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Compared to the Falling Weight Deflectometer (FWD) technology, Traffic Speed Deflectometer (TSD) provides
continuous, non-destructive monitoring of pavement structural health. This feature has prompted many au-
thorities worldwide to explore its potential in network-level pavement structural evaluation. Through parameter
inference using TSD measurements, engineers can obtain physics-based evidence regarding pavement material
parameters, which is crucial for informed decision-making on road operations and maintenance. However, three
key challenges in existing TSD-based parameter inference have limited its practical uptake: (i) many studies
introduce an intermediate correlation between TSD data and FWD data for FWD-based parameter inference,
which adds extra uncertainty; (ii) conventional deterministic inference workflows yield estimates without un-
certainty quantification; and (iii) high—fidelity simulations incur prohibitive computational costs, limiting real-
time or near-real-time parameter inference. To overcome these gaps, this study presents a methodological
framework for probabilistic parameter inference using TSD measurements. The innovation lies in the synergistic
combination of: (i) a physics-based simulator, PaveMove, that directly simulates pavement responses under TSD
dynamic loading, (ii) machine learning surrogates to accelerate PaveMove calculations, and (iii) Bayesian
updating to transform traditional deterministic parameter inference into a probabilistic framework that explicitly
incorporates multiple material and measurement uncertainties. The proposed framework is rigorously validated
and compared with conventional parameter inference techniques. The results indicate that the proposed
framework effectively addresses the limitations inherent in traditional techniques and provides more accurate,
consistent, and reliable results of parameter inference. The proposed framework paves the way for the broader
adoption of TSD technology in practice, ultimately permitting real-time, uncertainty-aware pavement manage-
ment at the network scale.

Introduction

Road infrastructure is a fundamental component of modern society
[1,2,3,4]. However, pavements, as critical components of road infra-
structure, are susceptible to deterioration due to a combination of fac-
tors, including repeated traffic loading, environmental conditions [5,6],
material aging [7,8], and inadequate maintenance. The resulting poor
road conditions can be substantial and lead to reduced ride quality,
safety hazards, increased vehicle operating costs [9], and higher main-
tenance expenses, among other issues. Therefore, accurate measurement
and prediction of pavement performance are crucial for implementing
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timely and cost-effective pavement maintenance and rehabilitation
strategies.

Various methods have been developed to assess and predict pave-
ment performance. Data-driven methods have gained considerable
attention in recent years [10,11,12,13]. However, data-driven ap-
proaches are heavily reliant on the availability of large, high-quality
datasets, which can be challenging and costly to obtain. Furthermore,
machine learning models are often criticized for their “black box” na-
ture, where the underlying mechanisms driving the predictions may not
be fully transparent [14,15,16]. As an alternative, field tests and sensor-
based field measurements have been employed in pavement
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performance evaluation [17,18,19,20]. These methods provide direct
measurements of pavement responses and often offer valuable insights
into structural behavior. However, the installation and maintenance of
sensors can be complex and expensive, and they typically provide only
localized measurements.

In this context, non-embedded sensors offer additional approaches
for pavement performance evaluation. The Falling Weight Deflec-
tometer (FWD) [21,22,23] is a widely used non-destructive testing
(NDT) device. However, FWD is a stationary test method that necessi-
tates traffic management, which can be time-consuming and disruptive.
As a result, the Traffic Speed Deflectometer (TSD), a more recent NDT
technology, has been developed to measure pavement responses under
moving traffic loads [20,24,25,26,27].

TSD offers the distinct advantage of efficient, network-level pave-
ment evaluation without disrupting traffic flow. It measures deflection
velocity (slope) at traffic speed using Doppler lasers and calculates
corresponding pavement deflections. Multiple techniques have been
proposed for this task, including some advanced ones [28,29]. Studies
have shown that pavement modulus back-calculated from TSD mea-
surements correlate well with those from FWD measurements
[15,16,30]. Due to its mobile nature, TSD is more applicable for eval-
uating pavement conditions and structural capacities at the network
level, in contrast to FWD, which is primarily used for project-level
assessment. However, research on TSD is still relatively limited and
less established compared to FWD-based prediction models [37]. This
highlights the need for new models specifically tailored to TSD mea-
surements. Katicha et al. [25] provided a comprehensive review of TSD
research and applications in the United States over the past decade.

In many cases, sensor and field test data require interpretation to
obtain meaningful information about pavement structural conditions.
Parameter inference, also known as parameter identification, back-
analysis, or back-calculation, is a commonly used approach
[22,24,31,32,33,34]. This process involves using measured pavement
responses to estimate key pavement parameters, such as layer modulus
and thicknesses, which are crucial for pavement structural analysis and
performance prediction. Parameter identification typically comprises
several components. First, a model is needed to simulate pavement re-
sponses under loading. Various methods can be used, including analyt-
ical solutions, finite element method (FEM) [35], spectral element
method [36], and semi-analytical methods. Second, an algorithm is
required to estimate pavement parameters by evaluating the discrep-
ancies between measured and simulated pavement responses. These
algorithms can be broadly classified into deterministic and probabilistic
approaches. Deterministic approaches, such as residual minimization
[32,33], aim to identify the single “best-fit” set of parameters by mini-
mizing the difference between measured and simulated pavement re-
sponses. In contrast, probabilistic approaches, such as Bayesian
updating, provide a framework for quantifying the uncertainties asso-
ciated with the parameter estimates.

Motivated by these needs, the present study pioneers the investiga-
tion of probabilistic parameter inference using TSD measurements.
However, three key challenges in existing TSD-based parameter infer-
ence have limited its practical adoption:

o First, many existing strategies begin by correlating TSD data with
FWD data before using FWD-based techniques for parameter infer-
ence [24]. This is likely due to the limited availability of methods
capable of simulating pavement responses under TSD loading, as
well as the long-standing industry reliance on FWD in pavement
management. However, Hamidi et al. [37] highlighted that the
conversion between TSD and FWD data is not universally applicable
and depends on numerous factors. As a result, such conversions
inevitably introduce uncertainties, which may hinder the accuracy
and reliability of parameter inference.

Second, parameter identification coupled with high-fidelity numer-
ical simulations can be computationally demanding due to the
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iterative nature of the process. For example, Liu et al. [38] reported
that each simulation using ABAQUS requires about 420 s, and even
with improved techniques, the runtime remained around 120 s.
While this may be acceptable for interpreting FWD measurements, it
is incompatible with the continuous nature of TSD data collection,
which is expected to yield real-time or near-real-time interpretations.
The broader application of TSD is hindered by this limitation.
Third, the presence of uncertainties poses a significant challenge.
Material properties are inherently variable. Uncertainties also arise
from modelling assumptions and field measurements. Conventional
deterministic parameter inference techniques often struggle to
adequately account for these sources of uncertainty, which can then
limit their reliability and robustness [22,37].

Given these limitations and challenges, there is a need for robust and
efficient approaches for probabilistic pavement structural evaluation.
This study addresses this need by presenting a novel framework for the
probabilistic interpretation of TSD measurements. The innovation lies in
the synergistic combination of three core components, each specifically
designed to tackle the challenges outlined above:

e First, a physics-based simulator, PaveMove, was developed to

directly simulate pavement responses under TSD dynamic loading.

The use of this model eliminates the common intermediate step of

correlating TSD measurements with FWD measurements for param-

eter inference.

Second, to address the high computational demand associated with

repeated high-fidelity simulations in parameter inference, machine

learning was employed to develop surrogate models that enable
rapid computation without compromising accuracy.

e Third, Bayesian updating was incorporated to transform conven-
tional deterministic parameter inference into a fully probabilistic
framework. Multiple material and measurement uncertainties can
then be explicitly considered in parameter inference.

In the present study, the proposed framework was rigorously vali-
dated using simulated TSD measurements. A comparison with conven-
tional parameter inference techniques was also conducted. The results
indicate that the proposed framework effectively addresses the limita-
tions inherent in traditional techniques and provides more accurate,
consistent, and reliable parameter estimates. This framework paves the
way for the broader adoption of TSD technology, ultimately permitting
real-time, network-scale pavement management that explicitly accounts
for uncertainty.

Key Components in the Probabilistic Framework
PaveMove

A software developed in-house called PaveMove is used to simulate
pavement responses under TSD dynamic loading. In PaveMove, pave-
ment is modelled as a layered structure with TSD loading represented as
a moving surface load, as shown in Fig. 1. The simulation of pavement
responses under a moving TSD loading is based on a Spectral Element
Method (SEM) procedure, which comprises the following steps [39]:

(i) The moving load problem is transformed into a coordinate system
that travels with the load.

(ii) The problem is further transformed to the wavenumber-
frequency domain via a forward Fourier transform. The stiff-
ness matrices for both a layer spectral element and a semi-infinite
spectral element can then be derived.

(iii) The global stiffness matrix for the pavement structure is assem-
bled, and appropriate boundary conditions are applied to
compute the nodal responses.
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Fig. 1. A typical pavement system and TSD configuration simulated in PaveMove.

(iv) The calculated response fields within the pavement layers are
converted back to the space-time domain using an inverse
Fourier transform.

(v) If necessary, the response fields in the moving coordinate system
are transformed back to the stationary coordinate system.

The SEM approach combines the geometric flexibility of the Finite
Element Method (FEM) with the high accuracy characteristics of spec-
tral methods. For pavement dynamic analysis, each pavement layer is
modelled by a single spectral element with accurate response formula-
tions. This strategy minimizes the number of elements required, which is
equal to the number of pavement layers, and reduces the size of the
global stiffness matrix, further improving computational efficiency. In
addition, the use of precise shape functions further enhances the accu-
racy of the results. As a result, the SEM-based procedure in PaveMove
can accurately and efficiently predict pavement responses under moving
TSD loadings. In PaveMove, users can define the number of pavement
layers, specify the material parameters of each layer, set the speed of the
TSD device, and configure the TSD loading conditions. Additionally,
each pavement layer can be simulated as purely elastic, elastic with
hysteretic damping, or viscoelastic, which enables a versatile approach
to pavement modelling under various dynamic conditions and material
constitutive behavior.

The accuracy of PaveMove has been rigorously validated. First, its
numerical performance under purely elastic conditions was compared
with the simulation results presented in Nielsen [40], which used a semi-
analytical method and elastic materials. The agreement shown in Fig. 2

(a) confirms the numerical accuracy of PaveMove. Furthermore, real-
world TSD measurements from Nielsen [40] were used to validate
PaveMove further, with the results shown in Fig. 2(b). For both vali-
dations, the parameter values reported in Nielsen [40] were used as the
inputs for PaveMove. The ability of PaveMove to simulate damping
material behaviour allows it to accurately replicate both the magnitude
and shape of the deflection slope observed in field TSD results. These
validations underscore the robust accuracy of PaveMove in practical
applications.

Bayesian model updating

Bayesian updating is an effective probabilistic technique used to
infer statistical information about single or multiple material parameters
using field measurements. This is achieved through the estimation of the
posterior probability density function (PDF) of these material parame-
ters [41]. According to the Bayes’ theorem, the posterior PDF is calcu-
lated as follows:

fx(xly) = ki o fx(x) o L(¥) €h)

where fx(x) and fx(x|y) represent, respectively, the prior and posterior
PDFs of material parameters X, X = (X1, X2, X3, ..., Xp), with n being the
number of material parameters to be updated using field measurements
¥, ¥ =01,¥2,Y3, --.» Ym), where m is the number of field measurements;
x is asample of X. k; is a normalization constant that ensures the integral
of fx(x|y) over the probabilistic domain of X is equal to 1, i.e., k; =
1/ [fx(x) e L(¥)dx; and L(¥) is the likelihood function.
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Fig. 2. Validation of PaveMove.
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In addition, to fully utilize field measurements to update the prob-
ability distributions of material parameters, it is necessary to first
construct the likelihood function based on the various types of field
information. This is a crucial step in Bayesian model updating [42].
Conceptually, the likelihood function represents the probability of the
occurrence of the field information y given that the uncertain parame-
ters X take on a specific value x. Mathematically, it is expressed as
follows:

L(Y)of (¥1X = x) )

In practice, due to limitations in the precision of instruments and
experimental apparatus, human errors, or other random factors, mea-
surement errors are unavoidable. Therefore, measurement errors are
typically treated as additional uncertainties that can be incorporated
into the simulated responses of the system under study. Similarly, model
error exists in any simulation model due to oversimplifications of real-
world conditions in engineering systems, such as boundary conditions
and constitutive models of the materials. Because of model error, the
responses of an engineering system evaluated by a model generally do
not perfectly align with the observed performance of the system. Similar
to measurement errors, model errors can be added to the simulated re-
sponses of the engineering system under study. In many cases, mea-
surement and model errors are assumed to follow a normal distribution
(e.g., [4,42,43]) with a mean of zero and a standard deviation of . In
other instances, biases might be considered, leading to measurement
and model errors having a non-zero mean of ;. Due to the presence of
these errors, assuming a normal distribution, the corresponding likeli-
hood function can be constructed as follows:

1 |:ﬁ(};i§i.x(x)ﬂiu )2]

—_ 3
V2o ®

L(y:) =

where ¥; is the i-th field measurement; g x(x) is the simulated system
response at the i-th field measurement location using the parameter
sample x; 4; ; and o; y are, respectively, the mean and standard deviation
of the uncertainty at the i-th measurement location. The equation above
illustrates the construction of the likelihood function using a single field
measurement and assuming normally distributed uncertainties.

When multiple field measurements are used simultaneously for
parameter inference, a correlation matrix C, which describes the de-
pendency of uncertainties at these multiple measurement locations, is
needed to construct the joint normal probability distribution as follows:

R 1 3-8 (x) 1y ) G g (x) o)
Ly)=—F1¢ 4
272|C|2

where |C| is the determinant of C.

In practice, the choice of the correlation matrix can vary depending
on the type of field measurement. For measurements taken from sepa-
rate sensors, such as a group of strain gauges, it is commonly assumed
that the uncertainties associated with these measurements are inde-
pendent. However, when multiple measurements are taken by a single
sensor, such as an inclinometer, measurement uncertainties are typically
correlated [3,4]. Similarly, modelling uncertainties arising from the
assumptions or simplifications inherent in the numerical model are also
typically correlated [44]. However, it is often challenging to obtain
precise correlation values, so the assumption of independence is
frequently employed.

In many instances, it is not feasible to calculate the posterior distri-
butions analytically. Therefore, sampling techniques are often employed
in Bayesian updating. The Markov chain Monte Carlo simulation using
the Metropolis-Hastings algorithm (MCMC-MH) is a common technique
for this task, and further details can be found in [22,44]. It is important
to note that the initial samples generated by the algorithm may not
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accurately represent the posterior PDF because the Markov chain has not
reached a steady state. Therefore, in practice, a certain number of initial
samples are often considered as burn-in samples and are discarded from
the final posterior samples. In addition, the scale factor in the MCMC-
MH algorithm often needs fine-tuning through a trial-and-error pro-
cess to ensure the accuracy and efficiency of the results.

Machine learning as surrogates

As previously emphasized, parameter inference coupled with nu-
merical simulations can be a computationally intensive process. For
example, the MCMC-MH algorithm may necessitate several thousand
samples to adequately approximate the posterior distribution. Similarly,
conventional deterministic parameter inference techniques may also
require a few hundred samples for the optimization algorithm to
converge to an optimal solution. Therefore, a surrogate model is often
employed to expedite these calculations while still effectively repre-
senting the underlying physics of the simulation models.

The fundamental principle of surrogate modelling involves approx-
imating the complex physics-based relationship between numerically
calculated system responses and their corresponding input parameters
using a simpler function, and this is often achieved through training a
machine learning model using data generated from the original simu-
lation model. Once the surrogate model has been adequately trained and
tested, it can be used as a substitute for the original simulation model,
permitting rapid calculations with significantly reduced computational
resources. In the present study, surrogate modelling is specifically
employed to predict pavement deflections under TSD dynamic loadings
based on a defined set of input parameters.

The surrogate model is specifically designed for the typical three-
layer pavement system illustrated in Fig. 1. Table 1 provides a
comprehensive summary of all the input parameters considered in the
development of this global surrogate model. While certain parameters

Table 1
Input parameter space for surrogate modelling.
Parameters Lower Upper Remarks
Bound Bound
Surface Modulus, 100 30,000 [25,45,46,47,48,49,50,51]
layer Esurface (MPa)
Damping 0.01 0.3
ratio,Esurface
Poisson’s 0.25 0.35
ratio,Vsyrface
Unit weight, 22 25
Yourtace (KN/m®)
Thickness, 0.05 0.5
Bsurface (m)
Base layer Modulus, Epase 50 30,000
(MPa)
Damping 0.01 0.2
ratio, epase
Poisson’s 0.25 0.35
ratio,Upase
Unit weight, 18 22
Vbase (kN/Hls)
Thickness, 0.1 0.7
hpase (m)
Subgrade Modulus, 10 500
layer Esubgrade (MPa)
Damping 0.01 0.1
ratio,esubgrade
Poisson’s 0.25 0.35
ratio,Vsubgrade
Unit weight, 16 20
Ysubgrade (kN/
m®)
Truck Truck speed 50 100
(km/h)
Axle load (kN) 40 130
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may have a less significant impact compared to the modulus and
thickness of the three layers, they are included to ensure the surrogate
model’s applicability as a general global model. Based on a thorough
review of existing literature (i.e., refer to Table 1), the conservative
upper and lower bounds of all parameters are also detailed in the table.
The surrogate model will be trained to accurately represent the entire
parameter space. It is worth highlighting that these bounds have been
intentionally broadened beyond typical values reported in the literature
to ensure the surrogate model can handle unusual or extreme scenarios.
The outputs of the model consist of the pavement deflection measured at
0.25 m intervals, ranging from 1.5 m behind the measuring wheel to 5 m
ahead of it. The subsequent steps outline the construction of this sur-
rogate model:

(i) Based on the defined bounds summarized in Table 1, Latin Hy-
percube sampling is utilized to generate 25,000 parameter
combinations.

(ii) PaveMove is employed to simulate each of these 25,000 param-
eter combinations. The resulting pavement deflections at the
multiple measurement locations are extracted.

(iii) The generated dataset, consisting of 25,000 input samples each
with 16 parameters and corresponding 25,000 output samples
each with 27 deflection measurements, is partitioned into a
training dataset (70 %) and a validation dataset (30 %) for
training an Artificial Neural Network (ANN) model.

(iv) Based on the parameter information in Table 1, an additional
5,000 parameter combinations that are different from the initial
25,000 samples are further generated. These combinations are
simulated using PaveMove to provide an independent test dataset
for an unbiased evaluation of the predictive performance of the
trained global surrogate model.

(v) After training and validating the global surrogate model using
this unseen data, it can be confidently used as a computationally
efficient alternative to the original PaveMove model for subse-
quent bulk calculations.

The architecture and hyperparameters of the ANN model are sum-
marized in Table 2. Since ANN is an established machine learning
model, detailed technical descriptions are omitted in the present study.
Fig. 3 presents the key results evaluating the performance of the trained
ANN model. Fig. 3(a) illustrates the training and validation losses, which
are terminated after approximately 1,000 epochs due to the early
stopping criteria specified in Table 2. This is an important configuration
that minimizes overfitting and preserves the generalization capability of
the model. Fig. 3(b) compares the PaveMove-predicted pavement
deflection profile with the ANN-predicted results for a case randomly
selected from the 5,000 test samples. The remarkable match between the
ANN and PaveMove outputs highlights the ANN’s strong predictive
performance, even for previously unseen input data. To further validate
the model, Fig. 3(c) compares the ANN-predicted and PaveMove-
predicted deflections for all 5,000 test samples, resulting in a total of
135,000 data points (27 deflection points per sample). The high coef-
ficient of determination (i.e., 2 > 0.99) confirms the ANN’s robust ac-
curacy across the entire test dataset. In addition, the individual r? values
for each of the 27 measurement locations, shown in Fig. 3(d), indicate

Table 2

Configurations of the ANN model.
Hyper-parameters Setting
Number of hidden layer 3

Number of neurons in each hidden layer 10

Training algorithm Bayesian regularization back-
propagation

Maximum iteration 20,000

Early stop criterion 500

Loss function Sum squared errors
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consistently high prediction accuracy across the spatial deflection pro-
file. This level of performance is justifiable given that the ANN model is
trained on data generated by a numerical simulator grounded in well-
defined physical laws.

The trained ANN model is employed in the subsequent Bayesian
updating using simulated TSD measurements. While simulating 1,000
samples using the original PaveMove simulator requires approximately
25 h, the trained ANN model can complete the same task within a sec-
ond. This substantial improvement in computational efficiency enables
real-time or near-real-time parameter inference. In addition, although
TSD trucks do not directly measure deflection, the current study focuses
on deflection itself, which serves as a more intuitive and interpretable
response variable. In practice, there are several established techniques
to convert deflection slope to deflection, and the surrogate modelling
framework developed here can be readily extended to work with
deflection slope as well.

Probabilistic Simulation of TSD for Sensitivity Analysis
Implementation procedures

Probabilistic sensitivity analyses are first conducted to evaluate the
influence of uncertainties in pavement material parameters on pave-
ment deflections. The trained ANN model is used as the forward simu-
lator for this purpose. A key advantage of probabilistic sensitivity
analysis lies in its ability to explicitly account for uncertainties in ma-
terial parameters and permit the computation of both the mean and
standard deviation of pavement deflections. This provides a more
comprehensive understanding of how different parameters affect pave-
ment responses. In contrast, conventional deterministic sensitivity
analysis only yields single-value predictions and does not capture the
uncertainty associated with the results.

Fig. 4 illustrates an example of probabilistic simulation of pavement
deflections under TSD dynamic loading using the typical parameter
statistics listed in Table 3. A total of 5,000 parameter combinations are
generated using Monte Carlo sampling based on the statistics. The three
uncertain modulus parameters are assumed to follow a lognormal dis-
tribution, while all other uncertain parameters follow a normal distri-
bution. All distributions are truncated at the upper and lower bounds
defined in Table 1. The trained ANN model is then used to simulate all
5,000 parameter combinations within two seconds. Each grey line
shown in Fig. 4(a) represents the deflection profile for an individual
Monte Carlo sample, while the mean deflection profile is also plotted for
reference. Fig. 4(b) shows the statistical distribution of pavement de-
flections at the wheel location, and both the mean and coefficient of
variation (CoV) of deflections are calculated. As shown in the figure, the
resulting uncertainty in deflections is significant (e.g., CoV = 18.2 %),
highlighting the importance of explicitly incorporating parameter un-
certainty in the simulation and interpretation of TSD measurements.

Table 4 summarizes the parametric cases considered in the present
study. A total of 5 cases are examined, each focusing on the effect of
uncertainty in a single parameter—the modulus of the three layers and
the thickness of the surface and base layers. In each case, all other pa-
rameters are held deterministic at the mean values summarized in the
table. For each case, 5,000 parameter combinations are generated using
Monte Carlo sampling. Following the visualization shown in Fig. 4,
selected results from Case 3 of the sensitivity analyses are presented in
Fig. 5.

Fig. 5 (a) to (c) show the results of varying the CoV of Egypgrade from
0.1 to 0.3, with a constant mean of 20 MPa and all other parameters
remaining constant. Similarly, Fig. 5 (d) to (f) show the results with a
higher mean Egypgrage of 100 MPa under the same CoV variations. It is
evident that both the magnitude and statistical variability of pavement
deflections are strongly influenced by uncertainties in Egypgrage- TO
facilitate a systematic investigation of parameter sensitivity, the results
are broadly categorized into two types—intra-project sensitivity and
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Fig. 4. An example of stochastic simulation of pavement deflection under TSD dynamic loading.

inter-project sensitivity:

Intra-project sensitivity evaluates the effects of CoV while keeping
the parameter mean fixed. This reflects a scenario within a single
project, where mean material properties are generally known, but
their statistical variability is uncertain. For example, the comparison
across Fig. 5 (a) to (c) represents intra-project sensitivity. In this
context, the CoV of the pavement deflection is the key quantity of
interest.

Inter-project sensitivity investigates the effects of varying the mean
of a parameter while holding its CoV constant. This reflects com-
parisons across different projects where material types and designs

may vary substantially. For example, comparing Fig. 5 (a) with (d) or
Fig. 5 (b) with (e) highlights inter-project sensitivity. In this case, the
mean pavement deflection is the main response variable of interest.

Results of sensitivity analysis

Fig. 6 shows the results of the sensitivity analyses for Case 1 (refer to
Table 4), which investigates the effects of Egyface. TWo subcases are
considered: (i) a stiff base over a soft subgrade, and (ii) a soft base over a
stiff subgrade. To simplify the discussion, only the deflection at the
measuring wheel location is analyzed. For meaningful comparisons
across different cases, it is essential to examine normalized values. In
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Table 3
Typical statistical characteristics of material parameters for a three-layer pave-
ment system.

Parameters Mean CoV
Surface Egurface (MPa) 3000 0.2
Esurface 0.1 0.15
Vsurface 0.3 0.1
Vsurface (KN/m®) 22.5 0.05
hsurface (m) 0.1 0.1
Base Epase (MPa) 5000 0.2
Ebase 0.1 0.1
Ubase 0.3 0.1
Vbase (kN/m>) 21 0.05
hbase (m) 0.3 0.15
Subgrade Esubgrade (MPa) 60 0.2
Esubgrade 0.05 0.05
Vsubgrade 0.3 0.05
Ysubgrade (kN/m®) 18 0.05
Truck Truck speed (km/h) 100 —
Axle load (kN) 130 -

this regard, for inter-project sensitivity, the x-axis represents the
normalized material property (i.e., normalized with respect to the upper
and lower bounds shown in Table 1). The y-axis represents the relative
change in mean deflection compared to the case with the lower bound
material parameter value. For intra-project sensitivity, the focus is on
the CoV of the material parameter and the corresponding CoV of
pavement deflection. Since both quantities are normalized parameters,
direct comparisons are permitted.

Fig. 6 (a) and (c) show the mean deflections based on 5,000 sto-
chastic simulations for various cases. The results show that pavement
deflection is sensitive to variations in the mean value of Egy face, though
the degree of sensitivity varies. The sensitivity is more pronounced when
the surface layer is softer, and the inter-project sensitivity becomes more
significant with increasing hgyrface. However, as the mean Egyface in-
creases, the effects of hgyrface diminish, indicating reduced inter-project
sensitivity. In addition, the CoV of Egyace appears to have negligible
effects on the inter-project sensitivity trends.

Fig. 6 (b) and (d) show the CoV of pavement deflections. The
different lines within each thickness group correspond to cases with
different mean Egyace values. In all cases, a linear relationship is
observed between the CoV of Egyface and the CoV of deflection. For the
same CoV of Egyface, thicker surface layers result in higher CoV of
deflection. However, the magnitude of CoV in deflection remains low,
typically within 3 % to 4 %, indicating that the statistical variability of
Egurface contributes only marginally to the variability in deflection. In
addition, these observed trends in both inter-project and intra-project
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sensitivity are largely consistent across the two subcases, despite dif-
ferences in the mechanical characteristics of the base and subgrade
layers.

Fig. 7 shows the results of Case 2, which focuses on the effects of the
statistics of Epase on deflections. Two subcases are considered: (i) a soft
subgrade, and (ii) a stiff subgrade. Similar to Case 1, inter-project
sensitivity analysis reveals that pavement deflections are significantly
influenced by variations in mean Ep,se, with higher sensitivity in softer
and thicker base layers and diminishing effects for higher mean Epage.
Over the plausible range of Epase, pavement deflections can vary up to
60 %. For intra-project sensitivity, a consistent linear relationship is
observed between the CoV of Epase and the CoV of pavement deflection
in all cases, and the sensitivity is also more pronounced for thicker base
layers. Although the CoV of pavement deflections remains relatively
small (approximately 4 % to 6 %), it is notably higher than that observed
for variations in Egyrface- In general, the sensitivity trends for Epase mirror
those observed for Egyface, but the magnitude of sensitivity of Epgge is
generally slightly greater.

Fig. 8 shows the results of Case 3 that focuses on the subgrade layer.
Two subcases with different values of Ep . are considered. As shown in
Fig. 8 (a), pavement deflections are highly sensitive to variations in
mean Egypgrade, With deflection magnitude changing by up to 90 % over
the plausible range of Egybgrade- This level of inter-project sensitivity is
substantially greater than that observed for both Epzse and Egyrface-
Consistent with patterns in Figs. 6 and 7, the sensitivity to changes in
mean Egypgrade is more pronounced in softer subgrades, and the general
trends remain similar across the two subcases with different Epge. In
Fig. 8 (b), a linear relationship is again observed between the CoV of
Egubgrade and the CoV of pavement deflection, affirming the presence of
intra-project sensitivity. However, a key distinction emerges: the
magnitude of CoV in pavement deflection due to uncertainty in Egypgrade
is substantially higher, reaching up to 20 %. This number indicates the
dominant influence of uncertain Esybgrade ON the statistical behavior of
pavement deflections. Moreover, the trends are consistent across
different values of Epguge, reinforcing the critical role of the subgrade
layer in governing the probabilistic response of pavement systems under
TSD dynamic loading.

Fig. 9 shows the results of Case 4 on the effects of hgyface ON pave-
ment deflections. As shown in Fig. 9 (a) and (c), variations in hgyface can
lead to pavement deflection changes of up to 50 % over the plausible
range, indicating a significant degree of inter-project sensitivity. Unlike
the nonlinear trend observed in Fig. 6, the degree of inter-project
sensitivity associated with hgyface is moderately linear. In addition, the
sensitivity is more pronounced for stiffer surface layers, although the
effects tend to converge as Egyface increases. For example, results for

Table 4
Cases considered in the probabilistic sensitivity analysis.
Case ID 1 2 3 4 5

Parameter”
Mean Esuface (GP2) 0.5-25 3 3 0.5;1;2;8;16 3
CoV of Esurface 0.1-0.3 - - - -
Mean Evase (GPa) 0.5;5 0.5-25 0.5;5 0.5;5 0.5;1;2;8; 16
CoV of Ebase - 0.1-0.3 - - -
Mean Eguberade (GPa) 0.06; 0.2 0.06; 0.2 0.02-0.45 0.06; 0.2 0.06; 0.2
CoV OfEsubgmde - - 0.1-0.3 - -
Mean Asurface (M) 0.1;0.2; 0.3 0.1 0.1 0.1-0.4 0.1
CoV of hsurface - - - 0.05-0.25 -
Mean /pase (M) 0.3 0.1;0.3; 0.6 0.3 0.3 0.1-0.6
CoV of hpase - - - - 0.05-0.25

*QOther parameters follow the mean values shown in Table 3.

#Modulus follows a lognormal distribution, and thickness follows a normal distribution. All distributions are truncated at the upper and lower bounds listed in Table 1.
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(a) Mean E = 20 MPa, CoV =0.1

(b) Mean E = 20 MPa, CoV=0.2
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(c) Mean E = 20 MPa, CoV = 0.3
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Fig. 5. Selected results of Case 3 of the probabilistic sensitivity analysis.
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Esurface = 6 GPa and 15 GPa show only marginal differences, suggesting a
diminishing influence of hgyface at higher Egyiface values. For intra-
project sensitivity, a linear relationship between the CoV of hgyrface
and the CoV of deflection is also observed, as shown in Fig. 9 (b) and (d).
Similar to the inter-project results, the effect of CoV of hgyrface is more
noticeable for stiffer surface layers. Nevertheless, the absolute values of
the CoV of deflection are still relatively small, indicating that the sta-
tistical uncertainty in hgyface €xerts only a moderate influence on the
statistical variability of pavement responses.

Fig. 10 shows the results of Case 5 on the effects of hpase. As shown in
the figure, variations in mean hypase result in a significant inter-project
sensitivity, with deflection changes reaching up to 60 % over the

plausible range. The relationship between mean hpyse and pavement
deflection is moderately linear, and the sensitivity is more pronounced
for stiffer base layers. For intra-project sensitivity, a linear relationship is
again observed, consistent with the trends seen in previous cases. The
degree of sensitivity increases with stiffer base layers. Notably, the
resulting CoV of pavement deflection can reach up to 20 %, which is
higher than the corresponding values observed for hgyface- This suggests
that uncertainties in hp,se have a more pronounced impact on the sta-
tistical variability of pavement deflection compared to the uncertainties
in Asurace-
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Implications on parameter inference

The sensitivity of input parameters has critical implications for
parameter inference because it directly influences the identifiability and
accuracy of inferred values. Specifically, parameter inference is most
effective for parameters to which the system response is sensitive. For
parameters exhibiting low sensitivity, multiple parameter values can
yield similar system responses, resulting in non-uniqueness in parameter
inference. This challenge is particularly significant for deterministic
parameter inference techniques such as the residual minimization
technique, which provides a single set of inferred parameters by mini-
mizing the difference between simulated and measured system re-
sponses. For insensitive parameters, this inferred value may not
represent the true solution, as many other parameter combinations
could produce similar residuals. Moreover, measurement uncertainties
compound this challenge.

Fig. 11 summarizes the average degree of sensitivity across all pa-
rameters evaluated in Figs. 6 to 10. For inter-project variability, pave-
ment deflection is found to be most sensitive to Egypgrade, followed by
Epase and Egyrface- This ranking implies that TSD measurements are most
effective for inferring Esubgrade and least effective for Egyface- In addition,
the results suggest that parameter inference is generally more effective
for softer pavement systems than for stiffer systems, due to the higher
sensitivity of deflection to changes in these parameters in softer layers.
In terms of intra-project sensitivity, the very low CoV of deflection
associated with Egyrface and Epase indicates that it can be challenging to
infer their statistical variability using TSD measurements. In contrast,
the statistical variability of Esybgrade can be more reasonably inferred
using TSD measurements, owing to the stronger sensitivity observed. For
geometric parameters, the sensitivity results suggest that TSD mea-
surements are more effective for inferring hpase than hgyrface. Further-
more, while the inference of the statistical variability of hgyrface and hpase
is moderately feasible, it is still more promising than inferring the
variability of Egyface and Epase-

Bayesian Updating of TSD Data

In this section, Bayesian updating is implemented using simulated
TSD measurements to infer both pavement modulus and layer thickness.
As outlined in Table 5, two test cases are considered in the present study.
In test case 1, TSD measurements are utilized to infer the modulus of all
three pavement layers. In test case 2, TSD measurements are used to
infer the thickness of the surface and base layers. The results of both test
cases are discussed in detail and compared with those obtained with the
conventional deterministic residual minimization technique to highlight
the advantages associated with Bayesian updating.

Transportation Geotechnics 55 (2025) 101715

Table 5
Prior knowledge of material parameters.
Parameters Mean CoV
Test case 1 Esurface (MPa) 3500 0.4
Epase (MPa) 5500 0.4
Esubgrade (MPa) 70 0.4
Test case 2 Rsurface (M) 0.15 0.3
hpase (m) 0.3 0.3

A major advantage associated with using simulated TSD measure-
ments in the present study is the availability of ground truth parame-
ters—i.e., known material properties and layer thicknesses. This enables
parameter inference to be performed in a controlled environment,
allowing for an effective validation of the employed parameter inference
techniques. Most importantly, with known ground truth, the results can
be interpreted alongside the sensitivity analysis results presented in
Section “Probabilistic simulation of TSD for sensitivity analysis”, espe-
cially for verifying the several hypothesized implications discussed in
Section “Implication on parameter inference”.

Generation of simulated TSD measurements

Following the prior knowledge listed in Table 5, a set of parameter
values can be randomly sampled from the defined prior distributions
and considered as the ground truth. The trained ANN model then takes
these values as inputs to generate the corresponding pavement deflec-
tion profiles. Two example cases of deflection profiles generated for test
case 1 are shown in Fig. 12. Since the quantity and quality of field
measurements can significantly affect the reliability of parameter
inference, a total of 10 TSD measurement locations are simulated,
reflecting a realistic configuration for modern TSD systems. To simulate
TSD measurements more realistically, measurement noise is added to
the ANN-generated TSD measurements. In the present study, a = 5 %
measurement error is assumed for the TSD system for demonstration
purposes. In practice, if a calibrated measurement error is available, it
can be readily incorporated into the Bayesian model updating frame-
work. Following the recommendation of Finno & Calvello [43], such a
reported measurement error is typically interpreted as corresponding to
the 95 % confidence interval of a normal distribution with zero mean,
from which the standard deviation can be back-calculated. Independent
noise is then sampled and added to the ANN-generated deflection values
to obtain the final simulated TSD measurements for subsequent Bayesian
updating. Since TSD sensors at different measuring locations operate
independently, it is reasonable to assume uncorrelated measurement
uncertainties across locations. The final simulated TSD measurements
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Fig. 12. Examples of simulated TSD data with/without measurement errors for test case 1.

incorporating noise are also shown in Fig. 12 for test case 1.
Bayesian updating

Test case 1

In this section, the simulated TSD measurements shown in Fig. 12(a)
are used to statistically infer the three pavement modulus values. As a
standard procedure in Bayesian updating using the MCMC-MH algo-
rithm, the length of the Markov chain and the scale factor are first
determined. Fig. 13 presents the resulting Markov chain with a total
length of 20,000 samples. It is worth highlighting that the trained ANN
surrogate model can simulate these samples in approximately 5 min,
which contrasts with the 20 days required by the original PaveMove
model.

The scale factors are selected using a trial-and-error approach by
visually inspecting the behavior of the Markov chain. As shown in

Fig. 13, the chain exhibits stable fluctuations around a converged mean
and standard deviation without evidence of step-like patterns or drift,
indicating appropriate tuning of the scale factors. After discarding the
initial 1,000 burn-in samples, the posterior distributions of the three
modulus parameters are obtained and shown in Fig. 13. To statistically
characterize these distributions, a normal distribution is fitted to the
posterior samples, and the corresponding posterior mean and CoV are
indicated in the figure.

Fig. 14(a) to (c) compare the posterior distributions with the prior
distributions, ground truth parameter values, and the results from the
deterministic residual minimization technique. The impact of Bayesian
updating varies considerably across the three parameters. For Egyrface,
the posterior CoV is approximately 0.37, only marginally reduced from
the prior CoV of 0.4. This indicates the limited effectiveness of Bayesian
updating for this parameter. Similarly, the posterior CoV of Epgse is
approximately 26 %, which represents some improvement but remains
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Fig. 13. Convergence of the Markov chain in the MCMC-MH algorithm.
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relatively high. In contrast, the effects of Bayesian updating on Egypgrade
are very significant. The prior CoV of Egypgrade is substantially reduced
from 40 % to approximately 4 %, showing that Bayesian updating is
highly effective for this parameter. Furthermore, across all three pa-
rameters, the posterior mean values closely align with the known ground
truth, demonstrating the accuracy of the parameter inference. In addi-
tion, the residual minimization technique also provides estimates that
agree well with the ground truth.

These observations can be interpreted in light of the sensitivity
analysis results presented earlier. The limited update in the CoV of
Egurface and Epgge is due to the low sensitivity of pavement deflections to
these parameters, as indicated in Fig. 11(b). In other words, variations in
Egurface and Epase do not lead to significant changes in deflection, making
them hard to infer from TSD measurements. In contrast, deflections are
highly sensitive to Esypgrade, allowing this parameter to be effectively
inferred and its uncertainty greatly reduced.

Fig. 15 (a) shows the pavement deflection predictions before and
after Bayesian updating. Using only the prior information results in a
broad 95 % confidence interval, which, although centered around the
simulated TSD measurements, leads to considerable uncertainty that
could hinder engineering decision-making. After Bayesian updating, this
interval is significantly narrowed and better captures the measurement
noise and aligns more closely with the simulated measurements. The
residual minimization technique also produces predictions that agree
well with the simulated measurements, although it lacks a probabilistic
uncertainty estimate.

To assess the consistency of the Bayesian updating, another reali-
zation of the simulated TSD measurement is generated and shown in
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Fig. 12(b). Bayesian updating is then repeated using this new dataset,
and the results are shown in Fig. 14 (d) to (f) and 14(b). The findings
from this second realization largely mirror those from the first. While the
posterior CoVs for Egyface and Epgge remain relatively unchanged, their
posterior means still agree well with the ground truth. The most accurate
and uncertainty-reduced inference is achieved for Esybgrade. In addition,
the updated 95 % confidence interval in Fig. 15(b) effectively bounds
the simulated measurements. In contrast, the residual minimization
technique performs poorly in this case for Egyface and Epage, With large
discrepancies observed, although its predictions still align with the
simulated measurements. Further discussions on these aspects are pro-
vided in Section “Discussion and limitations”.

Test case 2

In test case 2, simulated TSD measurements are used to update
hgurface and hpgse. Fig. 16(a) shows the realization of the simulated TSD
measurements used in this test case. The Markov chain is set to 20,000
samples, and the scale factors are adjusted to ensure the stability of the
Markov chain. All other analysis procedures are identical to those
described in test case 1.

Fig. 17 shows the results of parameter inference for hgysface and hpage.
It is observed that the posterior CoV of hgyrface is not effectively reduced
by the Bayesian updating, indicating the limited effectiveness of the TSD
measurements in improving knowledge of this parameter. In contrast,
the posterior CoV of hpase exhibits a marked reduction compared to the
corresponding prior knowledge, suggesting improved parameter esti-
mation. This difference can also be explained by the sensitivity results
shown in Fig. 11. The higher inter-project and intra-project sensitivities
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Fig. 14. Comparison of the posterior distributions of the three modulus parameters.
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associated with hpase suggest that TSD measurements are more effective
in distinguishing different hpase values than hgyrface values. As a result,
the uncertainty reduction is more pronounced for hp,s.. Moreover, the
posterior means of both hgyrface and hpase Show good agreement with
their ground truth values, which demonstrates that Bayesian updating
with TSD measurements is reasonably effective in capturing the average
parameter values. As a result, the model predictions and their associated
95 % confidence intervals agree well with the simulated TSD measure-
ments. In contrast, for this particular realization, the residual minimi-
zation technique fails to infer reasonable values for hgyrface and hpase-
However, as shown in Fig. 16(b), the resulting predictions still align well
with the simulated measurements. This contrast will be further dis-
cussed in the following section.

Discussions and limitations
Consistency in parameter inference

One key benefit of using simulated measurements is the ability to
perform repeated analyses for investigating the consistency of different
parameter inference techniques. Following the procedures outlined in
Section “Bayesian updating of TSD data”, a total of 50 repeated analyses
are performed. Each analysis involves a different set of randomly
generated ground truth parameter values and simulated measurement
errors. As a result, for each parameter, 50 corresponding posterior dis-
tributions are obtained. Examining these distributions enables a
comprehensive evaluation of the consistency and reliability of the
parameter inference technique.

Fig. 18 compares the posterior distributions from these 50 repeated
analyses with the corresponding ground truth values for the three
modulus parameters. The red circles represent the posterior mean
values, while the shaded regions represent the 95 % confidence intervals
of the posterior distributions. For comparison, the residual minimization
technique is also applied to the same 50 repeated analyses. It is observed
that the posterior means generally agree well with the ground truth
across the 50 repeated analyses, and the ground truth values largely fall
within the shaded regions. However, the errors are larger for Egy;face and
Epase compared to Egypgrade- This observation aligns with the sensitivity
analysis shown in Fig. 11(a), where the degree of sensitivity for Egyrface
and Ep,se is lower than that for Egypgrade- A lower degree of sensitivity
indicates that multiple Egyface and Epgse can yield similar pavement de-
flections, making them harder to distinguish accurately using TSD
measurements. In contrast, Esypgrade displays much greater sensitivity,
enabling more accurate posterior estimates. In addition, the posterior
CoVs for Egysface and Epase remain higher than those for Egypgrade across
the 50 analyses. This trend also matches the intra-project sensitivity
findings presented in Fig. 11(b).

On the other hand, the consistency in the residual minimization
technique is significantly lower. For Egy;face and Epase, the inferred values
from the 50 repeated analyses show considerable scatter across the
parameter space, with several results falling outside the 95 % confidence
interval of the Bayesian posterior distributions. However, for Egubgrade,
the performance of the residual minimization technique is much more
stable and comparable to that of Bayesian updating. Again, these find-
ings are consistent with the relative sensitivities shown in Fig. 11(a): the
scatter is largest for Esyface and smallest for Esubgrade, Which directly
corresponds to their sensitivity levels.

There are two primary reasons why the residual minimization
technique produces more scattered results than Bayesian updating. First,
Bayesian updating explicitly incorporates prior knowledge through
probability distributions, which assigns varying likelihoods to different
parameter values. This results in lower probabilities for extreme values.
In contrast, residual minimization typically treats prior knowledge as
hard bounds for the parameter search, which effectively assigns equal
probability across the entire parameter space. Second, Bayesian updat-
ing explicitly accounts for measurement uncertainties in the likelihood
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Fig. 18. Consistency of parameter inference techniques in test case 1.

function. In contrast, residual minimization considers these un-
certainties only indirectly—as weights in the objective function of the
optimization algorithm. Therefore, residual minimization is more
vulnerable to being skewed by measurement errors, resulting in the wide
scatter shown in Fig. 18. These two factors collectively hinder the re-
sidual minimization technique in accurately inferring Egyrface and Epage,
particularly given their moderate levels of sensitivity.

Fig. 19 shows the results of test case 2 based on 50 repeated analyses.
While the posterior mean values for both hgyrface and hpase generally align
with the ground truth, the 95 % confidence interval for hgyface remains
consistently wide. In contrast, the confidence interval for hp,gse is
consistently narrower, which reflects improved certainty. Similar to the
modulus parameters, the residual minimization technique performs
inconsistently across repeated analyses, with numerous instances
showing significant discrepancies from the ground truth. However, the
estimates of hpyse are comparatively more consistent than those for
hgurface- All these observations are in agreement with the results shown in
Fig. 17 and can be similarly explained using the arguments presented
earlier in this section.

Extrapolation to other pavement conditions

As observed in Section “Bayesian updating of TSD data”, although
the parameter values identified by the residual minimization technique
may not be correct, they can still produce deflections that match the
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Fig. 19. Consistency of parameter inference techniques in test case 2.

simulated TSD measurements. This outcome is not unexpected because
residual minimization explicitly targets minimizing the absolute differ-
ences between model predictions and measurements. However, due to
the presence of measurement error, the inferred parameter values may
be skewed relative to their true values, leading to a false sense of ac-
curacy in the model predictions. As a result, the close agreement be-
tween predicted and measured deflections can be misleading and may
conceal the fact that the underlying parameter values are incorrect.

In many practical applications, pavement parameters inferred from
TSD measurements are often used to simulate pavement responses under
different loading or structural conditions. For example, engineers may
use the inferred parameters to predict deflections under varying truck
speeds, loads, or layer thicknesses. To investigate how well the inferred
parameters generalize to different pavement configurations, an extrap-
olation study is conducted. Three sets of simulated TSD measurements
are generated following the setup used in test case 1. Parameter infer-
ence is then performed to obtain the posterior distributions of Egyface,
Epase, and Egybgrade- These posterior distributions are subsequently used
as inputs to simulate deflections under TSD loading in a new pavement

system, which is characterized by a hgyrface 0f 0.25 m, a hpase 0f 0.3 m, a
truck speed of 50 km/h, and a truck load of 60 kN.

Fig. 20 shows the results of this extrapolation exercise. Subplots (a)
to (c) show the original simulated TSD measurements used for param-
eter inference, along with the corresponding deflection predictions ob-
tained using both Bayesian updating and residual minimization. Both
techniques produce deflections that reasonably match the ground truth.
Subplots (d) to (e) show the deflection predictions made for the new
pavement system using the parameters obtained from each method. The
ground truth deflections are also shown for comparison and verification
purposes. It is evident that the predictions made with the posterior
distributions from Bayesian updating remain reasonable, with the mean
predictions closely aligning with the ground truth and the 95 % confi-
dence interval fully capturing the actual deflections. In contrast, the
predictions made with the parameter identified using residual minimi-
zation show large discrepancies from the ground truth, indicating that
incorrect parameter values were identified using TSD measurements in
the original analysis (e.g., Table 6).

To further evaluate the robustness of these results, the extrapolation
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Table 6
Results of parameter identifications.
Casel Casell  Caselll
Egurface (GPa) Ground truth 3.09 2.71 2.62
Bayesian updating (posterior 2.53 2.96 2.82
mean)
Residual minimization 0.42 1.52 0.53
Epase (GPa) Ground truth 4.27 5.32 4.73
Bayesian updating (posterior 4.87 5.08 4.28
mean)
Residual minimization 7.07 7.54 4.85
Egubgrade Ground truth 61.8 55.8 65.2
(MPa) Bayesian updating (posterior 61.2 56.2 64.4
mean)
Residual minimization 61.6 56.1 68.2
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Fig. 21. Comparison of extrapolated pavement deflections for 50

repeated analyses.

exercise is repeated 50 times using different sets of ground truth pa-
rameters. Fig. 21 summarizes the comparison between the ground truth
deflections and those predicted using the inferred parameter for all 50
analyses. The extrapolation results from Bayesian updating largely agree
with the ground truth deflections, as evidenced by the clustering of red
scatter points along the 1:1 diagonal line. In contrast, the results from
residual minimization show greater variability. While some predictions
are reasonable, many deviate significantly from the 1:1 line, confirming
that the residual minimization technique identifies inaccurate param-
eter values that lead to poor extrapolation performance. Based on
Fig. 21, it is demonstrated that Bayesian updating, which explicitly in-
corporates both prior distributions and measurement uncertainties, is
more effective in identifying accurate parameter values that can be more
reliably used for extrapolation across varying pavement conditions, in
comparison to the residual minimization technique.

Practical implications

Since TSD differs fundamentally from FWD in its loading mecha-
nisms, converting TSD data to FWD-equivalent data lacks a solid
mechanistic foundation. From a practical perspective, the adoption of
TSD, being a more complex and costly technology, requires careful
assessment of its cost-effectiveness and technological readiness. In the
UK, NDT techniques are adopted to assess road structural strength, and
the results are used with pavement construction and traffic to determine
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the Network Structural Condition category for each 100 m section.
Although TSD has been available as an NDT technology in the UK for
many years, its use in practice remains largely qualitative. The UK road
sector has reported inconsistencies between the interpreted results of
TSD and FWD, such as the back-calculated material parameters and the
Network Structural Condition category, thereby raising concerns about
the adoption of TSD in place of FWD in practice. One of the key barriers
to its wider quantitative adoption is the absence of accessible and reli-
able predictive models based on TSD measurements. The provision of
the proposed framework in the present study addresses this gap and
contributes to enhancing the technological readiness of TSD-based
pavement evaluation. The developed PaveMove, which directly simu-
lates TSD, provides a ready-to-use simulation tool. The integration of
machine learning significantly improves computational efficiency and
allows timely interpretation of large volumes of TSD data—an essential
feature given TSD’s continuous data collection mode. By enabling faster,
real-time analysis within a given test duration and budget (compared to
FWD), and eliminating the need for road closures, the framework
potentially increases the cost-effectiveness and safety of pavement
condition assessments. Ultimately, it offers a viable path toward inte-
grating TSD technology into modern, network-level pavement man-
agement systems in a more quantitative, informed, and efficient manner.

Limitations and future work

Future work is encouraged to address some limitations of the present
study and explore further opportunities in pavement parameter infer-
ence using TSD measurements. First, Esuface; Ebases Esubgrades Asurface> and
hpase are not simultaneously updated using TSD measurements. This is
due to the issue of parameter compensation. For example, a soft but
thick surface layer may result in deflections similar to those of a stiff but
thin surface layer. When all five parameters are simultaneously
considered, such compensatory effects can become more complex and
exacerbate the challenge of unique parameter identification. As a result,
relying solely on TSD measurements is often insufficient for reliably
updating all these parameters together. In practice, additional sources of
information such as ground-penetrating radar (GPR) are often used to
estimate layer thicknesses. Future studies should explore the integration
of TSD measurements with GPR measurements for a more comprehen-
sive and robust probabilistic parameter inference framework.

Second, the study finds that some parameters—Eg;face, Ebase> Asurface
and hp,se—exhibit only a moderate degree of sensitivity with respect to
pavement deflections. For these parameters, reasonably accurate prior
knowledge (e.g., prior mean values that are not significantly biased) is
often required to ensure effective Bayesian updating using TSD mea-
surements. When the prior information for these parameters is poorly
estimated, Bayesian updating using TSD measurements may perform
inadequately due to the limited sensitivity of deflections to changes in
these parameters.

Third, the present study considers pavement deflection as the pri-
mary output quantity of interest. However, the direct measurement
obtained from a TSD device is the deflection slope. While deflections can
be converted from slopes through some means [29], focusing directly on
deflection slope as the observable quantity in Bayesian updating may
provide a more accurate and direct representation of TSD measure-
ments. Future studies are warranted to investigate the use of deflection
slope in parameter inference, which may further improve the validity
and applicability of Bayesian updating for TSD-based pavement evalu-
ation. Last, the present study assumes all pavement layers are elastic,
which may not be fully representative of the various layers. Future
studies will directly incorporate viscoelastic behavior to more realisti-
cally simulate the surface layer. This is possible using PaveMove’s built-
in viscoelastic material model. In addition, advanced techniques that
correlate viscoelastic to elastic behavior for simplified analysis will also
be explored [15,16].
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Conclusions

In summary, this paper presents the first end-to-end probabilistic
framework for inferring pavement material parameters using TSD
measurements. It overcomes three limitations of existing TSD-based
parameter inference techniques through a synergistic combination of a
physics-based simulator (PaveMove), machine learning surrogates, and
Bayesian updating. Rigorous validation using a series of simulated TSD
datasets demonstrates improved performance compared to conventional
deterministic residual minimization techniques. The specific key con-
clusions are as follows:

(i) PaveMove effectively simulates mechanical pavement responses
under TSD dynamic loading, establishing itself as a new and
practical simulation tool for TSD-based pavement structural
evaluation.

A validated machine learning surrogate model is successfully
developed to emulate PaveMove across a broad range of pave-
ment material properties. It acts as an effective computational
tool to permit real-time probabilistic parameter inference using
TSD measurements, which align well with the continuous nature
of TSD data acquisition.

The accuracy of TSD-based parameter inference varies across
parameters. Parameter inference using TSD deflections is more
reliable for inferring Esypgrade than for Epase and Egyrface, and for
inferring hpase than for hgyrface. Compared to deterministic resid-
ual minimization, Bayesian updating provides more consistent
parameter estimates, particularly for parameters with lower
sensitivity, such as Epase, Esurface, and hgyrface. Moreover, its ability
to quantify uncertainties explicitly supports the proactive vali-
dation and interpretation of inferred parameters. From a practical
point of view, Bayesian updating is recommended for TSD-based
parameter inference.

The synergistic combination of the three core components in the
proposed methodological framework significantly enhances the
technological readiness of TSD-based pavement evaluation. It
lays a solid foundation for the broader, quantitative integration of
TSD technology into modern, network-level pavement manage-
ment systems.
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