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A B S T R A C T

Compared to the Falling Weight Deflectometer (FWD) technology, Traffic Speed Deflectometer (TSD) provides 
continuous, non-destructive monitoring of pavement structural health. This feature has prompted many au
thorities worldwide to explore its potential in network-level pavement structural evaluation. Through parameter 
inference using TSD measurements, engineers can obtain physics-based evidence regarding pavement material 
parameters, which is crucial for informed decision-making on road operations and maintenance. However, three 
key challenges in existing TSD-based parameter inference have limited its practical uptake: (i) many studies 
introduce an intermediate correlation between TSD data and FWD data for FWD-based parameter inference, 
which adds extra uncertainty; (ii) conventional deterministic inference workflows yield estimates without un
certainty quantification; and (iii) high–fidelity simulations incur prohibitive computational costs, limiting real- 
time or near-real-time parameter inference. To overcome these gaps, this study presents a methodological 
framework for probabilistic parameter inference using TSD measurements. The innovation lies in the synergistic 
combination of: (i) a physics-based simulator, PaveMove, that directly simulates pavement responses under TSD 
dynamic loading, (ii) machine learning surrogates to accelerate PaveMove calculations, and (iii) Bayesian 
updating to transform traditional deterministic parameter inference into a probabilistic framework that explicitly 
incorporates multiple material and measurement uncertainties. The proposed framework is rigorously validated 
and compared with conventional parameter inference techniques. The results indicate that the proposed 
framework effectively addresses the limitations inherent in traditional techniques and provides more accurate, 
consistent, and reliable results of parameter inference. The proposed framework paves the way for the broader 
adoption of TSD technology in practice, ultimately permitting real-time, uncertainty-aware pavement manage
ment at the network scale.

Introduction

Road infrastructure is a fundamental component of modern society 
[1,2,3,4]. However, pavements, as critical components of road infra
structure, are susceptible to deterioration due to a combination of fac
tors, including repeated traffic loading, environmental conditions [5,6], 
material aging [7,8], and inadequate maintenance. The resulting poor 
road conditions can be substantial and lead to reduced ride quality, 
safety hazards, increased vehicle operating costs [9], and higher main
tenance expenses, among other issues. Therefore, accurate measurement 
and prediction of pavement performance are crucial for implementing 

timely and cost-effective pavement maintenance and rehabilitation 
strategies.

Various methods have been developed to assess and predict pave
ment performance. Data-driven methods have gained considerable 
attention in recent years [10,11,12,13]. However, data-driven ap
proaches are heavily reliant on the availability of large, high-quality 
datasets, which can be challenging and costly to obtain. Furthermore, 
machine learning models are often criticized for their “black box” na
ture, where the underlying mechanisms driving the predictions may not 
be fully transparent [14,15,16]. As an alternative, field tests and sensor- 
based field measurements have been employed in pavement 
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performance evaluation [17,18,19,20]. These methods provide direct 
measurements of pavement responses and often offer valuable insights 
into structural behavior. However, the installation and maintenance of 
sensors can be complex and expensive, and they typically provide only 
localized measurements.

In this context, non-embedded sensors offer additional approaches 
for pavement performance evaluation. The Falling Weight Deflec
tometer (FWD) [21,22,23] is a widely used non-destructive testing 
(NDT) device. However, FWD is a stationary test method that necessi
tates traffic management, which can be time-consuming and disruptive. 
As a result, the Traffic Speed Deflectometer (TSD), a more recent NDT 
technology, has been developed to measure pavement responses under 
moving traffic loads [20,24,25,26,27].

TSD offers the distinct advantage of efficient, network-level pave
ment evaluation without disrupting traffic flow. It measures deflection 
velocity (slope) at traffic speed using Doppler lasers and calculates 
corresponding pavement deflections. Multiple techniques have been 
proposed for this task, including some advanced ones [28,29]. Studies 
have shown that pavement modulus back-calculated from TSD mea
surements correlate well with those from FWD measurements 
[15,16,30]. Due to its mobile nature, TSD is more applicable for eval
uating pavement conditions and structural capacities at the network 
level, in contrast to FWD, which is primarily used for project-level 
assessment. However, research on TSD is still relatively limited and 
less established compared to FWD-based prediction models [37]. This 
highlights the need for new models specifically tailored to TSD mea
surements. Katicha et al. [25] provided a comprehensive review of TSD 
research and applications in the United States over the past decade.

In many cases, sensor and field test data require interpretation to 
obtain meaningful information about pavement structural conditions. 
Parameter inference, also known as parameter identification, back- 
analysis, or back-calculation, is a commonly used approach 
[22,24,31,32,33,34]. This process involves using measured pavement 
responses to estimate key pavement parameters, such as layer modulus 
and thicknesses, which are crucial for pavement structural analysis and 
performance prediction. Parameter identification typically comprises 
several components. First, a model is needed to simulate pavement re
sponses under loading. Various methods can be used, including analyt
ical solutions, finite element method (FEM) [35], spectral element 
method [36], and semi-analytical methods. Second, an algorithm is 
required to estimate pavement parameters by evaluating the discrep
ancies between measured and simulated pavement responses. These 
algorithms can be broadly classified into deterministic and probabilistic 
approaches. Deterministic approaches, such as residual minimization 
[32,33], aim to identify the single “best-fit” set of parameters by mini
mizing the difference between measured and simulated pavement re
sponses. In contrast, probabilistic approaches, such as Bayesian 
updating, provide a framework for quantifying the uncertainties asso
ciated with the parameter estimates.

Motivated by these needs, the present study pioneers the investiga
tion of probabilistic parameter inference using TSD measurements. 
However, three key challenges in existing TSD-based parameter infer
ence have limited its practical adoption: 

• First, many existing strategies begin by correlating TSD data with 
FWD data before using FWD-based techniques for parameter infer
ence [24]. This is likely due to the limited availability of methods 
capable of simulating pavement responses under TSD loading, as 
well as the long-standing industry reliance on FWD in pavement 
management. However, Hamidi et al. [37] highlighted that the 
conversion between TSD and FWD data is not universally applicable 
and depends on numerous factors. As a result, such conversions 
inevitably introduce uncertainties, which may hinder the accuracy 
and reliability of parameter inference.

• Second, parameter identification coupled with high-fidelity numer
ical simulations can be computationally demanding due to the 

iterative nature of the process. For example, Liu et al. [38] reported 
that each simulation using ABAQUS requires about 420 s, and even 
with improved techniques, the runtime remained around 120 s. 
While this may be acceptable for interpreting FWD measurements, it 
is incompatible with the continuous nature of TSD data collection, 
which is expected to yield real-time or near-real-time interpretations. 
The broader application of TSD is hindered by this limitation.

• Third, the presence of uncertainties poses a significant challenge. 
Material properties are inherently variable. Uncertainties also arise 
from modelling assumptions and field measurements. Conventional 
deterministic parameter inference techniques often struggle to 
adequately account for these sources of uncertainty, which can then 
limit their reliability and robustness [22,37].

Given these limitations and challenges, there is a need for robust and 
efficient approaches for probabilistic pavement structural evaluation. 
This study addresses this need by presenting a novel framework for the 
probabilistic interpretation of TSD measurements. The innovation lies in 
the synergistic combination of three core components, each specifically 
designed to tackle the challenges outlined above: 

• First, a physics-based simulator, PaveMove, was developed to 
directly simulate pavement responses under TSD dynamic loading. 
The use of this model eliminates the common intermediate step of 
correlating TSD measurements with FWD measurements for param
eter inference.

• Second, to address the high computational demand associated with 
repeated high-fidelity simulations in parameter inference, machine 
learning was employed to develop surrogate models that enable 
rapid computation without compromising accuracy.

• Third, Bayesian updating was incorporated to transform conven
tional deterministic parameter inference into a fully probabilistic 
framework. Multiple material and measurement uncertainties can 
then be explicitly considered in parameter inference.

In the present study, the proposed framework was rigorously vali
dated using simulated TSD measurements. A comparison with conven
tional parameter inference techniques was also conducted. The results 
indicate that the proposed framework effectively addresses the limita
tions inherent in traditional techniques and provides more accurate, 
consistent, and reliable parameter estimates. This framework paves the 
way for the broader adoption of TSD technology, ultimately permitting 
real-time, network-scale pavement management that explicitly accounts 
for uncertainty.

Key Components in the Probabilistic Framework

PaveMove

A software developed in-house called PaveMove is used to simulate 
pavement responses under TSD dynamic loading. In PaveMove, pave
ment is modelled as a layered structure with TSD loading represented as 
a moving surface load, as shown in Fig. 1. The simulation of pavement 
responses under a moving TSD loading is based on a Spectral Element 
Method (SEM) procedure, which comprises the following steps [39]: 

(i) The moving load problem is transformed into a coordinate system 
that travels with the load.

(ii) The problem is further transformed to the wavenumber- 
frequency domain via a forward Fourier transform. The stiff
ness matrices for both a layer spectral element and a semi-infinite 
spectral element can then be derived.

(iii) The global stiffness matrix for the pavement structure is assem
bled, and appropriate boundary conditions are applied to 
compute the nodal responses.
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(iv) The calculated response fields within the pavement layers are 
converted back to the space–time domain using an inverse 
Fourier transform.

(v) If necessary, the response fields in the moving coordinate system 
are transformed back to the stationary coordinate system.

The SEM approach combines the geometric flexibility of the Finite 
Element Method (FEM) with the high accuracy characteristics of spec
tral methods. For pavement dynamic analysis, each pavement layer is 
modelled by a single spectral element with accurate response formula
tions. This strategy minimizes the number of elements required, which is 
equal to the number of pavement layers, and reduces the size of the 
global stiffness matrix, further improving computational efficiency. In 
addition, the use of precise shape functions further enhances the accu
racy of the results. As a result, the SEM-based procedure in PaveMove 
can accurately and efficiently predict pavement responses under moving 
TSD loadings. In PaveMove, users can define the number of pavement 
layers, specify the material parameters of each layer, set the speed of the 
TSD device, and configure the TSD loading conditions. Additionally, 
each pavement layer can be simulated as purely elastic, elastic with 
hysteretic damping, or viscoelastic, which enables a versatile approach 
to pavement modelling under various dynamic conditions and material 
constitutive behavior.

The accuracy of PaveMove has been rigorously validated. First, its 
numerical performance under purely elastic conditions was compared 
with the simulation results presented in Nielsen [40], which used a semi- 
analytical method and elastic materials. The agreement shown in Fig. 2 

(a) confirms the numerical accuracy of PaveMove. Furthermore, real- 
world TSD measurements from Nielsen [40] were used to validate 
PaveMove further, with the results shown in Fig. 2(b). For both vali
dations, the parameter values reported in Nielsen [40] were used as the 
inputs for PaveMove. The ability of PaveMove to simulate damping 
material behaviour allows it to accurately replicate both the magnitude 
and shape of the deflection slope observed in field TSD results. These 
validations underscore the robust accuracy of PaveMove in practical 
applications.

Bayesian model updating

Bayesian updating is an effective probabilistic technique used to 
infer statistical information about single or multiple material parameters 
using field measurements. This is achieved through the estimation of the 
posterior probability density function (PDF) of these material parame
ters [41]. According to the Bayes’ theorem, the posterior PDF is calcu
lated as follows: 

fX(x|ŷ) = k1 • fX(x) • L(ŷ) (1) 

where fX(x) and fX(x|ŷ) represent, respectively, the prior and posterior 
PDFs of material parameters X, X ¼ (X1, X2, X3, …, Xn), with n being the 
number of material parameters to be updated using field measurements 
ŷ, ̂y ¼ (ŷ1 , ̂y2 , ̂y3 , …, ŷm ), where m is the number of field measurements; 
x is a sample of X. k1 is a normalization constant that ensures the integral 
of fX(x|ŷ) over the probabilistic domain of X is equal to 1, i.e., k1 =

1/
∫

fX(x) • L(ŷ)dx; and L(ŷ) is the likelihood function.

Fig. 1. A typical pavement system and TSD configuration simulated in PaveMove.

Fig. 2. Validation of PaveMove.

Z.Z. Wang et al.                                                                                                                                                                                                                                 Transportation Geotechnics 55 (2025) 101715 

3 



In addition, to fully utilize field measurements to update the prob
ability distributions of material parameters, it is necessary to first 
construct the likelihood function based on the various types of field 
information. This is a crucial step in Bayesian model updating [42]. 
Conceptually, the likelihood function represents the probability of the 
occurrence of the field information ŷ given that the uncertain parame
ters X take on a specific value x. Mathematically, it is expressed as 
follows: 

L(ŷ)∝f(ŷ|X = x) (2) 

In practice, due to limitations in the precision of instruments and 
experimental apparatus, human errors, or other random factors, mea
surement errors are unavoidable. Therefore, measurement errors are 
typically treated as additional uncertainties that can be incorporated 
into the simulated responses of the system under study. Similarly, model 
error exists in any simulation model due to oversimplifications of real- 
world conditions in engineering systems, such as boundary conditions 
and constitutive models of the materials. Because of model error, the 
responses of an engineering system evaluated by a model generally do 
not perfectly align with the observed performance of the system. Similar 
to measurement errors, model errors can be added to the simulated re
sponses of the engineering system under study. In many cases, mea
surement and model errors are assumed to follow a normal distribution 
(e.g., [4,42,43]) with a mean of zero and a standard deviation of σU. In 
other instances, biases might be considered, leading to measurement 
and model errors having a non-zero mean of μU. Due to the presence of 
these errors, assuming a normal distribution, the corresponding likeli
hood function can be constructed as follows: 

L(ŷi) =
1

̅̅̅̅̅̅
2π

√
σi,U

e

[

−
1

2σ2
i,U
(ŷi − gi,X(x)− μi,U )

2

]

(3) 

where ŷi is the i-th field measurement; gi,X(x) is the simulated system 
response at the i-th field measurement location using the parameter 
sample x; μi,U and σi,U are, respectively, the mean and standard deviation 
of the uncertainty at the i-th measurement location. The equation above 
illustrates the construction of the likelihood function using a single field 
measurement and assuming normally distributed uncertainties.

When multiple field measurements are used simultaneously for 
parameter inference, a correlation matrix C, which describes the de
pendency of uncertainties at these multiple measurement locations, is 
needed to construct the joint normal probability distribution as follows: 

L(ŷ) =
1

2π
m
2 |C|

1
2
e

[

−
1
2(ŷ− gX(x)− μU )

TC− 1(ŷ− gX(x)− μU)

]

(4) 

where |C| is the determinant of C.
In practice, the choice of the correlation matrix can vary depending 

on the type of field measurement. For measurements taken from sepa
rate sensors, such as a group of strain gauges, it is commonly assumed 
that the uncertainties associated with these measurements are inde
pendent. However, when multiple measurements are taken by a single 
sensor, such as an inclinometer, measurement uncertainties are typically 
correlated [3,4]. Similarly, modelling uncertainties arising from the 
assumptions or simplifications inherent in the numerical model are also 
typically correlated [44]. However, it is often challenging to obtain 
precise correlation values, so the assumption of independence is 
frequently employed.

In many instances, it is not feasible to calculate the posterior distri
butions analytically. Therefore, sampling techniques are often employed 
in Bayesian updating. The Markov chain Monte Carlo simulation using 
the Metropolis-Hastings algorithm (MCMC-MH) is a common technique 
for this task, and further details can be found in [22,44]. It is important 
to note that the initial samples generated by the algorithm may not 

accurately represent the posterior PDF because the Markov chain has not 
reached a steady state. Therefore, in practice, a certain number of initial 
samples are often considered as burn-in samples and are discarded from 
the final posterior samples. In addition, the scale factor in the MCMC- 
MH algorithm often needs fine-tuning through a trial-and-error pro
cess to ensure the accuracy and efficiency of the results.

Machine learning as surrogates

As previously emphasized, parameter inference coupled with nu
merical simulations can be a computationally intensive process. For 
example, the MCMC-MH algorithm may necessitate several thousand 
samples to adequately approximate the posterior distribution. Similarly, 
conventional deterministic parameter inference techniques may also 
require a few hundred samples for the optimization algorithm to 
converge to an optimal solution. Therefore, a surrogate model is often 
employed to expedite these calculations while still effectively repre
senting the underlying physics of the simulation models.

The fundamental principle of surrogate modelling involves approx
imating the complex physics-based relationship between numerically 
calculated system responses and their corresponding input parameters 
using a simpler function, and this is often achieved through training a 
machine learning model using data generated from the original simu
lation model. Once the surrogate model has been adequately trained and 
tested, it can be used as a substitute for the original simulation model, 
permitting rapid calculations with significantly reduced computational 
resources. In the present study, surrogate modelling is specifically 
employed to predict pavement deflections under TSD dynamic loadings 
based on a defined set of input parameters.

The surrogate model is specifically designed for the typical three- 
layer pavement system illustrated in Fig. 1. Table 1 provides a 
comprehensive summary of all the input parameters considered in the 
development of this global surrogate model. While certain parameters 

Table 1 
Input parameter space for surrogate modelling.

Parameters Lower 
Bound

Upper 
Bound

Remarks

Surface 
layer

Modulus, 
Esurface (MPa)

100 30,000 [25,45,46,47,48,49,50,51]

​ Damping 
ratio,εsurface

0.01 0.3

​ Poisson’s 
ratio,νsurface

0.25 0.35

​ Unit weight, 
γsurface (kN/m3)

22 25

​ Thickness, 
hsurface (m)

0.05 0.5

Base layer Modulus, Ebase 

(MPa)
50 30,000

Damping 
ratio,εbase

0.01 0.2

Poisson’s 
ratio,νbase

0.25 0.35

Unit weight, 
γbase (kN/m3)

18 22

Thickness, 
hbase (m)

0.1 0.7

Subgrade 
layer

Modulus, 
Esubgrade (MPa)

10 500

Damping 
ratio,εsubgrade

0.01 0.1

Poisson’s 
ratio,νsubgrade

0.25 0.35

Unit weight, 
γsubgrade (kN/ 
m3)

16 20

Truck Truck speed 
(km/h)

50 100

Axle load (kN) 40 130
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may have a less significant impact compared to the modulus and 
thickness of the three layers, they are included to ensure the surrogate 
model’s applicability as a general global model. Based on a thorough 
review of existing literature (i.e., refer to Table 1), the conservative 
upper and lower bounds of all parameters are also detailed in the table. 
The surrogate model will be trained to accurately represent the entire 
parameter space. It is worth highlighting that these bounds have been 
intentionally broadened beyond typical values reported in the literature 
to ensure the surrogate model can handle unusual or extreme scenarios. 
The outputs of the model consist of the pavement deflection measured at 
0.25 m intervals, ranging from 1.5 m behind the measuring wheel to 5 m 
ahead of it. The subsequent steps outline the construction of this sur
rogate model: 

(i) Based on the defined bounds summarized in Table 1, Latin Hy
percube sampling is utilized to generate 25,000 parameter 
combinations.

(ii) PaveMove is employed to simulate each of these 25,000 param
eter combinations. The resulting pavement deflections at the 
multiple measurement locations are extracted.

(iii) The generated dataset, consisting of 25,000 input samples each 
with 16 parameters and corresponding 25,000 output samples 
each with 27 deflection measurements, is partitioned into a 
training dataset (70 %) and a validation dataset (30 %) for 
training an Artificial Neural Network (ANN) model.

(iv) Based on the parameter information in Table 1, an additional 
5,000 parameter combinations that are different from the initial 
25,000 samples are further generated. These combinations are 
simulated using PaveMove to provide an independent test dataset 
for an unbiased evaluation of the predictive performance of the 
trained global surrogate model.

(v) After training and validating the global surrogate model using 
this unseen data, it can be confidently used as a computationally 
efficient alternative to the original PaveMove model for subse
quent bulk calculations.

The architecture and hyperparameters of the ANN model are sum
marized in Table 2. Since ANN is an established machine learning 
model, detailed technical descriptions are omitted in the present study. 
Fig. 3 presents the key results evaluating the performance of the trained 
ANN model. Fig. 3(a) illustrates the training and validation losses, which 
are terminated after approximately 1,000 epochs due to the early 
stopping criteria specified in Table 2. This is an important configuration 
that minimizes overfitting and preserves the generalization capability of 
the model. Fig. 3(b) compares the PaveMove-predicted pavement 
deflection profile with the ANN-predicted results for a case randomly 
selected from the 5,000 test samples. The remarkable match between the 
ANN and PaveMove outputs highlights the ANN’s strong predictive 
performance, even for previously unseen input data. To further validate 
the model, Fig. 3(c) compares the ANN-predicted and PaveMove- 
predicted deflections for all 5,000 test samples, resulting in a total of 
135,000 data points (27 deflection points per sample). The high coef
ficient of determination (i.e., r2 > 0.99) confirms the ANN’s robust ac
curacy across the entire test dataset. In addition, the individual r2 values 
for each of the 27 measurement locations, shown in Fig. 3(d), indicate 

consistently high prediction accuracy across the spatial deflection pro
file. This level of performance is justifiable given that the ANN model is 
trained on data generated by a numerical simulator grounded in well- 
defined physical laws.

The trained ANN model is employed in the subsequent Bayesian 
updating using simulated TSD measurements. While simulating 1,000 
samples using the original PaveMove simulator requires approximately 
25 h, the trained ANN model can complete the same task within a sec
ond. This substantial improvement in computational efficiency enables 
real-time or near-real-time parameter inference. In addition, although 
TSD trucks do not directly measure deflection, the current study focuses 
on deflection itself, which serves as a more intuitive and interpretable 
response variable. In practice, there are several established techniques 
to convert deflection slope to deflection, and the surrogate modelling 
framework developed here can be readily extended to work with 
deflection slope as well.

Probabilistic Simulation of TSD for Sensitivity Analysis

Implementation procedures

Probabilistic sensitivity analyses are first conducted to evaluate the 
influence of uncertainties in pavement material parameters on pave
ment deflections. The trained ANN model is used as the forward simu
lator for this purpose. A key advantage of probabilistic sensitivity 
analysis lies in its ability to explicitly account for uncertainties in ma
terial parameters and permit the computation of both the mean and 
standard deviation of pavement deflections. This provides a more 
comprehensive understanding of how different parameters affect pave
ment responses. In contrast, conventional deterministic sensitivity 
analysis only yields single-value predictions and does not capture the 
uncertainty associated with the results.

Fig. 4 illustrates an example of probabilistic simulation of pavement 
deflections under TSD dynamic loading using the typical parameter 
statistics listed in Table 3. A total of 5,000 parameter combinations are 
generated using Monte Carlo sampling based on the statistics. The three 
uncertain modulus parameters are assumed to follow a lognormal dis
tribution, while all other uncertain parameters follow a normal distri
bution. All distributions are truncated at the upper and lower bounds 
defined in Table 1. The trained ANN model is then used to simulate all 
5,000 parameter combinations within two seconds. Each grey line 
shown in Fig. 4(a) represents the deflection profile for an individual 
Monte Carlo sample, while the mean deflection profile is also plotted for 
reference. Fig. 4(b) shows the statistical distribution of pavement de
flections at the wheel location, and both the mean and coefficient of 
variation (CoV) of deflections are calculated. As shown in the figure, the 
resulting uncertainty in deflections is significant (e.g., CoV = 18.2 %), 
highlighting the importance of explicitly incorporating parameter un
certainty in the simulation and interpretation of TSD measurements.

Table 4 summarizes the parametric cases considered in the present 
study. A total of 5 cases are examined, each focusing on the effect of 
uncertainty in a single parameter—the modulus of the three layers and 
the thickness of the surface and base layers. In each case, all other pa
rameters are held deterministic at the mean values summarized in the 
table. For each case, 5,000 parameter combinations are generated using 
Monte Carlo sampling. Following the visualization shown in Fig. 4, 
selected results from Case 3 of the sensitivity analyses are presented in 
Fig. 5.

Fig. 5 (a) to (c) show the results of varying the CoV of Esubgrade from 
0.1 to 0.3, with a constant mean of 20 MPa and all other parameters 
remaining constant. Similarly, Fig. 5 (d) to (f) show the results with a 
higher mean Esubgrade of 100 MPa under the same CoV variations. It is 
evident that both the magnitude and statistical variability of pavement 
deflections are strongly influenced by uncertainties in Esubgrade. To 
facilitate a systematic investigation of parameter sensitivity, the results 
are broadly categorized into two types—intra-project sensitivity and 

Table 2 
Configurations of the ANN model.

Hyper-parameters Setting

Number of hidden layer 3
Number of neurons in each hidden layer 10
Training algorithm Bayesian regularization back- 

propagation
Maximum iteration 20,000
Early stop criterion 500
Loss function Sum squared errors
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inter-project sensitivity: 

• Intra-project sensitivity evaluates the effects of CoV while keeping 
the parameter mean fixed. This reflects a scenario within a single 
project, where mean material properties are generally known, but 
their statistical variability is uncertain. For example, the comparison 
across Fig. 5 (a) to (c) represents intra-project sensitivity. In this 
context, the CoV of the pavement deflection is the key quantity of 
interest.

• Inter-project sensitivity investigates the effects of varying the mean 
of a parameter while holding its CoV constant. This reflects com
parisons across different projects where material types and designs 

may vary substantially. For example, comparing Fig. 5 (a) with (d) or 
Fig. 5 (b) with (e) highlights inter-project sensitivity. In this case, the 
mean pavement deflection is the main response variable of interest.

Results of sensitivity analysis

Fig. 6 shows the results of the sensitivity analyses for Case 1 (refer to 
Table 4), which investigates the effects of Esurface. Two subcases are 
considered: (i) a stiff base over a soft subgrade, and (ii) a soft base over a 
stiff subgrade. To simplify the discussion, only the deflection at the 
measuring wheel location is analyzed. For meaningful comparisons 
across different cases, it is essential to examine normalized values. In 

Fig. 3. Performance of the trained ANN surrogate model.

Fig. 4. An example of stochastic simulation of pavement deflection under TSD dynamic loading.
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this regard, for inter-project sensitivity, the x-axis represents the 
normalized material property (i.e., normalized with respect to the upper 
and lower bounds shown in Table 1). The y-axis represents the relative 
change in mean deflection compared to the case with the lower bound 
material parameter value. For intra-project sensitivity, the focus is on 
the CoV of the material parameter and the corresponding CoV of 
pavement deflection. Since both quantities are normalized parameters, 
direct comparisons are permitted.

Fig. 6 (a) and (c) show the mean deflections based on 5,000 sto
chastic simulations for various cases. The results show that pavement 
deflection is sensitive to variations in the mean value of Esurface, though 
the degree of sensitivity varies. The sensitivity is more pronounced when 
the surface layer is softer, and the inter-project sensitivity becomes more 
significant with increasing hsurface. However, as the mean Esurface in
creases, the effects of hsurface diminish, indicating reduced inter-project 
sensitivity. In addition, the CoV of Esurface appears to have negligible 
effects on the inter-project sensitivity trends.

Fig. 6 (b) and (d) show the CoV of pavement deflections. The 
different lines within each thickness group correspond to cases with 
different mean Esurface values. In all cases, a linear relationship is 
observed between the CoV of Esurface and the CoV of deflection. For the 
same CoV of Esurface, thicker surface layers result in higher CoV of 
deflection. However, the magnitude of CoV in deflection remains low, 
typically within 3 % to 4 %, indicating that the statistical variability of 
Esurface contributes only marginally to the variability in deflection. In 
addition, these observed trends in both inter-project and intra-project 

sensitivity are largely consistent across the two subcases, despite dif
ferences in the mechanical characteristics of the base and subgrade 
layers.

Fig. 7 shows the results of Case 2, which focuses on the effects of the 
statistics of Ebase on deflections. Two subcases are considered: (i) a soft 
subgrade, and (ii) a stiff subgrade. Similar to Case 1, inter-project 
sensitivity analysis reveals that pavement deflections are significantly 
influenced by variations in mean Ebase, with higher sensitivity in softer 
and thicker base layers and diminishing effects for higher mean Ebase. 
Over the plausible range of Ebase, pavement deflections can vary up to 
60 %. For intra-project sensitivity, a consistent linear relationship is 
observed between the CoV of Ebase and the CoV of pavement deflection 
in all cases, and the sensitivity is also more pronounced for thicker base 
layers. Although the CoV of pavement deflections remains relatively 
small (approximately 4 % to 6 %), it is notably higher than that observed 
for variations in Esurface. In general, the sensitivity trends for Ebase mirror 
those observed for Esurface, but the magnitude of sensitivity of Ebase is 
generally slightly greater.

Fig. 8 shows the results of Case 3 that focuses on the subgrade layer. 
Two subcases with different values of Ebase are considered. As shown in 
Fig. 8 (a), pavement deflections are highly sensitive to variations in 
mean Esubgrade, with deflection magnitude changing by up to 90 % over 
the plausible range of Esubgrade. This level of inter-project sensitivity is 
substantially greater than that observed for both Ebase and Esurface. 
Consistent with patterns in Figs. 6 and 7, the sensitivity to changes in 
mean Esubgrade is more pronounced in softer subgrades, and the general 
trends remain similar across the two subcases with different Ebase. In 
Fig. 8 (b), a linear relationship is again observed between the CoV of 
Esubgrade and the CoV of pavement deflection, affirming the presence of 
intra-project sensitivity. However, a key distinction emerges: the 
magnitude of CoV in pavement deflection due to uncertainty in Esubgrade 
is substantially higher, reaching up to 20 %. This number indicates the 
dominant influence of uncertain Esubgrade on the statistical behavior of 
pavement deflections. Moreover, the trends are consistent across 
different values of Ebase, reinforcing the critical role of the subgrade 
layer in governing the probabilistic response of pavement systems under 
TSD dynamic loading.

Fig. 9 shows the results of Case 4 on the effects of hsurface on pave
ment deflections. As shown in Fig. 9 (a) and (c), variations in hsurface can 
lead to pavement deflection changes of up to 50 % over the plausible 
range, indicating a significant degree of inter-project sensitivity. Unlike 
the nonlinear trend observed in Fig. 6, the degree of inter-project 
sensitivity associated with hsurface is moderately linear. In addition, the 
sensitivity is more pronounced for stiffer surface layers, although the 
effects tend to converge as Esurface increases. For example, results for 

Table 3 
Typical statistical characteristics of material parameters for a three-layer pave
ment system.

Parameters Mean CoV

Surface Esurface (MPa) 3000 0.2
εsurface 0.1 0.15
νsurface 0.3 0.1
γsurface(kN/m3) 22.5 0.05
hsurface (m) 0.1 0.1

Base Ebase (MPa) 5000 0.2
εbase 0.1 0.1
νbase 0.3 0.1
γbase(kN/m3) 21 0.05
hbase (m) 0.3 0.15

Subgrade Esubgrade (MPa) 60 0.2
εsubgrade 0.05 0.05
νsubgrade 0.3 0.05
γsubgrade(kN/m3) 18 0.05

Truck Truck speed (km/h) 100 −

Axle load (kN) 130 −

Table 4 
Cases considered in the probabilistic sensitivity analysis.

*Other parameters follow the mean values shown in Table 3.
#Modulus follows a lognormal distribution, and thickness follows a normal distribution. All distributions are truncated at the upper and lower bounds listed in Table 1.
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Fig. 5. Selected results of Case 3 of the probabilistic sensitivity analysis.

Fig. 6. Results of Case 1 of the probabilistic sensitivity analysis. The different lines shown in subplot (b) and (d) within each thickness group correspond to cases with 
different mean Esurface values.
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Esurface = 6 GPa and 15 GPa show only marginal differences, suggesting a 
diminishing influence of hsurface at higher Esurface values. For intra- 
project sensitivity, a linear relationship between the CoV of hsurface 
and the CoV of deflection is also observed, as shown in Fig. 9 (b) and (d). 
Similar to the inter-project results, the effect of CoV of hsurface is more 
noticeable for stiffer surface layers. Nevertheless, the absolute values of 
the CoV of deflection are still relatively small, indicating that the sta
tistical uncertainty in hsurface exerts only a moderate influence on the 
statistical variability of pavement responses.

Fig. 10 shows the results of Case 5 on the effects of hbase. As shown in 
the figure, variations in mean hbase result in a significant inter-project 
sensitivity, with deflection changes reaching up to 60 % over the 

plausible range. The relationship between mean hbase and pavement 
deflection is moderately linear, and the sensitivity is more pronounced 
for stiffer base layers. For intra-project sensitivity, a linear relationship is 
again observed, consistent with the trends seen in previous cases. The 
degree of sensitivity increases with stiffer base layers. Notably, the 
resulting CoV of pavement deflection can reach up to 20 %, which is 
higher than the corresponding values observed for hsurface. This suggests 
that uncertainties in hbase have a more pronounced impact on the sta
tistical variability of pavement deflection compared to the uncertainties 
in hsurface.

Fig. 7. Results of Case 2 of the probabilistic sensitivity analysis. The different lines shown in subplot (b) and (d) within each thickness group correspond to cases with 
different mean Ebase values.

Fig. 8. Results of Case 3 of the probabilistic sensitivity analysis. The different lines shown in subplot (b) within each Ebase group correspond to cases with different 
mean Esubgrade values.
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Fig. 9. Results of Case 4 of the probabilistic sensitivity analysis. The different lines shown in subplot (b) and (d) within each Esurface group correspond to cases with 
different mean hsurface values.

Fig. 10. Results of Case 5 of the probabilistic sensitivity analysis. The different lines shown in subplot (b) and (d) within each Ebase group correspond to cases with 
different mean hbase values.
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Implications on parameter inference

The sensitivity of input parameters has critical implications for 
parameter inference because it directly influences the identifiability and 
accuracy of inferred values. Specifically, parameter inference is most 
effective for parameters to which the system response is sensitive. For 
parameters exhibiting low sensitivity, multiple parameter values can 
yield similar system responses, resulting in non-uniqueness in parameter 
inference. This challenge is particularly significant for deterministic 
parameter inference techniques such as the residual minimization 
technique, which provides a single set of inferred parameters by mini
mizing the difference between simulated and measured system re
sponses. For insensitive parameters, this inferred value may not 
represent the true solution, as many other parameter combinations 
could produce similar residuals. Moreover, measurement uncertainties 
compound this challenge.

Fig. 11 summarizes the average degree of sensitivity across all pa
rameters evaluated in Figs. 6 to 10. For inter-project variability, pave
ment deflection is found to be most sensitive to Esubgrade, followed by 
Ebase and Esurface. This ranking implies that TSD measurements are most 
effective for inferring Esubgrade and least effective for Esurface. In addition, 
the results suggest that parameter inference is generally more effective 
for softer pavement systems than for stiffer systems, due to the higher 
sensitivity of deflection to changes in these parameters in softer layers. 
In terms of intra-project sensitivity, the very low CoV of deflection 
associated with Esurface and Ebase indicates that it can be challenging to 
infer their statistical variability using TSD measurements. In contrast, 
the statistical variability of Esubgrade can be more reasonably inferred 
using TSD measurements, owing to the stronger sensitivity observed. For 
geometric parameters, the sensitivity results suggest that TSD mea
surements are more effective for inferring hbase than hsurface. Further
more, while the inference of the statistical variability of hsurface and hbase 
is moderately feasible, it is still more promising than inferring the 
variability of Esurface and Ebase.

Bayesian Updating of TSD Data

In this section, Bayesian updating is implemented using simulated 
TSD measurements to infer both pavement modulus and layer thickness. 
As outlined in Table 5, two test cases are considered in the present study. 
In test case 1, TSD measurements are utilized to infer the modulus of all 
three pavement layers. In test case 2, TSD measurements are used to 
infer the thickness of the surface and base layers. The results of both test 
cases are discussed in detail and compared with those obtained with the 
conventional deterministic residual minimization technique to highlight 
the advantages associated with Bayesian updating.

A major advantage associated with using simulated TSD measure
ments in the present study is the availability of ground truth parame
ters—i.e., known material properties and layer thicknesses. This enables 
parameter inference to be performed in a controlled environment, 
allowing for an effective validation of the employed parameter inference 
techniques. Most importantly, with known ground truth, the results can 
be interpreted alongside the sensitivity analysis results presented in 
Section “Probabilistic simulation of TSD for sensitivity analysis”, espe
cially for verifying the several hypothesized implications discussed in 
Section “Implication on parameter inference”.

Generation of simulated TSD measurements

Following the prior knowledge listed in Table 5, a set of parameter 
values can be randomly sampled from the defined prior distributions 
and considered as the ground truth. The trained ANN model then takes 
these values as inputs to generate the corresponding pavement deflec
tion profiles. Two example cases of deflection profiles generated for test 
case 1 are shown in Fig. 12. Since the quantity and quality of field 
measurements can significantly affect the reliability of parameter 
inference, a total of 10 TSD measurement locations are simulated, 
reflecting a realistic configuration for modern TSD systems. To simulate 
TSD measurements more realistically, measurement noise is added to 
the ANN-generated TSD measurements. In the present study, a ± 5 % 
measurement error is assumed for the TSD system for demonstration 
purposes. In practice, if a calibrated measurement error is available, it 
can be readily incorporated into the Bayesian model updating frame
work. Following the recommendation of Finno & Calvello [43], such a 
reported measurement error is typically interpreted as corresponding to 
the 95 % confidence interval of a normal distribution with zero mean, 
from which the standard deviation can be back-calculated. Independent 
noise is then sampled and added to the ANN-generated deflection values 
to obtain the final simulated TSD measurements for subsequent Bayesian 
updating. Since TSD sensors at different measuring locations operate 
independently, it is reasonable to assume uncorrelated measurement 
uncertainties across locations. The final simulated TSD measurements 

Fig. 11. Average results of the probabilistic sensitivity analyses.

Table 5 
Prior knowledge of material parameters.

Parameters Mean CoV

Test case 1 Esurface (MPa) 3500 0.4
Ebase (MPa) 5500 0.4
Esubgrade (MPa) 70 0.4

Test case 2 hsurface (m) 0.15 0.3
hbase (m) 0.3 0.3
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incorporating noise are also shown in Fig. 12 for test case 1.

Bayesian updating

Test case 1
In this section, the simulated TSD measurements shown in Fig. 12(a)

are used to statistically infer the three pavement modulus values. As a 
standard procedure in Bayesian updating using the MCMC-MH algo
rithm, the length of the Markov chain and the scale factor are first 
determined. Fig. 13 presents the resulting Markov chain with a total 
length of 20,000 samples. It is worth highlighting that the trained ANN 
surrogate model can simulate these samples in approximately 5 min, 
which contrasts with the 20 days required by the original PaveMove 
model.

The scale factors are selected using a trial-and-error approach by 
visually inspecting the behavior of the Markov chain. As shown in 

Fig. 13, the chain exhibits stable fluctuations around a converged mean 
and standard deviation without evidence of step-like patterns or drift, 
indicating appropriate tuning of the scale factors. After discarding the 
initial 1,000 burn-in samples, the posterior distributions of the three 
modulus parameters are obtained and shown in Fig. 13. To statistically 
characterize these distributions, a normal distribution is fitted to the 
posterior samples, and the corresponding posterior mean and CoV are 
indicated in the figure.

Fig. 14(a) to (c) compare the posterior distributions with the prior 
distributions, ground truth parameter values, and the results from the 
deterministic residual minimization technique. The impact of Bayesian 
updating varies considerably across the three parameters. For Esurface, 
the posterior CoV is approximately 0.37, only marginally reduced from 
the prior CoV of 0.4. This indicates the limited effectiveness of Bayesian 
updating for this parameter. Similarly, the posterior CoV of Ebase is 
approximately 26 %, which represents some improvement but remains 

Fig. 12. Examples of simulated TSD data with/without measurement errors for test case 1.

Fig. 13. Convergence of the Markov chain in the MCMC-MH algorithm.
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relatively high. In contrast, the effects of Bayesian updating on Esubgrade 
are very significant. The prior CoV of Esubgrade is substantially reduced 
from 40 % to approximately 4 %, showing that Bayesian updating is 
highly effective for this parameter. Furthermore, across all three pa
rameters, the posterior mean values closely align with the known ground 
truth, demonstrating the accuracy of the parameter inference. In addi
tion, the residual minimization technique also provides estimates that 
agree well with the ground truth.

These observations can be interpreted in light of the sensitivity 
analysis results presented earlier. The limited update in the CoV of 
Esurface and Ebase is due to the low sensitivity of pavement deflections to 
these parameters, as indicated in Fig. 11(b). In other words, variations in 
Esurface and Ebase do not lead to significant changes in deflection, making 
them hard to infer from TSD measurements. In contrast, deflections are 
highly sensitive to Esubgrade, allowing this parameter to be effectively 
inferred and its uncertainty greatly reduced.

Fig. 15 (a) shows the pavement deflection predictions before and 
after Bayesian updating. Using only the prior information results in a 
broad 95 % confidence interval, which, although centered around the 
simulated TSD measurements, leads to considerable uncertainty that 
could hinder engineering decision-making. After Bayesian updating, this 
interval is significantly narrowed and better captures the measurement 
noise and aligns more closely with the simulated measurements. The 
residual minimization technique also produces predictions that agree 
well with the simulated measurements, although it lacks a probabilistic 
uncertainty estimate.

To assess the consistency of the Bayesian updating, another reali
zation of the simulated TSD measurement is generated and shown in 

Fig. 12(b). Bayesian updating is then repeated using this new dataset, 
and the results are shown in Fig. 14 (d) to (f) and 14(b). The findings 
from this second realization largely mirror those from the first. While the 
posterior CoVs for Esurface and Ebase remain relatively unchanged, their 
posterior means still agree well with the ground truth. The most accurate 
and uncertainty-reduced inference is achieved for Esubgrade. In addition, 
the updated 95 % confidence interval in Fig. 15(b) effectively bounds 
the simulated measurements. In contrast, the residual minimization 
technique performs poorly in this case for Esurface and Ebase, with large 
discrepancies observed, although its predictions still align with the 
simulated measurements. Further discussions on these aspects are pro
vided in Section “Discussion and limitations”.

Test case 2
In test case 2, simulated TSD measurements are used to update 

hsurface and hbase. Fig. 16(a) shows the realization of the simulated TSD 
measurements used in this test case. The Markov chain is set to 20,000 
samples, and the scale factors are adjusted to ensure the stability of the 
Markov chain. All other analysis procedures are identical to those 
described in test case 1.

Fig. 17 shows the results of parameter inference for hsurface and hbase. 
It is observed that the posterior CoV of hsurface is not effectively reduced 
by the Bayesian updating, indicating the limited effectiveness of the TSD 
measurements in improving knowledge of this parameter. In contrast, 
the posterior CoV of hbase exhibits a marked reduction compared to the 
corresponding prior knowledge, suggesting improved parameter esti
mation. This difference can also be explained by the sensitivity results 
shown in Fig. 11. The higher inter-project and intra-project sensitivities 

Fig. 14. Comparison of the posterior distributions of the three modulus parameters.
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Fig. 15. Pavement deflection predictions before and after Bayesian updating.

Fig. 16. Simulated TSD measurements and the corresponding predictions in test case 2.

Fig. 17. Results of the parameter inference in test case 2.
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associated with hbase suggest that TSD measurements are more effective 
in distinguishing different hbase values than hsurface values. As a result, 
the uncertainty reduction is more pronounced for hbase. Moreover, the 
posterior means of both hsurface and hbase show good agreement with 
their ground truth values, which demonstrates that Bayesian updating 
with TSD measurements is reasonably effective in capturing the average 
parameter values. As a result, the model predictions and their associated 
95 % confidence intervals agree well with the simulated TSD measure
ments. In contrast, for this particular realization, the residual minimi
zation technique fails to infer reasonable values for hsurface and hbase. 
However, as shown in Fig. 16(b), the resulting predictions still align well 
with the simulated measurements. This contrast will be further dis
cussed in the following section.

Discussions and limitations

Consistency in parameter inference

One key benefit of using simulated measurements is the ability to 
perform repeated analyses for investigating the consistency of different 
parameter inference techniques. Following the procedures outlined in 
Section “Bayesian updating of TSD data”, a total of 50 repeated analyses 
are performed. Each analysis involves a different set of randomly 
generated ground truth parameter values and simulated measurement 
errors. As a result, for each parameter, 50 corresponding posterior dis
tributions are obtained. Examining these distributions enables a 
comprehensive evaluation of the consistency and reliability of the 
parameter inference technique.

Fig. 18 compares the posterior distributions from these 50 repeated 
analyses with the corresponding ground truth values for the three 
modulus parameters. The red circles represent the posterior mean 
values, while the shaded regions represent the 95 % confidence intervals 
of the posterior distributions. For comparison, the residual minimization 
technique is also applied to the same 50 repeated analyses. It is observed 
that the posterior means generally agree well with the ground truth 
across the 50 repeated analyses, and the ground truth values largely fall 
within the shaded regions. However, the errors are larger for Esurface and 
Ebase compared to Esubgrade. This observation aligns with the sensitivity 
analysis shown in Fig. 11(a), where the degree of sensitivity for Esurface 
and Ebase is lower than that for Esubgrade. A lower degree of sensitivity 
indicates that multiple Esurface and Ebase can yield similar pavement de
flections, making them harder to distinguish accurately using TSD 
measurements. In contrast, Esubgrade displays much greater sensitivity, 
enabling more accurate posterior estimates. In addition, the posterior 
CoVs for Esurface and Ebase remain higher than those for Esubgrade across 
the 50 analyses. This trend also matches the intra-project sensitivity 
findings presented in Fig. 11(b).

On the other hand, the consistency in the residual minimization 
technique is significantly lower. For Esurface and Ebase, the inferred values 
from the 50 repeated analyses show considerable scatter across the 
parameter space, with several results falling outside the 95 % confidence 
interval of the Bayesian posterior distributions. However, for Esubgrade, 
the performance of the residual minimization technique is much more 
stable and comparable to that of Bayesian updating. Again, these find
ings are consistent with the relative sensitivities shown in Fig. 11(a): the 
scatter is largest for Esurface and smallest for Esubgrade, which directly 
corresponds to their sensitivity levels.

There are two primary reasons why the residual minimization 
technique produces more scattered results than Bayesian updating. First, 
Bayesian updating explicitly incorporates prior knowledge through 
probability distributions, which assigns varying likelihoods to different 
parameter values. This results in lower probabilities for extreme values. 
In contrast, residual minimization typically treats prior knowledge as 
hard bounds for the parameter search, which effectively assigns equal 
probability across the entire parameter space. Second, Bayesian updat
ing explicitly accounts for measurement uncertainties in the likelihood 

function. In contrast, residual minimization considers these un
certainties only indirectly—as weights in the objective function of the 
optimization algorithm. Therefore, residual minimization is more 
vulnerable to being skewed by measurement errors, resulting in the wide 
scatter shown in Fig. 18. These two factors collectively hinder the re
sidual minimization technique in accurately inferring Esurface and Ebase, 
particularly given their moderate levels of sensitivity.

Fig. 19 shows the results of test case 2 based on 50 repeated analyses. 
While the posterior mean values for both hsurface and hbase generally align 
with the ground truth, the 95 % confidence interval for hsurface remains 
consistently wide. In contrast, the confidence interval for hbase is 
consistently narrower, which reflects improved certainty. Similar to the 
modulus parameters, the residual minimization technique performs 
inconsistently across repeated analyses, with numerous instances 
showing significant discrepancies from the ground truth. However, the 
estimates of hbase are comparatively more consistent than those for 
hsurface. All these observations are in agreement with the results shown in 
Fig. 17 and can be similarly explained using the arguments presented 
earlier in this section.

Extrapolation to other pavement conditions

As observed in Section “Bayesian updating of TSD data”, although 
the parameter values identified by the residual minimization technique 
may not be correct, they can still produce deflections that match the 

Fig. 18. Consistency of parameter inference techniques in test case 1.
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simulated TSD measurements. This outcome is not unexpected because 
residual minimization explicitly targets minimizing the absolute differ
ences between model predictions and measurements. However, due to 
the presence of measurement error, the inferred parameter values may 
be skewed relative to their true values, leading to a false sense of ac
curacy in the model predictions. As a result, the close agreement be
tween predicted and measured deflections can be misleading and may 
conceal the fact that the underlying parameter values are incorrect.

In many practical applications, pavement parameters inferred from 
TSD measurements are often used to simulate pavement responses under 
different loading or structural conditions. For example, engineers may 
use the inferred parameters to predict deflections under varying truck 
speeds, loads, or layer thicknesses. To investigate how well the inferred 
parameters generalize to different pavement configurations, an extrap
olation study is conducted. Three sets of simulated TSD measurements 
are generated following the setup used in test case 1. Parameter infer
ence is then performed to obtain the posterior distributions of Esurface, 
Ebase, and Esubgrade. These posterior distributions are subsequently used 
as inputs to simulate deflections under TSD loading in a new pavement 

system, which is characterized by a hsurface of 0.25 m, a hbase of 0.3 m, a 
truck speed of 50 km/h, and a truck load of 60 kN.

Fig. 20 shows the results of this extrapolation exercise. Subplots (a) 
to (c) show the original simulated TSD measurements used for param
eter inference, along with the corresponding deflection predictions ob
tained using both Bayesian updating and residual minimization. Both 
techniques produce deflections that reasonably match the ground truth. 
Subplots (d) to (e) show the deflection predictions made for the new 
pavement system using the parameters obtained from each method. The 
ground truth deflections are also shown for comparison and verification 
purposes. It is evident that the predictions made with the posterior 
distributions from Bayesian updating remain reasonable, with the mean 
predictions closely aligning with the ground truth and the 95 % confi
dence interval fully capturing the actual deflections. In contrast, the 
predictions made with the parameter identified using residual minimi
zation show large discrepancies from the ground truth, indicating that 
incorrect parameter values were identified using TSD measurements in 
the original analysis (e.g., Table 6).

To further evaluate the robustness of these results, the extrapolation 

Fig. 19. Consistency of parameter inference techniques in test case 2.

Fig. 20. Demonstration of extrapolation to a different pavement system.
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exercise is repeated 50 times using different sets of ground truth pa
rameters. Fig. 21 summarizes the comparison between the ground truth 
deflections and those predicted using the inferred parameter for all 50 
analyses. The extrapolation results from Bayesian updating largely agree 
with the ground truth deflections, as evidenced by the clustering of red 
scatter points along the 1:1 diagonal line. In contrast, the results from 
residual minimization show greater variability. While some predictions 
are reasonable, many deviate significantly from the 1:1 line, confirming 
that the residual minimization technique identifies inaccurate param
eter values that lead to poor extrapolation performance. Based on 
Fig. 21, it is demonstrated that Bayesian updating, which explicitly in
corporates both prior distributions and measurement uncertainties, is 
more effective in identifying accurate parameter values that can be more 
reliably used for extrapolation across varying pavement conditions, in 
comparison to the residual minimization technique.

Practical implications

Since TSD differs fundamentally from FWD in its loading mecha
nisms, converting TSD data to FWD-equivalent data lacks a solid 
mechanistic foundation. From a practical perspective, the adoption of 
TSD, being a more complex and costly technology, requires careful 
assessment of its cost-effectiveness and technological readiness. In the 
UK, NDT techniques are adopted to assess road structural strength, and 
the results are used with pavement construction and traffic to determine 

the Network Structural Condition category for each 100 m section. 
Although TSD has been available as an NDT technology in the UK for 
many years, its use in practice remains largely qualitative. The UK road 
sector has reported inconsistencies between the interpreted results of 
TSD and FWD, such as the back-calculated material parameters and the 
Network Structural Condition category, thereby raising concerns about 
the adoption of TSD in place of FWD in practice. One of the key barriers 
to its wider quantitative adoption is the absence of accessible and reli
able predictive models based on TSD measurements. The provision of 
the proposed framework in the present study addresses this gap and 
contributes to enhancing the technological readiness of TSD-based 
pavement evaluation. The developed PaveMove, which directly simu
lates TSD, provides a ready-to-use simulation tool. The integration of 
machine learning significantly improves computational efficiency and 
allows timely interpretation of large volumes of TSD data—an essential 
feature given TSD’s continuous data collection mode. By enabling faster, 
real-time analysis within a given test duration and budget (compared to 
FWD), and eliminating the need for road closures, the framework 
potentially increases the cost-effectiveness and safety of pavement 
condition assessments. Ultimately, it offers a viable path toward inte
grating TSD technology into modern, network-level pavement man
agement systems in a more quantitative, informed, and efficient manner.

Limitations and future work

Future work is encouraged to address some limitations of the present 
study and explore further opportunities in pavement parameter infer
ence using TSD measurements. First, Esurface, Ebase, Esubgrade, hsurface, and 
hbase are not simultaneously updated using TSD measurements. This is 
due to the issue of parameter compensation. For example, a soft but 
thick surface layer may result in deflections similar to those of a stiff but 
thin surface layer. When all five parameters are simultaneously 
considered, such compensatory effects can become more complex and 
exacerbate the challenge of unique parameter identification. As a result, 
relying solely on TSD measurements is often insufficient for reliably 
updating all these parameters together. In practice, additional sources of 
information such as ground-penetrating radar (GPR) are often used to 
estimate layer thicknesses. Future studies should explore the integration 
of TSD measurements with GPR measurements for a more comprehen
sive and robust probabilistic parameter inference framework.

Second, the study finds that some parameters—Esurface, Ebase, hsurface, 
and hbase—exhibit only a moderate degree of sensitivity with respect to 
pavement deflections. For these parameters, reasonably accurate prior 
knowledge (e.g., prior mean values that are not significantly biased) is 
often required to ensure effective Bayesian updating using TSD mea
surements. When the prior information for these parameters is poorly 
estimated, Bayesian updating using TSD measurements may perform 
inadequately due to the limited sensitivity of deflections to changes in 
these parameters.

Third, the present study considers pavement deflection as the pri
mary output quantity of interest. However, the direct measurement 
obtained from a TSD device is the deflection slope. While deflections can 
be converted from slopes through some means [29], focusing directly on 
deflection slope as the observable quantity in Bayesian updating may 
provide a more accurate and direct representation of TSD measure
ments. Future studies are warranted to investigate the use of deflection 
slope in parameter inference, which may further improve the validity 
and applicability of Bayesian updating for TSD-based pavement evalu
ation. Last, the present study assumes all pavement layers are elastic, 
which may not be fully representative of the various layers. Future 
studies will directly incorporate viscoelastic behavior to more realisti
cally simulate the surface layer. This is possible using PaveMove’s built- 
in viscoelastic material model. In addition, advanced techniques that 
correlate viscoelastic to elastic behavior for simplified analysis will also 
be explored [15,16].

Table 6 
Results of parameter identifications.

Case I Case II Case III

Esurface (GPa) Ground truth 3.09 2.71 2.62
Bayesian updating (posterior 
mean)

2.53 2.96 2.82

Residual minimization 0.42 1.52 0.53
Ebase (GPa) Ground truth 4.27 5.32 4.73

Bayesian updating (posterior 
mean)

4.87 5.08 4.28

Residual minimization 7.07 7.54 4.85
Esubgrade 

(MPa)
Ground truth 61.8 55.8 65.2
Bayesian updating (posterior 
mean)

61.2 56.2 64.4

Residual minimization 61.6 56.1 68.2

Fig. 21. Comparison of extrapolated pavement deflections for 50 
repeated analyses.
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Conclusions

In summary, this paper presents the first end-to-end probabilistic 
framework for inferring pavement material parameters using TSD 
measurements. It overcomes three limitations of existing TSD-based 
parameter inference techniques through a synergistic combination of a 
physics-based simulator (PaveMove), machine learning surrogates, and 
Bayesian updating. Rigorous validation using a series of simulated TSD 
datasets demonstrates improved performance compared to conventional 
deterministic residual minimization techniques. The specific key con
clusions are as follows: 

(i) PaveMove effectively simulates mechanical pavement responses 
under TSD dynamic loading, establishing itself as a new and 
practical simulation tool for TSD-based pavement structural 
evaluation.

(ii) A validated machine learning surrogate model is successfully 
developed to emulate PaveMove across a broad range of pave
ment material properties. It acts as an effective computational 
tool to permit real-time probabilistic parameter inference using 
TSD measurements, which align well with the continuous nature 
of TSD data acquisition.

(iii) The accuracy of TSD-based parameter inference varies across 
parameters. Parameter inference using TSD deflections is more 
reliable for inferring Esubgrade than for Ebase and Esurface, and for 
inferring hbase than for hsurface. Compared to deterministic resid
ual minimization, Bayesian updating provides more consistent 
parameter estimates, particularly for parameters with lower 
sensitivity, such as Ebase, Esurface, and hsurface. Moreover, its ability 
to quantify uncertainties explicitly supports the proactive vali
dation and interpretation of inferred parameters. From a practical 
point of view, Bayesian updating is recommended for TSD-based 
parameter inference.

(iv) The synergistic combination of the three core components in the 
proposed methodological framework significantly enhances the 
technological readiness of TSD-based pavement evaluation. It 
lays a solid foundation for the broader, quantitative integration of 
TSD technology into modern, network-level pavement manage
ment systems.

CRediT authorship contribution statement

Ze Zhou Wang: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Zhaojie Sun: Writing – review & editing, Writing – original 
draft, Validation, Methodology, Investigation, Conceptualization. 
Bachar Hakim: Supervision, Resources, Project administration. Bud
dhima Indraratna: Supervision, Project administration. Abir Al-Tab
baa: Supervision, Project administration, Funding acquisition.

Disclaimer

This study reflects only the author’s view and that the Agency and 
the Commission are not responsible for any use that may be made of the 
information it contains.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This project is funded by the European Union’s Horizon 2020 
research and innovation program under the Marie Skłodowska-Curie 

grant agreement No. 101034337.

Data availability

Some or all data, models, or codes that support the findings of this 
study are available from the corresponding author upon reasonable 
request.

References

[1] Correia AG, Winter MG, Puppala AJ. A review of sustainable approaches in 
transport infrastructure geotechnics. Transp Geotech 2016;7:21–8.

[2] Koks EE, Rozenberg J, Zorn C, Tariverdi M, Vousdoukas M, Fraser SA, et al. 
A global multi-hazard risk analysis of road and railway infrastructure assets. Nat 
Commun 2019;10(1):2677.

[3] Wang C, Lim MK, Zhang X, Zhao L, Lee PTW. Railway and road infrastructure in 
the Belt and Road Initiative countries: estimating the impact of transport 
infrastructure on economic growth. Transp Res A Policy Pract 2020;134:288–307.

[4] Wang ZZ, Goh SH, Koh CG, Smith IF. Comparative study of the effects of three data- 
interpretation methodologies on the performance of geotechnical back analysis. Int 
J Numer Anal Meth Geomech 2020;44(15):2093–113.

[5] Gudipudi PP, Underwood BS, Zalghout A. Impact of climate change on pavement 
structural performance in the United States. Transp Res Part D: Transp Environ 
2017;57:172–84.

[6] Pandey P, Hossain MS, Ahmed A. Performance evaluation of modified moisture 
barrier in mitigating expansive soil associated pavement distresses. Transp Geotech 
2021;31:100667.

[7] Zeng W, Wu S, Wen J, Chen Z. The temperature effects in aging index of asphalt 
during UV aging process. Constr Build Mater 2015;93:1125–31.
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