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Abstract 
A weakly nonlinear vibration absorber is used to suppress the primary resonance 
vibrations of a single-degree-of-freedom weakly nonlinear oscillator subjected to 
periodic excitation. The linearized natural frequency (low frequency mode) of the 
nonlinear absorber is tuned to be approximately one-third of the linearized natural 
frequency (high frequency mode) of the primary nonlinear oscillator. The cubically 
nonlinear coupling of stiffness establishes the terms that develop three-to-one 
internal resonances. The low frequency mode required for the absorber can be 
achieved by a light-weight mass nonlinear attachment with small values of linear 
and nonlinear stiffness of coupling.  The method of multiple scales is used to 
obtain the averaged equations that determine the amplitudes and phases of the 
first-order approximate solutions. Numerical results are given to show the 
effectiveness of the nonlinear absorber for suppressing nonlinear vibrations of the 
primary nonlinear oscillator under primary resonance conditions. 

Key words: Nonlinear vibration absorber, single degree-of-freedom nonlinear 
oscillator, three-to-one internal resonances, primary resonance 
response, passive vibration control, vibration absorber. 

 

1. Introduction 

Linear and nonlinear dynamic vibration absorbers have been employed to suppress the 
vibrations of the nonlinear oscillators subjected to parametric or external excitations [1-17]. 
Conceptually a dynamic vibration absorber [18, 19] consists of a mass that is attached to the 
primary oscillator by a linear damper and a spring of linear or linear-plus-nonlinear 
characteristics. The addition of an absorber to a single-degree-of-freedom weekly nonlinear 
oscillator results in a two-degree-of-freedom weekly nonlinear system. The linearized 
natural frequency of the absorber can be tuned to be under non-internal resonances or 
internal resonances with the linearized natural frequency of the primary oscillator. Both 
non-internal resonances and internal resonances have been implemented to suppress the 
nonlinear vibrations of nonlinear oscillators. 

Implementation of internal resonance control technique requires creating nonlinear 
coupling between the primary oscillator and nonlinear absorber and tuning the two 
linearized natural frequencies to be commensurable. Depending on the order of the coupling 
nonlinearity in the resultant system that is formed by the primary oscillator and absorber, 
the commensurable relationships of the linearized natural frequencies can cause the 
corresponding modes to be strongly coupled once an internal resonance exists. For example, 
if the coupling of the resultant system is of quadratic nonlinearities, then a one-to-two or 
two-to-one internal resonances exist in seeking the first-order approximate solutions. For a 
resultant system with cubic nonlinearities of coupling, one-to-one, one-to-three, or 
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three-to-one internal resonances can exist. When an internal resonance exists in a nonlinear 
system, vibrational energy imparted to one of the modes will be continuously exchanged 
between two modes. 

For a resultant system with cubic nonlinearities of coupling, there are three 
corresponding design options for the utilisation of internal resonances to suppress the 
vibrations of the primary nonlinear oscillator, namely 1:1: ap  , 3:1 , or 1:3 . Here 

p  and a  denote the linearized natural frequencies of the primary nonlinear oscillator 
and absorber respectively. One-to-one and one-to-three internal resonance techniques have 
been proposed to suppress the resonant vibrations of the nonlinear oscillators. In the present 
paper, three-to-one internal resonances will be tuned to suppress the primary resonance 
response of the nonlinear oscillator. Specifically, the linearized natural frequency of the 
absorber will be approximately one-third of the linearized natural frequency of the primary 
nonlinear oscillator, thereby requiring a weakly linear stiffness of coupling. The values of 
the absorber spring stiffness are significantly lower than those of the forced nonlinear 
oscillator. The linearized natural frequency and the forcing frequency interval for primary 
resonances of the primary nonlinear oscillator change only slightly after the nonlinear 
absorber is attached to. In this sense, the coupling stiffness of nonlinear vibration absorber 
can be considered as a small perturbation to those of the primary nonlinear oscillator. It can 
thus be easily implemented in practical applications. 

The present paper is organised into four sections. Section 2 describes the mathematical 
modelling of a primary nonlinear oscillator attached by a nonlinear vibration absorber and 
perturbation analysis. Illustrative examples are presented in Section 3 and conclusion is 
given in Section 4. 

2. Mathematical Modelling and Perturbation Analysis 

 
 
 
 
 
 
 
 
   
 

 
Fig. 1 A primary nonlinear oscillator attached by a nonlinear vibration absorber, where 1m  and 2m  

represent the masses of the primary oscillator and absorber, respectively. 

 
For simplicity, consider an externally excited nonlinear oscillator with cubic 

nonlinearity that is attached by a weakly nonlinear vibration absorber as shown in Figure 1. 
The equations of motion for the resultant system can be written as: 
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where 1x  and 2x  are the displacements of the primary nonlinear oscillator and the 
absorber. 1m , 1k , 2k  and 1c  represent the mass, linear stiffness, nonlinear stiffness and 
damping coefficient of the primary nonlinear oscillator, respectively. Similarly, 2m , 3k , 

4k  and 2c  denote the mass, linear stiffness, nonlinear stiffness and damping coefficient of 
the nonlinear absorber. The parameters 0f  and   are the amplitude and frequency of the 
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external excitation. An overdot indicates the differentiation with respect to time t. 
 
Equation (1) can be re-organized as: 
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natural frequency of the primary nonlinear oscillator without absorber. 

Equation (2) can be interpreted in the context of nonlinear oscillations as a 
two-degree-of-freedom weakly nonlinear system subjected to periodic excitation. The closed 
form of the solutions to equation (2) cannot be found analytically thus an approximate 
solution will be sought using a perturbation method. 

The main purpose of the present paper is to utilise a three-to-one internal resonance (i.e., 
1:3: ap  ) to suppress the primary nonlinear oscillator. The values of the absorber 

spring stiffness are significantly lower than the stiffness of the primary oscillator as the low 
frequency of the absorber requires a low value of linear stiffness. As a result, for the primary 
nonlinear oscillator, the coupled damping and spring stiffness between the primary nonlinear 
oscillator and absorber can be considered as a small perturbation to the corresponding 
parameters of the primary nonlinear oscillator. On the other hand, for the absorber, the linear 
part of its stiffness is comparable with its mass, though both are smaller than their counterpart 
of the primary nonlinear oscillator. As such, equation (2) can be re-scaled as 
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where   is a non-dimensional small parameter, the coefficients of the damping terms and 
nonlinear terms, i  and i  ( 2,1i ) in equation (2) have been rescaled in terms of 

ii     and ii    , the overbars in i  and i  have been removed for brevity. In 
particular, all damping terms and nonlinear terms are assumed to be small and in the order of 
O(  ). The amplitude of the excitation has been re-scaled in terms of ff   to account for 
the primary resonances and the overbar in f  has been removed for the sake of brevity. 
Equation (3) is a system of two weakly nonlinear oscillators with coupling terms in the 
context of nonlinear oscillations.  Though the resonant response of certain systems of 
coupled weakly nonlinear oscillators has been studied for the systems under one-to-one, 
three-to-one, or one-to-three international resonances [i.e., 20], equation (3) is different from 
those equations as the coupled linear terms act as excitations in the second equation. The 
coupled linear term 1

2
2 x  cannot be considered as a small perturbation term and has the 

same order as the linear term of the second equation, while the existing studies usually 
considered the coupling terms as small perturbations. 

It is assumed that the two-DOF nonlinear system given by equation (3) is simultaneously 
under both three-to-one internal resonance and external primary resonance of the high 
vibration mode (the primary nonlinear oscillator). This means that the linearized natural 
frequencies satisfy the relation  

           221 3   , 
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and the forcing frequency is such that  

            1 . 

where   is an external detuning parameter to express the nearness of   to 1  and 2  is 
an internal detuning parameter to express the nearness of 1  to 23 .  

According to the method of multiple scales [20], the approximate solutions of the 
equations are sought in the form: 

      )(),(),();( 2
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where tT 0  is the so-called fast time scale, and tT 1  is a slow time scale related to 
modulations in the amplitude and phase caused by the non-linearity, damping and 
resonances. 

Substituting the approximate solutions (4) into (3) and then balancing the like powers 
of   results in the following ordered perturbation equations: 
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The general solutions of equation (5) can be expressed in complex form as: 
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where the amplitudes A  and B  are unknown functions of the time scale 1T  which will be 
determined by imposing the solvability conditions. )/1/(1 2

2
2
1 F , and ''cc  stands for 

the complex conjugates of the preceding terms. 
Substituting equation (7) into equation (6) and eliminating the secular terms from the 

resultant equations for the second-order approximate solutions yields: 
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where A  and B  are the complex conjugates of A  and B , and primes stand for 
differentiation with respect to the slow time scale 1T . The amplitude functions A and B can 
be expressed in the polar form as 

      )exp(2
1 iaA  ,    )exp(2

1 ibB  ,  (9) 

where a , b ,   and   are real functions of the time scale 1T . 
Substituting equation (9) into equation (8) and then separating real and imaginary parts of the 
resulting equations lead to the following equations: 
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The steady-state response of the nonlinear system given by equation (1) corresponds to 
the constant solutions of a set of four non-linear algebraic equations that can be obtained by 
letting 0 ba  and 0   in equation (10). 

Elimination of the trigonometric terms in the resulting equations leads to the following 
two nonlinear algebraic equations that determine the amplitudes a and b of the steady-state 
response: 
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Equation (11) admits two types of solutions that b can be zero while a is nonzero or both 
a and b are nonzero, namely, 0a , 0b , and 0a , 0b , which will be referred to 
here as uncoupled mode and coupled mode of the amplitudes. For the uncoupled mode 
amplitudes, equation (11) reduces to 

    0)( 222
31

22
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2
2  aasgacs , (12) 

which is similar to the amplitude equation of frequency-response curve of an uncoupled 
Duffing’s equation under primary resonances[20]. It is worth noting that the coefficients 
have been changed due to the addition of the absorber. This indicates that the addition of 
absorber can modify the dynamic behaviour of the primary nonlinear oscillator even in the 
case of uncoupled mode vibrations. 

The first-order approximate solutions for the steady-state response of the primary 
nonlinear oscillator and absorber, by combining equations (4), (5) and (7), can be written as: 
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where the amplitudes a and b, phases   and   are given by equation (8). 
For uncoupled mode vibrations with b being zero, the approximate solutions are given by: 

   )()cos(1  Otax  , 
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1
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It is easy to note that the steady-state response of the absorber consists of one frequency 
(forcing frequency) for uncoupled mode vibrations and two frequencies (forcing frequency 
and one-third of the forcing frequency) for coupled mode vibrations. 

The stability of the steady-state solutions can be examined by computing the eigenavlues 
of the coefficient matrix of the characteristic equation, which can be derived from equation 
(10) in terms of small disturbances to the steady-state solutions.  If the real parts of all the 
eigenvalues are negative, the steady-state solution is stable. If at least one eignevalue has 
positive real part, the solution is unstable.  A bifurcation occurs when parameters leading to 
eigenvalues with zero real part. 

3. Numerical Simulations 

Numerical simulations have been performed under the following values of the system 

parameters; kg 0.101 m , kg 0.12 m , Ns/m 1.01 c , Ns/m 05.02 c , N/m 0.1001 k , 
3

2 N/m 0.8k , N/m 1236.13 k , 3
4 N/m4.0k , N171.00 f , unless otherwise specified. 

The linear stiffness of the absorber is selected based on the three-to-one internal resonance 

conditions. The linearized natural frequencies of the primary nonlinear oscillator before and 

after the nonlinear absorber is attached to are rad/s 16228.310  , rad/s 17999.31  , and 

the linearized natural frequency of the nonlinear absorber is rad/s 06.12  , respectively.  

The change in linearized natural frequencies of the primary nonlinear oscillator after and 

before the nonlinear absorber is attached is by approximately 0.56%.  This set of system 

parameters confirms that the nonlinear absorber can be regarded as a small perturbation to 

the primary nonlinear oscillator with the mass ratio of 12 / mm   being 0.1, the quotient of 

linear stiffness 13 / kk  being 0.011236, and the ratio of nonlinear stiffness 24 / kk  being 

0.05. 

The performance of the nonlinear vibration absorber on vibration suppression of 

nonlinear oscillator can be shown in the frequency-response curves in the neighbourhood of 

primary resonances of the primary nonlinear oscillator. The minimum forcing amplitude (i.e. 

the critical forcing amplitude) that would lead to jumps in the frequency-response curve of 

the primary nonlinear oscillator without absorber was found to be N09008.00 criticalf .  

The frequency-response curve exhibit saddle-node bifurcations, coexistence of three 

solutions and jump phenomena if the amplitude of excitation is larger than the critical forcing 

amplitude. Figure 2a shows the frequency-response curve of the primary nonlinear oscillator 

without absorber. The horizontal axis represents an interval of external detuning 

rad/s ]21.0,15.0[10  , which corresponds to the interval of forcing frequency 

rad/s ]3.37228 ,01228.3[10  . Saddle-node bifurcations occur at rad/s 1778.310   and 

rad/s 19025.3 , respectively, where result in jump-up phenomenon from the low-amplitude 

branch to the high-amplitude branch and jump-down from the high-amplitude branch to the 

low-amplitude branch. The maximum amplitude of primary resonance vibrations is 0.54038 

cm, occurs at rad/s 1898.310  . 
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Fig. 2. Frequency-response curves of the primary nonlinear oscillator with and without nonlinear vibration 

absorber for the amplitude of excitation N 171.00 f . 

After the nonlinear absorber is attached to the primary nonlinear oscillator, the resonant 

vibrations of the primary nonlinear oscillator have been greatly suppressed. Figure 2b shows 

the frequency-response curve in the region of the frequency of excitation 

rad/s ]3.38999 ,02999.3[10  . For this combination of system parameters, the amplitude of 

the absorber b is zero and only the amplitude a exists. Saddle-node bifurcations, jump and 

hysteresis phenomena that have appeared in the frequency-response curve of the primary 

nonlinear oscillator before the nonlinear vibration absorber is attached have been eliminated.  

The maximum amplitude of vibrations has been reduced to 0.341226 cm.  The forcing 

frequency at which the amplitudes of the primary resonance vibrations reach their maximums 

has shifted from rad/s1899.3  for the primary nonlinear oscillator alone to 
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rad/s19499.3  for the primary nonlinear oscillator attached by nonlinear absorber. This 

suggests that the nonlinear absorber makes a small change of the forcing frequency interval 

for the primary resonances of the primary nonlinear oscillator. 

4. Conclusion 

A weakly nonlinear absorber was found to be effective in suppressing the primary 
resonance vibrations and eliminating saddle-node bifurcations of the nonlinear oscillator, as 
the frequency-response curves can be modified by the nonlinear absorber attached. The 
nonlinear absorber referred in the present paper consists of a relatively light-mass attached 
to a vibrating nonlinear oscillator by a linear damper and a spring of linear-plus-nonlinear 
characteristic, from which the light-mass can absorb vibrational energy without significantly 
modifying the primary nonlinear system and adversely affecting its performance. The 
linearized natural frequencies of the primary nonlinear oscillator and the absorber are tuned 
to be under three-to-one internal resonances, as such the linear stiffness of the absorber is 
much lower than the stiffness of the primary system itself.  The vibrations of primary 
nonlinear system act as an external excitations to excite the vibrations of the absorber 
oscillator formed by the light mass. Vibrational energy input to the primary system is then 
transferred to the nonlinear absorber. The absorber can not only effectively suppress the 
amplitude of oscillations of the primary oscillator, but also eliminate saddle-node 
bifurcations and jump phenomena. 

References 

(1) J.C. Nissen, K. Popp, B. Schmalhorst, Optimization of a nonlinear dynamic vibration 

absorber. Journal of Sound and Vibration 99(1985) 149-154. 

(2) H.J. Rice, J.R. McCraith, On practical implementations of the nonlinear vibration absorber.  

Journal of Sound and Vibration 110 (1986) 161-163. 

(3) H.J. Rice, Combinational instability of the non-linear vibration absorber. Journal of Sound 

and Vibration 108 (1986) 526-532. 

(4) I.N. Jordanov, B.I. Cheshankov, Optimal design of linear and nonlinear dynamic vibration 

absorbers. Journal of Sound and Vibration 123 (1988) 157-170. 

(5) J. Shaw, S.W. Shaw, A.G. Haddow, On the response of the nonlinear vibration absorber.  

International Journal Non-Linear Mechanics 24 (1989) 281-293. 

(6) C.W. Bert, D.M. Egle, D.J. Wilkins, Optimal design of a nonlinear dynamic absorber. 

Journal of Sound and Vibration 137 (1990) 347-352. 

(7) S. Natsiavas, Steady state oscillations and stability of non-linear dynamic vibration 

absorbers. Journal of Sound and Vibration 156 (1992) 227-245. 

(8) S.S. Oueini, A.H. Nayfeh, M.F. Golnaraghi, A theoretical and experimental implementation 

of a control method based on saturation, Nonlinear Dynamics 13 (1997) 189-202. 

(9) P.F. Pai, B. Rommel, M.J.Schulz, Non-linear vibration absorbers using higher order internal 

resonances, Journal of Sound and Vibration 234 (2000) 799-817. 

(10) X. Jiang, D.M. Mcfarland, L.A. Bergman, A.F. Vakakis, Steady state passive nonlinear 

energy pumping in coupled oscillators: Theoretical and Experimental Results. Nonlinear 

Dynamics 33 (2003) 87-102. 

(11) J.H. Bonsel, R.H.B. Fey, H. Nijmeijer, Application of a dynamic vibration absorber to a 

piecewise linear beam system. Nonlinear Dynamics 37 (2004) 227-243. 

(12) K.F. Liu, J. Liu, The damped dynamic vibration absorbers: revisited and new result. Journal 

of Sound and Vibration 284 (2005) 1181-1189. 

(13) R. Viguie, G. Kerschen, Nonlinear vibration absorber coupled to a nonlinear primary 

system: A tuning methodology. Journal of Sound and Vibration 326 (2009) 780-793. 

1036



14th Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University 

 

(14) J.C. Ji, N. Zhang, Suppression of super-harmonic resonance response of a forced nonlinear 

system using a linear vibration absorber', in Proceedings of the 13th Asia-Pacific Vibration 

Conference (APVC 09), Christchurch, New Zealand, November 2009, pp. 1-7. 

(15) H. Jo, Yabuno, H, Stabilization of a 1/3-order subharmonic resonance using nonlinear 

dynamic vibration absorber. Nonlinear Dynamics, vol.59 (2010), 747-758. 

(16) J.C. Ji, N. Zhang, Suppression of the primary resonance vibrations of a forced nonlinear 

system using a dynamic vibration absorber. Journal of Sound and Vibration 329 (2010) 

2044-2056. 

(17) J.C. Ji, N. Zhang, Suppression of super-harmonic resonance response using a linear 

vibration absorber.  Mechanics Research Communications 38 (2011), 411-416. 

(18) J.B. Hunt, Dynamic Vibration Absorbers, London: Mechanical Engineering Publications, 

1979. 

(19) B.G. Korenev, and L.M. Reznikov, Dynamic Vibration Absorbers, Thoery and Technical 

Applications. New York: Wiley and Sons, Ltd., 1993. 

(20) A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley Interscience, New York, 1979. 

Acknowledgements 

This research is partially supported by the UTS ECR grant. 

1037




