Characterising student exploration strategies using inquiry-based learning resources

Associate Professor Barney Dalgarno
Charles Sturt University

Associate Professor Gregor Kennedy
The University of Melbourne

Associate Professor Sue Bennett
University of Wollongong
Overview

- Situating this work in the learner analytics landscape
- Theoretical support for discovery learning
- Empirical and theoretical question marks
- This study – comparing discovery and tutorial learning designs
- Initial results showing very little difference
- Reanalysis taking into account exploration strategy showing advantage for systematic discovery
- Alternative approaches to characterising exploration strategies
Definitions

- **Learning analytics** is concerned with the collection, analysis and reporting of data about learning in a range of contexts. It informs and provides input for action to support and enhance learning experiences, and the success of learners. (Simon Buckingham Shum, The Open University, ascilite 2011 keynote presentation).

- **Academic analytics** is the application of business intelligence tools and strategies to guide decision-making practices in educational institutions. The goal ... is to help those charged with strategic planning in a learning environment to measure, collect, decipher, report and share data in an effective manner. (http://searchcio.techtarget.com/definition/academic-analytics)
Historical underpinnings

Intelligent Tutoring Systems

Interactivity Research
Historical underpinnings

Intelligent Tutoring Systems

Student Model

Pedagogical Model

Domain Knowledge

Feedback
“ITS were recognised as narrow and brittle” (Cumming & McDougall, 2000)

...they were heavily reliant on educational programs and applications that had defined or discrete stages and steps.

They were often tied to a program and were not generalisable.
Historical underpinnings
Historical underpinnings

- Key message: analysing interaction in isolation from the learning design is meaningless
Inquiry-based learning

- In its purest form, students explore learning resources or a physical or virtual space with minimal guidance

- Some elements in common with:
 - Discovery learning
 - Problem based learning
 - Case-based learning
 - Project-based learning

- Common objective of situating the development of a student’s knowledge and understanding in the context of authentic activities, problems or scenarios

- Theoretical support from cognitive constructivist theorists such as Piaget (1973) and Bruner (1962)
Empirical and theoretical criticisms of ‘pure’ discovery learning

- Richard Mayer (2004) reviewed three decades of research on discovery learning and concluded that in each case guided discovery learning was more effective than pure discovery learning.

- Paul Kirschner, John Sweller and Richard Clark (2006), reach similar conclusions but based on an argument grounded in current knowledge about cognitive architecture, expert-novice differences and cognitive load.
This study

- Comparing learning performance using a discovery based versus a tutorial based learning design using multimedia learning resources
- The archetypal *discovery* resource allows the learner to *actively* experiment with and manipulate objects within the environment and explore the responses of the simulated entities
- The archetypal *tutorial* resource provides information to the learner in a lock step fashion for passive digestion
Experimental design

- Two content domains (global warming, blood alcohol concentration, considered separately in the analysis)
- Resources developed using two learning designs (discovery, tutorial) in each content domain
- Each participant (n=158) completed:
 - a pre test on knowledge within each content domain,
 - tasks using one tutorial resource and one discovery resource in two content domains, assigned at random
 - A post test on knowledge within each content domain

<table>
<thead>
<tr>
<th>Condition</th>
<th>Content Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Alcohol Concentration</td>
<td>Global Warming</td>
</tr>
<tr>
<td>Tutorial</td>
<td>N=73</td>
</tr>
<tr>
<td>Discovery</td>
<td>N=85</td>
</tr>
</tbody>
</table>
Resource designs

- **Discovery**
 - A series of instructional screens providing background to the content domain and explanation of terminology but not including explanation of key concepts
 - A series of screens allow for setting of simulation parameters and mental *prediction* of output, *observation* of results, and mental *explanation*.

- **Tutorial**
 - The same series of instructional screens as the discovery resources
 - A series of simulation output screens showing the effect of different input parameters
Blood Alcohol Concentration - Simulation

Simulate - Change a factor and then run the simulation

- **Your Values**
 - **Weight (kg)**: 75
 - **Meal with first drink**: no
 - **Standard drinks**: 6
 - **Woke up**: 8am

- **Bill's Values**
 - **Weight (kg)**: 75
 - **Meal with first drink**: yes
 - **Standard drinks**: 8
 - **Woke up**: 8am

Graph
- Blood Alcohol Concentration (%)
- Bill's BAC
- Your BAC

Timeline:
- **Started Drinking**: 6pm
- **Stopped Drinking**: 10pm
- **Went to Sleep**: 12am
- **Woke up**: 8am

Buttons
- Last Values
- Bill's Values
- Run Simulation
Blood Alcohol Concentration - Tutorial

Blood Alcohol Tutorial – Simulation Output

- Tom's Values
- Bill's Values

Weight (kg): 110, 75

Meal with first drink: yes, yes

Standard drinks: 8, 8

Started Drinking: 6pm, 6pm

Went to Sleep: 12am, 12am

Stopped Drinking: 10pm, 10pm

Woke up: 8am, 8am

Blood Alcohol Concentration (%)

Bill's BAC

Tom's BAC

Graph showing BAC over time.
Global Warming - Simulation

Simulate - Change a factor and then run the simulation

Human-Controlled Factors
- CO₂ Emissions from Fossil Fuels (tonnes)
 - 2006 value: 7000
 - Last Values

- CO₂ Emissions Absorbed by Plants (tonnes)
 - 2006 value: 2000
 - Last Values

- CFC Emissions from Aerosols (Mg)
 - 2006 value: 70000
 - Last Values

Environmental Factors (2006 versus specified values)
- Mean Ozone Layer Thickness
- % CO₂ in Atmosphere
- Greenhouse Insulation Effect
- Global Average Surface Temperature (GAST)
Global Warming - Tutorial

Human-Controlled Factors
- **CO₂ Emissions from Fossil Fuels (tonnes)**
 - 2006 value: 7000
- **CO₂ Emissions Absorbed by Plants (tonnes)**
 - 2006 value: 2000
- **CFC Emissions from Aerosols (Mg)**
 - 2006 value: 70000

Environmental Factors (2006 versus specified values)

- **Mean Ozone Layer Thickness**
 - 2007: [Graph Image]
 - 2057: [Graph Image]

- **% CO₂ in Atmosphere**
 - 2007: [Graph Image]
 - 2057: [Graph Image]

- **Greenhouse Insulation Effect**
 - 2007: [Graph Image]
 - 2057: [Graph Image]

- **Global Average Surface Temperature (GAST)**
 - 2007: [Graph Image]
 - 2057: [Graph Image]
Data collection

- Identical pre-test and post-test on conceptual understanding within these learning domains
 - Global warming – 7 items
 - Blood alcohol concentration – 9 items
- Questionnaires on cognitive load and engagement
- Student actions within the learning resources were also logged to allow later analysis of their exploration strategies
Results

<table>
<thead>
<tr>
<th>Content Domain</th>
<th>Condition</th>
<th>Pre-Test M (SD)</th>
<th>Post Test M (SD)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>Tutorial (n=85)</td>
<td>1.82 (1.51)</td>
<td>1.42 (1.29)</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>Discovery (n=73)</td>
<td>1.68 (1.42)</td>
<td>1.72 (1.85)</td>
<td>0.20</td>
</tr>
<tr>
<td>Blood Alcohol</td>
<td>Tutorial (n=73)</td>
<td>3.55 (1.25)</td>
<td>3.42 (1.31)</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Discovery (n=85)</td>
<td>3.60 (1.24)</td>
<td>3.93 (1.40)</td>
<td>2.33</td>
</tr>
</tbody>
</table>

- Little or no improvement on post test
- Main effect of learning condition for Blood Alcohol \((F (1, 155) = 5.52; \ p = .02) \)
- No effect of learning condition for Global Warming \((F (1,155) = 2.40; \ p = .124) \)
Is this the end of the story?

- We noticed that variance in post-test scores for discovery participants were quite high.
- In looking at the log files we noticed that some participants had explored the simulation systematically and others had not.
- Exploring the data by eye suggested that those who explored the simulation systematically may have performed better.
- Consequently we looked at ways we might characterise participants based on their exploration strategies.
Characterising exploration strategies

- The log file data provided us with a number of variables that could be used to characterise learners’ strategies

- For example:
 - Time spent on the task as a whole
 - Time spent on specific screens representing aspects of the task (e.g., planning, manipulating, reviewing output)
 - The number of iterations through the simulation
 - The number of variables changed during each iteration
 - The values chosen
Characterising exploration strategies

- Our initial analysis (see Dalgarno, Kennedy & Bennett, 2012), led to simple intuitively sound rule based characterisation:

- Systematic Discovery Participants:
 - 4 or more cycles with only one variable changed from previous cycle
 - or
 - 4 or more cycles with only one variable changed from the provided example (‘Bill’s values’ or ‘2006 values’)

- Non Systematic Discovery Participants:
 - All other discovery participants
Results by strategy

<table>
<thead>
<tr>
<th>Content Domain</th>
<th>Post-Test Tutorial M (SD)</th>
<th>Post-Test Non Systematic Discovery M (SD)</th>
<th>Post-Test Systematic Discovery M (SD)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>1.42 (1.29)</td>
<td>1.33 (1.52)</td>
<td>2.48 (2.20)</td>
<td>4.17</td>
<td>.017</td>
</tr>
<tr>
<td>Blood Alcohol</td>
<td>3.42 (1.31)</td>
<td>3.51 (1.30) a</td>
<td>4.56 (1.33) b</td>
<td>8.69</td>
<td><.001</td>
</tr>
</tbody>
</table>

- Significant main effect of learning condition for both content domains
- In each case
 - Systematic Discovery > Non Systematic = Tutorial
Characterising exploration strategies

There are a number of alternative approaches that have been used by others:

- Thompson and Reimann (2010), drawing on Levy and Wilensky (2005), used rules based on the values chosen by learners, the time spent and the number of iteration, and characterised learner strategies as ‘straight to the point’, ‘homing’ or ‘oscillating’, in manipulating an agent-based model.

- Kennedy and Judd (2004) used Cluster Analysis to identify clusters of students with interaction patterns illustrating distinct learning strategies in the context of exploration of a digital learning resource.

- Kennedy et al. (2012) developed Hidden Markov Models of characterising expert and novice performance in a surgical simulator and dynamically provided feedback to learners depending on which model their actions best matched.
Characterising exploration strategies

- The key potential limitation of the simple rule based method used in our earlier analysis is that there may be a range of different strategies used with varying efficacies and so a simple systematic/unsystematic characterisation may be too simplistic
Our second approach was to use cluster analysis, drawing on the following variables:

- time spent on the background material preceding the simulation,
- total time spent on the simulation
- number of cycles in which exactly one variable was changed from the previous cycle
- number of cycles in which exactly one variable was changed from the provided base values
- number of cycles where at least one variable was changed from the previous cycle
- the sum of the number of variables changed per cycle across all cycles.
Characterising exploration strategies

- Cluster analysis for the Blood Alcohol condition led to a three-cluster solution, discriminated by:
 - by time spent on the simulation, and
 - the degree to which the student manipulated single variables in the simulation.

- Cluster analysis for the Global Warming condition led to a four-cluster solution, using the same variables as above.

- The additional cluster in the Global Warming condition contained students with interaction patterns that were indicative of a complete lack of engagement with the program.
Take home messages for learning analytics

- Learning designers and academic staff need more sophisticated understandings of the relationship between learning activities and outcomes.
- Techniques such as Cluster Analysis and use of Hidden Markov Models have promise in characterising learning strategies.
- We need tools that make it easier to:
 - Develop empirically informed characterisations of successful and unsuccessful strategies in specific discipline/learning design contexts.
 - Automatically provide tailored support based on this characterisation.
References

References

