Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A Relational Account of Objects

Clara Murdaca & C. Barry Jay
University of Technology, Sydney
{murdaca,cbj}@it.uts.edu.au

Abstract

A relational account of objects provides a single unify-
ing data model for both object-oriented programming
languages and relational databases. Type variables
used to represent unknown fields in the programming
language correspond to discriminators in relations.

1 Introduction

Relational databases have proved their worth in stor-
ing and manipulating large amounts of data, while
object-oriented programming languages are excellent
at organising computation in a way that is flexible
and maintainable. Ideally, object-oriented programs
should be compiled to take full advantage of data
stored in relational tables but this is difficult, if not
impossible, while ever the data model for classes dif-
fers from that for relations. This paper proposes a re-
lational account of objects suitable for both program-
ming and the organisation of relational databases.

Various approaches to storing objects have been
considered. Simplest is to store the objects in the
database just as they are stored in working mem-
ory of the language, to create an object base (see
e.g. (Bloom & Zdonik 1987, Breazu-Tannen, Bune-
man & Ohori 1991, Atkinson, Bancilhon, DeWitt,
Dittrich, Maier & Zdonik 1994, Leontiev, Ozsu &
Szafron 2002)). Alternatively, one can aim for per-
sistence (Agrawal, Dar & Gehani 1993, Richard-
son, Carey & Schuh 1989), or attempt a mixture
of data models, as in C-omega (Bierman, Meijer &
Schulte 2005). Unfortunately, these all reduce the
time and space efficiency of the store in ways which
have proved resistant to improvement. An emerging
approach (described in Section 2) is to try and model
the classes as relations, with objects modeled as rows
in tables. This is non-trivial since the standard model
of classes is quite different from that of relations. In
particular, relations do not support a natural inter-
pretation of sub-classes, resulting in a variety of com-
peting approaches; these can be compared in terms
of the efficiency with which objects can be stored and
retrieved, and the ease of maintenance.

However, none of these approaches to storage is
able to combine efficient data storage and retrieval
with the modular compilation of classes. Modular
compilation is highly desirable when creating large
systems. It is also a pre-condition for being able to
Invest in significant optimsation of code to take ad-
vantage of the efliciency of the underlying query lan-

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Viadimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
Poses permitted provided this text is included.

guage. The typical approach has an object-oriented
process request an object from the database using
some tool, updates the object and then uses the tool
to return it to the database. With a shared object
model and modular compilation it may be possible to
compile some methods directly into queries.

One consequence of modular compilation is that
the introduction of new sub-classes should not change
the representation of their super-classes, e.g. should
not require re-factorisation. The simplest way to
achieve this is to require that each class have its own
relation.

Here then are four desirable properties that such
a model should have.

(P1) Data storage is efficient.

(P2) Compilation is modular.

(P3

(P4) Compiled methods take advantage of queries.

) There is one relation per class.

Object bases and systems with persistance do not
have the first property, so let us focus on modeling
classes as relations, as described in (Ambler 2003).
Only one of the approaches therein satisfies (P3); in
the other three approaches the relation(s) describing a
class evolve as new sub-classes are created. However,
all of the approaches invoke a method by convert-
ing a row into an object and proceeding in the usual
object-oriented style: determine its class and execute
the corresponding class code. To adopt this approach
when compiling into queries would be to import the
whole notion of class into the query 'anguage, rather
than exploit the inherent nature of queries.

More suitable for the purpose is an alternative ap-
proach to object-orientation, outlined in (Jay 20045,
Jay 2004d). Objects are represented by data struc-
tures built from their fields, while methods are given
as functions that use pattern-matching to identify the
appropriate algorithm. Sub-classing and sub-typing
are handled by using type variables to represent un-
known fields, in an approach similar to, but not iden-
tical, to that of row vaeriables (Remy 1989). This
makes it easy to satisfy properties (P1) and (P3).
The sub-type relationship is captured using discrim-
tnators in relations. Matching on constructors in the
programming language becomes a query on the dis-
criminator, making it easier to represent methods as
queries (P4). Finally, separate compilation (P2) can
be supported by treating method specialisation as
the addition of a new case to an existing {compiled)
pattern-matching function.

The elaboration of this approach is ongoing work.
The basic theory is supplied by the pattern calculus
(Jay 2004c¢) which has been implemented in the pro-
gramming language bondi (pronounced “bond-eye”)
(Jay 2004a) which is able to support classes and sub-
typing. These can be used to create relations in a

297

CRPIT Volume 48

298

relational database so that objects can be created,
stored and retrieved in a natural way. Class compi-
lation is already modular in bondi but does not yet
exploit the power of the query language.

This paper introduces the discriminating object
model and shows how it satisfies properties (P1-P3).
It underpins both the class model of bondi and its or-
ganisation of relational data, which can then be used
to illustrate the ideas. This provides a foundation for
exploring (P4).

The structure of the rest of the paper is as follows.
Section 2 reviews current object relational mapping
techniques. Section 3 reviews the pattern calculus.
Section 4 presents our object model. Section 5 draws
conclusions and considers future work.

2 Object-Relational Mapping

public abstract class Entity
{ private int entity-id;
private String name;
private String address;

public class Student extends Entity
{ private String course;

public class Employee extends Entity
{ private double salary;
public double SalaryIncrease()
{ return salary * 1.10; }

}

public class Casual extends Employee
{ private double hours;
private double SalaryIncrease()
{ return salary * 1.06; }

}

Figure 1: Running example in Java

There are various ways in which objects can be
mapped to relational tables (Fussell 1997, Keller
1998). These can be classified into four main ob-
ject relational mapping techniques according to their
treatment of class hierarchies (Ambler 2003).

The example given in Figure 1 will be used to il-
lustrate these four mapping techniques. Figure 1 de-
fines a class hierarchy using Java syntax. It contains
an abstract Entity class with subclasses Student and
Employee and a Casual subclass of Employee. Both
the Employee and Casual classes have a salarylncrease
method. A 10% increase salary is given to ordinary
employees while casual employees are given a 6% in-
crease in salary.

Let us now look at how each of the mapping tech-
niques would map the classes defined in Figure 1 to
tables in a relational database.

ORM1 All the subclass attributes of a root (su-
per) class are stored in a single table. As given in
Figure 2 the attributes of the Employee, Student and
Casual classes are combined into a single table, called
the Entity table. In this mapping technique the fields
that are not relevant to particular row entry will be
populated with Null values. For example, an ordi-
nary Student will have a Null entry for the salary and
casual fields corresponding to the Employee and Ca-
sual classes respectively. Unfortunately if there are

many sub-classes then most fields will be Null. A,
each time a new subclass is defined the existing tap|q
needs to be restructured which makes database majy,.
tenance expensive. Note that although property (P4)
can be satisfied, properties (P1), (P2) and (P3) will
fail.

Entity
entity_id
name
address
course
salary
hours

Figure 2: ORMI: One table per root class

ORM2 One table is defined per concrete class but
abstract classes do not correspond to a single table.
Property (P3) holds for concrete classes and there is
no need to restructure existing tables when a new
sub-class is defined. However, all abstract class at-
tributes must be duplicated in the relation of each
concrete subclass so (P1) will fail. For example, in
Figure 3 the fields of the abstract Entity class form
part of the table mappings for the Student, Employee
and Casual relational tables. In this technique the
creation of a new subclass does not require restruc-
turing of existing tables. However, it is not clear how
to compile methods into queries, so (P4} is in doubt.
For example, to compile the salarylncrease method for
employees requires being able to determine which em-
ployees in the table are ordinary employees and which
are casual employees.

ORM3 A single table is defined for each class, re-
gardless of whether it is an abstract or a concrete
class, as illustrated in Figure 4. A single identifica-
tion key, given as the entity_id is used as both a pri-
mary and foreign key to link the tables to replicate
the class hierarchy.

Now (P1) and (P3) is satisfied, and additions to
the class hierarchy do not require the restructuring
of existing tables. Also, (P4) can be satisfied as the
Employee and Casual classes are linked by the entity_id
field. However, in order to establish whether an em-
ployee is casual it is necessary to query the table for
casual employees. This may prove expensive, espe-
cially if there are many sub-classes to consider. So,
(P3) will only be satisfied if it is possible to create
links to new tables, correponding to new sub-clases,
without re-compiling the existing programs. We shall
return to this point below.

ORM4 This technique is a variation of ORMS3 in
that a discriminator field is used to record the name
of the sub-class (or table) to which the object belongs.
The use of discriminators is well-known from the rep-
resentation of variant records. A composite primary
key field is defined allowing for the support of multiple
inheritance. As can be seen in Figure 5 an additional
discriminator field is incorporated in each class to re-
lational table representation. The advantage of this
approach over ORMS3 is that, for the cost of an addi-
tional column per superclass one can check the status
of an object (what kind of employee an entry is) from
within the table corresponding to the super-class. As
in ORM3 before, (P1) and (P3) are satisfied and (P4)
is more easily satisfied, since it is only necessary to
visit another table if the object is known to be in a

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Student Employee Casual
entity_id entity_id entity_id
name name name
address address address
hours salary salary
level

Figure 3: ORM2: One table per concrete class

Entity Student
entity_id entity id
name course
address

Employee Casual
entity_id entity_id
salary hours

Figure 4: ORM3: One table per class

sub-class. That is, the creation of sub-classes that
are not used imposes almost no overhead on existing
programs.

Summarising, it appears that ORM4 has the great-
est promise, provided one is able to add method spe-
cialisations to existing compiled code (P2). More gen-
erally, there is the issue of how to convert the fields
and methods of a class definition into relations and
queries.

3 The Pattern Calculus

The pattern calculus (Jay 2004c) supports pattern-
matching functions in which different cases may have
different type specialisations of a common default as
well as supporting specialisation through sub-typing.
This section will identify some fo the key features that
are relevant to this paper.

The syntax of the patterns (meta-variable p) and
raw terms (meta-variable t) of the pattern calculus is
given by

pui=glc|pp .
to=ga|c|tt|atpusetelset|letz=tint

The variables are represented by the meta-variable z.
The constructors (meta-variable c¢) are constants of
the language which do not appear at the head of any
evaluation rule. Other constants may be added if de-
sired but their evaluation rules will not be considered
explicitly in the formal development. The application
s t applies the function s to its argument ¢. The novel
term form is the extension at p use s else t where p is
the pattern, s is the specialisation and t is the default.
The let-term let £ = s in ¢ binds = to s in t. The
declaration is recursive, in that free occurrences of
in s are bound to s itself.

Extensions combine abstraction over bound vari-
ables with a branching construction. For example,
the A-abstraction Az.s is short-hand for the extension

at z use s else err

where err is some form of error term, eg. a

Entity Student
entity id Student_id
name course
address discriminator
discriminator

Employee Casual
Employeeid Casual.id
salary hours
discriminator discriminator

Figure 5: ORM4: One table per class with a discrim-
inator field

non-terminating expression (such as let £ = z in x)
or an exception.

The substitution s{u/z} of a term u for a variable
T in term s is defined in the usual way, as are bound
variables and their a-conversion. The terms are de-
fined to be equivalence classes of raw terms under
a-conversion.

A constructed term is a term whose head is a con-
structor, i.e. a term which is either a constructor or
of the form ¢; ¢5 in which ¢; is constructed. Let ¢ be
a constructor. A term wu cannot become c if it is ei-
ther a constructed term other than ¢ or an extension.
A term u cannot become applicative if it is either a
constructor or an extension.

{at z use s else t) t; > s{t1/z}
{atcuseselset) c>s
(atcuseselset)ty >ttt
if t; cannot become ¢
(at p1 ps use s else t) (t; ta) >
(at ;1
use at py use s else Ay.t (p1 y)
else Az, y.t (z y)
} t1 ta if ¢; is a constructed term
(atprppuse selset) ty >t
if ¢y cannot become applicative
let z =sint > t{s/z}

Figure 6: Reduction rules for the pattern calculus

The basic reduction rules of the constructor cal-
culus are given by the relation > in Figure 6. Let
us consider the cases. Suppose that the pattern is a
variable z. Specialisation is achieved by B-reduction,
with the argument u being substituted for z in the
specialisation. Suppose that the pattern is some con-
structor ¢ and the argument is a constructed term u.
If w is ¢ then the specialisation is returned else the de-
fault is applied to u. Suppose that the pattern is an
application p; ps and the argument is a constructed
term u. If u is an application u; uy then specialisa-
tion tries to match p; with u; and py with us; if either
of these matches fails then evaluation reverts to ap-
plying the default to a reconstructed version of u; us
(not uy uy itself since this may require re-evaluation).
If u is a constructor then the default is applied to it.
Reduction of a let-term replaces the bound variable
by its recursive definition.

299

CRPIT Volume 48

300

4 The Discriminating Object Model

The approach adopted in the pattern calculus is to
separate a class definition into a datatype declara-
tion and some associated functions. The datatype
definitions that correspond to the classes defined in
Figure 1 are given in Figure 7. In turn, the datatype
declarations for extensible classes employ a type vari-
able to represent any additional fields that may be
required. In particular, this type variable “is” the
type of the discriminator field in the corresponding
table. As can be seen by the use of the type vari-
able X, Y, Z, and U in Figure 7 for any additional
fields for the datatypes Entity, Student, Employee and
Casual respectively.

datatype Entity X =
Entity of X * int * string * string;;

datatype Student_Data Y =
Student of Y * string;;

datatype Employee Data Z =
Employee of Z * float;;

datatype Casual Data U =
Casual of U * float;;

Figure 7: Class definitions as datatypes

In using the pattern calculus combined with
ORM4 we can define one relational table per class.
Therefore the creation of a new subclass does not re-
quire restructuring of objects. Method specialization,
subtyping and type variable instantiation are all sup-
ported by the type safety of the Pattern Calculus.
These coupled with ORM4 ensures that the imple-
mentation of an inherited method is unchanged by
the creation of its subclass.

Let us now look at how our running example can
be represented in this approach.

>-|> class Entity [a] {

entity_id : int;
name : string;
address : string; }

rest_Entity : Entity/a] — a
entity_id : Entityfa] — int
name : Entity[a] — string
address : Entityfa] — string

Figure 8: Entity class in bondi

Given in Figure 8 is the class definition of Entity
as defined in bondi, along with the corresponding
bondi session output. Programs typed by the user
follow the prompt >-|>. System responses are given
in italic. The representation of Entity and its asso-
ciated fields are displayed along with the additional
rest_Entity field. In the simplest case of an entity, the
rest field is instantiated to be the unit type unit whose
unique value can be called Null. In the database, the
simplest case of an entity will correspond to a single
row of data in the entity table where the discriminator
field will be populated with Null.

In Figure 9 we see defined the Student class and its
representation in bondi. A Student Entity has type
Entity (Student_Data Y) or just Entity (Student_Data

T

>-|> class Student [a] extends Entity {
course : string; }

rest_Student : Studentfa] — a
course : Studentfa] — string

Figure 9: Student class in bondi

Unit) if the student has no additional fields. In the
database, a Student Entity will correspond to an en-
try in both the entity and student tables. The dis
criminator field in the entity table will be populated
with the string Student while in the student table the
discriminator field in will be Null. The entity_id field
is defined as both the primary and foreign key in the
entity table as it’s also the primary key field in the
student table, that is the field student_id.

>-{> classEmployee [a] extends Entity {
salary : float;
salaryIncrease() =
{this.salary * 1.10} }

rest_Employee : Employeefa] — a
salary : Employeefa] — float
salarylncrease :

Employeefa] * unit — float

Figure 10: Employee class in bondi

In Figure 10 is defined the Employee class and its
field representations in bondi. An Employee Entity
has type Entity (Employee_Data Y) or just Entity (Em-
ployee_Data Unit) if the employee has no additional
fields. In the database, an Employee Entity will cor-
respond to an entry in both the entity and employee
tables. Similarly to how the discriminator field is used
to represent student entity entries the same occurs for
employee entity entries. That is the discriminator field
in the employee table will be populated with the string
Employee while in the employee table the discriminator
field in will be Null, for ordinary employees. Note that
the use of the discriminator field combined with the
entity_id enables the support of multiple inheritance.
A situation may arise where a student is also an em-
ployee. In this case they will have an entry in the
entity, student and employee tables.

>-|> class Casual [a] extends Employee {
hours : float;
salaryIncrease() =
{ this.salary * 1.06} }

rest_Casual : Casualfa] — a
hours : Casualfa] — float
salaryIncrease : Casualfa] * unit — float

Figure 11: Casual class in bondi

Figure 11 defines the Casual class and its field rep-
resentations in bondi. The type of a casual employee
is some Entity (Employee_Data (Casual_Data U)). In
the database, an ordinary casual employee will corre-
spond to an entry in each of the entity, employee and
casual tables. The discriminator field in the entity ta-
ble will be given as employee, in the employee table it

Computer Science 2006 - Proc. Twenty-Ninth Austratasian Computer Science Conference (ACSC2006)

will be given as casual and in the casual table will be
given as Null. The same identity value will be used
across all three tables as the entity_id, employee_id and
casual_id respectively. Note that the type of a student
or of a casual employee is always of the form Entity
T for some type T, so that functions which act on
arbitrary entities can always have the argument type
Entity X. Again, each of these types has a single con-
structor. For example, that for entities is

Entity X : X* int *string * string — Entity X

Hence, a single pattern of the form Entity Az where
Az is a binding variable will be able to match an ar-
bitrary entity.

The notion of extensions in the pattern calculus
allows us to specialise methods in the subclass with-
out the need to recompile methods from the super
class. This can best be exemplified through the salary-
Increase method defined in the running example. The
salarylncrease method defined in the Employee class is
compiled to give a 10% increase in salary to all Em-
ployees as follows:

let (salarylIncrease :
Entity (Employee Data X) — float) =
at Entity (EmployeeData (x,s),e,n,a)
use s * 1.10
else err;;

If the object is an employee entity that is of type
Entity (Employee X) then a salary increase is calcu-
lated otherwise it will error.

This method defined in the superclass will trans-
late into a stored procedure of something similar to
the following code:

create procedure sp_salarylncrease
begin transaction

update Employee

set salary = salary * 1.10
commit

Notice that since this method was defined for all
employees the above sql code does not contain a where
clause.

The specialisation of the salarylncrease method in
the Casual Employee class introduces a new case to
the existing (compiled) method. Instead of recompil-
ing the method for salarylncrease, the pattern calculus
defines a new method as follows:

let (newSalaryIncrease :
Entity (EmployeeData X) — float) =
at Entity(Employee Data(Casual h y,s),
e,n,a)
use s * 1.06
else salarylncrease;;

let salaryIncrease = newSalarylncrease;;

The new method encompasses the new case for Ca-
sual Employees as well as the existing code for ordinary
Employees, without having to recompile the existing
method.

We envisage that this method will translate into
sql code such as the following:

create procedure sp newSalarylncrease
begin transaction
if discriminator =
update Employee
set salary = salary * 1.06
where discriminator = "Casual"
else if discriminator = NULL then
sp_salaryIncrease

"Casual" then

endif
commit

sp_rename newSalarylncrease salarylncrease;;

Similarly to how we are able to translate the notion
of the type variables in the programming language
with discriminator fields in the database, we can see
that notion of separate compilation can be applied to
queries similarly to how they apply to methods. This
is made possible due to the combination of a number
of features.

The linking of the data model of the pattern cal-
culus to that in the database through ORM4 allows
for the support of the four desirable properties. Effi-
cient data storage, one relation per class and modular
compilation all are attained. The final property (P4)
of compiled methods taking advantage of queries ap-
pears promising from the manual translation of the
salarylncrease method.

5 Conclusion and Future Work

The discriminating object model is able to represent
objects and classes in both programming and rela-
tional databases. Each class is represented by a sin-
gle table whose fields are those of the class plus a
discriminator field to indicate which sub-class, if any,
the object belongs to. The addition of new sub-classes
does not change the relation itself, but merely creates
new options for the discriminator. Hence, the rela-
tionship between the class and the database is stable,
and so compilation can be modular. Also, the addi-
tion of the discriminator field has little or no impact
on efficiency. This approach has been implemented in
bondi.

The benefits (P1-P3) derived from the discrimi-
nating object model are not limited to a particular
account of object-orientation and should prove useful
for a variety of languages.

Future work will explore techniques for compil-
ing simple methods into queries. This is particularly
suited to development in the pattern calculus, as it
supports an incremental approach to defining meth-
ods. Further, their execution can be driven by the dis-
criminators without consulting any class hierachy in
the programming language. If successful, this would
combine the expressive power of the object-oriented
programming style with the efliciency of query lan-
guages.

References

Agrawal, R., Dar, S. & Gehani, N. H. (1993), The
o++4 database programming language: Imple-
mentation and experience, Technical Report 61-
70, ATT Bell Laboratories.

Ambler, S. W. (2003), Agile Database Techniques: Ef-
fective Strategies for the Agile Software Devel-
oper, Wiley, chapter 14.

Atkinson, M., Bancilhon, F., DeWitt, D.

3

Dittrich, K., Maier, D. & Zdonik, 8.
(1994}, ‘The object-oriented database
system manifesto’. http://www-

2cs.cmu.edu/People/clamen/OODBMS/ Mani-
festor /htManifesto/node31.htm.

Bierman, G., Meijer, E. & Schulte, W. (2005), ‘The
essence of data acces in cw. the power is in
the dot!, http://research.microsoft.com/ emei-
jer/Papers/popl.pdf. {Accepted for publication
at ECOOP 2005).

Bloom, T. & Zdonik, S. T. (1987), ‘Issues in the
design of object-oriented database programming
llanguages’, OOPSLA 87 Proceedings pp. 441~

51.

301

CRPIT Volume 48

302

Breazu-Tannen, V., Buneman, P. & Ohori, A. (1991),
Data structures and data types for object-
oriented databases, in ‘IEEE Data Engineer-
ing bulletin, Special Issue on Theoretical Foun-
dations of Object-Oriented Database Systems’,
Vol. 14, IEEE, pp. 23-27.

Fussell, M. L. (1997), Foundations of object relational
mapping, Technical report, Chimu publications.

Jay, C. B. (2004a), ‘bondi’, WWW-
staff.it.uts.edu.au/ cbj/bondi.

Jay, C. B. (2004b), Methods as pattern-

matching functions, in ‘Foundations
of Object-Oriented Languages, 2004:
informal proceedings’, . 16 Pp-
http://www.doc.ic.ac.uk/ scd/pFOOLll/ pat-
terns.pdf.

Jay, C. B. (2004c¢), ‘The pattern calculus’, ACM
Transactions on Programming Languages and
Systems (TOPLAS) 26(6), 911-937.

Jay, C. B. (2004d), ‘Unifiable subtyping’, www-
staff.it.uts.edu.au/ cbj/Publications/ unifi-
able_subtyping.pdf.

Keller, W. (1998), Object/relational access layers -
a roadmap, missing links and more patters, in
‘EuroPLoP’.

Leontiev, Y., Ozsu, M. & Szafron, D. (2002}, ‘On
type systems for object-oriented database pro-
gramming languages’, ACM Computing Surveys
34(4), 409-449.

Remy, D. (1989), Typechecking records and variants
in a natural extension of ML, in L. Cardelli,
ed., ‘Proceedings of POPL’98, ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages’, ACM.

Richardson, J. E., Carey, M. J. & Schuh, D. T.
(1989), The design of the e programming lan-
guage, Technical report, University of Wiscon-
sin.

http://www.doc.ic.ac.uk/

