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Abstract
Conventional trajectory planningmethods for robotic fruit harvestingmainly rely on static
geometric heuristics and often overlook critical sensory and task-specific variables such as fruit
morphology and end-effector compatibility. These limitationsmake traditional approaches less
effective in real-world agricultural settings, where conditions are unpredictable and fruits require
careful, adaptive handling.Moreover,most existing studies do not incorporate aConvolutional
NeuralNetwork (CNN) to detect confidence in the planning process, often treating perception and
motion planning as isolated components rather than a unified system. To overcome these challenges,
this study proposes a data-driven approach to trajectory optimization that integrates visual
perception based onCNNconfidence levels, gripper typewith different actuation technologies, and
fruit orientation, parameters that significantly influence harvesting efficiency. Twomultivariate
regressionmodels were developed, one specifically for firm fruits such as oranges and the other for
soft fruits such as strawberries. Themodels predict trajectory length using three input variables: CNN
detection confidence, actuator type, which includes three-finger and two-finger grippers, and fruit
orientation angles ranging from50°–130°. The non-linear influence of orientation is captured
through polynomial terms. A total of 46 experimental trials were conducted for each fruit type using a
robotic platformunder controlled conditions. The regression outputs revealed that CNNconfidence
had a strong influence on trajectory length reduction, while orientation had amore severe impact on
strawberries due to their delicate structure. In comparison to baseline trajectories, the optimizedA*

planner, guided by regression coefficients, curtailed trajectory lengths by 11% for strawberries and
14% for oranges.Moreover, the positional accuracy incre ased by 15%and 12%, respectively. The
higher predictive accuracywas attained by themodels (R2= 0.89 and 0.82; RMSE= 3.2 cm and
4.7 cm for strawberries and oranges, respectively). These results demonstrate that heuristic planning,
combinedwith statisticalmodeling, enhancesmotion reliability and spatial efficiency in autonomous
fruit picking.

Nomenclature

AP Average Precision

CBAM Convolutional BlockAttentionModule

CMMD CentralMomentDiscrepancy

CNN Convolutional neural network
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DCmotors Direct CurrentMotors

DOF Degrees of Freedom

3D Three-dimensional

EDGC Edge-DirectedGridConstrained

FID Frećhet InceptionDistance

FPS Frames Per Second

LED Light-emitting diode

RRT Rapidly ExploringRandomTree

MAPE Mean absolute percentage error

MARTA Multi-Agent Real-TimeArchitecture

mIOU Mean Intersection overUnion

PRM Probabilistic Roadmap

TL Trajectory length

R2 Coefficient of determination

RMSE Rootmean square error

RGB-D RedGreen Blue—Depth

SSD Solid state drive

YOLO YouOnly LookOnce

Introduction

The global agricultural sector is certainly going through a transitional phase, determined by the cumulative
requirement for sustainable food production through conventional labor-intensive farming practices [1]. The
higher labor costs and a growing scarcity of agricultural land serve as two critical factors in food insecurity [2].
The cost associatedwith agricultural production has been significantly augmented in developing nations,
especially in the subcontinental region like Pakistan, which ranged from12.6 to 30%between 2023 and 2024
[3]. Likewise, this escalating inflation, upsurging rural-to-urbanmigration, and lack of technological
agricultural advancements have resulted in a severe upsurge in agricultural labour costs [4]. The lack of
technological advancements in the agricultural sector is amajor challenge in the evolution of the sector [5]. It
has been estimated that around a 30 to 40% reduction in operational costs can be achieved through robotic
fruit harvesting practices [6].Moreover, the automated harvesting systems result in improved yield quality,
higher productivity, and lower operational costs [7]. However, current fruit-picking systems continue to
performbelowoptimal levels despite significant developments in agricultural robotics, especially in
unstructured contexts with occlusions, variable lighting, and variable agricultural production rates [8]. The
conventional trajectory planning systems faced limitations in sensory feedback [9], fruitmorphology [10], and
the dynamic interaction between robotic end-effectors and the target [11]. The trajectory planning is essential
to current agricultural robots because it guarantees both the fruit’s reachability and the effectiveness of the
gripping and detaching operation [12]. By avoiding static impediments, conventional trajectory-planning
frameworks like geometricmodels, heuristic techniques, or sampling-based planners likeDijkstra, A*, RRT,
andPRMare suitable for navigating structured environments.However, combining precise fruit detection
with gripper-aware planning can greatly increase their efficacy. Conventional approaches tend to isolate
perception fromactuation and frequently presume that the fruit and its environment are both rigid and
unchanging. Their capacity to handle problems in the real environment, like asymmetrical fruit orientations,
occlusions from leaves and branches, and changes in size, shape, or softness, is hampered by this separation.

The fruits should be selected during a brief windowofmaturity, when their quality is at its peak.When the
strawberries achieve the proper sweetness and turn completely red, they are often plucked in the spring or early
summer [13]. In contrast, oranges are usually picked in the colder wintermonths based on the color of the peel
and the balance of sugar and acid [14]. To guarantee the best quality and output, robotsmust be used to pick
fruits exactlywithin the designated season.Harvest time and success rate are critical performance indicators in
robotic fruit harvesting. Previous research has shown that robotic systems can achieve promising success rates,
with harvesting times getting close to realistic levels for field application. The current research practices show
promising advancements in robotic fruit harvesting for oranges and strawberries. Harvest durations for straw-
berries are usually between 4 and 11 s per fruit, and success rates have been continuously increasing, ranging
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from about 72% to over 91% [15–18]. Oranges exhibit a comparable pattern, with picking times averaging
7–11 s and success rates continuously between 87%–90% [19–21]. It shows that fruit harvesting robots are
attaining reliability in the identification and harvesting of fruit in practical situations. Table 1 summarizes the
reported success rates and harvest times through automated agricultural practices.

A successful robotic grip can be achieved through an optimal approach angle and by applying the appro-
priate contact forces when accurate fruit localization and appropriate physical characterization are integrated.
At the same time, trajectory planning that considers the grippingmechanism’s constraints and design guaran-
tees that themovement is both collision-free and optimized for a steady and effective pick. The integration
approach results in trajectories thatmaximize the probability of successful harvesting, decrease trajectory
length and energy consumption, and eliminate needless reorientations. The planning process becomesmore
intelligent and context-awarewhen perception and gripping restrictions are considered together. This pro-
duces better results than traditional and detached approaches. An effective substitute for rule-based trajectory
planning in robotic decision-making is the incorporation of data-driven approaches. The robots can learn task-
specific patterns fromdata and interpret complicated visual signals with high accuracy by utilizingmachine
learning, especially deep learningmodels like ConvolutionalNeuralNetworks (CNNs). The challenges invol-
ving the identification and categorization of fruit, CNNs have shown remarkable performance [22–29]. The
fruits can also be detected through the application of YOLOmodels [30–35]. However, their output confidence
scores remain underutilized in downstreammotion planning processes. These confidence scores, when inter-
preted as a proxy for perceptual certainty, can be invaluable in guidingmore informed and adaptive trajectory
generation.Moreover, themechanical interface between the robot and the fruit and the end-effector plays a
pivotal role in determining the feasibility and efficiency of the trajectory executed.Different fruit types require
different handling strategies: firm fruits, such as oranges,may be better suited for rigid three-finger grippers
[36], while delicate fruits like strawberries often necessitate a compliant, two-finger [37] or suction-based
actuators. To date, the interplay between visual perception, gripper configuration, and fruitmorphology has
been insufficiently explored in the context of trajectory optimization.Most existing studies treat these compo-
nents in isolation, leading to suboptimal performance in real-world deployments. For instance, Vrochidou et al
[38] provided an early overviewof robotic harvesting systems but noted the critical challenge of end-effector
adaptation. Lehnert et al [39] developed autonomous systems for capsicumharvesting, incorporating percep-
tion andmotion planning, but theirmethods did not dynamically adjust trajectory planning based on actuator
type or fruit pose. Similarly, Zu et al [40] and Sa et al [41] focused primarily on improving fruit detection and
segmentation usingCNNswithout leveraging this perception data formotion trajectory optimization.

Manymodels for agricultural produce detection have been tested.Wang, F [42] achieved accuratewheat
spike segmentation using an adaptive k-means algorithm and estimated spike volume through cuboid fitting.
Bai et al [43] proposed a hybridU-Net+YOLO-v3model that achieved superior cucumber detectionwith an
APof up to 99%andmIOUof 94.24%, outperforming standalonemodels. The fused approach improved
feature extraction, enhancing prediction accuracy by 6%. Thismethod proved robust for fruit detection in
complex environments and supports automated harvesting and yield estimation. Roggiolani et al [44] pro-
posed amethod that generated realistic 3D leaf point clouds conditioned on specific traits (length andwidth),
outperforming other synthetic datasets likeHelios and LiDiff in terms of Frećhet InceptionDistance (FID),
F-score, andCMMDacrossmultiple plant species. Tuning leaf trait estimationmodels on the generated data
significantly improved the accuracy of leaf length andwidth predictions. The generated leaves closelymatched
real-world distributions and provided per-leaf ground truth, enabling finer,more reliable trait analysis. Singh
et al [45]usedOLOv9-GLEANmodel to achieve high strawberry detection accuracy, with a precision of 0.996
and recall of 0.991. Trained on both real and synthetic images, it showed strong adaptability across diverse
datasets. Themodel was validated in a ROS-Gazebo digital twin of the SILAL greenhouse and integratedwith
theMARTA robot, enabling precise visual servoing and effective strawberry grasping. Zhang et al [46] found
that the EDGC-YOLOmodel significantly improved green citrus detection by optimizing anchor box

Table 1.Recent advancements in success rates and harvest times through robotic
harvesting of strawberries and oranges.

References Year Fruit Harvest time Success rate

Luis et al [15] 2024 Strawberries 7.5s 71.7%

Yu et al [16] 2024 Strawberries 4.7–7.3 s —

Xie et al [17] 2025 Strawberries 4.5 s 87.2%

He et al [18] 2025 Strawberries 10.9s 91.4%

Yin et al [19] 2023 Oranges 10.9s 87.2%

Zeeshan et al [20] 2024 Oranges 7.2s 90.5%

Xiao et al [21] 2024 Oranges — 87.15%
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generation using aspect ratio analysis andBGMMadjustment.WithRefined-EfficientNetV2 andCBAM inte-
gration, themodel reduced parameters to 4.52Mand size to 9.4 MB,while achieving increases of 0.5% in preci-
sion, 1.6% in recall, and 3.0% inmAP. This lightweight, high-accuracymodel supports real-time decision-
making for green citrus harvesting robots. Kaleem et al [47] addressed the high data consumption problem in
deep learning-based pest control by proposing an EdgeDistance-Entropy data evaluationmethod. Themethod
reduced data usage by 5% to 15%compared to existing approaches and achieves 100% effectiveness using only
60%of the data. Experimental results confirmed that it outperformedother evaluationmethods, offering a
more efficient solution for crop pest detection. This contributed significantly to the sustainable development of
smart agriculture by reducing resource dependency.Miao et al [48] developed an advanced tomato-harvesting
robot by integrating traditional image processingwith the YOLOv5 deep learningmodel to improve crop and
stem recognition in complex agricultural environments. An algorithmwas proposed to estimate truss tomato
maturity and accurately locate stems, and the robot achieved efficient harvesting performance for the tomato
cluster. Researchers have also found that the gripper affects fruit harvesting efficiency.Navas et al [49]. analyzed
the grippers used in the harvesting process and suggested soft grippers as themost promising technology for
agricultural harvest. Elfferich et al [50] suggested soft grippers had themost successful rate in fruit harvesting.
Visentin et al [51] explored that different fruits require different gripper forces. Delicate strawberries require
sophisticated, soft grippers, unlike stiff, classical grippers.

In recent work, researchers have begun exploring the benefits of couplingmachine vision with actuator
control. For example, Kurtser et al [52] researched on robotic perception to adapt robotic armmovement
in real time. However, even these systems seldom incorporate quantitativemodels that link CNNdetection
confidence, fruit pose, and actuator characteristics tomotion planning parameters such as trajectory
length or trajectory smoothness. This disconnect limits the robot’s capacity tomake context-aware deci-
sions during the harvesting task. Addressing this gap, the present study proposes a novel data-driven fra-
mework for trajectory optimization in robotic fruit harvesting, which explicitlymodels the relationship
between deep learning-based perception (CNN confidence), actuator type, and fruit morphometrics (espe-
cially orientation angles). The core hypothesis is that by capturing these relationships through regression-
based learningmodels, robots can predict and executemore efficientmotion trajectories that are tailored
to both the fruit type and the interaction dynamics of the gripper. To empirically validate this framework,
twomultivariate regressionmodels were developed: one for firm fruit, oranges, and another for soft fruit,
strawberries. Eachmodel takes as input (1) the CNN confidence score reflecting detection certainty, (2) the
type of gripper (three-finger or two-finger), and (3) the fruit’s orientation angle within a defined range
(50°–130°). Notably, themodel captures the non-linear influence of orientation through polynomial
terms, acknowledging that the angle at which fruit is presented significantly affects the trajectory required
for successful harvesting. The current studymakes several key contributions to the field of precision agri-
culture and agricultural robotics:

• It introduces systematic integrationof deep learning-based perception andmechanical actuation parameters
into trajectory planning, addressing the fragmented nature of prior approaches.

• It establishes a quantitative link betweenCNNconfidence, gripper configuration, and fruit pose, enabling
context-aware trajectory optimization.

• It presents empirical evidence demonstrating the effectiveness of data-driven trajectorymodels in reducing
trajectory length, which directly impacts efficiency and task throughput.

By unifying perception, actuation, andmotion planning under a data-driven umbrella, this research lays
the groundwork formore autonomous, adaptive, and efficient harvesting systems. The proposed framework
moves beyond traditional, siloed paradigms and represents a significant step toward intelligent robotic systems
capable of operating in the dynamic anduncertain environments ofmodern agriculture. The Introduction
section presents a comprehensive overviewof the research, alongwith a critical review of relevant literature to
establish the research gap. TheMaterials andMethods section defines the empirical approach, constituting the
systemdesign, deployment scenarios, and the selected parameters. TheResults andDiscussion section portrays
a comprehensive set of experimental findings, detailing their significance and implications for optimal robotic
trajectory planning performance. Finally, theConclusion section recaps the significant findings through scien-
tific relevance and proposes future recommendations.
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Material andmethods

Methodology
Themultivariate linear regressionmodels were developed and validated through a data-drivenmethodology to
forecast the ideal trajectory length (P) for fruit harvesting robots. TheCNN-based detection confidence score
(C), whichwas derived from fruit recognition using anRGB-DKinect v2 camera, the gripper type (G), which
was represented by one-hot encoding to differentiate between two-finger and three-finger silicon grippers, and
the fruit orientation (O), whichwasmeasured as angular displacement (50°, 70°, 90°, 110°, 130°) relative to the
vertical axis, representing grasping approach angles, were the threemain independent variables that were
incorporated into themodels. Image data captured from theRGB-DKinect v2 camerawas processed using a
convolutional neural network (CNN), which generated real-time detection confidence values. Thesewere
combinedwith experimental data on gripper type and fruit orientation to construct the regression input
dataset. Separatemodels were trained for firm fruits (oranges) and soft fruits (strawberries), each comprising 46
trials to capture their respective physical handling characteristics. The robotic platformwas based on a 5-DOF
armdesigned byZeeshan et al [20], upgraded for enhanced control and data acquisition. A closed-loop
feedback control systemwas implemented usingDCmotors equippedwith rotary encoders, enabling precise
joint actuation and real-time position feedback. The encoder datawere processed via a Raspberry Pi 4
microcontroller, whichmanaged control signals and interfacedwithmotor drivermodules (L298N) to actuate
the robotic joints. The control logic facilitated accurate trajectory tracking and gripper alignment, whereas the
Kinect camera simultaneously provided depth and color data for target localization and distance estimation.
The regressionmodels were evaluated using the coefficient of determination (R2), RootMean Square Error
(RMSE), andMeanAbsolute Percentage Error (MAPE). This statistically informedmodelwas then translated
into a real-time cost function, whichwas embedded into theA* algorithm to guide the robot’s trajectory
planning. To influence the cost function f(n), the expected trajectory length (T)was incorporated into anA*

trajectory planning algorithm.With constant feedback from theKinect and encoder data, this system allowed
for dynamic trajectory optimization based on real-time perception and grasp configuration. The system,which
is built for two differentmonoculture deployments, has a local trajectory planning architecture that enables it
to adjust in real time to variables like gripper alignment, CNNdetection confidence, and fruit position. For
both fruit varieties, the device successfully replicated actual harvesting conditions in a controlled laboratory
environment.

Design and experimental set-up
Experiments carried out in regulated lab settings confirm the data-driven regression-based approach for
trajectory planning optimization in a robotic fruit harvesting system. The robotic platformwith a 5-DOF
articulatedmanipulator is given in figure 1. The articulatedmanipulator with silicon grippers and all the
linkages is seen in figure 1(a). Themanufactured robot is depicted in figure 1(b). Fruit detection and
localization depend on the color and depth information provided by the RGB-D sensor in the frame. Real-time
fruit type identification and classification is achieved using a convolutional neural network (CNN)-based vision
system,which allows for adaptive decision-making for trajectory planning and grasp execution. The current
study presents a data-driven regression-based framework for optimizing trajectory planning in a robotic fruit
harvesting system, validatedwith experiments conducted under precisely controlled laboratory conditions.
Figure 1 shows the robotic platform consisting of a 5-degree-of-freedom (DOF) articulatedmanipulator.
Figure 1(a) shows the articulatedmanipulator with silicon grippers, with all the links. Figure 1 (b) shows the
fabricated robot. TheRGB-D sensor on the frame provides both color and depth information essential for fruit
detection and localization. A convolutional neural network (CNN)-based perception system is implemented to
identify and classify fruit types in real-time, enabling adaptive decision-making for grasp execution and
trajectory planning.

The experimental setupwas designed to evaluate performance across two fruit categories, firm (oranges)
and soft (strawberries), representing distinct tactile and geometric characteristics. To accommodate variations
in fruitmorphology and compliance, the end-effector of the robotwas configuredwith interchangeable silicon
grippers of two types: 2-finger and 3-finger designs.Multiple grasp orientations and approach angles were
tested for each gripper-fruit combination to assess their influence onmotion smoothness, grasp stability, and
trajectory planning efficiency. Figure 2 shows the grippers used for the experiment. Figure 2(a) shows the sili-
con gripperwith two fingers, and figure 2(b) shows the silicon gripperwith three fingers.

The robotic armoperatedwithin a defined planarworkspace of 0.7× 0.7 m, positioned on a vibration-
damped,matte-finished laborat ory surface to eliminate visual artifacts. All experimentswere conducted under
ambient environmental conditionsmaintained at 26± 1 °C temperature and approximately 50% relative
humidity. The environmental settingswere selected to reflect typical orchard conditionswhile ensuring
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consistency in sensing andmanipulation. The air temperaturewasmaintained at 26 °C,which is commonly
observed during harvesting hours and helps preserve both fruit firmness and the performance of the gripper
material. Light levels were kept around 1000 lux, similar to shaded-canopy or bright-overcast conditions. Rela-
tive humidity was controlled at 50%, amoderate value often present in orchards, chosen to avoid condensation
on the fruit and sensors while also preventing fruit drying. Together, these parameters provided conditions that
were both realistic and standardized for the strawberry and orange trials. Lightingwas controlled using day-
light-balanced light-emitting diode (LED) arrays tomaintain a constant illumination level of 1000 lux, ensur-
ing consistent image acquisition and eliminating illumination-based noise in perception tasks. To support
robust fruit classification, a customdataset comprising 1500 annotatedRGB-D imageswas generated from

Figure 1. Five-degree-of-freedom (DOF) articulatedmanipulatorwith the silicon grippers: (a) illustrations of all links, and (b)
illustrations of the fabricated robot.

Figure 2. Silicon grippers: (a) two-finger, and (b) three-finger.

6
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multiple real-world trials under varied orientations and lighting perspectives. The dataset included equal repre-
sentation of both target fruits and incorporated images across different grasping angles and distances. The data
were labeled using open-source annotation tools and subsequently pre-processed through normalization and
augmentation (e.g., random rotations, brightness adjustment) to enhancemodel generalizability. The dataset
was split using a standard 70:30 ratio, allocating 1050 images for training and 450 for validation/testing. The
CNNarchitecture employedwas amodified version ofMobileNetV2 due to its balance between computational
efficiency and accuracy, andwas trained using theAdamoptimizer with a learning rate of 0.001, batch size of
32, and stopped based on validation loss, having amaximumepoch of 70.

The entire perception and planning pipelinewas executed on aDell Inspiron 11th-generation laptop equip-
pedwith an Intel Core i7 processor, 8 GBRAM, and a 512 GB solid-state drive (SSD), operating onWindows 10
(64-bit). Amultivariate regressionmodel was subsequently developed to correlate theCNN-derived object
features (e.g., fruit type, size, centroid coordinates), end-effector configuration, and fruit physical character-
istics with roboticmotion planningmetrics such as total trajectory length, task execution time, and collision
occurrences. Themodelwas trained using empirical data collected from repeated harvesting trials and vali-
dated by comparing predicted trajectories against actual robotmotion. This enabled dynamic trajectory pre-
diction and selection of optimal trajectories based on task-specific and environmental constraints, thereby
minimizing redundantmovements and enhancing harvesting efficiency. The inclusion ofmultiple trials for
each condition ensured the statistical robustness and repeatability of the proposed framework. The exper-
imental design of this study centers onmodeling the influence of three critical parameters, CNN-based visual
confidence (C), gripper type (G), and fruit orientation (O), on the optimization of trajectory length (P) in
robotic fruit harvesting. Amultivariate linear regression approachwas adopted to quantify the relationship
among these variables, allowing for the development of fruit-specific predictivemodels. The gripper type, a
categorical variable representing commonly usedmechanisms in agricultural robotics (3-finger and 2-finger),
was encoded using dummy variables. Orientationwas treated as a continuous angular variable representing the
fruit’s axis relative to the robot’s end-effector. The proposed regressionmodel takes the general form:

( )= + + + ° +Y X X X 900 1 1 2 2 3 3
2

Where are Regression coefficients while X1, X2, andX3 showCNNconfidence score, gripper type, and
gripper orientation, respectively. Y is the trajectory planning output and is the error term.

Separatemodels were trained for firm fruits (e.g., oranges) and soft fruits (e.g., strawberries) to account for
differing interaction dynamics. These regression outputs were subsequently integrated into theA* trajectory
planning algorithm,where predicted trajectory length influenced the cost function f(n) thereby enabling
dynamic adjustment based on fruitmorphology and harvesting constraints. The cost function is given as:

( ) ( ) ( )= +f n g n h n

Here the cost function is the total estimated cost from start to goal via node n, g(n) is the actual cost from
start to n, and h(n) is the heuristic estimate fromn to the goal. The traditional A* trajectory cost functionwas
modified to incorporate perception and hardware-based parameters,

( ) ( ) ( )= + + +g n d n C T1 CNN opt g

Here, d(n)is the Euclidean distance to node n, CCNN is theCNNconfidence score for fruit detection, θ is the
current gripper orientation, θopt is the optimal alignment angle, andTg denotes a categorical value assigned to
the gripper type. Theweightsα,β, γwere empirically determined to balance the influence of each parameter.
This approach enabled the trajectory planner to favor trajectories that not onlyminimize travel distance but
also optimize perception reliability and grasping feasibility, resulting in shorter trajectories and improved posi-
tional accuracy during fruit acquisition.

Deployment environment
The system is designed for deployment in semi-structured agricultural environments, such as small-scale
orchards or indoor greenhouses, with knownmap layouts. For strawberry harvesting, deployment conditions
should be in a controlled indoor greenhouse environment characterized by flat terrain and structured planting
rows. The inter-row spacing ranged between 0.8–1.0 meters should be there for easy robotmanoeuvrability.
Lighting conditions range between 1000–1500 lux, sufficient for CNN-based visual detection.Obstacle heights
(such as bed edges or irrigation lines) to be limited to 0.2–0.4 meters, allowing for safe navigation. The
environment should be static during the harvesting phase, withminimal variation in ambient conditions. For
orange harvesting, the robot deployment conditions are for small-scale orchard blocks, characterized by
natural daylight ranging between 8000–10000 lux. Tree canopieswith a height range from2.5 to 3.5 meters, and
the inter-row spacing of 2.5–3.0 meters, are allowed for sufficient clearance for the robotic platform to traverse
and alignwith target fruit. The terrain ismostly flat and dry, withminor surface irregularities.
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In both deployments, the robot is designed to operate under a local trajectory planning scheme, con-
tinuously adapting in real-time to fruit pose, CNNdetection confidence, and gripper positioning. The current
system is designed formonoculture operations, where a single crop type is handled per deployment. Never-
theless, the architecture ismodular and scalable, and in future studies, it can be extended to support global
planning strategies, such as coordinatedmulti-row traversal or crop switching, through the integration of
higher-level task allocation andmap-based planning layers. The systemperforms reliably usingmid-range
computational hardware (Intel Core i7@ 2.30 GHz, 16 GBRAM,GPUwith 6 GBVRAM). The deployed sys-
tem incorporates low-latency processing, enabling real-time inference and trajectory updates with a cycle time
of 100–150 milliseconds to ensure responsive action. An integratedRGB-D camera allows the system to per-
ceive the 3D structure of the environment, including branches, fruits, and other potential obstacles. By utilizing
the depthmap, the system effectively identifies and localizes obstacles within the robot’s path, facilitating the
computation of a collision-free trajectory in real time. These specifications support real-time vision and
motion planningwithout requiring high-end infrastructure. Thus, under the statedmonotype and semi-struc-
tured deployment conditions, the overall cost remainsmanageable, promoting the feasibility of commercial-
scale application.

Gripping angle
The gripping angle is a critical parameter in robotic fruit harvesting, as it directly affects the stability,
effectiveness, and safety of the grasp, particularlywhen handling fruits with diversemechanical properties.
Hard fruits like oranges, which exhibit higher structural rigidity and peel toughness, can typically withstand
greater gripping forces, up to approximately 80N,without risk of surface damage or deformation. This
mechanical resilience allows for awider range of permissible gripping angles and firmer end-effector contact,
enhancing positional tolerance during grasping. Figure 3 shows various gripping angles for picking oranges,
such as the grip at 90° (see figure 3(a)), grip at 110° (see figure 3(b)), grip at 80° (see figure 3(c)), and grip at 70°
(see figure 3(d)). In contrast, soft fruits such as strawberries possess delicate skin and low compressive strength,
necessitatingmuch lower gripping forces, typically in the range of 8–12N, to prevent bruising, tearing, or tissue
collapse. Figure 4 shows various gripping angles for picking strawberries, such as the grip at 90° (see figure 4(a)),
grip by stempull (see figure 4(b)), grip by stembreak (see figure 4(c)), and grip at an angle of 110° (see
figure 4(d)). The field observations confirm that themost effective techniques for harvesting oranges and
strawberries involve either grasping the fruit at an angle of approximately 90°orwithin the 70–100° range or

Figure 3.Varying gripping angles for pickingOrange fruit: (a) grip at 90°, (b) grip at 110°, (c) grip at 80°, and (d) grip at 70°.

Figure 4.Varying grippingmethods for picking Strawberry fruit: (a) grip at 90°, (b) grip by stempull, (c) grip by stembreak, and (d)
grip at an angle.
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alternatively detaching the fruit by cutting the stem. These approaches are consistent with natural hand-picking
practices, where such angles provide optimal leverage to detach the fruit whileminimizingmechanical stress
and surface damage. The findingswere obtained through direct observation of skilled farmworkers during
harvest in local farms, highlighting the practical relevance of thesemethods for designing robotic grippers that
can replicate safe and efficient picking.

The approach angle of the gripper determines the distribution of contact forces and the extent of surface
engagement, which are especially critical for soft produce. A non-optimized angle can result in localized pres-
sure points, shear forces, or incomplete contact, leading to unsuccessful picking attempts or post-harvest qual-
ity degradation. For strawberries, a nearly perpendicular approachwith a compliant graspingmechanism is
often required to distribute forces uniformly and reduce peak contact pressure. Conversely, for oranges, angu-
lar flexibility allows for side or angled approacheswithout compromising structural integrity. Therefore, opti-
mizing the gripping angle is also fruit-specific and hence, is dynamically adaptable, integrating the knowledge
of fruitmorphology, surface compliance, andmechanical limits to achieve high grasp success rateswhilemain-
taining fruit quality.

Gripper type
In robotic harvesting applications, the selection of the right end-effector is critical for ensuring both grasp
stability and produce integrity. This study used two types of soft, compliant silicone grippers, a 2-finger and a
3-finger configuration, selected for theirmechanical adaptability to different fruitmorphologies and textural
properties. The 2-finger gripper, with its reduced contact surface and lower gripping force range (8–12 N), is
well-suited for soft fruits such as strawberries, causingminimal pressure distribution to prevent epidermal
bruising and internal tissue deformation or damage. A two-finger silicone gripper, unlike a three-finger design,
minimizes the overall contact areawith delicate fruits such as strawberries, which are highly susceptible to
bruising. By limiting the contact points alongwith applying carefully controlled force, the two-finger
configuration reduces pressure concentration and ensures a gentler, safer grip on small, fragile fruits.
Furthermore, its simpler geometry allows easier access and greatermaneuverabilitywithin dense fruit clusters,
where a three-finger grippermay cause obstruction or accidental compression of adjacent and nearby
strawberries. The reduced structural complexity also improves responsiveness and handling,making the two-
finger gripper particularlywell-suited for safe and efficient harvesting of soft produce like strawberries. In
contrast, the 3-finger gripper provides amore geometrically stable, tri-contact configuration that is capable of
withstanding higher gripping forces (up to~ 80 N), making it appropriate for firm fruits like oranges, where
structural rigidity allowsmore aggressive graspingwithout compromising quality. Figure 5(a) demonstrates
fruit gripping by a 2-finger gripper, and figure 5(b) shows the 3-finger gripper gripping an orangewithout
avoiding excess force. These compliant silicone grippers were intentionally selected over suction andmetallic
grippers due to functional limitations observed in unstructured agricultural environments. Suction grippers
often exhibit poor adherence on non-planar,moist, or textured surfaces, conditions commonly encountered
with natural fruits, leading to grasping inconsistencies and detachment failures.Metallic grippers, while
offering high structural stiffness, lack the compliance necessary to handle biologically softmaterials and
substantially increase the risk ofmechanical damage due to excessive point loading. Silicone grippers, in
contrast, offer lowmodulus elasticity, surface conformance, and inert chemical properties, which collectively
enable secure, non-destructive grasping across a spectrumof fruit types and orientations. To further enhance
the generalizability and robustness of the trajectory planningmodel, future testingwill incorporate a broader

Figure 5. (a)Two-finger silicon gripper for Strawberry fruit picking, and (b)Three-finger silicon gripper forOrange fruit picking.
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range of end-effector designs, including adaptive, underactuated, and soft pneumatic grippers, to quantitatively
evaluate the impact of grippermechanics on trajectory optimization, grasp success rates, and task execution
efficiency in variable harvesting scenarios.

The current silicone-based gripper design has been experimentally validated for strawberries and oranges,
demonstrating effective performance in terms of grasp stability and fruit safety. Given its compliance and adap-
tive geometry, the grippermay also be suitable for handling fruits with similar physical characteristics, such as
plums or tomatoes. However, its universal applicability remains limited, and further experimental testing and
parameter tuning are necessary to ensure reliable operation across a broader range of horticultural produce.
While the integrated regressionmodel supports the inclusion of alternative gripper configurations through re-
encoding of input parameters, themechanical designmust be revalidated for significantly different fruit types,
such as grapes or pears. To improve the system’s generalizability, future research should investigatemodular or
interchangeable gripper architectures, including suction-based end-effectors, to accommodate awider spec-
trumof fruitmorphologies.

CNN-based visual confidence
To support robust fruit classification under variable conditions, a CNN-based visual confidencemetric (C)was
introduced to quantify themodel’s certainty in identifying and localizing fruit targets. The confidence scoreC,
ranging from0 to 1, is derived from the final SoftMax output layer of theCNNand reflects the probability
associatedwith the predicted fruit class. A higherC-value shows stronger visual certainty, which is critical in
decision-making for grasp execution and trajectory planning, particularly in cluttered or partially occluded
environments [53]. The bespoke dataset of 1500 annotatedRGB-Dphotos fromactual fruit harvesting attempts
was assembled to develop the currentmodel. The different orientations, gripping angles, and distinct lighting
conditions (800–1200 lux)were all included in these annotated photos. An equal distribution of oranges and
strawberries was included in the dataset, whichwas labeled using the LabelImg program. To improve
generalizability, the dataset was enhancedwithmethods including random rotations ( ±30°), brightness
variations (±20%), and zooming (±15%).

A 70:30 split was used to divide the dataset, allocating 450 photos for validation and 1050 images for train-
ing.Data augmentationmethods, such as illumination shifts, rotation, zoom, and occlusion, were used to
enhance performance in various lighting scenarios, such as day and night. By addingmore variety to the train-
ing set, these augmentations improved themodel’s generalization and decreased the possibility of overfitting.
Additionally, by combining RGBand depth information, the systemwas able to consistently detect fruit even in
the presence of changing ambient lighting. The balanced trade-off between accuracy and computing perfor-
mance on edge devices serves as a prime reason for the selection of amodifiedMobileNetV2 architecture. The
currentmodel was trained using theAdamoptimizerwith a learning rate of 0.001, having a batch size of 32, and
early stopping criteria based on validation loss. Validation accuracy (∼92%) remained stable throughout, indi-
cating effective generalization. Cross-entropy loss was used as the objective function.During inference, predic-
tionswithC� 0.85were considered highly reliable and directly used for initiating the grasp sequence, while
detectionswithC< 0.6were flagged for further inspection or re-evaluation froman alternate viewpoint. This
confidence-based gatingmechanism enabled the robotic system to adaptively decidewhether to proceedwith
grasping or refine its visual perspective, thus enhancing the robustness and safety of fruit harvesting under real-
world variability. Figure 6(a) displays theCNNmodel results for the detection ofOranges, and figure 6(b)
shows theCNNmodel results for the detection of Strawberries after fine-tuning themodel. Hyperparameters
are displayed in table 2.

Results and discussion

The regression coefficients presented in the trajectory lengthmodels for fruit harvestingwere obtained through
controlled laboratory experiments. In these tests, a robotic harvesting systemwas deployed to collect data on
various scenarios involving different CNNconfidence levels, gripper types, and end-effector orientations. The
experimentswere conducted separately for firm fruits (oranges) and soft fruits (strawberries) to capture their
distinct handling requirements.Multiple trials were recorded under varying conditions, and the resulting
trajectory lengthsweremeasured.Using this experimental dataset, amultiple regression analysiswas performed
to determine the quantitative relationship between the input variables and the observed trajectory length, Y.

( ) ( )= + + ° +Y oranges X X X51 37 9 67 0 34 0 02 901 2 3
2

( ) ( )= + + ° +Y strawberries X X X51 35 6 41 0 25 0 04 901 2 3
2

whereX1, X2, andX3 showCNNconfidence score, gripper type, and gripper orientation, andY is the trajectory
planning output.
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For oranges, the regression coefficient forCNNconfidencewas –9.67, indicating that each unit increase in
confidence significantly reduced the trajectory length, thereby highlighting themodel’s reliance on accurate
fruit detection. The gripper type had a smaller positive coefficient of+0.34, suggesting that different gripper
types had a relativelyminor butmeasurable effect on the trajectory. The quadratic orientation deviation term
had a coefficient of+0.02, indicating a slight increase in trajectory lengthwhen deviating from the optimal 90°
orientation. Figure 7 shows the scatter plot for themulti-regressionmodel for oranges. In contrast, the straw-
berrymodel yielded aCNNconfidence coefficient of−6.41, which also reflected a beneficial effect of improved
detection, though less pronounced than for oranges. The gripper type had a coefficient of+0.25, again indicat-
ing amodest impact.However, the quadratic orientation termwas+0.04, showing amuch stronger penalty for
misalignment. Figure 8 shows the scatter plot for themulti-regressionmodel for strawberries. This emphasized
that strawberries, beingmore delicate, weremore sensitive to orientation errors during the harvesting process.
These regression coefficients collectively revealed the relative significance of each factor for different fruit types.
CNNconfidence consistently emerged as themost influential parameter forminimizing trajectory length in
bothmodels.However, orientation accuracy proved to be particularly critical for soft fruits like strawberries
due to their higher susceptibility to damage, highlighting the need for precise control during robotic harvesting.

Evaluating themodel accuracy is critical for validating the predictive reliability and generalizability of the
developedmodel. Accurate prediction ensures optimal trajectory planning, energy efficiency, andminimal
mechanical wear, which are essential in real-time robotic harvesting tasks. Themetrics used for evaluation of
themodel, Coefficient ofDetermination (R2), RootMean Squared Error (RMSE), andMeanAbsolute Percent-
age Error (MAPE), are employed to comprehensively assess themodel’s performance. TheCoefficient ofDeter-
mination (R2) quantifies the proportion of variance in the detected trajectory length justified by the regression
model. A higher R2 value (closer to 1) is an indicator of a strong correlation between the actual and predicted
values, validating themodel’s explanatory strength. RMSE endows an absolutemeasure of prediction error in
the sameunit as the trajectory length (dependent variable), resulting in a substantial penalty for significant
deviations; it is especially sensitive to outliers. By providing a clear grasp of the errormagnitude in relation to
the actual values,MAPE,mentioned as a percentage,makes it easier to compare data fromvarious datasets or
settings. Collectively, thesemetrics provide a consistent framework formodel validation and ensure that the
regressionmodel not only fits the training data but also predicts accurately in varying conditions, which is a
critical requirement for the deployment of the intelligent and adaptive robotic systems in unstructured agri-
cultural conditions. The subsequent formulas are applied to compute the R2, RMSE, andMAPE:

Figure 6. Fruit detection using the fine-tunedCNNmodel: (a) for oranges, and (b) for strawberries.

Table 2.Hyperparameters for theCNNmodel.

Hyperparameter Value

Model Architecture MobileNetV2 (modified)
Optimizer Adam

Learning rate 0.01

Batch Size 32

Loss Function Cross-entropy

Epoch (max) 70
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Figure 7. 3D regression scatter plot for orange fruit.

Figure 8. 3D regression scatter plot for strawberry fruit.
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Where,T L is themean length of the actual trajectory, TLactual is the actual trajectory andTLpredicted is the
predicted trajectory length, whereas n is the number of test samples and i is the index variable.

To rigorously evaluate the predictive performance of the developed regressionmodels, threewell-estab-
lished statisticalmetrics were utilized: Coefficient ofDetermination (R2), RootMean Squared Error (RMSE),
andMeanAbsolute Percentage Error (MAPE). Thesemetrics collectively provide amultidimensional assess-
ment of themodels’ explanatory capacity, residual behavior, and generalization accuracy. TheCoefficient of
Determination (R2)measures the proportion of variance in the dependent variable (trajectory length) that is
accounted for by the independent variables in the regressionmodel. R2 value approaching unity signifies a high
degree of correlation between the actual and predicted values. Themodel for oranges achieved anR2 of 0.89,
signifying that 89%of the variability in trajectory length could be explained by theCNNconfidence, gripper
type, and orientation deviation parameters. This highR2 underscores the robustness of themodel for firm
fruits, which exhibit relatively stable interaction dynamics during robotic handling. By contrast, the strawberry
model produced anR2 of 0.82, indicating amoderate decline in predictive strength. This decrease can be attrib-
uted to the higher variance brought about by strawberries’ soft texture and geometric irregularity, which inten-
sify the impact of littlemanipulation and perceptual changes.

The residuals’ standard deviation ismeasured by the RMSEmetric. It is therefore sensitive to outliers or
inaccurate forecasts and imposes a heavier penalty for larger deviations.With anRMSEof 3.2 cm, the orange
model produced predictions that were tightly clustered around the ground truth. The strawberrymodel, on the
other hand, had a larger RMSEof 4.7 cm,which is in linewith the high variability that is anticipatedwhen
manipulating soft-bodied fruits. For robotic harvesting systems, these RMSE values fall below acceptable oper-
ating thresholds, whereminor trajectory deviations are tolerablewithout sacrificing grasp reliability. To facil-
itate inter-model comparison among datasets of different dimensions,MAPE,which is presented as a
percentage, assesses the averagemagnitude of prediction errors in relation to the actual values. TheMAPEwas
found to be 5.4% for oranges and 7.9% for strawberries. At a performance level of less than 8%, these figures, on
average, demonstrate that themodels’ predictions differed from the observed trajectory lengths. It is in line
with agricultural robotics’ precision requirements in a semi-structured setting. Strawberries’ increasedMAPE
emphasizes improved control over sensor feedback and end-effector posturewhile also highlighting their sensi-
tivity to detection and alignment errors. The coefficient of determination (R2), mean absolute percentage error
(MAPE), and rootmean square error (RMSE) for themodel that forecasts trajectory length during orange
harvesting are shown in figure 9. The statistical performancemeasures for the strawberry harvestingmodel are
also shown in figure 10.

Generally, the higher R2 values, lowerRMSE, and satisfactoryMAPE results validate the accuracy of the
regressionmodels, alongwith their operational suitability. Figure 11 displays a comparative analysis of the
evaluationmetrics, R2, RMSE, andMAPE, for fruit-specificmodels developed for orange and strawberry har-
vesting. These findings confirm that the proposed parameter-drivenmodels are capable of accurately forecast-
ing trajectory length outcomes based on perceptual andmechanical input features. This reliability is important
for ensuring accurate trajectory optimizationwithinA* frameworks, eventually improving spatial efficiency
and target achievement rates in autonomous harvesting applications.

The optimizedA* trajectory planning algorithmwas implemented in Pythonwith the robot’s workspace
represented in a grid form. The environmentwasmodeled as a 2Doccupancy grid usingNumPy arrays. Each
cell represented a discrete locationmarked as either free (0) or occupied (1) based on the presence of obstacles

Figure 9.Relationship between actual trajectory planning andpredicted trajectory length for oranges.
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or unreachable zones. The start and goal positions of the robotwere defined on the grid coordinates. Each cell
in the gridwas treated as a node, andmovementwas allowed in eight directions (including diagonals). Amod-
ified cost functionwas used to integrate three critical parameters, CNNconfidence score, gripper angle devia-
tion, and gripper type, into theA* algorithm. These parameters were incorporated into the g(n) term (actual
cost)usingweighted penalties: lowCNNconfidence increased the cost; larger angular deviations from the opti-
mal gripper orientationwere penalized; and gripper typeswere assigned static weights based on complexity and
suitability for the fruit. The heuristic h(n)was calculated using Euclidean distance from the current node to the
goal. A priority queuewasmanaged using Python’s heapqmodule to store the open list sorted by total cost

( ) ( ) ( )= +f n g n h n . Once the optimal trajectorywas found, it was reconstructed using a parent dictionary to
backtrack from the goal node to the start. The entire planned trajectorywas visualized usingmatplotlib, show-
ing the robot trajectory, fruit locations, and obstacle regions. Figure 12 compares the performance of baseline
A* trajectory planning (left)with the proposed optimizedA* algorithm (right) for autonomous orange harvest-
ing in a grid-based environment featuring five circular obstacles. In the trajectory plots for the orange orchard,
a 5× 5 unit grid is used for visualization. Each unit in this grid corresponds to 10 cm in the physical workspace.
This scale is selected to reflect the typical inter-tree spacing andmaneuvering requirements in orange orchards.
The optimized trajectory exhibits a clear improvement, reducing the total number of steps from40 to 36. This
enhancement stems from integrating a regression-based cost function that accounts for three influential fac-
tors: CNNdetection confidence (X1), gripper type (X2), and gripper orientation angle (X3). The significant
negativeweight assigned to the confidence score directs the robot to avoid uncertain zones, while the quadratic
orientation term encourages gripper alignment closer to 90°, promoting stable and damage-free grasping.
Consequently, the optimizedA* trajectory not only becomes shorter but alsomore alignedwithmechanical
and perceptual constraints, reinforcing the value of couplingmachine vision and actuator dynamics in preci-
sion agricultural robotics.

Figure 10.Relationship between actual trajectory planning andpredicted trajectory length for strawberries.

Figure 11.Comparison of regression evaluationmetrics for fruit-specificmodels for oranges and strawberries.

14

Eng. Res. Express 7 (2025) 045210 SZeeshan et al



Figure 13 illustrates a comparative analysis between baselineA* trajectory planning (left) and the proposed
regression-informed optimizedA* algorithm (right) in a 2Dgrid environmentwith five circular obstacles. For
the strawberry field scenario, the same 5× 5 unit grid is applied, with each unit representing 5 cmof physical
space. This finer scale is suitable for representing the denser plant arrangement and supports accurate naviga-
tion in narrow inter-row gaps typical of strawberry cultivation. The optimized trajectory demonstrates a reduc-
tion in step count from39 to 35, indicating improved trajectory efficiency. This enhancement results from
integrating key perceptual andmechanical parameters, namely, CNNdetection confidence, gripper type, and
gripper orientation, into the trajectory cost function. Themodel assigns higher traversal cost to regions of low
visual confidence and penalizes grippermisalignment using a symmetric quadratic term, thereby guiding the
robot through zoneswith reliable perception and favorable end-effector alignment. As a result, the optimized
trajectory avoids uncertain ormechanically unfavorable regionswithout compromising safety or goal attain-
ment. This integration of sensory intelligence and actuator constraints enables amore adaptive and oper-
ationally efficient navigation strategy, highlighting the effectiveness of data-driven costmodeling in
agricultural robotics.

Figure 14 shows the 3D trajectory plot of the sample simulations of another case for amore comprehensive
spatial understanding of the robot’smovement. The 3D trajectory plot also reveals vertical variations. The plots

Figure 12. Sample simulation of baseline versus optimizedA* trajectory Planning for oranges using a Regression-InformedCost
Function.

Figure 13. Sample simulation of baseline versus optimizedA* trajectory planning for strawberries using Regression-InformedCost
Function.
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illustrate the comparison between baseline and optimized trajectories using theA* algorithm for two fruit sce-
narios: oranges (part a) and strawberries (part b). The baseline trajectory is shown in blue, while the optimized
trajectory is in orange. The 3Dplots highlight the improvements inmovement efficiency and spatial coverage
whenusing optimizedA* planning over the baseline trajectory.

To evaluate the effectiveness of the parameter-drivenA* planningmethod, two core performance indica-
tors were analyzed: average trajectory length and positional accuracy at grasping. Thesemetrics directly relate
to energy efficiency and successful fruit acquisition. Table 3 presents a comparison of trajectory lengths
obtained before and after optimization using the parameter-drivenA* planning algorithm. The integration of
regression-derived insights into theA* trajectory planning framework significantly enhanced the performance
of the robotic harvesting system, as evidenced by a substantial reduction in average trajectory length for both
fruit types under investigation. Specifically, the optimizedmodel achieved a 14%decrease in average trajectory
length for oranges and an 11% reduction for strawberries relative to the baseline trajectories generated using
conventional A* planningwithout parameter adjustment. Figure 15 shows the trajectory improvements due to
optimization. These improvements are indicative of amore informed and adaptive planning process, wherein
the regressionmodels provided quantifiable relationships between key input variables,mainly CNNcon-
fidence, gripper type, and orientation, alongwith the expected trajectory length output. By embedding these
relationships into the heuristic function and cost evaluation criteria of theA* algorithm, the systemwas able to
generatemore efficient and context-sensitive trajectories that inherentlyminimized unnecessarymovement,
redundantmanoeuvres, and suboptimal grasping approaches. The observed trajectory length reduction is of
particular significance in autonomous harvesting operations, where trajectory optimization directly correlates
with time efficiency. In robotic systems, shorter and smoother trajectory reduce actuation cycles andwear on
joint assemblies, leading to improved operational sustainability. Furthermore, optimized trajectories aremore
likely tomaintain safe distances fromobstacles and dynamic elements in unstructured field environments,
thereby improving navigation reliability.

In parallel to trajectory improvements, amarked enhancement in positional accuracywas also observed
following the integration of the regression-informedplanning strategy. Table 4 presents a comparison of posi-
tional accuracy obtained before and after optimization using the parameter-drivenA* planning algorithm. The
accuracy of end-effector positioning at the fruit location increased by 10% for oranges and 12% for strawber-
ries. Figure 16 shows the improvements in positional accuracy due to optimization. This improvement can be

Figure 14. 3D trajectory plots for spatial comparison of baseline and optimizedA* paths. (a) oranges case (b) strawberries case.

Table 3.Comparison of trajectory lengths before and after optimization using parameter-drivenA* planning.

Fruit type Baseline trajectory length (cm) Optimized trajectory length (cm) Improvement (%)

Oranges 25.58 22 14

Strawberries 31.46 28 11
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attributed to the reduced variability in gripper alignment andmotion execution, as the planner increasingly
favoured configurations that alignedwith statistically optimal conditions derived from the regressionmodel.
The effect is particularly pronounced for strawberries, which aremore sensitive tomechanicalmisalignment
due to their soft texture and susceptibility to bruising. Enhanced positional accuracyminimizes the probability
of partial grasps or contact-induced damage, which are critical concerns inmaintaining post-harvest quality
and ensuring successful pick-and-place operations.

Real-time trajectory planningwas conducted on a system equippedwith aCore i7 processor (2.30 GHz),
16 GBRAM, and aGPUwith 6 GBVRAM.The visionmodule achieved an average inference speed of 20 frames
per second (FPS), while local trajectory planningwas completedwithin 0.7 s per cycle across all test cases. These
computational specifications enabled seamless integration of CNN-based fruit detection, grasp point

Figure 15.Trajectory length reduction through parameter-drivenA* optimization.

Figure 16. Improvement in positional accuracy through parameter-drivenA* trajectory planning.

Table 4.Comparison of positional accuracy before and after A* optimization.

Fruit type

Positional accuracy (%)without optimized tra-
jectory planning

Positional accuracy (%)using optimizedA* tra-

jectory planning Improvement (%)

Oranges 82 92 12

Strawberries 79 91 15
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estimation, and dynamic trajectory optimizationwithout processing bottlenecks, thereby supporting real-time
operation in both greenhouse and orchard environments. These results indicate that real-time operation can be
maintainedwithout requiring high-end infrastructure. Consequently, the computational time does not impose
a significant burden on production costs. Therefore, undermonotype conditions, the overall cost of produc-
tion remainsmanageable, supporting the practical feasibility of commercial deployment.

These findings underscore the synergistic benefits of coupling data-drivenmodelingwith classical search-
based planning algorithms. The regressionmodel not only served as a predictor of trajectory length outcomes
but also functioned as a feedbackmechanism that refined the planner’s behavior in real-time. This integration
facilitated a higher degree of cohesion between the perception system (CNN-based fruit detection), themanip-
ulation subsystem (gripper configuration and orientation), and themotion planning logic (A* trajectory gen-
eration). Such alignment is fundamental for effective performance in complex agricultural environments,
where variability in fruit position, occlusion, terrain, and lighting conditions necessitate adaptive and intelli-
gent behavior fromautonomous platforms.Hence, the incorporation ofmultivariate regression outputs into
theA* framework led to demonstrable gains in both spatial efficiency and targeting accuracy. These enhance-
ments validate the utility of parameter-driven trajectory planning and suggest a promising direction for the
development of intelligent agricultural robots capable of real-time adaptation and optimization. Future exten-
sions could include the use of dynamic regressionmodels trained under varying environmental contexts or the
embedding of real-time learning components to enable continual refinement of the planning strategy during
field deployment.Despite the promising outcomes, certain limitationsmust be acknowledged. The current
study only evaluates two types of grippers, three-finger and two-finger designs, which arewidely adopted due to
their established effectiveness. However, future studies should explore a broader array of end-effectors, includ-
ing suction-based and scissor-type grippers, to provide amore comprehensive understanding of gripper-spe-
cific interactionswith trajectory planning. The study also focuses exclusively on theA* algorithm.Comparative
analyses involving alternative trajectory planning strategies, such asDijkstra (D*), Rapidly exploring Random
Tree (RRT*), or learning-basedmethods, would provide valuable insights into the relative performance and
adaptability of each approach. Additionally, the scope of the study is limited to only two fruit types. Incorporat-
ing awider range of fruits with varying shapes, sizes, and fragilities would improve themodels’ generalizability
and allow their application acrossmore diverse harvesting scenarios. The results of this regression-guidedA*

trajectory planning framework show the effectiveness of integrating statisticalmodeling into autonomous
robotic systems. The current study quantifies the impact ofmanipulation and perception parameters on
motion efficiency and develops adaptive and data-driven harvesters proficient inworking under different agri-
cultural environments. By adaptively adjusting its cost functionwith contextual data, reinforcement learning
can improve theA* for futurework, leading tomore effective pathways and better obstacle avoidance in
dynamic harvesting scenarios.Moreover, the color dependencemay limit its success for detecting green fruits,
such as pears, where lowbackground contrast poses a prospective challenge.However, the futurework needs to
focus on adding depth cues and shape-based features duringmodel training. To increase detection robustness
over a larger variety of fruit species,multispectral imaging is also advised.

Conclusions

• The trajectory planning is a key factor in autonomous robotic harvesting systems as it directly affects
operating efficiency, energy consumption, collision avoidance, and fruit acquisition success. The
conventional geometry-based planningmethods limit the flexibility in responding to real-time sensory data
andmechanical constraints during unstructured agricultural settings, where fruit types and orientation
undergo frequent variations.

• Through perception-informed and actuator-awaremotion optimization, the current study highlights the
need to combine data-driven regressionmodelingwith traditional A* trajectory planning to enhance robotic
fruit harvesting performance.

• The average trajectory length is reduced by 14% for oranges and 11% for strawberries whenmultivariate
regression results are used, indicating a quantifiable increase in trajectory planning efficiency.

• CNNdetection confidence is the dominant predictor among themodeled variables, demonstrating how
critical precise fruit localization is formaximizing navigation andminimizing redundancy in planned
motion.

• The system can penalizemisalignment symmetrically by incorporating a quadratic orientation term,which
is especially helpful when handling soft fruits like strawberries, where end-effector alignment is essential to
preventing damage.
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• The regressionmodels exhibited strong predictive capability, achievingR2 values of 0.89 and 0.82, with
RMSEof 3.2 cm and 4.7 cm, andMAPEof 5.4%and 7.9%, respectively, for oranges and strawberries.

• Positional accuracy during fruit grasping improved by 12% for oranges and 15% for strawberries, indicating
enhanced coordination between visual perception,motion planning, andmechanical execution.

• The results validate the potential of coupling sensory data, gripper dynamics, and trajectory planning in a
unified framework to achievemore intelligent and responsive robotic behavior in unstructured agricultural
settings.

• Futurework should focus on expanding the approach to incorporate awider range of fruit types, diverse
gripper architectures, and comparative evaluationswith alternative planning algorithms for broader
applicability and real-time field deployment. Furthermore, incorporating depth cues and shape-based
features intomodel training is recommended to improve detection robustness.Moreover, reinforcement
learning can be integratedwithA* by adaptively tuning its cost function parameters based on environment
feedback to optimize path efficiency and obstacle avoidance.
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