inverse of the Bayesian update function h(-)
as 0; = h™1(0;_1,x;_1), the intermediate latent x;_1 can transit
to x; as:

0; =h™1(0r-1.%1-1). 2t ~ q(2:]01.1), Xt ~ po(X¢|Y(01.21)).
©)
Given the straightforward definition of Bayesian update function
h(-), its inverse operation is generally easy to derive. Furthermore,
this developed reverse-sampling process can be naturally extended

to PDMs . Transiting x;—1 to x; at time ¢ can be performed as
0 = ™ 1(0;-1,%;-1), with x; sampled as x; ~ po(x¢|1/(0;)). With
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this approach, PDMs can effectively perform downstream tasks like
image reconstruction and interpolation, which were difficult or
even impossible by previous PDMs . Figure 3 shows the reverse-
sampling process of SepDiff . The PDMs version is provided in
Figure 7 in Appendix A.

3.5 Training and Test with SepDiff

Here, we outline the process of training and testing SepDiff by
focusing on optimizing SepDiff to learn meaningful latent seman-
tics while ensuring effective reconstruction of observations. The
training process involves variational inference to approximate the
joint distribution of latent variables, and a mutual information term
is integrated into improving the quality of learned latent semantics
by strengthening the relationship between intermediate parameters
and latent semantics.
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Variational Inference for Intractable Joint Distribution In
SepDift, the joint distribution over xo, intermediate latents {x,}thl
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where A is the scale parameter of Dk [qg(z:)||p(z:)]. The full
derivation is in Appendix B.

and latent semantics {zt}[T=1 can be defined as p(xo, {Xf}thl’ {zt}tT=1 |-) =

0 (%0l¥/(00.20))-TT1_; [P(20)Epo (x, 1¢/(61.20)) [P (Xe-11%:)]], where
the output distribution po(xo|((09, zo)) at step 0 is used to model
observation xg, and Epo (x:1y/(81.2:)) [ps(xz-1|x;)] follows the defi-
nition of PDMs to model intermediate latent x;_1, and ps (x;—1(x;)
is a noisy distribution of x;.

With qg (2t | 0, ) defined as the encoder for z; and ps(x¢—1/x¢)
defined as the variational distribution for x;_1, the evidence lower
bound (ELBO) on the marginal log-likelihood of observation xg is
Eq. 4 (see the full derivation in Appendix B.1).

Maximizing ELBO is equivalent to performing amortized infer-

ence [23] through encoders g¢(z;|0;,t) and learning likelihood
function through decoders [64]. When the encodable posterior
q¢ (2¢10:, ) is used to infer high-level semantics z;, those interme-
diate latents {Xf}thl contain low-level information in generating
the observations. In SepDiff , the parameters of the output dis-
tribution are learned through iteratively proceeding the Bayesian
updating functions and a learned noise model ¢/(0, z) parameterized
by neural networks ¢.
Mutual Information Regularization Ideally, during the train-
ing phase, we want to acquire the latent semantic z; by the self-
encoder qg(z;|0, t) and achieve high-quality reconstruction o by
the decoder (i.e., the output distribution po(x¢|/(60, z0))). How-
ever, there exists a trade-off between inference and learning [38, 50]
coherent in optimizing the ELBO in Eq. (4). In most cases, optimizing
ELBO favours fitting likelihood rather than inference [64]. Based
on the rate-distortion theory [1, 3], the rate, represented by the KL
divergence term constrained by the encoders, compresses sufficient
information to minimize the distortion, or reconstruction error,
while simultaneously limiting the informativeness to promote a
smooth latent space.

To remedy the insufficient representation learning during the
inference stage, we want to increase the dependence between in-
termediate parameters 0; and latent semantics z; by maximizing
their mutual information MI(6;,z;). We can rewrite the tractable
learning object in SepDiff by adding the mutual information maxi-
mization term as

ELBO; = ELBO + % ZMIq(Gt;zt) =P Ry % ZMIq(gt;Zt)
; ;
(5)

where y is the trade-off parameter, Lp is distoration term and Lg
is the rate term. Considering that we cannot optimize this object
directly, we can rewrite it by factorizing the rate term into mutual
information and total correlation (TC) to acquaire the final training
object:

LSepDifﬂ =

T
— > Bpe(611-) By (a0) {DxLIPs (xe—1 | %0: @7:0) IR (xe-1: /(01 20), 1)
t=1

Y D lag (100101 — A D g <zt>||p<z>]}

T T

+Eqy (20.60) [Inpo(x0:¥(60,20))].  (6)

4 Experiments

We present two variants of SepDiff operating in different parame-
ter spaces: SepDiffd with discrete input distributions for discrete
datasets, and SepDiffc with continuous input distributions for con-
tinuous datasets, respectively. In addition, we evaluate the rep-
resentation and generative capabilities of SepDiff in seven tasks,
including latent classification task , latent space interpolation
task , disentanglement task , attributes encoding task and
sample quality task . Furthermore, we propose a novel time-
varying generation task and demonstrate that SepDiff can per-
form unconditional generation task directly, where samples are
generated solely by the decoder using a given prior. Specifically, to
comprehensively evaluate the generative and representation learn-
ing capabilities of SepDiff , we devised seven tasks to address the
following research questions:

e RQ1: What performance improvements does SepDiff achieve
over state-of-the-art (SOTA) generative representation learn-
ing frameworks?

e RQ2: What novel property does SepDiff introduce to gen-
erative representation learning models, and how can it be
empirically validated?

¢ RQ3: How does SepDiff enhance generative models by in-
troducing new features?

e RQ4: How can we verify that the low-dimensional features
learned by SepDiff capture meaningful semantic informa-
tion?

¢ RQ5: How can we assess the probabilistic properties of the
low-dimensional features learned by SepDiff, particularly
their smoothness and continuity, as reflected in latents z; ~
q¢(2t10:,1)?

e RQ6: How does SepDiff compare to existing generative rep-
resentation learning frameworks in terms of time efficiency
during training and inference?

e RQ7: What is the contribution of each component in SepDiff
to its overall performance, as demonstrated through ablation
studies?

4.1 Experimental Setup

The Choices of Baselines and Datasets We conduct a two-fold
comparison to evaluate the performance of SepDiff variants. Firstly,
we compare our parameter-based models (SepDiffc and SepDiftd)
with established sample-based representation learning baselines, in-
cluding AE and VAE-based models such as f-VAE [19], infoVAE [64],
and diffusion-based models such as DiffAE [35] and InfoDiff [49].
These models represent key advancements in the field: f-VAE in-
troduce disentanglement into VAE, infoVAE incorporates MMD
for balancing generation and representation, while DiffAE and
]InfoDiff explore the integration of AEs and VAEs into diffusion
models to learn encodable latents and disentangled representations,
respectively. Secondly, we compare the performance of SepDiffc
and SepDiffd across various input distributions for continuous and
discrete data, respectively. The discrete datasets include binarized
versions of MNIST (bMNIST ) [11], FashionMNIST (bFashionMNIST
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T
log p(x0) > _ZEPF(03|—)Eq¢(z[|9[,t) {Dxlps (xt-1 1 %0)1Bpg (x, [9/(8,20)) [P5 (Ke-11%2)]]
t=1

~Dxlqg (z¢ |06, D)lIp(z0)1} +Epp(6,1-) gy (20160.0) (PO (X0l¥/(80,20))] = ELBO.  (4)

) [54], while the continuous datasets include CelebA [27], CIFAR-
10 [25], 3DShapes [6]' and FFHQ-64. This comparison allows for a
detailed examination of how different parameter space assumptions
impact the representation learning of discrete and continuous data.
Metrics, Deep Structures and Hyperparameters. To ensure
reproducibility and comprehensive understanding of the experimen-
tal setup. We detailed the metrics for evaluation in Appendix B.3.

4.2 RQ1: SOTA Performance

Downstream Classification for Representation Learning To
evaluate the representation capability of our SepDiff, we design
downstream classifier-based latent classification task and re-
port the AUROC to measure the quality of the learned latent z.
From Figure 4 (a) for the discrete datasets and Table 2 the contin-
uous datasets, we can conclude that both SepDiffc and SepDiftd
can achieve a higher AUROC, suggesting that the learned latent
z( contain more low-dimensional semantics about the data, which
is general and transferable [13]. More about AUROC and experi-
mental details can be seen in the Appendix B.3. In Figure 4 (a), we
can see that the SepDiffd with discrete assumption achieves the
best performance in two datastes. Additionally, we report SepDiffc
results on continuous datasets in Table 2. We can see that for the
continuous data, the SepDiffcs with Delta distribution can achieve
the highest AUROC, capturing the most informative semantics for
classification in three datasets.

Generation Ability In addition to evaluating the classification
based representation ability, we also conduct sample quality task
against baselines. For discrete data, we report the FID in Figure 4 (a).
For continuous data, we report the FID in Table 2. We can conclude
that the SepDiffc with Delta distribution can achieve the lowest FID
value for three datasets. The description and configuration details
for the FID metric used are provided in the Appendix B.3.

4.3 RQ2: New Time-Varying Task

We extend the representation learning scope on existing frame-
works for attributes encoding task and propose a new time-
varying generation task , to evaluate the effectiveness of the
progressive latent semantics learned by the self-encoder.
Attributes Encoding in Representation Learning Figure 5
(a) demonstrates that attributes are captured by the learned latent
semantics {zt}tT:1 in attributes encoding task . This is illustrated
by a set of latent-sample pairs < {zi}thl, xlT’] >, where {zi}thl are
obtained by reverse-sampling from the i-th input image through the
trained SepDiff, and XZT’j is the j-th sample from N (0, I) correspond-
ing to the i-th input image. Concurrently, the inherent attributes
of samples, such as local attributes in images (e.g., Narrow_Eyes,

Mouth_Slightly_Open, Blond_Hair), are characterized by xlT’j.

!For the discrete version, continuous data (k-bit images) can be discretized into 2k
bins by dividing the data range [—1, 1] into k intervals, each of length 2/k.
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New Time-Varying Task We illustrate the learned time-varying
semantics by time-varying generation task on Figure 4 (b), and
Figure 5 (b). Specifically, a latent sample pair < {zf;“‘ed}tT:l, xf;‘."ed >
is first obtained by applying the reverse sampling process in trained
SepDiff on an image. Then, we use the latent semantics at step
t* to replace other steps’ ones and “reconstruct” the image as
X ~ po(xe|y(0r,285¢%)), 0,1 = h(01, %)Vt = T,..., 1. In that
case, the attributes vary due to the semantics evolution encoded by
time-specific latent.

4.4 RQ3: New Paradigm for Unconditional
Generation

We introduce new paradigm for unconditional generation task
without relying on training additional deep modules. Refer to Al-
gorithm 1 in Appendix for more information. We can conclude
that VAE-based models still produce blurry reconstructions, while
diffusion-based and parameter-based models can build near-exact
reconstructions.

4.5 RQ4: Time-dependent semantics guided
interpolation

latent space interpolation task [14, 19] is commonly used to
validate the smoothness, continuity, and semantic coherence of the
learned latent semantics in generative models. Typically, two sam-
ples are embedded into the latent space, and interpolating between
the latent variables generates interpolated representations. The
reconstructed outputs produced by the sampling process reveal the
semantic richness of the latent space. Demonstration of the image
interpolation is detailed in Appendix B.4.

SepDiff achieves near-exact reconstruction, in contrast to the
downgraded performance of VAE variants such as (a) vanilla VAE,
and (b) f-VAE. Compared with diffusion models (c) DiffAE and
(d) InfoDiff, SepDiff characterizes a smoother and more consistent
latent space.

4.6 RQ5: Time-dependent semantic encoding
for disentanglement

We perform latent traversals on the FFHQ-64 and CelebA datasets
to evaluate the disentanglement task of our trained SepDiff . In
this process, we modify one dimension of the learned latent se-
mantics {zt}tT:1 each step, and replace it with M evenly distributed
numbers within a standardized range (e.g., —3 to +3), while keeping
the other dimensions fixed. After decoding these adjusted latent se-
mantics, we evaluate the generated samples for changes in specific
attributes. Successful disentanglement is verified when manipulat-
ing one single dimension alters only one distinguishable attribute,
such as age, while leaving all other attributes unchanged. SepDiff
effectively isolates and controls individual data attributes in both
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Table 2: Comparison of representation learning algorithms on continuous data by disentanglement performance (mean + std)
and classification. The quantitative results for each algorithm are averaged over five trials. Notations: Modeling on data space
D, parameter space £. Prior distributions: Gaussian g, Categorical c, Delta d. 7: higher better, |: lower better. Color: Top-1,

Top-2.
Prior Prior Methods CelebA 3DShapes CIFAR-10
on  type TADT ATTRST FID]| AUROCT DCIT AUROCT FID| AUROCT
- AE 0.042 £0.004 1.0 £0.0 90.4£1.8  0.759 £0.003  0.219 +0.001 0.796+£0.007  169.4+2.4  0.721£0.001
g VAE [23] 0.000 +0.000 0.0 £0.0 94.3+2.8  0.770 £0.002  0.276 £0.001  0.799+0.002  177.2+3.2  0.743+0.002
D g p-VAE [7] 0.088 £0.051 1.6 £0.8 99.8+2.4  0.699 £0.001  0.281 £0.001  0.801+0.001  183.3%#3.1  0.769+0.003
g InfoVAE [64] 0.000 £0.000 0.0 £0.0 77.8£1.6  0.757 £0.003  0.134 +£0.001 0.829+0.003  160.7+2.5  0.814+0.006
g DiffAE [35] 0.155 £0.010 2.0 £0.0 22.7+¢2.1  0.799 £0.002  0.196 £0.001  0.899+0.001 32.1+1.1  0.859+0.002
g InfoDiff [49] 0.299 £0.006 3.0 £0.0 23.8+1.6  0.848 £0.001  0.342 £0.002  0.882+0.001 32.4+1.8  0.886+0.004
SepDiff
c (y=1,2=001) 0.261 £0.01 5.0 +0.0 22.6£1.2  0.846 £0.009  0.477 +£0.002 0.901+0.007 31.8+1.1 0.892+0.004
p o ____ U Yy =157 S
SepDiff
d (y = 09,1 = 0.01) 0.302 +£0.005 4.0 £0.0 22.1£1.6  0.850 £0.006  0.567 +0.005  0.902+0.001 31.2+1.1 0.901+0.001
SepDiff
d (r=1,1=001) 0.368 +0.005 3.0 £0.0 21.6+1.1 0.865+0.004 0.485 £0.009 0.931+0.001 31.1+x1.1 0.911+0.002

AUROC and FID comparison on bMNIST and bFashionMNIST

BMNISTAUROC
bFashionMNIST AUROC

095

0.75

~#— bMNIST FID
—&— bFashionMNIST FID

Fixed X0 , varying

AE VAE B-VAE InfoVAE DiffAE InfoDiff

SepDiffe

e
]
0

SepDiffd

(a): Comparison on discrete data by classification accuracy and generation performance.(b): Time-varying representation learning of SepDiff

Figure 4: Quantitative comparison over generative representation learning models on discrete data (a). SepDiff demonstrates
competitive performance in capturing latent for classification, achieving approximately 0.84 AUROC for bFashionMNIST and
0.91 for PMNIST . Additionally, it shows robust generative capabilities, with FID values ranging from 0.5 to 0.6 for PJMNIST and
around 5 for bFashionMNIST . Among SepDiffs, SepDiffd with a categorical distribution is particularly effective in modelling
discrete data distributions, yielding lower FID values of 0.5 for PMNIST and 4.2 for bFashionMNIST . As shown in (b), the learned
semantics exhibit progressive, time-varying changes. By varying time encodes at 200, 300, 400 time steps, more attributes
will be influenced in the reconstruction stage: the Wavy_hair, Brown_hair, Arched_Eyebrows attributes in the first line, the
Double_Chin, Mustache, Goatee attributes in the second line and the Young, High_Cheekbones, Arched_Eyebrows attributes in

the third line. Notations: [

FFHQ-64 and CelebA. For example, on FFHQ-64, manipulating la-
tent dimensions controls attributes like Mustache, Brown Hair,
and Eyeglasses, while other attributes remain constant. Similarly,
on CelebA, attributes such as Smiling, Pale Skin, and Big Nose
are independently manipulated without affecting others.

4.7 RQ6: Time Efficiency

We report the time efficiency in the training and inference phases.

Training Efficiency When compared to BFN, SepDiff incurs
an additional time complexity due to the new self-encoder module
with a lightweighted U-Net network. Assuming this light-weighted
U-Net network has four layers, with the neuron counts being
h1, h2, h3, h4 , the additional time complexity would be O(h1 + h2 +
h3 + h4). These three methods share the same U-Net architecture.
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, FID]; [(e, PJMNIST ), (@, bFashionMNIST )]; [(-, SepDiffd ),(- - —, SepDiffc)].

The training is conducted on two NVIDIA H100 GPUs, each with
80 GB of memory, to ensure sufficient computational resources for
handling large-scale datasets. From this table, we can see SepDiff
requires around 25% more training time than DDIM, largely due
to the additional semantic encoder. However, the training speed of
SepDiff is comparable to that of DiffAE, owing to the lightweighted
modules integrated within the encoder.

Inference Efficiency The SepDiff also needs the steps for a
generation like the diffusion model. We evaluate the impact of
steps (n = 100, 500, 1000) on sampling speed with the experiments
conducted on one H100 GPU with 80GB of memory. We illustrate
some results, each value represents the number of 64x64 images
generated per second at the current time step.
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Zhangkai Wu, Xuhui Fan, Jin li, Zhilin Zhao, Hui Chen and Longbing Cao

mage Reconstruction(d,e,f) by time varying and fixed X1

Figure 5: The left panel (a-b) shows high-level latent semantic captured by zs, from SepDiff ’s encoders. By fixing zsp,, the
global characters of the images are invariant. By varying the stochastic xr, the local attributes in the corresponding generated
images may vary, such as the Narrow_Eyes attribute in (a), the Blond_Hair attribute in (b), and the Mouth_Slightly_Open attribute
in (c). The right panel (d-f) illustrates the time-varying changes that SepDiff ’s progressive encodes interfaced. By varying time
encodes at 100, 200, 300 time steps, more attributes will be influenced in the reconstruction stage: the Big_Lips, Pointy_Nose
attributes in (d), the Blond_Hair, Bald attributes in (e) and the Wavy_Hair, High_Cheekbones attributes in (f).

4.8 RQ7: Ablation Studies

The coefficients y, A in Eq. 6 will regulate the information flow from
0 to z by the variational bottleneck rule [7, 38, 50], resulting in the
tradeoff between generation and representation learning.

5 Related Works on Generative Representation
Learning Models

In this section, we categorize sample-based generative representa-
tion learning models into three distinct groups and compare with
our SepDiff , a variant of PDM, to highlight promising advantages.

Diffusion Models Recent advances have demonstrated that
diffusion models [20, 41] are capable of generating high-quality
data. Nonetheless, compared to the autoencoder framework, the
intermediate outputs in diffusion stages are high-dimensional and
lack smoothness, making them unsuitable for representation learn-
ing. Contemporary research focuses on encoding a conditional
latent space to acquire low-dimensional semantic representations.
However, those sample based models [35, 49], such as VAEs and
diffusion models, exhibit limitations when applied to discrete data.

Deep Hierarchical VAEs Deep hierarchical VAEs have seen
progress in capturing latent dependence structures for encoding an
expressive posterior, statistically or semantically. VQVAE-based [36,
48] models have local-to-global features-based explanatory hierar-
chies at the image level, forming a codebook-based discrete poste-
rior. In [40, 44], recursive latent structures in multi-layer networks
form an aggregated posterior. NVAE [47] demonstrates that depth-
wise hierarchies encoded by residual networks can approximate
the posterior precisely despite using shallow networks. Unlike the
observation-based encoder, where the information flow between
input and latent is maximized in encoding-decoding pipelines in the
sample space, SepDiff uses progressive encoders in the parameter
space to capture the dynamic semantics.
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Pretrained Diffusion Models Pretrained diffusion models [37],
[4] have shown that the upsampling features from a U-Net can
capture semantic information useful for downstream tasks. This
discovery has sparked increasing research in leveraging these up-
sampling features of pretrained diffusion models across various
applications, including classification [32, 53], semantic segmen-
tation [4, 65], panoptic segmentation [55], semantic correspon-
dence [17, 29, 43, 60], and image editing [18, 46]. In most of these
approaches, identifying the optimal denoising step and upsampling
layer is crucial for achieving high predictive performance. These
approaches do not suggest fundamental changes to model architec-
tures or training methodologies, leaving the specific architectural
components and techniques for learning useful semantic represen-
tations unclear. SepDiff uses these discoveries to construct efficient
self-encoders.

6 Conclusion and Future Directions

In this work, we introduce SepDiff, a novel unified parameter-space
representation learning framework designed to handle both contin-
uous and discrete data. Unlike traditional encoder-based methods
that map observations into static latent semantics, SepDiff employs
a self-encoder to iteratively derive structured latent semantics from
intermediate parameters at each step of the generation process. This
approach enables more effective representation learning across di-
verse data types. We developed new sampling and reverse-sampling
methods for SepDiff to support downstream generation and recon-
struction tasks in the parameter space. We validate SepDiff through
experiments spanning seven representation and generation tasks
across two variants. The results demonstrate its superior ability to
extract low-dimensional, smooth, and time-varying semantics, lead-
ing to unified representations and a clearer semantic understanding
of the underlying data.
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A Preliminaries

A.1 Parameter Diffusion Models

In [15], PDMs assume two types of distributions: a simple input
distribution Pi(-) representing the initial belief about observations
and an output distribution Po(-) simulating the observation dis-
tribution. The parameters of input distribution are first updated
through a Bayesian inference scheme and then passed into a neural
network /(+) to form the parameters of output distributions. The
main objective of PDMs is to minimize the divergence between the
ground-truth data distribution and the output distribution, ensuring
that the output distribution closely approximates the ground-truth
data distribution.

Following the notations in diffusion models, we denote xq as the
observations. There are T reverse steps in PDMs which gradually re-
veals the information of x¢ through {x7,x7_1,...,X1} to the input
distribution®. At each step ¢, x; is first noised through a sender dis-
tribution ps(X; | X¢; ar), with a; denoting the precision. Combined
with input distribution py(x;; 0¢4+1), the posterior distribution of
x; is obtained as p(xs; h(0p+1, X1, ar)) o< pr(xe; Or41)ps (Xr | X415 ),
where 0; = h(0:41, X, ar) is the Bayesian update function. By
feeding this intermediate (posterior) parameter 6; into a neural
network /(-), x;’s output distribution po(-) is parameterized as
po(x¢;¥(60;)). Finally, a receiver distribution pg(-) is defined as the
expectation of the sender distribution with respect to the output
distribution, i.e., pr(Xt; ¥(0:), ar) = Bpy (x,5p(0,)) [P5 (X2 | Xe5 a¢)].
See Figure 6 (a) for a visualization of the relationships between
these distributions.

In PDMs , the joint distribution over the observation x( and the
intermediates {x;}; is defined as:

T
p(xo, {xe}el-) = po(xo; ¥(00) | | pr(Fes ¥(00),ar) (1)
t=1

. This intractable joint distribution can be approximated under the
variational inference framework as follows:

21t is noted that the index ¢ is used reversely in [15]. We make such changes to be
consistent with the diffusion model settings [20, 41].
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log p(x0)
. Po(x0;¥(80)) T11_, pr(Fes ¥(0¢), ar)
M, ps(Xr | xe5 )

2 Bpp (0171-)ps ({xc}e1-) |10

T
== Z Epp(6,]-)DxLps (X | %05 ar:e)pr (X5 ¥/(0:), ar)
t=1

LY (%)

+Epp(6-) Inpo(x0;¥(00)), (8)

LP (%)
where pp(6;|-) is the distribution of 6; (see Appendix A.2 for a
detailed calculation). Maximizing Eq. 8 equals minimizing the dis-
crepancy LR (x) between the sender and receiver distributions and
penalizing Distortion £P(x) to maximize the likelihood distribu-
tion over data.

A.2 Bayesian Flow Distribution

Bayesian flow distribution pr(- | x;t) is the marginal distribution
over input parameters at time ¢, given prior distribution, accuracy
schedule a and Bayesian update distribution py (- | 6,x; ), as
follows:

pr(0 1 x;1) = py (6 | Bo,x; (1)) . ©)

B Proofs

B.1 Derivation of ELBO for SepDiff

We derive the ELBO of SepDiff defined in Eq. (4) in Eq. (12).
We can obtain the expectation of the prior matching term over
the q(6;) as

—Eq(6,)Dx1lq¢(2t10:)llp(z:)]
=Eq(6,) [Eq(z,|6,) [log p(z¢) — log q¢(z|6:)]]

p(z) ]
B log — 222 4160 0(0
q(zbat)[ 08 q¢(Zt,0t) " qu( t) (10)
p(z1) otz ]
=E,(, lo o
q(z1,0,) [ © 4o % 4g(zil0r)

Dirlqe(ze)llp(ze)] — ML, g,

Next, we give the scale parameters A and y for Dx [q¢ (2:)|1p(2:)]
and MI,, g,, respectively. The Eq. (10) can be rewritten as

— ADkL[q¢(ze)|lp(2e)] = ML, 9, + YMI, o,
q¢(zt) q¢(zt)
p(zt) q¢(2:101)
=— (A+y - 1)Dkrlqe(z:)llp(z:)]

- (1-y)Eq(o,) | DxLlge(z:16:)llp(z0)]].

—(y—1log

=Eqy (2.6, [ — Alog ] (1)

B.2 Mutual Information Learning

Unlike the rest of the terms that can be optimized directly using
reparameterization tricks, the TC term cannot be directly optimized
due to intractable marginal distribution q4(z¢). Here, we follow the
guidance in [64] to replace the TC term with any strict divergence
D, where D (q¢(z)||p(z)) = 0iff ¢ (z) = p(z). We implement the
Maximum-Mean Discrepancy (MMD) [64] from the divergence
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Table 3: Examples of detailed distribution formats in PDMs . 0111 = {1141, o, +11 .

Data type P1(x¢|01+1)

ps (Xt |xs; ar) 0r = h(0r41, %1, ar)

Continuous data N (X¢5 pee1s p;_ll)

Discrete data Cat(xy; Il( -1)

_ QG XetPri1 P+l
T atprn

e 0,4
Dk €k Ok

NExal)

N(;C}; a;Kex[ — 0, atKI) Ot =

Data type po(x¢]0:) PROE[Y(0:), o)
Continuous data 8(xt — ¥(6y)) N (x5 9(0y), at_l)
Discrete data Cat(softmax(1/(60;))) Sk po (ks W (0))N (xp; arKep — ap, ar K1)

[pl (% |9t+l)l [PS (Xr-1 | ;(lt)l

[pr -1 lw 0, a0 | | pr (% 16111)

[ps (-1 xisa) | | pr (ot v (61.20). 1) |

0

|po (xi 1w (6,))|

po (x; |V (6;)

)

(a) Probabilistic Graphic Structure of PDMs

I‘Idb (2 10;,1) }
[ 2

(b) Probabilistic Graphic Structure of SepDiff

Figure 6: The relationships between distributions in PDMs (a) and SepDiff (b).

cee

L J L

Conditional
Decoder

P~

I Conditional Decoder po (X; | ¥ (z, 6;)) decoding t-step parameters ¢, and low-dimensional latent semantics Z; to generate t-step intermediate latents X;

|
L

Bayesian Update Function h~! (6,,x,) generate the (t-1)-step parameters §,_; based on the t-step parameters §, and intermediate latents X; I

Figure 7: Reverse-sampling process in PDMs .

family. MMD is a statistical measure that quantifies the difference
between two probability distributions by comparing their mean
embeddings in a high-dimensional feature space. By defining the
kernel function (-, -), Dpmmp is denoted as:

Damp (gO)11p(4))
=Ep2) p(2) [K (z, z')] — ZEq(z)’p(z/) [K (z,

B.3 Evaluation Metrics

FID for Generation We employ clean-fid [34] in 3 to evaluate
the unconditional generation task and sample quality task
quality. The Fréchet Inception Distance (FID) evaluation process can
be outlined as follows: First, a raw sample set is derived from the
dataset, typically comprising collected and downsampled samples
that may undergo resizing and compression before training. Second,

3https://github.com/GaParmar/clean-fid

)] +Eq qz) [k (22)] .
(13)

the generated image set is prepared, where images are often stored
as unsigned 16-bit integers, introducing quantization and potential
additional compression. FID assesses how effectively a generative
model replicates the training distribution by approximating real
and generated samples as Gaussians in the feature space of an In-
ception Network and computing their Wasserstein distance. As a
distributional metric, FID highlights both sample fidelity and di-
versity. In Tables 2, we measure FID between 10k random samples
from raw dataset and 10k randomly generated samples. DCI and
TAD for Disentanglement For comprehensive and fair quanti-
tative evaluation, we select the following measures guided by [8]
to assess the disentanglement task : (1) prediction-based met-
ric: Disentanglement, Completeness and Informativeness (DCI) (2)
information-based metric: Total AUROC Difference (TAD) [58].
AUROC for Classification To assess latent classification task
performance, we train a logistic regression model on the auxiliary
latent encodings of images to predict labels. The evaluation metric
is AUROC, and in cases where multiple annotations are present,
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- log / / D (o0 (e} 1. (22 e | 800 @) dlze hed (e
{Zt}t {Xt}t

1
stog [ [ [ 0010001 80.20) [ [ pa0)Epe 50,00 o5 501 )]
{ze}e J{xe}e J{O:} t=T

d{z;}rd{x¢}:d{0:}+

20 (x0:¥(00,20)) [T;_1 2(20)Bop (x5 (01,20)) [P (Xt —1 | Xe5 r) ]

—tog [ [ [ pttonnd-)
{ze}e J{xe}e S{O1}s
T

T17, ps(xe—1 | xe3 @r)qgp (2102, 1)

| [ psGee-1 x5 @0)qg (2616, YAz }edfxe od{0: e

t=1

>
2 BT psn I xea) a0 (21000 p(8:1-)

T
= Z Epr(0:1-)Bqy(2:) {EPS(Xz-1 | %0;6t7:¢)
=1

_E‘M(Zt [6:) [log P(Zt)

log

q¢ (¢ 6¢)

P0(x05¥(00,20)) [T;_1 2(20) By (xy39 (01.2)) [Ps (e —1 | X25 r)]

[log

T, ps(xe—1 | Xe5 ) g (2101, 1)

ps (X¢-1 %05 a1:4)

PR (Xe—1:9(0r,2), ar)

} + E%& (20,60) [In po (x0; ¥(00,20))]

T
== B (8,1-)Bap (zr) {DKLIPS (k1 [ %03 a7:0)lIpR (xe-13 (01, 22), )]
t=1

~Dx1lqg (2¢ | 00)11p(2e)1} +Eqy (20.60) [0 p0 (%03 ¥/(80,20))] := Lego

we report the average accuracy/AUROC across all predicted labels.
The dataset is split, with 80% allocated for training and the remain-
ing 20% reserved for testing. Performance is measured on the test
set using AUROC. To ensure robustness, this evaluation follows a
5-fold cross-validation protocol, with the final results presented as
the mean + one standard deviation.

B.4 Interpolation

The latent space interpolation task can be described as follows.
Firstly, we noise source images to generate latent pairs by sender

distribution, < x!,x% >, where x% ~q(- | x]l\]) and x% ~q(- |

¥
XJZV) Then, we implement two methods from [39] to generate four
interpolated latent pairs Xi.4, i.e., linear interpolation, and spherical

interpolation:

- _ 1 2
% =(1- Ainter)xo + AinterXgs

i sin((1 — ainter)einter)xl
i = ;
sin(@inter) 0

(14)

sin(@interfinter) 1
sin(finter) 0

where Ainter is the scale coefficient, aipter € [0, 1] denotes the
1\T 2

) is the angle

interpolation steps, and Ojnter = arccos (W
0 0

between x(l) and x(Z].

B.5 Model Structures

Encoder Architecture In our proposed encoder architecture, the
self-encoder q¢(z¢|0+,t) also conditions on step (¢ +1)’s upsam-
pling layers {ut+1’l}f:1, where L is the number of layers in the
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(12)

Algorithm 1: Unconditional generation process of SepDiff.

Input: number of steps T € N, o1 € R, optimized
parameters ¢, 6.
Output: 6.
1 07 ~ N(01;0,1)
2 fort=T to1do
3|zt ~ qg(2|01 1)
01~ pe(0:-110s,2¢)
5 end
¢ Return 0

U-Net architecture. For the [-th upsampling layer u,,;; at step
t + 1, we upsample it to the size of x;, update by the Bayesian up-
date function, and pass through a bottleneck layer B;(-) [16] to the
low-dimensional size. As a result, the self-encoder is defined as:

0p(20161,1) = N (223 9(01, (0101 1} oy 0. 95 (B, {urin s}y, D2

where g, (), go(-) use the same structure as:
90, {0112}y, 0.9 (1, {41}y 1)
L
= Z oy + Bi(h(xf,up411)) + @p41 - Bry1(0y),

1=0
where w; is the mixing weight of the I-th layer.
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