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Abstract

Conventional trajectory planning methods for robotic fruit harvesting mainly rely on static
geometric heuristics and often overlook critical sensory and task-specific variables such as fruit
morphology and end-effector compatibility. These limitations make traditional approaches less
effective in real-world agricultural settings, where conditions are unpredictable and fruits require
careful, adaptive handling. Moreover, most existing studies do not incorporate a Convolutional
Neural Network (CNN) to detect confidence in the planning process, often treating perception and
motion planning as isolated components rather than a unified system. To overcome these challenges,
this study proposes a data-driven approach to trajectory optimization that integrates visual
perception based on CNN confidence levels, gripper type with different actuation technologies, and
fruit orientation, parameters that significantly influence harvesting efficiency. Two multivariate
regression models were developed, one specifically for firm fruits such as oranges and the other for
soft fruits such as strawberries. The models predict trajectory length using three input variables: CNN
detection confidence, actuator type, which includes three-finger and two-finger grippers, and fruit
orientation angles ranging from 50°~130°. The non-linear influence of orientation is captured
through polynomial terms. A total of 46 experimental trials were conducted for each fruit type usinga
robotic platform under controlled conditions. The regression outputs revealed that CNN confidence
had a strong influence on trajectory length reduction, while orientation had a more severe impact on
strawberries due to their delicate structure. In comparison to baseline trajectories, the optimized A™
planner, guided by regression coefficients, curtailed trajectory lengths by 11% for strawberries and
14% for oranges. Moreover, the positional accuracy incre ased by 15% and 12%, respectively. The
higher predictive accuracy was attained by the models (R*= 0.89 and 0.82; RMSE = 3.2 cm and

4.7 cm for strawberries and oranges, respectively). These results demonstrate that heuristic planning,
combined with statistical modeling, enhances motion reliability and spatial efficiency in autonomous
fruit picking.

Nomenclature

AP Average Precision

CBAM Convolutional Block Attention Module
CMMD Central Moment Discrepancy

CNN Convolutional neural network
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DCmotors  Direct Current Motors

DOF Degrees of Freedom

3D Three-dimensional

EDGC Edge-Directed Grid Constrained
FID Fréchet Inception Distance

FPS Frames Per Second

LED Light-emitting diode

RRT Rapidly Exploring Random Tree
MAPE Mean absolute percentage error
MARTA Multi-Agent Real-Time Architecture
mIOU Mean Intersection over Union
PRM Probabilistic Roadmap

TL Trajectory length

R? Coefficient of determination
RMSE Root mean square error

RGB-D Red Green Blue—Depth

SSD Solid state drive

YOLO You Only Look Once
Introduction

The global agricultural sector is certainly going through a transitional phase, determined by the cumulative
requirement for sustainable food production through conventional labor-intensive farming practices [1]. The
higherlabor costs and a growing scarcity of agricultural land serve as two critical factors in food insecurity [2].
The cost associated with agricultural production has been significantly augmented in developing nations,
especially in the subcontinental region like Pakistan, which ranged from 12.6 to 30% between 2023 and 2024
[3]. Likewise, this escalating inflation, upsurging rural-to-urban migration, and lack of technological
agricultural advancements have resulted in a severe upsurge in agricultural labour costs [4]. The lack of
technological advancements in the agricultural sector is a major challenge in the evolution of the sector [5]. It
has been estimated that around a 30 to 40% reduction in operational costs can be achieved through robotic
fruit harvesting practices [6]. Moreover, the automated harvesting systems result in improved yield quality,
higher productivity, and lower operational costs [7]. However, current fruit-picking systems continue to
perform below optimal levels despite significant developments in agricultural robotics, especially in
unstructured contexts with occlusions, variable lighting, and variable agricultural production rates [8]. The
conventional trajectory planning systems faced limitations in sensory feedback [9], fruit morphology [10], and
the dynamic interaction between robotic end-effectors and the target [ 11]. The trajectory planning is essential
to current agricultural robots because it guarantees both the fruit’s reachability and the effectiveness of the
gripping and detaching operation [12]. By avoiding static impediments, conventional trajectory-planning
frameworks like geometric models, heuristic techniques, or sampling-based planners like Dijkstra, A*, RRT,
and PRM are suitable for navigating structured environments. However, combining precise fruit detection
with gripper-aware planning can greatly increase their efficacy. Conventional approaches tend to isolate
perception from actuation and frequently presume that the fruit and its environment are both rigid and
unchanging. Their capacity to handle problems in the real environment, like asymmetrical fruit orientations,
occlusions from leaves and branches, and changes in size, shape, or softness, is hampered by this separation.
The fruits should be selected during a brief window of maturity, when their quality is at its peak. When the
strawberries achieve the proper sweetness and turn completely red, they are often plucked in the spring or early
summer [13]. In contrast, oranges are usually picked in the colder winter months based on the color of the peel
and the balance of sugar and acid [ 14]. To guarantee the best quality and output, robots must be used to pick
fruits exactly within the designated season. Harvest time and success rate are critical performance indicators in
robotic fruit harvesting. Previous research has shown that robotic systems can achieve promising success rates,
with harvesting times getting close to realistic levels for field application. The current research practices show
promising advancements in robotic fruit harvesting for oranges and strawberries. Harvest durations for straw-
berries are usually between 4 and 11 s per fruit, and success rates have been continuously increasing, ranging
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Table 1. Recent advancements in success rates and harvest times through robotic
harvesting of strawberries and oranges.

References Year Fruit Harvest time Success rate
Luisetal[15] 2024 Strawberries 7.5s 71.7%
Yuetal[16] 2024 Strawberries 4.7-7.3s —
Xieetal [17] 2025 Strawberries 4.5s 87.2%
Heetal[18] 2025 Strawberries 10.9s 91.4%
Yinetal[19] 2023 Oranges 10.9s 87.2%
Zeeshan et al [20] 2024 Oranges 7.2s 90.5%
Xiaoetal[21] 2024 Oranges — 87.15%

from about 72% to over 91% [15-18]. Oranges exhibit a comparable pattern, with picking times averaging
7-11 sand success rates continuously between 87%-90% [19-21]. It shows that fruit harvesting robots are
attaining reliability in the identification and harvesting of fruit in practical situations. Table 1 summarizes the
reported success rates and harvest times through automated agricultural practices.

A successful robotic grip can be achieved through an optimal approach angle and by applying the appro-
priate contact forces when accurate fruit localization and appropriate physical characterization are integrated.
At the same time, trajectory planning that considers the gripping mechanism’s constraints and design guaran-
tees that the movement is both collision-free and optimized for a steady and effective pick. The integration
approach results in trajectories that maximize the probability of successful harvesting, decrease trajectory
length and energy consumption, and eliminate needless reorientations. The planning process becomes more
intelligent and context-aware when perception and gripping restrictions are considered together. This pro-
duces better results than traditional and detached approaches. An effective substitute for rule-based trajectory
planning in robotic decision-making is the incorporation of data-driven approaches. The robots can learn task-
specific patterns from data and interpret complicated visual signals with high accuracy by utilizing machine
learning, especially deep learning models like Convolutional Neural Networks (CNNs). The challenges invol-
ving the identification and categorization of fruit, CNNs have shown remarkable performance [22-29]. The
fruits can also be detected through the application of YOLO models [30-35]. However, their output confidence
scores remain underutilized in downstream motion planning processes. These confidence scores, when inter-
preted as a proxy for perceptual certainty, can be invaluable in guiding more informed and adaptive trajectory
generation. Moreover, the mechanical interface between the robot and the fruit and the end-effector plays a
pivotal role in determining the feasibility and efficiency of the trajectory executed. Different fruit types require
different handling strategies: firm fruits, such as oranges, may be better suited for rigid three-finger grippers
[36], while delicate fruits like strawberries often necessitate a compliant, two-finger [37] or suction-based
actuators. To date, the interplay between visual perception, gripper configuration, and fruit morphology has
been insufficiently explored in the context of trajectory optimization. Most existing studies treat these compo-
nents in isolation, leading to suboptimal performance in real-world deployments. For instance, Vrochidou et al
[38] provided an early overview of robotic harvesting systems but noted the critical challenge of end-effector
adaptation. Lehnert et al [39] developed autonomous systems for capsicum harvesting, incorporating percep-
tion and motion planning, but their methods did not dynamically adjust trajectory planning based on actuator
type or fruit pose. Similarly, Zu et al [40] and Sa et al [41] focused primarily on improving fruit detection and
segmentation using CNNs without leveraging this perception data for motion trajectory optimization.

Many models for agricultural produce detection have been tested. Wang, F [42] achieved accurate wheat
spike segmentation using an adaptive k-means algorithm and estimated spike volume through cuboid fitting.
Bai et al [43] proposed a hybrid U-Net + YOLO-v3 model that achieved superior cucumber detection with an
AP of up t0 99% and mIOU of 94.24%, outperforming standalone models. The fused approach improved
feature extraction, enhancing prediction accuracy by 6%. This method proved robust for fruit detection in
complex environments and supports automated harvesting and yield estimation. Roggiolani et al [44] pro-
posed a method that generated realistic 3D leaf point clouds conditioned on specific traits (length and width),
outperforming other synthetic datasets like Helios and LiDiff in terms of Fréchet Inception Distance (FID),
F-score, and CMMD across multiple plant species. Tuning leaf trait estimation models on the generated data
significantly improved the accuracy ofleaflength and width predictions. The generated leaves closely matched
real-world distributions and provided per-leaf ground truth, enabling finer, more reliable trait analysis. Singh
et al [45] used OLOv9-GLEAN model to achieve high strawberry detection accuracy, with a precision of 0.996
and recall 0f0.991. Trained on both real and synthetic images, it showed strong adaptability across diverse
datasets. The model was validated in a ROS-Gazebo digital twin of the SILAL greenhouse and integrated with
the MARTA robot, enabling precise visual servoing and effective strawberry grasping. Zhang et al [46] found
that the EDGC-YOLO model significantly improved green citrus detection by optimizing anchor box
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generation using aspect ratio analysis and BGMM adjustment. With Refined-EfficientNetV2 and CBAM inte-
gration, the model reduced parameters to 4.52M and size to 9.4 MB, while achieving increases of 0.5% in preci-
sion, 1.6% in recall, and 3.0% in mAP. This lightweight, high-accuracy model supports real-time decision-
making for green citrus harvesting robots. Kaleem et al [47] addressed the high data consumption problem in
deep learning-based pest control by proposing an Edge Distance-Entropy data evaluation method. The method
reduced data usage by 5% to 15% compared to existing approaches and achieves 100% effectiveness using only
60% of the data. Experimental results confirmed that it outperformed other evaluation methods, offering a
more efficient solution for crop pest detection. This contributed significantly to the sustainable development of
smart agriculture by reducing resource dependency. Miao et al [48] developed an advanced tomato-harvesting
robot by integrating traditional image processing with the YOLOV5 deep learning model to improve crop and
stem recognition in complex agricultural environments. An algorithm was proposed to estimate truss tomato
maturity and accurately locate stems, and the robot achieved efficient harvesting performance for the tomato
cluster. Researchers have also found that the gripper affects fruit harvesting efficiency. Navas et al [49]. analyzed
the grippers used in the harvesting process and suggested soft grippers as the most promising technology for
agricultural harvest. Elfferich et al [50] suggested soft grippers had the most successful rate in fruit harvesting.
Visentin et al [51] explored that different fruits require different gripper forces. Delicate strawberries require
sophisticated, soft grippers, unlike stiff, classical grippers.

In recent work, researchers have begun exploring the benefits of coupling machine vision with actuator
control. For example, Kurtser et al [52] researched on robotic perception to adapt robotic arm movement
in real time. However, even these systems seldom incorporate quantitative models that link CNN detection
confidence, fruit pose, and actuator characteristics to motion planning parameters such as trajectory
length or trajectory smoothness. This disconnect limits the robot’s capacity to make context-aware deci-
sions during the harvesting task. Addressing this gap, the present study proposes a novel data-driven fra-
mework for trajectory optimization in robotic fruit harvesting, which explicitly models the relationship
between deep learning-based perception (CNN confidence), actuator type, and fruit morphometrics (espe-
cially orientation angles). The core hypothesis is that by capturing these relationships through regression-
based learning models, robots can predict and execute more efficient motion trajectories that are tailored
to both the fruit type and the interaction dynamics of the gripper. To empirically validate this framework,
two multivariate regression models were developed: one for firm fruit, oranges, and another for soft fruit,
strawberries. Each model takes as input (1) the CNN confidence score reflecting detection certainty, (2) the
type of gripper (three-finger or two-finger), and (3) the fruit’s orientation angle within a defined range
(50°-130°). Notably, the model captures the non-linear influence of orientation through polynomial
terms, acknowledging that the angle at which fruit is presented significantly affects the trajectory required
for successful harvesting. The current study makes several key contributions to the field of precision agri-
culture and agricultural robotics:

e Itintroduces systematic integration of deep learning-based perception and mechanical actuation parameters
into trajectory planning, addressing the fragmented nature of prior approaches.

o Itestablishes a quantitative link between CNN confidence, gripper configuration, and fruit pose, enabling
context-aware trajectory optimization.

o Itpresents empirical evidence demonstrating the effectiveness of data-driven trajectory models in reducing
trajectory length, which directly impacts efficiency and task throughput.

By unifying perception, actuation, and motion planning under a data-driven umbrella, this research lays
the groundwork for more autonomous, adaptive, and efficient harvesting systems. The proposed framework
moves beyond traditional, siloed paradigms and represents a significant step toward intelligent robotic systems
capable of operating in the dynamic and uncertain environments of modern agriculture. The Introduction
section presents a comprehensive overview of the research, along with a critical review of relevant literature to
establish the research gap. The Materials and Methods section defines the empirical approach, constituting the
system design, deployment scenarios, and the selected parameters. The Results and Discussion section portrays
acomprehensive set of experimental findings, detailing their significance and implications for optimal robotic
trajectory planning performance. Finally, the Conclusion section recaps the significant findings through scien-
tific relevance and proposes future recommendations.
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Material and methods

Methodology

The multivariate linear regression models were developed and validated through a data-driven methodology to
forecast the ideal trajectory length (P) for fruit harvesting robots. The CNN-based detection confidence score
(C), which was derived from fruit recognition using an RGB-D Kinect v2 camera, the gripper type (G), which
was represented by one-hot encoding to differentiate between two-finger and three-finger silicon grippers, and
the fruit orientation (O), which was measured as angular displacement (50°, 70°,90°, 110°, 130°) relative to the
vertical axis, representing grasping approach angles, were the three main independent variables that were
incorporated into the models. Image data captured from the RGB-D Kinect v2 camera was processed using a
convolutional neural network (CNN), which generated real-time detection confidence values. These were
combined with experimental data on gripper type and fruit orientation to construct the regression input
dataset. Separate models were trained for firm fruits (oranges) and soft fruits (strawberries), each comprising 46
trials to capture their respective physical handling characteristics. The robotic platform was based on a 5-DOF
arm designed by Zeeshan et al [20], upgraded for enhanced control and data acquisition. A closed-loop
feedback control system was implemented using DC motors equipped with rotary encoders, enabling precise
jointactuation and real-time position feedback. The encoder data were processed via a Raspberry Pi4
microcontroller, which managed control signals and interfaced with motor driver modules (L298N) to actuate
the robotic joints. The control logic facilitated accurate trajectory tracking and gripper alignment, whereas the
Kinect camera simultaneously provided depth and color data for target localization and distance estimation.
The regression models were evaluated using the coefficient of determination (R*), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE). This statistically informed model was then translated
into a real-time cost function, which was embedded into the A* algorithm to guide the robot’s trajectory
planning. To influence the cost function f(n), the expected trajectory length (T) was incorporated into an A*
trajectory planning algorithm. With constant feedback from the Kinect and encoder data, this system allowed
for dynamic trajectory optimization based on real-time perception and grasp configuration. The system, which
is built for two different monoculture deployments, has a local trajectory planning architecture that enables it
to adjust in real time to variables like gripper alignment, CNN detection confidence, and fruit position. For
both fruit varieties, the device successfully replicated actual harvesting conditions in a controlled laboratory
environment.

Design and experimental set-up

Experiments carried out in regulated lab settings confirm the data-driven regression-based approach for
trajectory planning optimization in a robotic fruit harvesting system. The robotic platform with a 5-DOF
articulated manipulator is given in figure 1. The articulated manipulator with silicon grippers and all the
linkages is seen in figure 1(a). The manufactured robot is depicted in figure 1(b). Fruit detection and
localization depend on the color and depth information provided by the RGB-D sensor in the frame. Real-time
fruit type identification and classification is achieved using a convolutional neural network (CNN)-based vision
system, which allows for adaptive decision-making for trajectory planning and grasp execution. The current
study presents a data-driven regression-based framework for optimizing trajectory planning in a robotic fruit
harvesting system, validated with experiments conducted under precisely controlled laboratory conditions.
Figure 1 shows the robotic platform consisting of a 5-degree-of-freedom (DOF) articulated manipulator.
Figure 1(a) shows the articulated manipulator with silicon grippers, with all the links. Figure 1 (b) shows the
fabricated robot. The RGB-D sensor on the frame provides both color and depth information essential for fruit
detection and localization. A convolutional neural network (CNN)-based perception system is implemented to
identify and classify fruit types in real-time, enabling adaptive decision-making for grasp execution and
trajectory planning.

The experimental setup was designed to evaluate performance across two fruit categories, firm (oranges)
and soft (strawberries), representing distinct tactile and geometric characteristics. To accommodate variations
in fruit morphology and compliance, the end-effector of the robot was configured with interchangeable silicon
grippers of two types: 2-finger and 3-finger designs. Multiple grasp orientations and approach angles were
tested for each gripper-fruit combination to assess their influence on motion smoothness, grasp stability, and
trajectory planning efficiency. Figure 2 shows the grippers used for the experiment. Figure 2(a) shows the sili-
con gripper with two fingers, and figure 2(b) shows the silicon gripper with three fingers.

The robotic arm operated within a defined planar workspace of 0.7 x 0.7 m, positioned on a vibration-
damped, matte-finished laborat ory surface to eliminate visual artifacts. All experiments were conducted under
ambient environmental conditions maintained at 26 + 1 °C temperature and approximately 50% relative
humidity. The environmental settings were selected to reflect typical orchard conditions while ensuring
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(a) (b)

Link 5

Link 2

Link 1

Figure 1. Five-degree-of-freedom (DOF) articulated manipulator with the silicon grippers: (a) illustrations of all links, and (b)
illustrations of the fabricated robot.

Figure 2. Silicon grippers: (a) two-finger, and (b) three-finger.

consistency in sensing and manipulation. The air temperature was maintained at 26 °C, which is commonly
observed during harvesting hours and helps preserve both fruit firmness and the performance of the gripper
material. Light levels were kept around 1000 lux, similar to shaded-canopy or bright-overcast conditions. Rela-
tive humidity was controlled at 50%, a moderate value often present in orchards, chosen to avoid condensation
on the fruit and sensors while also preventing fruit drying. Together, these parameters provided conditions that
were both realistic and standardized for the strawberry and orange trials. Lighting was controlled using day-
light-balanced light-emitting diode (LED) arrays to maintain a constant illumination level of 1000 lux, ensur-
ing consistent image acquisition and eliminating illumination-based noise in perception tasks. To support
robust fruit classification, a custom dataset comprising 1500 annotated RGB-D images was generated from
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multiple real-world trials under varied orientations and lighting perspectives. The dataset included equal repre-
sentation of both target fruits and incorporated images across different grasping angles and distances. The data
were labeled using open-source annotation tools and subsequently pre-processed through normalization and
augmentation (e.g., random rotations, brightness adjustment) to enhance model generalizability. The dataset
was split using a standard 70:30 ratio, allocating 1050 images for training and 450 for validation/testing. The
CNN architecture employed was a modified version of MobileNetV2 due to its balance between computational
efficiency and accuracy, and was trained using the Adam optimizer with a learning rate of 0.001, batch size of
32, and stopped based on validation loss, having a maximum epoch of 70.

The entire perception and planning pipeline was executed on a Dell Inspiron 11th-generation laptop equip-
ped with an Intel Core i7 processor, 8 GB RAM, and a 512 GB solid-state drive (SSD), operating on Windows 10
(64-bit). A multivariate regression model was subsequently developed to correlate the CNN-derived object
features (e.g., fruit type, size, centroid coordinates), end-effector configuration, and fruit physical character-
istics with robotic motion planning metrics such as total trajectory length, task execution time, and collision
occurrences. The model was trained using empirical data collected from repeated harvesting trials and vali-
dated by comparing predicted trajectories against actual robot motion. This enabled dynamic trajectory pre-
diction and selection of optimal trajectories based on task-specific and environmental constraints, thereby
minimizing redundant movements and enhancing harvesting efficiency. The inclusion of multiple trials for
each condition ensured the statistical robustness and repeatability of the proposed framework. The exper-
imental design of this study centers on modeling the influence of three critical parameters, CNN-based visual
confidence (C), gripper type (G), and fruit orientation (O), on the optimization of trajectory length (P) in
robotic fruit harvesting. A multivariate linear regression approach was adopted to quantify the relationship
among these variables, allowing for the development of fruit-specific predictive models. The gripper type, a
categorical variable representing commonly used mechanisms in agricultural robotics (3-finger and 2-finger),
was encoded using dummy variables. Orientation was treated as a continuous angular variable representing the
fruit’s axis relative to the robot’s end-effector. The proposed regression model takes the general form:

Y =00+ BiXi + 52Xo + B35(X3 — 90°)? + ¢

Where (3 are Regression coefficients while X;, X, and X; show CNN confidence score, gripper type, and
gripper orientation, respectively. Y is the trajectory planning output and € is the error term.

Separate models were trained for firm fruits (e.g., oranges) and soft fruits (e.g., strawberries) to account for
differing interaction dynamics. These regression outputs were subsequently integrated into the A™ trajectory
planning algorithm, where predicted trajectory length influenced the cost function f(#) thereby enabling
dynamic adjustment based on fruit morphology and harvesting constraints. The cost function is given as:

f(n) =g + h(n)

Here the cost function is the total estimated cost from start to goal via node n, g(n) is the actual cost from
start to n, and h(n) is the heuristic estimate from n to the goal. The traditional A* trajectory cost function was
modified to incorporate perception and hardware-based parameters,

gn) =dm) + a(l — Cenn) + 810 — Oopt| + VT,

Here, d(n)is the Euclidean distance to node n, Ccny is the CNN confidence score for fruit detection, 6 is the
current gripper orientation, fopt is the optimal alignment angle, and Tg denotes a categorical value assigned to
the gripper type. The weights a, 3, ¥ were empirically determined to balance the influence of each parameter.
This approach enabled the trajectory planner to favor trajectories that not only minimize travel distance but
also optimize perception reliability and grasping feasibility, resulting in shorter trajectories and improved posi-
tional accuracy during fruit acquisition.

Deployment environment

The system is designed for deployment in semi-structured agricultural environments, such as small-scale
orchards or indoor greenhouses, with known map layouts. For strawberry harvesting, deployment conditions
should be in a controlled indoor greenhouse environment characterized by flat terrain and structured planting
rows. The inter-row spacing ranged between 0.8—1.0 meters should be there for easy robot manoeuvrability.
Lighting conditions range between 1000-1500 lux, sufficient for CNN-based visual detection. Obstacle heights
(such as bed edges or irrigation lines) to be limited to 0.2—0.4 meters, allowing for safe navigation. The
environment should be static during the harvesting phase, with minimal variation in ambient conditions. For
orange harvesting, the robot deployment conditions are for small-scale orchard blocks, characterized by
natural daylight ranging between 8000—-10000 lux. Tree canopies with a height range from 2.5 to 3.5 meters, and
the inter-row spacing of 2.5-3.0 meters, are allowed for sufficient clearance for the robotic platform to traverse
and align with target fruit. The terrain is mostly flat and dry, with minor surface irregularities.
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Figure 4. Varying gripping methods for picking Strawberry fruit: (a) grip at 90°, (b) grip by stem pull, (c) grip by stem break, and (d)
grip atan angle.

In both deployments, the robot is designed to operate under a local trajectory planning scheme, con-
tinuously adapting in real-time to fruit pose, CNN detection confidence, and gripper positioning. The current
system is designed for monoculture operations, where a single crop type is handled per deployment. Never-
theless, the architecture is modular and scalable, and in future studies, it can be extended to support global
planning strategies, such as coordinated multi-row traversal or crop switching, through the integration of
higher-level task allocation and map-based planning layers. The system performs reliably using mid-range
computational hardware (Intel Corei7 @ 2.30 GHz, 16 GB RAM, GPU with 6 GB VRAM). The deployed sys-
tem incorporates low-latency processing, enabling real-time inference and trajectory updates with a cycle time
of 100-150 milliseconds to ensure responsive action. An integrated RGB-D camera allows the system to per-
ceive the 3D structure of the environment, including branches, fruits, and other potential obstacles. By utilizing
the depth map, the system effectively identifies and localizes obstacles within the robot’s path, facilitating the
computation of a collision-free trajectory in real time. These specifications support real-time vision and
motion planning without requiring high-end infrastructure. Thus, under the stated monotype and semi-struc-
tured deployment conditions, the overall cost remains manageable, promoting the feasibility of commercial-
scale application.

Gripping angle

The gripping angle is a critical parameter in robotic fruit harvesting, as it directly affects the stability,
effectiveness, and safety of the grasp, particularly when handling fruits with diverse mechanical properties.
Hard fruits like oranges, which exhibit higher structural rigidity and peel toughness, can typically withstand
greater gripping forces, up to approximately 80 N, without risk of surface damage or deformation. This
mechanical resilience allows for a wider range of permissible gripping angles and firmer end-effector contact,
enhancing positional tolerance during grasping. Figure 3 shows various gripping angles for picking oranges,
such as the grip at 90° (see figure 3(a)), grip at 110° (see figure 3(b)), grip at 80° (see figure 3(c)), and grip at 70°
(see figure 3(d)). In contrast, soft fruits such as strawberries possess delicate skin and low compressive strength,
necessitating much lower gripping forces, typically in the range of 8—12 N, to prevent bruising, tearing, or tissue
collapse. Figure 4 shows various gripping angles for picking strawberries, such as the grip at 90° (see figure 4(a)),
grip by stem pull (see figure 4(b)), grip by stem break (see figure 4(c)), and grip atan angle of 110° (see

figure 4(d)). The field observations confirm that the most effective techniques for harvesting oranges and
strawberries involve either grasping the fruit at an angle of approximately 90° or within the 70-100° range or
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Figure 5. (a) Two-finger silicon gripper for Strawberry fruit picking, and (b) Three-finger silicon gripper for Orange fruit picking.

alternatively detaching the fruit by cutting the stem. These approaches are consistent with natural hand-picking
practices, where such angles provide optimal leverage to detach the fruit while minimizing mechanical stress
and surface damage. The findings were obtained through direct observation of skilled farm workers during
harvest in local farms, highlighting the practical relevance of these methods for designing robotic grippers that
can replicate safe and efficient picking.

The approach angle of the gripper determines the distribution of contact forces and the extent of surface
engagement, which are especially critical for soft produce. A non-optimized angle can result in localized pres-
sure points, shear forces, or incomplete contact, leading to unsuccessful picking attempts or post-harvest qual-
ity degradation. For strawberries, a nearly perpendicular approach with a compliant grasping mechanism is
often required to distribute forces uniformly and reduce peak contact pressure. Conversely, for oranges, angu-
lar flexibility allows for side or angled approaches without compromising structural integrity. Therefore, opti-
mizing the gripping angle is also fruit-specific and hence, is dynamically adaptable, integrating the knowledge
of fruit morphology, surface compliance, and mechanical limits to achieve high grasp success rates while main-
taining fruit quality.

Gripper type

In robotic harvesting applications, the selection of the right end-effector is critical for ensuring both grasp
stability and produce integrity. This study used two types of soft, compliant silicone grippers, a 2-finger and a
3-finger configuration, selected for their mechanical adaptability to different fruit morphologies and textural
properties. The 2-finger gripper, with its reduced contact surface and lower gripping force range (8—12 N), is
well-suited for soft fruits such as strawberries, causing minimal pressure distribution to prevent epidermal
bruising and internal tissue deformation or damage. A two-finger silicone gripper, unlike a three-finger design,
minimizes the overall contact area with delicate fruits such as strawberries, which are highly susceptible to
bruising. By limiting the contact points along with applying carefully controlled force, the two-finger
configuration reduces pressure concentration and ensures a gentler, safer grip on small, fragile fruits.
Furthermore, its simpler geometry allows easier access and greater maneuverability within dense fruit clusters,
where a three-finger gripper may cause obstruction or accidental compression of adjacent and nearby
strawberries. The reduced structural complexity also improves responsiveness and handling, making the two-
finger gripper particularly well-suited for safe and efficient harvesting of soft produce like strawberries. In
contrast, the 3-finger gripper provides a more geometrically stable, tri-contact configuration that is capable of
withstanding higher gripping forces (up to ~ 80 N), making it appropriate for firm fruits like oranges, where
structural rigidity allows more aggressive grasping without compromising quality. Figure 5(a) demonstrates
fruit gripping by a 2-finger gripper, and figure 5(b) shows the 3-finger gripper gripping an orange without
avoiding excess force. These compliant silicone grippers were intentionally selected over suction and metallic
grippers due to functional limitations observed in unstructured agricultural environments. Suction grippers
often exhibit poor adherence on non-planar, moist, or textured surfaces, conditions commonly encountered
with natural fruits, leading to grasping inconsistencies and detachment failures. Metallic grippers, while
offering high structural stiffness, lack the compliance necessary to handle biologically soft materials and
substantially increase the risk of mechanical damage due to excessive point loading. Silicone grippers, in
contrast, offer low modulus elasticity, surface conformance, and inert chemical properties, which collectively
enable secure, non-destructive grasping across a spectrum of fruit types and orientations. To further enhance
the generalizability and robustness of the trajectory planning model, future testing will incorporate a broader
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range of end-effector designs, including adaptive, underactuated, and soft pneumatic grippers, to quantitatively
evaluate the impact of gripper mechanics on trajectory optimization, grasp success rates, and task execution
efficiency in variable harvesting scenarios.

The current silicone-based gripper design has been experimentally validated for strawberries and oranges,
demonstrating effective performance in terms of grasp stability and fruit safety. Given its compliance and adap-
tive geometry, the gripper may also be suitable for handling fruits with similar physical characteristics, such as
plums or tomatoes. However, its universal applicability remains limited, and further experimental testing and
parameter tuning are necessary to ensure reliable operation across a broader range of horticultural produce.
While the integrated regression model supports the inclusion of alternative gripper configurations through re-
encoding of input parameters, the mechanical design must be revalidated for significantly different fruit types,
such as grapes or pears. To improve the system’s generalizability, future research should investigate modular or
interchangeable gripper architectures, including suction-based end-effectors, to accommodate a wider spec-
trum of fruit morphologies.

CNN-based visual confidence

To support robust fruit classification under variable conditions, a CNN-based visual confidence metric (C) was
introduced to quantify the model’s certainty in identifying and localizing fruit targets. The confidence score C,
ranging from 0 to 1, is derived from the final SoftMax output layer of the CNN and reflects the probability
associated with the predicted fruit class. A higher C-value shows stronger visual certainty, which is critical in
decision-making for grasp execution and trajectory planning, particularly in cluttered or partially occluded
environments [53]. The bespoke dataset of 1500 annotated RGB-D photos from actual fruit harvesting attempts
was assembled to develop the current model. The different orientations, gripping angles, and distinct lighting
conditions (800—1200 lux) were all included in these annotated photos. An equal distribution of oranges and
strawberries was included in the dataset, which was labeled using the Labellmg program. To improve
generalizability, the dataset was enhanced with methods including random rotations ( £30°), brightness
variations (£20%), and zooming (£15%).

A 70:30 split was used to divide the dataset, allocating 450 photos for validation and 1050 images for train-
ing. Data augmentation methods, such as illumination shifts, rotation, zoom, and occlusion, were used to
enhance performance in various lighting scenarios, such as day and night. By adding more variety to the train-
ing set, these augmentations improved the model’s generalization and decreased the possibility of overfitting.
Additionally, by combining RGB and depth information, the system was able to consistently detect fruit even in
the presence of changing ambient lighting. The balanced trade-off between accuracy and computing perfor-
mance on edge devices serves as a prime reason for the selection of a modified MobileNetV2 architecture. The
current model was trained using the Adam optimizer with a learning rate of 0.001, having a batch size 0f 32, and
early stopping criteria based on validation loss. Validation accuracy (~92%) remained stable throughout, indi-
cating effective generalization. Cross-entropy loss was used as the objective function. During inference, predic-
tions with C > 0.85 were considered highly reliable and directly used for initiating the grasp sequence, while
detections with C < 0.6 were flagged for further inspection or re-evaluation from an alternate viewpoint. This
confidence-based gating mechanism enabled the robotic system to adaptively decide whether to proceed with
grasping or refine its visual perspective, thus enhancing the robustness and safety of fruit harvesting under real-
world variability. Figure 6(a) displays the CNN model results for the detection of Oranges, and figure 6(b)
shows the CNN model results for the detection of Strawberries after fine-tuning the model. Hyperparameters
are displayed in table 2.

Results and discussion

The regression coefficients presented in the trajectory length models for fruit harvesting were obtained through
controlled laboratory experiments. In these tests, a robotic harvesting system was deployed to collect data on
various scenarios involving different CNN confidence levels, gripper types, and end-effector orientations. The
experiments were conducted separately for firm fruits (oranges) and soft fruits (strawberries) to capture their
distinct handling requirements. Multiple trials were recorded under varying conditions, and the resulting
trajectory lengths were measured. Using this experimental dataset, a multiple regression analysis was performed
to determine the quantitative relationship between the input variables and the observed trajectorylength, Y.

Y (oranges) = 51-37 — 9-67X; + 0-34X; + 0-02(X; — 90°) + ¢
Y (strawberries) = 51-35 — 6-41X; + 0-25X, + 0-04(X5 — 90°)2 + ¢

where X}, X, and X5 show CNN confidence score, gripper type, and gripper orientation, and Y is the trajectory
planning output.
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Figure 6. Fruit detection using the fine-tuned CNN model: (a) for oranges, and (b) for strawberries.

Table 2. Hyperparameters for the CNN model.

Hyperparameter Value

Model Architecture MobileNetV2 (modified)

Optimizer Adam
Learning rate 0.01
Batch Size 32

Loss Function Cross-entropy
Epoch (max) 70

For oranges, the regression coefficient for CNN confidence was —9.67, indicating that each unit increase in
confidence significantly reduced the trajectory length, thereby highlighting the model’s reliance on accurate
fruit detection. The gripper type had a smaller positive coefficient of +-0.34, suggesting that different gripper
types had a relatively minor but measurable effect on the trajectory. The quadratic orientation deviation term
had a coefficient of 4-0.02, indicating a slight increase in trajectory length when deviating from the optimal 90°
orientation. Figure 7 shows the scatter plot for the multi-regression model for oranges. In contrast, the straw-
berry model yielded a CNN confidence coefficient of —6.41, which also reflected a beneficial effect of improved
detection, though less pronounced than for oranges. The gripper type had a coefficient of +0.25, again indicat-
ing a modest impact. However, the quadratic orientation term was +0.04, showing a much stronger penalty for
misalignment. Figure 8 shows the scatter plot for the multi-regression model for strawberries. This emphasized
that strawberries, being more delicate, were more sensitive to orientation errors during the harvesting process.
These regression coefficients collectively revealed the relative significance of each factor for different fruit types.
CNN confidence consistently emerged as the most influential parameter for minimizing trajectory length in
both models. However, orientation accuracy proved to be particularly critical for soft fruits like strawberries
due to their higher susceptibility to damage, highlighting the need for precise control during robotic harvesting.

Evaluating the model accuracy is critical for validating the predictive reliability and generalizability of the
developed model. Accurate prediction ensures optimal trajectory planning, energy efficiency, and minimal
mechanical wear, which are essential in real-time robotic harvesting tasks. The metrics used for evaluation of
the model, Coefficient of Determination (R*), Root Mean Squared Error (RMSE), and Mean Absolute Percent-
age Error (MAPE), are employed to comprehensively assess the model’s performance. The Coefficient of Deter-
mination (R?) quantifies the proportion of variance in the detected trajectory length justified by the regression
model. A higher R?value (closer to 1) is an indicator of a strong correlation between the actual and predicted
values, validating the model’s explanatory strength. RMSE endows an absolute measure of prediction error in
the same unit as the trajectory length (dependent variable), resulting in a substantial penalty for significant
deviations; it is especially sensitive to outliers. By providing a clear grasp of the error magnitude in relation to
the actual values, MAPE, mentioned as a percentage, makes it easier to compare data from various datasets or
settings. Collectively, these metrics provide a consistent framework for model validation and ensure that the
regression model not only fits the training data but also predicts accurately in varying conditions, which is a
critical requirement for the deployment of the intelligent and adaptive robotic systems in unstructured agri-
cultural conditions. The subsequent formulas are applied to compute the R> RMSE, and MAPE:

11



S Zeeshan et al

I0P Publishing

Eng. Res. Express 7 (2025) 045210

°

" 55.0

o . .:.. : ~52.5

8% & °o® 200

° . o'. .‘“‘. 03‘: .£ 475

° e o poo o ® ® e ~ 45.0

9 00 %0

'.‘ °® ® o 42,5

e o°8 e ® e’y
o

Y: Path Length (cm)

~1
) 0.5 2.0 o

Figure 8. 3D regression scatter plot for strawberry fruit.

~) 05 20 o M°
L o0P
e
Figure 7. 3D regression scatter plot for orange fruit.
e o
e ® o
° o0 o © X
o 80
[ ] ° _
L] L o £
e @ o - 70 £
° ° oS | ® ° <
. 5} o . o 5
LJ L] c
o0 ot i o ¢ 60 3
]
o ¢ 8 % =
) ©
o, o o Y oo g <
© [¢] - o o s0 >

RR=1- Z(TLactual - TLpredicted)z/Z(TLudual - TL)Z

n
RMSE = \/T/nZ(TLactual - TLpredicted)2
i=1
n

100
MAPE = TZ'(TLuctuul - TLpredicted)/ TLuctuull
i=1

12




10P Publishing

Eng. Res. Express7 (2025) 045210 S Zeeshan et al

Oranges
35 1
| R*=0.89
301 | RMSE=3.2
,s | | MAPE=5.4%
- 51
e
Q -
S 20 f
2] [
[=
215 1
10 +
5 4
0 t
0 5 10 15 20 25 30 35
TL Actual

Figure 9. Relationship between actual trajectory planning and predicted trajectory length for oranges.

Where, T Lis the mean length of the actual trajectory, TL, a1 is the actual trajectory and TL yedicted is the
predicted trajectory length, whereas n is the number of test samples and i is the index variable.

To rigorously evaluate the predictive performance of the developed regression models, three well-estab-
lished statistical metrics were utilized: Coefficient of Determination (R*), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE). These metrics collectively provide a multidimensional assess-
ment of the models’ explanatory capacity, residual behavior, and generalization accuracy. The Coefficient of
Determination (R*) measures the proportion of variance in the dependent variable (trajectory length) that is
accounted for by the independent variables in the regression model. R* value approaching unity signifies a high
degree of correlation between the actual and predicted values. The model for oranges achieved an R* of 0.89,
signifying that 89% of the variability in trajectory length could be explained by the CNN confidence, gripper
type, and orientation deviation parameters. This high R* underscores the robustness of the model for firm
fruits, which exhibit relatively stable interaction dynamics during robotic handling. By contrast, the strawberry
model produced an R” of 0.82, indicating a moderate decline in predictive strength. This decrease can be attrib-
uted to the higher variance brought about by strawberries’ soft texture and geometric irregularity, which inten-
sify the impact of little manipulation and perceptual changes.

The residuals’ standard deviation is measured by the RMSE metric. It is therefore sensitive to outliers or
inaccurate forecasts and imposes a heavier penalty for larger deviations. With an RMSE of 3.2 cm, the orange
model produced predictions that were tightly clustered around the ground truth. The strawberry model, on the
other hand, had alarger RMSE of 4.7 cm, which is in line with the high variability that is anticipated when
manipulating soft-bodied fruits. For robotic harvesting systems, these RMSE values fall below acceptable oper-
ating thresholds, where minor trajectory deviations are tolerable without sacrificing grasp reliability. To facil-
itate inter-model comparison among datasets of different dimensions, MAPE, which is presented as a
percentage, assesses the average magnitude of prediction errors in relation to the actual values. The MAPE was
found to be 5.4% for oranges and 7.9% for strawberries. At a performance level of less than 8%, these figures, on
average, demonstrate that the models’ predictions differed from the observed trajectory lengths. It is in line
with agricultural robotics’ precision requirements in a semi-structured setting. Strawberries’ increased MAPE
emphasizes improved control over sensor feedback and end-effector posture while also highlighting their sensi-
tivity to detection and alignment errors. The coefficient of determination (R*), mean absolute percentage error
(MAPE), and root mean square error (RMSE) for the model that forecasts trajectory length during orange
harvesting are shown in figure 9. The statistical performance measures for the strawberry harvesting model are
also shown in figure 10.

Generally, the higher R? values, lower RMSE, and satisfactory MAPE results validate the accuracy of the
regression models, along with their operational suitability. Figure 11 displays a comparative analysis of the
evaluation metrics, R%, RMSE, and MAPE, for fruit-specific models developed for orange and strawberry har-
vesting. These findings confirm that the proposed parameter-driven models are capable of accurately forecast-
ing trajectory length outcomes based on perceptual and mechanical input features. This reliability is important
for ensuring accurate trajectory optimization within A* frameworks, eventually improving spatial efficiency
and target achievement rates in autonomous harvesting applications.

The optimized A trajectory planning algorithm was implemented in Python with the robot’s workspace
represented in a grid form. The environment was modeled as a 2D occupancy grid using NumPy arrays. Each
cell represented a discrete location marked as either free (0) or occupied (1) based on the presence of obstacles
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Figure 11. Comparison of regression evaluation metrics for fruit-specific models for oranges and strawberries.

or unreachable zones. The start and goal positions of the robot were defined on the grid coordinates. Each cell
in the grid was treated as a node, and movement was allowed in eight directions (including diagonals). A mod-
ified cost function was used to integrate three critical parameters, CNN confidence score, gripper angle devia-
tion, and gripper type, into the A™ algorithm. These parameters were incorporated into the g(n) term (actual
cost) using weighted penalties: low CNN confidence increased the cost; larger angular deviations from the opti-
mal gripper orientation were penalized; and gripper types were assigned static weights based on complexity and
suitability for the fruit. The heuristic h(n) was calculated using Euclidean distance from the current node to the
goal. A priority queue was managed using Python’s heapq module to store the open list sorted by total cost
f(n) = g(n) + h(n).Once the optimal trajectory was found, it was reconstructed using a parent dictionary to
backtrack from the goal node to the start. The entire planned trajectory was visualized using matplotlib, show-
ing the robot trajectory, fruit locations, and obstacle regions. Figure 12 compares the performance of baseline
A* trajectory planning (left) with the proposed optimized A* algorithm (right) for autonomous orange harvest-
ing in a grid-based environment featuring five circular obstacles. In the trajectory plots for the orange orchard,
a5 x 5unit grid is used for visualization. Each unit in this grid corresponds to 10 cm in the physical workspace.
This scale is selected to reflect the typical inter-tree spacing and maneuvering requirements in orange orchards.
The optimized trajectory exhibits a clear improvement, reducing the total number of steps from 40 to 36. This
enhancement stems from integrating a regression-based cost function that accounts for three influential fac-
tors: CNN detection confidence (X1), gripper type (X2), and gripper orientation angle (X3). The significant
negative weight assigned to the confidence score directs the robot to avoid uncertain zones, while the quadratic
orientation term encourages gripper alignment closer to 90°, promoting stable and damage-free grasping.
Consequently, the optimized A trajectory not only becomes shorter but also more aligned with mechanical
and perceptual constraints, reinforcing the value of coupling machine vision and actuator dynamics in preci-
sion agricultural robotics.
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Figure 12. Sample simulation of baseline versus optimized A trajectory Planning for oranges using a Regression-Informed Cost
Function.
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Figure 13. Sample simulation of baseline versus optimized A” trajectory planning for strawberries using Regression-Informed Cost
Function.

Figure 13 illustrates a comparative analysis between baseline A* trajectory planning (left) and the proposed
regression-informed optimized A* algorithm (right) in a 2D grid environment with five circular obstacles. For
the strawberry field scenario, the same 5 x 5 unit grid is applied, with each unit representing 5 cm of physical
space. This finer scale is suitable for representing the denser plant arrangement and supports accurate naviga-
tion in narrow inter-row gaps typical of strawberry cultivation. The optimized trajectory demonstrates a reduc-
tion in step count from 39 to 35, indicating improved trajectory efficiency. This enhancement results from
integrating key perceptual and mechanical parameters, namely, CNN detection confidence, gripper type, and
gripper orientation, into the trajectory cost function. The model assigns higher traversal cost to regions of low
visual confidence and penalizes gripper misalignment using a symmetric quadratic term, thereby guiding the
robot through zones with reliable perception and favorable end-effector alignment. As a result, the optimized
trajectory avoids uncertain or mechanically unfavorable regions without compromising safety or goal attain-
ment. This integration of sensory intelligence and actuator constraints enables a more adaptive and oper-
ationally efficient navigation strategy, highlighting the effectiveness of data-driven cost modeling in
agricultural robotics.

Figure 14 shows the 3D trajectory plot of the sample simulations of another case for a more comprehensive
spatial understanding of the robot’s movement. The 3D trajectory plot also reveals vertical variations. The plots
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Figure 14. 3D trajectory plots for spatial comparison of baseline and optimized A" paths. (a) oranges case (b) strawberries case.

Table 3. Comparison of trajectory lengths before and after optimization using parameter-driven A* planning.

Fruit type Baseline trajectory length (cm) Optimized trajectory length (cm) Improvement (%)
Oranges 25.58 22 14
Strawberries 31.46 28 11

illustrate the comparison between baseline and optimized trajectories using the A* algorithm for two fruit sce-
narios: oranges (part a) and strawberries (part b). The baseline trajectory is shown in blue, while the optimized
trajectory is in orange. The 3D plots highlight the improvements in movement efficiency and spatial coverage
when using optimized A* planning over the baseline trajectory.

To evaluate the effectiveness of the parameter-driven A* planning method, two core performance indica-
tors were analyzed: average trajectory length and positional accuracy at grasping. These metrics directly relate
to energy efficiency and successful fruit acquisition. Table 3 presents a comparison of trajectory lengths
obtained before and after optimization using the parameter-driven A* planning algorithm. The integration of
regression-derived insights into the A* trajectory planning framework significantly enhanced the performance
of the robotic harvesting system, as evidenced by a substantial reduction in average trajectory length for both
fruit types under investigation. Specifically, the optimized model achieved a 14% decrease in average trajectory
length for oranges and an 11% reduction for strawberries relative to the baseline trajectories generated using
conventional A* planning without parameter adjustment. Figure 15 shows the trajectory improvements due to
optimization. These improvements are indicative of a more informed and adaptive planning process, wherein
the regression models provided quantifiable relationships between key input variables, mainly CNN con-
fidence, gripper type, and orientation, along with the expected trajectory length output. By embedding these
relationships into the heuristic function and cost evaluation criteria of the A* algorithm, the system was able to
generate more efficient and context-sensitive trajectories that inherently minimized unnecessary movement,
redundant manoeuvres, and suboptimal grasping approaches. The observed trajectory length reduction is of
particular significance in autonomous harvesting operations, where trajectory optimization directly correlates
with time efficiency. In robotic systems, shorter and smoother trajectory reduce actuation cycles and wear on
joint assemblies, leading to improved operational sustainability. Furthermore, optimized trajectories are more
likely to maintain safe distances from obstacles and dynamic elements in unstructured field environments,
thereby improving navigation reliability.

In parallel to trajectory improvements, a marked enhancement in positional accuracy was also observed
following the integration of the regression-informed planning strategy. Table 4 presents a comparison of posi-
tional accuracy obtained before and after optimization using the parameter-driven A* planning algorithm. The
accuracy of end-effector positioning at the fruit location increased by 10% for oranges and 12% for strawber-
ries. Figure 16 shows the improvements in positional accuracy due to optimization. This improvement can be
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Figure 16. Improvement in positional accuracy through parameter-driven A trajectory planning.

Table 4. Comparison of positional accuracy before and after A* optimization.

Positional accuracy (%) withoutoptimized tra-  Positional accuracy (%) using optimized A" tra-
Fruit type jectory planning jectory planning Improvement (%)
Oranges 82 92 12
Strawberries 79 91 15

attributed to the reduced variability in gripper alignment and motion execution, as the planner increasingly
favoured configurations that aligned with statistically optimal conditions derived from the regression model.
The effect is particularly pronounced for strawberries, which are more sensitive to mechanical misalignment
due to their soft texture and susceptibility to bruising. Enhanced positional accuracy minimizes the probability
of partial grasps or contact-induced damage, which are critical concerns in maintaining post-harvest quality
and ensuring successful pick-and-place operations.

Real-time trajectory planning was conducted on a system equipped with a Core i7 processor (2.30 GHz),
16 GB RAM, and a GPU with 6 GB VRAM. The vision module achieved an average inference speed of 20 frames
per second (FPS), while local trajectory planning was completed within 0.7 s per cycle across all test cases. These
computational specifications enabled seamless integration of CNN-based fruit detection, grasp point
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estimation, and dynamic trajectory optimization without processing bottlenecks, thereby supporting real-time
operation in both greenhouse and orchard environments. These results indicate that real-time operation can be
maintained without requiring high-end infrastructure. Consequently, the computational time does not impose
asignificant burden on production costs. Therefore, under monotype conditions, the overall cost of produc-
tion remains manageable, supporting the practical feasibility of commercial deployment.

These findings underscore the synergistic benefits of coupling data-driven modeling with classical search-
based planning algorithms. The regression model not only served as a predictor of trajectory length outcomes
but also functioned as a feedback mechanism that refined the planner’s behavior in real-time. This integration
facilitated a higher degree of cohesion between the perception system (CNN-based fruit detection), the manip-
ulation subsystem (gripper configuration and orientation), and the motion planning logic (A* trajectory gen-
eration). Such alignment is fundamental for effective performance in complex agricultural environments,
where variability in fruit position, occlusion, terrain, and lighting conditions necessitate adaptive and intelli-
gent behavior from autonomous platforms. Hence, the incorporation of multivariate regression outputs into
the A* framework led to demonstrable gains in both spatial efficiency and targeting accuracy. These enhance-
ments validate the utility of parameter-driven trajectory planning and suggest a promising direction for the
development of intelligent agricultural robots capable of real-time adaptation and optimization. Future exten-
sions could include the use of dynamic regression models trained under varying environmental contexts or the
embedding of real-time learning components to enable continual refinement of the planning strategy during
field deployment. Despite the promising outcomes, certain limitations must be acknowledged. The current
study only evaluates two types of grippers, three-finger and two-finger designs, which are widely adopted due to
their established effectiveness. However, future studies should explore a broader array of end-effectors, includ-
ing suction-based and scissor-type grippers, to provide a more comprehensive understanding of gripper-spe-
cific interactions with trajectory planning. The study also focuses exclusively on the A* algorithm. Comparative
analyses involving alternative trajectory planning strategies, such as Dijkstra (D*), Rapidly exploring Random
Tree (RRT"), or learning-based methods, would provide valuable insights into the relative performance and
adaptability of each approach. Additionally, the scope of the study is limited to only two fruit types. Incorporat-
ing a wider range of fruits with varying shapes, sizes, and fragilities would improve the models’ generalizability
and allow their application across more diverse harvesting scenarios. The results of this regression-guided A*
trajectory planning framework show the effectiveness of integrating statistical modeling into autonomous
robotic systems. The current study quantifies the impact of manipulation and perception parameters on
motion efficiency and develops adaptive and data-driven harvesters proficient in working under different agri-
cultural environments. By adaptively adjusting its cost function with contextual data, reinforcement learning
can improve the A* for future work, leading to more effective pathways and better obstacle avoidance in
dynamic harvesting scenarios. Moreover, the color dependence may limit its success for detecting green fruits,
such as pears, where low background contrast poses a prospective challenge. However, the future work needs to
focus on adding depth cues and shape-based features during model training. To increase detection robustness
over alarger variety of fruit species, multispectral imaging is also advised.

Conclusions

o The trajectory planning is a key factor in autonomous robotic harvesting systems as it directly affects
operating efficiency, energy consumption, collision avoidance, and fruit acquisition success. The
conventional geometry-based planning methods limit the flexibility in responding to real-time sensory data
and mechanical constraints during unstructured agricultural settings, where fruit types and orientation
undergo frequent variations.

e Through perception-informed and actuator-aware motion optimization, the current study highlights the
need to combine data-driven regression modeling with traditional A* trajectory planning to enhance robotic
fruit harvesting performance.

o Theaverage trajectory length is reduced by 14% for oranges and 11% for strawberries when multivariate
regression results are used, indicating a quantifiable increase in trajectory planning efficiency.

e CNN detection confidence is the dominant predictor among the modeled variables, demonstrating how
critical precise fruit localization is for maximizing navigation and minimizing redundancy in planned
motion.

o The system can penalize misalignment symmetrically by incorporating a quadratic orientation term, which
is especially helpful when handling soft fruits like strawberries, where end-effector alignment is essential to
preventing damage.
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e The regression models exhibited strong predictive capability, achieving R* values of 0.89 and 0.82, with
RMSE of 3.2 cm and 4.7 cm, and MAPE of 5.4% and 7.9%, respectively, for oranges and strawberries.

e Positional accuracy during fruit grasping improved by 12% for oranges and 15% for strawberries, indicating
enhanced coordination between visual perception, motion planning, and mechanical execution.

o Theresults validate the potential of coupling sensory data, gripper dynamics, and trajectory planningin a
unified framework to achieve more intelligent and responsive robotic behavior in unstructured agricultural
settings.

e Future work should focus on expanding the approach to incorporate a wider range of fruit types, diverse
gripper architectures, and comparative evaluations with alternative planning algorithms for broader
applicability and real-time field deployment. Furthermore, incorporating depth cues and shape-based
features into model training is recommended to improve detection robustness. Moreover, reinforcement
learning can be integrated with A* by adaptively tuning its cost function parameters based on environment
feedback to optimize path efficiency and obstacle avoidance.
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