
Commonsense 2009

Proceedings of the Ninth International Symposium on
Logical Formalizations of Commonsense Reasoning

June 1-3, 2009

The Fields Institute
on the campus of the University of Toronto

Edited by
Gerhard Lakemeyer
Leora Morgenstern

Mary-Anne Williams

Commonsense 2009

Copyright in each article is held by the authors.
Please contact the authors directly for permission to reprint or use this
material in any form for any purpose.

ISBN 978-0-9802840-6-5
26 May 2009

Published by UTSePress
University of Technology, Sydney
Broadway, NSW 2007 Australia

i

Table of Contents

Preface ..v

Organization ... ix

Invited Talks ... xi

Technical Papers

Solving the Wise Mountain Man Riddle with Answer Set Programming1
Marcello Balduccini

A general framework for revising belief bases using qualitative Jeffrey’s rule7
Salem Benferhat, Didier Dubois, Henri Prade and Mary-Anne Williams

Next Steps in Propositional Horn Contraction ...13
Richard Booth, Thomas Meyer and Ivan José Varzinczak

Combining Motion Planning with an Action Formalism ...19
Jaesik Choi and Eyal Amir

Tractable First-Order Golog with Disjunctive Knowledge Bases27
Jens Claßen and Gerhard Lakemeyer

A Psychological Study of Comparative Non-monotonic Preferences Semantics35
Rui da Silva Neves and Souhila Kaci

Modelling Cryptographic Protocols in a Theory of Action ...41
James P. Delgrande, Torsten Grote and Aaron Hunter

On Joint Ability in the Presence of Sensing ...47
Hojjat Ghaderi, Hector Levesque and Yves Lespérance

Definability and Process Ontologies ..53
Michael Grüninger

Ontologies and Domain Theories ..59
Michael Grüninger

Order-Sorted Reasoning in the Situation Calculus ..65
Yilan Gu and Mikhail Soutchanski

Autonomous Learning of Commonsense Simulations ..73
Benjamin Johnston and Mary-Anne Williams

An F-Measure for Context-based Information Retrieval ...79
Michael Kandefer and Stuart Shapiro

ii

iii

A Logical Account of Prioritized Goals and their Dynamics ..85
Shakil M. Khan and Yves Lespérance

A Semantical Account of Progression in the Presence of Defaults91
Gerhard Lakemeyer and Hector J. Levesque

Parthood Simpliciter vs. Temporary Parthood ...97
Claudio Masolo

Evaluation of Epilog: a Reasoner for Episodic Logic ...103
Fabrizio Morbini and Lenhart Schubert

A BDI Agent Architecture for a POMDP Planner ...109
Gavin Rens, Alexander Ferrein and Etienne van der Poel

HTN Planning with Preferences ..115
Shirin Sohrabi, Jorge A. Baier and Sheila A. McIlraith

Defaults in Action: Non-monotonic Reasoning About States in Action Calculi123
Hannes Strass and Michael Thielscher

How Do I Revise My Agent’s Action Theory? ..129
Ivan José Varzinczak

Progressing Basic Action Theories with Non-Local Effect Actions135
Stavros Vassos, Sebastian Sardina and Hector Levesque

iv

v

The Ninth International Symposium on Logical Formalizations of Commonsense Reason-
ing will be held at the Fields Institute for Research in Mathematical Sciences, at the Uni-
versity of Toronto, on June 1–3, 2009. Since its inception in 1991, the Commonsense Rea-
soning Symposium series has provided a forum for exploring one of the long-term goals of
Artificial Intelligence, endowing computers with common sense. Although we know how
to build programs that excel at certain bounded or mechanical tasks which humans find
difficult, such as playing chess, we still have very little idea how to program computers to
do well at commonsense tasks which are easy for humans. One approach to this problem is
to formalize commonsense reasoning using formal languages such as mathematical logic.
The focus of the symposium is on representation rather than on algorithms, and on formal
rather than informal methods.

Twenty-two technical papers, on a variety of topics in commonsense reasoning, includ-
ing physical reasoning, planning, theories of action, belief revision, and nonmonotonic
reasoning, are included in these proceedings and will be presented at the symposium. Each
paper was reviewed by at least two members of the program committee.

The program also features invited talks by three leading researchers:
Anthony G. Cohn (University of Leeds, UK), “Acquiring Commonsense Knowl-•
edge from Perceptual Observation”;

Ernest Davis (New York University, USA), “Commonsense Reasoning about Chem-•
istry Experiments: Ontology and Representation”; and

Sheila McIlraith (University of Toronto, Canada), “Diagnosis Revisited.”•
We are pleased to recognize two student papers with the Commonsense-2009 Outstand-

ing Student Paper Award. Eligible papers had to be authored or co-authored by a student
at the time of submission, and could not be co-authored by any of the Symposium Chairs.
The two Outstanding Student Papers are:

Shakhil Khan and Yves Lesperance: “A Logical Account of Prioritized Goals and •
Their Dynamics”

Hannes Strass and Michael Thielscher: “Defaults in Action: Nonmonotonic Reason-•
ing about States in Action Calculi”

We are very pleased that the symposium will be held in Toronto this year, where Ray Re-
iter (1939–2002), a world leader in cognitive robotics and formal commonsense reasoning,
spent many years of his life and scientific career. It is with great gratitude for Ray’s lasting
contributions to our field that we dedicate this symposium to his memory.

Organizing such an event always rests on many shoulders. We are especially grateful to
Hojjat Ghaderi, our Local Arrangements Chair, as well as the other members of his team
from the University of Toronto: Luna Keshwah, Hector Levesque, and Sheila McIlraith.
We are equally grateful to our Conference Webmaster, Benjamin Johnston, of the Univer-
sity of Technology, Sydney, for designing and building the symposium website, managing
the EasyChair conference system, and preparing these proceedings.

The Fields Institute for Research in Mathematical Sciences has been extraordinarily
generous, in providing us the space for the symposium; providing funds for student and
symposium chair travel; managing registration; and publicizing this event. We especially

Preface

vi

vii

thank Alison Conway of the Fields Institute for her help in organizing all of these func-
tions.

We also thank the Centre for Quantum Computation and Intelligent Systems at the Uni-
versity of Technology, Sydney, for its generous support of student travel; and the IBM T.J.
Watson Research Center for partly subsidizing the travel of one of the winners of the Com-
monsense-2009 Outstanding Student Paper Award.

This symposium is held in cooperation with AAAI, the Association for the Advancement
of Artificial Intelligence. We thank them for their help in promoting this symposium.

Aachen, New York, and Sydney, May 2009
Gerhard Lakemeyer
Leora Morgenstern
Mary-Anne Williams

viii

ix

Organization
Program Chairs

Gerhard Lakemeyer, RWTH Aachen University, Germany
Leora Morgenstern, New York University, New York, USA
Mary-Anne Williams, University of Technology, Sydney, Australia

Program Committee
Eyal Amir, University of Illinois at Urbana-Champaign, USA
Chitta Baral, Arizona State University, USA
Johan van Benthem, University of Amsterdam, the Netherlands
Xiaoping Chen, University of Science and Technology of China, China
Ernest Davis, Courant Institute, New York University, USA
Patrick Doherty, Linkoping University, Sweden
Esra Erdem, Sabanci University, Turkey
Norman Foo, University of New South Wales, Australia
Alfredo Gabaldon, University of New South Wales, Australia
Andrew Gordon, University of Southern California, USA
Pat Hayes, Institute for Human and Machine Cognition, USA
Jerry Hobbs, University of Southern California/ISI, USA
John F. Horty, University of Maryland, USA
David Israel, SRI, USA
Benjamin Johnston, University of Technology, Sydney, Australia
Antonis Kakas, University of Cyprus, Cyprus
Jerome Lang, Centre National de la Recherche Scientifique, France
Joohyung Lee, Arizona State University, USA
Hector Levesque, University of Toronto, Canada
Vladimir Lifschitz, University of Texas at Austin, USA
Sheila McIlraith, University of Toronto, Canada
Rob Miller, University College of London, United Kingdom
Tim Oates, University of Maryland, USA
Pavlos Peppas, University of Patras, Greece
Fiora Pirri, University of Rome, Italy
Erik Sandewall, Linkoping University, Sweden
Sebastian Sardina, RMIT University, Australia
Len Schubert, University of Rochester, USA
Michael Thielscher, Dresden University of Technology, Germany
Rich Thomason, University of Michigan, USA
Achille Varzi, Columbia University, USA

x

xi

Invited Talks
Acquiring Commonsense Knowledge from Perceptual Observations

Anthony G. Cohen, University of Leeds
Crucial to the ultimate attainment of the goal of building an autonomous cognitive agent

is endowing the agent with an ability to perceive, understand, formulate hypotheses and
act based on the agent’s perceptions. I will discuss work undertaken at Leeds in pursuit
of this goal. A key focus of our work is to integrate quantitative and qualitative modes of
representation and to learn as much as possible from observation of the world, and thus to
acquire high level symbolic models. As one example of our approach, I will show how by
characterizing video sequences using a qualitative spatio-temporal relational descriptions,
event classes can be mined, and in turn how a taxonomy of functional object categories can
be induced from these event descriptions.

Commonsense Reasoning about Chemistry Experiments:
Ontology and Representation
Ernest Davis, New York University

How should matter be conceptualized to best support commonsense reasoning about
simple physics and chemistry experiments? To address the question, we consider a sheaf
of eleven benchmark physical concepts, rules, and scenarios: Part/whole relations among
bodies of matter; additivity of mass; motion of a rigid solid object; continuous motion of
fluids; fixed mass proportions and spatial continuity at chemical reactions; conservation
of mass at chemical reactions; gasses in a container attaining equilibrium; the ideal gas
law and the law of partial pressures; liquid at rest in an open container; carrying liquid
in an open container; the constant availability of oxygen for reactions in an atmosphere;
and surface passivization of metals. We then present a number of different ontologies and
representational schemes: the model of atoms and molecules with statistical mechanics;
models of spatio-temporal fields, with either points, regions, or histories; models of con-
tinuous moving material in terms of chunks of matter, with or without point particles; and a
hybrid theory that combines atoms and molecules, chunks of matter, and continuous fields
using each where appropriate. We evaluate each of the representational schemes in terms
of the ease of representing the benchmark problems and other features. Overall, the field
model with histories and hybrid model seem to be best, though neither is unproblematic.
We conclude by discussing the major challenges for extending this work.

Diagnosis Revisited
Sheila McIlraith, University of Toronto

In 1987, Ray Reiter proposed a logical characterization of diagnosis from first principles
that has had significant influence on the study of diagnostic problem solving. Together with
de Kleer and Mackworth he extended this characterization in 1992. Since that time there
have been several attempts to build on his fundamental work by creating a characteriza-
tion of diagnosis of dynamical systems. In this talk, we revisit Reiter’s original work on
diagnosis, as well as more recent work on diagnosis of dynamical systems. We discuss
potential shortcomings of this more recent work, and propose a more general formulation
of dynamical diagnosis together with some associated computational machinery.

xii

Solving the Wise Mountain Man Riddle with Answer Set Programming

Marcello Balduccini
Intelligent Systems, OCTO
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract

This paper describes an exercise in the formalization of
common-sense with Answer Set Programming aimed
at solving an interesting riddle, whose solution is not
obvious to many people. Solving the riddle requires a
considerable amount of common-sense knowledge and
sophisticated knowledge representation and reasoning
techniques, including planning and adversarial reason-
ing. Most importantly, the riddle is difficult enough to
make it unclear, at a first analysis, whether and how An-
swer Set Programming or other formalisms can be used
to solve it.

Introduction

This paper describes an exercise in the formalization
of common-sense with Answer Set Programming (ASP),
aimed at solving the riddle:

“A long, long time ago, two cowboys where fighting to
marry the daughter of the OK Corral rancher. The rancher,
who liked neither of these two men to become his future son-
in-law, came up with a clever plan. A horse race would
determine who would be allowed his daughter’s hand. Both
cowboys had to travel from Kansas City to the OK Corral,
and the one whose horse arrived LAST would be proclaimed
the winner.

The two cowboys, realizing that this could become a very
lengthy expedition, finally decided to consult the Wise Moun-
tain Man. They explained to him the situation, upon which
the Wise Mountain Man raised his cane and spoke four wise
words. Relieved, the two cowboys left his cabin: They were
ready for the contest!

Which four wise words did the Wise Mountain Man
speak?”

This riddle is interesting because it is easy to understand,
but not trivial, and the solution is not obvious to many peo-
ple. The story can be simplified in various ways without
losing the key points. The story is also entirely based on
common-sense knowledge. The amount of knowledge that
needs to be encoded is not large, which simplifies the encod-
ing; on the other hand, as we will see in the rest of the paper,
properly dealing with the riddle requires various sophisti-
cated capabilities, including modeling direct and indirect ef-
fects of actions, encoding triggers, planning, dealing with
defaults and their exceptions, and concepts from multi-agent

systems such as adversarial reasoning. The riddle is difficult
enough to make it unclear, at a first analysis, whether and
how ASP or other formalisms can be used to formalize the
story and underlying reasoning.

In the course of this paper we will discuss how the ef-
fects of the actions involved in the story can be formalized,
and how to address the main issues of determining that “this
could be a lengthy expedition” and of answering the final
question.

We begin with a brief introduction on ASP. Next, we show
how the knowledge about the riddle is encoded and how rea-
soning techniques can be used to solve the riddle. Finally,
we draw conclusions.

Background
ASP (Marek and Truszczynski 1999) is a programming
paradigm based on language A-Prolog (Gelfond and Lif-
schitz 1991) and its extensions (Balduccini and Gelfond
2003; Brewka, Niemela, and Syrjanen 2004; Mellarkod,
Gelfond, and Zhang 2008). In this paper we use the exten-
sion of A-Prolog called CR-Prolog (Balduccini and Gelfond
2003), which allows, among other things, simplified han-
dling of exceptions, rare events. To save space, we describe
only the fragment of CR-Prolog that will be used in this pa-
per.

Let Σ be a signature containing constant, function and
predicate symbols. Terms and atoms are formed as usual.
A literal is either an atom a or its strong (also called classi-
cal or epistemic) negation ¬a.

A regular rule (rule, for short) is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are literals and not is the so-called de-
fault negation.1 The intuitive meaning of a rule is that a
reasoner, who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, has to believe one of hi’s.

A consistency restoring rule (cr-rule) is a statement of the
form:

h1 ∨ . . . ∨ hk

+
← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are as before. The informal meaning of
a cr-rule is that a reasoner, who believes {l1, . . . , lm} and

1We also allow the use of SMODELS style choice rules, but omit
their formal definition to save space.

1

has no reason to believe {lm+1, . . . , ln}, may believe one of
hi’s, but only if strictly necessary, that is only if no consis-
tent set of beliefs can be formed otherwise.

A program is a pair 〈Σ,Π〉, where Σ is a signature and
Π is a set of rules and cr-rules over Σ. Often we denote
programs by just the second element of the pair, and let the
signature be defined implicitly.

Given a CR-Prolog program Π, we denote the set of its
regular rules by Πr and the set of its cr-rules by Πcr. By
α(r) we denote the regular rule obtained from cr-rule r by

replacing the symbol
+
← with←. Given a set of cr-rules R,

α(R) denotes the set obtained by applying α to each cr-rule
in R. The semantics of a CR-Prolog program is defined in
two steps.

Definition 1 Given a CR-Prolog program Π, a minimal
(with respect to set-theoretic inclusion) set R of cr-rules of
Π, such that Πr ∪ α(R) is consistent is called an abductive
support of Π.

Definition 2 Given a CR-Prolog program Π, a set of literals
A is an answer set of Π if it is an answer set of the program
Πr ∪ α(R) for some abductive support R of Π.

To represent knowledge and reason about dynamic do-
mains, we use ASP to encode dynamic laws, state con-
straints and executability conditions (Gelfond and Lifschitz
1998). The laws are written directly in ASP, rather than rep-
resented using an action language (Gelfond 2002), to save
space and have a more uniform representation.

The key elements of the representation are as follows; we
refer the readers to e.g. (Gelfond 2002) for more details.
The evolution of a dynamic domain is viewed as a transition
diagram, which is encoded in a compact way by means of
an action description consisting of dynamic laws (describ-
ing the direct effects of actions), state constraints (describ-
ing the indirect effects), and executability conditions (stat-
ing when the actions can be executed). Properties of inter-
est, whose truth value changes over time, are represented by
fluents (e.g. on(block1, block2)). A state of the transition di-
agram is encoded as a consistent and complete set of fluent
literals (i.e. fluents and their negations). The truth value of a
fluent f is encoded by a statement of the form h(f, s), where
s is an integer denoting the step in the evolution of the do-
main, intuitively saying that f holds at step s. The fact that
f is false is denoted by ¬h(f, s). Occurrences of actions are
traditionally represented by expressions of the form o(a, s),
saying that a occurs at step s.

Formalizing the Riddle

The next step is to encode the knowledge about the domain
of the story. To focus on the main issues, we abstract from
several details and concentrate on the horse ride. The ob-
jects of interest are the two competitors (a, b), the two horses
(h(a), h(b)), and locations start, finish, and en route.
Horse ownership is described by relation owns, defined by
the rule owns(C, h(C))← competitor(C).

The fluents of interest and their informal meanings
are: at(X,L), “competitor or horse X is at location
L”; riding(C,H), “competitor C is riding horse H”;

crossed(X), “competitor or horse X has crossed the finish
line.”

The actions of interest are wait, move (the actor moves
to the next location along the race track), and cross (the
actor crosses the finish line). Because this domain involves
multiple actors, we represent the occurrence of actions by
a relation o(A,C, S), which intuitively says that action A
occurred, performed by competitor C, at step S.2

The formalization of action move deserves some discus-
sion. Typically, it is difficult to predict who will complete
a race first, as many variables influence the result of a race.
To keep our formalization simple, we have chosen a rather
coarse-grained model of the movements from one location
to the other. Because often one horse will be faster than
the other, we introduce a relation faster(H), which infor-
mally says that H is the faster horse. This allows us to
deal with both simple and more complex situations: when
it is known which horse is faster, we encode the informa-
tion as a fact. When the information is not available, we
use the disjunction faster(h(a)) ∨ faster(h(b)). Action
move is formalized so that, when executed, the slower horse
moves from location start to en route and from en route
to finish. The faster horse, instead, moves from start di-
rectly to finish.3 The direct effects of the actions can be
formalized in ASP as follows:4

• Action move:

% If competitor C is at start and riding the faster horse,
% action move takes him to the finish line.
h(at(C, finish), S + 1)←

h(at(C, start), S),
h(riding(C,H), S),
faster(H),
o(move,C, S).

% If competitor C is at start and riding the slower horse,
% action move takes him to location “en route.”
h(at(C, en route), S + 1)←

h(at(C, start), S),
h(riding(C,H), S),
not faster(H),
o(move,C, S).

2This simple representation is justified because the domain does
not include exogenous actions. Otherwise, we would have to use a
more sophisticated representation, such as specifying the actor as
an argument of the terms representing the actions.

3More refined modeling is possible, but is out of the scope of
the present discussion. However, we would like to mention the
possibility of using the recent advances in integrating ASP and
constraint satisfaction (Mellarkod, Gelfond, and Zhang 2008) to
introduce numerical distances, speed, and to take into account pa-
rameters such as stamina in their computation.

4Depending on the context, executability conditions might be
needed stating that each competitor must be riding in order to per-
form the move or cross actions. Because the story assumes that
the competitors are riding at all times, we omit such executability
conditions to save space.

2

% Performing move while “en route” takes the actor
% to the finish line.
h(at(C, finish), S + 1)←

h(at(C, enroute), S),
o(move,C, S).

% move cannot be executed while at the finish line.
← o(move,C, S), h(at(C, finish), S).

• Action cross:

% Action cross, at the finish line, causes the actor to
% cross the finish line.
h(crossed(C), S + 1)←

o(cross, C, S),
h(at(C, finish), S).

% cross can only be executed at the finish line.
← o(cross, C, S), h(at(C,L), S), L 6= finish.
% cross can be executed only once by each competitor.
← o(cross, C, S), h(crossed(C), S).

No rules are needed for action wait, as it has no direct ef-
fects. The state constraints are:

• “Each competitor or horse can only be at one location at
a time.”

¬h(at(X,L2), S)←
h(at(X,L1), S),
L1 6= L2.

• “The competitor and the horse he is riding on are always
at the same location.”

h(at(H,L), S)←
h(at(C,L), S),
h(riding(C,H), S).

h(at(C,L), S)←
h(at(H,L), S),
h(riding(C,H), S).

It is worth noting that, in this formalization, horses do not
perform actions on their own (that is, they are viewed as
“vehicles”). Because of that, only the first of the two rules
above is really needed. However, the second rule makes
the formalization more general, as it allows one to apply
it to cases when the horses can autonomously decide to
perform actions (e.g. the horse suddenly moves to the next
location and the rider is carried there as a side-effect).

• “Each competitor can only ride one horse at a time; each
horse can only have one rider at a time.”

¬h(riding(X,H2), S)←
h(riding(X,H1), S),
H1 6= H2.

¬h(riding(C2,H), S)←
h(riding(C1,H), S),
C1 6= C2.

• “The competitor and the horse he is riding on always cross
the finish line together.”

h(crossed(H), S)←
h(crossed(C), S),
h(riding(C,H), S).

h(crossed(C), S)←
h(crossed(H), S),
h(riding(C,H), S).

As noted for the previous group of state constraints, only
the first of these two rules is strictly necessary, although
the seconds increases the generality of the formalization.

The action description is completed by the law of inertia
(Hayes and McCarthy 1969), in its usual ASP representa-
tion (e.g. (Gelfond 2002)):

h(F, S + 1)← h(F, S), not ¬h(F, S + 1).

¬h(F, S + 1)← ¬h(F, S), not h(F, S + 1).

Reasoning About the Riddle
Let us now see how action description AD, consisting of
all of the rules from the previous section, is used to reason
about the riddle.

The first task that we want to be able to perform is deter-
mining the winner of the race, based on the statement from
the riddle “the one whose horse arrived LAST would be pro-
claimed the winner.” In terms of the formalization devel-
oped so far, arriving last means being the last to cross the
finish line. Encoding the basic idea behind this notion is not
difficult, but attention must be paid to the special case of
the two horses crossing the finish line together. Common-
sense seems to entail that, if the two horses cross the line
together, then they are both first. (One way to convince one-
self about this is to observe that the other option is to say
that both horses arrived last. But talking about “last” ap-
pears to imply that they have been preceded by some horse
that arrived “first.”) The corresponding definition of rela-
tions first to cross and last to cross is:5

% first to cross(H): horse H crossed the line first.
first to cross(H1)←

h(crossed(H1), S2),
¬h(crossed(H2), S1),
S2 = S1 + 1,
horse(H2),H1 6= H2.

% last to cross(H): horse H crossed the line last.
last to cross(H1)←

h(crossed(H1), S2),
¬h(crossed(H1), S1),
S2 = S1 + 1,
h(crossed(H2), S1), horse(H2),H1 6= H2.

Winners and losers can be determined from the previous re-
lations, and from horse ownership:

% C wins if his horse crosses the finish line last.
wins(C)← owns(C,H), last to cross(H).

5To save space, the definitions of these relations are given for
the special case of a 2-competitor race. Extending the definitions
to the general case is not difficult, but requires some extra rules.

3

% C loses if his horse crosses the finish line first.
loses(C)← owns(C,H), first to cross(H).

Let W be the set consisting of the definitions of
last to cross, first to cross, wins, and loses. It is not
difficult to check that, given suitable input about the initial
state, AD ∪ W entails intuitively correct conclusions. For
example, let σ0 denote the intended initial state of the rid-
dle, where each competitor is at the start location, riding his
horse:

h(at(a, start), 0). h(at(b, start), 0).

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

¬h(F, 0)← not h(F, 0).

The rule about fluent riding captures the intuition that nor-
mally one competitor rides his own horse, but there may
be exceptions. Also notice that the last rule in σ encodes
the Closed World Assumption, and provides a compact way
to specify the fluents that are false in σ. Also, notice that
it is not necessary to specify explicitly the location of the
horses, as that will be derived from the locations of their rid-
ers by state constraints of AD. Assuming that a’s horse is
the faster, let F a = {faster(h(a))}. Let also O0 denote the
set {o(a,move, 0), o(b,move, 0)}. It is not difficult to see
that σ ∪ F a ∪O0 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, en route), 1)},

meaning that a is expected to arrive at the finish, and b at
location “en route.” Similarly, given

O1 =

o(a,move, 0). o(b,move, 0).
o(a,wait, 1). o(b,move, 1).
o(a,wait, 2). o(b, cross, 2).
o(a, cross, 3).

the theory σ ∪ F a ∪O1 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, finish), 2),
h(crossed(a), 4), h(crossed(b), 3),
last(h(a)), first(h(b)),
wins(a), loses(b)},

meaning that both competitors crossed the finish line, but b’s
horse crossed it first, and therefore b lost the race.

The next task of interest is to use the theory developed so
far to determine that the race “could become a very lengthy
expedition.” Attention must be paid to the interpretation
of this sentence. Intuitively, the sentence refers to the fact
that none of the competitors might be able to end the race.
However, this makes sense only if interpreted with common-
sense. Of course sequences of actions exist that cause the
race to terminate. For example, one competitor could ride
his horse as fast as he can to the finish line and then cross,
but that is likely to cause him to lose the race.

We believe the correct interpretation of the sentence is that
we need to check if the two competitors acting rationally
(i.e. selecting actions in order to achieve their own goal) will

ever complete the race. In the remainder of the discussion,
we call this the completion problem. Notice that, under the
assumption of rational acting, no competitor will just run as
fast as he can to the finish line and cross it, without paying
attention to where the other competitor is.

In this paper, we will focus on addressing the completion
problem from the point of view of one of the competitors.
That is, we are interested in the reasoning that one competi-
tor needs to perform to solve the problem. So, we will define
a relation me, e.g. me(a). In the rest of the discussion, we
refer to the competitor whose reasoning we are examining
as “our competitor,” while the other competitor is referred
to as the “adversary.”

The action selection performed by our competitor can
be formalized using the well-known ASP planning tech-
nique (e.g. (Gelfond 2002)) based on a generate-and-test
approach, encoded by the set Pme of rules:

me(a).

1{ o(A,C, S) : relevant(A) }1← me(C).

← not wins(C),me(C), selected goal(win).

relevant(wait). relevant(move). relevant(cross).

where the first rule informally states that the agent should
consider performing any action relevant to the task (and
exactly one at a time), while the second rule says that se-
quences of actions that do not lead our competitor to a win
should be discarded (if our competitor’s goal is indeed to
win). Relation relevant allows one to specify which actions
are relevant to the task at hand, thus reducing the number of
combinations that the reasoner considers.

Our competitor also needs to reason about his adversary’s
actions. For that purpose, our competitor possesses a model
of the adversary’s behavior.6 The model is based on the fol-
lowing heuristics:

• Reach the finish line;

• At the finish line, if the opponent has already crossed,
cross (as the race is over anyway);

• At the finish line, if riding the opponent’s horse, cross
right away;

• Otherwise, wait.

This model of the adversary’s behavior could be more so-
phisticated – for example, it could include some level of
non-determinism – but the simple model shown above is suf-
ficient to solve the completion problem for this simple rid-
dle. The heuristics are encoded by the set Padv of triggers:7

my adversary(C2)← me(C1), C1 6= C2.

o(move,C, S)←
my adversary(C),
¬h(at(C, finish line), S).

6The model here is hard-coded, but could be learned, e.g.
(Sakama 2005; Balduccini 2007).

7A discussion on the use of triggers can be found in the Con-
clusions section.

4

o(cross, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
¬h(crossed(C1), S),
h(riding(C1,H), S),
owns(C2,H), C1 6= C2.

o(cross, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
¬h(crossed(C1), S),
h(crossed(C2), S),
competitor(C2), C1 6= C2.

¬o(A2, C, S)←
my adversary(C),
o(A1, C, S),
A2 6= A1.

o(wait, C, S)←
my adversary(C),
not ¬o(wait, C, S).

Now let us see how the theory developed so far can be used
to reason about the completion problem. Let P denote the
set Pme ∪ Padv . It is not difficult to see that the theory

σ ∪ F a ∪ AD ∪W ∪ P

is inconsistent. That is, a has no way of winning if his horse
is faster. Let us now show that the result does not depend
upon the horse’s speed. Let F∨ denote the rule

faster(h(a)) ∨ faster(h(b)).

which informally says that it is not known which horse is
faster. The theory

σ ∪ F∨ ∪ AD ∪W ∪ P

is still inconsistent. That is, a cannot win no matter whose
horse is faster. Therefore, because our competitor is acting
rationally, he is not going to take part in the race. Because
the domain of the race is fully symmetrical, it is not difficult
to see that b cannot win either, and therefore we will refuse
to take part in the race as well.

However, that is not exactly what statement of the com-
pletion problem talks about. The statement in fact seems to
suggest that, were the competitors to take part in the race
(for example, because they hope for a mistake by the op-
ponent), they would not be able to complete the race. To
model that, we allow our competitor to have two goals with
a preference relation among them: the goal to win, and the
goal to at least not lose, where the former is preferred to the
second. The second goal formalizes the strategy of waiting
for a mistake by the adversary. To introduce the second goal
and the preference, we obtain P ′ from P by adding to it the
rules:

selected goal(win)←
not ¬selected goal(win).

¬selected goal(win)←
selected goal(not lose).

← lose(C),me(C), selected goal(not lose).

selected goal(not lose)
+
← .

The first rule says that our competitor’s goal is to win, unless
otherwise stated. The second rule says that one exception
to this is if the selected goal is to not lose. The constraint
says that, if the competitor’s goal is to not lose, all action
selections causing a loss must be discarded. The last rule
says that our competitor may possibly decide to select the
goal to just not lose, but only if strictly necessary (that is, if
the goal of winning cannot be currently achieved).

Now, it can be shown that the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′

is consistent. One of its answer sets includes for example
the atoms:

{faster(h(a)),
o(wait, a, 0), o(move, b, 0),
o(wait, a, 1), o(move, b, 1),
o(move, a, 2), o(wait, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which represent the possibility that, if a’s horse is faster, a
and b will reach the finish line, and then wait there indefi-
nitely. To confirm that the race will not be completed, let us
introduce a set of rules C containing the definition of com-
pletion, together with a constraint that requires the race to
be completed in any model of the underlying theory:

completed← h(crossed(X), S).
← not completed.

The first rule states that the race has been completed when
one competitor has crossed the finish line (the result of the
race at that point is fully determined). Because the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′ ∪ C

is inconsistent, we can conclude formally that, if the com-
petitors act rationally, they will not complete the race.

The last problem left to solve is answering the ques-
tion “Which four wise words did the Wise Mountain Man
speak?” In terms of our formalization, we need to find ad-
ditional information, to be included in the theory developed
so far, that allows to entail the completion of the race. No-
tice that, often, to solve a riddle one needs to revisit assump-
tions that were initially taken for granted. From a knowledge
representation perspective, that means revisiting the defaults
used in the encoding of the theory, and allowing the reasoner
to select appropriate exceptions to the defaults.

The simple formalization given so far contains only one
default, the rule for fluent riding in σ:

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

To allow the reasoner to consider exceptions to this default,
we add a cr-rule stating that a competitor may possibly ride
the opponent’s horse, although that should happen only if
strictly necessary.

h(riding(C,H2), 0)
+
←

owns(C,H1), horse(H2),H1 6= H2.

5

We use a cr-rule, instead of a regular rule, to capture the in-
tuition that the competitors will not normally switch horses.
Although for simplicity here we focus on a specific default, it
is important to stress that this technique can be extended to
the general case by writing the knowledge base so that each
default is accompanied by a cr-rule allowing the reasoner
to consider unexpected exceptions (but only if strictly nec-
essary). Let σ′ be obtained from σ by adding to it the new
cr-rule. It can be shown that the theory8

σ′ ∪ F∨ ∪ AD ∪W ∪ P

is consistent and its unique answer set contains:

{faster(h(b)),
h(riding(a, h(b)), 0), h(riding(b, h(a)), 0),
o(move, a, 0), o(move, b, 0),
o(cross, a, 1), o(move, b, 1),
o(wait, a, 2), o(cross, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which encodes the answer that, if the competitors switch
horses and the horse owned by b is faster, then a can win
by immediately reaching the finish line and crossing it. In
agreement with common-sense, a does not expect to win if
the horse b owns is slower. On the other hand, it is not diffi-
cult to see that b will win in that case. That is, the race will
be completed no matter what.

The conclusion obtained formally here agrees with the ac-
cepted solution of the riddle: “Take each other’s horse.”

Conclusions

In this paper we have described an exercise in the use of
ASP for common-sense knowledge representation and rea-
soning, aimed at formalizing and reasoning about an easy-
to-understand, but non-trivial riddle. One reason why we
have selected this particular riddle, besides its high content
of common-sense knowledge, is the fact that upon an ini-
tial analysis, it was unclear whether and how ASP or other
formalisms could be used to solve it. Solving the riddle has
required the combined use of some of the latest ASP tech-
niques, including using consistency restoring rules to allow
the reasoner to select alternative goals and to consider excep-
tions to the defaults in the knowledge base as a last resort,
and has shown how ASP can be used for adversarial reason-
ing by employing it to encode a model of the adversary’s
behavior.

Another possible way of solving the riddle, not
shown here for lack of space, consists in introducing a
switch horses action, made not relevant by default, but
with the possibility to use it if no solution can be found oth-
erwise. Such action would be cooperative, in the sense that
both competitors would have to perform it together. How-
ever, as with many actions of this type in a competitive en-
vironment, rationally acting competitors are not always ex-

8The same answer is obtained by replacing P by P
′. However,

doing that would require specifying preferences between the cr-
rule just added and the cr-rule in P

′. To save space, we use P to
answer the final question of the riddle.

pected to agree to perform the action. An interesting contin-
uation of our exercise will consist of an accurate formaliza-
tion of this solution of the riddle, which we think may yield
useful results in the formalization of sophisticated adversar-
ial reasoning.

One last note should be made regarding the use of triggers
to model the adversary’s behavior. We hope the present pa-
per has shown the usefulness of this technique and the sub-
stantial simplicity of implementation using ASP. This tech-
nique has limits, however, due to the fact that an a-priori
model is not always available. Intuitively, it is possible to
use ASP to allow a competitor to “simulate” the opponent’s
line of reasoning (e.g. by using choice rules). However, an
accurate execution of this idea involves solving a number of
non-trivial technical issues. We plan to expand on this topic
in a future paper.

References

Balduccini, M., and Gelfond, M. 2003. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-
Carthy, J.; and Williams, M.-A., eds., International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9–18.

Balduccini, M. 2007. Learning Action Descriptions with
A-Prolog: Action Language C. In Amir, E.; Lifschitz, V.;
and Miller, R., eds., Procs of Logical Formalizations of
Commonsense Reasoning, 2007 AAAI Spring Symposium.

Brewka, G.; Niemela, I.; and Syrjanen, T. 2004. Logic
Programs wirh Ordered Disjunction. 20(2):335–357.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 365–385.

Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on AI 3(16).

Gelfond, M. 2002. Representing Knowledge in A-
Prolog. In Kakas, A. C., and Sadri, F., eds., Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.

Hayes, P. J., and McCarthy, J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.

Marek, V. W., and Truszczynski, M. 1999. Stable
models and an alternative logic programming paradigm.
The Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag, Berlin. 375–398.

Mellarkod, V. S.; Gelfond, M.; and Zhang, Y. 2008. In-
tegrating Answer Set Programming and Constraint Logic
Programming. Annals of Mathematics and Artificial Intel-
ligence. (to appear).

Sakama, C. 2005. Induction from answer sets in non-
monotonic logic programs. ACM Transactions on Com-
putational Logic 6(2):203–231.

6

A general framework for revising belief bases using qualitative Jeffrey’s
rule

Salem Benferhat1 and Didier Dubois2 and Henri Prade2 and Mary-Anne Williams3

1 CRIL-CNRS, UMR 8188, Faculté Jean Perrin, Université d’Artois, Rue Jean Souvraz, 62307 Lens France
2 IRIT - Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse cedex 09 France

3 Innovation and Enterprise Research Laboratory University of Technology, Sydney NSW 2007 Australia

Abstract

Intelligent agents require methods to revise their epis-
temic state as they acquire new information. Jeffrey’s
rule, which extends conditioning to uncertain inputs,
is used to revise probabilistic epistemic states when
new information is uncertain. This paper analyses the
expressive power of two possibilistic counterparts of
Jeffrey’s rule for modeling belief revision in intelligent
agents. We show that this rule can be used to recover
most of the existing approaches proposed in knowledge
base revision, such as adjustment, natural belief revi-
sion, drastic belief revision, revision of an epistemic by
another epistemic state. In addition, we also show that
that some recent forms of revision, namely reinforce-
ment operators, can also be recovered in our frame-
work.

Introduction
An intelligent agent’s information is often uncertain,
inconsistent and incomplete. It is then crucially impor-
tant to define mechanisms to manage it in response to
focusing on a specific problem or in response to the ac-
quisition of new, possibly conflicting, information. The
term information covers a broad range of entities such
as knowledge, perceptions, beliefs, expectations, prefer-
ences, or causal relations. It can describe agents’ view
of the world, itself, its actions and its understanding of
changes.

During the past twenty years, many approaches have
been proposed to address the problem of belief change
from the axiomatic point of view (e.g., (Gärdenfors
1988), (Darwiche & Pearl 1997)), from the semantics
point of view (e.g., (Williams 1994), (Boutilier 1993),
(Thielscher 2005)) and from the the computational
point of view ((Nebel 1994), (Benferhat et al. 2002)).

Due to lack of space, this paper only focuses on the
semantics of belief revision in the framework of pos-
sibility theory. The basic object in possibility theory
is a possibility distribution, which is a mapping from
the set of classical interpretations to an ordered struc-
ture, usually the interval [0, 1]. A possibility distribu-
tion rank-orders the potential states of the real world
according to their level of plausibility, and represents
the information available to an agent.

The revision of a possibility distribution can be
viewed as a so-called “transmutation” (Makinson 1994)
that modifies the ranking of interpretations so as to give
priority to the input information. In particular, two
forms of possibilistic revision, called possibilistic revi-
sion with partial epistemic states, are investigated as
the counterparts of Jeffrey’s rule of revision in probabil-
ity theory. These two forms of possibilistic revision con-
sist in modifying a possibility distribution π with a set
of weighted, mutually exclusive formulas µ = {φi, ai},
called partial epistemic states, which express that the
possibility of φ is equal to ai. These two forms of re-
vision come down to modifying the possibility π such
that each formula φi is accepted with the prescribed de-
gree ai. The new degrees ai’s may be either a constant
determined for example by an expert, or a function de-
fined for instance with respect to the original possibility
degree associated with φi.

This paper first extends the natural properties de-
scribed in (Benferhat et al. 2002) in order to take into
account the new form of the input, namely a partial
epistemic state. Then we present two definitions of pos-
sibilistic revision operators that naturally extend the
two forms of conditioning that have been defined in the
possibility theory framework. We also compare possi-
bilistic revision with the counterpart of Jeffrey’s rule of
conditioning. In its second half, the paper shows that
most of existing belief revision operators can be recov-
ered by one of the two forms of possibilistic revision
with respect to partial epistemic states.

But first in order to establish the new results, we
need to restate the necessary background on possibility
theory.

Possibilistic representations of epistemic
states

Let L be a finite propositional language with formulas φ
or ψ. � denotes the (semantical) classical consequence
relation. Ω is the set of classical interpretations, and
[φ] is the set of classical models of φ.

An epistemic agent is a special kind of intelligent
agent, one that at any given moment in time is in a
specific epistemic state, e.g. it will have a set of current

7

beliefs which are crafted from its background knowl-
edge, conceptual understanding and its (internal and
external) perceptions.

We take the traditional interpretation of beliefs and
epistemic states and view an epistemic state as a set of
beliefs where a belief is a relation between an epistemic
agent and an object of belief represented as a logical
sentence or a proposition.

There are several common representations of epis-
temic states such as : well ordered partitions of Ω, prob-
abilistic epistemic states, Grove’s systems of spheres,
Spohn’s Ordinal Conditional Functions (OCF), etc.
Throughout this paper we use a general representation
of a total preorder, namely a possibility distribution π,
which is a mapping from Ω to the interval [0,1].

Indeed a possibility distribution can be used for rep-
resenting any total preorder, and any operator on a to-
tal preorder on Ω can be translated into an operator on
a possibility distribution to obtain the same outcome.
We will identify operators that require the full power of
the [0, 1] scale.

Given an interpretation ω ∈ Ω, π(ω) represents the
degree of compatibility of ω with the available informa-
tion (or beliefs) about the real world. π(ω) = 0 means
that the interpretation ω is impossible, and π(ω) = 1
means that nothing prevents ω from being the real
world. Interpretations ω where π(ω) = 1 are consid-
ered to be expected (they are not at all surprising).
When π(ω) > π(ω′), ω is a preferred candidate to ω′

for being the real state of the world. The less π(ω) the
less plausible ω or the more different it is to the current
world. A possibility distribution π is said to be nor-
mal if ∃ω ∈ Ω, such that π(ω) = 1, in other words if
at least one interpretation is a fully plausible candidate
for being the actual world.

Given a possibility distribution π, the possibility de-
gree of formula φ is defined as:

Ππ(φ) = max{π(ω) : ω ∈ [φ]}.

It evaluates the extent to which φ is consistent with
the available information expressed by π. When there
is no ambiguity, we simply write Π(φ) instead of Ππ(φ).
Note that Π(φ) is evaluated under the assumption that
the situation where φ is true is as normal as can be
(since Π(φ) reflects the maximal plausibility of a model
of φ).

Given a possibility distribution π, the semantic de-
termination of the content of an epistemic state denoted
by content(π), is obtained by considering all sentences
which are more plausible than their negation, namely:

content(π) = {φ : Π(φ) > Π(¬φ)}.
Namely, content(π) is a classical theory whose models

are the interpretations having the highest degrees in
π. When π is normalized, models of content(π) are
interpretations which are completely possible, namely
[content(π)] = {ω : π(ω) = 1}. The sentence φ belongs
to content(π) when φ holds in all the most normal or
plausible situations (hence φ is expected, or accepted
as being true).

Lastly, given a formula φ, two different types of con-
ditioning (Dubois & Prade 1998) have been defined in
possibility theory (when Π(φ) > 0):
• In an ordinal setting, we have:

π(ω |m φ) = 1 if π(ω) = Π(φ) and ω � p
= π(ω) if π(ω) < Π(φ) and ω ` p
= 0 if ω 6∈ [p].

(1)

This is the definition of minimum-based conditioning.
• In a numerical setting, we get:

π(ω |· φ) = π(ω)
Π(φ) if ω � p

= 0 otherwise
(2)

This is the definition of product-based conditioning.
These two definitions of conditioning satisfy an equa-
tion of the form

∀ω, π(ω) = π(ω | φ)⊕Π(φ)

which is similar to Bayesian conditioning, where ⊕ is
min and the product respectively. The rule based on
the product is much closer to genuine Bayesian condi-
tioning than the qualitative conditioning defined from
the minimum which is purely based on the compari-
son of levels; product-based conditioning requires more
of the structure of the unit interval. Besides, when
Π(φ) = 0, π(ω |m φ) = π(ω |· φ) = 1, ∀ω, by conven-
tion.

Iterated semantic revision in
possibilistic logic

Belief revision results from the effect of accepting a new
piece of information called the input information. In
this paper, it is assumed that the current epistemic
state (represented by a possibility distribution), and the
input information, do not play the same role. The input
must be incorporated in the epistemic state. In other
words, it takes priority over information in the epis-
temic state. This asymmetry is expressed by the way
the belief change problem is stated, namely the new in-
formation alters the epistemic state and not conversely.
This asymmetry will appear clearly at the level of belief
change operations. This situation is different from the
one of information fusion from several sources, where
no epistemic state dominates a priori. In this context,
the use of symmetrical rules is natural especially when
the sources are equally reliable.

Jeffrey’s rule for revising probability
distributions
Reasoning in the presence of new observations is a
fundamental issue in reasoning with uncertainty and
imprecision. In probability theory, there is a natural
method for achieving this task using Jeffrey’s rule
(Jeffrey 1965). This rule is proposed for revising
probability distributions based on the probability

8

kinematics principle whose objective is minimizing
change. In this method, beliefs are represented as a
probability distribution.

Jeffrey’s rule (Jeffrey 1965) provides an effective
means to revise a probability distribution p to p′ given
uncertainty bearing on a set of mutually exclusive and
exhaustive events φi. Note that when speaking of
events, φ is short for [φ]. The uncertainty is given in
the form of pairs (φi, ai) with:

P ′(φi) = ai. (3)

Jeffrey’s method relies on the fact that although there
is uncertainty about events φi, conditional probability
of any event ψ ⊆ Ω given any uncertain event φi re-
mains the same in the original and the revised distri-
butions. Namely,

∀φi,∀ψ, P (ψ|φi) = P ′(ψ|φi). (4)

The underlying interpretation of revision implied by
the constraint of Equation 4 is that the revised proba-
bility distribution p′ must not change conditional prob-
ability degrees of any event φ given uncertain events
φi. In the probabilistic framework, applying Bayes rule
then marginalization allows revision of the possibility
degree of any event ψ in the following way:

P ′(ψ) =
∑
φi

P ′(φi) ∗
P (ψ, φi)
P (φi)

. (5)

The revised probability distribution p′ (known as Jef-
frey’s rule of conditioning) is the unique distribution
that satisfies (3) and (4) (see(Chan & Darwiche 2005)).

Two forms of possibilistic revision based on
Jeffrey’s rule
The possibilistic counterpart of Jeffrey’s rule was in-
troduced in (Dubois & Prade 1991) (see also (Dubois
& Prade 1997)), without emphasizing the probability
kinematics condition (4) however. There are two natu-
ral ways to define a possibilistic revision based on Jef-
frey’s rule, which naturally extend the two forms of con-
ditioning that exist in possibility theory.

Note that most existing works on belief revision (both
from semantics and axiomatics perspectives) assume
that the input information is either a propositional for-
mula, or an epistemic state (namely a possibility distri-
bution).

Defining a possibilistic revision based on Jeffrey’s rule
allows us to define a general framework where the in-
put is a compact partition of the set of interpretations.
Namely, the input is of the form µ = {(φi, ai) i = 1,m}
where the φi’s are pairwise mutually exclusive formulas.
The only requirement is that there exists at least one
aj such that aj = 1. In the following, µ will be called
a partial epistemic state. It is partial in the sense that

letting Π′(π′)(φi) = ai does not amount to the full spec-
ification of π′ over the models of φi.

Let us first discuss some natural properties of the
revision of a possibility distribution π and a new input
information µ = {(φi, ai) i = 1,m} to a new possibility
distribution denoted by π′ = π(.|µ). Natural properties
for π′ are:
A1 : π′ should be normalized,
A2 : ∀(φi, ai) ∈ µ,Π′(φi) = ai.
A3 : ∀ω, ω′ ∈ [φi] then: π(ω) ≥ π(ω′) then π′(ω) ≥
π′(ω′),

A4 : If for all φi,Π(φi) = ai then ∀ω ∈ [φi] : π(ω) =
π′(ω),

A5 : If π(ω) = 0 then π′(ω) = 0.
A1 means that the new epistemic state is consistent.

A2 confirms that the input (φ, a) is interpreted as a
constraint which forces π′ to satisfy:

Π′(φi) = ai.

A3 means that the new possibility distribution should
preserve the previous relative order (in the wide sense)
between models of each φi. A stronger version of A3

can be defined:

A′3 : ∀ω, ω′ ∈ [φi] then: π(ω) > π(ω′) iff π′(ω) >
π′(ω′),

A′3 clearly extends CR1, CR2 proposed in (Darwiche
& Pearl 1997). A4 means that when all new beliefs φi
are accepted at their prescribed levels ai then revision
does not affect π. A5 stipulates that impossible worlds
remain impossible after revision. Note that there are
no further constraints which relate models of different
φi in the new epistemic state.

The previous properties A1–A5 do not guarantee a
unique definition of conditioning.

A3 suggests that the possibilistic revision process can
be achieved using several parallel changes with a sure
input: First, apply a conditioning (using equations 1
and 2) on each φi and in order to satisfy A2, the dis-
tribution π(· | ¬φ) is denormalized so as to satisfy
Π′(φi) = ai. Therefore, revising with µ can be achieved
using the following definition:

∀φi ∈ µ,∀ω |= φi, π(ω | µ) = ai ⊕ π(ω |⊕ φi) (6)

where ⊕ is either min or the product, depending on
whether conditioning is based on the product or the
minimum operator. When ⊕ = product (resp. min)
the possibilistic revision will be simply called product-
based (resp. minimum-based) conditioning with partial
epistemic states.

The new degree of models of φi depends on the rela-
tive position of the a priori possibility degree of φi, and
the prescribed posterior possibility degree of φi:
• If Π(φi) ≥ ai and when ⊕ =min, all interpretations

that were originally more plausible than ai, are forced

9

to level ai, which means that some strict ordering be-
tween models of φi may be lost. Hence A′3 is clearly
not satisfied. When ⊕ =product, all plausibility lev-
els are proportionally shifted down (to the level ai).

• If Π(φi) < ai the best models of φi are raised to level
ai. Moreover, when ⊕ =product, the plausibility lev-
els of other models are proportionally shifted up (to
level ai).

Relationships with Jeffrey’s kinematics
properties
Another way to define possibilistic revision is to sim-
ply apply the counterpart of Jeffrey’s rule of condi-
tioning (Jeffrey 1965). Namely, given an initial pos-
sibility distribution π and a partial epistemic state
µ = {(φi, ai) i = 1,m} we need to find possibility dis-
tributions π′ that satisfy:

Π′(φi) = ai. (7)

and:

∀φi,∀ψ,Π(ψ|⊕φi) = Π′(ψ|⊕φi), (8)

where ⊕ is either a minimum or a product. When ⊕
is the product then we can show that the possibilistic
revision given by (6) is the unique possibility distribu-
tion that satisfies (7) and (8). However, it is not the
case when ⊕ is the minimum.

Recovering existing belief revision
frameworks

Standard possibilistic conditioning and
adjustment
Clearly, possibilistic revision with partial epistemic
states generalizes possibilistic conditioning with a
propositional formula φ. Indeed, applying possibilis-
tic revision given by (6) with a partial epistemic states
µ = {(φ, 1), (¬φ, 0)} gives exactly the same results if
one applies equation (1) on φ when ⊕ = min (resp. (2)
for ⊕ = product).

Similarly, possibilistic revision with uncertain input,
which corresponds to adjustment (see (Benferhat et al.
2002)), is a particular case of possibilistic revision with
a partial epistemic state, where the input is of the form
µ = {(φ, 1), (¬φ, a)}.

Natural belief revision
Let <initial be a total pre-order on the set of epistemic
states. Let φ be a new piece of information. We de-
note by <N the result of applying natural belief revi-
sion of <initial by φ. Natural belief revision of <initial
by φ proposed in (Boutilier 1993), also hinted by Spohn
(Spohn 1988), proceeds to minimal change of <initial by
considering the most plausible models of φ in <initial
to be the most plausible interpretation in <N . More
precisely, <N is defined as follows:

• ∀ω ∈ min(Ω, <initial),∀ω′ ∈ min(Ω, <initial), ω =N

ω′

• ∀ω ∈ min(Ω, <initial),∀ω′ 6∈ min(Ω, <initial), ω <N
ω′

• ∀ω 6∈ min(Ω, <initial),∀ω′ 6∈ min(Ω, <initial), ω <N
ω′ iff ω <initial ω

′.

To recover natural belief revision, first associate with
<initial a compatible positive possibility distribution 1

πinitial, defined by :
∀ω, ω′ ∈ Ω, πinitial(ω) > πinitial(ω′) iff ω <initial ω

′.
Such πinitial always exists. Then let a be such that
1> a > max{π(ω) : π(ω) 6= 1}. Then define π<N

(.) =
πinput(.|mµ) where µ = {(φ, 1), (¬φ, a)}, πinput(.|mµ) is
the result applying possibilistic revision given by equa-
tion (6) with ⊕ =min. Then we can show that π<N

indeed encodes natural belief revision, namely:

∀ω, ω′ ∈ Ω, π<N
(ω) > π<N

(ω′) iff ω <N ω′.

Drastic belief revision
Papini (Papini 2000), has considered a stronger con-
straint (also hinted by Spohn (Spohn 1988)) by impos-
ing that each model of φ should be strictly preferred
to each countermodel of ¬φ, and moreover the rela-
tive ordering between models (resp. countermodels) of
p should be preserved. More formally, let us denote
by <D be result of applying drastic belief revision of
<initial by φ. <D is defined as follows:

• ∀ω, ω′ ∈ [φ], ω <D ω′ iff ω <initial ω
′.

• ∀ω, ω′ 6∈ [φ], ω <D ω′ iff ω <initial ω
′.

• ∀ω ∈ [φ],∀ω′ 6∈ [φ], ω <D ω′.

To recover drastic belief revision, first associate with
<initial a compatible positive possibility distribution
πinput, as defined above. Let ∆(φ) = min{π(ω) : ω |=
p}, and a such that a < ∆(φ).

Then define π<D
(.) = πinput(.|.µ) where µ =

{(φ, 1), (¬φ, a)}, πinput(.|mµ) is the result apply-
ing possibilistic revision given by equation (6) with
⊕ =product. Then we can show that π<D

indeed en-
codes drastic belief revision, namely:

∀ω, ω′ ∈ Ω, π<D
(ω) > π<D

(ω′) iff ω <D ω′.

A revision of epistemic state by epistemic
state
In (Benferhat et al. 2000) (see also (Nayak 1994)) a
revision of an epistemic state, denoted here by <initial,
by an input in the form of an epistemic state, denoted
here by <input, is defined. The obtained result is a
new epistemic state, denoted by <L (L for lexicographic
ordering), and defined as follows:

• ∀ω, ω′ ∈ Ω, if ω <input ω′ then ω <L ω
′.

1a possibility distribution π is said to be positive if
∀ω, π(ω) > 0.

10

• ∀ω, ω′ ∈ Ω, if ω =input ω
′ then ω <L ω

′ iff ω <initial
ω′.

Namely, <L is obtained by refining <input by <initial.
For our purpose, we denote {E0, ..., En} the partition
of Ω induced by <input. Namely:

• ∀i, j ∈ {0, ..., n}, Ei ∩ Ej = ∅, and
⋃
i=1,...,nEi = Ω

(namely, Ei’s represent a partition of Ω)
• ∀i ∈ {0, ..., n}, ∀ω, ω′ ∈ Ei, ω =input ω

′,
• ∀ω, ω′ ∈ Ω, ω <input ω′ iff ω ∈ Ei, ω′ ∈ Ej and i < j.

Let πinitial and πinput be two positive possibility
distributions associated respectively with <initial and
<input.

To recover this revision of an epistemic state by an
epistemic state, first define π<L

(.) = πinput(.|.µ) where
µ = {(φEi , ε

i) : i = 0, ..., n} is the result applying possi-
bilistic revision given by equation (6) with ⊕ =product.
φEi is a propositional formulas that exactly admits Ei
as the set of its models. εi’s are infinitesimal (and by
convention ε0 = 1).

Then we can show that π<L
indeed encodes <L,

namely:

∀ω, ω′ ∈ Ω, π<L
(ω) > π<L

(ω′) iff ω <L ω
′.

Reinforcement operator
The last approach that we propose to recover is
called a reinforcement operator, recently proposed in
(Konieczny & Perez 2008). The idea is that a revi-
sion of <initial by a propositional formula φ only allows
the improvement in plausibility of φ, namely the result
makes φ “one unit” more plausible.

Let new epistemic state , denoted by <R, obtained
after reinforcing φ is defined as follows:

• The relative orderings between models (resp.
counter-models) of φ is preserved.

• Let ω be a model of φ and ω’ be a counter-model of
φ. :

– if ω′ = ω then ω <R ω
′

– if ω′ <initial ω then if ∀ω” ∈ [φ] where ω′ <initial
ω” we have ω ≤ ω” then ω =R ω

′ otherwise ω′ <R
ω

– if ω <initial ω′ then ω <R ω
′

To recover the reinforcement operator, we first define
πinput to be a positive possibility distribution associ-
ated with <initial, as defined above. Let S = {a0 =
1, a1, ..., an} be a finite scale 1 > a1 > ... > an > 0 (n is
at least equal to twice the number of different degrees
in πinput. Define pred(ai) = ai−1 with by convention
pred(a0) = 1, and succ(ai) = ai+1 with by convention
Succ(an) = an.

Let ai ∈ S be such that ai = πinput(φ).
Define π<R

(.) = πinitial(.|.µ)(.) where
µ = {(φ,min(1, pred(Π(φ))), (¬φ, succ(Π(¬φ))	Π(φ)}
is the result of applying possibilistic revision given

by equation (6) with ⊕ =product, and where
“succ(Π(¬φ))	Π(φ)” is defined as equal to 1 if Π(¬φ) >
Π(φ) and equal to succ(Π(¬φ)) otherwise.

Then we can show that π<R
indeed encodes <R,

namely:

∀ω, ω′ ∈ Ω, π<R
(ω) > π<R

(ω′) iff ω <R ω
′.

Conclusion

The information held by an intelligent agent is typically
uncertain, inconsistent and incomplete, consequently
agents need sophisticated mechanisms to revise their
epistemic states as they acquire new information over
time because this new information may be in conflict
with information in it epistemic state.

Due to the fundamental nature of the need to main-
tain an epistemic state that faithfully reflects an agents
understanding there as been considerable scientific ef-
fort invested in developing effective belief revision mech-
anisms and strategies such as (Gärdenfors 1988), (Dar-
wiche & Pearl 1997), (Williams 1994), (Nebel 1994),
and (Benferhat et al. 2002).

In this paper we show how Jeffrey’s rule can be used
to justify several key existing approaches to belief re-
vision, then having established this sound relationship
we show that reinforcement operators can be specified
using our framework. Lastly, we propose a new form
of belief revision where the input is only a partial rep-
resentation of epistemic states using Jeffrey’s rule. All
these methods can be used to enhance the belief man-
agement capabilities of intelligent agents.

References

Benferhat, S.; Konieczny, S.; Papini, O.; and Pérez,
R. P. 2000. Iterated revision by epistemic states:
axioms, semantics and syntax. In Proc. of the 14th
European Conf. on Artificial Intelligence (ECAI-00),
13–17. Berlin, Allemagne: IOS Press.
Benferhat, S.; Dubois, D.; Prade, H.; and Williams,
M.-A. 2002. A practical approach to revising priori-
tized knowledge bases. Studia Logica Journal 70:105–
130.
Boutilier, C. 1993. Revision Sequences and Nested
Conditionals. In Proc. of the 13th Inter. Joint Conf.
on Artificial Intelligence (IJCAI’93), 519–531.
Chan, H., and Darwiche, A. 2005. On the revision of
probabilistic beliefs using uncertain evidence. Artifi-
cial Intelligence 163:67–90.
Darwiche, A., and Pearl, J. 1997. On the logic of
iterated revision. Artificial Intelligence 89:1–29.
Dubois, D., and Prade, H. 1991. Updating with belief
functions, ordinal conditional functions and possibility
measures. Uncertainty in Artificial Intelligence 6 (P.
P. Bonissone, M. Henrion, L. N. Kanal, J. F. Lemmer,
eds). Elsevier Science Publ. B.V. 311–329.

11

Dubois, D., and Prade, H. 1997. A synthetic view
of belief revision with uncertain inputs in the frame-
work of possibility theory. Int. J. Approx. Reasoning
17:295–324.
Dubois, D., and Prade, H. 1998. Possibility theory:
qualitative and quantitative aspects. Handbook of De-
feasible Reasoning and Uncertainty Management Sys-
tems. (D. Gabbay, Ph. Smets, eds.), Vol. 1: Quan-
tified Representation of Uncertainty and Imprecision
(Ph. Smets, ed.) 169–226.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling
the Dynamics of Epistemic States. Bradford Books.
Cambridge: MIT Press.
Jeffrey, R. C.. 1965. The logic of decision. Mc. Graw
Hill, New York.
Konieczny, S., and Perez, R. P. 2008. Improve-
ment operators. In 11th International Conference on
Principles of Knowledge Representation and Reason-
ing(KR’08), 177–186.
Makinson, D. 1994. General patterns in nonmonotonic
inference. In Handbook of Logic in Artificial Intelli-
gence and Logic Programming, Vol. 3 (D.M. Gabbay,
C.J. Hogger, J.A. Robinson, D. Nute, eds.), 35–110.
Oxford University Press,.
Nayak, A. 1994. Iterated belief change based on epis-
temic entrenchment. Erkenntnis 41:353–390.
Nebel, B. 1994. Base revision operations and schemes:
semantics, representation, and complexity. In Proceed-
ings of the Eleventh European Conference on Artificial
Intelligence (ECAI’94), 341–345.
Papini, O. 2000. Iterated revision operations stem-
ming from the history of an agent’s observations. Fron-
tiers of Belief Revision to appear.
Spohn, W. 1988. Ordinal conditiona functions: a
dynamic theory of epistemic states. Causation in De-
cision, Belief Change, and Statistics 2:105–134.
Thielscher, M. 2005. Handling implicational and
universal quantification constraints in flux. In van
Beek., ed., Proceedings of the International Conference
on Principle and Practice of Constraint Programming
(CP), volume 3709 of LNCS, 667–681. Sitges, Spain:
Springer.
Williams, M. A. 1994. Transmutations of Knowledge
Systems. In Doyle, J., and al. Eds., eds., Inter. Conf.
on principles of Knowledge Representation and rea-
soning (KR’94), 619–629. Morgan Kaufmann.

12

Next Steps in Propositional Horn Contraction∗

Richard Booth
Mahasarakham University

Thailand
richard.b@msu.ac.th

Thomas Meyer
Meraka Institute, CSIR and
School of Computer Science
University of Kwazulu-Natal

South Africa
tommie.meyer@meraka.org.za

Ivan José Varzinczak
Meraka Institute, CSIR

South Africa
ivan.varzinczak@meraka.org.za

Abstract

Standard belief contraction assumes an underlying logic
containing full classical propositional logic, but there
are good reasons for considering contraction in less
expressive logics. In this paper we focus on Horn
logic. In addition to being of interest in its own right,
our choice is motivated by the use of Horn logic in
several areas, including ontology reasoning in descrip-
tion logics. We consider three versions of contraction:
entailment-based and inconsistency-based contraction
(e-contraction and i-contraction, resp.), introduced by
Delgrande for Horn logic, and package contraction (p-
contraction), studied by Fuhrmann and Hansson for the
classical case. We show that the standard basic form
of contraction, partial meet, is too strong in the Horn
case. We define more appropriate notions of basic con-
traction for all three types above, and provide associated
representation results in terms of postulates. Our results
stand in contrast to Delgrande’s conjectures that orderly
maxichoice is the appropriate contraction for both e-
and i-contraction. Our interest in p-contraction stems
from its relationship with an important reasoning task
in ontological reasoning: repairing the subsumption hi-
erarchy in EL. This is closely related to p-contraction
with sets of basic Horn clauses (Horn clauses of the
form p → q). We show that this restricted version of
p-contraction can also be represented as i-contraction.

Introduction
Belief change is a subarea of knowledge representation con-
cerned with describing how an intelligent agent ought to
change its beliefs about the world in the face of new and
possibly conflicting information. Arguably the most influ-
ential work in this area is the so-called AGM approach (Al-
chourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988) which focuses on two types of belief change: belief
revision, in which an agent has to keep its set of beliefs con-
sistent while incorporating new information into it, and be-
lief contraction, in which an agent has to give up some of its
beliefs in order to avoid drawing unwanted conclusions.

Although belief change is relevant to a wide variety of
application areas, most approaches, including AGM, as-

∗This work has been accepted for presentation at IJCAI-09.
The paper is based upon work supported by the National Research
Foundation under Grant number 65152.

sume an underlying logic which includes full propositional
logic. In this paper we deviate from this trend and inves-
tigate belief contraction for propositional Horn logic. As
pointed out by Delgrande (2008) who has also studied con-
traction for Horn logic recently, and to whom we shall fre-
quently refer in this paper, this is an important topic for
a number of reasons: (i) it sheds light on the theoreti-
cal underpinnings of belief change, and (ii) Horn logic
has found extensive use in AI and database theory. How-
ever, our primary reason for focusing on this topic is be-
cause of its application to ontologies in description log-
ics (DLs) (Baader et al. 2003). Horn clauses correspond
closely to subsumption statements in DLs (roughly speak-
ing, statements of the form A1 u . . . u An v B where the
Ai’s and B are concepts), especially in the EL family of
DLs (Baader 2003), since both Horn logic and the EL fam-
ily lack full negation and disjunction. A typical scenario
involves an ontology engineer teaming up with an expert to
construct an ontology related to the domain of expertise of
the latter with the aid of an ontology engineering tool such
as SWOOP [http://code.google.com/p/swoop]
or Protégé [http://protege.stanford.edu]. One
of the principal methods for testing the quality of a con-
structed ontology is for the domain expert to inspect and
verify the computed subsumption hierarchy. Correcting
such errors involves the expert pointing out that certain
subsumptions are missing from the subsumption hierar-
chy, while others currently occurring in the subsumption
hierarchy ought not to be there. A concrete example
of this involves the medical ontology SNOMED (Spack-
man, Campbell, and Cote 1997) which classifies the con-
cept Amputation-of-Finger as being subsumed by
the concept Amputation-of-Arm. Finding a solution to
problems such as these is known as repair in the DL com-
munity (Schlobach and Cornet 2003), but it can also be seen
as the problem of contracting by the subsumption statement
Amputation-of-Finger v Amputation-of-Arm.

The scenario also illustrates why we are concerned with
belief contraction of belief sets (logically closed theories)
and not belief base contraction (Hansson 1999). Ontologies
are not constructed by writing DL axioms, but rather using
ontology editing tools, from which the axioms are generated
automatically. Because of this, it is the belief set and not the
axioms from which the theory is generated that is important.

13

Logical Background and Belief Contraction
We work in a finitely generated propositional language LP

over a set of propositional atoms P, which includes the dis-
tinguished atoms > and ⊥, and with the standard model-
theoretic semantics. Atoms will be denoted by p, q, . . ., pos-
sibly with subscripts. We use ϕ,ψ, . . . to denote classical
formulas. They are recursively defined in the usual way.

We denote by V the set of all valuations or interpretations
v : P −→ {0, 1}, with 0 denoting falsity and 1 truth. Sat-
isfaction of ϕ by v is denoted by v ϕ. The set of models
of a set of formulas X is [X]. We sometimes represent the
valuations of the logic under consideration as sequences of
0s and 1s, and with the obvious implicit ordering of atoms.
Thus, for the logic generated from p and q, the valuation in
which p is true and q is false will be represented as 10.

Classical logical consequence and logical equivalence are
denoted by |= and ≡ respectively. For sets of sentences X
and Φ, we understand X |= Φ to mean that X entails every
element of Φ. For X ⊆ LP, the set of sentences logically
entailed by X is denoted by Cn(X). A belief set is a logi-
cally closed set, i.e., for a belief setX , X = Cn(X). P(X)
denotes the power set (set of all subsets) of X .

A Horn clause is a sentence of the form p1 ∧ p2 ∧ . . . ∧
pn → q where n ≥ 0. If n = 0 we write q instead of→ q. A
Horn theory is a set of Horn clauses. Given a propositional
language LP, the Horn language LH generated from LP is
simply the Horn clauses occurring inLP. The Horn logic ob-
tained from LH has the same semantics as the propositional
logic obtained from LP, but just restricted to Horn clauses.
Thus a Horn belief set is a Horn theory closed under logical
entailment, but containing only Horn clauses. Hence, |=, ≡,
the Cn(.) operator, and all other related notions are defined
relative to the logic we are working in (e.g. |=

PL
for proposi-

tional logic and |=
HL

for Horn logic). Since the context always
makes it clear which logic we are dealing with, we shall dis-
pense with such subscripts for the sake of readability.

AGM (Alchourrón, Gärdenfors, and Makinson 1985) is
the best-known approach to contraction. It gives a set of pos-
tulates characterising all rational contraction functions. The
aim is to describe belief contraction on the knowledge level
independent of how beliefs are represented. Belief states
are modelled by belief sets in a logic with a Tarskian conse-
quence relation including classical propositional logic. The
expansion of K by ϕ, K + ϕ, is defined as Cn(K ∪ {ϕ}).
Contraction is intended to represent situations in which
an agent has to give up information from its current be-
liefs. Formally, belief contraction is a (partial) function from
P(LP)×LP to P(LP): the contraction of a belief set by a
sentence yields a new set.

The AGM approach to contraction requires that the fol-
lowing set of postulates characterise basic contraction.

(K−1) K − ϕ = Cn(K − ϕ)

(K−2) K − ϕ ⊆ K
(K−3) If ϕ /∈ K, then K − ϕ = K

(K−4) If 6|= ϕ, then ϕ /∈ K − ϕ
(K−5) If ϕ ≡ ψ, then K − ϕ = K − ψ

(K−6) If ϕ ∈ K, then (K − ϕ) + ϕ = K

The intuitions behind these postulates have been debated in
numerous works (Gärdenfors 1988; Hansson 1999). We will
not do so here, and just note that (K−6), a.k.a. Recovery, is
the most controversial. There is also a refined version of
AGM contraction involving two extended postulates, but a
discussion on that is beyond the scope of this paper.

Various methods exist for constructing basic AGM con-
traction. In this paper we focus on the use of remainder sets.

Definition 1 For a belief set K, X ∈ K ↓ϕ iff (i) X ⊆ K,
(ii) X 6|= ϕ, and (iii) for every X ′ s.t. X ⊂ X ′ ⊆ K,
X ′ |= ϕ. We call the elements of K ↓ϕ remainder sets of K
w.r.t. ϕ.

It is easy to verify that remainder sets are belief sets, and
that remainder sets can be generated semantically by adding
precisely one countermodel of ϕ to the models of K (when
such countermodels exist). Also, K ↓ϕ = ∅ iff |= ϕ.

Since there is no unique method for choosing between
possibly different remainder sets, AGM contraction presup-
poses the existence of a suitable selection function for do-
ing so.

Definition 2 A selection function σ is a function from
P(P(LP)) to P(P(LP)) s.t. σ(K ↓ ϕ) = {K}, if
K ↓ϕ = ∅, and ∅ 6= σ(K ↓ϕ) ⊆ K ↓ϕ otherwise.

Selection functions provide a mechanism for identifying the
remainder sets judged to be most appropriate, and the result-
ing contraction is then obtained by taking the intersection of
the chosen remainder sets.

Definition 3 For σ a selection function,−σ is a partial meet
contraction iff K −σ ϕ =

⋂
σ(K ↓ϕ).

One of the fundamental results of AGM contraction is a rep-
resentation theorem which shows that partial meet contrac-
tion corresponds exactly with the six basic AGM postulates.

Theorem 1 ((Gärdenfors 1988)) Every partial meet con-
traction satisfies (K−1)–(K−6). Conversely, every con-
traction function satisfying (K−1)–(K−6) is a partial meet
contraction.

Two subclasses of partial meet deserve special mention.

Definition 4 Given a selection function σ, −σ is a maxi-
choice contraction iff σ(K ↓ϕ) is a singleton set. It is a full
meet contraction iff σ(K ↓ϕ) = K ↓ϕ wheneverK ↓ϕ 6= ∅.
Clearly full meet contraction is unique, while maxichoice
contraction usually is not. Observe also that partial meet
contraction satisfies the following convexity principle.

Proposition 1 Let K be a belief set, let −mc be a maxi-
choice contraction, and let −fm be full meet contraction.
For every belief set X s.t. (K −fm ϕ) ⊆ X ⊆ K −mc ϕ,
there is a partial meet contraction −pm such that K −pm
ϕ = X .

That is, every belief set between the results from full meet
contraction and some maxichoice contraction is obtained
from some partial meet contraction. This result plays an im-
portant part in our definition of Horn contraction.

14

Horn Contraction Horn contraction differs from classi-
cal AGM contraction in a number of ways. The most basic
differences are the use of Horn logic as the underlying logic
and allowing for the contraction of finite sets of sentences Φ.

As recognised by Delgrande (2008), the move to Horn
logic admits the possibility of more than one type of con-
traction. He considers two types: entailment-based contrac-
tion (or e-contraction) and inconsistency-based contraction
(or i-contraction). In what follows, we recall Delgrande’s
approach and develop our theory of Horn contraction.

Entailment-based contraction
For e-contraction, the goal of contracting with a set of sen-
tences Φ is the removal of at least one of the sentences in
Φ. For full propositional logic, contraction with a set of sen-
tences is not particularly interesting since contracting by Φ
will be equivalent to contracting by the single sentence

∧
Φ.

For Horn logic it is interesting though, since the conjunction
of the sentences in Φ is not always expressible as a single
sentence. (An alternative, and equivalent approach, would
have been to allow for the conjunction of Horn clauses as
Delgrande (2008) does, but for reasons that will become
clear later, we have not opted for this choice.) Our start-
ing point for defining Horn e-contraction is in terms of Del-
grande’s definition of e-remainder sets.

Definition 5 (Horn e-Remainder Sets) For a belief set H ,
X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii) for every
X ′ s.t. X ⊂ X ′ ⊆ H , X ′ |= Φ. We refer to the elements of
H ↓eΦ as the Horn e-remainder sets of H w.r.t. Φ.

It is easy to verify that all Horn e-remainder sets are belief
sets. Also, H ↓eΦ = ∅ iff |= Φ.

We now proceed to define selection functions to be used
for Horn partial meet e-contraction.

Definition 6 (Horn e-Selection Functions) A partial meet
Horn e-selection function σ is a function from P(P(LH))
to P(P(LH)) s.t. σ(H ↓e Φ) = {H} if H ↓e Φ = ∅, and
∅ 6= σ(H ↓eΦ) ⊆ H ↓eΦ otherwise.

Using these selection functions, we define partial meet Horn
e-contraction.

Definition 7 (Partial Meet Horn e-Contraction) Given a
partial meet Horn e-selection function σ, −σ is a partial
meet Horn e-contraction iff H −σ Φ =

⋂
σ(H ↓eΦ).

We also consider two special cases.

Definition 8 (Maxichoice and Full Meet) Given a partial
meet Horn e-selection function σ, −σ is a maxichoice Horn
e-contraction iff σ(H ↓e Φ) is a singleton set. It is a full
meet Horn e-contraction iff σ(H ↓e Φ) = H ↓e Φ when
H ↓eΦ 6= ∅.

Example 1 Let H = Cn({p→ q, q → r}). Then H ↓e
{p → r} = {H ′, H ′′}, where H ′ = Cn({p→ q}), and
H ′′ = Cn({q → r, p ∧ r → q}). So contracting with {p →
r} yields either H ′, H ′′, or H ′ ∩H ′′ = Cn({p ∧ r → q}).

Beyond Partial Meet Contraction
While all partial meet e-contractions (and therefore also
maxichoice and full meet e-contractions) are appropriate
choices for e-contraction, they do not make up the set of
all appropriate Horn e-contractions. This has a number of
implications, one of them being that it conflicts with Del-
grande’s conjecture that orderly maxichoice e-contraction is
the appropriate form of e-contraction.

The argument that maxichoice e-contraction is not suffi-
cient is a relatively straightforward one. In full propositional
logic the argument against maxichoice contraction relates to
the link between AGM revision and contraction via the Levi
Identity (Levi 1977): K ? ϕ = (K − ¬ϕ) + ϕ. For maxi-
choice contraction this has the unfortunate consequence that
a revision operator obtained via the Levi Identity will sat-
isfy the following “fullness result”, i.e., K ? ϕ is a complete
theory: If ¬ϕ ∈ K then for all ψ ∈ LP, ψ ∈ K ? ϕ or
¬ψ ∈ K ? ϕ. Semantically, this occurs because the models
of any remainder set for ϕ are obtained by adding a single
countermodel of ¬ϕ to the models of K. And while it is
true that e-remainder sets for Horn logic do not always have
this property, the fact is that they still frequently do, which
means that maxichoice e-contraction will frequently cause
the same problems as in propositional logic. For example,
consider the Horn belief set H = Cn({p, q}). It is easy
to verify that [H] = {11}, that the e-remainder sets of {p}
w.r.t.H areH ′ = Cn({p→ q, q → p}) andH ′′ = Cn({q}),
and that [H ′] = {11, 00} and [H ′′] = {11, 01}: i.e., the
models of H ′ and H ′′ are obtained by adding to the mod-
els of H a single countermodel of p. This is not to say that
maxichoice e-contraction is never appropriate. Similar to
the case for full propositional logic, we argue that all maxi-
choice Horn e-contractions ought to be seen as rational ways
of contracting. It is just that other possibilities may be more
applicable in certain situations. And, just as in the case for
full propositional logic, this leads to the conclusion that all
partial meet e-contractions ought to be seen as appropriate.

Once partial meet e-contraction has been accepted as nec-
essary for Horn e-contraction, the obvious next question is
whether partial meet Horn e-contraction is sufficient, i.e.,
whether there are any rational e-contractions that are not par-
tial meet Horn e-contractions. For full propositional logic
the sufficiency of partial meet contraction can be justified by
Proposition 1 which, as we have seen, states that every be-
lief set between full meet contraction and some maxichoice
contraction is obtained from some partial meet contraction.
It turns out that the same result does not hold for Horn logic.

Example 2 As we have seen in Example 1, for the
e-contraction of {p → r} from the Horn belief
set Cn({p→ q, q → r}), full meet yields Hfm =
Cn({p ∧ r → q}) while maxichoice yields either H1

mc =
Cn({p→ q}) or H2

mc = Cn({q → r, p ∧ r → q}). Now
consider the belief set H ′ = Cn({p ∧ q → r, p ∧ r → q}).
It is clear that Hfm ⊆ H ′ ⊆ H2

mc, but there is no partial
meet e-contraction yielding H ′.

Our contention is that Horn e-contraction should be ex-
tended to include cases such as H ′ above. Since full meet
Horn e-contraction is deemed to be appropriate, it stands

15

to reason that any belief set H ′ bigger than it should also
be seen as appropriate, provided that H ′ does not con-
tain any irrelevant additions. But since H ′ is contained
in some maxichoice Horn e-contraction, H ′ cannot contain
any irrelevant additions. After all, the maxichoice Horn e-
contraction contains only relevant additions, since it is an
appropriate form of contraction. Hence H ′ is also an appro-
priate result of e-contraction.
Definition 9 (Infra e-Remainder Sets) For belief sets H
and X , X ∈ H ⇓e Φ iff there is some X ′ ∈ H ↓e Φ s.t.
(
⋂
H ↓eΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓eΦ

as the infra e-remainder sets of H w.r.t. Φ.
Note that all e-remainder sets are also infra e-remainder sets,
and so is the intersection of any set of e-remainder sets. In-
deed, the intersection of any set of infra e-remainder sets is
also an infra e-remainder set. So the set of infra e-remainder
sets contains all belief sets between some Horn e-remainder
set and the intersection of all Horn e-remainder sets. This
explains why Horn e-contraction is not defined as the inter-
section of infra e-remainder sets (cf. Definition 7).
Definition 10 (Horn e-Contraction) An infra e-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓e Φ) = H whenever |= Φ, and τ(H ⇓e Φ) ∈
H ⇓e Φ otherwise. A contraction function −τ is a Horn
e-contraction iff H −τ Φ = τ(H ⇓eΦ).

A Representation Result
Our representation result makes use of all of the basic AGM
postulates, except for the Recovery Postulate (K − 6). It
is easy to see that Horn e-contraction does not satisfy Re-
covery. As an example, take H = Cn({p→ r}) and let
Φ = {p ∧ q → r}. Then H − Φ = Cn(∅) and so
(H −e Φ) + Φ = Cn({p ∧ q → r}) 6= H . In place of
Recovery we have a postulate that closely resembles Hans-
son’s (1999) Relevance Postulate, and a postulate handling
the case when trying to contract with a tautology.
(H−e 1) H −e Φ = Cn(H −e Φ)
(H−e 2) H −e Φ ⊆ H
(H−e 3) If Φ 6⊆ H then H −e Φ = H

(H−e 4) If 6|= Φ then Φ 6⊆ H −e Φ
(H−e 5) If Cn(Φ) = Cn(Ψ) then H −e Φ = H −e Ψ
(H−e 6) If ϕ ∈ H \ (H −e Φ) then there is a H ′ such that⋂

(H ↓eΦ) ⊆ H ′ ⊆ H , H ′ 6|= Φ, and H ′ + {ϕ} |= Φ
(H−e 7) If |= Φ then H −e Φ = H

Postulates (H −e 1)–(H −e 5) are analogues of (K−1)–
(K−5), while (H −e 6) states that all sentences removed
from H during a Φ-contraction must have been removed for
a reason: adding them again brings back Φ. (H−e7) simply
states that contracting with a (possibly empty) set of tautolo-
gies leaves the initial belief set unchanged. We remark that
(H −e 3) is actually redundant in the list, since it can be
shown to follow mainly from (H−e 6).
Theorem 2 Every Horn e-contraction satisfies (H −e 1)–
(H −e 7). Conversely, every contraction function satisfying
(H−e 1)–(H−e 7) is a Horn e-contraction.

Inconsistency-based Contraction
We now turn our attention to Delgrande’s second type of
contraction for Horn logic: inconsistency-based contraction,
or i-contraction. The purpose of this type of contraction by a
set Φ is to modify the belief set H in such a way that adding
Φ to H does not result in an inconsistent belief set: (H −i
Φ) + Φ 6|= ⊥. Our starting point for defining i-contraction is
in terms of Delgrande’s definition of i-remainder sets with
respect to Horn logic.

Definition 11 (Horn i-Remainder Sets) For a belief set
H , X ∈ H ↓i Φ iff (i) X ⊆ H , (ii) X + Φ 6|= ⊥, and
(iii) for every X ′ s.t. X ⊂ X ′ ⊆ H , X ′ + Φ |= ⊥. We refer
to the elements of H ↓iΦ as the Horn i-remainder sets of H
w.r.t. Φ.

It is again easy to verify that Horn i-remainder sets are
belief sets and that H ↓iΦ = ∅ iff Φ |= ⊥.

The definition of i-remainder sets is similar enough to
that of e-remainder sets (Definition 5) that we can define
partial meet Horn i-selection functions, partial meet Horn
i-contraction, maxichoice Horn i-contraction, and full meet
Horn i-contraction by repeating Definitions 6, 7, and 8, but
referring to H ↓iΦ rather than H ↓eΦ.

Beyond Partial Meet
As in the case for e-contraction we argue that while par-
tial meet Horn i-contractions are all appropriate forms of
i-contraction, they do not represent all rational forms of
i-contraction. The argument against maxichoice Horn i-
contraction is essentially the same one put forward against
maxichoice Horn e-contraction. That is, the result H −i Φ
of maxichoice Horn i-contraction frequently results in a be-
lief set which differs semantically from H by adding a sin-
gle valuation to the models of H in order to avoid incon-
sistency. We can, in fact, use a variant of the same exam-
ple used against maxichoice Horn e-contraction. Let H =
Cn({p, q}) and Φ = {p → ⊥}. Then [H] = {11}, the i-
remainder sets of Φ w.r.t. H are H ′ = Cn({p→ q, q → p})
and H ′′ = Cn({q}), and [H ′] = {11, 00} and [H ′′] =
{11, 01}: i.e., the models of H ′ and H ′′ are obtained by
adding to the models of H a single valuation in order to
avoid inconsistency. The case against partial meet Horn
i-contraction is again based on the fact that it does not al-
ways include all belief sets between some maxichoice Horn
i-contraction and full meet Horn i-contraction, leading us to
infra i-remainder sets.

Definition 12 (Infra i-Remainder Sets) For belief sets H
and X , X ∈ H ⇓i Φ iff there is some X ′ ∈ H ↓i Φ s.t.
(
⋂
H ↓iΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓iΦ

as the infra i-remainder sets of H w.r.t. Φ.

Horn i-contraction is defined i.t.o. infra i-remainder sets:

Definition 13 (Horn i-Contraction) An infra i-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓i Φ) = H whenever Φ |= ⊥, and τ(H ⇓i Φ) ∈
H ⇓i Φ otherwise. A contraction function −τ is a Horn i-
contraction iff H −τ Φ = τ(H ⇓iΦ).

16

A Representation Result
Our representation result for i-contraction is very similar to
that for e-contraction and Postulates (H−i1)–(H−i7) below
are clearly close analogues of (H−e 1)–(H−e 7).
(H−i 1) H −i Φ = Cn(H −i Φ)
(H−i 2) H −i Φ ⊆ H
(H−i 3) If H + Φ 6|= ⊥ then H −i Φ = H

(H−i 4) If Φ 6|= ⊥ then (H −i Φ) + Φ 6|= ⊥
(H−i 5) If Cn(Φ) = Cn(Ψ) then H −i Φ = H −i Ψ
(H−i 6) If ϕ ∈ H \ (H −i Φ), there is a H ′ s.t.

⋂
(H ↓i

Φ) ⊆ H ′ ⊆ H , H ′ + Φ 6|= ⊥, and H ′ + (Φ ∪ {ϕ}) |= ⊥
(H−i 7) If |= Φ then H −i Φ = H

Analogously with e-contraction, rule (H−i3) can be shown
to follow mainly from (H −i 6). We show that Horn i-
contraction is characterised precisely by these postulates.
Theorem 3 Every Horn i-contraction satisfies (H −i 1)–
(H −i 7). Conversely, every contraction function satisfying
(H−i 1)–(H−i 7) is a Horn i-contraction.

Package Horn Contraction
The third and last type of contraction we consider is referred
to as package contraction, a type of contraction studied by
Fuhrmann and Hansson (1994) for the classical case (i.e.,
for logics containing full propositional logic). The goal is to
remove all sentences of a set Φ from a belief set H . For full
propositional logic this is similar to contracting with the dis-
junction of the sentences in Φ. For Horn logic, which does
not have full disjunction, package contraction is more inter-
esting. Our primary interest in package contraction relates to
an important version of contraction occurring in ontological
reasoning, as we shall see below.

Our starting point is again in terms of remainder sets.
Definition 14 (Horn p-Remainder Sets) For a belief set
H , X ∈ H ↓p Φ iff (i) X ⊆ H , (ii) Cn(X) ∩ Φ = ∅,
and (iii) for every X ′ s.t. X ⊂ X ′ ⊆ H , Cn(X ′) ∩ Φ 6= ∅.
We refer to the elements of H ↓pΦ as the Horn p-remainder
sets of H w.r.t. Φ.
It is easily verified that Horn p-remainder sets are belief sets.
In addition, the following definition will be useful.
Definition 15 A set Φ is tautologous iff for every valuation
v, there is a ϕ ∈ Φ such that v ϕ.
It can be verified thatH ↓pΦ = ∅ iff Φ is tautologous. (Note
that tautologous is not the same as tautological.)

The definition of p-remainder sets is similar enough to
that of e-remainder sets (Definition 5) that we can define
partial meet Horn p-selection functions, partial meet Horn
p-contraction, maxichoice Horn p-contraction, and full meet
Horn p-contraction by repeating Definitions 6, 7, and 8, but
referring to H ↓pΦ rather than H ↓eΦ.

Since e- and p-contraction coincide for contraction by
singleton sets, our argument also holds for p-contraction.
Also, Example 2 is also applicable to p-contraction, from
which it follows that partial meet p-contraction is not suffi-
cient either. Consequently, as we did for e-contraction and
i-contraction, we move to infra p-remainder sets.

Definition 16 (Infra p-Remainder Sets) For belief sets H
and X , X ∈ H ⇓p Φ iff there is some X ′ ∈ H ↓p Φ s.t.
(
⋂
H ↓pΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓pΦ

as the infra p-remainder sets of H w.r.t. Φ.
Horn p-contraction is then defined in terms of infra p-
remainder sets in the obvious way.
Definition 17 (Horn p-contraction) An infra p-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓p Φ) = H whenever Φ is tautologous, and τ(H ⇓p
Φ) ∈ H ⇓p Φ otherwise. A contraction function −τ is a
Horn p-contraction iff H −τ Φ = τ(H ⇓pΦ).

A Representation Result
The representation result for p-contraction is very similar to
that for e-contraction, with Postulates (H −p 1)–(H −p 7)
being close analogues of (H−e 1)–(H−e 7).

Observe that the following definition is used in (H−p 5).
Definition 18 For sets of sentences Φ and Ψ, Φ≡̂Ψ iff either
both are tautologous, or ∀v ∈ V , ∃ϕ ∈ Φ s.t. v ϕ iff
∃ψ ∈ Ψ s.t. v ψ.
This definition describes a notion of set equivalence which
is appropriate to ensure syntax independence.
(H−p 1) H −p Φ = Cn(H −p Φ)
(H−p 2) H −p Φ ⊆ H
(H−p 3) If H ∩ Φ = ∅ then H −p Φ = H

(H−p 4) If Φ is not tautologous then (H −p Φ) ∩ Φ = ∅
(H−p 5) If Φ≡̂Ψ then H −p Φ = H −p Ψ
(H−p 6) If ϕ ∈ H \ (H −p Φ), there is a H ′ s.t.

⋂
(H ↓p

Φ) ⊆ H ′ ⊆ H , Cn(H ′) ∩ Φ = ∅, and (H ′ + ϕ) ∩ Φ 6= ∅
(H−p 7) If Φ is tautologous then H −p Φ = H

Once more (H−p3) is actually redundant here. We show that
these postulates characterise Horn p-contraction exactly.
Theorem 4 Every Horn p-contraction satisfies (H −p 1)–
(H −p 7). Conversely, every contraction function satisfying
(H−p 1)–(H−p 7) is a Horn p-contraction.

p-Contraction as i-Contraction
In addition to p-contraction being of interest in its own right,
we have a specific interest in the case where Φ contains only
basic Horn clauses: those with exactly one atom in the head
and in the body. Our interest in it is because of its rela-
tion to an important version of contraction for ontological
reasoning in the EL family of DLs. Briefly, basic Horn
clauses correspond closely to basic subsumption statements
in the EL family: statements of the form A v B where A
and B are concept names. Its importance stems from the
fact that basic subsumption statements are used to repair
the subsumption hierarchy. A detailed investigation of this
form of contraction for the EL family is beyond the scope of
this paper. Here we just show that Horn p-contraction with
basic Horn clauses can be represented as a special case of
Horn i-contraction. Define i as a function from sets of basic
Horn clauses to sets of Horn clauses, such that for any set
Φ = {p1 → q1, . . . , pn → qn} of basic Horn clauses, we
have i(Φ) = {p1, . . . , pn, q1 → ⊥, . . . , qn → ⊥}.

17

Proposition 2 Let H be a Horn belief set and let Φ be a set
of basic Horn clauses. Then K −p Φ = K −i i(Φ).

It is worth noting that this result does not hold for the case
where Φ includes general Horn clauses.

Related Work
In recent years there has been considerable interest in deal-
ing with inconsistent ontologies represented in description
logics (Baader et al. 2003) but for the most part, this has not
been presented explicitly as a contraction problem. While
there has been some work on revision for Horn logics (Eiter
and Gottlob 1992; Liberatore 2000; Langlois et al. 2008),
the only work of importance on Horn contraction, to our
knowledge, is that of Delgrande (2008), and this section is
mainly devoted to a discussion of his work.

Delgrande defines and characterises a version of e-
contraction which introduces additional structure in the
choice of e-remainder sets by placing a linear order on all
e-remainder sets involving a belief set H (i.e., for all pos-
sible Φs). When performing contraction by a set Φ, one is
obliged to choose the remainder set ofH w.r.t. Φ that is min-
imal w.r.t. the linear order. The additional structure imposed
by the use of these linear orders ensures that this kind of
e-contraction is actually more restrictive than maxichoice e-
contraction, although Delgrande refers to it as maxichoice
e-contraction. We shall refer to it as orderly maxichoice e-
contraction. Delgrande conjectures that orderly maxichoice
e-contraction is the appropriate form of e-contraction for
Horn logic. Our work is not directly comparable to that of
Delgrande since he works on the level of full AGM contrac-
tion, obtained by also considering the extended postulates,
whereas we are concerned only with basic contraction, and
leave the extension to full contraction for future work. Nev-
ertheless, it is clear that an extension to full contraction will
involve more than just orderly maxichoice e-contraction.

Delgrande also defines a version of orderly maxichoice
i-contraction, but his representation result is in terms of
maxichoice i-contraction: he refers to it as singleton i-
contraction. He takes a fairly dim view of i-contraction,
primarily because of the following result: If p → ⊥ ∈ H
then either q ∈ H −i {p} or q → ⊥ ∈ H −i {p} for every
atom q. His main concern with this is related to the fact that
revision defined in terms of the Levi Identity (i-contraction
followed by expansion) will yield a result in which all struc-
ture ofH , given in terms of Horn clauses, is lost. This means
that for him a move to partial meet i-contraction is not the
solution either, since any prior structure contained in H will
still be lost. We view this objection as somewhat surprising
in this context, since Horn contraction is intended to operate
on the knowledge level in which the structure of the theory
from which the belief set is generated is irrelevant. So, while
we agree that the formal result on which he bases his objec-
tions is a good argument against maxichoice i-contraction
(it is closely related to our argument against maxichoice e-
contraction above, it does not provide a persuasive argu-
ment against partial meet i-contraction. It is worth noting
that he does not consider i-contraction in terms of infra i-
remainder sets at all. Finally, Delgrande expresses doubts

about i-contraction, but our result for p-contraction shows
that this is too pessimistic.

Conclusion and Future Work
In this paper we have laid the groundwork for contraction in
Horn logic by providing formal accounts of basic versions of
three types of contraction: e-contraction, i-contraction, and
p-contraction. Both e-contraction and i-contraction have
previously been studied by Delgrande (2008). We have
shown that Delgrande’s conjectures about orderly maxi-
choice contraction being the appropriate version for these
two forms of contraction were perhaps a bit premature.

Here we focus only on basic Horn contraction. For future
work we plan to investigate Horn contraction for full AGM
contraction, obtained by adding the extended postulates.

And finally, arguably the most interesting of the three ver-
sions of contraction we considered is p-contraction, because
of its close links with contraction in DLs, specifically the
EL family of DLs. Consequently, for future work we plan
to extend our results for Horn contraction to DLs.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. J. of Symbolic Logic 50:510–530.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. Description Logic Hand-
book. Cambridge University Press.
Baader, F. 2003. Terminological cycles in a description
logic with existential restrictions. In Proc. IJCAI, 325–330.
Delgrande, J. 2008. Horn clause belief change: Contrac-
tion functions. In Proc. KR, 156–165.
Eiter, T., and Gottlob, G. 1992. On the complexity of
propositional knowledge base revision, updates, and coun-
terfactuals. Artificial Intelligence 57(2–3):227–270.
Fuhrmann, A., and Hansson, S. 1994. A survey of multiple
contractions. Journal of Logic, Language and Information
3:39–76.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press.
Hansson, S. 1999. A Textbook of Belief Dynamics. Kluwer.
Langlois, M.; Sloan, R.; Szörényi, B.; and Turán. 2008.
Horn complements: Towards Horn-to-Horn belief revision.
In Proc. AAAI.
Levi, I. 1977. Subjunctives, dispositions and chances. Syn-
these 34:423–455.
Liberatore, P. 2000. Compilability and compact represen-
tations of revision of Horn clauses. ACM Transactions on
Computational Logic 1(1):131—161.
Schlobach, S., and Cornet, R. 2003. Non-standard rea-
soning services for the debugging of DL terminologies. In
Proc. IJCAI, 355–360.
Spackman, K.; Campbell, K.; and Cote, R. 1997.
SNOMED RT: A reference terminology for health care.
Journal of the American Medical Informatics Association
640–644.

18

Combining Motion Planning with an Action Formalism

Jaesik Choi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{jaesik,eyal}@cs.uiuc.edu

Abstract
Robotic manipulation is important for real, physical world
applications. General Purpose manipulation with a robot (eg.
delivering dishes, opening doors with a key, etc.) is demand-
ing. It is hard because (1) objects are constrained in posi-
tion and orientation, (2) many non-spatial constraints interact
(or interfere) with each other, and (3) robots may have multi-
degree of freedoms (DOF). In this paper we solve the problem
of general purpose robotic manipulation using a novel combi-
nation of motion planning and an action formalism (Situation
Calculus). Our approach integrates motions of a robot with
other actions (non-physical or external-to-robot) to achieve a
goal while manipulating objects. It differs from previous, hi-
erarchical approaches in that (a) it considers kinematic con-
straints in configuration space (CSpace) together with con-
straints over object manipulations; (b) it automatically gen-
erates high-level (logical) actions from a CSpace based mo-
tion planning algorithm; and (c) it decomposes a planning
problem into small segments, thus reducing the complexity
of planning.

Introduction
Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in
a dish washer and buttons in elevators). It was shown that
planning with movable objects is P-SPACE hard (Chen and
Hwang 1991; Dacre-Wright, Laumond, and Alami 1992;
Stilman and Kuffner 2005). Nonetheless, previous works
examined such planning in depth (Likhachev, Gordon, and
Thrun 2003; Kuffner and LaValle 2000; Kavraki et al. 1996;
Brock and Khatib 2000; Alami et al. 1998; Stilman and
Kuffner 2005) because of the importance of manipulat-
ing objects. The theoretical analysis gave rise to some
practical applications (Alami et al. 1998; Cortés 2003;
Stilman and Kuffner 2005; Conner et al. 2007), but general
purpose manipulation remains out of reach for real-world-
scale applications.

Motion planning algorithms have difficulty to represent
non-kinematic constraints despite of its strength in planning
with kinematic constraints. Suppose that we want to let a
robot push a button to turn a light on. CSpace1 can repre-
sent such constraints. However, the CSpace representation

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1CSpace is the set of all possible configurations

could be (1) redundant and (2) computationally inefficient
because CSpace is not appropriate for compact representa-
tions. It could be redundant, because it always considers the
configurations of all objects beside our interests (i.e. a but-
ton and a light). Moreover, mapping such constraints into
CSpace would be computationally inefficient, because map-
ping a constraint among n objects could take O(2n) evalu-
ations in worst case. Thus, most of motion planning algo-
rithms assume that such mappings in CSpace are encoded.

AI planning algorithms and description languages (e.g.
PDDL (McDermott 1998)) have difficulty to execute real-
world robots despite of its strength in planing with logical
constraints. Suppose that we have a PDDL action for ‘push
the button’ which makes a button pushed and a light turned
on. However, the PDDL description could be (1) ambiguous
and (2) incomplete (require details). Given a robot with m
joints, it is ambiguous how to execute the robot to push the
button, because such execution is not given in the descrip-
tion. Instead, it assumes that there is a predefined action
which makes some conditions (e.g. a button pushed) satis-
fied whenever precondition is hold and the action is done.

Both methods solve this problem in different ways. Mo-
tion planning algorithms use abstractions to solve this prob-
lem. AI plannings use manual encodings. Although abstrac-
tion provides solutions in a reasonable amount of time in
many applications, abstraction lose completeness. Thus, it
has no computational benefit in worst cases. Although AI
plannings have no need to search the huge CSpace, it re-
quires manual encodings which are not only error-prone but
also computationally inefficient.

We solve this problem with combining a motion planning
and an AI planning in a model. We extend our previous
framework in PDDL (Choi and Amir 2009) into Situation
Calculus which provides logic formalisms. That is, Situa-
tion Calculus reflecting kinematic constraints are extracted
from a graph constructed by a resolution-complete motion
planning algorithm. In detail, our algorithm is composed of
three subroutines: (1) extracting a graph from a motion plan-
ner, (2) building new actions from abstract actions using the
built graph, (3) finding a solution in the built action theory,
and (4) decoding it into CSpace.

In detail, our algorithm unifies a general purpose (logi-
cal) planner and a motion planner in one algorithm. Our
algorithm is composed of three subroutines: (1) extracting

19

Shower Light

Beans

Shower

On

Off

Light

On

Off

Door1

Door2

Door3

Figure 1: This figure shows an example of manipulating objects
with a robotic arm. The goal is to take care of beans in a glasshouse.
Beans require water and light everyday. The robot will provide
water and light for beans. To accomplish this goal, the arm needs
to manipulate objects such as doors and switches.

logical actions from a motion planner, (2) finding an ab-
stract plan from the logical domain, and (3) decoding it into
CSpace. It extracts Situation Calculus actions (McCarthy
and Hayes 1987; Reiter 2001) from a tree constructed by a
motion planner in CSpace. Then, it combines extracted ac-
tions with a given BAT (Basic Action Theory explained in
Section) that has propositions, axioms (propositional for-
mulae) and abstract Situation Calculus actions. To find an
abstract plan efficiently, we automatically partitioned the
domain by a graph decomposition algorithm before plan-
ning. In the planning step, an abstract plan is found by a
factored planning algorithms (Amir and Engelhardt 2003;
Brafman and Domshlak 2006) which are designed for the
decomposed domain. In decoding, a motion plan is found
from the abstract plan.

Section provides a motivational example. Section ex-
plains our encoding to build a theory in Situation Calculus.
Sections and show our algorithm. Section presents related
works. Finally, section provides experimental results fol-
lowed by the conclusion in section .

A Motivating Example
Figure 1 shows a planning problem. The goal is to provide
water and light to beans. The robotic arm should be able to
manipulate buttons in the spatial space to provide water and
light. There are also non-spatial constraints. At any time
either the shower is off or door3 is closed or both.

The planner requires both a general purpose (logical)
planner and a motion planner. It requires general pur-
pose planner because the arm needs to revisit some points
of CSpace several times in a possible solution. The way
points may include ‘Open door1’, ‘Close door1’, and
‘Turn light on’. Note that the internal state (values of
propositions) can be different, whenever the robot revisits
the same point in the CSpace. It is certainly motion planning
problem because the kinematic constraints of the arm should
be considered. For example, the arm should not collide with
obstacles, although the hand of the arm may contact objects.

Hierarchical planners have been classical solutions for

Small Room

@small_room, @main_room

door2, door3_lock

shower_button

Open_door2, Close_door2

Turn_shower_on, Turn_shower_off

Move_to_main_room

@bean_room, @main_room

light_button

Open_door2, Close_door2

Turn_light_on, Turn_light_off

Move_to_main_room

Bean Room

@main_room, @small_room,

@bean_room, door1, door3_lock

Open_door1, Close_door1

Open_door3, Close_door3

Move_to_small_room

Move_to_bean_room

Main Room

@main_room

@small_room

door3_lock

@main_room

@bean_room

Figure 2: This is a possible tree decomposition for the toy prob-
lem of figure 1. The shared propositions appear on edges between
subgroups. For example, a proposition (‘@door3 lock’) is shared
by two subgroups (‘Main Room’ and ‘Small Room’) because
the proposition is used by actions of two subgroups (respectively
‘Open(Close) door3’ and ‘Turn shower on(off)’). The the-
ory is decomposed into small groups based on the geometric infor-
mation (eg. the configurations of the room).

these problems. A hierarchical planner takes in charge of
high level planning. A motion planner takes in charge of low
level planning. However, researchers (or engineers) need
to define actions of the robot in addition to axioms among
propositions for objects. Without the manual encodings, the
hierarchical planner may need to play with the large number
of propositions (O(exp(DOFrobot))=|discretized CSpace|)
, when DOFrobot is the DOF of the robot. With such naive
encoding, computational complexity of planning become
(O(exp(exp(DOFs)))).

Moreover, naive hierarchical planners often have diffi-
culty to find solutions for the following reason. Firstly, it
requires interactions between subgoals. For example, the
arm must go into the “Bean room” and turns the “light”
on (subgoal) before it goes into the “small room” and turns
the “shower” on (subgoal). This is essentially the ‘Susman
anomaly’ which means that the planner dose one thing (be-
ing in the Bean room) and then it has to retract it in order to
achieve other goal (turning the shower on). Thus, it may re-
quire several backtrackings in planning. Secondly, there are
two ways of (in principle) achieving “on(light)”: (1) going
through the small room; and (2) opening door to the Bean
room from the Arm-base room. Unless manual encoding
is given by an engineer, The latter way (going through the
small room) is fine from the perspective of hierarchical plan-
ning. However, it will not work in practice because the arm
is not long enough (kinematics). Formally, there is no down-
ward solution.

Thus, this toy problem shows that (1) hierarchical plan-
ning does not work with a naive (simple) encoding, and (2)
a complete encoding is too complex to encode manually. We
are interested in general principles that underlie a solution to
this problem.

In motion planning literature, hybrid planners are used to
address these issues (Alami, Siméon, and Laumond 1989;
Alami, Laumond, and Siméon 1997; Alami et al. 1998;

20

KBMotion

actions:

A

C

B
D

act1(A B)

act3(A C)

act2(B A)

act4(C A)

Figure 3: This figure illustrates a process to encode a motion plan
into ATM (Action Theory with Motion). The process is follows:
(1) a motion plan (a tree) is built by a motion planning algorithm;
(2) actions which changes the states of objects are found; (3) propo-
sitions are generated (and grouped) based on the found actions; and
(4) a ATM is created. Here, we assume that we have a function
which provides discrete states of objects given the configuration of
an object in finding actions (2). In this figure, the door1 in figure 1
and 2 is closed in a set of states (A). The door1 is moved little in
B. However, the door1 is not fully opened. Thus, configurations in
the area D is not connected. The area C corresponds to the pushed
light button on figure 1 and 2.

Conner et al. 2007; Plaku, Kavraki, and Vardi 2008). How-
ever, these are either hard to build due to manual encodings,
or infeasible to conduct complex tasks due to the curse of di-
mensionality of expanded CSpace. The size of CSpace of a
hybrid planner exponentially increases with additional mov-
able objects and given propositions. Thus, solving a com-
plex problem may require extensive searches.

Here, we seamlessly combine the general purpose plan-
ning and the motion planning. Our planner finds all re-
searchable locations and possible actions that change states
of object, states of propositions, or the reachable set of ob-
jects.2 Thus, high-level planner can start to plan based on
actions extracted by a motion planner.3

However, the number of actions and states can be still
intractable. To solve this problem, we partition the do-
main into the smaller groups of actions and states. For
example, the domain can be partitioned as shown in fig-
ure 2. It is composed of three parts: (1) operating the
shower switch; (2) operating the light switch; and (3) oper-
ating in between. The partition can be automatically done
with approximate tight bound (Becker and Geiger 1996;
Amir 2001).

A factored planner (Amir and Engelhardt 2003) effi-
ciently finds a plan with the partitioned domain. The par-
titioned groups are connected as a tree shape. In each par-
titioned domain, our factored planner finds all the possible
effects of the set of actions in each factored domain. Then,
the planner passes the planned results into the parent of the
partition in the tree. In the root node, all the valid actions
and effects are gathered. The planner finds a plan for the
task, if it exists.

Then, we use a local planner to find a concrete path in
CSpace at the final step. However, there is no manual (ex-
plicit) encoding (eg. ‘turning the switch A’) between two
layers, except logical constraints and mapping functions
provided as input.

2Here, we assume that we know states of objects without un-
certainty as in (Conner et al. 2007).

3Our planner may have more actions and states than the hand-
encoded case.

act1(A B)

act3(A C)
act2(B A)

act4(C A)

KBMotion

actions:

KBobject

conditional actions:

act5(A light C light)
act6(A light C light)

act7(D light C light)
act8(D light C light)

axioms:

light shower

=,

CPMP

actions:

axioms:

light shower

act1(A B)

act3(A C)
act2(B A)

act4(C A)

act5(A light C light)
act6(A light C light)

Figure 4: This shows an operation (or algorithm) to combine the
extracted ATM with pre-existing BAT . BAT is independently
given in a general form to a robot. Thus, ATM can be reusable
for robots with different configurations space. Meanwhile, BAT
is specific to a robot. Thus, some actions (e.g. act7 and act8) in
BAT are invalidated, thus excluded in BAT .

Problem Formulation
Preliminaries
Situation Calculus The Situation Calculus is an action
formalism which describes the precondition and the effect of
each action with First-Order predicate logic formulae. We
describe desirable constraints, if it is represented by First-
Order formulae.

The Situation Calculus (McCarthy and Hayes 1987; Re-
iter 2001) is a sorted first order language for representing
domains by means of actions, situations, and fluents. Ac-
tions and situations are first order terms, and situation-terms
stand for history of actions, compound with a function sym-
bol do: do(a, s) return the situation obtained by executing
the action a in a situation s, which is a sequence of actions.

The dynamic domain is described by a Basic Action The-
ory BAT = (Σ, DS0 , Dss, Duna, Dap). Σ includes a set of
foundational axioms for situations. DS0 is a set of first-order
sentences that are valid in S0. Dssa is a set of successor state
axioms for functional and relational fluents. Duna is the set
of unique names axioms for actions. Dap is a set of action
precondition axioms. Please, refer the (Reiter 2001) for de-
tail.

Configuration Space Given a robot and objects, a config-
uration describes the pose of the robot (r) and objects (O).
Configuration space, CSpace is the set of all possible con-
figurations.

The set of configurations that has no collision with ob-
stacles is called the free space Cfree. The complement of
Cfree in C is called the obstacle region.

Here, we use a sampling-based motion planner (e.g. PRM
(Kavraki et al. 1996) or RRT (Kuffner and LaValle 2000))
which extracts a connectivity graph among sampled config-
urations.

Combining Planning and Motion Planning
Inputs of problem is described as follows.

• CSpace: The configuration space of the robot and ob-
jects.

• BAT : The Basic Action Theory regarding to actions of
the robot over objects.

21

• Cinit: The initial configuration of the robot and objects.
• Goal: A first-order formula describing the goal condition.
• Shared Fluents: Predicates and functions shared by the

Situation Calculus and the CSpace.
Here, if CSpace has n-dimensions, CSpace is C1 × C2

× . . . × Cn. We can represent CSpace as CShared ×
CMotion. CShared is the cross product of dimensions which
become inputs to BAT of Situation Calculus. CMotion is the
cross product of dimensions which are used only in motion
planning. Thus, some dimensions become an input to BAT
of the Situation Calculus. For theses dimensions, we write
Fluents as follows.

P (c) ≡ P ′(s)(c ∈ CShared)
f(c) = f ′(s)(c ∈ CShared)

P and P ′ are predicates. f and f ′ are functions. P and
f include dimensions of CSpace, although P ′ and f ′ re-
place the dimensions with a situation s. c is a configuration.
Thus, such predicates and functions relate configurations in
CSpace with situations in Situation Calculus.

Definition Dmap: is defined with following axioms. With
a configuration c and a situation s, we build a predicate as
follows

Pconsistent(c, s) ≡
(∧

i

Pi(c) = P ′i (s)

)

When i is the index for each predicate. In addition, we call
the set of axioms with two Fluents as Dmap.

Thus, our goal is to find a path which achieves the goal
conditions while satisfying the action theory and avoiding
collision in CSpace.

Combining Planning and Motion Planning
(CPMP)

Action Theory with Motion (ATM)
Definition Dmotion: We build a new theory based on the
graph extracted from a motion planning algorithm. A
resolution-complete motion planner builds a connectivity
graph in CSpace. Based on the graph (V,E), we build two
Predicates as follows.

Pfree(c) ≡ > if c ∈ V

Pfree(c) ≡ ⊥ otherwise

Pmove(c, c′) ≡ > if (c, c′) ∈ E

Pmove(c, c′) ≡ ⊥ otherwise

Pstable(c, c′) ↔
(∀s(Pconsistent(c, s) ↔ Pconsistent(c′, s))

∧ (Pmove(c, c′) ∨ ∃c′′(Pstable(c, c′′) ∧ Pstable(c′′, c′))))

A hand

Light button

<p R3, light_off> <p’ R3, light_off> <p R3, light_on>

Light

Figure 5: This example shows a situation in which one position
in the workspace can correspond to two different states in the com-
bined space (CPMP). Although the physical locations of the arm
and button are same in the workspace, an internal state (eg. light
is on) is different. The situation can be represented when CSpace
and state space in KB are combined (CPMP), even though it is not
possible to represent in the classical CSpace alone.

∀c (Pstable(Cinit, c) → Prealize(c, S0))
Cinit is the initial configuration. S0 is the initial situation in
the BAT.

We call these sets of predicates as Dmotion.
Definition D∗

ap: We change the set of precondition axioms
in Dap. Suppose that we have a following precondition ax-
iom for an action act in a situation s.

Poss(act, s) ≡ ϕposs

We change it into following
Possmotion(act, s) ≡ ϕposs

∧ ∃c, c′(Prealize(c, s) ∧ Pconsistent(c′, do(act, s))

∧ Pmove(c, c′) ∧ Pfree(c) ∧ Pfree(c′))
We call the set of modified precondition axioms as D∗

ap.
Definition D∗

eff: We add the set of effect axioms in Deff.
Suppose that we have a following effect axiom for an action
act in a situation s.

Poss(act, s) → ϕeff

We change it into following axiom.
Possmotion(act, s) → ϕeff

∧ (∀c, c′, c′′(Prealize(c, s) ∧ Pconsistent(c′, do(act, s)))

→ (Prealize(c′, do(act, s))

∧ (Pstable(c′, c′′) → Prealize(c′′, do(act, s)))))
We call the set of added effect axioms as D∗

eff.
We define the unified actions theory, (Combining Plan-

ning and Motion Planning)
CPMP = (Σ, DS0, Dss, Duna, Dmotion, Dmap, D

∗
ap, D

∗
eff)

Lemma 1. The complexity of planning problem in the
CPMP is as hard as P-SPACE.

Proof. Any motion planning problem (P-SPACE hard) with
movable objects can be reduced to a planning problem in
CPMP . Suppose that CPMP includes only external
propositions which are extracted from the motion planning
algorithm.

22

Building Actions
We register an action (an edge between two points extracted
from a motion planner) into CPMP in when two points have
different states in CPMP with regard to mapping function
as shown in figure 3. We validate abstract PDDL actions
which are realized by the action. Thus, we build a hyper-
graph whose nodes are sets of modes (CSpace) which have
the same state in terms of mapping functions and reachable
objects. Our algorithm extensively searches actions with a
resolution complete motion planner (i.e. PRM) until no new
action is found in the hypergraph given a specified resolu-
tion.

Lemma 2. The size of the discretized CSpace for a robot
manipulating n objects with given propositions in CPMP is
bounded by O(exp(|objects| + n + p)), when |objects| is
the number of objects, n is the DOF (Degree of Freedom) of
the robot, and p is the number of propositions.

Lemma 3. The number of possible actions (edges) in
the discretized CSpace for objects is only bounded by
O((|objects|) · exp(|objects|)), when the robot moves one
object with an action.

Proof. From a point in CSpace of object O(exp(|objects|)),
we can choose an object O(|objects|) to change states.

Finding a Solution in CPMP
We provide a naive algorithm that solves a task in CPMP.
Then, we provide two improvements: (1) that solves the
problem in the (smaller) factored KBs; and (2) that reduces
the number of propositions in CPMP using workspace.

A Naive Solution
Given a task of CPMP, NaiveSolution finds a solution. It
may use a general purpose planner (GeneralP lanner) to
find an abstract solution. Then, (LocalMotionP lan) en-
codes a path in CSpace.

Algorithm:NaiveSolution
Input: r(a robot), BAT (Basic Action Theory), sstart(initial

state), and sgoal(goal condition)
Output: pathconcrete(Solution)
ATM ← FindActionFromMP(r)
CPMP = Γ(ATM, BAT)
pathabstract ← GeneralPlanner(CPMP , sstart, sgoal)
pathconcrete ← LocalMotionPlan(pathabstract)

Algorithm 1: NaiveSolution provides a path for a robot. It
uses a general planner (GeneralP lanner) to find an abstract
solution. Then, it is encoded into the path in the CSpace by a
motion plan (LocalMotionP lan).

Tree Decomposition of KB with Objects
Given a KB, finding a tree-decomposition of the minimum
treewidth is a NP-hard problem. However, the complex-
ity is only bounded by the treewidth of CPMP, if a tree-
decomposition is found by an efficient heuristic (Becker and
Geiger 1996; Amir 2001).

C-Space

EF-Space

p1

p2

p3

P’

f()

Figure 6: This figure shows a mapping function (f()) from a
CSpace to an EF-Space. p1, p2, and p3 in CSpace are mapped
into p′ in EF-Space. The connected lines ((p1, p2) and (p2, p3))
represent the first condition of Theorem 3. The circles represent
the second condition.

Theorem 4. The complexity of planning in CPMP
is bounded by O(exp(tw(CPMP))) if the tree-
decomposition is given.4

Proof. Proofs in (Brafman and Domshlak 2006; Amir 2001)
can be easily modified to prove this theorem.

From Exponential CSpace to Polynomial EF-Space
In this section, we provide a generalized method which
project CSpace into much smaller workspace. It is an ex-
tension of our previous work (Choi and Amir 2007). it ef-
ficiently finds a solution when the projection method is ap-
plicable. Here, we want to transform CSpace into a smaller
space, EF-Space, using a mapping function f(). The func-
tion (f()) maps each point (p) in CSpace into a point (p′) in
EF-Space with satisfying following conditions.

1. When P is a set of points whose image are p′ in EF-Space
(f(p) = p′), any pair of two elements (p1, p2 ∈ P) is
connected each other in CSpace;

2. When two points (p and q) are mapped into two points (p′
and q′) in EF-Space. p and q are connected neighbor if
and only if p′ and q′ are connected neighbor.

Two points are connected neighbor means when they are di-
rectly connected in the space.
Theorem 5. The complexity of motion planning in EF-
Space is bounded by following

O(EF-Space) ·O(maxep∈EF-Space(ball(Pep))).

Pep is a set of points whose image is ep. (That is, Pep =
{p|f(p) = ep}) The ball(P) is volume of the ball which
includes P.

Proof. Given a motion planning problem (an initial config-
uration and goal one), a path in EF-Space can be found in
O(EF-Space) with a graph search algorithm. Given the path
in EF-Space, one needs to search the whole ball in worst
case.

One simple example of EF-Space is the workspace of end-
effector. Suppose that the points in CSpace are mapped into

4tw(KB) is the treewidth of KB.

23

the points of end-effector in workspace. One can build an al-
gorithm that finds all the neighboring points from the inner-
most joint (or wheel) to the outermost joint with a dynamic
programming. If points of the previous joint are connected
to all neighboring points, the neighboring points of the cur-
rent joint are found by a movement of current joint (current
step) or a movement of any previous joint (previous steps).
The found connected points in workspace satisfy the second
conditions, if the first condition holds in the workspace.

In worst case, the first condition is hard to satisfy. In the
environment, the mapping function (f) should be bijective.
Thus, the EF-Space is nothing but the CSpace. However, the
first condition holds in many applications where the distance
between obstacles (or objects) and the robot is far enough.
That is the theoretical reason why the planning problem in
the sparse environment is easy even in CSpace.

Moreover, one can find another EF-Space considering
topological shape of robot (Choi and Amir 2007). In the
space, two points (p1 and p2) are mapped into the same point
p′1 if two configurations (p1 and p2) are homotopic, and they
indicate the same end point. Otherwise, another point p′2
is generated in the EF-Space. In 2D, an island obstacle di-
vides configurations into two groups for each side (left or
right). Thus, the EF-Space is exponentially proportional to
the number of island obstacles. However, EF-Space itself is
bounded by the workspace whose size is polynomial to the
number of joints. Thus, it is much smaller than the CSpace
and rather larger than the workspace.

A Unified Motion Plan
We present our algorithms in this section. The main algo-
rithm , UnifiedMotionPlanner (Algorithm 2), is composed
of three parts: FindActionFromMP (Algorithm 3); Factored-
Plan (Algorithm 4); and LocalPlanner. The goal of Unified-
MotionPlanner is to find a solution to achieve a goal situa-
tion.

Algorithm:UnifiedMotionPlanner
Input: r(a robot), BAT (Basic Action Theory), sstart(initial

state), sgoal(goal condition)
Output: pathconcrete(Solution)
ATM ← FindActionFromMP(r)
CPMP = Γ(ATM, BAT)
KBTree ← PartitionKBtoTree(CPMP)
pathabstract ← FactoredPlan(KBTree, sstart, sgoal)
pathconcrete ← LocalPlan(pathabstract)
return pathconcrete

Algorithm 2: UnifiedMotionPlaner finds all the reach-
able locations and actions in each location with FindAc-
tionFromMP. A motion planner is embedded in FindAction-
FromMP to extract abstracted actions in CSpace. Then, Parti-
tionKBtoTree partitions the CPMP into a tree. FactoredPlan
finds a solution given the pair of initial and goal condition in
the partitioned tree domain. The LocalPlan finds a concrete
path for the robot.

FindActoinFromMP
FindActionFromMP searches all the reachable locations and
actions in CSpace or EF-Space. In both cases, it has a dra-

Algorithm:FindActionFromMP
Input: r(a robot)
Output: ATM (extracted actions)
MPTree ← a random tree in CSpace built by a motion
planner (e.g. Probabilistic Roadmap, Factored-Guided Motion
Planning)
for each edge (eij) ∈MPTree do

if state(pi) 6= state(pj) then
KBM ←KBM

⋃
D∗

ap (as in section
KBM ←KBM

⋃
D∗

eff (as in section

return KBM

Algorithm 3: . FindActionFromMP finds all abstract ac-
tions for a robot. A motion planner (eg. FactorGuidedPlan
or RoadmapMethod) recursively finds all the reachable loca-
tions and actions. Then, the algorithm insert actions of each
configuration (cij) of objects in the workspace. It assume that
the object is in the configuration (cij). Thus, the condition
(configuration of objects) is combined into the actions (actij).
The union of all actions becomes the KBM .

matically reduced space.

FactoredPlan
FactoredPlan finds a solution after factoring the domain (the
space of end-effector in workspace) into small domains. It
decomposes the domain into a tree in which each partitioned
group becomes nodes, and shared axioms appear on a link
between nodes. Then, it finds partial plans for a node and
its children nodes with assuming that the parents nodes may
change any shared states in between. After all, it finds a
global solution in the root node.

Algorithm:FactoredPlan
Input: KBTree (partitioned KB as a tree), sstart (initial

states), sgoal (goal condition)
Output: pathabstract (An abstract plan)
depth← (predefined) number of interaction between domains.
for each node(KBpart) in KBTree from leaves to a root do

Actab ← PartPlan(KBpart, depth) .
SendMessage(Actab, the parent node of KBpart)

pathab ← a solution from sinit to sgoal in the root node of
KBtree

return pathab

Algorithm 4: FactoredPlanning algorithm automatically
partitions the domain to solve the planning problem (from sinit

to sgoal). It iterates domains from leaves to the root node with-
out backtracks. In each node, PartPlan finds all possible ac-
tions that change shared states in the parents node. PartPlan
assumes that the parent node may change any states in the
shared states in between. The planned actions in the subdo-
main become an abstract action in the parent node. They are
sent by SendMessage.

Related Works
Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.

24

manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

(Alami et al. 1998) presents a well-integrated robot archi-
tecture which controls multiple robots. It uses logical repre-
sentations in higher level planners and CSpace based motion
planners in lower-level planning. However, the combination
of two planners is rather naive (manual).

Recently, (Conner et al. 2007) provides an improved way
to combine the Linear Temporal Logic (LTL) to control con-
tinuously moving cars in the simulated environment.5 How-
ever, their model is a nondeterministic automata, while our
model is deterministic. Due to the intractability of nondeter-
ministic model, their representation is restricted to a subset
of LTL to achieve a tractable (polynomial time) algorithm.
Experiments are focused on controlling cars instead of ma-
nipulating objects.

Motion planning research has a long-term goal of build-
ing a motion planning algorithm that finds plans for com-
plex tasks (eg. manipulating objects). (Stilman and Kuffner
2005) suggests such a planning algorithm based on a heuris-
tic planner (Chen and Hwang 1991) which efficiently relo-
cates obstacles to reach a goal location. Recently, it was
extended to embed constraints over objects into the CSpace
(Stilman 2007). In fact, the probabilistic roadmap method
(Kavraki et al. 1996) of the algorithm is highly effective in
manipulating objects. However, we argue that our algorithm
(factored planning) is more appropriate in terms of gener-
ality and efficiency than a search-based (with backtracks)
heuristic planner.

Other works also make efforts in this direction to build
a motion planning algorithm for complex tasks. (Plaku,
Kavraki, and Vardi 2008) solves a motion planning problem
focused on safety with logical constraints represented with
LTL . (M. Pardowitz 2007) focuses on learning actions for
manipulating objects based on the explanation based learn-
ing (Dejong and Mooney 1986). They use a classical hier-
archical planner in planning. (J. Van den Berg 2007) pro-
vides an idea that extracts the propositional symbols from a
motion planner. The symbols are used to check the satisfi-
ability of the planning problems. (S. Hart 2007) uses a po-
tential field method to achieve complex tasks with two arms.
However, the main interests of these works are not planning
algorithm, or are limited to the rather simpler tasks.

An Experiment in Simulation
We build our algorithm for a task that pushes buttons to call
numbers. There are 8 buttons in total. 4 buttons (key1(P1),
key2(P2), unlock(P3), and lock(P4)) are used to lock (and
unlock) the buttons. Other 4 buttons (#A(P5), #B(P6),
#C(P7) and Call(P8)) are used to make phone calls. Ini-
tially, the button is locked, the robot needs to push unlock
buttons after pushing both key buttons (P1 and P2). Then,
the robot can make a phone call with pushing the Call
button (P8) after selecting an appropriate number among
#A(P5), #B(P6), and #C(P7). After a call, the buttons

5Any First Order Logic (FOL) sentences can be reduced to Lin-
ear Temporal Logic (LTL). Thus, LPL is a superset of FOL.

Figure 7: This is a capture of the motion of push button in the
wall in experiments. The robot has 5 DOFs (rotational joints on
the base and 4 revolute joints on the arm). We do experiment with
increasing the number of joints from 2 to 9.

are automatically unlocked. We encode such constraints and
action in a PDDL.6

We build a tree from a randomized algorithm with 80000
points in CSpace. With a labeling function that returned the
states of buttons, we found 33 edges in the tree7. They are
encoded into 8 actions for 8 buttons. Then, the combined KB
(CPMP) is used to find a goal (calling all numbers (#A,
#B, and #C). The returned abstract actions are decoded
into a path on the tree of motion plan. Figure 7 is a snapshot
of the simulation.8

In this experiment, we focus on extracting actions from a
motion planning algorithm, because the factored planer it-
self is not a contribution of this paper. Theoretical and ex-
perimental benefits of FactoredPlan is shown in the previous
papers (Amir and Engelhardt 2003; Brafman and Domshlak
2006). We run our simulation on a general purposed planner
(Fourman 2007). Thus, the NaiveSolution algorithm is used
in this simulation.

Conclusions and Future Research
We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is de-
signed to manipulate objects with robot. To solve the prob-
lem, previous works used a hierarchical planner (high-level)
and a motion planner (low-level). Most of them used man-
ual encodings between two layers. That was one of technical
hardness of this problem.

Theoretically, combining such planners is hard for the
following reasons: (1) hierarchical planner is hard and not
feasible sometime; and (2) direct combination of CSpace
and state space gives an doubly exponential search problem.

6Situation Calculus encoding is not impleted yet
7We simplify the manipulations for attaching and detaching

buttons
8The details of encoded actions and movies are available at

http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.

25

Moreover, we can loss the geometric motion planning in-
formation, if we translate everything to PDDL (McDermott
1998) without a motion planner.

We combine the CSpace and state space in a KB, CPMP
(Combining Planning and Motion Planning). Moreover, we
provide the computational complexity of the problem. We
also argue that the treewidth of CPMP determines the hard-
ness of a manipulation task.

However, the suggested algorithm still has some lim-
itations that need to be improved in future research.
The exploration steps in FindActionFromMP may take
long time due to the large cardinality of state space
(O(n + |objects| + p) as in lemma 2. Assumptions of
EF-space would inappropriate for cluttered environments
where O(maxep∈EF-Space(ball(Pep)) of theorem 5 are in-
tractable.

Acknowledgment
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 05-46663. We also thank
UIUC/NCSA Adaptive Environmental Sensing and Information
Systems (AESIS) initiative for funding part of the work.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research 17(4):315–337.
Alami, R.; Laumond, J.-P.; and Siméon, T. 1997. Two manipula-
tion planning algorithms. In Laumond, J.-P., and Overmars, M.,
eds., Algorithms for Robotic Motion and Manipulation. Welles-
ley, MA: A.K. Peters.
Alami, R.; Siméon, T.; and Laumond, J.-P. 1989. A geometrical
approach to planning manipulation tasks. In Proceedings Inter-
national Symposium on Robotics Research, 113–119.
Amir, E., and Engelhardt, B. 2003. Factored planning. In IJCAI,
929–935.
Amir, E. 2001. Efficient approximation for triangulation of min-
imum treewidth. In UAI, 7–15.
Becker, A., and Geiger, D. 1996. A sufficiently fast algorithm for
finding close to optimal junction trees. In UAI, 81–89.
Brafman, R. I., and Domshlak, C. 2006. Factored planning: How,
when, and when not. In AAAI.
Brock, O., and Khatib, O. 2000. Real-time replanning in high-
dimensional configuration spaces using sets of homotopic paths.
In ICRA’00, 550–555.
Chen, P., and Hwang, Y. 1991. Motion planning for a robot and
a movable object amidst polygonal obstacles. In ICRA’91, 444–
449.
Choi, J., and Amir, E. 2007. Factor-guided motion planning for a
robot arm. In IROS’07.
Choi, J., and Amir, E. 2009. Combining planning and motion
planning. In ICRA’09, 238–244.
Conner, D. C.; Kress-Gazit, H.; Choset, H.; Rizzi, A.; and Pappas,
G. J. 2007. Valet parking without a valet. In IROS’07.
Cortés, J. 2003. Motion Planning Algorithms for General Closed-
Chain Mechanisms. Ph.D. Dissertation, Institut National Poly-
technique de Toulouse, Toulouse, France.

Dacre-Wright, B.; Laumond, J.-P.; and Alami, R. 1992. Mo-
tion planning for a robot and a movable object amidst polygonal
obstacles. In ICRA’92, volume 3, 2474–2480.
Dejong, G., and Mooney, R. 1986. Explanation-based learning:
An alternative view. Mach. Learn. 1(2):145–176.
Fourman, M. 2007. Propplan. Software.
J. Van den Berg, M. O. 2007. Kinodynamic motion planning on
roadmaps in dynamic environments. In IROS’07.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high dimen-
sional configuration spaces. IEEE Trans. on Rob. and Auto.
12(4):566–580.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An effi-
cient approach to single-query path planning. In ICRA’00.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Anytime
A* search with provable bounds on sub-optimality. In NIPS’03.
M. Pardowitz, R. Zollner, R. D. 2007. Incremental acquisition
of task knowledge applying heuristic relevance estimation. In
IROS’07.
McCarthy, J., and Hayes, P. J. 1987. Some philosophical problems
from the standpoint of artificial intelligence. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
McDermott, D. 1998. The planning domain definition language
manual.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2008. Hybrid systems:
From verification to falsification by combining motion planning
and discrete search. Formal Methods in System Design.
Reiter, R. 2001. Knowledge in action : logical foundations
for specifying and implementing dynamical systems. Cambridge,
Mass.: MIT Press. The frame problem and the situation calculus.
S. Hart, R. G. 2007. Natural task decomposition with intrinsic
potential fields. In IROS’07.
Stilman, M., and Kuffner, J. 2005. Navigation among movable
obstacles: Real-time reasoning in complex environments. Inter-
national Journal of Humanoid Robotics 2(4):479–504.
Stilman, M. 2007. Task constrained motion planning in robot
joint space. In IROS’07.

26

Tractable First-Order Golog with Disjunctive Knowledge Bases

Jens Claßen and Gerhard Lakemeyer
Department of Computer Science

RWTH Aachen University
Germany

〈classen|gerhard〉@cs.rwth-aachen.de

Abstract

While based on the Situation Calculus, current implemen-
tations of the agent control language Golog typically avoid
offering full first-order capabilities, but rather resort to the
closed-world assumption for the sake of efficiency. On the
other hand, realistic applications need to deal with incomplete
world knowledge including disjunctive information. Re-
cently Liu, Lakemeyer and Levesque proposed the logic of
limited belief SL, which lends itself to efficient reasoning
in incomplete first-order knowledge bases. In particular, SL
defines levels of belief which limit reasoning by cases in a
principled way. In this paper, we propose to apply SL-based
reasoning in the context of a Golog system. Central to our ap-
proach is a new search operator that finds plans only within
a fixed belief level k, and an iterative-deepening-style vari-
ant where instead of considering plans with increasing length,
the belief level k is incremented in each cycle. Thus, not the
shortest plans are preferred, but those which are the compu-
tationally cheapest to discover.

Introduction
The agent language Golog (Levesque et al. 1997) has al-
ready been applied in many application scenarios, including
the control of autonomous mobile robots (Ferrein and Lake-
meyer 2008). The language is based on the Situation Calcu-
lus (McCarthy and Hayes 1969; Reiter 2001), which in the
theoretical formalization is a dialect of first-order predicate
calculus. However, current implementations of Golog typi-
cally avoid to offer full first-order capabilities, but rather re-
sort to the closed-world and/or domain closure assumptions
for the sake of efficiency of reasoning. On the other hand,
in realistic applications such as mobile robotics, almost in-
evitably one has to cope with incomplete world knowledge,
in particular in the form of disjunctive information. Further-
more, as the task of an autonomous robot is usually open-
ended, not all individuals (persons or objects) it has or will
have to deal with are known in advance.
SL, the subjective logic of limited belief proposed by

Liu, Lakemeyer and Levesque (2004) is a formalism for
efficient reasoning with incomplete first-order knowledge
bases. They define a family of believe operators B0, B1,
B2,. . . where intuitively B0 corresponds to the agent’s ex-
plicit belief and implicit beliefs become only available at
higher belief levels, where the greater k, the computationally

more expensive, roughly measured in terms of the number
of nested case distinctions. When k is fixed, then whether
B0KB implies Bkφ is decidable, and when the KB is in a
certain form, reasoning is also tractable. Furthermore, the
inference is classically sound in the sense that when B0KB
implies Bkφ in SL, then KB entails φ in classical predicate
logic.

For the above mentioned reasons, we believe that it is ben-
eficial to apply SL-based reasoning in the context of a Golog
system. Apart from the fact that reasoning within a fixed
level k can be done efficiently, belief levels offer the pos-
sibility to define a new planning operator that prefers plans
with least computational costs. To illustrate the idea, con-
sider a Golog program of the following form:

ψ?; a | ϕ?; b; c

There is a nondeterministic choice (|) between two branches:
if formula ψ holds, action a can be executed, or when for-
mula ϕ holds, action sequence b; c could be performed.
Planning here means to resolve the nondeterminism and thus
commit to one or the other branch. A classical Golog sys-
tem will typically test the branches in the presented order,
meaning it first checks whether the action sequence 〈a〉 con-
stitutes a legal execution, which involves checking if ψ is
known to hold according to the system’s knowledge base.
Formula ϕ and sequence 〈b, c〉 will only be tested once
Golog found out that it is not possible to execute the left
branch successfully. Alternatively, the system might apply
some iterative deepening strategy, which always yields the
shortest action sequences. Still, when the left branch in the
above example is executable, the system would prefer it over
the right one. In any case, no attention is paid to the compu-
tational effort involved.

Now assume that ϕ can instantly be inferred from the
agent’s knowledge base (say if it is a fact that is explic-
itly known to be true), but ψ is quite complicated and re-
quires extensive reasoning. In particular when the decision
has to be made quickly (e.g. think of robot soccer) or when
the additional reasoning time outweighs the time saved by
performing fewer actions, it may pay off to prefer possibly
longer plans that however involve less reasoning.

As our running example, consider a mobile robot work-
ing in an office environment. There is one employee, Carol,
who wants to have a look at a certain book. The department

27

possesses two copies, where one (book1) is usually located
in the library (lib) and the other one (book2) in the lab (lab).
She gives the robot the following orders: “If book1 is in the
library, bring it to me or if book2 is in the lab, bring it after
unlocking the lab door.” This might be expressed as follows
in a Golog program:

At(book1 , lib)?; get(book1 , lib) |
At(book2 , lab)?; unlock(lab); get(book2 , lab)

Now assume that the robot explicitly knows from a recent
observation that book2 actually is in the lab. On the other
hand, it only knows that it saw book1 yesterday in the of-
fice shared by Ann and Bob, meaning one of them borrowed
it. The robot also knows that whoever borrows a book will
return it to the library in the evening on the same day. As
working hours have just begun, all books that were bor-
rowed yesterday will now be in the library. Obviously, this
knowledge is sufficient to deduce that book1 is in the library,
but whereas retrieving the explicit fact At(book2 , lab) from
the knowledge base basically requires no reasoning at all,
deriving At(book1 , lib) involves one case distinction: Ei-
ther Ann or Bob borrowed the book, but in any case, it has
been returned. Therefore intuitively, At(book2 , lab) is al-
ready available at belief level zero, but At(book1 , lib) only
at greater levels.

In this paper we propose to apply the idea of iterative
deepening on belief levels instead of on action sequence
lengths. It will first be tested whether any of the program’s
possible execution traces can be verified to succeed by rea-
soning at level zero. Only if this is not the case, the level
will be increased to one etc. Thus, the first successful exe-
cution trace to be found will also be the one that needs the
least computational effort, which allows to obtain solutions
much quicker in many cases.

The remainder of the paper is organized as follows. In
the next section, we give the formal syntax and semantics of
the logic on which our approach is based. Next, we present
some results that relate the formalism to existing languages.
The following section contains the main contribution of this
paper in form of the new planning operator we propose. Fi-
nally, we sketch possible directions for future work.

Definitions
In this section, we introduce our new logic SLA formally.
The language is basically an extension of Liu, Lakemeyer
and Levesque’s (2004) logic of limited belief SL by aspects
of the modal Situation Calculus variant ES (Lakemeyer and
Levesque 2004) for modelling action and change.

Syntax
Terms The terms of the language come in two sorts: ob-
ject and action. A term of sort object is either an object vari-
able (x1, x2, . . .) or an object constant (d1, d2, . . ., e.g. lab).
An action term is either an action variable (a1, a2, . . .) or of
the form g(t1, . . . , tn), where g is an action function of arity
n (e.g. unlock) and the ti are object terms.

Formulas The objective formulas form the least set where

1. any atom of the form F (t1, . . . , tn) is an objective for-
mula, where F is a fluent predicate symbol of arity n
(e.g. At) and the ti are object terms;

2. when t1 and t2 are terms of sort object, then (t1 = t2) is
an objective formula;

3. when t is a non-variable term of sort action, x an object
variable, and φ, φ′ are objective formulas, then so are [t]φ,
Poss(t), ∃xφ, ¬φ, and φ ∨ φ′.

We read [t]φ as “φ holds after doing action t” and Poss(t)
as “action t is possible to execute”. We further call an ob-
jective formula static when it does not contain any action
terms. Note that we disallow equalities and quantification
over actions. The subjective formulas form the least set with

1. if φ is an objective formula and k ≥ 0, then Bkφ is a
subjective formula and called a believe atom at level k;

2. if t1 and t2 are terms of sort object, then (t1 = t2) is a
subjective formula;

3. if ϕ1 and ϕ2 are subjective formulas and x is a variable
of sort object, then ¬ϕ1, (ϕ1 ∨ ϕ2) and ∃xϕ1 are also
subjective formulas.

The language SLA is the set of all subjective formulas as de-
fined above. Therefore, very much similar to SL, all (fluent)
predicates other than equality must occur within the scope of
a Bk operator, which must not be nested. Here, we further
require that also [t] and Poss(t) operators do not appear out-
side of Bk. The fact that we only study formulas talking
about the agent’s beliefs about the world state is why the
language is called subjective logic, or in our case, subjective
logic of actions. (ϕ1 ∧ϕ2), ∀xϕ, (ϕ1 ⊃ ϕ2) and (ϕ1 ≡ ϕ2)
are treated as the usual abbreviations.

Programs Programs are composed according to the fol-
lowing grammar:

δ ::= t | φ? | (δ1; δ2) | (δ1|δ2) | πx.δ | δ∗

Here, t is any (not necessarily ground) term of sort action,
φ can be any objective formula, and x an object variable. In
the presented order, the constructs mean a primitive action,
a test, sequence of programs, nondeterministic choice be-
tween programs, nondeterministic choice of argument, and
nondeterministic iteration.

Regression and Basic Action Theories
Before we define the logic’s formal semantics, we introduce
basic action theories and regression, following (Lakemeyer
and Levesque 2004). The language for basic action theo-
ries consists of the objective formulas defined above and ex-
tended by another modal operator �, where �α reads “α
holds after every sequence of actions.”, as well as equality
atoms (t1 = t2) among action terms, where at most one of
the ti is a variable. A formula without Poss(t) and [t], but
possibly containing such action equalities, is called quasi-
static.
Definition 1 (Basic Action Theory) Given a set of fluent
predicates F , a set of sentences Σ is called a basic action
theory over F iff it only mentions the fluents in F and is of
the form Σ = Σ0 ∪ Σd, where Σd = Σpre ∪ Σpost and

28

• Σ0 is a finite set of static sentences,
• Σpre is a singleton of the form �(Poss(a) ≡ π), where π

is quasi-static with a being the only free variable;
• Σpost is a finite set of successor state axioms of the form

�(([a]F (~x)) ≡ γF), one for each fluent F ∈ F , where
γF is a quasi-static formula whose free variables are
among ~x and a.

In our example, we might have an initial KB Σ0 containing
At(book2 , lab),
Borrowed(ann, book1) ∨ Borrowed(bob, book1),
∀x∀yBorrowed(x, y) ⊃ At(y, lib)

(1)

where Borrowed(x, y) means that person x borrowed y yes-
terday. The precondition axiom Σpre is given by:
�Poss(a) ≡ ∃x(a = unlock(x) ∨ a = lock(x)) ∨
∃x∃y((a = get(x, y) ∨ a = put(x, y)) ∧ ¬Locked(y))

That is locking or unlocking is always possible, but putting
or getting something only when the according location is not
locked. The successor state axioms in Σpost are
�[a]At(x, y) ≡ a = put(x, y) ∨ At(x, y) ∧ a 6= get(x, y)
�[a]Locked(x)≡a= lock(x)∨Locked(x)∧a 6=unlock(x)

Whereas Lakemeyer and Levesque (2004) provide a com-
plete model-theoretic semantics for � and [·] within their
logics ES, we here adapt a view similar to (Liu, Lakemeyer,
and Levesque 2004), i.e. we are interested in the implicit
conclusions an agent can draw, given certain explicit beliefs,
and the computational costs for doing so. In our encoding,
the precondition and successor state axioms of basic action
theories are part of the agent’s explicit belief, and conclu-
sions about future situations are drawn using regression.

Regression is a method for computing projections by syn-
tactically transforming a formula talking about future situ-
ations (after performing certain actions) into an equivalent
formula that only talks about the current situation. We use
an adaptation of Lakemeyer and Levesque’s ES variant of
Reiter’s (2001) regression operator as follows:
Definition 2 (Regression) Formally, for any objective for-
mula α, letR[Σd, α], the regression of α wrt Σd, be the for-
mulaR[Σd, 〈 〉, α], where for any sequence of action terms σ
(not necessarily ground), R[Σd, σ, α] is defined inductively
on α by:

1. R[Σd, σ, (t1 = t2)] = (t1 = t2),
where the ti are object terms;

2. R[Σd, σ, (g1(~t1) = g2(~t2))] = ⊥,
where g1 and g2 are distinct action symbols;

3. R[Σd, σ, (g(~t1) = g(~t2))] = (~t1 = ~t2);
4. R[Σd, σ,¬α] = ¬R[Σd, σ, α];
5. R[Σd, σ, (α ∨ β)] = (R[Σd, σ, α] ∨R[Σd, σ, β]);
6. R[Σd, σ,∃xα] = ∃xR[Σd, σ, α];
7. R[Σd, σ, [t]α] = R[Σd, σ · t, α];
8. R[Σd, σ,Poss(t)] = R[Σd, σ, πat];
9. R[Σd, σ, F (~t)] is defined inductively on σ by:

(a) R[Σd, 〈 〉, F (~t)] = F (~t);
(b) R[Σd, σ · t, F (~t)] = R[Σd, σ, (γF)at

~x
~t
].

Lemma 3 For any α,R[Σd, α] is static.

Semantics
For defining the logic’s semantics, we need the following
definitions from (Liu, Lakemeyer, and Levesque 2004):

Definition 4 (Unit Propagation) A clause is a disjunction
of literals, where a literal is either a ground atom F (~t) or its
negation ¬F (~t). In a unit resolution step, we infer a clause c
from a unit clause {l} and some clause {l}∪c, where l refers
to the complement of literal l. Let s be a (possibly infinite)
set of ground clauses. A unit derivation of a clause c from
s is given by a sequence c1, . . . , cn, where cn is c and each
ci is either an element from s or derivable from previous
clauses by unit resolution. We then denote the closure of s
under unit resolution by UR(s), which is the set of clauses c
such that there is some unit derivation of c from s. Further,
US(s) is the set of ground clauses c such that c is subsumed
by some clause in UR(s).

Definition 5 (Belief Reduction)
1. (Bkc)↓= Bkc, where c is a clause;
2. (Bk(t = t′))↓= (t = t′);
3. (Bk¬(t = t′))↓= ¬(t = t′);
4. (Bk¬¬φ)↓= Bkφ;
5. (Bk(φ ∨ ψ)) ↓= (Bkφ ∨ Bkψ), where φ ∨ ψ is not a

clause;
6. (Bk¬(φ ∨ ψ))↓= (Bk¬φ ∧Bk¬ψ);
7. (Bk∃xφ)↓= ∃xBkφ;
8. (Bk¬∃xφ)↓= ∀xBk¬φ.

We can now define the semantics of formulas. A semantic
model is given by two things: a setup s, which is a (possibly
infinite) set of nonempty ground clauses, and represents the
agent’s explicit beliefs about the current world state. Fur-
thermore we need some Σd = Σpre ∪Σpost, which represents
the agent’s explicit beliefs about the world’s dynamics.

Definition 6 (Semantics of Formulas)
1. s |=Σd

(d1 = d2) iff d1 and d2 are identical object con-
stants;

2. s |=Σd
¬ϕ iff s 6|=Σd

ϕ;
3. s |=Σd

ϕ1 ∨ ϕ2 iff s |=Σd
ϕ1 or s |=Σd

ϕ2;
4. s |=Σd

∃xϕ iff s |=Σd
ϕxd for some object constant d;

5. s |=Σd
Bkφ iff one of the following holds:

(a) subsumption:
k = 0, φ is a clause c, and c ∈ US(s);

(b) reduction:
φ is static, but not a clause and s |=Σd

(Bkφ)↓;
(c) splitting:

k > 0, φ is static and there is some c ∈ s such that for
all ρ ∈ c, s ∪ {ρ} |=Σd

Bk−1φ;
(d) regression:

φ is not static, and s |=Σd
Bk(R[Σd, φ]).

The notation ϕxt denotes ϕ with all free occurrences of x
replaced by t. Apart from item 5d and the extra Σd ar-
gument, the semantical definition is identical to the one in
(Liu, Lakemeyer, and Levesque 2004). Item 5a says that

29

anything derivable from s by unit propagation is also avail-
able at belief level zero, since unit derivations are computa-
tionally cheap. According to item 5b, something is believed
at level k when a corresponding simpler formula is already
believed. Item 5c encodes that case distinctions make rea-
soning computationally expensive: φ is believed at level k
when for some clause we can make a case distinction over
all its literals and φ holds at level k − 1 in any case. Finally,
our addition of item 5d means that a formula involving ac-
tions is believed at level k iff its regression is. Because the
regression is a static formula, one of the other three cases
needs to be applied subsequently.

A sentence α is valid wrt Σd, written |=Σd
α, if for ev-

ery setup s, s |=Σd
α. If α does not contain any actions,

we often also leave out the Σd subscript. Typically, we are
interested in checking whether, given a set of explicit be-
lief Σ0, some φ holds at believe level k. We therefore in-
troduce the notation Σ0 ∪ Σd |=k φ as an abbreviation for
|=Σd

B0Σ0 ⊃ Bkφ, again possibly leaving out Σd when no
actions are involved.

Properties
When restricted to static formulas, SLA is identical to SL:
Theorem 7 Let φ be static. Then

B0Σ0 |=Σd
Bkφ iff |=SL B0Σ0 ⊃ Bkφ.

Furthermore, we have the following soundness result in
terms of entailment of ES formulas:
Theorem 8 If Σ0 ∪ Σd |=k φ, then Σ0 ∪ Σd |=ES φ.
This result also establishes the connection to the classical
Situation Calculus, of which ES may be considered a modal
dialect. For the details of the two formalisms’ relation,
we refer the interested reader to (Lakemeyer and Levesque
2005).

We can now reuse results related to these two logics,
in particular concerning efficient reasoning with proper+
knowledge bases as defined in (Liu and Levesque 2005):
Definition 9 (Proper+ KBs) A KB is proper+ if it is a non-
empty set of formulas of the form ∀(e ⊃ c), where e is an
ewff and c is a disjunction of literals whose arguments are
distinct variables. An ewff is a static, quantifier-free formula
without fluents and equalities among action terms.
It is easy to see that the example Σ0 (1) can be represented
in proper+ form. Reasoning with such KBs is tractable in
the following sense:
Theorem 10 ((Liu and Levesque 2005)) If Σ0 is proper+,
φ static, and Σ0 and φ use at most j different variables, then
whether Σ0 |=k φ can be decided in time O((lnj+1)k+1),
where l is the size of φ, and n the size of Σ0.
That is, reasoning is only exponential in the number of vari-
ables used and the belief level. When the φ in question is
not static, it first needs to be regressed. As the result again is
a static formula, the same reasoning procedure can be used.
It should however be noted that in the worst case, the length
l of the regression result may be in turn exponential in the
number of nested occurrences of [t], since in each regression
step, a fluent atom is replaced by an entire formula.

Programs
Our program semantics follows the one in (Claßen and
Lakemeyer 2008), which is an adaptation of the single
step semantics of (De Giacomo, Lespérance, and Levesque
2000). Given a setup s, some Σd, a believe level k, and a se-
quence z of already executed actions, a program δ is mapped
to a set of action sequences z′, which we call program ex-
ecution traces. The definition uses the notion of program
configurations (δ, z), where δ is a program (intuitively what
remains to be executed) and z a sequence of ground actions
(that have already been performed). A final configuration is
one where program execution may legally and successfully
terminate, and single step transitions t turn a configuration
(δ, z) into a new configuration (δ′, z · t).

Formally, the set of final configurations FΣd

s,k is the
smallest set such that for all δ, δ1, δ2, static φ and z:

1. (φ?, z) ∈ FΣd

s,k if s |=Σd
Bk([z]φ);

2. (δ1; δ2, z) ∈ FΣd

s,k if (δ1, z) ∈ FΣd

s,k and (δ2, z) ∈ FΣd

s,k ;

3. (δ1|δ2, z) ∈ FΣd

s,k if (δ1, z) ∈ FΣd

s,k or (δ2, z) ∈ FΣd

s,k ;

4. (πx.δ, z) ∈ FΣd

s,k

if (δxd , z) ∈ F
Σd

s,k for some object constant d;

5. (δ∗, z) ∈ FΣd

s,k .

Thus, a configuration (φ?, z) whose remaining program is a
test is final wrt s,Σd and k if the formula1 [z]φ is believed
at level k in s and Σd. From the above it also follows that
(t, z) 6∈ FΣd

s,k for atomic t, i.e. if some action t remains to be
done, the configuration cannot be final. Further, sequences
are only final when the involved subprograms are both final
etc. The transition relation among program configurations
is given as follows (the empty program nil abbreviates >?):

1. (t, z) →
s,Σd,k

(nil, z · t);

2. (δ1; δ2, z) →
s,Σd,k

(γ; δ2, z · t) if (δ1, z) →
s,Σd,k

(γ, z · t);

3. (δ1; δ2, z) →
s,Σd,k

(δ′, z · t)

if (δ1, z) ∈ FΣd

s,k and (δ2, z) →
s,Σd,k

(δ′, z · t);

4. (δ1|δ2, z) →
s,Σd,k

(δ′, z · t)
if (δ1, z) →

s,Σd,k
(δ′, z · t) or (δ2, z) →

s,Σd,k
(δ′, z · t);

5. (πx.δ, z) →
s,Σd,k

(δ′, z · t)
if (δxd , z) →

s,Σd,k
(δ′, z · t) for some object constant d;

6. (δ∗, z) →
s,Σd,k

(γ; δ∗, z · t) if (δ, z) →
s,Σd,k

(γ, z · t).

If ∗→
s,Σd,k

is the reflexive transitive closure of →
s,Σd,k

, then

{z′ | (δ, z) ∗→
s,Σd,k

(δ′, z · z′) and (δ′, z · z′) ∈ FΣd

s,k}

is the set ||δ||s,kΣd
(z) of execution traces of δ, given s, k,Σd, at

z. Such a trace therefore corresponds to a (possibly empty)
sequence of transition steps that lead into a final configura-
tion. Note that because of rule 1, the actions contained in the

1We extend [·] to sequences: [〈 〉]φ def
= φ, [z · t]φ def

= [z][t]φ.

30

trace are not necessarily all executable according to Poss, to
allow for reasoning about hypothetical situations including
non-reachable ones. In case we are only interested in the ac-
tually executable traces of our program δ, we simply have to
substitute each occurrence of an action t by Poss(t)?; t in δ.

Given an initial KB Σ0, we further define

||δ||Σ0,k
Σd

(z)
def
=

⋂
{||δ||s,kΣd

(z) | s |= B0Σ0}

to be the set of execution traces common to all setups s
where Σ0 is explicitly believed. Our program semantics is
sound (but not complete) wrt the program semantics of ESG
as presented in (Claßen and Lakemeyer 2008) as follows:

Theorem 11 If z′ ∈ ||δ||Σ0,k
Σd

(z), then for any semantic
model w of ESG such that w |= Σ0 ∪Σd, also z′ ∈ ||δ||w(z).

Again the relation to classical Golog is given by the results
presented in (Claßen and Lakemeyer 2008) and (Lakemeyer
and Levesque 2005).

Execution of Programs
In classical Golog, programs are executed off-line, mean-
ing the interpreter first analyzes the entire program to search
for a conforming execution trace before performing any ac-
tions in the real world. This soon becomes infeasible, in
particular when the program is large, the agent has only in-
complete world knowledge and has to use sensing to gather
information at run-time. IndiGolog (Sardina et al. 2004)
therefore executes programs on-line, which means that there
is no general look-ahead, but the system just does the next
possible action in each step, treating nondeterminism like
random choices. Look-ahead is only applied to parts of the
program that are explicitly marked by the search operator
Σ(δ), thus giving the programmer the control over where
the system should spend computational effort for searching.
However the search does not pay attention to the computa-
tional costs of plans. The main contribution of this paper is
to propose the following two new offline search operators:

• Λk(δ, z),
where the set of solution traces is ||δ||Σ0,k

Σd
(z);

• Λ∗(δ, z),
where the set of solution traces

⋃∞
k=0 ||δ||

Σ0,k
Σd

(z).

Whereas Λk only finds solutions obtainable by reasoning up
to belief level k, Λ∗ considers all belief levels, where the
idea is that lower level solutions will be tested before ones
at higher levels, thus preferring plans that require the least
computational costs.

The algorithms we are going to present here for comput-
ing according solutions make use of the notion of character-
istic program graphs as presented in (Claßen and Lakemeyer
2008). Due to space reasons, we will not repeat the (entire)
definition here. Intuitively, a program δ is mapped to a graph
Gδ = 〈V,E, v0〉, with2

2Here we assume that the program in question does not contain
any π operators, which keeps things much simpler. In the future
work section we discuss how to extend our approach to this case.

v0

get(book1 , lib)/At(book1 , lib)

v2

v1

get(book2 , lab)
unlock(lab)/At(book2 , lab)

Figure 1: Characteristic Graph of Example Program

• V is a set of vertices of the form 〈δ′, ϕ′〉, where the δ′ is
some remaining subprogram and ϕ′ is an objective for-
mula encoding a condition under which program execu-
tion might terminate at that node.

• E is a set of labelled edges of the form v′
t/φ→ v′′, where

the intuition is that a transition with ground action t may
be taken from node v′ to node v′′ when the objective for-
mula φ holds.
• v0 = 〈δ, ϕ0〉 ∈ V is the initial node.
The graph for the example program δ from the introduction
is shown in Figure 1. The nodes are v0 = 〈δ,⊥〉, v1 =
〈nil,>〉, and v2 = 〈get(book2 , lab),⊥〉, where > denotes
truth (definable as ∀x(x = x)) and ⊥ falsity (¬>).

Definition 12 Let ξ be a path in the characteristic graph.
The path formula PF (ξ) is defined inductively on its length:
• PF (v) = ϕ′, if v = 〈δ′, ϕ′〉;

• PF (ξ) = ψ ∧ [t]PF (ξ′), if ξ = v
t/ψ→ ξ′.

Further, the path trace PT (ξ) is defined as
• PT (v) = 〈 〉;

• PT (ξ) = t · PT (ξ′), if ξ = v
t/ψ→ ξ′.

For a fixed believe level k, our method now tests paths of
increasing lengths.

Procedure 1 COMPΛk(δ, z)
Determine Gδ = 〈V,E, v0〉
for l = 0, 1, 2 . . . do

for all paths ξ of length l starting in v0 do
if Σ0 ∪ Σd |=k [z]PF (ξ) then

return PT (ξ)

When the set of possible paths is finite like in our example,
COMPΛk(δ, z) will always terminate for any k and z. In this
case we can call that procedure for increasing belief level k:

Procedure 2 COMPΛ∗(δ, z)
for k = 0, . . . ,∞ do

COMPΛk(δ, z)

Let us apply COMPΛ∗(δ, 〈 〉) to our example program δ, and
let us assume that no actions have been performed so far by
the agent, i.e. z = 〈 〉. We first call COMPΛ0(δ, 〈 〉) for belief
level k = 0. The program graph contains four different paths

31

that start in the initial node: the only path of length zero,
ξ0 = v0, further two paths of length one, ξ11 = v0 → v1 and
ξ12 = v0 → v2, and finally one path of length two, namely
ξ2 = v0 → v2 → v1. Their respective path formulas are:

PF (ξ0) = ⊥
PF (ξ11) = At(book1 , lib) ∧ [get(book1 , lib)]>
PF (ξ12) = At(book2 , lab) ∧ [unlock(lab)]⊥
PF (ξ2) = At(book2 , lab)∧

[unlock(lab)](> ∧ [get(book2 , lab)]>)

Then we need to check for each ξ whether Σ0 ∪ Σd |=0

PF (ξ), which is the same as |=Σd
B0Σ0 ⊃ B0PF (ξ),

which according to rule 5d of the semantics means |=Σd

B0Σ0 ⊃ B0(R[Σd,PF (ξ)]). The regressed versions of the
path formulas are, with simplifications:

R[Σd,PF (ξ0)] =⊥ R[Σd,PF (ξ11)] = At(book1 , lib)
R[Σd,PF (ξ12)] =⊥ R[Σd,PF (ξ2)] = At(book2 , lab)

To see that both 6|=Σd
B0Σ0 ⊃ B0At(book1 , lib) as well as

6|=Σd
B0Σ0 ⊃ B0⊥, let s be the setup given by

{At(book2 , lab),
Borrowed(ann, book1) ∨ Borrowed(bob, book1),
¬Borrowed(d, book1) ∨ At(book1 , lib)|d an obj. const.}.

Then s |= B0Σ0. As both ⊥ and At(book1 , lib) are clauses
(⊥ is the empty clause), the only possibility is that they are
believed by subsumption. However, in this case UR(s) = s
(no unit propagation is possible) and there is no clause in
s that subsumes ⊥ or At(book1 , lib), hence s 6|= B0⊥ and
s 6|= B0At(book1 , lib). On the other hand, when s is some
arbitrary setup with s |= B0Σ0, then s |= B0At(book2 , lab)
by reduction (treating a set as a conjunction), therefore |=Σd

B0Σ0 ⊃ B0At(book2 , lab). COMPΛ0(δ, 〈 〉) thus returns

PT (ξ2) = 〈unlock(lab), get(book2 , lab)〉.

When k = 1, we get |=Σd
B0Σ0 ⊃ B1At(book1 , lib) as

follows. Let again s be a setup with s |= B0Σ0. Then s will
contain a clause that subsumes Borrowed(ann, book1) ∨
Borrowed(bob, book2), and we can split over this
clause. As s also must contain a clause subsuming
¬Borrowed(ann, book1) ∨ At(book1 , lib), At(book1 , lib)
can be obtained from s ∪ {Borrowed(ann, book1)} by unit
propagation. Similarly for Borrowed(bob, book1), there-
fore s |= B1At(book1 , lib). Only the k = 1 cycle of
COMPΛ∗(δ, 〈 〉) will hence yield the solution

PT (ξ11) = 〈get(book1 , lib)〉.

Future Work
The approach presented here is work in progress. We are
currently working on implementing the method by integrat-
ing a corresponding reasoner and search operator into the
IndiGolog agent framework (Sardina et al. 2004) to be able
to also evaluate it empirically against existing techniques.

There are furthermore many directions for future work
at the conceptual level. Instead of solely using regression-
based reasoning, we might extend our approach using recent
tractability results for the progression of proper+ knowledge

bases (Liu and Lakemeyer 2009). As the naive loop of Λk
obviously will not terminate once the program δ contains an
iteration, Λ∗ will in this case get stuck at belief level zero,
even if there are possibly solutions at higher levels. One may
try to apply some sort of dove-tailing technique here, where
for any k, only solutions up to a length l(k) are considered.

It is further conceivable to combine our language with an
appropriate model for action time costs to be able to study
trade-offs between the required reasoning and actual execu-
tion time of plans. Also, a variant of our method that com-
putes conditional plans may be useful. In particular, it might
be necessary to adapt the notion of epistemic feasibility as
discussed in (Sardina et al. 2004): Consider a conditional
plan in the form of the following program:

φ?; a | ¬φ?; b

where at plan time, the truth value of φ was unknown. To
be able to execute this program we have to ensure that φ
will become known at run time, or the executor gets stuck
not knowing what step to take next. We therefore also need
to extend our formalism appropriately to allow for sens-
ing actions that the agent can use in order to gather the
necessary information at run time, possibly in combination
with knowledge-based programs as described in (Claßen and
Lakemeyer 2006).

Finally, integrating the π operators we omitted in the pre-
vious section is straightforward in principle, but somewhat
tedious. The idea is that whenever some πx is encountered
on a path, the corresponding x in the path formula is substi-
tuted by a fresh variable x′ as different quantifiers may use
identical variable names. The obtained path formula then
contains a number of free variables. The tractable reasoning
procedure presented in (Liu and Levesque 2005) is able to
deal with open queries for which it computes a set of vari-
able substitutions. Each such substitution, applied to a path
trace with free variables, then corresponds to one possible
solution trace.

Conclusion
In this paper we introduced a new logic called SLA for
tractable reasoning with limited beliefs in the presence of
action and change. Based on this, we proposed a new plan-
ning operator that considers increasing levels of belief, thus
preferring solution plans that are the computationally cheap-
est to discover.

Acknowledgements
This work was supported by the German National Science
Foundation (DFG) under grant La 747/14-1. We also thank
the anonymous reviewers for their helpful comments.

References
Claßen, J., and Lakemeyer, G. 2006. Foundations for
knowledge-based programs using ES. In Doherty, P.; My-
lopoulos, J.; and Welty, C. A., eds., KR, 318–318. AAAI
Press.

32

Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Brewka, G., and Lang, J.,
eds., KR, 589–599. AAAI Press.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robot. Auton. Syst.
56(11):980–991.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In KR, 516–526. AAAI Press.
Lakemeyer, G., and Levesque, H. J. 2005. Semantics for
a useful fragment of the situation calculus. In Kaelbling,
L. P., and Saffiotti, A., eds., IJCAI, 490–496. Professional
Book Center.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31:59–84.
Liu, Y., and Lakemeyer, G. 2009. On first-order definabil-
ity and computability of progression for local-effect actions
and beyond. In IJCAI.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning in
first-order knowledge bases with disjunctive information.
In AAAI, 639–644. AAAI Press.
Liu, Y.; Lakemeyer, G.; and Levesque, H. 2004. A logic of
limited belief for reasoning with disjunctive information.
In KR, 587–597.
McCarthy, J., and Hayes, P. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
In Machine Intelligence 4. New York: American Elsevier.
463–502.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.
Sardina, S.; De Giacomo, G.; Lespérance, Y.; and
Levesque, H. J. 2004. On the semantics of deliberation
in Indigolog—from theory to implementation. Annals of
Mathematics and Artificial Intelligence 41(2-4):259–299.

33

34

A Psychological Study of Comparative Non-monotonic Preferences Semantics

Rui da Silva Neves
Université Toulouse-II,

CLLE-LTC, CNRS UMR 5263
5 Allées Machado

31058 Toulouse Cedex 9, France
neves@univ-tlse2.fr

Souhila Kaci
Université Lille-Nord de France, Artois

CRIL, CNRS UMR 8188
IUT de Lens

F-62307, France
kaci@cril.fr

Abstract

Representing preferences and reasoning about them are im-
portant issues for many real-life applications. Several mono-
tonic and non-monotonic qualitative formalisms have been
developed for this purpose. Most of them are based on com-
parative preferences, for e.g. “I prefer red wine to white
wine”. However this simple and natural way to express pref-
erences comes also with many difficulties regarding their in-
terpretation. Several (more or less strong) semantics have
been proposed leading to different (pre)orders on outcomes.
In this paper, we report results of the first empirical compari-
son of existing non-monotonic semantics (strong, optimistic,
pessimistic and ceteris paribus) based on psychological data.
Thirty participants were asked to rank 8 menus according to
their preferences and to compare 31 pairs of menus. The
recorded preferences allowed to compute compact prefer-
ences and ranking menus for each participant according to
the four semantics under study, and to compare these ranks
to participant’s ones. Results show that non-monotonic opti-
mistic and pessimistic preferences are the semantics that bet-
ter fit human data, strong and ceteris paribus semantics being
less psychologically plausible given our task.

Introduction
Preferences are very useful in many real-life problems.
They are inherently a multi-disciplinary topic, of interest
to economists, computer scientists, operations researchers,
mathematicians, logicians, philosophers and psychologists.

It has been early recognized that value func-
tions/orderings cannot be explicitly defined because of
a great number of outcomes or simply because the user
is not willing to state her/his preferences on each pair
of outcomes. Indeed preferences should be handled in a
compact (or succint) way, starting from non completely
explicit preferences expressed by a user.

The compact languages for preference representation
have been extensively developed in Artificial Intelligence in
the last decade (Boutilier et al. 2004; Brewka, Benferhat,
and Le Berre 2004). In particular, (conditional) comparative
statements are often used for describing preferences in a lo-
cal, contextualized manner for e.g., “I prefer fish to meat”,
“if meat is served then I prefer red wine to white wine”, etc.

Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Indeed, it is easier and more natural to express such qual-
itative comparative statements than to say that I prefer fish
with the weight .8 and prefer meat with the weight .2. Some
generic principles are often used for completing the qual-
itative comparative preference statements1 (Hansson 1996;
Boutilier 1994; Benferhat et al. 2002). Although compar-
ative preference statements allow for a simple and natural
way to express preferences, they come however with many
difficulties regarding their interpretation.

Comparative preferences are often interpreted following
the well known ceteris paribus semantics (Hansson 1996).
This is due to the CP-net approach (Boutilier et al. 2004)
which has emerged in the last decade as the preeminent and
prominent method for processing preferences in Artificial
Intelligence, thanks to its intuitive appeal. Following this
pinciple, the statement “I prefer fish to meat” is interpreted
as, given two meals that differ only in the main dish, the
meal with fish is preferred to the meal with meat. How-
ever, CP-nets behave monotonically and do not allow for
the handling of preferences with defaults. For example, we
can prefer fish to meat, but when available fish is red tuna
and meat is poultry, we can prefer the reverse. Moreover, in
CP-nets, ceteris paribus semantics states that the two meals
fish-cake and meat-ice cream are incomparable w.r.t. the
preference statement “I prefer fish to meat” while a vege-
tarian would prefer any fish-based meal to any meat-based
meal. Fortunately, ceteris paribus is not the only possi-
ble reading of comparative preference statements and other
intuitively non-monotonic meaningful semantics may also
be encountered, and researchers have also argued for other
semantics (Boutilier 1994; Benferhat et al. 2002) based
on insights from non-monotonic reasoning such as system
Z (Pearl 1990). Note also that ceteris paribus semantics
can also be non-monotonic outside CP-net framework. For
example, the menu fish − red is preferred to the menu
fish − white w.r.t. the preference statement “red is pre-
ferred to ¬red” following ceteris paribus semantics. How-
ever the additional preference statement “fish ∧ white is
preferred to fish∧¬white” induces the reverse preference,
namely fish− white is preferred to fish− red.

In this paper, we provide the first empirical compar-

1From now on, we simply speak about comparative preference
statements.

35

ison of existing non-monotonic semantics (including ce-
teris paribus) based on psychological data. This psycho-
logical inquiry is founded by previous work on the non-
monotonic nature of human reasoning. For example, it has
been shown that human inference is consistent with Sys-
tem P (Kraus, Lehmann, and Magidor 1990) (see (Neves,
Bonnefon, and Raufaste 2002; Benferhat, Bonnefon, and
Da Silva Neves 2004)) and that System P constitutes a psy-
chologically sound base of rationality postulates for the eval-
uation of non-monotonic reasoning systems. In our study,
participants were asked to rank 8 menus according to their
preferences and to compare 31 pairs of menus. The recorded
preferences were compared to those provided by the con-
sidered semantics. Results show that optimistic and pes-
simistic preferences are the semantics that better fit human
data, strong, ceteris paribus semantics being less psycholog-
ically plausible given our task.

The remainder of this paper is organized as follows. After
providing notations and necessary definitions, we recall the
different semantics of comparatives preferences proposed in
literature. Then, we recall algorithms to rank-order out-
comes for each semantics. In the next section, we provide
empirical comparison of the different semantics based on
psychological data. Lastly we conclude.

Notations
Let V = {X1, · · · , Xh} be a set of h variables. Each vari-
able Xi takes its values in a domain Dom(Xi) which is a set
of uninterpreted constants D or rational numbers Q. A pos-
sible outcome, denoted t, is the result of assigning a value in
Dom(Xi) to each variable Xi in V . Ω is the set of all pos-
sible outcomes. We suppose that this set is fixed and finite.
Let L be a language based on V . Mod(ϕ) denotes the set
of outcomes that make the formula ϕ (built on L) true. We
write t |= ϕ when t ∈ Mod(ϕ) and say that t satisfies ϕ.

An ordering relation � on X = {x, y, z, · · · } is a reflex-
ive binary relation such that x � y stands for x is at least as
preferred as y. x ≈ y means that both x � y and y � x hold,
i.e., x and y are equally preferred. Lastly x ∼ y means that
neither x � y nor y � x holds, i.e., x and y are incompara-
ble. A strict ordering relation on X is an irreflexive binary
relation such that x � y means that x is strictly preferred to
y. We also say that x dominates y. A strict ordering relation
� can be defined from an ordering relation � as x � y if
x � y holds but y � x does not.
When neither x � y nor y � x holds, we also write x ∼ y.
� (resp. �) is a preorder (resp. order) on X if and only if �
(resp. �) is transitive, i.e., if x � y and y � z then x � z
(if x � y and y � z then x � z). � (resp. �) is a complete
preorder (resp. order) if and only if ∀x, y ∈ X , we have
either x � y or y � x (resp. either x � y or y � x).
The set of the best (or undominated) elements of A ⊆ X
w.r.t. �, denoted max(A,�), is defined by max(A,�) =
{x|x ∈ A, @y ∈ A, y � x}. The set of the worst elements
of A ⊆ X w.r.t. �, denoted min(A,�), is defined by
min(A,�) = {x|x ∈ A, @y ∈ A, x � y}. The best
(resp. worst) elements of A w.r.t. � is max(A,�) (resp.
min(A,�)) where � is the strict ordering relation associ-
ated to �.

A complete preorder � can also be represented by a well
ordered partition of Ω. This is an equivalent representation,
in the sense that each preorder corresponds to one ordered
partition and vice versa.

Definition 1 (Partition) A sequence of sets of outcomes of
the form (E1, . . . , En) is a partition of Ω if and only if (i) ∀i,
Ei 6= ∅, (ii) E1 ∪ · · · ∪En = Ω, and (iii) ∀i, j, Ei ∩Ej = ∅
for i 6= j.

A partition of Ω is ordered if and only if it is associated with
a preorder � on Ω such that (∀t, t′ ∈ Ω with t ∈ Ei, t

′ ∈ Ej

we have i ≤ j if and only if t � t′).

Comparative preference statements
We denote comparative statements of the form “I prefer p to
q” as p > q and denote conditional (called also contextual)
comparative statements of the form “if r is true then I prefer
p to q” as r : p > q, where p, q and r are any propositional
formulas.

Comparative statements come with difficulties regarding
their interpretation. How should we interpret such state-
ments? For example, given the preference statement “I pre-
fer fish to meat”, how do we rank-order meals based on fish
and those based on meat? Four semantics have been pro-
posed in literature:

• ceteris paribus preferences: (Hansson 1996)
any fish-based meal is preferred to any meat-based meal
if the two meals are exactly the same elsewhere (for ex-
ample wine and dessert).

• strong preferences: (Boutilier 1994)
any fish-based meal is preferred to any meat-based meal.

• optimistic preferences: (Benferhat, Dubois, and Prade
1992; Boutilier 1994; Pearl 1990)
at least one fish-based meal is preferred to all meat-based
meals.

• pessimistic preferences: (Benferhat et al. 2002)
at least one meat-based meal is less preferred to all fish-
based meals.

We define preference of the formula p over the formula q as
preference of p∧¬q over ¬p∧q. This is standard and known
as von Wright’s expansion principle (von Wright 1963). Ad-
ditional clauses may be added for the cases in which sets of
outcomes are nonempty, to prevent the satisfiability of pref-
erences like p > > and p > ⊥. We do not consider this
borderline condition to keep the formal machinery as sim-
ple as possible. We denote the preference of p over q fol-
lowing strong semantics (resp. ceteris paribus, optimistic,
pessimistic) by p >st q (resp. p >cp q, p >opt q, p >pes q).

Definition 2 Let p and q be two propositional formulas and
� be a preorder on Ω.

• � satisfies p >st q, denoted �|= p >st q, iff
∀t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′.

• � satisfies p >cp q, denoted �|= p >cp q, iff
∀t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′, where t
and t′ have the same assignment on variables that do not
appear in p and q.

36

• � satisfies p >opt q, denoted �|= p >opt q, iff
∃t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′.

• � satisfies p >pes q, denoted �|= p >pes q, iff
∃t′ |= ¬p ∧ q, ∀t |= p ∧ ¬q we have t � t′.

A preference set is a set of preferences of the same type.

Definition 3 (Preference set) A preference set of type �,
denoted P�, is a set of preferences of the form {pi � qi|i =
1, · · · , n}, where � ∈ { >st , >cp , >opt , >pes }. A
complete preorder � is a model of P� if and only if � sat-
isfies each preference pi � qi in P�.

A set P� is consistent if it has a model.

From comparative preference statements to
preorders on outcomes

Generally we have to deal with several comparative prefer-
ence statements expressed by a user. Once the semantics
is fixed, the problem to tackle is how to deal with such
statements? Several types of queries can be asked about
preferences: what are the preferred outcomes? Is one
outcome better than the other? In many applications (for
e.g. database queries), users are more concerned with the
preferred outcomes. However preferred outcomes are not
always feasible. For example the best menus w.r.t. a user’s
preferences may be no longer available so we have to look
for menus that are immediately less preferred w.r.t. user’s
preferences. In such a case a complete preorders on menus
is needed to answer user’s preferences. Indeed we restrict
ourselves to semantic models that derive complete preorders
on outcomes. In the following, we recall algorithms which
derive a unique complete preorder given a set of preferences
of the same type w.r.t. specificity principle (Yager 1983).

Let P� = {si : pi � qi|i = 1, · · · , n} be a prefer-
ence set with � ∈ { >st , >cp , >opt , >pes }. Given P�,
we define a set of pairs on Ω as follows:

L(P�) = {Ci = (L(si), R(si))|i = 1, · · · , n},

where L(si) = {t|t ∈ Ω, t |= pi ∧ ¬qi} and
R(si) = {t|t ∈ Ω, t |= ¬pi ∧ qi}.

Example 1 Let dish, wine and dessert be three variables
such that Dom(dish) = {fish,meat}, Dom(wine) =
{white, red} and Dom(dessert) = {cake, ice−cream}.
We have Ω = {t0 = fish− white− ice−cream,
t1 = fish−white− cake, t2 = fish− red− ice−cream,
t3 = fish−red−cake, t4 = meat−white− ice−cream,
t5 = meat−white−cake, t6 = meat−red−ice−cream,
t7 = meat− red− cake}.
Let P� = {s1 : fish � meat, s2 : red ∧ cake � white ∧
ice−cream, s3 : fish ∧ white � fish ∧ red}. We have
L(P�) = {C1 = ({t0, t1, t2, t3}, {t4, t5, t6, t7}),
C2 = ({t3, t7}, {t0, t4}), C3 = ({t0, t1}, {t2, t3})}.

Optimistic preferences
Several complete preorders may satisfy a set of optimistic
preferences. It is however possible to characterize a unique

preorder among them under certain assumption. The seman-
tics of optimistic preferences is close to the one of condi-
tionals. Indeed system Z (Pearl 1990) has been used (Ben-
ferhat, Dubois, and Prade 1992; Boutilier 1994). It rank-
orders outcomes under the assumption that outcomes are
preferred unless the contrary is stated. Indeed outcomes are
put in the highest possible rank in the preorder while be-
ing consistent with preferences at hand. This principle en-
sures that the complete preorder is unique and the most com-
pact one among preorders satisfying the set of preferences2.
Algorithm 1 gives the way this preorder is computed. At
each step of the algorithm, we put in Ei outcomes that are
not dominated by any other outcomes. These outcomes are
those which do not appear in the right-hand side of any pair
(L(si), R(si)) of L(P >opt).

Algorithm 1: A complete preorder associated with P >opt .

Data: A preference set P >opt .

Result: A complete preorder � on Ω.
begin

l = 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >opt), t ∈
R(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

/** remove satisfied preferences **/
- remove (L(si), R(si)) where L(si) ∩ El 6= ∅

return �= (E1, · · · , El).
end

Example 2 (Example 1 con’d) We have E1 = {t1}. We
remove C1 and C3 since s1 = fish >opt meat and
s3 : fish ∧ white >opt fish ∧ red are satisfied. We
get L(P >opt) = {C2 = ({t3, t7}, {t0, t4})}. Now
E2 = {t2, t3, t5, t6, t7}. We remove C2 since s2 :
red ∧ cake >opt white ∧ ice−cream is satisfied. So
L(P >opt) = ∅. Lastly, E3 = {t0, t4}. Indeed �=
({t1}, {t2, t3, t5, t6, t7}, {t0, t4}). We can check that each
outcome has been put in the highest possible rank in �.
Therefore, if we push an outcome to a higher rank then
the preorder does not satisfy the preference set. For exam-
ple, �′= ({t1, t5}, {t2, t3, t6, t7}, {t0, t4}) does not satisfy
s1 = fish >opt meat.

Pessimistic preferences
The converse reasoning is drawn when dealing with pes-
simistic preferences (Benferhat et al. 2002). The basic prin-
ciple is that outcomes are not preferred unless the contrary is
stated. Indeed outcomes are put in the lowest possible rank
in the preorder while being consistent with preferences at

2Technically speaking, this preorder can be obtained by max-
based aggregation operator of all preorders satisfying the set of
preferences

37

hand. This principle also ensures that the complete preorder
is unique and the most compact one among preorders satis-
fying the set of preferences3. Algorithm 2 gives the way this
preorder is computed.

Algorithm 2: A complete preorder associated with P >pes .

Data: A preference set P >pes .

Result: A complete preorder � on Ω.
begin

l = 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >pes), t ∈
L(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

/** remove satisfied preferences **/
- remove (L(si), R(si)) where R(si) ∩ El 6= ∅

return �= (E′
1, · · · , E′

l) s.t. 0 ≤ h ≤ l, E′
h = El−h+1

end

Example 3 (Example 1 con’d) We have E1 = {t4, t5, t6}.
We remove C1 and C2 since s1 : fish >pes meat and s2 :
red∧cake >pes white∧ice−cream are satisfied. We repeat
the same reasoning and get E2 = {t2, t3, t7} and E3 =
{t0, t1}. So �= ({t0, t1}, {t2, t3, t7}, {t4, t5, t6}). We can
check that each outcome has been put in the lowest possible
rank in the preorder.

Strong preferences
Strong preferences induce a unique partial order on out-
comes. We can use both construction principles used in op-
timistic and pessimistic preferences to linearize the partial
order and compute a unique complete preorder. Algorithms
1 and 2 can be adapted to deal with strong preferences. Due
to the lack of space, we only give the algorithm adapting
Algorithm 1.

Example 4 (Example 1 con’d) There is no complete pre-
order which satisfies P >st so P >st is inconsistent. This
is due to s1 and s2. Following s1, t0 is preferred to t7 while
t7 is preferred to t0 following s2.

Example 5 (Consistent strong preferences) Let
P >st = {fish ∧ white >st fish ∧ red, red ∧
cake >st red ∧ ice−cream,meat ∧ red >st meat ∧
white}. Then following Algorithm 3, we have
�= ({t0, t1, t7}, {t3}, {t2, t6}, {t4, t5}). Now following
the adaptation of Algorithm 2 to deal with strong prefer-
ences, we have �= ({t0, t1}, {t3, t7}, {t6}, {t2, t4, t5}).

Ceteris paribus preferences
These preferences are similar to strong preferences. They
also induce a unique partial order on outcomes. We can also

3Technically speaking, this preorder can be obtained by min-
based aggregation operator of all preorders satisfying the set of
preferences.

Algorithm 3: A complete preorder associated with P >st .

Data: A preference set P >st .
Result: A complete preorder � on Ω.
begin

l← 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >st), t ∈
R(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

- replace (L(si), R(si)) by (L(si)\El, R(si))
/** remove satisfied preferences **/
- remove (L(si), R(si)) where L(si) = ∅

return �= (E1, · · · , El).
end

use both construction principles used in optimistic and pes-
simistic semantics to compute a unique complete preorder.

Example 6 (Example 1 con’d) Following the
gravitation towards the ideal we have �=
({t1}, {t3, t5}, {t0, t7}, {t2, t4}, {t6}) while fol-
lowing the gravitation towards the worst we have
�= ({t1}, {t3}, {t0}, {t2, t7}, {t4, t5, t6}).

Experimental Study
Our main objective is to evaluate the psychological plausi-
bility of strong, optimistic, pessimistic and ceteris paribus
semantics. In order to reach this objective, we have con-
ducted a psychological experiment devoted to collect sets of
comparative preferences formulated by participants to this
experiment, and the associated models (a (pre)order on the
set of outcomes). The adopted methodology and main re-
sults are presented in the next subsections.

Method
Participants Thirty first-year psychology students at the
University of Toulouse-Le Mirail, all native French speak-
ers, contributed to this study. None of them had previously
received any formal logical training or any course on pref-
erences. Note that our objective is not to study participant’s
real preferred menus. Such an objective would necessitate a
much more large number of participants. Rather, our objec-
tive is to compare statistically the fit of the semantics under
study with human preference’s judgments. For such an ob-
jective, our sample size is sufficient according to scientific
standards.

Material and procedure Comparative preference judg-
ments were collected via a booklet where subjects were
asked to suppose that they are at the restaurant and they must
compose their menu. In the first page of the booklet, they
were asked to compare and to rank-order the following ob-
jects (unranked objects where skipped from analyses):
t0: fish-white-ice−cream, t1: fish-white-cake
t2: fish-red-ice−cream, t3: fish-red-cake

38

(white, red), (meat, fish), (ice−cream, cake),
(meat− white− ice−cream,meat− white− cake),
(meat− white− ice−cream,meat− red− ice−cream),
(meat− white− ice−cream,meat− red− cake),
(meat− white− ice−cream, fish− white− ice−cream),
(meat− white− ice−cream, fish− white− cake),
(meat− white− ice−cream, fish− red− ice−cream),
(meat− white− ice−cream, fish− red− cake),
(meat− white− cake,meat− red− ice−cream),
(meat− white− cake,meat− red− cake),
(meat− white− cake, fish− white− ice−cream),
(meat− white− cake, fish− white− cake),
(meat− white− cake, fish− red− ice−cream),
(meat− white− cake, fish− red− cake),
(meat− red− ice−cream,meat− red− cake),
(meat− red− ice−cream, fish− white− ice−cream),
(meat− red− ice−cream, fish− white− cake),
(meat− red− ice−cream, fish− red− ice−cream),
(meat− red− ice−cream, fish− red− cake),
(meat− red− cake, fish− white− ice−cream),
(meat− red− cake, fish− white− cake),
(meat− red− cake, fish− red− ice−cream),
(meat− red− cake, fish− red− cake),
(fish− white− ice−cream, fish− white− cake),
(fish− white− ice−cream, fish− red− ice−cream),
(fish− white− ice−cream, fish− red− cake),
(fish− white− cake, fish− red− ice−cream),
(fish− white− cake, fish− red− cake),
(fish− red− ice−cream, fish− red− cake).

Table 1: Pairs of menus participants have to compare.

t4: meat-white-ice−cream, t5: meat-white-cake
t6: meat-red-ice−cream, t7: meat-red-cake.
Next, they were asked to compare the 31 pairs of menus
given in Table 1. An object o1 can be preferred to an object
o2 or o2 preferred to o1, or be both equally preferred, or be
incomparable. Answers of the kinds ”equally preferred” or
”incomparable” have been discarded from analysis.
Rationale Given participant’s comparative preference
judgments, for each participant, we computed the set of
compact preferences (see Table 2) consistent with partici-
pant’s preferences. For a given participant, a comparative
preference is retained as compact if it is consistent with all
her/his preferred menus (see Table 1).

Next, given these compact preferences and the algorithms
provided in the paper, for each participant, four preorders
have been inferred according to the principles underling the
inferential machinery of the four studied semantics. For
evaluating the psychological relevance of these semantics,
the key comparison is between participant’s (pre)order on
the 8 menus {t0, · · · , t7} and (pre)orders computed accord-
ing to the four semantics given participant’s compact pref-
erences. Two cues have been used for ordering semantics

white > (vs. <) red
meat > (vs. <) fish
ice−cream > (vs. <) cake
white ∧meat > (vs. <) white ∧ fish
white ∧ ice−cream > (vs. <) white ∧ cake
red ∧meat > (vs. <) red ∧ fish
red ∧ ice−cream > (vs. <) red ∧ cake
meat ∧ ice−cream > (vs. <) meat ∧ cake
fish ∧ ice−cream > (vs. <) fish ∧ cake

Table 2: Set of a priori possible compact preferences.

according to their psychological relevance: The percentages
of cases where the semantics provide an inconsistent set of
models; and the distance and mean distance between ranks
allowed by participants and semantics to the 8 menus.

• Percentages of inconsistency: For each semantics, we
computed the percentages of cases where it produces
an inconsistent set of models given inferred participant’s
compact preferences. A semantics better fits psychologi-
cal data if it allows producing a consistent set of models
from participant’s compact preferences.

• Mean Distances: Two distances based on participants and
semantics orders have been computed. In both cases, dis-
tances are computed from the ranks attributed to each of
the 8 menus by participants and semantics. Several menus
can have the same rank. Suppose participant 1 prefers the
menu “meat, red wine, ice cream”, if this menu is also the
preferred one for a given semantics, then the distance is
zero. If only one menu is more preferred, then the rank
is 1, and so on. A semantics better fits psychological data
if the rank it attributes is closer to the menu preferred by
participants. A semantics better fits psychological data if
the mean distance between participants’s preferred mod-
els and the rank attributed by the semantics is smaller. The
same calculus can be made for each menu involved in par-
ticipant’s ranking (which doesn’t necessarily involve the
8 proposed menus). So, for each participant, it is possible
to compute the mean of the distance between each menu
and ranks predicted by semantics. Next, the mean of these
means is computed. As before, a small mean means a bet-
ter fit.

In order to conclude at the inferential level, cognitive psy-
chology, exactly as other experimental sciences, makes use
of statistical tools for hypothesis testing. The student’s t-
test allows testing the null hypothesis that two means are not
different. The probability p provided by the test express the
risk (called alpha) that we reject by error the null hypothe-
sis. In social and human sciences, it is usual to consider that
this risk is acceptable at the level .05, that is, if p is greater
than .05, we cannot reject the null hypothesis without a sig-
nificant risk. Under .05, we reject the null hypothesis, and
so accept the hypothesis of the difference between the two
means. In our analyses, when a difference between means
is significant (p =< .05), it is interpreted as: the seman-

39

cp str. pess. opt.
% inconsistency 36.6 10 0 0
Mean distances 1.5 .83 .62 .55
to participants (.81) (.93) (.71) (.65)
peferred outcomes n = n = n = n =
(standard deviation) 26 29 30 30
Means of the mean 2.44 2.46 2.54 2.53
distance to participants
outcome levels (.63) (.65) (.71) (.66)
(standard deviation)
n = 19

Table 3: Cues for evaluation of the fit of semantics with
participant’s preference judgment. “cp”, “str”, “pess.” and
“opt.” stand respectively for ceteris paribus, strong, pes-
simistic and optimistic.

tics exhibiting the less mean distance significantly fits better
human data than the other semantics.

Results
Participant’s answers allowed to compute a set of compact
preferences containing between 3 and 7 compact preferences
out of 18 a priori ones. Table 3 shows that the ceteris paribus
semantics doesn’t fit participant’s orders in 36% of the cases
and that the strong semantics failed in 10% of the cases,
while optimistic and pessimistic semantics provide always
a consistent set of preferences. This order is confirmed
by comparisons of distances between participants and se-
mantics’ levels for participant preferred outcome. Table 3
also suggests that the optimistic semantics has a better fit
than the pessimistic one (however mean’s comparison by
Student’s t-test is not significant: t = −1.43, df = 29,
p = .16) while the latter has a better fit than the strong
semantics (t = 2.7, df = 28, p = .01) which better fits
participant’s data than ceteris paribus semantics (t = −5.7,
df = 24, p < .001, significant). These results are broadly
confirmed by the comparison of the means of the mean dis-
tance between participants and semantics (pre)orders. In-
deed, statistical comparisons by Student’s t-test show a sig-
nificant difference between strong and pessimistic seman-
tics (t = −2.37, df = 18, p = .036) but not between ce-
teris paribus and strong, and pessimistic and optimistic se-
mantics. This result confirms that two distinct sets of se-
mantics can be distinguished from their psychological rele-
vance: Pessimistic and optimistic semantics on one hand,
and strong and ceteris paribus on the other one. Except
for percentages, more the values are low, better is the fit.
As such, given all the information summarized in table 3, it
appears that optimistic and pessimistic semantics are more
plausible psychologically than strong and ceteris paribus se-
mantics.

Conclusion
We focused on comparative preference statements and dis-
tinguished different non-monotonic semantics that have

been studied in literature. So far, researchers have argued
for a semantics or another from purely theoretical stand-
point (also philosophical for ceteris paribus semantics) or
for modeling a specific application. In this paper, we ex-
plored another dimension, namely psychological plausibil-
ity, to compare the semantics.

This work gives an indication about human behavior
when interpreting comparative preferences. Our results
suggest that pessimistic and optimistic semantics better fit
human preferences organization and inference than ceteris
paribus and strong semantics. Neverthless, it doesn’t mean
that every human in every situation would ”prefer” accord-
ing to the principles underling these semantics. Rather,
it suggests that in familiar domains, a population known
as representative of global occidental people, “prefer” in a
manner more closed to pessimistic and optimistic semantics.
Psychological plausibility is not of course the sole criterion
for evaluating formal models in AI, but it is a criterion, ev-
ery time a formal model could have incidences in human
adaptation, including cognitive comfort and efficiency.

This first attempt opens the door to more ambitious and
deeper comparison of preference representations. In a fu-
ture work we intend to perform a comparison of the main
different compact representations of preferences such as CP-
nets (Boutilier et al. 2004), QCL (Brewka, Benferhat, and
Le Berre 2004), etc.

References
Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002. Bipolar
possibilistic representations. In UAI’02, 45–52.
Benferhat, S.; Bonnefon, J.; and Da Silva Neves, R. 2004. An
experimental analysis of possibilistic default reasoning. In KR’04,
130–140.
Benferhat, S.; Dubois, D.; and Prade, H. 1992. Representing
default rules in possibilistic logic. In KR’92, 673–684.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and Poole,
D. 2004. CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. Journal of Ar-
tificial Intelligence Research 21:135–191.
Boutilier, C. 1994. Toward a logic for qualitative decision theory.
In KR’94, 75–86.
Brewka, G.; Benferhat, S.; and Le Berre, D. 2004. Qualitative
choice logic. Artificial Intelligence 157(1-2):203–237.
Hansson, S. 1996. What is ceteris paribus preference? Journal
of Philosophical Logic 25:307–332.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial
Intelligence 44(1-2):167–207.
Neves, R. D. S.; Bonnefon, J.; and Raufaste, E. 2002. An em-
pirical test of patterns for nonmonotonic inference. Annals of
Mathematics and Artificial Intelligence 34(1-3):107–130.
Pearl, J. 1990. System Z: A natural ordering of defaults with
tractable applications to default reasoning. In TARK’90, 121–135.
von Wright, G. H. 1963. The Logic of Preference. University of
Edinburgh Press.
Yager, R. 1983. Entropy and specificity in a mathematical theory
of evidence. International Journal of General Systems 9:249–
260.

40

Modelling Cryptographic Protocols in a Theory of Action

James P. Delgrande and Torsten Grote and Aaron Hunter
School of Computing Science,

Simon Fraser University,
Burnaby, B.C.,

Canada V5A 1S6.
{jim,tga14,hunter}@cs.sfu.ca

Abstract

This paper proposes a framework for analysing cryptographic
protocols by expressing message passing and possible attacks
as a situation calculus theory. While cryptographic protocols
are usually quite short, they are nonetheless notoriously diffi-
cult to analyse, and are subject to subtle and nonintuitive at-
tacks. Our thesis is that in previous approaches for expressing
protocols, underlying domain assumptions and capabilities of
agents are left implicit. We propose a declarative specifica-
tion of such assumptions and capabilities in the situation cal-
culus. A protocol is then compiled into a sequence of actions
to be executed by the principals. A successful attack is an ex-
ecutable plan by an intruder that compromises the stated goal
of the plan. We argue that not only is a full declarative speci-
fication necessary, it is also much more flexible than previous
approaches, permitting among other things interleaved runs
of different protocols and participants with varying abilities.

Introduction
A cryptographic protocol is a formalised sequence of mes-
sages between agents, where parts of a message are pro-
tected using cryptographic functions such as encryption.
These protocols are used for many purposes, including the
secure exchange of information, carrying out a transaction,
authenticating an agent, etc. Protocols are typically speci-
fied in the following format:
The Challenge-Response Protocol

1. A→ B : {NA}KAB

2. B → A : NA

In this protocol, the goal is for agentA to determine whether
B is alive on the network. The first step is for A to send B
the message NA encrypted with a shared key KAB . NA is a
nonce, a random number assumed to be new to the network.
The second step is for B to send A the message NA unen-
crypted. Since only A and B have KAB , and KAB is as-
sumed to be secure, it would seem that NA could only have
been decrypted by B, and so B must be alive. However, the
protocol is flawed; here is an attack:
An Attack on the Challenge-Response Protocol

1. A→ IB : {NA}KAB

1.1 IB → A : {NA}KAB

1.2 A→ IB : NA

2. IB → A : NA

An intruder I intercepts the message in line 1 and, mas-
querading as B, initiates a round of the protocol with A,
thereby obtaining the decrypted nonce.

While this example is simplistic, it illustrates the type of
problems that arise in protocol verification. Even though
protocols are usually short, they are notoriously difficult to
prove correct. As a result, many different formal approaches
have been developed for protocol verification. In these ap-
proaches, a protocol is generally specified as above, and then
one tries to develop an attack on the protocol. However, of-
ten these approaches are difficult to apply by anyone other
than the original developers (Brackin, Meadows, & Millen
1999). Part of the problem is that there is no clear agree-
ment on exactly what an attack really is (Aiello & Massacci
2001), which leaves considerable ambiguity about the status
of a protocol when no attack is found. Moreover, as we later
discuss, the language for specifying a protocol is highly am-
biguous, and much information is left implicit. Thus it is no
surprise that protocols are hard to convincingly prove secure.

Our thesis is that all aspects of a protocol need to be
explicitly specified, and moreover that protocol verification
may profitably be viewed as a problem in commonsense rea-
soning and agent communication. The main contribution of
this paper is the introduction of a declarative, commonsense
theory of message passing between agents, suitable for prov-
ing results about protocols, expressed as a situation calculus
theory. The framework makes explicit background assump-
tions, protocol goals, agent’s capabilities, and the message
passing environment. A protocol is translated into a set se-
quence of actions for agents to execute. These actions may
be interleaved with others, and the framework allows simul-
taneous runnings of multiple protocols. The aim of an in-
truder is to construct a plan such that the goal of the protocol,
in a precise sense, is thwarted. A protocol is secure when no
such plan is possible. A valid protocol then is one which is
secure, which may complete, and in which at completion the
goal is provably established. The approach is flexible, and
significantly more general than previous approaches since
we can tailor the agents and the environment to specific ap-
plications. For example, we can model intruders with differ-
ent capabilities and we can model several different protocols
running at the same time. This work is intended as the first
step towards a new automated verification system for proto-
cols based on a language such as ConGolog.

41

The next section briefly introduces work in cryptographic
protocol verification. The third section motivates our ap-
proach to the problem, while the following section presents
an axiomatisation of an instance of the approach in the sit-
uation calculus. The last section sketches contributions and
future work.

Related Work
The standard intruder model is of a very powerful adversary,
the so-called Dolev-Yao intruder (Dolev & Yao 1983). In-
formally, the intruder can read, block, intercept, or forward
any message sent by an honest agent. Hence, a message re-
cipient is never aware of the identity of the sender, except
possibly via encrypted messages. The first logic-based ap-
proach to protocol verification was the BAN logic of (Bur-
rows, Abadi, & Needham 1990). The logic is rather ad hoc,
as it consists of a set of rules of inference with no formal se-
mantics. However, it has been highly influential because it
illustrates the importance of knowledge in protocol verifica-
tion and also because it illustrates how protocol verification
can be reduced to reasoning in a formal logical system.

One standard formal tool for reasoning about the knowl-
edge of several agents is the multi-agent systems framework
of (Fagin et al. 1995). In protocol verification, the strand
space formalism provides a similar model of message pass-
ing between several agents (Thayer, Herzog, & Guttman
1999). A strand space is a formal representation of all pos-
sible traces corresponding to runs of a specified protocol; it
enables a protocol analyzer to show that an intruder cannot
compromise a secure protocol. It has been proven that strand
spaces are actually less expressive than multi-agent systems
(Halpern & Pucella 2003). One notable weakness is that the
framework does not provide a suitable model of knowledge.

Formal tools developed for knowledge representation and
reasoning have also been used for protocol verification. One
such tool is logic programming under the stable model se-
mantics (Gelfond & Lifschitz 1991). Cryptographic proto-
cols have been encoded as logic programs where the stable
models correspond to attacks that an intruder can perform
(Aiello & Massacci 2001). There are at least two issues
with the encodings. First, the logic program must be hand-
crafted for each protocol to be analyzed. Second, the attack
must be specified in advance; new attacks are not detected
automatically. (Wang & Zhang 2008) proposes a very sim-
ilar approach. Neither approach is elaboration tolerant, and
neither intensional.

In related work, protocols have been represented in a
multi-set rewriting formalism, and then translated into the
same logic programming paradigm used in the previous two
approaches (Armando, Compagna, & Lierler 2004). Instead
of a model checker, this translation is solved with an answer
set solver, acting as an alternative back-end to the protocol
verification tool AVISPA1. To date, this translation approach
has not proven to be practical.

Hernández and Pinto propose an approach that is simi-
lar to ours; in particular they also use the situation calculus
(Hernández-Orallo & Pinto 1997). However, they focus on

1http://avispa-project.org/

producing proofs of correctness based on the actions of hon-
est agents. In contrast, we explicitly model the actions of
an intruder, and we view protocol verification as communi-
cating while guarding against attack. Our treatment of the
communication channel is also different: while Hernández
and Pinto define an unreliable broadcast channel, we define
a direct channel that allows the intruder the first opportunity
to receive a message. As such, our approach is best under-
stood as addressing a somewhat different problem than the
Hernández-Pinto approach.

There has of course been extensive work in reasoning
about action. Due to space limitations, we assume a famil-
iarity with the situation calculus (Levesque, Pirri, & Reiter
1998), and we assume Reiter’s solution to the frame prob-
lemn without further comment. We note that other action
formalisms would have worked equally well in formalising
the approach.

Motivation
Consider the Challenge-Response protocol and the attack
described previously. Several things may be noted about the
protocol specification. First, while the intent of the proto-
col and the attack are intuitively clear, the meaning of the
exchanges in the protocol are ambiguous. Consider the first
line of the protocol: it cannot mean that A sends a message
to B, since this may not be the case, as the attack illustrates.
Nor can it mean that A intends to send a message to B, be-
cause in the attack it certainly isn’t A’s intention to send the
message to the intruder! Moreover, there is more than one
action taking place in the first line, since A sends a message
and B is involved in the (potential) receipt of a message.
Hence, the specification language is inexpressive; notions of
agent communication should be made explicit.

As well, the specification leaves important aspects of the
problem unstated. For instance, it is not stated that the goal
of the protocol is to convince A that B is alive. Nor is it
stated how this goal is to be accomplished, in this case in-
directly via the encryption and sending of messages. Meta-
level reasoning is required to determine if a protocol is se-
cure, or if an attack on the protocol is possible. So notions
of protocol goal and attack should also be made explicit.

The protocol specification also does not state the fact that
NA is a freshly generated nonce, nor the fact that the key
KAB is only known to A and B. Moreover, the capabili-
ties of agents are not specified. For example, the intruder is
assumed to be able to intercept and redirect messages; how-
ever it can decrypt a message only if has the appropriate key.

Last, there is no recognition that a protocol execution will
take place in a broader context that includes other agent ac-
tions and other protocol executions. Nor does it take into
account the interleaving of actions with the execution of a
given instance of a protocol. For example, it is quite pos-
sible that a protocol could fail via what might be called a
“stupidity attack”. Consider the following exchange:

Another Attack on the Challenge-Response Protocol
1. A→ IB : {NA}KAB

1.1 A→ IB : NA

2. IB → A : NA

42

In this case A sends the unencrypted nonce to the intruder.
This of course is outlandish, but it nonetheless represents a
logically possible compromise of the protocol (and in fact
any other “secure” protocol). The point is that, much like
the qualification problem in planning, there is an assump-
tion that “nothing untoward happens” in a protocol execu-
tion. However, it may well be that there are “untoward hap-
penings” much more subtle than the stupidity attack; con-
sequently, it is desirable to have a framework for specifying
protocols that is general enough to take such possibilities
into account.

We argue that in order to provide a robust demonstra-
tion of the security and correctness of a protocol, all of the
above points need to be addressed. We suggest that an ex-
plicit, logical formalisation in the situation calculus provides
a suitable framework. Broadly speaking, our primary aim is
to clearly formalize exactly what is going on in a crypto-
graphic protocol in a declarative action formalism; such a
formalization will provide a more flexible model of agent
communication.

Approach
We present an outline of a formalization for cryptographic
protocols, using the Challenge-Response protocol as an ex-
ample. While we don’t completely cover all points raised
in the previous section, given space constraints, it should be
clear that any omissions are easily addressable.

Vocabulary
We formalize message passing systems in the situation cal-
culus. For our purposes, there are four main sorts of objects
(beyond actions and situations): agents, keys, messages and
nonces. In this section, we briefly describe each sort.

Agents: The term agent refers to both honest agents and to
the malicious intruder. We reserve the term principal to refer
to an honest agent. Variables a, a1, . . . range over agents.
The constant intr denotes the intruder. Unary predicates
Agent and Intruder have their obvious meanings.

Fluent Alive(a, s) indicates that a is alive in situation s.
It is a precondition for executing any action; for brevity how-
ever we omit it in action preconditions. Has(a, x, s) means
that a has access to x in situation s, where the variable x
ranges over messages, keys and nonces. This can be seen
as a kind of knowledge, but we use the epistemically neutral
term Has and interpret the meaning in terms of “access” to
information. We use Bel(a, f, s) to indicate that a believes
that the fluent f is true in situation s. The semantics of Bel
can be defined using the treatment of belief in (Scherl &
Levesque 2003) (where they use Knows for Bel).

Messages: Communication in our framework involves the
exchange of messages. Variablesm,m1, . . . range over mes-
sages. Unary predicate Msg is true of messages. Messages
are considered to be atemporal, and so are not indexed by
a situation. Messages are composed of a finite sequence
of parts, which may be nonces, agent names, or keys; each
part may be encrypted. We assume an appropriate situation

calculus axiomatization of lists, including the constructor
list(p1, . . . , pn) and selectors first(m), second(m), etc.
A useful state constraint2 is that if an agent Has a message,
then it has the message parts, for example:
Has(a,m, s) ∧Msg(m) ⊃ Has(a, first(m), s).

Keys: Variables k, k1, . . . range over keys. Predicate
Key(k) indicates that k is a key, while SymKey(k) and
AsymKey(k1, k2) have their expected meaning for sym-
metric and asymmetric keys respectively. ShKey(a1, a2, k)
indicates that k is a shared (symmetric) key for agents a1, a2.
PubKey(a, k) and PrivKey(a, k) give public and private
keys, respectively, of an agent.

Three functions are associated with keys: The value of
encKey(x) is the key which has been used to encrypt x. The
value of enc(x, k) is the result of encrypting x with k; and
dec(x, k) returns the corresponding decrypted message. The
following state constraint relates enc and encKey; others
(omitted here) relate public and private keys, etc.:
m1 = enc(m2, k) ⊃ k = encKey(m1).

Nonces: Variables n, n1, . . . range over nonces. The most
important feature of nonces is that they must be freshly
generated during the current protocol run. The fluent
IsFresh(n, s) is intended to be true if and only if the nonce
n has been generated “recently” with respect to the situa-
tion s. To this end, the functional fluent fresh(s) is used to
model the generation of new nonces during a protocol run
using the axiom fresh(s) = fresh(s′) ⊃ s = s′.

Actions: There are two classes of action terms. The class
of basic actions is comprised of actions for encryption and
decryption, sending and receiving messages, and compos-
ing messages. These actions are described next. Protocol-
specific actions are described later, in the section on repre-
senting a protocol in an action theory.

To ease readability we omit sort predicates. The variable
conventions given above implicitly specify the sort of each
variable. As usual, free variables are implicitly universally
quantified.

1. encrypt(a, x, k) – Agent a encrypts nonce or message x
using key k.
Precondition:
Poss(encrypt(a, x, k), s) ≡ (Has(a, x, s) ∧

(Has(a, k, s) ∨ ∃a′PublicKey(a′, k)))
Effect:
Has(a, enc(x, k), do(encrypt(a, x, k), s))

2. decrypt(a, x, k) – Agent a decrypts x using key k.
Precondition:
Poss(decrypt(a, x, k), s) ≡ (Has(a, x, s) ∧
Has(a, k, s) ∧ [(SymKey(k) ∧ k = encKey(x))∨
(AsymKey(k, k′) ∧ k′ = encKey(x))])

2State constraints can be problematic, and are not part of a ba-
sic action theory (Reiter 2001). Nonetheless they are useful in a
representational context, in initially specifying a theory.

43

Effect:
Has(a, dec(x, k), do(decrypt(a, x, k), s))

3. send(a1, a2,m) – Agent a1 sendsm intended for a2. The
intruder can masquerade as the sender. Fluent Sent indi-
cates that a message is in some fashion “posted”, that is
can be received by an agent.
Precondition:
Poss(send(a1, a2,m), s) ≡

((Has(a1,m, s) ∧ a1 6= a2) ∨ Has(intr,m, s))
Effect:
Sent(a1, a2,m, do(send(a1, a2,m), s))

4. receive(a1, a2,m) – a1 receives message m from a2.
The intruder can intercept messages. ¬Sent indicates that
the message is no longer available to be received.
Precondition:
Poss(receive(a1, a2,m), s) ≡ (Sent(a2, a1,m, s) ∨

(a1 = intr ∧ ∃a′ Sent(a2, a
′,m, s)))

Effect:
Has(a1,m, do(receive(a1, a2,m), s)) ∧
¬Sent(a2, a1,m, do(receive(a1, a2,m), s)) ∧
Recd(a1, a2,m, do(receive(a1, a2,m), s))

5. compose(a,m, x) – Agent a composes message m hav-
ing body x.
Precondition:
Poss(compose(a,m, list(x1, . . . xn)), s) ≡

(Has(a, x1, s) ∧ . . . Has(a, xn, s))
Effect:
Has(a,m, do(compose(a,m, list(x1, . . . xn)), s)) ∧
Msg(m) ∧ first(m) = x1 ∧ second(m) = x2 ∧ . . .

Since messages in a protocol always have fixed length,
an alternative is to have compose take message parts as
arguments. Thus there would be a set of compose actions,
one for each possible message length.

State Constraints
Some state constraints have already been mentioned. For
proving properties about protocols, some epistemic con-
straints are useful, for example, an agent knows what ac-
tions it carried out. In the Challenge-Response protocol we
use the following:

Sent(a1, a2,m, s) ⊃ Bel(a1, Sent(a1, a2,m), s)
Recd(a1, a2,m, s) ⊃ Bel(a1, Recd(a1, a2,m), s)

We can then state that if an agent a1 sends a fresh nonce en-
crypted in the key it shares with a2, and gets the unencrypted
nonce back, then a1 believes that a2 is alive:

(Bel(a1, Sent(a1, a2, en), s) ∧ en = enc(n, k) ∧
Fresh(n) ∧ ShKey(a1, a2, k) ∧
Bel(a1, Recd(a1, x, n), s)) ⊃ Bel(a1, Alive(a2), s)

Initial Situation
The initial situation contains information about the number
of agents, their keys, etc. Since the details are straightfor-
ward, we just outline what is required. For example, using
the Agent predicate, a finite set of principals is specified,
along with the intruder, intr. For each agent, we specify a
combination of private, public, and shared keys. Typically,
this is all we need to specify in the initial situation.

Adding Control Constraints
Parallelism is simulated by allowing concurrent interleav-
ing of actions. We model a Dolev-Yao intruder through the
following scheme, which allows the intruder to perform an
arbitrary number of actions before an honest agent can act:

loop {
Intruder executes some actions;
A principal executes one action

}

This can be implemented in our action theory as follows;
assume that fluent OkP isn’t used in the theory. Informally
OkP states that it is ok for a principal to execute an action.
Basic actions are modified as follows:

• For a principal: Each precondition Poss(a, s) ≡ φ
is modified to Poss(a, s) ≡ (φ ∧ OkP (s)). Each ef-
fect axiom ψ(do(a, s)) is replaced by ψ(do(a, s)) ∧
¬OkP (do(a, s)).

• Only the intruder can make OkP (s) true. A
new action onOkP is introduced with precondition
Poss(onOkP (a), s) ≡ (a = intr) and effect
OkP (do(onOkP, s)).

An advantages of this framework is that other models of
concurrency can be easily expressed. For example, it is
straightforward to specify that the intruder may carry out
one action, followed by some agent carrying out an action.
In this case, the intruder is limited in that it may not be able
to compromise all protocol runs. On the other hand, there
are some principal actions that an intruder cannot compro-
mise, such as encryptions and decryptions. So from an effi-
ciency standpoint it would make sense to allow an agent to
execute a full sequence of such “uncompromisable” actions.
To this end, a full implementation could make use of higher-
level imperative constructs, such as a sequence of actions as
given in Golog’s Do (Levesque et al. 1997).

Representing a Protocol in an Action Theory
The goal of the preceding framework is to completely and
explicitly specify a theory of agent communication involv-
ing encryption, freshly generated nonces, and a hostile in-
truder. In this setting, a protocol is regarded as a high-level
description of prescribed agent actions, designed to achieve
some goal in a dynamic, unpredictable, hostile environment.
Hence there are two things that remain to be specified:

1. how the protocol corresponds to sets of agent actions, and

2. the goal of the protocol.

44

Compiling a Protocol into an Action Theory Our goal is
to express a protocol such as the Challenge-Response proto-
col in terms of our action theory. Our ultimate goal is to
automate this process, so that any protocol can be translated
and integrated with our situation calculus theory. Hence the
ultimate goal is to provide a compiler for protocols into ac-
tion theories. At present we hand code a translation, giving
the Challenge-Response protocol as an example below. We
suggest via this example that a specification of a translator
presents no great technical difficulty.

There are two general methodologies for translating a pro-
tocol specification into our action theory, corresponding to
two levels of granularity:

1. Compile lines of a protocol into new, protocol-specific ac-
tions.

2. Compile each line of a protocol into two sequences of
previously-defined, basic actions. The first sequence cap-
tures the implicit composition and sending of a message;
while the second captures the implicit receipt and decrypt-
ing of a message.

We are currently implementing the first approach. Each line
of a protocol is implicitly made up of two parts, the first in-
volving the composition and sending of a message, and the
second involving the receiving and decrypting of the mes-
sage. Thus in the first line of the Challenge-Response pro-
tocol, the intent is that A compose a message and send it,
followed by B receiving it and decrypting it. However, note
that for every pair of successive lines in a protocol, the im-
plicit receive of one line can be combined with the send
of the next. Thus in the Challenge-Response protocol, B’s
receiving of a message fromA can be combined with a send-
ing of an unencrypted nonce back to A. Hence a n-line pro-
tocol can compile into n+ 1 protocol-specific actions – one
for the first line of the protocol, one for the last line, and
one for each of the n − 1 successive pair of lines. Thus the
Challenge-Response protocol would compile into three new
protocol-specific actions:

CR.1.send: Agent a1 composes a message with a fresh
nonce, encrypted in the key shared with a2, and sends it
to a2.

CR.1.rec.2.send:3 a2 receives the message, decrypts it,
and sends a message with the nonce to a1.

CR.2.rec: a1 receives the unencrypted nonce from a2.

We introduce the following constants and fluents: 〈pid〉
is an identifier inserted by the compiler giving the protocol
type and instance of the run. (We also use pid without angle
brackets as a variable.) Predicate Type extracts the protocol
type from its argument; here Type(pid) = “CR”. Fluent
Expect expresses control knowledge, that after initiating a
run of the protocol, a1 expects at some point to receive a
message from a2 comprising the second step in this instance
of the protocol. In this way, multiple instances of multiple

3The naming here is awkward, but is intended to be mnemonic
for the protocol name (CR), along with the receive part of one line
(1.rec) and the send part of the next (2.send).

protocols may be concurrently executed. Fluent Completed
indicates that the protocol has completed successfully.

We have the following action preconditions and effects:
CR.1.send:
Precondition:
Poss(CR.1.send(a1, a2,m, k, n), s) ≡
ShKey(a1, a2, k) ∧ n = fresh(s) ∧
m = list(〈pid〉, enc(n, k))

Effect: Let s′ = do(CR.1.send(a1, a2,m, k, n), s).
Sent(a1, a2,m, s

′) ∧Has(a1,m, s
′) ∧Has(a1, n, s

′)∧
Has(a1, enc(n, k), s′) ∧ Expect(a1, a2, 〈pid〉, 2, s′)

CR.1.rec.2.send:
Precondition:
Poss(CR.1.rec.2.send(a2, a1,m,m

′), s) ≡
Sent(a1, a2,m, s) ∧ Type(first(m)) = “CR” ∧
Has(a2, encKey(m), s) ∧
m′ = list(first(m), dec(second(m), encKey(m)))

The precondition is cumbersome, reflecting the fact that
several actions (including a receive and send) are combined
into one protocol-specific action.
Effect: Let s′ = do(CR.1.rec.2.send(a2, a1,m,m

′), s).
Recd(a2, a1,m, s

′) ∧ Has(a2,m, s
′) ∧

Has(a2, first(m), s′) ∧ Has(a2, second(m), s′) ∧
Has(a2, dec(second(m), encKey(m)), s′) ∧
¬Sent(a1, a2,m, s

′) ∧ Sent(a2, a1,m
′, s′)

The effect is likewise cumbersome: a2 has the message
and all its parts; the original message is marked as unavail-
able; and a new message is sent to a1.
CR.2.rec:
Precondition:
Poss(CR.2.rec(a1, a2,m), s) ≡
Sent(a2, a1,m, s) ∧ Type(first(m)) = “CR” ∧
Expect(a1, a2, first(m), 2, s)

Effect: Let s′ = do(CR.2.rec(a1, a2,m), s).
Recd(a1, a2,m, s

′) ∧ Has(a1,m, s
′) ∧

Has(a1, first(m), s′) ∧ Has(a1, second(m), s′) ∧
¬Sent(a2, a1,m, s

′)∧Completed(a1, a2, first(m), s′)

Expressing the Goal of a Protocol The goal of a protocol
will often have epistemic components. For the Challenge-
Response protocol, the overall goal is that if a protocol run
successfully completes, then the initiating agent will be-
lieve that the responding agent is alive; and moreover, it is
not possible that the initiating agent believe that the second
agent is alive when in fact it is not. (That is, the initiating
agent’s belief is indeed knowledge.)

(Completed(a1, a2, x, s) ∧ Type(x) = “CR”) ⊃
(Bel(a1, Alive(a2), s) ≡ Alive(a2, s))

This assumes that principals are alive or dead on the net-
work, independent of the situation. A more nuanced rep-
resentation would take into account the possibility that an
agent may become not Alive.

There are other parts to a successful protocol specification
that need to be specified. First, it must be possible for there
to be a successful run:
∃s. Completed(a1, a2, x, s) ∧ Type(x) = “CR”

That is, a protocol that can never complete will vacuously

45

never be compromised, but is of no use. Second, it would be
desirable to prove that if the intruder carries out no actions,
then the protocol is guaranteed to succeed.

The Attack on the CR Protocol
We now illustrate the approach by describing the attack on
the Challenge-Response protocol:4

1. Agent a1 initiates a round of the protocol with action:
CR.1.send(a1, a2, (“CR”, enc(n, k)), k, n)

One effect is Sent(a1, a2, (“CR”, enc(n, k)))
2. The intruder intercepts the sent message:

receive(intr, a2, (“CR”, enc(n, k)))
3. The intruder sends a message to a1, masquerading as a2:

send(a2, a1, (“CR”, enc(n, k)))
4. The message is received by a1 who understands it as an

initiation of a new round of the CR protocol by a2, and so
responds with:
CR.1.rec.2.send(a1, a2, (“CR”, enc(n, k)), (“CR”, n))

This action has an effect Sent(a1, a2, (“CR”, n)).
5. The intruder intercepts this message:

receive(intr, a1, (“CR”, n)).
This has effects Has(intr, (“CR”, n)), Has(intr, n).

6. The intruder sends the nonce to a1, masquerading as a2:
send(a2, a1, (“CR”, n))

7. The message is received by a1:
CR.2.rec(a1, a2, (“CR”, n))

a1 understands it as the completion of the original proto-
col; thus a1 believes a2 alive in the resulting situation.

Discussion
Thus far our focus has been on the development of an appro-
priate situation calculus formalization of cryptographic pro-
tocols. Our formalism is highly elaboration tolerant, in the
sense that it is easy to axiomatize agents and intruders with
different capabilities. For example, if we had information
about the topology of a particular network, it would be easy
to restrict an intruder to only intercept messages between
particular principals. In most existing logical approaches
to protocol verification, it is not straightforward to modify
agent capabilities for a specific application.

In many cases, proofs of protocol correctness rely on the
assumption that honest agents do not perform actions that
compromise secret information; however, it is not always
clear which actions are safe in this sense. In our framework,
we can discover these undesirable actions and we can for-
mally specify axioms that restrict honest agents from per-
forming them. To the best of our knowledge, this problem
has not been addressed in related formalisms.

There are two natural directions for future work on our
framework. First, as noted previously, we would like to be
able to directly compile protocol specifications into situation
calculus theories. At present, we perform this encoding by

4We suppress situation arguments in fluents for readability.

hand; it would be desirable to automate this process, thereby
facilitating the analysis of a wider range of protocols. The
second direction is to implement a system for automatically
finding attacks based on our situation calculus formalization.
Our intention is to implement the system using ConGolog.

References
Aiello, L., and Massacci, F. 2001. Verifying security proto-
cols as planning in logic programming. ACM Transactions
on Computational Logic 2(4):542–580.
Armando, A.; Compagna, L.; and Lierler, Y. 2004. Au-
tomatic compilation of protocol insecurity problems into
logic programming. In Alferes, J., and Leite, J., eds.,
JELIA’04, volume 3239 of LNAI, 617–627.
Brackin, S.; Meadows, C.; and Millen, J. 1999. CAPSL
interface for the NRL protocol analyzer. In Proceedings of
ASSET 99. IEEE Computer Society Press.
Burrows, M.; Abadi, M.; and Needham, R. 1990. A logic
of authentication. ACM TOCS 8(1):18–36.
Dolev, D., and Yao, A. 1983. On the security of public
key protocols. IEEE Transactions on Information Theory
2(29):198–208.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge, MA: The MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and deductive databases. New Generation
Computing 9:365–385.
Halpern, J., and Pucella, R. 2003. On the relationship
between strand spaces and multi-agent systems. CoRR
cs.CR/0306107.
Hernández-Orallo, J., and Pinto, J. 1997. Formal modelling
of cryptographic protocols in situation calculus. (Published
in Spanish as: Especificación formal de protocolos crip-
tográficos en Cálculo de Situaciones, Novatica, 143, pp.
57-63, 2000).
Levesque, H.; Reiter, R.; Lin, F.; and Scherl, R. 1997.
Golog: A logic programming language for dynamic do-
mains. Journal of Logic Programming 31.
Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foundations
for the situation calculus. Linköping Electronic Articles in
Computer and Information Science 3(18).
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: The MIT Press.
Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problem. Artificial Intelligence 144(1-2):1–39.
Thayer, F.; Herzog, J.; and Guttman, J. 1999. Strand
spaces: Proving security protocols correct. JCS 7(1).
Wang, S., and Zhang, Y. 2008. A logic programming based
framework for security protocol verification. In Proc. IS-
MIS 2008, volume 4994 of LNAI, 638–643. Springer.

46

On Joint Ability in the Presence of Sensing

Hojjat Ghaderi and Hector Levesque
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada
{hojjat,hector}@cs.toronto.edu

Yves Lespérance
Department of Computer Science and Engineering

York University
Toronto, ON M3J 1P3, Canada

lesperan@cse.yorku.ca

Abstract
A central problem in the analysis of teams of agents
is to assess when a group of autonomous agents,
who may have private beliefs and goals, know
enough together to be able to achieve a goal, should
they so desire. In this paper, we present a defini-
tion of joint ability in the presence of sensing. We
show through some simple examples involving pri-
vate and public actions that it makes appropriate
predictions with respect to coordination.

1 Introduction
An individual agent can often achieve a goal even if he does
not initially know all the steps to follow, as long as he can
sense along the way enough information to know what to do
next, until the goal is attained. Clearly, one may delegate a
goal only to an agent that is able to achieve it. Moore [1985]
and others [Davis, 1994; Lespérance et al., 2000] developed
logical accounts of single agent ability in this sense.

Given this, an obvious question is how to extend this no-
tion to teams of agents: when does a group know enough
together, despite any incomplete knowledge or even false be-
liefs that they may have about the world or each other, to be
jointly able to achieve a goal. Crucially, the agents need to
know enough to stay coordinated. Unlike in the single-agent
case, the mere existence of a joint plan mutually believed to
achieve the goal (as in [Wooldridge and Jennings, 1999]) is
not sufficient, since there may be several incompatible work-
ing plans and the agents may not be able to choose a share
that coordinates with those of the others.

The issue of coordination has been thoroughly explored in
game theory [Osborne and Rubinstein, 1999]. However, a
major limitation of the classical game theoretic framework is
that it assumes that there is a complete specification of the
structure of the game including the beliefs of the agents. It
is often also assumed that this structure is common knowl-
edge among the agents. Recent work on the symbolic logic of
games allows more incomplete and qualitative specifications,
and supports symbolic reasoning over very large state spaces.
However, most of this work, such as Coalition Logic [Pauly,
2002] and ATEL [van der Hoek and Wooldridge, 2003],
is propositional, which limits expressiveness. More impor-
tantly, it ignores the issue of coordination within a coalition

and simply assumes that a team can achieve a goal if there
exists a strategy profile (or joint plan) over the agents that
achieves it. This is only sufficient if we assume that the agents
can communicate arbitrarily to coordinate as needed.

Ghaderi et al. [2007] proposed a logical framework to
model the coordination of teams of agents based on the sit-
uation calculus. Their formalization avoids both of the lim-
itations mentioned above: it supports reasoning on the basis
of very incomplete specifications about the belief states of
the agents, and it does not trivialize the issue of coordina-
tion. The formalization involves iterated elimination of dom-
inated strategies [Osborne and Rubinstein, 1999]. Each agent
eliminates strategies that are not as good as others given her
private beliefs about the world and about what strategies the
other agents would eliminate. This elimination process is re-
peated until it converges to a set of preferred strategies for
each agent. Joint ability is said to hold if all combinations of
preferred strategies succeed in achieving the goal.

However, Ghaderi et al. only considered example domains
involving ordinary “world changing” actions. In this paper,
we extend their account and show that it correctly handles
domains with sensing actions, actions that allow an agent to
obtain information by observing some aspect of the environ-
ment. We use an account of sensing actions and their effects
on knowledge from [Shapiro et al., 1998] and show that the
techniques proposed by Ghaderi et al. to prove joint ability or
the lack of it can be generalized to deal with sensing actions.
This is significant, as it requires dealing with knowledge
change, and strategies that may branch depending on what
is learned by sensing. The space of strategies quickly be-
comes extremely large and it is significant that our symbolic
proof techniques nonetheless allow results to be proven, even
with only incomplete specifications of the agents’ knowledge.
Note that our approach can be also used to handle basic “in-
forming” communication actions where the value of a fluent
is communicated by one agent to another. These actions work
very much like sensing, the difference being that it is the re-
cipient of the communication that gets the new information.

In the next section, we describe a simple setup to test these
ideas involving a safe with two locks. We then present the
formalization of this domain and the definition of joint abil-
ity in the situation calculus. We then show the kind of ability
results we can obtain in this formalization. Finally, we sum-
marize our contributions and discuss future work.

47

2 Opening A Safe Together
Perhaps the simplest non-trivial example of ability in the sin-
gle agent case was presented by Moore [1985]. He presents
the example of a safe that can be opened by dialing the correct
combination. Imagine that the safe explodes or jams or turns
on a security alarm when any other number is dialed. Sup-
pose there is an agent who does not know the combination of
the safe. Although a plan surely exists to open the safe and
the agent knows this, we would say that the agent is not able
to open the safe. But if the correct combination is written on a
piece of paper that the agent can pick up and read, we would
now say that the agent is able to open the safe. This, in its
most basic form, shows how ability depends on knowledge
which itself depends on the available sensing actions.

To illustrate our formalization of joint ability, we will use
a series of examples based on a two-person safe. The idea,
roughly, is that two combinations are needed to open the safe,
so that P and Q may be able to open the safe together even
though neither one may know enough to do it alone. We also
want to consider variants where, for example, Q knows both
combinations allowing him to open the safe alone if P does
not interfere, although P might not see this and ruin the plan.

To focus on the essential details only, we make a few sim-
plifications. First of all, safe combinations will be binary: the
safe has two locks A and B, and each lock has two buttons,
0 and 1. To open the safe, the correct button for lock A must
first be pushed (using action pA0 or pA1) – this puts the safe
on standby – and then the correct button for lock B must be
pushed (using action pB0 or pB1). Any button pushing other
than this sequence sets off an alarm, and the game is lost. In-
stead of having combinations written on a pieces of paper, we
assume that there are two binary sensing actions, sA and sB,
that cause the agent performing them to come to know the
combination of the lock in question. We also assume that the
agents act synchronously and in turn: P acts first and then
they alternate. The goal in all cases will be to open the safe
in exactly 4 steps without activating the alarm. We consider
four variants of this setup with different assumptions.

Example 1: Suppose nothing is specified about the agents
knowledge about the correct combinations of the locks. Ac-
tions are restricted in such a way that P and Q can only
choose among actions {pA0, pA1, sA} and {pB0, pB1, sB},
respectively. The actions are public so each agent gets to see
the actions of the other agent. For this example, we want
to say the agents can jointly open the safe. If the agents
know nothing, the intuitive joint plan would look like this:
P senses the combination of A, Q senses the combination of
B, P pushes the correct button for A, and Q pushes the cor-
rect button for B. Note that if agents have extra information,
e.g. P knows in advance the combination of A, other suc-
cessful joint plans will exist, but as we will see, they do not
cause any coordination problem.

Example 2: Suppose everything is exactly as in example 1
except that sA does not provide any information (the sensor is
broken). In this case, we want to say that there is not enough
information to conclude that the agents can open the safe. In
fact, we will show that if P does not know the combination
of lock A, they are provably not jointly able to open the safe.

Example 3: Suppose everything is as in example 1 except
that the actions are not public, so the agents do not see what
actions the other agent has performed (each just knows that
some action has been performed by the other, so there is no
confusion about whose turn it is). We will show that in this
case seeing the other agent’s actions is not necessary and that
the agents are jointly able to open the safe, again without any
need for extra assumptions about the beliefs of the agents.

Example 4: Suppose everything is as in example 3 except
all actions are available to both agents, i.e., both P and Q
can choose among actions {pA0, pA1, sA, pB0, pB1, sB}. We
still assume that actions are private. As in example 2, we will
show that there is not enough information to conclude the
agents can open the safe. However, this is not because there
is no good joint plan, instead the problem is that one agent
might have extra knowledge which enables him to also open
the safe on his own (if the other agent does not interfere) and
since actions are private this can cause lack of coordination.

3 The formal framework
The basis of our framework for joint ability is the situa-
tion calculus [McCarthy and Hayes, 1969; Levesque et al.,
1998]. The situation calculus is a predicate calculus lan-
guage for representing dynamically changing domains. A
situation represents a possible state of the domain. There
is a set of initial situations corresponding to the ways the
domain might be initially. The actual initial state of the
domain is represented by the distinguished initial situation
constant, S0. The term do(a, s) denotes the unique sit-
uation that results from an agent doing action a in situ-
ation s. We use do(〈a1, · · · , an〉, s) as a shorthand for
do(an, do(· · · , do(a1, s)) · · ·). Initial situations are defined as
those that do not have a predecessor: Init(s) .= ¬∃a∃s′. s =
do(a, s′). In general, the situations can be structured into a
set of trees, where the root of each tree is an initial situation
and the arcs are actions. The formula s v s′ is used to state
that there is a path from situation s to situation s′. Our ac-
count of joint ability will require some second-order features
of the situation calculus, including quantifying over certain
functions from situations to actions, that we call strategies.

Predicates and functions whose values may change from
situation to situation (and whose last argument is a situation)
are called fluents. The effects of actions on fluents are defined
using successor state axioms [Reiter, 2001], which provide a
succinct representation for both effect and frame axioms [Mc-
Carthy and Hayes, 1969]. To axiomatize a dynamic domain
in the situation calculus, we use Reiter’s [2001] action the-
ory, which consists of (1) successor state axioms; (2) initial
state axioms, describing the initial states of the domain in-
cluding the initial beliefs of the agents; (3) precondition ax-
ioms, specifying the conditions under which each action can
be executed; (4) unique names axioms for the actions, and (5)
domain-independent foundational axioms (we adopt the ones
given in [Levesque et al., 1998] which accommodate multiple
initial situations, but we do not describe them further here).

For our examples, we need eight fluents. The fluents cA
and cB indicate the combination of locks A and B (i.e. true
corresponds to button 1, and false corresponds to button 0 as
the correct buttons that need to be pushed). The fluents open,

48

standby, and alarm indicate whether the safe is open, the safe
is on standby, and the alarm is activated, respectively. The
fluent time indicates how many actions have been performed.
Finally, the fluent turn is used to indicate whose turn it is to
act, and the fluent B deals with the beliefs of the agents.

Moore [1985] defined a possible-worlds semantics for a
logic of knowledge in the situation calculus by treating situa-
tions as possible worlds. Scherl and Levesque [2003] adapted
this to Reiter’s theory of action and gave a successor state ax-
iom for B that states how actions, including sensing actions,
affect knowledge. Shapiro et al. [1998] adapted this to han-
dle the beliefs of multiple agents, and we adopt their account
here. B(x, s′, s) will be used to denote that in situation s,
agent x thinks that situation s′ might be the actual situation.
Note that the order of the situation arguments is reversed from
the convention in modal logic for accessibility relations. Be-
lief is then defined as an abbreviation:1

Bel(x, φ[now], s) .= ∀s′. B(x, s′, s) ⊃ φ[s′].
We will also use the following abbreviation:

BW(x, φ, s) .= Bel(x, φ, s) ∨ Bel(x,¬φ, s).
Mutual beliefs among the agents, denoted by MBel, can be
defined either as a fix-point or by introducing a new accessi-
bility relation using a second-order definition.

Our examples use the following successor state axioms:
• The combinations of the locks do not change over time:

cA(do(a, s)) ≡ cA(s), and cB(do(a, s)) ≡ cB(s).
• If the safe is on standby and the alarm is not active, push-

ing the correct button for lock B opens the safe:
open(do(a, s)) ≡ standby(s) ∧ ¬alarm(s) ∧

[cB(s) ∧ a = pB1 ∨ ¬cB(s) ∧ a = pB0] ∨ open(s).
• If the alarm is not active, pushing the correct button for

lock A puts the safe on standby:
standby(do(a, s)) ≡ ¬alarm(s) ∧

[cA(s)∧a = pA1 ∨ ¬cA(s)∧a = pA0]∨ standby(s).
• The alarm is activated by pushing the wrong button,

pushing a button of A if the safe is already on standby,
or pushing any button if the safe is already open:
alarm(do(a, s)) ≡ alarm(s) ∨

cA(s) ∧ a = pA0 ∨ ¬cA(s) ∧ a = pA1 ∨
cB(s) ∧ a = pB0 ∨ ¬cB(s) ∧ a = pB1 ∨
standby(s) ∧ (a = pA0 ∨ a = pA1) ∨
open(s) ∧ [a = pA0∨a = pA1∨a = pB0∨a = pB1].

• Belief changes due to sensing and other actions. We use
the following type of successor state axiom proposed by
Scherl and Levesque in the case where actions are public
(see Section 4.3 for the case where actions are private):
B(x, s′, do(a, s)) ≡ ∃s′′. B(x, s′′, s) ∧ s′ = do(a, s′′)
∧ [agent(a) = x ⊃ (SF(a, s′′) ≡ SF(a, s))].

SF(a, s) ≡ [a = sA ⊃ cA(s)] ∧ [a = sB ⊃ cB(s)].
Thus when any action occurs, all agents learn that it has
occurred. Moreover, when an agent performs sA or sB,
he alone learns the corresponding lock combination.

1Free variables are assumed to be universally quantified from
outside. If φ is a formula with a single free situation variable, φ[t]
denotes φ with that variable replaced by situation term t. Instead of
φ[now] we occasionally omit the situation argument completely.

• Each action uses one time step:
time(do(a, s)) = time(s) + 1.

• Whose turn it is to act alternates between P and Q:
turn(do(a, s)) = x ≡

turn(s) = Q ⊃ x = P ∧ turn(s) = P ⊃ x = Q.
The examples also include the following initial state axioms:
• Init(s) ⊃ turn(s) = P . So, agent P gets to act first.
• In all initial situations, time starts at 0, the alarm is not

active, the safe is not on standby and not open:
Init(s) ⊃

time(s) = 0∧¬alarm(s)∧¬standby(s)∧¬open(s).
• Each agent initially knows that it is in an initial situation:

Init(s) ∧ B(x, s′, s) ⊃ Init(s′).
• B models knowledge, and hence beliefs must be true:

Init(s) ⊃ B(x, s, s).
• Each agent initially has introspection of her beliefs:

Init(s)∧B(x, s′, s) ⊃ [∀s′′. B(x, s′′, s′) ≡ B(x, s′′, s)].
The last two properties of belief can be shown to hold for all
situations using the successor state axiom for B so that belief
satisfies the modal system KT45 [Chellas, 1980]. Since the
axioms above are universally quantified, they are known to
all agents, and in fact are common knowledge. We will let Σ
denote the action theory containing the successor and initial
state axioms above. All the examples in Section 4 will use
Σ (with variations in the B or SF axiom) and in some cases
with additional conditions about the beliefs of agents.

3.1 Our definition of joint ability
In this paper, for simplicity, we use [Ghaderi et al., 2007]’s
definition restricted to two agents (for the general definition
see [Ghaderi et al., 2007]). All of the definitions below are
abbreviations for formulas in the language of the situation
calculus presented above. The joint ability of two agents P
and Q to achieve φ is defined as follows:
• P and Q can jointly achieve φ starting from s iff all com-

binations of their preferred strategies work together:
JCan(φ, s) .= ∀σp, σq. Pref(P, σp, φ, s) ∧

Pref(Q, σq, φ, s) ⊃ Works(σp, σq, φ, s).
• The pair of strategies σp and σq works if there is a future

situation where φ holds and the strategies prescribe the
actions to get there according to whose turn it is:
Works(σp, σq, φ, s) .=

∃s′′. s v s′′ ∧ φ[s′′] ∧ ∀s′. s v s′ < s′′ ⊃
(turn(s′) = P ⊃ do(σp(s′), s′) v s′′) ∧
(turn(s′) = Q ⊃ do(σq(s′), s′) v s′′).

• Agent x prefers strategy σx if it is kept for all levels n:
Pref(x, σx, φ, s) .= ∀n. Keep(x, n, σx, φ, s).

• Keep is defined inductively:2

– At level 0, each agent keeps all of her strategies:
Keep(x, 0, σx, φ, s) .= Strategy(x, σx).

2Strictly speaking, the definition we propose here is ill-formed.
We want to use it with the second argument universally quanti-
fied (as in Pref). Keep and GTE actually need to be defined using
second-order logic, from which the definitions here emerge as con-
sequences. We omit the details for space reasons.

49

– at level n + 1, agent x keeps strategy σx if it was
kept at level n and there was not a better kept σ′

x
(σ′

x is better than σx if σ′
x is as good as, i.e. greater

than or equal to, σx while σx is not as good as it):
Keep(x, n+1, σx, φ, s) .= Keep(x, n, σx, φ, s)∧
¬∃σ′

x. Keep(x, n, σ′
x, φ, s) ∧

GTE(x, n, σ′
x, σx, φ, s)∧¬GTE(x, n, σx, σ′

x, φ, s).
• Strategy σx is as good as (Greater Than or Equal to)

σ′
x for agent x at level n if x believes that whenever σ′

x
works with strategies kept by the other agent y, so does
σx. Note that here x = P ∧ y = Q or x = Q ∧ y = P :
GTE(x, n, σx, σ′

x, φ, s) .=
∀σy. Bel(x, [Keep(y, n, σy, φ, now) ∧
Works(σ′

x, σy, φ, now) ⊃ Works(σx, σy, φ, now)], s).
• Finally, strategies for an agent are functions from situa-

tions to actions such that the required action is legal and
known to the agent whenever it is the agent’s turn to act:
Strategy(x, σ) .= ∀s. turn(s) 6= x ⊃ σ(s) = nil ∧

turn(s) = x ⊃ ∃a. Bel(x, σ(now) = a, s)∧Legal(a).
Legal will depend on the domain. For examples 1, 2
and 3, it is defined such that P can only do actions pA0,
pA1, and sA, while Q can only do pB0, pB1, and sB. For
example 4, all actions will be possible for both agents.

These formulas define joint ability in a way that resembles the
iterative elimination of weakly dominated strategies of game
theory [Osborne and Rubinstein, 1999]. As we will see in the
examples next, the mere existence of a working strategy pro-
file is not enough; the definition requires coordination among
the agents in that all preferred strategies must work together.

4 Formalizing the Examples
In this section, we prove results about the four examples men-
tioned earlier. Due to lack of space we present only brief
proof sketches. Note that the goal in all examples is to open
the safe in exactly 4 steps without activating the alarm, i.e.

φ(s) .= open(s) ∧ ¬alarm(s) ∧ time(s) = 4.

4.1 Example 1
Recall that for this example actions are divided between
agents and are public. We show that the agents are jointly
able to achieve the goal (and have mutual belief about this):
Theorem 1 Σ |= Init(s) ⊃ JCan(φ, s).
Actually, it is sufficient to show that the following holds:
Theorem 2 Σ |= Init(s) ∧ Keep(P, 2, σp, φ, s) ∧

Keep(Q, 2, σq, φ, s) ⊃ Works(σp, σq, φ, s).
The proof is involved, so we just sketch the steps. Assume
M is a model of Σ and µ a variable assignment such that
M,µ |= Init(s) ∧ Keep(P, 2, σp, φ, s) ∧ Keep(Q, 2, σq, φ, s).
We need to show that Works(σp, σq, φ, s) holds. Let σp and
σq be strategies prescribing that P and Q initially sense the
combination of locks A and B, respectively, and then push the
correct button of the corresponding lock, in turn, i.e.:3

3In what follows, we use pA(s) as a shorthand for the correct
push action for lock A in situation s. Any formula ψ that mentions
pA(s) with free variable s stands for (cA(s) ⊃ ψ[pA(s)/pA1]) ∧
(¬cA(s) ⊃ ψ[pA(s)/pA0]), where ψ[u/v] is replacing all free oc-
currences of u by v in ψ. We use a similar definition for pB(s).

• M,µ |= ∀s, a1, a2, s′. Init(s) ⊃
σp(s) = sA ∧ σp(do(a1, s)) = nil ∧
σp(do(〈a1, a2〉, s)) = pA(s) ∧
[do(〈a1, a2〉, s) < s′ ⊃

turn(s′) = P ⊃ σp(s′) = sA ∧
turn(s′) 6= P ⊃ σp(s′) = nil].

• M,µ |= ∀s, a1, a2, a3, s′. Init(s) ⊃
σq(s) = nil ∧ σq(do(a1, s)) = sB ∧
σq(do(〈a1, a2〉, s)) = nil ∧
σq(do(〈a1, a2, a3〉, s)) = pB(s) ∧
[do(〈a1, a2, a3〉, s) < s′ ⊃

turn(s′) = Q ⊃ σq(s′) = sB ∧
turn(s′) 6= Q ⊃ σq(s′) = nil].

It can be easily shown that functions σp and σq are in fact
strategies for P and Q that together achieve the goal in all
initial situations, and hence each survives the first round of
elimination for the corresponding agent. Also, after the first
round of eliminations, the following holds at level 1:
Theorem 3 σp and σq are as good as any other strategies:
• M,µ |= ∀s, σp. Init(s) ∧ Strategy(P, σp) ⊃

GTE(P, 1, σp, σp, φ, s).
• M,µ |= ∀s, σq. Init(s) ∧ Strategy(Q, σq) ⊃

GTE(Q, 1, σq, σq, φ, s).
By theorem 3, GTE(P, 1, σp, σp, φ, s) holds, and by as-
sumption Keep(P, 2, σp, φ, s) holds, therefore we must have
GTE(P, 1, σp, σp, φ, s). Then, since in all initial situations
Works(σp, σq, φ, s) holds, we must have Works(σp, σq, φ, s).
By a similar argument, we have GTE(Q, 1, σq, σq, φ, s). This
together with Works(σp, σq, φ, s) obtained above, leads to
Works(σp, σq, φ, s) as desired and thus Theorem 2 holds.
Theorem 3 itself can proved by the following two lemmas:
Lemma 1 For any strategy for P that survives the first elimi-
nation round, if its first action is to push the correct A button,
the action prescribed in response to Q doing sB must be sA:
Σ |= Init(s) ∧ Keep(P, 1, σp, φ, s) ∧ σp(s) = pA(s) ⊃

σp(do(〈pA(s), sB〉, s)) = sA.
Lemma 2 For any strategy for Q that survives the first round
of elimination, its first action in response to P doing sA must
be doing sB, and then if P continues by pushing the correct
button of lock A, Q must push the correct button of B:
Σ |= Init(s) ∧ Keep(Q, 1, σq, φ, s) ⊃

σq(do(sA, s) = sB ∧ σq(do(〈sA, sB, pA(s)〉, s)) = pB(s).
The proofs of lemmas 1 and 2 are omitted but they use the
fact that in a given initial situation s there are only 3 legal se-
quences of length 4 that can open the safe without activating
the alarm: [sA; sB; pA(s); pB(s)], [pA(s); sB; sA; pB(s)], and
[pA(s); pB(s); sA; sB], where pA(s) and pB(s) correspond to
the correct push actions for lock A and B in s, respectively.

We remind the reader that the reason that the above proofs
are involved is that we have not specified anything about the
beliefs of agents about the locks combinations and/or each
other. Our theorems hold no matter what beliefs the agents
have about this (e.g. if P and Q know the combination of both
locks but neither knows what the other agent knows, they can
still coordinate to open the safe despite the existence of many
working plans). See example 4 as a case where the existence
of multiple joint plans can cause lack of coordination.

50

4.2 Example 2
In this example, action sA does not provide new information.
To handle this, let Σ2 be exactly like Σ except the SF axiom
is replaced by SF(a, s) ≡ [a = sB ⊃ cB(s)]. The informa-
tion in Σ2 is not enough to conclude joint ability. In fact, we
show that if P does not know the combination of lock A they
cannot open the safe (even if Q knows both combinations):

Theorem 4 Σ2 |= Init(s) ∧ ¬BW(P, cA, s) ⊃ ¬JCan(φ, s).

Proof sketch: Let M be a model of Σ2 and µ be a variable
assignment such that M,µ |= Init(s) ∧ ¬BW(P, cA, s), it is
sufficient to show that there exists a pair of preferred strate-
gies for P and Q that does not achieve the goal. Since P
does not know the combination of A, there is at least another
accessible initial situation s′ such that cA(s) ≡ ¬cA(s′).
Note that the function σp defined in example 1 is not a strat-
egy in this model as P now does not know the combina-
tion of lock A even after performing sA. We can show that
P has at least two preferred strategies σp and σ′

p such that
M,µ |= σp(s) = pA0 ∧ σ′

p(s) = pA1. However, for any
strategy σq for Q, one of the pair (σp, σq) or (σ′

p, σq) does
not work in s, as the first action by P activates the alarm.

4.3 Example 3
In this example, everything is the same as in example 1 except
that actions are now private, so the other agent does not see
what actions are performed by the other agent (but each agent
is aware of her own actions including the sensing results if
any). To accommodate for this, we define Σ3 exactly as Σ
except we modify the successor state axiom for B as follows:
B(x, s′, do(a, s)) ≡ ∃s′′, a′′.

B(x, s′′, s) ∧ s′ = do(a′′, s′′) ∧ Legal(a′′) ∧
[agent(a) = x ⊃ a = a′′ ∧ (SF(a, s′′) ≡ SF(a, s))].

Despite actions being private, we can prove that the agents
have joint ability to open the safe (again without any need for
additional specifications about their beliefs):

Theorem 5 Σ3 |= Init(s) ⊃ JCan(φ, s).

The proof is similar to that of example 1. Note that σp and σq

used there to eliminate non-promising strategies did not rely
on actions of the other agent and are applicable here as well.
However, the proof for Theorem 3 is slightly different.

4.4 Example 4
In this example, all actions are legal for both agents but, as
in example 3, are private. To handle this, let Σ4 be like Σ3

except that Legal is defined such that both agents can perform
any of actions pA0, pB0, pA1, pB1, sA, and sB.4 Under these
assumptions we cannot conclude that the agents have joint
ability to open the safe; in fact we show that if it is initially
mutually known that P does not know the lock combinations
and Q knows both combinations they cannot open the safe:

Theorem 6 Σ4 |= Init(s)∧MBel(BW(Q, cA)∧BW(Q, cB)∧
¬BW(P, cA) ∧ ¬BW(P, cB), s) ⊃ ¬JCan(φ, s).

4Technically, every action a has an agent parameter as its first ar-
gument where, e.g., agent(pA0(x)) = x. To simplify the presenta-
tion we have omitted the agent argument. Very minor modifications
to the formulas presented here are needed to restore the argument.

[pA; pB]

-

?

-

?

σp

Xσ2
p X[sA; sA]

[sA; pA]

σqσ2
qσ1

q

σ1
p X X

[sB; pB]

Figure 1: For private shared actions, if it is mutually believed that
Q knows the locks combinations and P does not, multiple incom-
patible preferred plans exist that cause lack of coordination. In the
above matrix, a X at i, j corresponds to MBel(Works(i, j, φ), s) and
an X corresponds to MBel(¬Works(i, j, φ), s).

The interesting point here is that unlike in example 2, this
is not because no joint plan exists. Quite the opposite, there
are multiple joint plans that open the safe but the agents can-
not coordinate (assuming no prior conventions can be relied
upon). To see this consider any model M of Σ4 and variable
assignment µ where M,µ |= Init(s) ∧ MBel(BW(Q, cA) ∧
BW(Q, cB) ∧ ¬BW(P, cA) ∧ ¬BW(P, cB), s). We can show
that P and Q each prefers at least two strategies whose com-
binations do not always work (i.e. there is lack of coordina-
tion). Let σ1

p be a strategy for P that prescribes sensing the
combination of lock A and pushing its correct button as P ’s
first and second (non-nil) actions (represented by [sA; pA]).
Also, let σ2

p be a strategy for P that always prescribes per-
forming sA whenever it is P ’s turn (represented by [sA; sA]).
Similarly, let σ1

q be a strategy for Q that says to sense the
combination of lock B and then to push its correct button as
Q’s first and second non-nil actions (represented by [sB; pB]).
Finally, let σ2

q be a strategy for Q that prescribes pushing the
correct button of lock A and B as Q’s first and second non-nil
actions (represented by [pA; pB]). Note that since Q knows
both combinations, σ2

q is in fact a valid strategy. Clearly, we
have M,µ |= MBel(Works(σ1

p, σ1
q , φ) ∧ Works(σ2

p, σ2
q , φ) ∧

¬Works(σ1
p, σ2

q , φ) ∧ ¬Works(σ2
p, σ1

q , φ), s), see Fig. 1. To
show that the agents are not able to open the safe, it remains
to show that P and Q never eliminate these strategies:

Lemma 3 P prefers σ1
p and σ2

p. Q prefers σ1
q and σ2

q :

• M,µ |= ∀i. Keep(P, i, σ1
p, φ, s) ∧ Keep(P, i, σ2

p, φ, s).
• M,µ |= ∀i. Keep(Q, i, σ1

q , φ, s) ∧ Keep(Q, i, σ2
q , φ, s).

We sketch the proof for the 1st elimination round (i = 1),
the generalization to all i’s is done using simple induc-
tion. Assume to the contrary M,µ |= ¬Keep(P, 1, σ1

p, φ, s).
Then there must exist a better strategy σp for P such that
GTE(P, 0, σp, σ

1
p, φ, s) and ¬GTE(P, 0, σ1

p, σp, φ, s). Hence,
since M,µ |= MBel(Works(σ1

p, σ1
q , φ), s), we must have

M,µ |= Bel(P, Works(σp, σ
1
q , φ), s). However, any strategy

for P that works with σ1
q in all P ’s accessible initial situa-

tions must prescribe doing sA and then pA as P ’s first two
non-nil actions, respectively.5 Hence, the first two actions of
σp and σ1

p are the same, which contradicts the assumption of
σp being better than σ1

p. Therefore, P keeps σ1
p at level 1.

Similarly, we can show that if there were strategy σp better

5P does not know the combination of lock A, so there exist two
accessible initial situations that differ on cA. Any strategy that pre-
scribes first doing pA0 (or pA1) activates the alarm in one of them.

51

than σ2
p then M,µ |= Bel(P, Works(σp, σ

2
q , φ), s). However,

any strategy σp that works with σ2
q in all P ’s accessible ini-

tial situations must prescribe doing nothing but sensing as P ’s
first and second (non-nil) actions. It can then be shown that
M,µ |= GTE(P, 0, σ2

p, σp, φ, s) which contradicts σp being
better than σ2

p. So, σ2
p is also kept at level 1. Finally, there are

analogous arguments for Q keeping σ1
q and σ2

q at level 1.

5 Discussion and Future Work
In this paper, we extended Ghaderi et al. [2007]’s account of
joint ability to domains with sensing actions, actions that al-
low agents to acquire new information as they proceed. We
proposed ways of modeling the effects of such sensing ac-
tions on the agents’ knowledge in the account. In such set-
tings, strategies branch on sensing outcomes (as well as on
observed actions by others), and the number of strategies typ-
ically grows extremely large. We showed that the symbolic
proof techniques proposed in [Ghaderi et al., 2007] could be
generalized to establish joint ability or lack of joint ability
in domains with sensing actions, even with very incomplete
specifications of the agents’ knowledge.

Our account of ability generalizes previous work on single
agent ability [Moore, 1985; Davis, 1994; Lespérance et al.,
2000]. We go beyond these single agent accounts by model-
ing how the knowledge of all the agents changes as they act
and by ensuring that the team remains coordinated — all of
the agents’ preferred strategies must work together.

Also related is work on logics of games [Pauly, 2002;
van der Hoek and Wooldridge, 2003]. As mentioned earlier,
these frameworks are propositional, and thus less expressive
than ours. Moreover, they ignore the need for coordination
inside a coalition, which is only reasonable if the agents can
communicate arbitrarily to agree on a joint strategy.

Our approach goes beyond classical game theory [Osborne
and Rubinstein, 1999] in that we can reason about joint abil-
ity even in the presence of incomplete specifications of the
structure of the game including the beliefs of the agents.
See [Ghaderi et al., 2007] for more discussion of the rela-
tionship between the two accounts.

In this paper, for simplicity, we used Ghaderi et al.’s for-
malization of joint ability restricted to teams of two agents;
see [Ghaderi et al., 2007] for the general multiagent version.
Their paper also discusses how agents that are outside of the
team can be handled, i.e. by ensuring that the team’s strate-
gies achieve the goal for all of the outside agents’ strategies.

As mentioned earlier, our approach can also handle inform-
ing communication actions where the truth value of a propo-
sition or the value of a fluent is communicated by an agent to
one or several other agents. It is straightforward to reformu-
late the examples considered in this paper to involve commu-
nication actions; instead of simply sensing a lock combina-
tion, an agent asks another “informer” agent for its value.

An issue for future work is examining how different ways
of comparing strategies (the GTE order) affect the notion of
joint ability. With the current GTE order, each agent com-
pares her strategies by examining how they work when paired
with the strategies of the other agent in each accessible situa-
tion separately. Another possibility is that, for example, each

agent performs the comparison based on whether she believes
her strategies work with those of the other agent (i.e. Bel is
distributed over the implication in the GTE definition). Both
definitions give the right results for our examples and others.

Also, in future work, we would like to generalize
Legal/Poss to be situation dependent, and devise ways of
handling conventions, i.e. mutually believed rules that allow
agents to stay coordinated. It would also be good to explore
how the framework can be used in automated verification and
in multiagent planning.

References
[Chellas, 1980] B. Chellas. Modal logic: an introduction.

United Kingdom: Cambridge University Press, 1980.
[Davis, 1994] Ernest Davis. Knowledge preconditions for

plans. J. of Logic and Computation, 4(5):721–766, 1994.
[Ghaderi et al., 2007] Hojjat Ghaderi, Hector Levesque, and

Yves Lespérance. A logical theory of coordination and
joint ability. In AAAI’07, pages 421–426, 2007.

[Lespérance et al., 2000] Yves Lespérance, Hector J.
Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1):165–186, 2000.

[Levesque et al., 1998] H. Levesque, F. Pirri, and R. Reiter.
Foundations for the situation calculus. Electronic Trans-
actions on Artificial Intelligence, 2(3-4):159–178, 1998.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. 1969.

[Moore, 1985] R. Moore. A formal theory of knowledge and
action. In J. Hobbs and R. Moore, editors, Formal Theories
of the Commonsense World, pages 319–358, 1985.

[Osborne and Rubinstein, 1999] Martin J. Osborne and Ariel
Rubinstein. A Course in Game Theory. MIT Press, 1999.

[Pauly, 2002] M. Pauly. A modal logic for coalitional power
in games. Logic and Computation, 12(1):149–166, 2002.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Log-
ical Foundations for Specifying & Implementing Dynami-
cal Systems. The MIT Press, 2001.

[Scherl and Levesque, 2003] R. Scherl and H. Levesque.
Knowledge, action, and the frame problem. Artificial In-
telligence, 144:1–39, 2003.

[Shapiro et al., 1998] S. Shapiro, Y. Lespérance, and
H. Levesque. Specifying communicative multi-agent
systems. In W. Wobcke, M. Pagnucco, and C. Zhang,
editors, Agents and Multiagent systems, pages 1–14.
Springer-Verlag, 1998.

[van der Hoek and Wooldridge, 2003] W. van der Hoek and
M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applica-
tions. Studia Logica, 75(1):125–157, 2003.

[Wooldridge and Jennings, 1999] M. Wooldridge and N. R.
Jennings. The cooperative problem-solving process. Jour-
nal of Logic and Computation, 9(4):563–592, 1999.

52

Definability and Process Ontologies

Michael Grüninger
Department of Mechanical and Industrial Engineering

University of Toronto
Toronto, Ontario, Canada

gruninger@mie.utoronto.ca

Abstract
In this paper, we use the notions of relative interpretations and
definable models from mathematical logic to compare differ-
ent ontologies and also to evaluate the limitations of particu-
lar ontologies. In particular, we characterize the relationship
between the theories within the first-order PSL Ontology and
two other ontologies – a first-order theory of time and Reiter’s
second-order axiomatization of situation calculus.

1 Introduction
Representing activities and the constraints on their occur-
rences is an integral aspect of commonsense reasoning, par-
ticularly in manufacturing, enterprise modelling, and au-
tonomous agents or robots. There have been a variety of pro-
cess ontologies developed within the artificial intelligence
community, particularly in the context of robotics and plan-
ning systems.

In this paper, we use the notions of relative interpretations
and definable models to compare different process ontolo-
gies and also to evaluate the limitations of particular ontolo-
gies. In particular, we characterize the relationship between
the theories within the first-order PSL Ontology and two
other ontologies – a first-order theory of time and Reiter’s
second-order axiomatization of situation calculus. There are
two major kinds of results – relative interpretation theorems
(which show the conditions under which two ontologies are
equivalent), and nondefinability theorems (which show that
one ontology is in some sense stronger since it is able to
define concepts that other ontologies cannot define).

2 Relationships between Theories
Different ontologies within the same language can be com-
pared using the notions of satisfiability, entailment, and in-
dependence. More difficult is to compare ontologies that are
axiomatized in different languages; in such cases, we need to
determine whether or not the lexicon of one ontology can be
interpreted in the lexicon of the other ontology. In this sec-
tion, we review the basic concepts from model theory that
will supply us with the techniques for comparing ontologies
in different languages.

2.1 Relative Interpretations of Theories
We will adopt the following definition from (Enderton
1972):

Definition 1 An interpretation π of a theory T0 with lan-
guage L0 into a theory T1 with language L1 is a function
on the set of parameters of L0 such that
1. π assigns to ∀ a formula π∀ of L1 in which at most v1

occurs free, such that

T1 |= (∃v1) π∀
2. π assigns to each n-place relation symbol P a formula πP

of L1 in which at most the variables v1, ..., vn occur free.
3. π assigns to each n-place function symbol f a formula πf

of L1 in which at most the variables v1, ..., vn, vn+1 occur
free, such that

T1 |= (∀v1, ..., vn) π∀(v1) ∧ ... ∧ π∀(vn)

⊃ (∃x)(π∀(x)∧((∀vn+1)(πf (v1, ..., vn+1) ≡ (vn+1 = x))))
4. For any sentence σ in L0,

T0 |= σ ⇒ T1 |= π(σ)

2.2 Definable Interpretations
Relative interpretations specify mappings between theories;
we are also interested in specifying mappings between mod-
els of the theories. Such an approach will also provide with
a means of proving that no relative interpretation exists be-
tween two particular theories.

We begin with the notion of definable sets within a struc-
ture.
Definition 2 Let M be a structure in a language L.

A set X ⊆ Mn is definable in M iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}
X isA-definable if there is a formula ψ(v, w1, ..., wl) and

b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}
Using this definition, we can adopt the following ap-

proach from (Marker 2002):
Definition 3 Let N be a structure in L0 and let M be a
structure in L. We say that N is definable in M iff we can
find a definable subset X of Mn and we can interpret the
symbols of L0 as definable subsets and functions on X so
that the resulting structure in L0 is isomorphic to N .

53

The relationship between relative interpretations of theo-
ries and definable interpretations of structures is captured in
a straightforward way by the following proposition:
Proposition 1 If there exists an interpretation of T1 into T2,
then every model of T1 is definable in some model of T2.

Our primary tool for proving that the models of one on-
tology are not definable in the models of another ontology
will be the following proposition from (Marker 2002):
Proposition 2 Let M be a structure. If X ⊂ Mn is A-
definable, then every automorphism of M that fixes the set
A pointwise fixesX setwise (that is, if σ is an automorphism
of M and σ(a) = a for all a ∈ A, then σ(X) = X).

Using this proposition, we can show that a relation is not
definable in some structure if there exists an automorphism
of the structure that does not preserve the relation.

3 Definability and Time Ontologies
3.1 Linear Time with Endpoints
Consider the ontology Tlinear−time

1 of linear time without
endpoints (Hayes 1996). The countable models of this on-
tology are isomorphic to countably infinite linear orderings
with no initial or final element.
Lemma 1 Let T be a model of Tlinear time that is either dis-
crete or dense.

The set of automorphisms Aut(T) does not fix any time-
points.
Proof: A model T of Tlinear time is discrete iff it con-

tains an elementary subordering that isomorphic to Z, and
Aut(Z) does not fix any elements of Z.
A model T of Tlinear time is dense iff it contains an ele-
mentary subordering that is isomorphic to Q, and Aut(Q)
does not fix any elements of Q. 2

In other words, for any timepoint in T , there exists an-
other timepoint which is the image of some automorphism
of T , whenever T is either discrete or dense.

3.2 Relationship to PSL-Core
The purpose of PSL-Core ((Gruninger 2004), (Bock &
Gruninger 2005)) is to axiomatize a set of intuitive seman-
tic primitives that are adequate for describing the funda-
mental concepts of manufacturing processes. Consequently,
this characterization of basic processes makes few assump-
tions about their nature beyond what is needed for describing
those processes, and it is therefore rather weak in terms of
logical expressiveness.

Within PSL-Core 2, there are four kinds of entities re-
quired for reasoning about processes – activities, activity oc-
currences, timepoints, and objects. Activities may have mul-
tiple occurrences, or there may exist activities which do not

1The axioms for Tlinear−time in CLIF (Com-
mon Logic Interchange Format) can be found at
http://www.stl.mie.utoronto.ca/colore/
linear-time.clif

2The axiomatization of PSL-Core (also re-
ferred to as Tpslcore) in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
psl core.html

occur at all. Timepoints are linearly ordered, forwards into
the future, and backwards into the past. Finally, activity oc-
currences and objects are associated with unique timepoints
that mark the begin and end of the occurrence or object.
Lemma 2 A model of Tpslcore in which the ordering over
timepoints is either discrete or dense is not definable in any
model of Tlinear−time.
Proof: Let T be a model of Tlinear time and let M be a

model of Tpslcore in which the ordering over timepoints is
either discrete or dense.
By Lemma 1, the set of automorphisms Aut(T) does not
fix any timepoints, so that for any timepoint t there exists
ϕ ∈ Aut(T) such that ϕ(t) 6= t.
Since beginof is a function, activity occurrences have
unique beginning timepoints, so that we have

〈o, t〉 ∈ beginof ⇒ 〈o, ϕ(t)〉 6∈ beginof

By Proposition 2, the beginof function is not definable
in T , and hence M is not definable in T . 2

Theorem 1 There does not exist an interpretation of Tpslcore

into Tlinear−time.
Proof: This follows from Proposition 1 and Lemma 1. 2

By Theorem 1, we cannot use a time ontology alone to
reason about activities and their occurrences.

4 Definability and Situation Calculus
In this section, we characterize the relationship between Re-
iter’s second-order axiomatization of the situation calculus
and three core theories within the first-order PSL Ontology.

4.1 Axiomatization of Situation Calculus
Consider the theory Tsitcalc which is Reiter’s second-order
axiomatization of the situation calculus ((Reiter 2001),
(Levesque et al. 1997)). Let Tsittime be Pinto’s axioma-
tization of time for situation trees ((Pinto & Reiter 1995))
and let Tsitfluent be Pinto’s axiomatization of the holds re-
lation3.

4.2 Relationship to PSL-Core
Theorem 2 There exists an interpretation of Tpslcore into
Tsitcalc ∪ Tsittime.
Proof: Suppose

πoccurrence of (s, a) = ((∃s1) s = do(a, s1))

πactivity(a) = ((∃s1, s2) s = do(a, s1))
πactivity occurrence(s) = ((∃a, s1) s = do(a, s1))

πtimepoint(t) = ((∃s) (start(s) = t))

3The axioms of Tsitcalc in CLIF can be found at
http://stl.mie.utoronto.ca/colore/
sitcalc.clif.

The axioms of Tsittime can be found at
http://stl.mie.utoronto.ca/colore/
sittime.clif. The axioms of Tsitfluent can be found at
http://stl.mie.utoronto.ca/colore/
sitfluent.clif.

54

πbeginof (s, t) = ((start(s) = t))
πendof (s, t) = ((∃a) (end(s, a) = t))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime entail the axioms of Tpslcore.
2

Of course, it is not surprising to see that there exists an
interpretation of Tpslcore into Tsitcalc ∪ Tsittime, since the
theory Tpslcore was designed to be the weakest process on-
tology that is shared by other process ontologies.

4.3 Relationship to Occurrence Trees
Within the PSL Ontology, the theory Tocctree extends the
theory of Tpslcore

4. An occurrence tree is a partially ordered
set of activity occurrences, such that for a given set of activi-
ties, all discrete sequences of their occurrences are branches
of the tree.

An occurrence tree contains all occurrences of all activ-
ities; it is not simply the set of occurrences of a particu-
lar (possibly complex) activity. Because the tree is discrete,
each activity occurrence in the tree has a unique successor
occurrence of each activity. Every sequence of activity oc-
currences has an initial occurrence (which is the root of an
occurrence tree).

Although occurrence trees characterize all sequences of
activity occurrences, not all of these sequences will intu-
itively be physically possible within the domain. We there-
fore consider the subtree of the occurrence tree that consists
only of possible sequences of activity occurrences; this sub-
tree is referred to as the legal occurrence tree.

Occurrence trees are closely related to situation trees,
which are the models of Reiter’s axiomatization of situation
calculus; the following theorems make this intuition more
precise.
Theorem 3 There exists an interpretation of Tocctree ∪
Tpslcore into Tsitcalc ∪ Tsittime.
Proof: Suppose

πearlier(s1, s2) = s1 < s2

πgenerator(a) = (∃s1, s2) s = do(a, s1)
πarboreal(s) = (∃a, s1) s = do(a, s1)

πsuccessor(a, s) = do(a, s)
πinitial(s) = (s = do(a, S0))
πlegal(s) = (executable(s))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime entail the axioms of Tocctree∪
Tpslcore. 2

What of the converse direction – does there exist an inter-
pretation of Tsitcalc ∪ Tsittime into Tocctree ∪ Tpslcore. The
primary difference between Tocctree and Tsitcalc is the ex-
istence of models of Tocctree that are occurrence trees with
branches that are not isomorphic to the standard models of
the theory Th(N, 0, S,<); such trees cannot be isomorphic
to situation trees.

4The axioms of Tocctree in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/occtree.th.html

Definition 4 WFAS is the first-order axiom schema

(∀s) (φ(s) ∧ arboreal(s))

⊃ ((∃x)φ(x)∧earlier(x, s)∧((∀y)earlier(y, x) ⊃ ¬φ(y)))
for any first-order formula φ(x).
This axiom schema is equivalent to saying that all first-order
definable sets of elements in an occurrence tree are well-
founded.
Theorem 4 Let ACA be a sentence of the form

(∀a, s1, s2) (s2 = do(a, s1)) ⊃ (a = A1) ∨ ... ∨ (a = An)

There exists an interpretation of Tsitcalc ∪ ACA into
Tocctree ∪ Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

π<(S0, s2) = (∃s) initial(s)∧(earlier(s, s2)∨(s = s2)

(s1 6= S0) ⇒ π<(s1, s2) = earlier(s1, s2)
πdo(a, S0) = (∃s) initial(s) ∧ occurrence of(s, a)

(s1 6= S0) ⇒ πdo(a, s) = successor(a, s)
πexecutable(s) = (legal(s))

Since the interpretation of theories is specified with re-
spect to first-order entailment, we only need to show that
the first-order consequences are preserved by the interpre-
tation.
The techniques introduced in (Doets 1989) and (Backofen,
Rogers, & Vijay-Shanker 1995) can be used to show that
the models of Tocctree∪Tpslcore∪WFAS are elementarily
equivalent to models of Tsitcalc ∪ACA. 2

4.4 Relationship to Discrete States
Most applications of process ontologies are used to rep-
resent dynamic behaviour in the world so that intelligent
agents may make predictions about the future and expla-
nations about the past. In particular, these predictions and
explanations are often concerned with the state of the world
and how that state changes. The PSL core theory Tdisc state

is intended to capture the basic intuitions about states and
their relationship to activities5.

Within the PSL Ontology, state is changed by the occur-
rence of activities. Intuitively, a change in state is captured
by a state that is either achieved or falsified by an activ-
ity occurrence. Furthermore, state can only be changed by
the occurrence of activities. Thus, if some state holds af-
ter an activity occurrence, but after an activity occurrence
later along the branch it is false, then an activity must oc-
cur at some point between that changes the state. This also
leads to the requirement that the state holding after an ac-
tivity occurrence will be the same state holding prior to any
immediately succeeding occurrence, since there cannot be
an activity occurring between the two by definition.
Theorem 5 There exists an interpretation of Tdisc state ∪
Tocctree ∪ Tpslcore into Tsitcalc ∪ Tsittime ∪ Tsitfluent.

5The axioms of Tdisc state in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/disc state.th.html

55

Proof: Suppose

(s 6= S0) ⇒ πholds(f, s) = holds(f, s)

πprior(f, s) = (((∀s, s′, a) s = do(a, s′) ⊃ holds(f, s))
∧(((∃s, s′, a) s = do(a, s′)) ∨ holds(f, S0)))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime∪Tsitfluent entail the axioms
of Tdisc state ∪ Tocctree ∪ Tpslcore. 2

The interpretation of situation calculus into the PSL On-
tology requires an additional assumption that the set of flu-
ents in any model be finite and bounded.
Theorem 6 Let FCA be a sentence of the form

(∀f, s) holds(f, s) ⊃ (f = F1) ∨ ... ∨ (f = Fm)

There exists an interpretation of Tsitcalc ∪ Tsittime ∪
Tsitfluent ∪ ACA ∪ FCA into Tdisc state ∪ Tocctree ∪
Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

πholds(f, s) = holds(f, s)

πholds(f, S0) = (∃s) initial(s) ∧ prior(f, s)
As with Theorem 4, the techniques introduced in (Doets
1989) and (Backofen, Rogers, & Vijay-Shanker 1995) can
be used to show that the models of Tdisc state ∪Tocctree ∪
Tpslcore ∪WFAS are elementarily equivalent to models
of Tsitcalc ∪ Tsittime ∪ Tsitflent ∪ACA ∪ FCA. 2

Although Tsitcalc ∪ Tsittime ∪ Tsitfluent cannot be inter-
preted into Tdisc state∪Tocctree∪Tpslcore without the axiom
schema, we can show that the two theories are equivalent
with respect to a restricted class of first-order sentences.
Theorem 7 Let Q(s) be a simple state formula in the lan-
guage of Tsitcalc and let Q′(s) be the the image of the for-
mula under the interpretation into Tdisc state ∪ Tocctree ∪
Tpslcore.

For any model M of Tsitcalc ∪Tsittime ∪Tsitfluent there
exists a modelN of Tdisc state∪Tocctree∪Tpslcore such that

Th(M) |= (∀s)Q(s) ⇔ Th(N) |= (∀s)Q′(s)

and

Th(M) |= (∃s)Q(s) ⇔ Th(N) |= (∃s)Q′(s)

Proof: (Sketch) Axioms 6 and 7 of Tdisc state are logi-
cally equivalent to the instantiation of the axiom schema
WFAS for positive and negative holds literals, respec-
tively. Since simple state formulae are finite boolean
combinations of positive and negative holds literals with
the same activity occurrence variable, the instantiation of
WFAS for a simple state formula is logically equivalent
to a finite boolean combination of sentences that are en-
tailed by Tdisc state ∪ Tocctree ∪ Tpslcore. 2

The first sentence in Theorem 7 corresponds to the clas-
sical planning problem, while the second sentence corre-
sponds to the entailment of state constraints. By this the-
orem, the PSL Ontology entails the same set of plans and
state constraints as Tsitcalc.

5 Nondefinability Theorems
In this section, we show that the remaining core theories
in the PSL Ontology cannot be interpreted in Tsitcalc ∪
Tsittime.

5.1 Automorphisms of Situation Trees
All of the nondefinability theorems rest on the characteriza-
tion of the automorphisms of situation trees and the failure
of these automorphisms to preserve the sets that correspond
to the extensions of the functions and relations in models of
the PSL Ontology. We introduce three lemmas that char-
acterize properties of the automorphisms of situation trees
which will be used in later proofs.
Lemma 3 Let R be a model of Tsitcalc ∪ Tsittime and let
Aut(R) be the set of automorphisms of R.

For any ϕ ∈ Aut(R) and any element o of the situation
tree, o and ϕ(o) must be on different branches of the situa-
tion tree.
Lemma 4 Let R be a model of Tsitcalc ∪ Tsittime.

The set of automorphisms Aut(R) of a situation tree is
transitive on the set of situations that are the successors of a
situation in the tree.
Lemma 5 Let R be a model of Tsitcalc ∪ Tsittime.

The set of automorphisms Aut(R) of a situation tree is
transitive on the set of actions in R.

5.2 Relationship to Subactivities
The theory Tsubactivity in PSL Ontology uses the
subactivity relation to capture the basic intuitions for the
composition of activities6. This relation is a discrete par-
tial ordering, in which primitive activities are the minimal
elements.
Lemma 6 A model M of Tsubactivity ∪ Tpslcore with non-
primitive activities is not definable in any model of Tsitcalc∪
Tsittime.
Proof: We will show that the subactivity relation in M is

not definable in any model of Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of actions in R; thus,
there exists ϕ ∈ Aut(R) and distinct actions a1,a2 such
that ϕ(a1) = a2. By the following axiom of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a1,a2〉 ∈ subactivity ⇒ 〈ϕ(a1), ϕ(a2)〉 6∈ subactivity

By Proposition 2, the subactivity relation is not defin-
able in R, and hence M is not definable in R. 2

Theorem 8 There does not exist an interpretation of
Tsubactivity ∪ Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 6 and Lemma 1. 2

6The axioms of Tsubactivity in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/subactivity.th.html

56

5.3 Relationship to Atomic Activities
The primary motivation behind the core theory Tatomic in
the PSL Ontology is to capture intuitions about the occur-
rence of concurrent activities7. The core theory Tatomic in-
troduces the function conc that maps any two atomic activ-
ities to the activity that is their concurrent composition. Es-
sentially, an atomic activity corresponds to some set of prim-
itive activities, so that every concurrent activity is equivalent
to the composition of a set of primitive activities.
Lemma 7 A model M of Tatomic ∪ Tsubactivity ∪ Tpslcore

with nonatomic activities is not definable in any model of
Tsitcalc ∪ Tsittime.
Proof: We will show that the conc function and atomic

relation in M are not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of actions in R; thus
there exists ϕ ∈ Aut(R) and actions a1,a2,a3 such that
a3 = conc(a1,a2) and

ϕ(a1) = a1, ϕ(a2) = a2, ϕ(a3) = a3

It is easy to see that

ϕ(conc(a1,a2)) 6= conc(ϕ(a1), ϕ(a2))

There also exists ϕ ∈ Aut(R) and distinct actions a1,a2

such that ϕ(a1) = a2 and

〈a1,a2〉 ∈ subactivity

〈a1〉 ∈ atomic, 〈a2〉 6∈ atomic
By the following axiom of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a〉 ∈ atomic ⇒ 〈ϕ(a)〉 6∈ atomic

By Proposition 2, the conc function and atomic relation
are not definable inR, and henceM is not definable inR.
2

Theorem 9 There does not exist an interpretation of
Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into Tsitcalc ∪
Tsittime.
Proof: This follows from Lemma 7 and Lemma 1. 2

5.4 Relationship to Complex Activities
The core theory Tcomplex characterizes the relationship be-
tween the occurrence of a complex activity and occurrences
of its subactivities8. Occurrences of complex activities cor-
respond to sets of occurrences of subactivities; in particular,
these sets are subtrees of the occurrence tree. An activity

7The axioms of Tatomic in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/atomic.th.html

8The axioms of Tcomplex in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/complex.th.html

tree consists of all possible sequences of atomic subactivity
occurrences beginning from a root subactivity occurrence.
In a sense, activity trees are a microcosm of the occurrence
tree, in which we consider all of the ways in which the world
unfolds in the context of an occurrence of the complex ac-
tivity.

Lemma 8 A modelM of Tcomplex∪Tatomic∪Tsubactivity∪
Tpslcore with nonatomic activities such that not all activity
occurrences are elements of nontrivial activity trees is not
definable in any model of Tsitcalc ∪ Tsittime.
Proof: We will show that the root and min precedes re-

lations in M are not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of situations that are the
successors of any situation in the tree.
There exists ϕ1 ∈ Aut(R) such that for any s1, s2 that are
successors of the same element of the situation tree such
that ϕ1(s1) = s2 and such that s1 is not an element of any
nontrivial activity tree and s2 is an element of a nontrivial
activity tree.
If s2 is a root of an activity tree, then there exists ϕ1 ∈
Aut(R) such that

〈s,a〉 ∈ root ⇒ 〈ϕ1(s),a〉 6∈ root

If s2 is not a root of an activity tree, then there exists ϕ2 ∈
Aut(R) such that

〈s1, s2,a〉 ∈ min precedes ⇒

〈ϕ2(s1), ϕ2(s2), ϕ2(a)〉 6∈ min precedes

By Proposition 2, the root and min precedes relations
are not definable inR, and henceM is not definable inR.
2

Theorem 10 There does not exist an interpretation of
Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into
Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 8 and Lemma 1. 2

5.5 Relationship to Complex Activity
Occurrences

Within Tcomplex, complex activity occurrences correspond
to activity trees, and consequently occurrences of complex
activities are not elements of the legal occurrence tree. The
axioms of the core theory Tactocc ensure complex activity
occurrences correspond to branches of activity trees9. Each
complex activity occurrence has a unique atomic root oc-
currence and each finite complex activity occurrence has a
unique atomic leaf occurrence. A subactivity occurrence
corresponds to a sub-branch of the branch corresponding to
the complex activity occurrence.

9The axioms of Tactocc in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/actocc.th.html

57

Lemma 9 A model M of Tactocc ∪ Tcomplex ∪ Tatomic ∪
Tsubactivity ∪ Tpslcore with occurrences of nonatomic activ-
ities is not definable in any model of Tsitcalc ∪ Tsittime.
Proof: We will show that the subactivity occurrence

relation in M is not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of situations that are
the successors of any situation in the tree. Furthermore,
Aut(R) only acts on elements of the situation tree, so that
it fixes occurrences of complex activities.
By Lemma 3, any ϕ ∈ Aut(R) maps elements of a branch
of the situation tree to another branch of the situation tree;
however, the axioms of Tactoc entail that all subactivity
occurrences of a complex activity occurrences must be on
the same branch of the tree. Thus, for any activity occur-
rence o1 that is an element of the situation tree and any
complex activity occurrence o2, there exists ϕ ∈ Aut(R)
such that

〈o1,o2〉 ∈ subactivity occurrence ⇒

〈ϕ(o1),o2〉 6∈ subactivity occurrence

By Proposition 2, the subactivity occurrence relation
is not definable in R, and hence M is not definable in R.
2

Theorem 11 There does not exist an interpretation of
Tactocc ∪ Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪
Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 9 and Lemma 1. 2

6 Summary
In this paper we have characterized the relationship between
the PSL Ontology and two other ontologies – a time ontol-
ogy and Reiter’s second-order axiomatization of situation
calculus. With the addition of a first-order axiom schema
and the restriction to finite domains of activities and fluents,
elements of the PSL Ontology are elementarily equivalent
to models of the situation calculus axiomatization. Further-
more, the core theories in PSL Ontology that axiomatize
subactivities and complex activities are not definable in the
situation calculus.

References
Backofen, R.; Rogers, J.; and Vijay-Shanker, K. 1995. A
first-order axiomatization of the theory of finite trees. Jour-
nal of Logic, Language, and Information 4:5–39.
Bock, C., and Gruninger, M. 2005. PSL: A semantic
domain for flow models. Software and Systems Modeling
4:209–231.
Doets, K. 1989. Monadic π1

1-theories of π1
1-properties.

Notre Dame Journal of Formal Logic 30:224–240.
Enderton, H. 1972. Mathematical Introduction to Logic.
Academic Press.

Gruninger, M. 2004. Ontology of the Process Specification
Language. In Staab, S., and Studer, R., eds., Handbook of
Ontologies in Information Systems. Springer-Verlag.
Hayes, P. 1996. A catalog of temporal theories. Technical
Report UIUC-BI-AI-96-01, University of Illinois.
Levesque; H., Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming language for
dynamic domains. Journal of Logic Programming 31:92–
128.
Marker, D. 2002. Model Theory: An Introduction. Springer-
Verlag.
Pinto, J., and Reiter, R. 1995. Reasoning about time in
the situation calculus. Annals of Mathematics and Artificial
Intelligence 14:2510–268.
Reiter, R. 2001. Knowlege in action: logical foundations
for specifying and implementing dynamical systems. Cam-
bridge, MA, USA: MIT Press.

58

Ontologies and Domain Theories

Michael Grüninger
Department of Mechanical and Industrial Engineering

University of Toronto
gruninger@mie.utoronto.ca

Abstract
Although there is consensus that a formal ontology consists
of a set of axioms within some logical language, there is little
consensus on how a formal ontology differs from an arbitrary
theory. There is an intuitive distinction between the formal on-
tology and the set of domain theories that use the ontology,
but there has been no characterization of this distinction in the
context of first-order ontologies. In this paper we utilize the
notions of definable sets and types from model theory mathe-
matical logic to provide a semantic characterization of the do-
main theories for an ontology. We illustrate this approach with
respect to several formal ontologies from mathematical logic
and knowledge representation.

1 Motivation
Ontological engineering was born with the promise of
reusability, integration, and interoperability. Of increasing
importance are the problems merging ontologies from dif-
ferent domains and translating among multiple ontologies
from the same domain. An obstacle to achieving this vi-
sion has been a lack of consensus over the nature of the ax-
ioms within a formal ontology. On the one hand, formal on-
tologies are specific theories – we are not defining new lan-
guages or logics. On the other hand, formal ontologies are
different from arbitrary theories in that we intuitively think
of ontologies as being the reusable portion of domain the-
ories. This begs the question of defining domain theories,
and it raises the perennial debate of the difference between
ontologies and knowledge bases.

In the course of providing a formal characterization of do-
main theories for ontologies, we are guided by several intu-
itions.
•Domain theories and queries are constructed using ontolo-

gies – typical reasoning problems include sentences that
describe a particular scenario in addition to the axioms of
the ontologies.

•Ontologies are the reusable parts of domain theories, in
the sense that all domain theories for an ontology are ex-
tensions of a unique set of axioms in the ontology.

• In semantic interoperability scenarios, software applica-
tions exchange sentences that are written using ontologies,
rather than exchange axioms from the ontologies them-
selves.

The objective of this paper to is to provide a semantic
characterization of domain theories, that is, one that is based
on properties of the models of the formal ontology.

1.1 Some Motivating Examples
We consider several ontologies and the sentences that are
intuitively their domain theories. We begin with two math-
ematical theories which are well understood before mov-
ing on to two ontologies from the knowledge representation
community.

Algebraically Closed Fields Suppose that two software
applications share the ontology of algebraically closed fields
(Hodges 1993), for example, CAD software that is based
on algebraic geometry. Such software applications will ex-
change shapes that are specified by polynomials; they are
not exchanging axioms in the ontology. In this case, we can
see that the domain theories for algebraically closed fields
are polynomials.

Groups Domain theories for the ontology of groups
(Hodges 1993) are either explicitly specifying particular
groups or subgroups of other groups. A group presentation
defines a group by specifying a set of elements of a group
(known as generators) such that all other elements of the
group can be expressed as the product of the generators sub-
ject to a set of equations (known as relations among the gen-
erators). For example, the group presentation for the cyclic
group of order three is the equation a · a · a = 1, and it
is equivalent to the theory of the group with respect to the
element a in the domain.

Time Ontologies Consider an ontology of time Tdense

(Hayes 1996) in which the set of timepoints is linearly or-
dered and dense. Such an ontology is typically used to spec-
ify the underlying constraints in commonsense reasoning
problems about events (e.g. “Bob left home before arriv-
ing at work and Alice arrived at work after Bob”). This set
of constraints constitutes a domain theory for the ontology
Tdense; in general, the domain theories consist of boolean
combinations of sets of timepoints that form intervals on the
linear ordering.

59

Situation Calculus The axiomatization of situation calcu-
lus in (Reiter 2001) includes a set of foundational axioms
(the ontology Tsitcalc) together with a set of axioms which
plays the role of a domain theory.

A simple state formula is a formula which contains a
unique situation variable and which contains only holds lit-
erals. A precondition axiom for an activity A is a sentence
of the form

(∀s) poss(A, s) ⊃ Q(s)
where Q(s) is a simple state formula. An effect axiom for
an activity A is a sentence of the form

(∀s)Q1(s) ⊃ holds(F, do(A, s))

whereQ(s) is a simple state formula and F is a fluent. Basic
action theories, which consist of sets of precondition and
effect axioms, are domain theories for situation calculus.

2 Domain Theories and Definable Sets
The characterization of ontologies and domain theories rests
on the model-theoretic notion of definability. After intro-
ducing this notion, we will use it to distinguish between the
different classes of theories within an ontology.

2.1 Definable Sets
We will adopt the following definition from (Marker 2002):
Definition 1 Let M be a structure in a language L.

A set X ⊆ Mn is definable in M iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}

X isA-definable if there is a formula ϕ(v, w1, ..., wl) and
b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}

We say that X is ∅-definable if A = ∅. If A is nonempty,
we say that X is definable with parameters.
Example 1 Suppose M is a discretely ordered ring.

The set of even numbers is ∅-definable in M:

{x : (∃y) x = y + y}

The set of prime numbers is ∅-definable in M:

{x : (∀y, z) (y · z = x) ⊃ (y = x) ∨ (z = x)}

The set

{x : a0 + a1x+ a2x
2 + ...+ anx

n = 0}

is definable with parameters a0, ..., an.

2.2 Definitional Extensions and Core Theories
An ontology is specified by a set of axioms in some formal
language. Nevertheless, this is not an amorphous set, and
the notion of definability allows us to distinguish between
different kinds of sentences within an ontology.
Definition 2 A theory T1 is a definitional extension of a the-
ory T iff every constant, function, and relation in models of
T1 is ∅-definable in models of T .

It is easy to see that a definitional extension of a theory
T is also a conservative extension of T , although the con-
verse is not true; that is, there are conservative extensions of
theories which are not definitional extensions.
Definition 3 A theory Tcore is a core theory iff no constant,
function, or relation in models of Tcore is definable in the
models of any other theory.

Combining these two classes of sentences gives us the fol-
lowing definition of an ontology.
Definition 4 An ontology Tonto is a theory consisting of a
set of core theories and a set of definitional extensions.

Intuitively, the core theories axiomatize the primitive
functions and relations in the ontology. If a core theory in an
ontology is an extension of some other core theories in the
ontology, then it is a nonconservative extension.

In the case of the PSL Ontology ((Gruninger 2004),
(Gruninger & Kopena 2004)), the definitional extensions
within the ontology are axiomatizations of the classes of ac-
tivities and activity occurrences that correspond to values of
the invariants that are used to classify the models of the core
theories within the ontology.

If we consider the examples from Section 1.1, we can
see that an ontology is not an arbitrary set of sentences. In
the case of algebraically closed fields, polynomials are sen-
tences that are not in a core theory or definitional extension.
Similarly, precondition and effect axioms are not part of a
core theory or definitional extension. We therefore require
a precise definition of the class of sentences that correspond
to domain theories.

2.3 Domain Theories
We are still faced with the question of how domain theories
are different from the other two classes of theories within an
ontology. Whereas a definitional extension is an axiomatiza-
tion of the ∅-definable sets in a model of an ontology Tonto,
we will say that a domain theory for an ontology Tonto is an
axiomatization of sets that are definable with parameters in
some model of Tonto.
Definition 5 A theory Tdt is a domain theory for an ontology
Tonto iff every formula in Tdt defines a set X ⊆ Mn with
parameters in some model M of Tonto.

In general, domain theories are not conservative exten-
sions of the ontology. For example, the domain theory con-
sisting of the equations

(a · (a · a)) = 1

in the theory of groups entails the sentence

(∃x, y) ((x · y) = (y · x)) ∧ (x 6= 1) ∧ (y 6= 1)

which is not entailed by the axioms in the theory of groups
alone.

On the other hand, domain theories are distinct from arbi-
trary nonconservative extensions of the ontology. For exam-
ple, the sentence

(∀x, y) (x · y) = (y · x)
axiomatizes abelian groups; it forms a nonconservative ex-
tension of the theory of groups, yet we would not consider it

60

to be a domain theory, since it does not define any sets with
parameters in some model of group theory.

This approach to characterizing the sentences in an ontol-
ogy generalizes a distinction long made within the descrip-
tion logic community – sentences in the ABox are domain
theories, subsumption axioms in the TBox are contained in
core theories, and equivalence axioms are part of the defini-
tional extensions of the ontology.

3 Domain Theories and Types
The next step is to show how the set of domain theories for
an ontology can be characterized with respect to properties
of the models of the ontology. This will allow us to formal-
ize the intuitions presented earlier in Section 1.

3.1 Types
Types describe a model of a theory from the point of view of
a single element or a finite set of elements ((Marker 2002),
(Rothmaler 2000)).
Definition 6 Let M be a model for a language L.

The type of an element a ∈M is defined as
typeM(a) := {φ : φ is a formula of L,M |= φ(a) }

An n-type for a theory T is a set Φ(x1, ..., xn) of formulae,
such that for some model M of T , and some n-tuple a of
elements of M, we have M |= φ(a) for all φ in Φ.

If t is an n-type, then a model M realizes t iff there are
a1, ..., an ∈M such that

M |= t(a1, ..., an)

A type p is a complete n-type iff φ ∈ p or ¬φ ∈ p for any
formula φ with n free variables; a partial type is a type that
is not complete.

Informally, the type for an element in a model is a set of
formulae which are satisfied by the element in the model.
An n-type for a theory is a consistent set of formulae (each
of which has n free variables) which is satisfied by a model
of the theory.

3.2 Characterization Theorems for Domain
Theories

The model-theoretic notion of type allows us to formalize
the intuition that domain theories are theories about ele-
ments in the domain of a model of the ontology.
Theorem 1 A set of sentences Tdt is a domain theory for
an ontology Tonto iff it is logically equivalent to a boolean
combination of finite partial n-types for Tonto.
Proof:⇒:) Let ϕ(x1, ..., xn) be a sentence in a domain the-

ory for Tonto and let

{a : M |= ϕ(a)}

be the set defined by this sentence in a model M of Tonto.
It is easy to see that this set realizes the finite n-type
ϕ(x1, ..., xn) in M.
⇐:) The set of elements that realize a finite type in M
constitute a definable set. The boolean combination of fi-
nite partial n-types is equivalent to the union, intersection,
complement, and projection of definable sets, and these

operations preserve definable sets. Therefore, the boolean
combination of n-types is logically equivalent to a domain
theory. 2

This result shows that we can specify all possible domain
theories for an ontology by identifying the finite partial types
for elements in the models of the ontology.

Not all types correspond to domain theories, since a type
that consists of an infinite set of formulae may not be first-
order definable. For example,

{0 < c, S(0) < c, S(S(0)) < c, ...}

is an infinite type that is realized by a nonstandard number
c in a model of Th(N, 0, S,<), yet the set is not first-order
definable in the theory.

The next two theorems characterize domain theories with
respect to the models of the ontology, and formalize the in-
tuition that ontologies are the reusable parts of domain theo-
ries, in the sense that all domain theories for an ontology are
extensions of a unique set of axioms in the ontology.
Theorem 2 If Tdt is a domain theory for an ontology Tonto

then there exists a model M of Tonto such that

Tonto ∪ Tdt ⊆ Th(M)

Proof: By Definition 5, the sentences in Tdt define sets with
parameters in some modelM of Tonto. We therefore have

Tonto ⊆ Th(M)

Suppose that there is a sentence Σ ∈ Tdt such that Σ 6∈
Th(M). In this case, we must have M |= ¬Σ, which
would mean that Σ does not define a set in M, and hence
would not be a sentence in a domain theory. We therefore
also have

Tdt ⊆ Th(M)
2

From this result we can see that models of a domain the-
ory are models of the ontology.
Theorem 3 For any model M of Tonto, there exists a do-
main theory Tdt for Tonto such that

Tonto ∪ Tdt ⊆ Th(M)

Proof: Since M is a model of Tonto, we have

Tonto ⊆ Th(M)

If Tdt is the set of sentences that define sets in M, then
Tdt 6= ∅ (since any finite set is definable). Tdt is therefore
a domain theory such that

M |= Tdt

As a result, we know that Tonto ∪ Tdt is consistent.
Since M |= Tonto ∪ Tdt, we have

Tonto ∪ Tdt ⊆ Th(M)

2

61

Note that any definable set must have some axiomatiza-
tion, whereas nondefinable sets cannot be axiomatized by
any theory. Furthermore, every model contains definable
sets (since finite sets are always definable). Consequently,
domain theories will always exist for any ontology.

We can define a complete domain theory as one that sat-
isfies

Tonto ∪ Tdt = Th(M)
for some model M of Tonto. In other words, a complete
domain theory is an axiomatization of a particular model
of the ontology. Not all ontologies will have complete do-
main theories. For example, there exist infinite groups that
do not have a finite presentation. The standard models of
more powerful ontologies, such as Peano Arithmetic and the
theory of the free semigroups, are not axiomatizable, so that
any domain theory in such cases would be incomplete.

3.3 Techniques for Specifying Domain Theories
Model theory provides several techniques for specifying the
types for first-order theories. The most widely use technique
is known as the elimination of quantifiers, in which one fo-
cusses on the sets that are definable by formulae that are
quantifier-free.

A theory T admits the elimination of quantifiers if for ev-
ery formula φ there is a formula ψ such that

T |= φ ≡ ψ

One typically determines this by specifying a set of
quantifier-free formulae ∆ (known as the elimination set)
such that for every formula φ in the language of T there is
a formula ψ which is a boolean combination of formulae in
∆, and φ is equivalent to ψ in every model of T . It is easy to
see that in ontologies that admit elimination of quantifiers,
the elimination set characterizes the set of types.

Unfortunately, not all ontologies admit the elimination of
quantifiers, and the characterization of the definable sets and
types realized in models of these ontologies can become
quite complicated.

3.4 Revisiting the Examples
The set of types for many ontologies within mathematical
logic have been specified within the literature. We can see
that the types for the ontologies that we considered in Sec-
tion 1 do indeed correspond to the intuitions that we have
about their domain theories.

Algebraically Closed Fields and Polynomials Since al-
gebraically closed fields admit the elimination of quantifiers,
it can be shown ((Marcja & Toffalori 2003)) that any irre-
ducible polynomial corresponds to a complete 1-type and
that 2-types correspond to algebraic curves. In other words,
there is a one-to-one correspondence between the set of roots
of polynomials (algebraic numbers) and definable elements
in the models of Tfield. There is also the complete 1-type
that is realized by all numbers that are transcendental over
models of the ontology; this type is not generated by a finite
set of formulae ,and hence does not correspond to a domain
theory.

Presentations and Groups Although the theory of groups
does not admit elimination of quantifiers, it can be shown
that all 1-types for Tgroup are of the form

(∃y, z) x = y · z

We can see that both presentations and group equations are
domain theories for groups, since they are boolean combi-
nations of 1-types. In a sense, the presentation is equivalent
to the types realized by all elements of the group G; when
a presentation exists, it is a complete axiomatization of the
theory Th(G) for the group.

Time Ontologies Models of Tdense are isomorphic to
dense linear orderings, whose n-types have been fully char-
acterized in (Rosenstein 1982). The n-types for Tdense

are therefore boolean combinations of literals of the form
before(vi, vj) and vi = vj . Thus the types for dense lin-
ear orderings correspond to the domain theories discussed
in Section 1.1.

Action Theories in Situation Calculus Although there
has been no work on the characterization of the types for
Tsitcalc we can still show that action theories define sets in
models of Tsitcalc, and so are domain theories for Tsitcalc.

The precondition axiom for each action a is realized by
the definable set of situations

{s1 : s1 = do(a, s), 〈s1〉 ∈ executable}

that is, the set of executable situations that correspond to oc-
currences of a. The effect axiom for each action a is realized
by the definable set of situations

{s1 : s1 = do(a, s), 〈f , s1〉 ∈ holds ⇔ 〈f , s〉 6∈ holds}

that is, the set of situations that achieve or falsify specific
fluents. A complete characterization of all types and domain
theories for Tsitcalc is an open research problem.

4 Evaluating the Ontology
We can evaluate the correctness and completeness of the on-
tology and domain theories with respect to the characteriza-
tion of definable sets. For correctness, all domain theories
for an ontology must be consistent with the ontology. For
completeness, we need to determine whether or not there
exist models of the ontology that do not realize any types
corresponding to some class of domain theories.
Definition 7 Let Σ be a set of types for a theory T .
T is definably complete with respect to Σ iff every model

of T realizes some type in Σ.
In Tsitcalc, precondition axioms are domain theories, but

not all activities realize precondition axioms i.e. there are
other classes of domain theories
Theorem 4 The ontology Tsitcalc is not definably complete
with respect to the set of basic action theories.
Proof: We can construct a model of Tsitcalc that does not

satisfy any basic action theory (i.e. set of precondition
and effect axioms).

62

Let s1, s2 be situations in the situation tree that agree on
state, that is, for any fluent f ,

〈f , s1〉 ∈ holds ⇔ 〈f , s2〉 ∈ holds

Now specify the extension of the poss relation for an ac-
tivity a such that

〈a, s1〉 ∈ poss, 〈a, s2〉 6∈ poss

The activity a cannot realize any precondition axiom,
since the same simple state formula is realized by both
s1 and s2.
Now specify the extension of the holds relation for the
activity a such that

〈f ,do(a, s1)〉 ∈ holds, 〈f ,do(a, s2)〉 6∈ holds

The activity a cannot realize any effect axiom, since the
same simple state formula is realized by both s1 and s2.
2

On the other hand, the PSL Ontology explicitly axiom-
atizes the classes of activities that realize the types corre-
sponding to basic action theories1

Theorem 5 Let MAA (Markovian Activity Assumption) be
the sentence

(∀a)activity(a) ⊃ markov precond(a)∧markov effect(a)
The ontology Tdisc state ∪ Tocctree ∪ Tpslcore ∪MAA is

definably complete with respect to the set of basic action
theories.

It should be noted that Tdisc state ∪ Tocctree ∪ Tpslcore

alone is not definably complete, since there are models that
do not realize precondition and effect axioms; on the other
hand, all models of Tdisc state ∪Tocctree ∪Tpslcore ∪MAA
realize precondition and effect axioms.

It must be emphasized that one cannot specify domain
theories using axiom schemata – there will typically be mu-
tually inconsistent domain theories for the same ontology,
yet the union of sentences that are instantiations of an axiom
schema must be consistent. For example, both of the follow-
ing sentences satisfy the syntactic definition of precondition
axioms in situation calculus

(∀s) poss(A, s) ⊃ holds(F, s)

(∀s) poss(A, s) ⊃ ¬holds(F, s)
yet they are mutually inconsistent.

We can also use this approach to show that some ap-
proaches to process ontologies are in fact specifying classes
of domain theories rather than ontologies. For example, the
axiomatization of actions and events in (Allen & Ferguson
1994) does not include any core theories or definitional ex-
tensions; it only contains a specification of the classes of
sentences that constitute event definitions, action definitions,
and event generation axioms.

1The axiomatization of markov precond in CLIF
(Common Logic Interchange Format) can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part42/state precond.def.html
The axiomatization of markov effect in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part42/state effects.def.html

5 Classifying Domain Theories
We can use the notion of definable completeness of an on-
tology to classify the domain theories for the ontology. In
particular, we can classify domain theories with respect to
the sets that are ∅-definable by the sentence Φ such that
Tonto ∪ Φ is definably complete with respect to the domain
theories.

For example, by Theorem 5, Tdisc state ∪ Tocctree ∪
Tpslcore ∪MAA is definably complete; activities in the set
defined by the sentence MAA realize the types correspond-
ing to basic action theories. Activities that are not in the set
(that is, activities that do not satisfy the sentence MAA) do
not realize the types corresponding to basic action theories.
This gives a model-theoretic definition of basic action theo-
ries, rather than simply a syntactic definition.

Within the PSL Ontology, sentences such as MAA ax-
iomatize invariants that are used to classify the models of
the core theories (Gruninger & Kopena 2004). Invariants are
properties of models that are preserved by isomorphism. For
some classes of structures, invariants can be used to classify
the structures up to isomorphism; for example, vector spaces
can be classified up to isomorphism by their dimension. For
other classes of structures, such as graphs, it is not possible
to formulate a complete set of invariants. Nevertheless, even
without a complete set, invariants can still be used to provide
a classification of the models of a theory.

In general, the set of models for the core theories of an on-
tology are partitioned into equivalence classes defined with
respect to the set of invariants of the models. Each equiv-
alence class in the classification of the models of the on-
tology is axiomatized using a definitional extension of the
ontology. Each definitional extension in the ontology is as-
sociated with a unique invariant; the different classes of ob-
jects that are defined in an extension correspond to different
properties of the invariant. In this way, the terminology of
the ontology arises from the classification of the models of
the core theories with respect to sets of invariants.

Using this approach, the classification of domain theories
mirrors the classification of the models of the core theo-
ries, as well as the organization of the definitional extensions
within the ontology.

6 Reasoning Problems
Many reasoning problems with ontologies (such as deci-
sion problems for mathematical theories) incorporate do-
main theories as well as the set of axioms in the ontologies
themselves.

The Word Problem in group theory is specified for a par-
ticular group and it requires both the axioms for groups as
well as the presentation for the group:

Tgroup ∪ Σpresentation |= (w = 1)

The query in this case determines whether the product of
group elements w is equal to the identity element in the
group.

In a temporal reasoning problem, we consider a particular
scenario of temporal constraints in addition to the axioms for

63

the time ontology, and determine whether or not a particular
temporal constraint is entailed by the scenario:

Ttime ∪ Σscenario |= before(T1, T2)

For situation calculus, the antecedent of a reasoning prob-
lem such as planning includes basic action theories, while
the query sentence is an existentially quantified simple state
formula:

Tsitcalc ∪ Σaction |= (∃s)Q(s)

In general, an entailment problem for an ontology Tonto

has the form
Tonto ∪ Σdt |= Σquery

where Σdt is a domain theory for Tonto and Σquery is a sen-
tence in the language of the ontology. This leads to the next
question – what class of sentences in the language of the
ontology characterize the query?

Any sentence in such a query (that is, a sentence in
Σquery) can also be considered to be a domain theory. For
example, in the word problem for groups, the query sentence
is a group equation, which is a type for the theory of groups.
Similarly, simple state formulae are types for fluents in situ-
ation calculus.

We can provide a model-theoretic characterization of
queries using the following notion:
Definition 8 A type p is isolated iff there is a formula ϕ ∈ p
such that for any ψ ∈ p, we have

T |= (∀v) ϕ(v) ⊃ ψ(v)

Queries therefore correspond to nonisolated types for the
ontology. Using this definition, we can also consider queries
to be weak domain theories, in the sense that they are en-
tailed by other domain theories. We can therefore apply the
earlier techniques for arbitrary domain theories to provide a
characterization of the possible queries in reasoning prob-
lems that use a particular ontology.

The same techniques that were used to characterize all
possible domain theories for an ontology by specifying the
types for the ontology can be used to characterize the queries
by specifying the nonisolated types for the ontology. We can
also classify the queries for an ontology by characterizing
the additional sentences that are required in order for an on-
tology to be definably complete with respect to the class of
queries.

7 Summary
Although there is an intuitive distinction between the formal
ontology and the set of domain theories that use the ontol-
ogy, there has been no characterization of this distinction. In
this paper we have utilized the notions of definable sets and
types from model theory mathematical logic to provide a se-
mantic characterization of the domain theories for an ontol-
ogy that gives a clear logical distinction between ontologies
and domain theories.

Domain theories for an ontology are the axiomatization of
definable sets in models of the ontology. This is equivalent
to saying that a domain theory for an ontology is a boolean
combination of finite partial n-types for the ontology.

The model-theoretic characterization of domain theories
serves as an evaluation criterion for ontologies, which can in
turn be used to classify the domain theories for an ontology.

This approach lays the groundwork for a comprehen-
sive methodology for the evaluation of formal ontologies by
specifying the complete sets of n-types that are realized in
models of the ontologies.

References
Allen, J. F., and Ferguson, G. 1994. Actions and events in
interval temporal logic. Journal of Logic and Computation
4:531–579.
Gruninger, M., and Kopena, J. 2004. Semantic integration
through invariants. AI Magazine 26:11–20.
Gruninger, M. 2004. Ontology of the Process Specification
Language. In Staab, S., and Studer, R., eds., Handbook of
Ontologies in Information Systems. Springer-Verlag.
Hayes, P. 1996. A catalog of temporal theories. Technical
Report UIUC-BI-AI-96-01, University of Illinois.
Hodges, W. 1993. Model Theory. Cambridge University
Press.
Marcja, A., and Toffalori, C. 2003. A Guide to Classical
and Modern Model Theory. Kluwer Academic Publishers.
Marker, D. 2002. Model Theory: An Introduction. Springer-
Verlag.
Reiter, R. 2001. Knowlege in action: logical foundations
for specifying and implementing dynamical systems. Cam-
bridge, MA, USA: MIT Press.
Rosenstein, J. 1982. Linear Orderings. Academic Press.
Rothmaler, P. 2000. Introduction to Model Theory. Taylor
and Francis.

64

Order-Sorted Reasoning in the Situation Calculus

Yilan Gu
Department of Computer Science

University of Toronto
10 King’s College Road

Toronto, ON, M5S 3G4, Canada
Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

We propose a theory for reasoning about actions based on
order-sorted predicate logic where one can consider an elab-
orate taxonomy of objects. We are interested in the projec-
tion problem: whether a statement is true after executing a
sequence of actions. To solve it we design a regression op-
erator that takes advantage of well-sorted unification between
terms. We show that answering projection queries in our log-
ical theories is sound and complete with respect to that of in
Reiter’s basic action theories. Moreover, we demonstrate that
our regression operator based on order-sorted logic can provide
significant computational advantages in comparison to Reiter’s
regression operator.

Introduction
In his influential paper (Hayes 1971) titled “A Logic of Ac-
tions”, Pat Hayes proposed an outline of a logical theory
for reasoning about actions based on many-sorted logic with
equality. His paper inspired subsequent work on many-sorted
logics in AI. In particular, A. Cohn (Cohn 1987; 1989) de-
veloped expressive many-sorted logic and reviewed all previ-
ous work in this area. Reasoning about actions based on the
situation calculus has been extensively developed in (Reiter
2001). However, he considers a logical language with sorts
for actions, situations and just one catch-all sortObject for
the rest that remains unelaborated. Surprisingly, even if the
idea proposed by Hayes seems straightforward, there is still
no formal study of logical and computational properties of a
version of the situation calculus with many related sorts for
objects in the domain. Perhaps, this is because mathematical
proofs of these properties are not straightforward. We under-
take this study and demonstrate that reasoning about actions
with elaborated sorts has significant computational advantages
in comparison to reasoning without them. In contrast to an ap-
proach to many-sorted reasoning (Schmidt 1938; Wang 1952;
Herbrand 1971) where variables of different sorts range over
unrelated universes, we consider a case when sorts are related
to each other, so that one can construct an elaborated taxon-
omy. This is often convenient for representation of common-
sense knowledge about a domain.

Generally speaking, we are usually interested in a compre-
hensive taxonomic structure for sorts, where sorts may in-
herit from each other and may have non-empty intersections.
Hence, we consider formulating the situation calculus in an

order-sorted (predicate) logic to describe taxonomic informa-
tion about objects. We are interested in the projection problem
(whether a statement is true after executing a sequence of ac-
tions) and we would like to use regression to solve this prob-
lem (Reiter 2001). Note that even if both many-sorted logic
and order-sorted logic can be translated to unsorted, using
order-sorted logic can bring about significant computational
advantages, for example in deduction. This was a primary
driving force for (Walther 1987) and (Cohn 1987). We show
that regression in order-sorted SC can benefit from well-sorted
unification. One can gain computational efficiency by termi-
nating regression steps earlier when objects of incommensu-
rable sorts are involved.

It is well-known thatPDDL supports typed (sorted) vari-
ables and many implemented planners can take advantage of
types (Ghallabet al. 1998). (Classenet al. 2007) proposes
formal semantics for the typed ADL subset of PDDL using
ES, a dialect of SC. Our paper focus on the relations between
Reiter’s BATs and our new order-sorted BATs and the compu-
tational advantages which regression in order-sorted BATs can
provide (sometimes). We contribute towards a formal logical
foundation of PDDL.

Background
In general, order-sorted logic (OSL) (Oberschelp 1962; 1990;
Walther 1987; Schmidt-Schauβ 1989; Bierleet al. 1992;
Weidenbach 1996) restricts the domain of variables to subsets
of the universe (i.e.,sorts). Notationx :Q means that variable
x is of sortQ andVQ is the set of variables of sortQ. For any
n, sort cross-productQ1×· · ·×Qn is abbreviated as~Q1..n;
term vectort1, . . . , tn is abbreviated as~t1..n; variable vector
x1, . . . , xn is abbreviated as~x1..n; and, variable declaration
sequencex1 :Q1, . . . , xn :Qn is abbreviated as~x1..n : ~Q1..n.

A theory in OSL always includes a set of declarations
(calledsort theory) to describe the hierarchical relationships
among sorts and the restrictions on ranges of the arguments
of predicates and functions. In particular, a sort theoryT
includes a set ofterm declarationsof the form t : Q repre-
senting that termt is of sortQ, subsort declarationsof the
formQ1≤Q2 representing that sortQ1 is a (direct) subsort of
sortQ2 (i.e., every object of sortQ1 is also of sortQ2), and
predicate declarationsof the formP : ~Q1..n representing that
the i-th argument of then-ary predicateP is of sortQi for
i= 1..n. A function declarationis a special term declaration

65

where termt is a function with distinct variables as arguments:
for eachn-ary functionf , the abbreviation of its function dec-
laration is of the formf :Q1..n →Q, whereQi is the sort of
thei-th argument off andQ is the sort of the value off . c :Q
is a special function declaration, representing that constantc
is of sortQ. Arguments of equality “=” can be of any sort.
Below, we consider afinite simplesort theory only, in which
there are finitely many sorts and declarations, the term dec-
larations are all function declarations, and for each function
there is one and only one declaration.

For any sort theoryT , subsort relation≤T is a partial order-
ing defined by the reflexive and transitive closure of the sub-
sort declarations. Then, following the standard terminology
of lattice theory, if each pair of sort symbols inT has great-
est lower bound (g.l.b.), then we say thatthe sort hierarchy
of T is a meet semi-lattice(Walther 1987). Moreover, awell-
sorted term(wrt T) is either a sorted variable, or a constant
declared inT , or a functional termf(~t1..n), in which each
ti is well-sorted and the sort ofti is a subsort ofQi, given
that f : ~Q1..n → Q is in T . A well-sorted atom(wrt T) is
an atomP (~t1..n) (can bet1 = t2), where eachti is a well-
sorted term of sortQ′

i, andQ′

i ≤T Qi, given thatP : ~Q1..n

is in T . A well-sorted formula(wrt T) is a formula in which
all terms (including variables) and atoms are well-sorted. Any
term or formula that is not well-sorted is calledill-sorted. A
well-sorted substitution(wrt T) is a substitutionρ s.t. for
any variablex : Q, ρx (the result of applyingρ to x) is a
well-sorted term and its sort is a (non-empty) subsort ofQ.
Given any setE = {(t1,1, t1,2), . . . , (tn,1, tn,2)}, where each
ti,j (i=1..n, j=1..2) is a well-sorted term, awell-sorted most
general unifier(well-sorted mgu) ofE is a well-sorted substi-
tution that is an mgu ofE. It is important that in comparison to
mgu in unsorted logic (i.e., predicate logic without sorts), mgu
in OSL can include new weakened variables of sorts which
are subsorts of the sorts of unified terms. For example, as-
sume thatE = {(x, y)}, x∈VQ1

, y ∈VQ2
and the g.l.b. of

{Q1, Q2} is a non-empty sortQ3. Then,µ = [x/z, y/z] (x
is substituted byz, y is substituted byz) for some new vari-
ablez ∈ VQ3

is a well-sorted mgu ofE. Well-sorted mgu
neither always exists nor it is unique. However, it is proved
that the well-sorted mgu of unifiable sorted terms is unique up
to variable renaming when the sort hierarchy ofT is a meet
semi-lattice (Walther 1987).

The semantics of OSL is defined similar to unsorted logic.
Note that the definition of interpretations for well-sorted terms
and formulas is the same as in unsorted logic, but the seman-
tics is not defined for ill-sorted terms and formulas. For any
well-sorted formulaφ, aT -interpretationI = 〈M, I〉 is a tu-
ple for a structureM and an assignmentI from the set of free
variables to the universeU of M, s.t. it satisfies the following
conditions: (1) For each sortQ, QI is a subset of the whole
universeU. In particular,⊤I = U, ⊥I = ∅, andQI

1 ⊆ QI

2 for
anyQ1 ≤T Q2. (2) For any predicate declarationP : ~Q1..n,
P I ⊆ QI

1×· · ·×QI

n is a relation inM. (3) For any func-
tion declarationf : ~Q1..n → Q, f I : QI

1×· · ·×QI

n → QI

is a function inM. (4) xI = I(x) is in QI for any vari-
ablex ∈ VQ, cI ∈QI for any constant declarationc :Q, and

(f(~t1..n))I
def
= f I(tI1, . . . , t

I

n) for any well-sorted termf(~t1..n).

I is not defined for ill-sorted terms and formulas. (5) IfT in-
cludes a declaration for equality symbol “=”, then =I must
be defined as set{(d, d) | d ∈ U}, i.e., the equality symbol
is interpreted by the identity relation on the whole universe.
For any sort theoryT and a well-sorted formulaφ, a struc-
tureM is aT -modelof φ, written asM |=os

T
φ iff for every

T -interpretationI= 〈M, I〉, I satisfiesφ. In particular, when
φ is a sentence, this does not depend on any variable assign-
ment andI = M. Moreover, we say that aT -interpretation
I = 〈M, I〉 satisfiesφ, written asI |=os

T
φ, if the following

conditions (1-7) hold: (1)I |=os
T
P (~t1..n) iff (tI1, . . . , t

I

n)∈P I.
(2) I |=os

T
¬φ iff I |=os

T
φ does not hold. (3)I |=os

T
φ1 ∧ φ2 iff

I |=os
T
φ1 and I |=os

T
φ2. (4) I |=os

T
φ1 ∨ φ2 iff I |=os

T
φ1

or I |=os
T

φ2. (5) I |=os
T

φ1 ⊃ φ2 iff I |=os
T

¬φ1 ∨ φ2.
(6) I |=os

T
∀x : Q.φ iff for every d ∈ QI, I |=os

T
φ[x/d],

whereφ[x/o] represent the formula obtained by substituting
x with o. (7) I |=os

T
∃x : Q.φ iff there is somed ∈ QI s.t.

I |=os
T
φ[x/d]. Given a sort theoryT as the background, a

theoryΦ including well-sorted sentences only satisfies a well-
sorted sentenceφ, written asΦ |=os

T
φ, iff every model ofΦ is

a model ofφ.
Note that we follow traditional approaches to sorted reason-

ing, where sort symbols must not occur as predicates in the
formulas. Alternative approaches, called hybrid, allow to mix
sort symbols with application specific predicates (see (Wei-
denbach 1996; Cohn 1989; Bierleet al. 1992)).

Due to the space limitations, we skip the background of the
situation calculus. Details can be found in (Reiter 2001) and
we refer to this language as Reiter’s situation calculus below.
Note that in this paper, we use|=os

T
to represent the logical

entailment wrt a sort theoryT in order-sorted logic,|=ms to
represent the logical entailment in Reiter’s situation calculus
(a many-sorted logic with one standard sortObject), and|=fo

to represent the logical entailment in unsorted predicate logic.

An Order-Sorted Situation Calculus
In this paper, we consider a modified situation calculus based
on order-sorted logic, calledorder-sorted situation calculus
and denoted asLOS below. LOS includes a set of sorts
Sort = Sortobj ∪ {⊤,⊥, Act, Sit}, where⊤ represents the
whole universe,⊥ is the empty sort,Act is the sort for all
actions,Sit is the sort for all situations, andSortobj is a set
of sub-sorts ofObject including sortObject itself. We as-
sume that for every sort (except⊥) there is at least one ground
term (constant) of this sort to avoid the problem with “empty
sorts” (Goguen & Meseguer 1987). Moreover, the number of
individual variable symbols of each sort inSort is infinitely
countable. For the sake of simplicity, we do not consider
functional fluents here.

In the following, we will defineorder-sorted basic action
theories(order-sorted BATs) and consider dynamical systems
that can be described using such order-sorted BATs. An order-
sorted BATD = (TD,D) includes the following two parts of
theories.
• TD is a sort theory based on a finite set of sortsQD s.t.
QD ⊆ Sort and{⊥,⊤, Object, Act, Sit} ⊆ QD. Moreover,
the sort theory includes the following declarations for finitely
many predicates and functions:

66

1. Subsort declarations of the formQ1 ≤ Q2 for Q1, Q2 ∈
QD − {⊤, Act, Sit}, and subsort declarations:Object≤⊤,
Act ≤ ⊤, Sit ≤ ⊤. ⊥ ≤ Act, ⊥ ≤ Sit. Here, we only con-
sider those sort theories whose sort hierarchies are meet semi-
lattices.
2.One and only one predicate declaration of the formF : ~Q1..n

for eachn-ary relational fluentF in the system, whereQi≤T

Object andQi 6=⊥ for i=1..(n−1), andQn is Sit.
3.One and only one predicate declaration for the special pred-
icatePoss, that is,Poss :Act×Sit.
4.One and only one predicate declaration of the formP : ~Q1..n

for eachn-ary situation independent predicateP in the sys-
tem, whereQi≤T Object andQi 6=⊥ for i=1..n.
5. A special declaration for equality symbol= : ⊤×⊤.
6. One and only one function declaration of the formA :
~Q1..n →Act for eachn-ary action functionA in the system,
whereQi≤T Object andQi 6=⊥ for i=1..n. Note that, when
n = 0, the declaration is of formA : Act for constant action
functionA.
7. One and only one function declaration of the formf :
~Q1..n → Qn+1 for eachn-ary (n ≥ 0) situation indepen-
dent functionf (other than action functions), where each
Qi ≤T Object andQi 6= ⊥ for eachi = 1..(n+1). Note
that, whenn = 0, it is a function declaration for a constant,
denoted asc :Q for constantc of sortQ.
8. One and only one function declarationdo :Act×Sit→Sit,
andS0 :Sit for the initial situationS0.
• D is a set of axioms represented using well-sorted sentences
wrt TD, which includes the following subsets of axioms.
1. Foundational axiomsΣ for situations, which are the same
as those in (Reiter 2001).
2. A setDuna of unique name axioms for actions: for any two
distinct action function symbolsA andB with declarations
A : ~Q1..n→Act andB : ~Q′

1..m→Act, we have
(∀~x1..n : ~Q1..n, ~y1..m : ~Q′

1..m). A(~x1..n) 6= B(~y1..m)

Moreover, for each action function symbolA, we have
(∀~x1..n : ~Q1..n, ~y1..n : ~Q1..n). A(~x1..n)=A(~y1..n)⊃

Vn

i=1
xi = yi

3. The initial theoryDS0
, which includes well-sorted (first-

order) sentences that are uniform inS0. In particular, it
includes the unique name axioms for object terms, object
constants and/or functional terms: (1) for any two distinct
situation-independent function symbols (including constants)
f1 andf2, we have∀~x1..n : ~Q1..n.∀~y1..m : ~Q′

1..mf1(~x1..n) 6=
f2(~y1..m), where the functional declarations forf1 andf2 are
f1 : ~Q1..n → Qn+1 (n ≥ 0) and f2 : ~Q′

1..m → Q′

m+1
(m ≥ 0); (2) for each situation-independent functionf , we
havef(~x) = f(~y) ⊃ ∧n

i=1xi = yi, where the functional
declaration forf is f : ~Q1..n → Qn+1 (n ≥ 1). DS0

can
also include additional constraints that relate to sorts. For in-
stance, there can be finitely manyaxioms of disjointness for
basic sortsof the form∀x : Qi.∀y : Qj .(x 6= y) for any two
disjoint basic sortsQi andQj, where a sortQ is considered
basic if there is no sortQ′ 6= ⊥, such thatQ′≤Q.
4. A setDap of precondition axioms for actions represented
using well-sorted formulas: for each action symbolA, whose
sort declaration isA : ~Q1..n→Act, its precondition axiom is of
the form

(∀~x1..n : ~Q1..n, s :Sit).P oss(A(~x1..n), s) ≡ φA(~x1..n, s), (1)

whereφA(~x1..n, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n ands.
5. A setDss of successor state axioms (SSAs) for fluents rep-
resented using well-sorted formulas: for each fluentF with
declarationF : ~Q1..n×Sit, its SSA is of the form

(∀~x1..n : ~Q1..n, a :Act, s :Sit).

F (~x1..n, do(a, s)) ≡ ψF (~x1..n, a, s), (2)

whereψF (~x1..n, a, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n anda, s.

Here is a simple example of an order-sorted BAT.

Example 1 (Transport Logistics) We present an order-sorted
BAT D of a simplified example of logistics.TD includes fol-
lowing subsort declarations:
MovObj≤Object, ⊥≤City, ⊥≤Box,⊥≤Truck,
Truck≤MovObj,City≤Object,Box≤MovObj,

whereMovObj is the sort of movable objects, and other sorts
are self-explanatory. The predicate declarations are
InCity :MovObj×City×Sit, On :Box×Truck×Sit

for the fluentsInCity(o, l, s) and On(o, t, s). The func-
tion declarations for actionsload(b, t), unload(b, t) and
drive(t, c1, c2) are obvious. For instance,
drive :Truck×City×City→Act

BesidesS0 :Sit, the constant declarations may include:
B1 :Box, B2 :Box, T1 :Truck,
T2 :Truck, Pasadena :City, Boston :City.

Axioms inDS0
can be:

∃x : Box. InCity(x,Boston, S0),
(∀x : Box, t : Truck).¬On(x, t, S0),
InCity(T1, Boston, S0)∨InCity(T2, Boston, S0).

As an example, the precondition axiom forload is:
(∀x :Box, t :Truck, s :Sit). P oss(load(x, t), s) ≡

¬On(x, t, s) ∧ ∃y :City.InCity(x, y, s) ∧ InCity(t, y, s),
and the preconditions forunload anddrive are obvious.
As an example, the SSA of fluentInCity is:

(∀d :MovObj, c :City, a :Act, s :Sit).
InCity(d, c, do(a, s)) ≡ (∃t :Truck, c1 :City).
a=drive(t, c1, c) ∧ (d= t∨ ∃b :Box.b=d∧On(b, t, s)))∨
InCity(d, c, s) ∧ ¬(∃t :Truck, c1 :City.a=drive(t, c, c1)
∧(d= t∨ ∃b :Box.b=d∧On(b, t, s))),

and the SSA of fluentOn is obvious.

Order-Sorted Regression and Reasoning
We now consider the central reasoning mechanism in the
order-sorted situation calculus. The definition of a regressable
formula ofLOS is the same as the definition of a regressable
formula ofLsc except that instead of being stated for a formula
in Lsc, it is formulated for a well-sorted formula inLOS .

A formulaW of LOS is regressable(wrt an order-sorted
BAT D) iff (1) W is a well-sorted first-order formula wrtTD;
(2) every term of sortSit inW starts fromS0 and has the syn-
tactic formdo([α1, · · · , αn], S0), where eachαi is of sortAct;
(3) for every atom of the formPoss(α, σ) in W , α has the
syntactic formA(~t1..n) for somen-ary action function sym-
bolA; and (4)W does not quantify over situations, and does
not mention the relation symbols “<” or “ =” between terms
of sortSit. A queryis a regressable sentence.

67

Example 2 Consider the BATD from Example 1. LetW be
∃d :Box. d=Boston∧On(d, T1, do(load(B1, T1), S0))

W is a (well-sorted) regressable sentence (wrtD); while
On(Boston, T1, do(load(B1, T1), S0))

is ill-sorted and therefore is not regressable.

The regression operatorRos in LOS is defined recursively
similar to the regression operator in (Reiter 2001). Moreover,
we would like to take advantages of the sort theory during
regression: when there is no well-sorted mgu for equalities
between terms that occur in a conjunctive sub-formula of a
query, this sub-formula is logically equivalent to false and it
should not be regressed any further. We will see that this key
idea helps eliminate useless sub-trees of a regression tree. In
what follows,~t and~τ are tuples of terms,α andα′ are terms of
sortAct, σ andσ′ are terms of sortSit, andW is a regressable
formula ofLOS .
1. If W is a non-atomic formula and is of the form¬W1,
W1 ∨W2, (∃v :Q).W1 or (∀v :Q).W1, for some regressable
formulasW1,W2 in LOS , then

Ros[◦W1]=◦Ros[W1] for constructor◦ ∈ {¬, (∃x :Q), (∀x :Q)}

Ros[W1 ∨W2]=Ros[W1] ∨Ros[W2].

2. Else, ifW is a non-atomic formula,W is not of the form
¬W1, W1 ∨ W2, (∃v : Q)W1 or (∀v :Q)W1, but of the form
W1∧W2∧· · ·∧Wn (n ≥ 2), where eachWi (i=1..n) is not
of the formWi,1 ∧Wi,2 for some sub-formulasWi,1,Wi,2

in Wi. After using commutative law for∧, without loss of
generality, there are two sub-cases:

2(a) Suppose that for somej, j = 1..n, eachWi (i= 1..j) is
of the formti,1 = ti,2 for some (well-sorted) termsti,1, ti,2,
and none ofWk, k = (j + 1)..n, is an equality between

terms. In particular, whenj = n,
∧n

k=j+1Wk
def
= true.

Then,

Ros[W] =

8

>

<

>

:

W1 ∧W2 ∧ · · · ∧Wj ∧Ros[W ′

0]
if there is a well-sorted mguµ

for {〈ti,1, ti,2〉 | i = 1..j};
false otherwise.

Here,W ′

0 is a new formula obtained by applying mguµ
to

∧n

k=j+1 Wk and it is existentially-quantified at front for
every newly introduced sort weakened variable inµ. More-
over, note that based on the assumption that we consider
meet semi-lattice sort hierarchies only, such mgu is unique
if it exists.

2(b) Otherwise,Ros[W] = Ros[W1] ∧ · · · ∧ Ros[Wn].

3. Otherwise,W is atomic. There are four sub-cases.

3(a) Suppose thatW is of the formPoss(A(~t), σ) for an
action termA(~t) and a situation termσ, and the action
precondition axiom forA is of the form (1). Without loss
of generality, assume that all variables in Axiom (1) have
had been renamed (with variables of the same sorts) to
be distinct from the free variables (if any) ofW . Then,

Ros[W] = Ros[φA(~t, σ)].

3(b) Suppose thatW is of the formF (~t, do(α, σ)) for some
relational fluentF . LetF ’s SSA be of the form (2). With-
out loss of generality, assume that all variables in Ax-
iom (2) have had been renamed (with variables of the same

sorts) to be distinct from the free variables (if any) ofW .
Then, Ros[W] = Ros[ψF (~t, α, σ)].

3(c) Suppose that atomW is of the formt1 = t2. for some
well-sorted termst1, t2. Then,

Ros[W] =

(

W if there is a well-sorted mguµ
for 〈t1, t2〉;

false otherwise.

3(d) Otherwise, if atomW hasS0 as its only situation term,
then Ros[W] = W .

Notice that although the definition seems to depend on syntac-
tic form of a formula, we prove below that for any regressable
formulasW1 andW2 in LOS that are logically equivalent,
their regressed results are still equivalent wrtD (See Corol-
lary 1). Here are some examples.

Example 3 Consider the order-sorted BATD from Exam-
ple 1 and the queryW from Example 2. Then, it is easy to
see thatRos[W]=false, since there is no well-sorted mgu for
(d,Boston), whered :Box. Now, letW1 be

¬∀d :Box. d 6=Boston∨ ¬On(d, T1, do(load(B1, T1), S0)).
W1 is a sentence that is equivalent toW . It is easy to check
thatRos[W1] is a formula equivalent tofalse (wrt D).

Given an order-sorted BATD = (TD,D) and the order-
sorted regression operator defined above, to show the correct-
ness of the newly defined regression operator, we prove the
following theorems similar to that of in (Reiter 2001).

Theorem 1 If W is a regressable formula wrtD, then
Ros[W] is a well-sortedLOS formula (includingfalse) that
is uniform inS0. Moreover,D |=os

TD
W ≡ Ros[W].

Theorem 2 If W is a regressable formula wrtD, then
D |=os

TD
W iff DS0

∪ Duna |=os

TD
Ros[W].

Hence, to reason whetherD |=os

TD
W is the same as to compute

Ros[W] first and then to reason whetherDS0
∪ Duna |=os

TD

Ros[W]. Besides, according to Theorem 1, it is easy to see
that the following consequence holds.

Corollary 1 If W1 andW2 are regressable formulas inLOS

s.t. |=os
TD

W1 ≡W2, thenD |=os

TD
Ros[W1] ≡ Ros[W2].

Intuitively, Corollary 1 states that the regressed results of
two logically equivalent regressable formulas (possibly having
different syntactic forms only) are still equivalent.

Order-Sorted Situation Calculus v.s. Reiter’s
Situation Calculus

Although BATs and regressable formulas inLOS are based on
OSL, they can be related to BATs and regressable formulas in
Reiter’s situation calculus as stated in Theorem 3.

Theorem 3 (Soundness)For any BATD and any queryW
in order-sorted situation calculusLOS , there exists a corre-
sponding BATD′ and a corresponding queryW ′ in Reiter’s
situation calculus s.t.

D |=os

TD
W iff D′ |=ms W ′.

68

Intuitively, we would like to show that the order-sorted sit-
uation calculusLOS is correct, orsound, in the sense that for
any query inLOS that can be answered in its background BAT
in LOS , we always can find a way to represent the BAT and the
query in Reiter’s situation calculusLsc s.t. the corresponding
query inLsc can be answered wrt the corresponding BAT in
Lsc.

It is hard to prove Theorem 3 directly. Inspired by thestan-
dard relativizationof OSL to unsorted (first-order) logic, our
general idea of proving Theorem 3 is as follows. In Step 1,
we prove that there is an unsorted theoryD′′ (via strong rel-
ativization) and an unsorted first-order sentenceW ′′ (via rel-
ativization) s.t. D |=os

TD
W iff D′′ |=fo W ′′. In Step 2, we

construct a BATD′ (called thecorresponding Reiter’s BAT of
D below) and a regressable formulaW ′ (called thetranslation
of W below) in Reiter’s situation calculus, s.t.D′ |=ms W ′

iff D′′′ |=fo W ′′′, for some unsorted theoryD′′′ (via standard
relativization) and sentenceW ′′′ (via relativization). Finally,
in Step 3, we show thatD′′′ |=fo W ′′′ iff D′′ |=fo W ′′.

D |=os
TD

W
(Step 1)
⇐⇒ D′′ |=fo W ′′

m (Step 3)

D′ |=ms W ′
(Step 2)
⇐⇒ D′′′ |=fo W ′′′

Fig 1. Diagram of the Outline for Proving Theorem 3

To prove Theorem 3, we first define some concepts and
prove Lemma 1 for later convenience. First, for any sortQ
in the language ofLOS , we introduce a unary predicateQ(x),
which will be true iffx is of sortQ in LOS .

Definition 1 For any well-sorted formulaφ in LOS , rel(φ),
a relativizationof φ, is an unsorted formula defined as:

For every atomP (~t), rel(P (~t))
def
= P (~t); rel(¬φ)

def
= ¬rel(φ);

rel(φ ◦ ψ)
def
= rel(φ) ◦ rel(ψ) for ◦∈{∧,∨,⊃};

rel((∀x :Q)φ)
def
= (∀y)[Q(y) ⊃ rel(φ[x/y])];

rel((∃x :Q)φ)
def
= (∃y)[Q(y)∧ rel(φ[x/y])].

Moreover, for any setSet of well-sorted formulas,
rel(Set) = {rel(φ) |φ∈Set}.

Note that all formulas inLsc are well-sorted wrt the sort
theory ofLsc. Hence, the definition ofrel can also be ap-
plied to any formula or a set of formulas in Reiter’s situation
calculus.

Definition 2 For any sort theoryTD in LOS , the set of bridge
axiomsof TD,BA(TD), is a set of the following formulas:
(a) (∀x).Q2(x) ⊃ Q1(x) for eachQ2≤Q1 ∈TD;
(b) Q(c) for eachc :Q ∈TD;
(c) (∀~x1..n).

Vn

i=1
Qi(xi) ⊃ Q(f(~x1..n)) for eachf : ~Q1..n →

Q ∈TD.
Moreover, letSorted(x) be an auxiliary predicate that

does not appear inD: it is a purely technical device used
for proving Theorem 3. The set ofstrong bridge axiomsof
TD, SBA(TD), is also a set of unsorted axiomsBA(TD) ∪
sba(TD), wheresba(TD) includes the following axioms:
(d) (∀~x1..n).P (~x1..n) ⊃

Vn

i=1
Qi(xi) ∧ Sorted(xi) for each

P : ~Q1..n ∈TD;

(e) (∀~x1..n).Q(f(~x1..n))∧ Sorted(f(~x1..n)) ⊃
Vn

i=1
(Qi(xi) ∧

Sorted(xi)) for eachf : ~Q1..n→Q ∈TD.

Intuitively, Sorted(t) means that termt is well-sorted (wrt
D). (a functional term is well-sorted and of its own sort, re-
spectively), then all its arguments should be well-sorted and
of the corresponding sorts wrt the predicate declaration (the
function declaration, respectively). Note that althoughSorted
may satisfy other characterizing axioms than axioms in (d) and
(e) according to its intuitive meaning, but adding axioms in (d)
and (e) to the strong relativization theory ofD defined below
is enough for us to prove Theorem 3.

Definition 3 For any order-sorted BATD in LOS , the
strong relativization ofD, an unsorted theory, is defined as

RELS(D)
def
= rel(D) ∪ SBA(TD).

Consider any BATD1 in Reiter’s situation calculusLsc, which
has a finite setTD1

of function declarations and predicate dec-
larations for all predicates and functions appeared inD1. The
standard relativization ofD1, an unsorted theory, is defined as

REL(D1)
def
= rel(D1) ∪BA(TD1

).

The reasons for differences between the two cases in Def. 3
are that (1) we include the sort theory in each BAT of order-
sorted situation calculus, while Reiter’s situation calculus
mentions sort declarations generally in the signature ofLsc,
and (2) we need strong relativization for order-sorted BATs
and only need standard relativization for Reiter’s BATs to
prove Theorem 3. In comparison to the standard relativiza-
tion, the strong relativization adds additional axioms of the
form (d) and (e) in Def. 2. They are based on the sort theory
that includes one and only one declaration for each predicate
P or for each functionf , respectively. We can also prove a
relativization theorem as follows for the strong relativization
similar to the Sort Theorem proved in (Walther 1987) and/or
the relativization theorem proved in (Schmidt-Schauβ 1989).

Lemma 1 Consider any regressable formulaW with a back-
ground BATD in order-sorted situation calculusLOS . Then,

D |=os

TD
W iff RELS(D) |=fo rel(W).

We therefore can prove Step 1 in Fig. 1 using Lemma 1.
Because Reiter’s situation calculus is a many-sorted logical
language with special formats for precondition axioms and
SSAs, we cannot userel to relateD in LOS with a Reiter’s
BAT directly. It is also the reason why strong relativization is
introduced. To construct a Reiter’s BATD′ and a regressable
formulaW ′ that satisfy the theorem, we first define another
translation functiontr(W) as follows.

Definition 4 Consider any well-sorted formulaφ in LOS . A
translationof φ to a (well-sorted) sentence in Reiter’s situa-
tion calculus, denoted astr(φ), is defined recursively as fol-
lows:

For every atomP (~t), tr(P (~t))
def
= P (~t); tr(¬φ)

def
= ¬tr(φ);

tr((∃x :⊥)φ)
def
= false; tr((∀x :Q)φ)

def
= ¬tr((∃x :Q.¬φ));

tr((∃x :Q)φ)
def
= (∃x :Q)tr(φ), if Q∈{Object, Act, Sit}.

tr((∃x :⊤)φ)
def
= (∃x :Object)tr(φ)∨(∃x :Act)tr(φ)∨

(∃x :Sit)tr(φ);

tr((∃x :Q)φ)
def
= (∃y :Object)[Q(y) ∧ tr(φ(x/y))],

69

if Q 6∈{⊤,⊥, Object, Act, Sit};

tr(φ ◦ ψ)
def
= tr(φ) ◦ tr(ψ) for ◦∈{⊃,∧,∨,⊃,≡}.

The translation functiontr defined above is a mapping from
well-sorted formulas wrt the sort theory of some BATD (or,
wrt D for simplicity) in LOS to well-sorted formulas inLsc.
Moreover, it is easy to prove by structural induction the fol-
lowing lemma forrel andtr, which will be useful for proving
Theorem 3.

Lemma 2 Consider any well-sorted formulaφ in LOS . Then,
|=fo rel(tr(φ)) ≡ rel(φ).

Consider any order-sorted BATD. We construct thecor-
responding Reiter’s BAT ofD, denoted asTR(D), that will
be the Reiter’s BAT we are looking for in Theorem 3. Notice
that in (Reiter 2001), sorted quantifiers are omitted as a con-
vention, because their sorts are always obvious from context.
Hence, when we construct the BATTR(D) in Reiter’s situa-
tion calculus below, all free variables are implicitly universally
sorted-quantified according to their obvious sorts. The func-
tion and predicate declarations are always standard, hence are
not mentioned here.
• TR(D) includes the foundational axioms and the set of
unique name axioms for action functions in Reiter’s situation
calculus.
• The initial theory ofTR(D), sayD′

S0
, includes the fol-

lowing axioms. Note that for axioms in items (3)–(5) below,
predicateSorted is auxiliary wrtD and eachxi is universally
quantified with a default sortObject (Qi itself, respectively)
if Qi≤T Object (Qi 6≤T Object, respectively).
1. For any well-sorted sentenceφ∈DS0

, tr(φ) is inD′

S0
.

2. For each declarationQ2≤Q1 in TD, add an axiomtr((∀x :
⊤).(∃y2 :Q2.x = y2) ⊃ (∃y1 :Q1.x = y1)).

3. For each declarationf : ~Q1..n →Q in TD (n ≥ 1), add an
axiomtr((∀~x1..n : ~Q1..n).(∃y :Q).y = f(~x1..n)).
We also add an axiom
Q(f(~x1..n)) ∧ Sorted(f(~x1..n)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

if Q≤T Object andQ 6=Object, or add an axiom
((∃y :Q).y = f(~x1..n) ∧ Sorted(y)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

otherwise.
4. For each situation-independent predicate declaration
P : ~Q1..n, add an axiom
P (~x1..n) ⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi = yi ∧ Sorted(xi))).

5. For each fluent declarationF : ~Q1..n × Sit, add an axiom
F (~x1..n, S0)⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi =yi∧Sorted(xi))).

6. For any constant declarationc :Q whereQ≤T Object and
Q 6=Object, add an axiomQ(c). Note that other constant dec-
larations will still be kept in the sort theory ofLsc by default
(e.g.,S0 :Sit).
• For actionA(~x1..n) whose precondition axiom inDap has
the form Eq. (1), we replace it with a precondition axiom in
the format of Reiter’s situation calculus:

Poss(A(~x1..n), s) ≡ φ′

A(~x1..n, s) (3)

whereφ′A(~x1..n, s) is aLsc formula uniform ins, resulting
from tr((∃~y1..n : ~Q1..n).(

Vn

i=1
xi = yi) ∧ φA(~y1..n, s)). Here,

all yi’s are distinct auxiliary variables never appearing in
φA(~x1..n, s).
• For each relational fluentF (~x1..n, s), whose SSA inDss is
of the form Eq. (2), we replace it with SSA in the format of
Reiter’s situation calculus:

F (~x1..n, do(a, s)) ≡ ψ′

F (~x1..n, a, s) (4)

whereψ′

F (~x1..n, a, s) is aLsc formula uniform ins, result-
ing from tr((∃~y1..n : ~Q1..n).

Vn

i=1
xi = yi ∧ ψF (~y1..n, a, s)).

Here, allyi’s are distinct auxiliary variables never appearing
in ψF (~x1..n, s).

LetD′ =TR(D),W ′= tr(W), we then can prove Theorem 3
by following the ideas presented in Fig. 1. Details are omitted
due to the space limitations.

Example 4 Consider the BATD from Example 1. The ax-
ioms inTR(D) are mostly obvious. Due to the space limita-
tions, we just provide examples of a precondition axiom and
an SSA inTR(D):
Poss(load(x, t), s) ≡ Box(x) ∧ Truck(t) ∧ ¬On(x, t, s)∧

(∃y.City(y) ∧ InCity(x, y, s) ∧ InCity(t, y, s)),
InCity(d, c, do(a, s)) ≡MovObj(d) ∧ City(c)∧

[(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c1, c)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))
∨InCity(d, c, s)∧
¬(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c, c1)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))].

It is important to notice that all queriesLOS have to be well-
sorted wrt the given background order-sorted BATD; while,
in general, the queries that can be answered in the correspond-
ing Reiter’s BAT ofD are not necessarily well-sorted wrtD.
Below, Theorem 4 shows that for any query that can be an-
swered inTR(D), it can be answered inD in a “well-sorted
way” too.

Theorem 4 (Completeness)LetD be an order-sorted BAT in
LOS , andTR(D) be its corresponding Reiter’s BAT. Then, for
any queryW in Reiter’s situation calculus,W can be trans-
lated to a (well-sorted) query wrtD, denoted asos(W) below,
s.t. TR(D) |=ms tr(os(W)) ≡ W . Furthermore, we have
TR(D) |=ms W iff D |=os

TD
os(W).

To prove Theorem 4, we first define some new concepts and
prove a lemma.

Definition 5 LetD be a BAT in the order-sorted situation cal-
culusLOS , andTR(D) be its corresponding Reiter’s BAT.
Any termt in Reiter’s situation calculus is apossibly sortable
term wrtD, if one of the following conditions holds:
(1) t is a variable of sortAct,Object or Sit in Lsc;
(2) t is a constantc, andc :Q in TD (we say that the sort ofc
isQ wrt D); or,
(3) t is of form f(~x1..n), function declarationf : ~Q1..n →Q
in TD, for everyi (i=1..n), ti either is a variable or is a non-
variable term of sortQ′

i wrt D andQ′

i ≤T Qi in TD (we say
that the sort off(~t1..n) isQ wrt D).

Similarly, any atomP (~t1..n) in Reiter’s situation calculus
(can bet1 = t2), which is well-sorted wrtTR(D), is apossibly

70

sortable atom wrtD, if for every i, ti either is a variable or is
a non-variable term s.t.:
(a) it is possibly sortable wrtD; and
(b)P : ~Q1..n is in TD (=: ⊤×⊤, respectively), the sort ofti is
Q′

i wrt D andQ′

i≤T Qi wrt D.

Given anyD in order-sorted situation calculus, it is easy to see
that every atom (term, respectively) inTR(D) that can be con-
sidered as well-sorted wrtD is always a possibly sortable atom
(term, respectively); while a possibly sortable atom (term, re-
spectively) is not necessarily well-sorted wrtD.

Lemma 3 LetD be a BAT in the order-sorted situation calcu-
lusLOS , andTR(D) be its corresponding Reiter’s BAT. Then,
for any atomP (~t1..n) (can bet1 = t2) that is well-sorted in
Lsc but not possibly sortable wrtD, we haveTR(D) |=ms

P (~t1..n) ≡ false.

Now we define a function which transforms a formula in
Lsc wrt TR(D) to a well-sorted formula inLOS wrt D.

Definition 6 LetD be a BAT in the order-sorted situation cal-
culusLOS , TR(D) be its corresponding Reiter’s BAT and
W be a regressable sentence inLsc wrt the background BAT
TR(D). Then, functionos(W) is defined recursively as fol-
lows.

1. If W is either of the form(∀x)W1, (∃x)W1, where the de-
fault sort ofx is Q (eitherObject, Act or Sit) in TR(D),

thenos((∀x)W1)
def
= (∀x :Q)os(W1), andos(∃x.W1)

def
= (∃x :

Q)os(W1).

2. If W is one of the form¬W1,W1 ∧W2,W1 ∨W2, then
os(¬W1)

def
= ¬os(W1), os(W1 ∧W2)

def
= os(W1) ∧ os(W2),

os(W1 ∨W2)
def
= os(W1) ∨ os(W2).

3. If W is atomic and not possibly sortable, thenW def
= false.

4. If W is atomic and possibly sortable, assume that
var(W) = 〈x1, · · · , xn〉 is the vector of free variables ap-
peared from left to right inW (including repeated ones).
For eachi=1..n, suppose thatxi appears as an argument of
a functionfi in some term or as an argument of a predicate
Pi in W . LetQi be the sort appeared in theki-th position
of the declaration offi (Pi, respectively), ifxi appears in
theki-th position offi (Pi, respectively) inW . Then, let
IW ={i |xi∈var(W), Qi ≤T Object,Qi 6= Object}, and
~y : ~Q = {yi :Qi | i∈IW }, whereyi’s are auxiliary variables
never appeared inW and eachyi is distinct from others.

And, os(W)
def
= (∃~y : ~Q)(W0 ∧

∧
i∈IW

xi = yi), whereW0

is obtained from substituting eachxi with yi for i∈IW .

Proof sketch for Theorem 4. First, for any queryW in Re-
iter’s situation calculus, letW ′ = os(W). By using structural
induction and Lemma 3, it is easy to prove thatW ′ is a well-
sorted query wrtD in OSL andTR(D) |=ms W ≡ tr(W ′).
Then, by Theorem 3 andTR(D) |=ms W ≡ tr(W ′), it is easy to
see thatD |=os

TD
W ′ iff TR(D) |=ms tr(W ′) iff TR(D) |=ms W .

Proof details are omitted due to the space limitations. But, we
provide some examples below to illustrate the statement.

Example 5 Here are simple examples of computingos(W)
from W in Lsc. Consider theTR(D) in Example 4. Let

On(Boston, T1, S1) (denoted asW3) be a query inLsc,
whereS1 is some situation instance. According to the way
TR(D) is constructed, we haveTR(D) |=ms On(o, t, s) ⊃
Box(o) and TR(D) |=ms ¬Box(Boston). So, TR(D) |=ms

W3 ≡ false. Hence,os(W3)
def
= false.

Let W4 be ∀s.∃o.¬InCity(o,Pasadena, s), which is also a
query inLsc, whereo : Object ands : Sit hold by default.
Then,os(W4) is ∀s : Sit.∃o : Object.¬(∃b : MovObj.b = o∧
InCity(b, Pasadena, s)), sinceTR(D) |=ms InCity(o, c, s)⊃
MovObj(o)∧City(c). And it is easy to prove thatTR(D) |=ms

W4≡ tr(os(W4)).

Computational Advantages ofLOS

In this section, we discuss the advantages of using OSL and
the order-sorted regression operator based on it.

Given any BATD in LOS , it is easy to see that Reiter’s
regression operatorR (Reiter 2001) still can be applied to
(well-sorted) regressable formulas (wrtD). Moreover, one
can prove thatR[W] is a formula inLOS uniform inS0 and
D |=os

TD
W ≡ R[W]. However, using the order-sorted regres-

sion operatorRos sometimes can give us computational ad-
vantages in comparison to using Reiter’s regression operator
R. But first of all, we show that the computational complexity
of usingRos is no worse than that ofR.

For the regression operatorR that can be used either in
LOS or in Lsc (Ros used inLOS , respectively), we can con-
struct aregression treerooted atW for any regressable query
W in either language. Each node in a regression tree of
R[W] (Ros[W], respectively) corresponds to a sub-formula
computed by regression, and each edge corresponds to one
step of regression according to the definition of the regres-
sion operator. In the worst case scenario, for any queryW
in LOS , the regression tree ofRos[W] will have the same
number of nodes as the regression tree ofR[W] (and linear
to the number of nodes in the regression tree ofR[tr(W)] wrt
TR(D)). Moreover, based on the assumption that our sort the-
ory ofD is simple with empty equational theory, whose corre-
sponding sort hierarchy is a meet semi-lattice, finding a unique
(well-sorted) MGU takes the same time as in the unsorted
case (Schmidt-Schauβ 1989; Jouannaud & Kirchner 1991;
Weidenbach 1996). Hence, the overall computational com-
plexity of building the regression tree ofRos[W] is at most
linear to the size of Reiter’s regression tree.

Theorem 5 Consider any regressable sentenceW with a
background BATD in order-sorted situation calculusLOS .
Then, in the worst case scenario, the complexity of comput-
ing Ros[W] is the same as that of computingR[W], which is
also the same as the complexity of computingR[tr(W)] in the
corresponding Reiter’s BATTR(D).

On the other hand, under some circumstances, the regres-
sion of a query inLOS usingRos instead ofR will give us
computational advantages. Consider any query (i.e., a regress-
able sentence)W with a background BATD in LOS . Then,
the computation ofRos[W] wrt D can sometimes terminate
earlier than that ofR[W] wrt D, and also earlier than the com-
putation ofR[tr(W)] wrt TR(D). In particular, we have the
following property.

71

Theorem 6 Let a regressable formulaW have the syntactic
formt1,1 = t1,2∧. . .∧tm,1 = tm,2 ∧W1, with any background
order-sorted BATD in LOS . Let the size ofW (including the
length of the terms inW) ben. If there is no well-sorted mgu
for equalities between terms, then ComputingRos[W] runs
in timeO(n), while computingR[W] wrt D (R[tr(W)] wrt
TR(D)) runs in timeO(2n). Moreover, the size of the resulting
formula ofRos[W], which isfalse, is always constant, while
the size of the resulting formula usingR is inO(2n).

According to the definition of Reiter’s regression operator,
the equalities will be kept and regression will be further per-
formed onW1 (or ontr(W1) in TR(D), respectively), which
in general takes exponential time wrt the length ofW1 and
causes exponential blow-up in the size of the formula. Once
Reiter’s regression has terminated, a theorem prover will find
that the resulting formula is false either because there is no
mgu for terms when reasoning is performed inLOS (or, due
to the clash between sort related predicates when reasoning in
Lsc, respectively). Hence, using the order-sorted regression
operator can sometimes prune brunches of the regression tree
built by R exponentially (wrt the size of the regressed for-
mula), and therefore save computation time significantly.

Example 6 Consider the BATD from Example 1. LetW5 be
aLOS query (i.e., a (well-sorted) regressable sentence)
InCity(T1, Pasadena, do(drive(T1, Boston, Pasadena), S1)),
whereS1 is a well-sorted ground situation term that involves
a long sequence of actions. According to the SSA ofInCity,
at the branch of computingRos[∃b :Box.b=T1 ∧ On(b, t, S1)]
in the regression tree, since there is no well-sorted mgu for
(b, T1), the application of order-sorted regression equals to
false immediately. However, using Reiter’s regression opera-
tor (no matter inD or in TR(D)), his operator will keep doing
useless regression onOn(b, t, S1) until getting (a potentially
huge) sub-formula uniform inS0. Once his regression has ter-
minated, such sub-formula will also be proved equivalent to
false wrt the initial theory (DS0

or TR(D)S0
, respectively)

using a theorem prover, for the same reason as above.

In addition, since our sort theory of a BATD in LOS is
finite and it has one and only one declaration for each func-
tion and predicate symbol, for any queryW (wrt TR(D)) in
Lsc, it takes linear time (wrt the length of the query) to find a
well-sorted formulaos(W) in LOS that satisfies Theorem 4.
But, reasoning whetherD |=os

TD
os(W) (starting from finding

os(W)) sometimes can terminate earlier than finding whether
TR(D) |=ms W . In particular, we have

Theorem 7 Assume thatW = F (~t, do([α1, · · · , αn], S0)) is
an atomic fluent instance inLsc that includes an ill-sorted
ground term wrtD (e.g.,W3 in Example 5). Then, it takes
at most linear time to terminate reasoning by computing the
correspondingos(W) (which isfalse).

Observe that reasoning aboutTR(D) |=ms W directly, for
the formulaW mentioned in Theorem 7, using regression
R could result in a exponentially large regression tree when
computingR[W]. Also, the size of the resulting formula
can be exponentially larger than that ofW . Moreover, it still
needs further computational steps to find whetherTR(D)S0

∪
TR(D)una |=ms R[W].

Conclusions
We propose a logical theory for reasoning about actions
wrt a taxonomy of objects based on OSL. We also define
a regression-based reasoning mechanism that takes advan-
tages of sort theories, and discuss the computational advan-
tages of our theory. One possible future work can be ex-
tending our logic to hybrid order-sorted logic (Cohn 1989;
Bierle et al. 1992; Weidenbach 1996). Another possibility
is to consider efficient reasoning in our framework by iden-
tifying specialized classes of queries or decidable fragments
(Abadi, Rabinovich, & Sagiv 2007). Finally, we are planning
to work on an efficient implementation of our theory.

References
Abadi, A.; Rabinovich, A. M.; and Sagiv, M. 2007. Decidable
fragments of many-sorted logic. InLPAR, volume 4790 ofLecture
Notes in Computer Science, 17–31. Springer.
Bierle, C.; Hedtstück, U.; Pletat, U.; Schmitt, P. H.; and Siekmann,
J. 1992. An order-sorted logic for knowledge representation sys-
tems.Artificial Intelligence55(2-3):149–191.
Classen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an integration of golog and planning. In20th International
Joint Conference on Artificial Intelligence (IJCAI-07). AAAI Press.
Cohn, A. G. 1987. A more expressive formulation of many sorted
logic. J. Autom. Reason.3(2):113–200.
Cohn, A. G. 1989. Taxonomic reasoning with many sorted logics.
Artificial Intelligence Review3(2-3):89–128.
Ghallab, M.; a. Howe; Knoblock, C.; McDermott, D.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL the plan-
ning domain definition language. Technical report, Yale Center for
Computational Vision and Control, Technical Report CVC TR-98-
003/DCS TR-1165.
Goguen, J. A., and Meseguer, J. 1987. Remarks on remarks on
many-sorted equational logic.SIGPLAN Notices22(4):41–48.
Hayes, P. J. 1971. A logic of actions.Machine Intelligence6:495–
520.
Herbrand, J. 1971.Logical Writings. Cambridge: Harvard Univer-
sity Press. Warren D. Goldfarb (ed.).
Jouannaud, J.-P., and Kirchner, C. 1991. Solving equations in ab-
stract algebras: A rule-based survey of unification. InComputa-
tional Logic - Essays in Honor of Alan Robinson, 257–321. MIT
Press.
Oberschelp, A. 1962. Untersuchungen zur mehrsortigen quantoren-
logik (in German).Mathematische Annalen(145):297–333.
Oberschelp, A. 1990. Order sorted predicate logic. InSorts and
Types in Artificial Intelligence, volume 418 ofLecture Notes in
Computer Science, 8–17. Springer.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.
Schmidt-Schauβ, M. 1989. Computational aspects of an order-
sorted logic with term declarations. New York: Springer-Verlag.

Schmidt, A. 1938. Über deduktive theorien mit mehreren soften
von grunddingen.Mathematische Annalen(115):485–506.
Walther, C. 1987.A many-sorted calculus based on resolution and
paramodulation. San Francisco: Morgan Kaufmann.
Wang, H. 1952. Logic of many sorted theories.Symbolic Logic
17(2):105–116.
Weidenbach, C. 1996. Unification in sort theories and its applica-
tions. Annals of Math. and AI18(2/4):261–293.

72

Autonomous Learning of Commonsense Simulations
Benjamin Johnston and Mary-Anne Williams

University of Technology, Sydney
Ultimo, Sydney, New South Wales, Australia

johnston@it.uts.edu.au

Abstract
Parameter-driven simulations are an effective and efficient
method for reasoning about a wide range of commonsense
scenarios that can complement the use of logical formaliza-
tions. The advantage of simulation is its simplified knowl-
edge elicitation process: rather than building complex logical
formulae, simulations are constructed by simply selecting
numerical values and graphical structures. In this paper, we
propose the application of machine learning techniques to
allow an embodied autonomous agent to automatically con-
struct appropriate simulations from its real-world experience.
The automation of learning can dramatically reduce the cost
of knowledge elicitation, and therefore result in models of
commonsense with breadth and depth not possible with tra-
ditional engineering of logical formalizations.

Introduction
Comirit is an open-ended hybrid architecture for common-
sense reasoning. We have previously described (Johnston
and Williams 2008) how Comirit is a generalization of the
method of analytic tableaux; combining rich 3D simulation
with formal logic. In this paper we extend the architecture so
that it supports autonomous learning in addition to deduc-
tion. We demonstrate the system by implementing stochastic
search and an auto-associative network in the framework:
this enables our experimental system to autonomously ac-
quire and maintain reliable knowledge of novel objects and
their behaviors.

At Commonsense 2007 (Johnston and Williams 2007),
we argued that simulations are a potentially rich resource
of commonsense knowledge and are an expressive and effi-
cient mechanism for commonsense reasoning. The potential
for breadth and depth is clearly evident when one considers
the advances in modern animations and computer games:
modern games offer realistic open-ended ‘sandbox’ envi-
ronments for unlimited experimentation and interaction. We
showed that a generic graph-based representation can be
used to rapidly create similarly rich and realistic simulations
with minimal software development, and thereby produce
the possibility of extracting and directly reasoning with the
knowledge that would otherwise be only implicitly repre-
sented in simulation. Generic graph-based representations
further simplify the knowledge elicitation process to a task
that can be performed as a routine software development
process without the expense (or concern for a shortage) of
skilled logicians or philosophers.

While simulation may be seen as a powerful heuristic
for deducing possible and likely future states from current
conditions, a weakness of simulation is that it must follow
the ‘arrow-of-time’. That is, it is impossible to simulate a

complex situation in reverse to deduce likely causes or pre-
cursors of a situation: one cannot simulate spilled milk in
reverse to discover a likely cause—it is far easier to simu-
late the outcome from a particular cause such as dropping
an open milk carton onto the floor. When greater deductive
power is required than that of forward-running simulations,
it is therefore necessary to augment simulation with other
mechanisms.

We proposed (Johnston and Williams 2008) the integra-
tion of simulation and logical deduction as a way of combin-
ing the efficiency and richness of simulation with the power
of logic. Our framework generalized the method of analytic
tableaux to allow both logical terms and simulation objects
within a single search structure. A single unifying principle
based on the idea of searching through spaces of possible
worlds enabled these disparate mechanisms to be harmoni-
ously combined in a single system.

While our framework offers a mechanism for common-
sense reasoning, we acknowledge that an effective system
includes not only a reasoner, but also a comprehensive com-
monsense knowledge-base. The 20-year Cyc project (Pan-
ton et al. 2006) to create a commonsense knowledge-base
serves as a clear demonstration that such engineering can be
exorbitantly expensive. We therefore wondered, “is it pos-
sible to automate knowledge acquisition?” Our graph-based
simulations simplify the engineering process, so we initially
expected that powerful semi-automatic engineering tools
could permit rapid knowledge elicitation. In designing these
tools, it soon became apparent that the graph representation
could allow fully autonomous learning and generalization of
aspects of the behavior of novel objects.

The purpose of this paper is therefore to explain how
learning may be incorporated into our commonsense rea-
soning framework. We view cumulative learning as an it-
erative process of hypotheses generation and selection: this
perspective can be elegantly incorporated into a tableaux
reasoning framework by ranking branches of the search tree
and allowing for factoring of sub-problems. The purpose of
these modifications is to allow branches of a tableau to con-
tain hypotheses, and for the search algorithm to focus only
on those branches with the best hypothesis.

This paper begins with a brief overview of the existing
framework: the underlying representation used by simula-
tion, and the hybrid reasoning strategy. We then explain how
the framework is extended to allow learning, and conclude
with a concrete exploration into how stochastic hill-climb-
ing and auto-associative networks may be incorporated into
this framework to allow a system to autonomously learn
simulations of novel objects.

73

Simulation
In the Comirit framework, simulations are used as the un-
derlying mechanism and representation for large scale
commonsense knowledge. Not all knowledge can be rep-
resented efficiently in simulations (e.g., ‘What is the name
of the Queen of England?’), but simulation works well in
problems governed by simple laws (such as physics) and so
simulation is used in the framework wherever possible.

Comirit simulations are a sophisticated generalization of
an early proposal by Gardin and Meltzer (1989); extended
to support 3D environments and non-physical domains.
Comirit simulations are constructed from a graph-based rep-
resentation. The fundamental structure of a problem is first
approximated by a graph. The graph is then annotated with
frame-like structures, and simulation proceeds by the itera-
tive update of the annotations by update functions.

The formal details of simulation are not needed to under-
stand this paper, so we will use illustrative examples. Read-
ers interested in the formal details should refer to our previ-
ous publication (Johnston and Williams 2007).

A Comirit simulation consists of the following parts:
a system clock that increments by finite intervals1.
a (relatively) static graph representation that models 2.
the underlying structure of a problem domain,
a set of highly dynamic annotations that record the 3.
state of a simulation, and
a static set of computable functions or constraints that 4.
update the annotations with each iteration of the sys-
tem clock and thereby drive the computation of the
simulation.

This representation is intentionally generic. We claim that
it can be used to represent simulations from any rule-driven
problem domain including physical, social, legal, economic
and purely abstract realms. Our research has emphasized
physical reasoning and naïve physics, so we will illustrate
simulation and learning through examples based upon 3D
simulations of physical models.

Consider a simple domestic robot facing a physical rea-
soning problem: given a mug filled with coffee, is it ‘safe’ to
perform fast movements to carry the mug? In the Comirit
framework, the robot considers the problem by internal sim-

ulations of the scenario; testing whether a simulated mug is
damaged by fast movement, or if such motion causes dam-
age to the environment by spilling coffee.

The generic graph structure is used to represent the un-
derlying structure of the problem. For example, the mug of
coffee can be approximated as a mesh of point masses con-
nected by semi-rigid beams. A visualization of such a graph
appears in Figure 1. Note that both the spheres and beams
are vertices of the underlying graph, their connectivity is
recorded by edges in the graph.

Each vertex of the simulation graph (i.e., each point mass
and each semi-rigid connecting bar) is annotated with a
set of frame-like attributes such as the current 3D position,
local mass distribution, rigidity, physical state, tempera-
ture and whether the local structure has been broken (due
to over-stressing). Examples of particular annotations and
values also appear in Figure 1. Note that these annotations
represent only local properties of the simulation. The total
mass of the mug of coffee is equal to the sum of all of the
mass attributes.

Simulation proceeds by the iterative update of annotation
values. Newton’s laws of motion are applied to each of the
point masses, and Hooke’s law (describing the behavior of
a spring) is applied to the connecting beams. Figure 1 il-
lustrates update functions for the laws of momentum and
gravity. Note that these functions have only short-term and
local effects.

The combined effect of iteratively computing local up-
dates on the annotations is emergent behavior that closely
resembles the actual behavior of real world scenarios. Laws
of physics are simple at the microscopic scale. The macro-
scopic shape of an object, its centre of mass, its rotational
inertia and its viscosity or brittleness vastly complicate the
physical laws of motion of large bodies, but these simply
emerge from iteration of simple laws at the microscopic
scale. Indeed, this method of simulation may be seen as
a variation on the Euler method of numerical integration.
Simulation effectively performs numerical integration over
the fundamental laws of physics that are expressed as step-
wise differential equations in the update functions.

If we run a mug of coffee simulation we may result in an
outcome such as that depicted in Figure 2. Symbolic results
are reported by simple routines that inspect the state of the
simulation to determine if, for example, any semi-rigid bars
have broken (in the case of a ‘broken’ symbol), or if any
liquid is no longer contained by the mug (in the case of a
‘mess’ symbol). This outcome would imply that the robot
should not use fast movements with the mug.

PointMassVertex #37
x: 5.592 y:0.271 z:3.661
mass: 2.1 rigidity: 51
temp: 22 type: porcelain

SemiRigidBeamVertex #189
broken: false spring-constant: 900
length: 1.2 crack-at: 101%
type: porcelain

MomentumUpdateFunction
x´´ := x´ + (x´-x)
y´´ := y´ + (y´-y)
z´´ := z´ + (z´-z)

GravityUpdateFunction
z´ := z + z + ½ × g × (∆t)²

Connectivity Graph Annotations

Update Functions

Figure 1: Examples of the components of a simulation

‘mess’ symbol generated from simulation

Figure 2: Simulating a ‘fast move’ on a mug of coffee

74

Hybrid Architecture
Simulation is a powerful and efficient tool for commonsense
reasoning, but it only supports a ‘forward chaining’ infer-
ence mode: it is therefore an incomplete solution for general
purpose commonsense reasoning. We integrate simulation
with logical deduction in a hybrid architecture in order to
combine the strengths and complement the weaknesses of
each mechanism. That is, we use the deductive power of a
general-purpose logical reasoner to make up for the inflex-
ibility of simulation.

In combining simulation and logic, blackboard architec-
tures, tuple spaces and agent architectures serve as obvi-
ous choices for implementation: they have a long history
of application to problems of integration in intelligent sys-
tems. Unfortunately, our experience is that the conceptual
mismatch between simulation and logic is such that appli-
cation of these integration techniques eventually results in
systems that are unworkably complex and difficult to main-
tain. Instead, a clear and unifying abstraction is required to
harmonize the semantics of the reasoning mechanisms. We
claim that this can be achieved by our hybrid architecture
that performs logical deduction with the method of analytic
tableaux, and interprets both simulation and logical deduc-
tion as operations over spaces of worlds.

The method of analytic tableaux (Hähnle 2001) is an ef-
ficient method of mechanizing logical theorem proving.
Analytic tableaux have been successfully applied to large
problems on the semantic web, and there is a vast body
of literature on their efficient implementation (ibid.). The
method constructs trees (tableaux) through the syntactic
decomposition of logical expressions, and then eliminates
branches of the tree that contain contradictions among the
decomposed atomic formulae. Each branch of the resultant
tableau may be seen as a partial, disjunction-free description
of a model for the input formulae. The crucial insight is that
if a tableau algorithm is given knowledge of the world and
a query as logical input, then the conjuction of the atomic
formulae in a branch of the resultant tree represents a space
of worlds that satisfy the query.

The tableau method and simulation can thereby be uni-
fied through this common abstraction. The tableau algo-
rithm generates spaces of worlds, and simulation expands
upon knowledge of spaces of worlds (i.e., forward chains to
future states based on current states). In our framework, we
perform commonsense reasoning by generalizing the tableau
so that it can contain non-logical terms such as simulations,
functions and data-structures in addition to the standard
logical terms of traditional tableaux. Deduction proceeds by
application of both tableau rules that expand, fork or close
branches of the tree, and simulations that can expand and
close branches of the tree.

The full details of this method appear in our earlier pub-
lications, but we will review the principles here by way of a
simplified example. Consider the following scenario:

A household robot needs to move an object across a
table. Its actuators can perform a soft or a hard move-
ment. It is unsafe to move any object ‘quickly’. What
commands may be sent to the actuators?

For the convenience of our example calculations, let us as-

sume that the mass of the object is 1kg, the soft force is 1N,
the hard force is 2N, the object is simply pushed for 1s and
unsafe speeds are 1.5ms-1 or higher. Furthermore, we assume
the following highly simplified and abstracted simulation1:
function simulate(Mass, Force, Time):
 set Speed := Time * Force / Mass
 return {speed = Speed}

We can then convert the scenario to a logical form:
time=1 ˄ mass=1 ˄ safe ˄
 (command=hard-force ˅ command=soft-force)

With this logical form, we may then apply the method of
analytic tableau and simulation to find models that satisfy
1Note that while highly simplified, this algorithm has similar
constraints to real simulations: the inputs are numerical and
fully specified, and the algorithm can only be used in the
‘forward’ direction.

time=1
mass=1
safe
command=hard-force ∨ command=soft-force

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

command=hard-force command=soft-force
force=1force=2

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

command=hard-force command=soft-force
force=1force=2
speed=1speed=2

Figure 3a: First, each conjunct in the original query is
expanded into separate nodes.

Figure 3b: The term ‘safe’ is expanded per its definition.

Figure 3c: The tableau is forked into two branches: one
branch for each disjunct in the fifth node. ‘Hard-force’ and
‘soft-force’ are then expanded per their definitions. Logical
deduction has now ‘stalled’: no more logical rules apply.

Figure 3d: Simulation is now invoked. As a result, the left
branch becomes inconsistent (speed=2 and speed<1.5).
The right branch remains open and therefore describes a
scenario satisfying the original query (i.e., the robot can

safely use soft-force).

75

quire knowledge of a novel object (say a mug of coffee) by
building a wireframe model from a robust 3D shape recon-
struction algorithm, and then searching for annotations that
match the observed behaviour of the object. Observations
can be used to test hypotheses about annotation values by
simulating the behaviour of the novel object and comparing
them to the observation. In our framework, the robot auto-
matically and continuously learns object and annotations in
a background ‘process’ by constantly simulating from re-
cent observations, and testing that expectations match the
current observation. This is illustrated in Figure 4.

The relationship between input and output in a simulation
is difficult to compute analytically (indeed, if there were sim-
ple analytical solutions, it is unlikely that simulation would
be applied to the problem in the first place). Annotations
must be computed by numerical optimization or machine
learning algorithms. In particular, we intend to use a greedy
search to find these values (any other generate-and-test al-
gorithm can be used, as appropriate to the problem: genetic
programming, beam search or simulated annealing).

How then, can optimization be incorporated into our uni-
fying abstraction of search over spaces of possible worlds?
Optimization requires comparison of separate spaces of
worlds, and therefore involves comparing separate parts of
the search space or separate branches of a tableau. Unfortu-
nately, the standard tableau algorithm only permits manipu-
lation or inspection of a single branch. We avoid this prob-
lem by introducing an (incomplete) ordering over branches,
and then modifying the tableau algorithm so that it searches
for minimal models. A branch in a tableau is no longer con-
sidered ‘open’ simply if it is consistent—it is open if it is ei-
ther consistent and unordered, or else it has an ordering and
is minimal among all other consistent and ordered branch-
es. That is, the algorithm considers all unordered branches,
and only one ordered branch. (Note also that if the minimal
ordered branch is found inconsistent, the next most minimal
branch is then considered again.)

We could define the ordering outside of the tableau. For
example: “Branch a is smaller than branch b if the error of
the first hypothesis in a is smaller than that of the first hy-
pothesis in b. If the first hypothesis in a and b are equal,
then the ordering is determined by the second hypothesis
(and so on)”. However, such ordering rules are inconvenient
because they are defined outside the tableau.

the formula. The algorithm proceeds in the steps illustrated
in Figures 3a–3d.
When the algorithm terminates there is a tree with only one
open branch. Reading atomic formulae along that remain-
ing branch, we see that it describes a world in which the
command=soft-force action is applied and the object moves
safely at 1ms-1.

Thus, we have used both simulation and logical deduction
in a single mechanism to solve a (simplified) commonsense
reasoning problem. Details such as data structures, methods
for prioritizing computation, search strategies and output
variables have been omitted from this example for clarity,
however these can be found in our earlier publication (John-
ston and Williams 2008).

Integrating Learning
Commonsense reasoning requires more than a hybrid
method of deduction: it depends on the availability of rich
and accurate knowledge of the world. In contrast to logical
methods that depend on highly skilled logicians painstak-
ingly encoding their intuitions into formal axiomatizations,
a small number of fundamental laws are first implemented
in a simulation, and then descriptions of the world can be
readily added to a simulation in a simple two stage process:

Structuring the underlying simulation graph to match 1.
the observed structure of the situation to be simulated
(such as creating a 3D wire-frame model),
Configuring the annotations on the graph so that the 2.
simulations closely predict reality.

In our own experiences with constructing simulations, we
observed that these tasks involved little mental effort but
were a tedious process of careful tuning of parameters to
match reality (e.g., trial-and-error to determine an appropri-
ate spring constant to simulate a rubber ball). We begun cre-
ating tools to support this process, but quickly realized that
tedious and undemanding tasks are ideal candidates for full
automation. Consider the following:

The update functions in a simulation are static: they are 1.
easily implemented manually, and are rarely changed.
For example, once the laws of Newtonian physics have
been implemented, they can be used in simulations of
almost all mechanical systems. While we currently
view this as outside the realm of feasible automation,
we do not consider this effort to be substantial.
The underlying static graph can often be directly ob-2.
served from the environment. In the case of physical
simulations, a wire-frame approximation can be auto-
matically assembled from the 3D volumes reconstruct-
ed from moving camera images, stereoscopic vision,
LASER sensing, 3D scanning, LIDAR, Z-cameras,
direct physical contact or other scanning/imaging tech-
niques.
The annotations that guide the dynamic behaviour of 3.
simulations are typically numeric so their values may
be learnt with standard machine learning techniques
(i.e., by search for parameters that minimize the error
between simulation and observed reality).

For example, if we have a household robot that uses simula-
tion as an underlying representation, then the robot can ac-

Observation

Compare

Expectations

Errors

Hypothesise

Simulate

Hypotheses

Hypotheses

Current Beliefs

Experiences

Figure 4: Background learning process

76

Instead, we define an ordering with symbols stored
within the tableau. We hold the set of propositions
minimize(VariableName, Priority) as tautologically true in
the standard tableau algorithm, but use them in evaluating
the order of the branch. The Priority is a value from a total-
ly-ordered set (such as the integers) and indicates the order
in which the values of variables are sorted: branches are first
sorted by the highest priority variable, then equal values are
sorted using the next highest priority variable, and so on.

Consider our household robot example again. If the robot
encounters a novel object it will need to find suitable param-
eters to simulate and therefore reason about the object. If
there is another agent or a designated ‘teacher’ demonstrat-
ing how to handle the object, it has a ready stream of obser-
vations for learning. If the object is simply sitting alone, it
may need to apply its most conservative and gentle action
to the object to gather some initial data. The robot can then
use a stochastic hill-climbing strategy on its observations to
learn about the object:

Initially, a default hypothesis about the values of an-1.
notations is assigned to the novel object.
When a new observation arrives, the robot generates a 2.
set of alternate hypotheses (random perturbations, in
the case of a stochastic hill-climbing strategy) as a dis-
junction in the tableau: this disjunction produces new
branches in the tableau.
The alternate hypotheses are each simulated from the 3.
prior observation in order to generate predictions for
the current observation. The error between expectation
and reality is computed.
The best hypothesis is implicitly chosen by the tableau 4.
algorithm, due to its preference for minimally ordered

branches. The algorithm continues again with step 2.
Note also that because our tableaux can contain logic, simu-
lations and functions, the system may use logical constraints
or ad-hoc ‘helper functions’ even when searching for values
in a simulation (e.g., a constraint such as mass > 0, or a cus-
tom hypothesis generator that samples the problem space in
order to produce better hypotheses).

An example of learning the behaviour of a falling ball by
hypothesis search in a tableau appears in Figure 5:
Step 1: The tableau initially contains the first observation

of a ball and the initial hypothesis generated (many other
control objects, meshes, functions and other data will be
in the tableau, but these are not shown for simplicity).

Step 2: The system observes movement in the ball. It gener-
ates new hypotheses, seeking to find a hypothesis with
minimal error.

Step 3: The system simulates from hypothesis0. The result
of the simulation is compared with observation1 to de-
termine the error in the hypothesis. The right branch has
smaller error so the left branch is no longer open.

Step 4: As with Step 2, the system observes more move-
ment and generates new hypotheses, further refining the
current hypothesis.

Step 5: The system then simulates as with Step 3, but this
time the left branch is minimal. In the following steps,
the algorithm continues yet again with more new obser-
vations and further hypothesizing…

Experimental Results
We tested an implementation of this technique in a sim-
ple virtual environment: boxes and balls of varying sizes,
masses and elasticity (some were rigid, others quite elas-
tic), were pushed by variable forces for variable periods of
time2. A virtual 2D ‘camera’ observed the interactions, and
the Comirit learning algorithm was used to construct mod-
els from observations, generate hypotheses and simulations,
and compare observation with simulations. The accuracy (as
tested across many experiments) was surprisingly high:

A single observation pair is sufficient to learn annota-1.
tions for simulating with 94% pixel-by-pixel accuracy.
Four observation pairs bring this accuracy up to 97.5% 2.
accuracy.
Further observations result in small, incremental im-3.
provements, approximately halving the error with each
doubling of the number of new observations.

In our subsequent experiment, we used a broader concept
of ‘hypothesis’. Rather than learning the isolated annota-
tions of individual objects, the hypothesis space was a self-
organizing map (SOM) with feature vectors that include
observable appearance and hidden parameters. The system
retrieves an initial hypothesis for the annotations of a new
object by searching the self-organizing map with a partial
vector describing only the object’s observable appearance.
When the system observes errors between observation and
simulated expectation, a new and complete feature vector is

2i.e., Two observable object parameters (shape, size), two
hidden parameters to be learnt (mass, elasticity) and two
known observation parameters (force, duration)

observation0=

hypothesis0={friction=1,elastic=1}

observation1=

minimize(error1,0)

hypothesis1={friction=2,elastic=1} hypothesis1={friction=1,elastic=2}

simulation1= simulation1=

error1=80% error1=20%

observation2=

minimize(error2,1)

hypothesis2={friction=2,elastic=2} hypothesis2={friction=1,elastic=3}

simulation2= simulation2=

error2=5% error2=15%

observation3=

minimize(error3,2)

Step 1

Step 2

Step 4

Step 3

Step 5

Figure 5: An example of learning in a tableau

77

generated and this is updated into the self-organising map.
We hoped to demonstrate an ability to generalize knowl-

edge, so we added structure to our learning problem:
Color was inversely correlated with elasticity (we ob-1.
serve a similar effect in real life when shiny metallic
objects in the real world are usually rigid).
Heavy (dense) objects were generally inelastic (as we 2.
often observe in real life).
Round objects were generally inelastic (we also ob-3.
serve similar correlations between shape and behavior
in real life: a mug is generally rigid so that it may safely
hold hot liquids).

To our surprise, not only did the system build a self-organiz-
ing map that captured the problem structure (and therefore
allowed it to correctly generalize its learning about previ-
ously unseen ‘heavy boxes’), but the self-organizing map
improved the speed at which the algorithm learnt. This im-
provement is due to the map offering better hypotheses dur-
ing early learning by generalizing from similar cases. The
ability of the framework to rapidly learn from very few ob-
servations, meanwhile prevented it from being committed to
its SOM hypothesis when it encountered ‘outlier’ objects.

In this latter trial we used a less aggressive hill-climbing
strategy to allow greater exploration of the search space and
better test the advantage of a SOM. With this weaker strat-
egy, learning on a single object requires up to 8 observations
to achieve 90% accuracy. A randomly initialized SOM has
less than 5% accuracy, but after observing 14 objects once
each, it achieved 60% accuracy, and then reached 90% ac-
curacy after just six sets of observations and the whole map
converged after 15 sets of observations at 94% accuracy.

We consider these trials as early demonstrations of the
soundness of the basic concept. In future, we will identify
and adapt a robust 3D reconstruction technology, and run
these experiments on real world objects within real world
settings. We have skimmed over many of the details of au-
to-associative learning with self-organizing maps because
we expect to make dramatic changes when we fine-tune
the technique to real world problems. We are, however,
extremely encouraged by the success of our relatively na-
ïve implementation. In future, we plan to extend the use of
SOMs to assist in constructing the graph-based models (i.e.,
by extrapolating the obscured shape of the object from ob-
served shape) and for allowing rich shape-based and affor-
dance-based indexing, retrieval and similarity testing.

Performance Considerations
While placing an ordering on branches enables the tableau
algorithm to emphasise optimal consistent branches and
discontinue search on suboptimal branches, the suboptimal
branches cannot be discarded from memory. This is because
an optimal branch may later be found inconsistent, and
therefore cause a previously suboptimal branch to become
the most optimal consistent branch that remains.

In many cases, however, it may be known that this cannot
happen. For example, it may be known that any inconsis-
tency will apply to all ordered branches, or it may be known
that ordered branches will never contain inconsistency. In
this case it is possible to introduce Prolog-style ‘cuts’ into the

tableau: special terms to indicate that non-optimal branches
may be dropped. Of course, care must be taken to ensure
that cuts are genuinely free of unintended side-effects—that
they are ‘green cuts’, to use the terminology of Prolog.

Another concern is that robots will need to simultaneous-
ly learn while engaged in action. If action and learning oc-
curs in the same tableau, there is a need to prevent branching
in decision-making from causing the same learning problem
to repeat in multiple branches of the tableau. This can be
solved by careful factoring: continuous online learning is
performed in a separate tableau, but the contents of that tab-
leau are implicitly read in logical conjunction with the con-
tents of the primary action and decision making tableau.

Such optimizations have straightforward implementation,
however we will provide full details in future publication.

Conclusion
Parameter-driven simulations are not only an effective mech-
anism for rich commonsense reasoning, but they lend them-
selves to rapid and autonomous acquisition. We have shown
how models of learning can be elegantly incorporated into
the Comirit framework (and potentially other tableau-based
systems). The extended framework thus simulateously com-
bines the effectiveness and efficiency of simulation with the
ability for autonomous knowledge acquisition, and with the
full power and generality of logical formalisms.

To date, we have demonstrated the system on simple (but
useful and plausible) learning problems. Early experimental
results are extremely encouraging: the system learns rapidly
and with very few observations.

As a long term goal, we plan to have Comirit autono-
mously acquire from observation, even the fundamental
laws of a simulation and the mechanisms for model build-
ing. In particular, we hope that interaction in a complex
environment (such as the 3D world) may be interpreted as
a problem of determining a hierarchical non-linear flow of
‘entities’ within an environment. To whatever degree such
automation is possible, our framework can accommodate
any learning that can be expressed as an optimization prob-
lem, and yet allow for ongoing integration with symbolic
and logical formalizations.

References
Gardin, G. and Meltzer, B. (1989) ‘Analogical representations of

naïve physics’, Artificial Intelligence, vol. 38, no. 2, pp. 139–
159.

Hähnle, R. (2001) ‘Tableaux and Related Methods’, Handbook of
Automated Reasoning, vol. I, pp. 100–178, Elsevier Science.

Johnston, B. and Williams, M-A. (2007) ‘A generic framework for
approximate simulation in commonsense reasoning systems’,
Proceedings of COMMONSENSE 2007, pp. 71–76.

Johnston, B. and Williams, M-A. (2008) ‘Comirit: Commonsense
reasoning by integrating simulation and logic’, Proceedings of
AGI-2008, pp. 200–211.

Panton, K., Matuszek, C., Lenat, D., Schneider, D., Witbrock, M.,
Siegel, N. and Shepard, B. (2006) ‘Common Sense Reason-
ing – From Cyc to Intelligent Assistant’, In Yang Cai and Julio
Abascal (eds.), Ambient Intelligence in Everyday Life, pp. 1-31,
LNAI 3864, Springer, 2006.

78

An F-Measure for Context-based Information Retrieval

Michael Kandefer and Stuart Shapiro
Department of Computer Science and Engineering, Center for Cognitive Science,

Center for Multisource Information Fusion
University at Buffalo, Buffalo, NY 14260

{mwk3,shapiro}@cse.buffalo.edu

Abstract

Computationally expensive processes, such as deductive rea-
soners, can suffer performance issues when they operate over
large-scale data sets. The optimal procedure would allow rea-
soners to only operate on that information that is relevant.
Procedures that approach such an ideal are necessary to ac-
complish the goal of commonsense reasoning, which is to en-
dow an agent with enough background knowledge to behave
intelligently. Despite the presence of some procedures for
accomplishing this task one question remains unanswered:
How does one measure the performance of procedures that
bring relevant information to bear in KR systems?
This paper answers this question by introducing two meth-
ods for measuring the performance of context-based informa-
tion retrieval processes in the domain of KR systems. Both
methods produce an f-measure as a result. These methods are
evaluated with examples and discussion in order to determine
which is more effective. Uses of these measures are also dis-
cussed.

Introduction
Computationally expensive processes, such as deductive
reasoners, can suffer performance issues when they oper-
ate over large-scale data sets. The optimal procedure would
allow such processes to operate with only the information
that is relevant to the current task. Bringing relevant in-
formation to bear has numerous applications in context-
aware agents/devices (Arritt & Turner 2003; Dey 2001;
Bradley & Dunlop 2005; Dourish 2004; Kurz, Popescu, &
Gallacher 2004).1 In KR systems, reasoning is probably
most hampered in large-scale knowledge bases due to com-
plicated procedures, like building and maintaining search
trees resulting from knowledge base queries. Such con-
cerns with large-scale knowledge bases have been discussed
previously (Subramanian, Greiner, & Pearl 1997) and vari-
ous solutions have been offered (Haarslev & Moller 2001;
Levy, Fikes, & Sagiv 1997; Lenat 1998; 1995). Due to these
concerns, a method for including a minimal set of back-
ground knowledge for the current task is necessary if we are

1Here “context” is not the knowledge representation and rea-
soning (KR) sense of the term, but defined as “the structured set of
variable, external constraints to some (real or artificial) cognitive
process that influences the behavior of that process in the agent(s)
under consideration” (Kandefer & Shapiro 2008).

to accomplish the goals of commonsense reasoning, which
is to endow an agent with all the commonsense knowledge
necessary to exhibit intelligent behavior. Methods for solv-
ing this problem have been proposed or implemented in the
past (Anderson 2007), and others are capable of being im-
plemented in KR systems (Arritt & Turner 2003). However,
one question remains unanswered: How does one measure
the performance of procedures that bring relevant informa-
tion to bear in KR?

This paper answers this question by discussing two meth-
ods for measuring the performance of context-based infor-
mation retrieval (CBIR) processes in the domain of KR sys-
tems:

• Relevance Theoretic Measure, and

• Distance from the Optimal

The first is based on a method for determining the rele-
vance of a subset of an agent’s knowledge base given con-
textual information. Sperber and William (1995) initially
proposed the relevance-theoretic approach for use in model-
ing communication, but believe it has uses in other cognitive
processes. Harter (1992) agrees with this notion, but claims
that the approach is also useful for determining relevance in
information retrieval (IR) testing. Borlund and Ingwersern
(1997) agree, but limit this type of testing to a particular type
of relevance called “situated relevance”. The distance from
the optimal is our own method.

There are several uses for measurement methods like the
above. The foremost is comparing the results of various
CBIR procedures. Cohen (1995) has noted that we often
do not know if a program has worked well, or poorly. Such
evaluations often deal with speed and space considerations,
but in CBIR procedures we are also interested in measuring
the utility of the results. The measures above are one way of
accomplishing this.

Other than comparing CBIR procedures, many CBIR pro-
cedures, such as spreading activation (Howes 2007; Crestani
1997; Loftus 1975) and context diagnosis (Arritt & Turner
2003), operate by utilizing various parameters that can be set
to influence their performance. These parameters are given
arbitrary values and then tested to find suitable levels. The
above measurements schemes can aid in the process, and
potentially make it automatic.

Though the two measurement methods can be used for

79

Figure 1: Context-Based Information Retrieval Process

the above tasks, our interest in this paper is in determining
which makes a more effective tool for evaluating CBIR re-
sults. In order to accomplish this we will calculate the f-
measure values of these methods when applied to example
CBIR results. A f-measure is the standard measure for eval-
uating IR results.

Context-Based Information Retrieval
CBIR is an independent, preprocessing step that occurs be-
fore reasoning. A general CBIR procedure operates by ex-
amining an input, typically sensory. It uses that input to con-
strain the knowledge that is available to the reasoner. This
process is depicted in Fig. 1.

The CBIR procedure receives input (I), which contains
the contextual constraints and other information about the
situation; and the background knowledge (BKS) containing
any knowledge that will be evaluated by the CBIR proce-
dure. With this the CBIR procedure produces a subset of
the background knowledge, called retrieved propositions,
for use by a reasoning engine, that can then be queried (Q).
These queries could also be expected goals an embodied
agent should be capable of achieving in context.

In “The Handle Problem” domain (Miller & Morgenstern
2006), which is the problem of inferring whether or not an
object can be used as a handle through a description of its
properties and relationships with other objects, an example
of such input would be spatial information about some ob-
jects that might be door handles. Such information could
contain a unique identifier for an unidentified object, the
object’s shape (e.g., conical, rectangular, etc.), and feature
information (e.g., whether the object is inverted, or blunt).
An example of background knowledge in such a domain
would include various assertions about using objects with
certain properties as handles. Though the CBIR procedure
ultimately produces information for consumption by the rea-
soner, the tasks of the reasoner can also influence what in-
formation should be retrieved. This is apparent in goal seek-
ing situations, such as question answering. As such, some
CBIR procedures take into account the goals of the agent or
the state of a problem they are solving and provide these as
input.

The most important aspect of the process requires that the
CBIR procedure output any retrieved propositions, which

will be used by the reasoning engine. As such, the knowl-
edge provided as relevant by the CBIR procedure will al-
ways be a subset of the BKS. This information is selected
by the CBIR procedure through an algorithm that examines
the BKS and I. This algorithm varies between CBIR proce-
dures, but it should be noted that most do not examine the
entirety of the BKS, but only an initial subset determined by
I. The retrieved propositions determines a successful CBIR
procedure, and what we will evaluate.

Measuring Results
As previously mentioned the output of the CBIR procedure
is a subset of the BKS, called the retrieved propositions, and
a means of establishing successful results is required. In
information retrieval (IR) the accepted practice for evaluat-
ing such results is to calculate an f-measure. An f-measure
score is between 0.0 and 1.0, with 0.0 indicating the poor-
est result and 1.0 a perfect retrieval. An f-measure identifies
situations where IR results contain unnecessary information,
called precision, and where the results do not contain enough
information, called recall. In order to calculate an f-measure
(Fig. 2) for CBIR results the retrieved propositions and an-
other set of propositions, called the relevant propositions,
are necessary. Below two methods for acquiring a set of
relevant propositions and using them for evaluating the re-
trieved propositions from a CBIR process are discussed. In
both of these methods the process of generating the set of
relevant propositions can be accomplished any time prior to
the calculation of the f-measure for the CBIR results.

Relevancy Theory
Relevancy Theory (Sperber & Wilson 1995) is a model de-
veloped by Wilson and Sperber in the field of pragmatics
that is used for explaining the cognitive process listeners
undertake as they approach an understanding of a speaker’s
utterance. A system implementing this model is said to be
using a relevance-theoretic method. The relevance-theoretic
approach is not limited to establishing the relevance of an ut-
terance, but also of observable phenomena, memories, and
current thoughts. The process of determining relevancy re-
lies on a principle that states something is relevant to a cog-
nitive agent, if the agent can utilize it to draw conclusions
that matter to it. When such conclusions are reached this is
said to be a positive cognitive effect.

In relevance theory these positive cognitive effects are
utilized to measure the degree of relevancy of a particular
input, where an input could be any of the cognitive artifacts
discussed above. However, most of the discussion by
Wilber and Sperber has focused on the communication
aspects of relevancy, and determining when an utterance
is relevant to the current working memory contents of an
agent. The working memory of the agent is represented as
a set of propositions, which are a subset of the contents of
the agent’s BKS. These assumptions are used by William
and Sperber to define positive cognitive effects. We take
that definition, but modify it slightly so it can be used for
determining the set of relevant propositions in an agent’s
BKS, rather than an utterance the agent encounters. We

80

Recall (r) Precision (p) F-measure (F)
r = |{relevant propositions}∩{retrieved propositions}|

|{relevant propositions}| p = |{relevant propositions}∩{retrieved propositions}|
|{retrieved propositions}| F (r, p) = 2rp

r+p

Figure 2: Formulas for computing the f-measure (van Rijsbergen 1979)

Entire Knowledge Base
A1 : ∀(x, y)(Blunt(x) ∧ Conical(x) ∧Drawer(y) ∧ ConnectedByT ip(x, y) → Handle(x)).
A2 : ∀(x)(Handle(x) → CanBePulled(x)).
A3 : Blunt(h1).
A4 : Conical(h1).
A5 : ∀(x, y)(Rope(x) ∧ Light(y) ∧ Connected(x, y) → CanBePulled(x)
A6 : ∀(x, y)(Blunt(x) ∧ Conical(y) ∧ ConnectedByBase(x, y) → ¬Handle(x)
A7 : ∀(x)(Drawer(x) → ContainsItems(x)).

Figure 3: The entire knowledge base

define a positive cognitive effect as follows (italicized words
will be discussed below):

Given I and Q, as sets of propositions, and BKS, then
if there is a proposition p that is an element of BKS, but
not an element of {I ∪ Q}, then p is a positive cognitive
effect if either:

1. ¬p ∈ {I ∪Q},

2. p helps strengthens some q that is an element of
{I ∪Q}, or

3. p contributes to a contextual implication, which is defined
as the condition where:

(a) {{I ∪Q} ∪ BKS} non-trivially derives using p some
proposition q, and

(b) {I ∪Q} alone does not non-trivially derive q, and
(c) BKS alone does not non-trivially derive q

In case (1) a comparison between the {I ∪Q} and BKS
is made that determines if any of the propositions contradict
one another. Each proposition in BKS that does is consid-
ered a positive cognitive effect. Case (2) involves a notion
of strengthening that can occur when two sets of proposi-
tions are compared. The strengthening of proposition q in
{I ∪Q} occurs when: (1) {{I ∪Q} ∪BKS} non-trivially
derives q, or (2) BKS non-trivially derives q, which was
derived in {I ∪Q} already. Any propositions that are mem-
bers of BKS and that are involved in such derivations are
counted as positive cognitive effects. Case (3) establishes as
positive cognitive effects those propositions in BKS that are
involved in a non-trivial derivation using propositions from
both {I ∪Q} and BKS, which can not be done by {I ∪Q}
or BKS independently.

Of the three cases two rely on a notion of a non-trivial
derivation. A formalization of this concept is not trivial, not
provided by William and Sperber, and beyond the scope of
this paper. For the sake of simplicity we will consider any
proposition involved in a modus ponens rule of inference to
be non-trivial in our examples.

With the above method for establishing positive cogni-
tive effects the relevance-theoretic approach can be used

for measuring the relevancy of the set of retrieved proposi-
tions from a CBIR procedure. To accomplish this the above
method is used to find all the positive cognitive effects in
BKS. This resulting proposition set is taken as the relevant
propositions. With the retrieved propositions and relevant
propositions available the recall, precision, and f-measure
can be calculated for each CBIR output using the formulas
in Fig. 2.

To illustrate, assume we have the KB depicted in Fig. 3
as the BKS (created by us from propositions that might be
useful for solving “The Door Handle Problem”) and three
retrieved proposition sets: Usable Conical Drawer Handles,
Conical Drawer Handles, and Misc. Handles and Drawers.
Assume also that these were output as relevant from three
different CBIR procedures, and that they have the proposi-
tional content depicted in Fig. 4.

Suppose the following proposition set is a combination
of the expected input and query, {I ∪ Q}, to the agent
in context: {Drawer(d1) ∧ ConnectedByT ip(h1, d1) ∧
CanBePulled(h1)}. With this the relevance theoretic ap-
proach determines that {A1, A2, A3, A4, A7} are the rele-
vant propositions of the background knowledge sources as
they are involved in part of contextual implications that re-
sult in the derivation of Handle(h1), CanBePulled(h1) , and
ContainsItems(d1). With this the f-measure can be calcu-
lated for each CBIR retrieved propositions set. This is done
using the cardinality of the retrieved propositions (Ret.), the
cardinality of the relevant propositions (Rel.), and the cardi-
nality of their intersection (Int.). (Fig. 5). For example, the
Usable Conical Drawer Handles has retrieved four propo-
sitions that are all in the relevant proposition set. As such,
the intersection between he two is also four and it receives
a precision of 1.0 (4/4). However, there are five relevant
propositions, as such the recall is 0.8 (4/5).

Given the results of the f-measure calculation, the re-
trieved proposition sets that is most relevant would be Us-
able Conical Drawer Handles. As such the relevancy
method that retrieved that proposition set would be deemed
better at the CBIR procedure than the other two.

81

Usable Conical Drawer Handle
A1 : ∀(x, y)(Blunt(x) ∧ Conical(x) ∧Drawer(y) ∧ ConnectedByT ip(x, y) → Handle(x)).
A2 : ∀(x)(Handle(x) → CanBePulled(x)).
A3 : Blunt(h1).
A4 : Conical(h1).

Conical Drawer Handles
A1 : ∀(x, y)(Blunt(x) ∧ Conical(x) ∧Drawer(y) ∧ ConnectedByT ip(x, y) → Handle(x)).
A2 : ∀(x)(Handle(x) → CanBePulled(x)).
A3 : Blunt(h1).
A4 : Conical(h1).
A6 : ∀(x, y)(Blunt(x) ∧ Conical(y) ∧ ConnectedByBase(x, y) → ¬Handle(x)

Misc. Handles and Drawers
A2 : ∀(x)(Handle(x) → CanBePulled(x)).
A3 : Blunt(h1)
A4 : Conical(h1).
A5 : ∀(x, y)(Rope(x) ∧ Light(y) ∧ Connected(x, y) → CanBePulled(x)
A7 : ∀(x)(Drawer(x) → ContainsItems(x)).

Figure 4: Three different outputs from different context-sensitive retrieval operations.

Retrieved Proposition Set Rel. Ret. Int. Recall Precision F-Measure
Usable Conical Drawer Handles 5 4 4 0.8 1.0 0.889

Conical Drawer Handles 5 5 4 0.8 0.8 0.8
Misc. Handles and Drawers 5 5 4 0.8 0.8 0.8

Figure 5: The results of calculating the f-measure using a relevance theoretic approach.

Distance from the Optimal
Distance from the optimal is a method of testing that ex-
amines the input to a system and creates the optimal results
on which to compare a system’s future performance. In the
CBIR model, if given a reasoning query (i.e., a particular
reasoning task given to the reasoner) Q, the input proposi-
tions I, the contents of the background knowledge sources
BKS, and a reasoner, that is capable of keeping track of the
origin sets,2 or equivalent, then the optimal solution for the
original query can be calculated. This is accomplished by
the following algorithm:

1. Given some query proposition Q that the reasoner is asked
to derive, the entire knowledge base BKS that the CBIR
procedure would access, and an input I that the CBIR
procedure would use to produce its output.

2. Load the BKS into the reasoner.

3. Add I to the BKS.

4. Query the reasoner on Q.

5. Examine the origin set for Q, OSQ, defined as:3

OSQ = {A− I|A ⊂ {BKS ∪ I}∧

2An origin set for a proposition is the set of propositions used
in the derivation of that proposition. Origin sets originate from
relevance logic proof theory (Shapiro 1992).

3A ` B indicates that a proposition B can be derived from the
set of propositions A.

A ` Q∧
¬∃(A′)(A′ (A ∧A′ ` Q)}.4

6. Select the sets in OSQ that have the minimal cardinal-
ity. This new set of origin sets will be denoted with
min(OSQ).5

After this process is complete we have those origin sets
that derive Q, and that also contain the minimal number of
propositions needed to do so. Since these propositions are
necessary for reasoning to the desired conclusion and min-
imal, we shall consider any origin set in the set of minimal
solutions an optimal solution. With the possible optimal so-
lutions in hand, we can measure the results of a CBIR proce-
dure against each optimal solution and compute a f-measure
for the results.

The presence of multiple optimal solutions poses some
problems for computing the f-measure. To handle this recall,
precision, and f-measure must be calculated treating each
optimal solution as the relevant propositions and then com-
paring it to the CBIR output, or the retrieved propositions.
The highest f-measure is chosen as the result. The reason
for choosing the highest is that the CBIR output might share
few propositions with some of the optimal solutions, but still
match one of them precisely. In such a scenario the CBIR

4I is removed since in a CBIR procedure it is automatically
provided to the reasoner and it should not impact retrieval scores.

5This step is performed as there can be multiple reasoning
“paths” to Q in a BKS that use different proposition sets.

82

Retrieved Proposition Set Rel. Ret. Int. Recall Precision F-Measure
Usable Conical Drawer Handles 4 4 4 1.0 1.0 1.0

Conical Drawer Handles 4 5 4 1.0 0.8 0.889
Misc. Handles and Drawers 4 5 3 0.75 0.6 0.667

Figure 6: The results of calculating the f-measure using the distance from the optimal approach.

output is at least capable of generating one of the perfect so-
lutions. Formulas for recall, precision, and the f-measure are
the same as those used in the relevance-theoretic approach
(Fig. 2).

To illustrate how this measure can be used for evaluating
the results of CBIR procedures consider an example using
the the knowledge base depicted in Fig. 3 as the BKS pa-
rameter in the above algorithm. Let I be the proposition:
ConnectedByT ip(h1, d1)∧Drawer(d1) and Q the query
CanBePulled(h1)?.6 After execution of the query we re-
ceive one origin set for Q: {A1, A2, A3, A4}, and since it
is the only one, it is inserted into min(OSQ). With these
values calculated we can now compare the optimal solution
against the CBIR procedure outputs. We will again use the
ones discussed in Fig. 4. The results are depicted in Fig. 6.

Since Usable Conical Drawer Handles is the actual op-
timal solution OSQ it gets a perfect f-measure of 1.0. The
Conical Drawer Handles receives the next highest as it had
a perfect recall, but contain one extraneous proposition af-
fecting its precision. The last retrieved proposition set, Rope
Handles, was penalized heavily as it did not retrieve all of
the relevant propositions (recall) and contained numerous
propositions that weren’t part of the relevant proposition set
(precision).

Evaluation
Though both methods measure the same unit (i.e., proposi-
tions) and rely on rules of inference to ultimately create a
score for the results, they differ in their generation of the
relevant propositions, and thus, the f-measure. The great-
est difference is that the relevance-theoretic uses the input
to find all possible propositions that trigger positive cogni-
tive effects, while the distance from the optimal only looks
for the minimal set needed. This can result in needed dis-
crimination when measuring CBIR results. In the example
this is illustrated when the relevance-theoretic approach pro-
vided the same score for Conical Drawer Handles and Misc.
Handles and Drawers, while the distance from the optimal
provides a useful distinction.

The relevance-theoretic approach also values higher those
CBIR outputs that contain multiple solutions to the same
problem, since all propositions involved in those solutions
would cause positive cognitive effects, despite the fact that
only one solution is needed. This ultimately causes more
reasoning and more computation time, which is what we
would like a CBIR procedure to avoid. The distance from

6This differs slightly from the previous example since the rele-
vance theoretic approach does not take into account how the re-
trieved propositions will be used (e.g., expected queries, agent
goals).

the optimal method values CBIR procedures that produce
close to optimal solutions, and ones with multiple solutions
would be considered as having extraneous propositions.

Finally, one important difference between the two meth-
ods is that the relevance-theoretic approach requires a for-
malization of a non-trivial deduction. This is not an easy
task, as it involves determining which rules of inference and
which combinations of them are trivial.

Measurement Requirements
For the two methods presented for measuring CBIR in
knowledge representation and reasoning (KR) a KR system
is needed to perform the actual measurements. This system
need not be the same as the one in the process diagram. It
requires the ability to:

• Store and reason over a large number of propositions.
The CBIR methods are designed to retrieve relevant infor-
mation from larger knowledge bases and present them to a
reasoner to limit processing. While this design is done to
eliminate the need for a KR system to have all of the back-
ground information available to it, measuring the success
of CBIR processes does need a KR system to reason over
the entire knowledge base every time a relevant propo-
sition set needs to be generated. While the term “large”
is vague a knowledge base with approximately 100,000
propositions causes problems for some reasoning tasks.
Speed of reasoning is not required for the measurements.

• Perform forward and backward chaining. Both mea-
surements rely on forward chaining, and the distance from
the optimal relies on backward chaining to generate the
set of relevant propositions, which are used in measuring
the results of the CBIR procedures.

• Detect non-trivial deductions. The relevance-theoretic
approach requires that the KR system recognize non-
trivial derivations in order to prevent the mislabeling of
trivial propositions in that derivation as relevant. These
non-trivial derivations are needed to populate the set of
relevant propositions.

• Compute and store the origin sets of derived propo-
sitions. The distance from the optimal measurement re-
quires that the KR system keep track of the minimal num-
ber of propositions required to derive another proposition
(i.e., the origin set) in order to create the set of relevant
propositions.

Conclusions and Future Work
The relevance-theoretic approach for determining the rele-
vant propositions in a knowledge base, an approach that has
been proposed as a useful method for determining relevancy

83

in information retrieval, was found to be less successful than
the distance from the optimal method for measuring the re-
sults of CBIR procedures. This was mostly because the rel-
evant theoretic approach finds all solutions to a problem and
marks all propositions involved in those solutions as rele-
vant, while the distance from the optimal finds the minimal
number. Some theoretical issues also hinder the relevance-
theoretic approach. Its reliance on trivial implications is
one such issue, as they are difficult to properly formalize.
This formalization step is necessary prior to development of
a tool that can use the relevance-theoretic approach for mea-
suring the results of CBIR procedures. The long-term goals
of commonsense reasoning will require methods for retriev-
ing a subset of an agent’s background knowledge based on
context. CBIR procedures address this issue, and choosing
method for measuring their performance will be required.

Apart from these findings, a theoretical discussion and an
example was used to compare the two measures. Examples
like this serve as a useful precursor to the development of
test cases for evaluating the measures against each other. In
the future we will explore such test cases. In doing so, a for-
malization of non-trivial deductions will also be produced.

References
Anderson, J. R. 2007. Human associative memory. In How
Can the Human Mind Occur in the Physical Universe? NY,
New York: Oxford University Press. 91–134.
Arritt, R., and Turner, R. 2003. Situation assessment for
autonomous underwater vehicles using a priori contextual
knowledge. In Proceedings of the Thirteenth International
Symposium on Unmanned Untethered Submersible Tech-
nology (UUST).
Borlund, P., and Ingwersern, P. 1997. The development
of a method for the evaluation of interactive information
retrieval systems. The Journal of Documentation 53(3).
Bradley, N. A., and Dunlop, M. D. 2005. Toward a mul-
tidisciplinary model of context to support context-aware
computing. Human-Computer Interaction 20:403–446.
Cohen, P. R. 1995. Empirical research. In Empirical Meth-
ods for Artificial Intelligence. The MIT Press,Cambridge,
MA.
Crestani, F. 1997. Application of spreading activa-
tion techniques in information retrieval. Artif. Intell. Rev.
11(6):453–482.
Dey, A. K. 2001. Understanding and using context. Per-
sonal and Ubiquitous Computing 5(1):4–7.
Dourish, P. 2004. What we talk about when we talk about
context. Personal Ubiquitous Computing 8(1):19–30.
Haarslev, V., and Moller, R. 2001. High performance rea-
soning with very large knowledge bases: A practical case
study. In International Joint Conference on Artificial Intel-
ligence.
Harter, S. P. 1992. Psychological relevance and informa-
tion science. Journal of the American Society for Informa-
tion Science 43(9).

Howes, M. B. 2007. Human Memory. Sage Publica-
tions, Inc. chapter Long-term Memory – Ongoing Re-
search, 131–160.
Kandefer, M., and Shapiro, S. C. 2008. A categorization
of contextual constraints. In Samsonovich, A., ed., Biolog-
ically Inspired Cognitive Architectures, Technical Report
FS–08–04, 88–93. AAAI Press, Menlo Park, CA.
Kurz, B.; Popescu, I.; and Gallacher, S. 2004. FACADE -
a framework for context-aware content adaptation and de-
livery. In Proceedings of Communication Networks and
Services Research, 46–55.
Lenat, D. B. 1995. Cyc: A large-scale investment in knowl-
edge infrastructure. Communications of the ACM 38(11).
Lenat, D. 1998. The Dimensions of Context Space. Tech-
nical Report, Cycorp.
Levy, A. Y.; Fikes, R. E.; and Sagiv, Y. 1997. Speeding
up inferences using relevance reasoning: a formalism and
algoirthms. Artificial Intelligence 97(1–2):pg. 83–136.
Loftus, A. C. E. 1975. A spreading activation theory of se-
mantic processing. Psychological Review 82(6):407–428.
Miller, R., and Morgenstern, L. 2006. Common sense
problem page. http://www-formal.stanford.
edu/leora/commonsense/.
Shapiro, S. C. 1992. Relevance Logic in Computer Sci-
ence. In Anderson, A. R.; Nuel D. Belnap, J.; and Dunn,
J. M., eds., Entailment, volume II. Princeton, NJ: Princeton
University Press. pg. 553–563.
Sperber, D., and Wilson, D. 1995. Relevance: Communi-
cation and Cognition. Blackwell Publishing, Malden, MA.
Subramanian, D.; Greiner, R.; and Pearl, J. 1997. The
relevance of relevance. Artificial Intelligence 97(1–2):pg.
1–5.
van Rijsbergen, C. 1979. Information Retrieval, Second
Edition. Butterworths.

84

A Logical Account of Prioritized Goals and their Dynamics

Shakil M. Khan and Yves Lesṕerance
Department of Computer Science and Engineering

York University, Toronto, ON, Canada
{skhan, lesperan}@cse.yorku.ca

Abstract

Most previous logical accounts of goals do not deal with
prioritized goals and goal dynamics properly. Many are re-
stricted to achievement goals. In this paper, we develop a log-
ical account of goal change that addresses these deficiencies.
In our account, we do not drop lower priority goals perma-
nently when they become inconsistent with other goals and
the agent’s knowledge; rather, we make such goals inactive.
We ensure that the agent’s chosen goals/intentions are con-
sistent with each other and the agent’s knowledge. When the
world changes, the agent recomputes her chosen goals and
some inactive goals may become active again. This ensures
that our agent maximizes her utility. We prove that the pro-
posed account has desirable properties.

Introduction
There has been much work on modeling agent’s mental
states, beliefs, goals, and intentions, and how they inter-
act and lead to rational decisions about action. As well,
there has been a lot of work on modeling belief change.
But the dynamics of motivational attitudes has received
much less attention. Most formal models of goal and goal
change (Cohen and Levesque 1990; Rao and Georgeff 1991;
Konolige and Pollack 1993; Shapiroet al. 1995) assume
that all goals are equally important and many only deal
with achievement goals. Moreover, most of these frame-
works do not guarantee that an agent’s goals will prop-
erly evolve when an action/event occurs, e.g. when the
agent’s beliefs/knowledge changes or a goal is adopted or
dropped (one exception to this is the model of prioritized
goals in (Shapiro and Brewka 2007)). Dealing with these
issues is important for developing effective models of ratio-
nal agency. It is also important for work on BDI agent pro-
gramming languages, where handling declarative goals is an
active research topic.

In this paper, we present a formal model of prioritized
goals and their dynamics that addresses some of these issues.
In our framework, an agent can have multiple goals at differ-
ent priority levels, possibly inconsistent with each other. We
define intentions as the maximal set of highest priority goals
that is consistent given the agent’s knowledge. Our model
of goals supports the specification of general temporally ex-
tended goals, not just achievement goals.

We start with a (possibly inconsistent) initial set ofpri-
oritized goalsor desires that are totally ordered according
to priority, and specify how these goals evolve when ac-

tions/events occur and the agent’s knowledge changes. We
define the agent’schosen goalsor intentions in terms of this
goal hierarchy. Our agents maximize their utility; they will
abandon a chosen goalφ if an opportunity to commit to a
higher priority but inconsistent withφ goal arises. To this
end, we keep all prioritized goals in the goal base unless
they are explicitly dropped. At every step, we compute an
optimal set of chosen goals given the hierarchy of prioritized
goals, preferring higher priority goals such that chosen goals
are consistent with each other and with the agent’s knowl-
edge. Thus at any given time, some goals in the hierarchy
are active, i.e. chosen, while others are inactive. Some of
these inactive goals may later become active, e.g. if a higher
priority active goal that is currently blocking an inactive goal
becomes impossible.

Our formalization of prioritized goals ensures that the
agent always tries to maximize her utility, and as such dis-
plays an idealized form of rationality. In the fifth section,
we discuss how this relates to Bratman’s (1987) theory of
practical reasoning. We use an action theory based on the
situation calculus along with our formalization of paths in
the situation calculus as our base formalism.

In the next section, we outline our base framework. In the
third section, we formalizepathsin the situation calculus to
support modeling goals. In the fourth section, we present
our model of prioritized goals. In the fifth and sixth section,
we present our formalization of goal dynamics and discuss
some of its properties. Then in the last section, we summa-
rize our results, discuss previous work in this area, and point
to possible future work.

Action and Knowledge
Our base framework for modeling goal change is the situa-
tion calculus as formalized in (Reiter 2001). In this frame-
work, a possible state of the domain is represented by a sit-
uation. There is a set of initial situations corresponding to
the ways the agent believes the domain might be initially,
i.e. situations in which no actions have yet occurred. Init(s)
means thats is an initial situation. The actual initial state
is represented by a special constantS0. There is a distin-
guished binary function symboldo wheredo(a, s) denotes
the successor situation tos resulting from performing the
actiona. Relations (and functions) whose truth values vary
from situation to situation, are called relational (functional,
resp.) fluents, and are denoted by predicate (function, resp.)
symbols taking a situation term as their last argument. There

85

is a special predicate Poss(a,s) used to state that actiona is
executable in situations.

Our framework uses a theoryDbasic that includes the fol-
lowing set of axioms:1 (1) action precondition axioms, one
per actiona characterizing Poss(a, s), (2) successor state
axioms (SSA), one per fluent, that succinctly encode both
effect and frame axioms and specify exactly when the flu-
ent changes (Reiter 2001), (3) initial state axioms describ-
ing what is true initially including the mental states of the
agents, (4) unique name axioms for actions, and (5) domain-
independent foundational axioms describing the structure of
situations (Levesqueet al. 1998).

Following (Scherl and Levesque 2003), we model knowl-
edge using a possible worlds account adapted to the situa-
tion calculus. K(s′, s) is used to denote that in situations,
the agent thinks that she could be in situations′. UsingK,

the knowledge of an agent is defined as:2 Know(Φ, s)
def
=

∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knowsΦ in s if Φ holds
in all of herK-accessible situations ins. K is constrained to
be reflexive, transitive, and Euclidean in the initial situation
to capture the fact that agents’ knowledge is true, and that
agents have positive and negative introspection. As shown
in (Scherl and Levesque 2003), these constraints then con-
tinue to hold after any sequence of actions since they are
preserved by the successor state axiom forK. We also as-
sume that all actions are public, i.e. whenever an action (in-
cluding exogenous events) occurs, the agent learns that it has
happened. Note that, we work with knowledge rather than
belief. Although much of our formalization should extend
to the latter, we leave this for future work.

Paths in the Situation Calculus
To support modeling temporally extended goals, we intro-
duce a new sort ofpaths, with (possibly sub/super-scripted)
variablesp ranging over paths. A path is essentially an
infinite sequence of situations, where each situation along
the path can be reached by performing someexecutableac-
tion in the preceding situation. We introduce a predicate
OnPath(p, s), meaning that the situations is on pathp. Also,
Starts(p, s) means thats is the starting situation of pathp. A
pathp starts withs iff s is the earliest situation onp:3

Axiom 1
Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s≤ s′.
In the standard situation calculus, paths are implicitly

there, and a path can be viewed as a pair (s, F) consisting of a
situations representing the starting situation of the path, and
a functionF from situations to actions (calledAction Selec-
tion Functions(ASF) or strategies in (Shapiroet al. 1995)),
such that from the starting situations, F defines an infinite
sequence of situations by specifying an action for every sit-
uation starting froms. Thus, one way of axiomatizing paths

1We will be quantifying over formulae, and thus assumeDbasic

includes axioms for encoding of formulae as first order terms, as in
(Shapiroet al. 2007).

2Φ is a state formula that can contain a situation variable,now,
in the place of situation terms. We often suppressnow when the
intent is clear from the context.

3In the following, s < s′ means thats′ can be reached from
s by performing a sequence of executable actions.s ≤ s′ is an
abbreviation fors< s′ ∨ s = s′.

is by making them correspond to such pairs (s,F):
Axiom 2 ∀p. Starts(p, s) ⊃ (∃F. Executable(F, s)

∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),
∀F, s.Executable(F, s) ⊃ ∃p. Starts(p, s)
∧ ∀s′. OnPathASF(F, s,s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that
produces exactly the sequence of situations on the path from
its starting situation. Also, for every executable ASF and
situation, there is a path that corresponds to the sequence of
situations produced by the ASF starting from that situation.

OnPathASF(F, s, s′) def
=

s≤ s′ ∧ ∀a, s∗. s< do(a, s∗) ≤ s′ ⊃ F(s∗) = a,

Executable(F, s)
def
= ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F(s′), s′).

Here, OnPathASF(F, s,s′) means that the situation sequence
defined by (s,F) includes the situations′. Also, the situation
sequence encoded by a strategyF and a starting situations
is executable iff for all situationss′ on this sequence, the
action selected byF in s′ is executable ins′.

We will use both state and path formulae. A state formula
Φ(s) is a formula that has a free situation variables in it,
whereas a path formulaφ(p) is one that has a free path vari-
ablep. State formulae are used in the context of knowledge
while path formulae are used in that of goals. Note that,
by incorporating infinite paths in our framework, we can
evaluate goals over these and handle arbitrary temporally
extended goals; thus, unlike some other situation calculus
based accounts where goal formulae are evaluated w.r.t. fi-
nite paths (e.g. (Shapiro and Brewka 2007)), we can handle
for example unbounded maintenance goals.

We next define some useful constructs. A state formulaΦ
eventually holdsover the pathp if Φ holds in some situation

that is onp, i.e.^Φ(p)
def
= ∃s′. OnPath(p, s′) ∧ Φ(s′). Other

Temporal Logic operators can be defined similarly, e.g. al-
waysΦ: �Φ(p).

An agentknowsin s that φ has becomeinevitable if φ
holds over all paths that starts with aK-accessible situation

in s, i.e. KInevitable(φ,s)
def
= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃

φ(p). An agent knows ins that φ is impossible if she

knows that¬φ is inevitable ins, i.e. KImpossible(φ, s)
def
=

KInevitable(¬φ, s).
Thirdly, we define what it means for a pathp′ to be a

suffix of another pathp w.r.t. a situations:

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s′ ≥ s⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

Fourthly, SameHist(s1, s2) means that the situationss1
ands2 share the same history of actions, but perhaps starting
from different initial situations:
Axiom 3 SameHist(s1, s2) ≡ (Init(s1) ∧ Init(s2)) ∨
(∃a, s′1, s′2. s1 = do(a,s′1) ∧ s2 = do(a,s′2) ∧ SameHist(s′1, s

′
2)).

Finally, we say thatφ has becomeinevitable in s if φ
holds over all paths that starts with a situation that has the

same history ass: Inevitable(φ, s)
def
= ∀p, s′. Starts(p, s′) ∧

SameHist(s′, s)⊃ φ(p).

86

Prioritized Goals
Most work on formalizing goals only deals with static goal
semantics and not their dynamics. In this section, we for-
malize goals or desires with different priorities which we
call prioritized goals(p-goals, henceforth). These p-goals
are not required to be mutually consistent and need not be
actively pursued by the agent. In terms of these, we de-
fine the consistent set ofchosen goalsor intentions (c-goals,
henceforth) that the agent is committed to. In the next sec-
tion, we formalize goal dynamics by providing a SSA for p-
goals. The agent’s c-goals are automatically updated when
her p-goals change.

Not all of the agent’s goals are equally important to her.
Thus, it is useful to support a priority ordering over goals.
This information can be used to decide which of the agent’s
c-goals should no longer be actively pursued in case they be-
come mutually inconsistent. We specify each p-goal by its
own accessibility relation/fluentG. A pathp is G-accessible
at priority leveln in situations (denoted byG(p,n, s)) if all
the goals of the agent at leveln are satisfied over this path
and if it starts with a situation that has the same action his-
tory ass. The latter requirement ensures that the agent’s p-
goal-accessible paths reflect the actions that have been per-
formed so far. A smallern represents higher priority, and the
highest priority level is 0. Thus here we assume that the set
of p-goals are totally ordered according to priority. We say
that an agent has the p-goal thatφ at leveln in situations iff
φ holds over all paths that areG-accessible atn in s:

PGoal(φ,n, s)
def
= ∀p.G(p,n, s)⊃ φ(p).

To be able to refer to all the p-goals of the agent at some
given priority level, we also defineonly p-goals.

OPGoal(φ,n, s)
def
= PGoal(φ, n, s)∧ ∀p. φ(p) ⊃ G(p,n, s).

An agent has the only p-goal thatφ at leveln in situations
iff φ is a p-goal atn in s, and any path over whichφ holds is
G-accessible atn in s.

A domain theory for our frameworkD includes the ax-
ioms of a theoryDbasicas in the previous section, the axiom-
atization of paths i.e. axioms 1-3, domain dependent initial
goal axioms (see below), the domain independent axioms 4-
7 and the definitions that appear in this section and the next.
We allow the agent to have infinitely many goals. We expect
the modeler to include some specification of what paths are
G accessible at the various levels initially. We call these ax-
ioms initial goal axioms. In many cases, the user will want
to specify a finite set of initial p-goals. This can be done by
providing a set of axioms as in the example below. But in
general, an agent can have a countably infinite set of p-goals,
e.g. an agent that has the p-goal at leveln to know what the
n-th prime number is for alln. The agent’s set of p-goals
can even be specified incompletely, e.g. the theory might
not specify what the p-goals at some level are initially.

We use the following as a running example. We have an
agent who initially has the following three p-goals:φ0 =
�BeRich,φ1 = ^GetPhD, andφ2 = �BeHappy at level 0,1,
and 2, respectively. This domain can be specified using the
following two initial goal axioms:
(a) Init(s) ⊃ ((G(p,0, s)≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))
∧ ((G(p,1, s)≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p))

∧ (G(p,2, s)≡ Starts(p, s′) ∧ Init(s′) ∧ φ2(p))),
(b) ∀n, p, s. Init(s) ∧ n ≥ 3 ⊃

(G(p,n, s) ≡ Starts(p, s′) ∧ Init(s′)).
(a) specifies the p-goalsφ0, φ1, φ2 (from highest to lowest
priority) of the agent in the initial situations, and makes
G(p,n, s) true for every pathp that starts with an initial situ-
ation and over whichφn holds, forn = 0,1,2; each of them
defines a set of initial goal paths for a given priority level,
and must be consistent. (b) makesG(p,n, s) true for every
pathp that starts with an initial situation forn ≥ 3. Thus at
levelsn ≥ 3, the agent has the trivial p-goal that she be in
an initial situation. Assume that while initially the agent
knows that all of her p-goals are individually achievable,
she knows that her p-goal̂GetPhD is inconsistent with her
highest priority p-goal�BeRich as well as with her p-goal
�BeHappy, while the latter are consistent with each other.
Thus in our example, we have OPGoal(φi(p)∧Starts(p, s)∧
Init(s),i, S0), for i = 0,1,2. Also, for anyn ≥ 3, we have
OPGoal(Starts(p, s)∧ Init(s),n,S0).

While p-goals or desires are allowed to be known to be
impossible to achieve, an agent’s c-goals or intentions must
be realistic. Not all of theG-accessible paths are realistic
in the sense that they start with aK-accessible situation. To
filter these out, we definerealisticp-goal accessible paths:

GR(p,n, s)
def
= G(p,n, s)∧ Starts(p, s′) ∧ K(s′, s),

ThusGR prunes out the paths fromG that are known to be
impossible, and since we define c-goals in terms of realistic
p-goals, this ensures that c-goals are realistic. We say that
an agent has therealistic p-goalthatφ at leveln in situation
s iff φ holds over all paths that areGR-accessible atn in s:

RPGoal(φ,n, s)
def
= ∀p.GR(p,n, s)⊃ φ(p).

Using realistic p-goals, we next define c-goals. The idea
of how we calculate c-goal-accessible paths is as follows:
the set ofGR-accessibility relations represents a set of pri-
oritized temporal propositions that are candidates for the
agent’s c-goals. GivenGR, in each situation we want to com-
pute the agent’s c-goals such that it is themaximal consistent
set of higher priority realistic p-goals. We do this iteratively
starting with the set of all realistic paths (i.e. paths that starts
with a K-accessible situation). At each iteration we com-
pute the intersection of this set with the next highest priority
set ofGR-accessible paths. If the intersection is not empty,
we thus obtain a new chosen set of paths at leveli. We call
a p-goal chosen by this process anactivep-goal. If on the
other hand the intersection is empty, then it must be the case
that the p-goal represented by this level is either in conflict
with another active higher priority p-goal/a combination of
two or more active higher priority p-goals, or is known to be
impossible. In that case, that p-goal is ignored (i.e. marked
as inactive), and the chosen set of paths at leveli is the same
as at leveli − 1. Axiom 4 computes this intersection:4

Axiom 4 G∩(p,n, s)≡
if (n = 0) then

if ∃p′. GR(p′,n, s) then GR(p,n, s)
elseStarts(p, s′) ∧ K(s′, s)

4if φ then δ1 elseδ2 is an abbreviation for (φ ⊃ δ1) ∧ (¬φ ⊃ δ2).

87

else
if ∃p′.(GR(p′,n− 1, s)∧G∩(p′,n− 1, s))

then (GR(p,n− 1, s) ∧G∩(p,n− 1, s))
elseG∩(p,n− 1, s).

Using this, we define what it means for an agent to have a
c-goal at some leveln:

CGoal(φ,n, s)
def
= ∀p.G∩(p,n, s)⊃ φ(p),

i.e. an agent has the c-goal at leveln thatφ if φ holds over
all paths that are in the prioritized intersection of the set of
GR-accessible paths up to leveln.

We define c-goals in terms of c-goals at leveln:

CGoal(φ,s)
def
= ∀n. CGoal(φ,n, s),

i.e., the agent has the c-goal thatφ if for any leveln, φ is a
c-goal atn.

In our example, the agent’s realistic p-goals are�BeRich,
^GetPhD,and �BeHappy in order of priority. TheG∩-
accessible paths at level 0 inS0 are the ones that start with a
K-accessible situation and where�BeRich holds. TheG∩-
accessible paths at level 1 inS0 are the same as at level
0, since there are noK-accessible paths over which both
^GetPhD and�BeRich hold. Finally, theG∩-accessible
paths at level 2 inS0 are those that start with aK-accessible
situation and over which�BeRich∧�BeHappy holds. Also,
it can be shown that initially our example agent has the c-
goals that�BeRich and�BeHappy, but not̂ GetPhD.

Note that by our definition of c-goals, the agent can have a
c-goal thatφ in situations for various reasons: 1)φ is known
to be inevitable ins; 2)φ is an active p-goal at some level
n in s; 3)φ is a consequence of two or more active p-goals
at different levels ins. To be able to refer to c-goals for
which the agent has a primitive motivation, i.e. c-goals that
result from a single active p-goal at some priority leveln, in
contrast to those that hold as a consequence of two or more
active p-goals at different priority levels, we defineprimary
c-goals:

PrimCGoal(φ,s)
def
=

∃n. PGoal(φ,n, s) ∧ ∃p.G(p,n, s) ∧G∩(p,n, s).
That is, an agent has the primary c-goal thatφ in situation
s, if φ is a p-goal at some leveln in s, and if there is aG-
accessible pathp at n in s that is also in the prioritized in-
tersection ofGR-accessible paths upton in s. The last two
conjucts are required to ensure thatn is an active level. Thus
if an agent has a primary c-goal thatφ, then she also has the
c-goal thatφ, but not necessarily vice-versa. It can be shown
that initially our example agent has the primary c-goals that
�BeRich and�BeHappy, but not their conjunction. To some
extent, this shows that primary c-goals are not closed under
logical consequence.

Goal Dynamics
An agent’s goals change when her knowledge changes as a
result of the occurrence of an action (including exogenous
events), or when she adopts or drops a goal. We formalize
this by specifying how p-goals change. C-goals are then
computed using (realistic) p-goals in every new situation as
above.

We introduce two actions for adopting and dropping a p-

goal,adopt(φ, n) anddrop(φ). The action precondition ax-
ioms for these are as follows:
Axiom 5 Poss(adopt(φ, n), s)≡ ¬∃n′. PGoal(φ,n′, s),

Poss(drop(φ), s)≡ ∃n. PGoal(φ,n, s).
That is, an agent can adopt (drop) the p-goal thatφ at level
n, if she does not (does) already haveφ as her p-goal at some
level.

In the following, we specify the dynamics of p-goals by
giving the SSA forG and discuss each case, one at a time:
Axiom 6 (SSA for G) G(p,n,do(a, s)) ≡
∀φ,m. (a , adopt(φ,m)∧ a , drop(φ)∧ Progressed(p,n,a, s))
∨ ∃φ,m. (a = adopt(φ,m)∧ Adopted(p,n,m,a, s, φ))
∨ ∃φ. (a = drop(φ) ∧ Dropped(p,n,a, s, φ)).
The overall idea of the SSA forG is as follows. First of all,
to handle the occurrence of a non-adopt/drop (i.e. regular)
action a, we progress allG-accessible paths to reflect the
fact that this action has just happened; this is done using
the Progressed(p,n,a, s) construct, which replaces eachG-
accessible pathp′ with starting situations′, by its suffixp
provided that it starts withdo(a,s′):

Progressed(p,n,a, s)
def
=

∃p′. G(p′,n, s)∧ Starts(p′, s′) ∧ Suffix(p, p′,do(a, s′)).
Any path over which the next action performed is nota is
eliminated from the respectiveG accessibility level.

Secondly, to handle adoption of a p-goalφ at levelm, we
add a new proposition containing the p-goal to the agent’s
goal hierarchy atm. TheG-accessible paths at all levels
abovem are progressed as above. TheG-accessible paths at
levelmare the ones that share the same history withdo(a,s)
and over whichφ holds. TheG-accessible paths at all levels
below m are the ones that can be obtained by progressing
the level immediately above it. Thus the agent acquires the
p-goal thatφ at levelm, and all the p-goals with prioritym
or less ins are pushed down one level in the hierarchy.

Adopted(p,n,m,a, s, φ)
def
=

if (n < m) then Progressed(p,n,a, s)
else if (n = m) then ∃s′. Starts(p, s′)

∧ SameHist(s′,do(a, s)) ∧ φ(p)
elseProgressed(p,n− 1,a, s).

Finally, to handle the dropping of a p-goalφ, we replace
the propositions that imply the dropped goal in the agent’s
goal hierarchy by the trivial proposition that the history of
actions in the current situation has occurred. Thus, in addi-
tion to progressing allG-accessible paths as above, we add
back all paths that share the same history withdo(a,s) to
the existingG-accessibility levels where the agent has the
p-goal thatφ.

Dropped(p,n,a, s, φ)
def
= if PGoal(φ,n, s)

then ∃s′. Starts(p, s′) ∧ SameHist(s′,do(a,s))
elseProgressed(p,n,a, s).

Returning to our example, recall that our agent has the
c-goals/active p-goals inS0 that�BeRich and�BeHappy,
but not^GetPhD, since the latter is inconsistent with her
higher priority p-goal�BeRich. Assume that, after the ac-

88

tion goBankrupt happens inS0, the p-goal�BeRich be-
comes impossible. Then inS1 = do(goBankrupt,S0), the
agent has the c-goal that̂GetPhD, but not�BeRich nor
�BeHappy;�BeRich is excluded from the set of c-goals
since it has become impossible to achieve (i.e. unrealis-
tic). Also, since her higher priority p-goal̂GetPhD is in-
consistent with her p-goal�BeHappy, the agent will make
�BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal
(e.g.^GetPhD) that is in conflict with another higher prior-
ity active p-goal (e.g.�BeRich), in our framework we keep
such p-goals around. The reason for this is that although
�BeRich is currently inconsistent witĥGetPhD, the agent
might later learn that�BeRich has become impossible to
bring about (e.g. aftergoBankruptoccurs), and then might
want to pursuê GetPhD. Thus, it is useful to keep these
inactive p-goals since this allows the agent to maximize her
utility (that of her chosen goals) by taking advantage of such
opportunities. As mentioned earlier, c-goals are our ana-
logue to intentions. Recall that Bratman’s (1987) model of
intentions limits the agent’s practical reasoning – agents do
not always optimize their utility and don’t always reconsider
all available options in order to allocate their reasoning ef-
fort wisely. In contrast to this, our c-goals are defined in
terms of the p-goals, and at every step, we ensure that the
agent’s c-goals maximize her utility so that these are the set
of highest priority goals that are consistent given the agent’s
knowledge. Thus, our notion of c-goals is not as persistent
as Bratman’s notion of intention. For instance as mentioned
above, after the actiongoBankrupthappens inS0, the agent
will lose the c-goal that�BeHappy, although she did not
drop it and it did not become impossible or achieved. In
this sense, our model is that of an idealized agent. There
is a tradeoffbetween optimizing the agent’s chosen set of
prioritized goals and being committed to chosen goals. In
our framework, chosen goals behave like intentions with
an automatic filter-override mechanism (Bratman 1987) that
forces the agent to drop her chosen goals when opportuni-
ties to commit to other higher priority goals arise. In the
future, it would be interesting to develop a logical model
that captures the pragmatics of intention reconsideration by
supporting control over it.

Properties
We now show that our formalization has some desirable
properties. Some of these (e.g. Proposition 3a) are ana-
logues of the AGM postulates; others (e.g. adopting logi-
cally equivalent goals has the same result, etc.) were left out
for space reasons. First we show that c-goals are consistent:
Prop. 1 (Consistency) D |= ∀s.¬CGoal(False, s).
Thus, the agent cannot have bothφ and¬φ c-goals in a situ-
ation s. Even if all of the agent’s p-goals become known to
be impossible, the set of c-goal-accessible paths will be pre-
cisely those that starts with aK-accessible situation, and thus
the agent will only choose the propositions that are known
to be inevitable.

We also have the property of realism (Cohen and
Levesque 1990), i.e. if an agent knows that something has
become inevitable, then she has this as a c-goal:
Prop. 2 (Realism) D |= ∀s.KInevitable(φ, s)⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary
c-goals – an agent may know that something has become in-
evitable and not have it as her p-goal/primary c-goal, which
is intuitive. While the property of realism is often criti-
cized, one should view these inevitable goals as something
that hold in the worlds that the agent intends to bring about,
rather than something that the agent is actively pursuing.

A consequence of Proposition 1 and 2 is that an agent
does not have a c-goal that is known to be impossible, i.e.
D |= CGoal(φ,s)⊃ ¬KImpossible(φ,s).

We next discuss some properties of the framework w.r.t.
goal change. Proposition 3 says that (a) an agent acquires
the p-goal thatφ at leveln after she adopts it atn, and (b)
that she acquires the primary c-goal thatφ after she adopts
it at some leveln in s, provided that she does not have the
c-goal ins that¬φ next.
Prop. 3 (Adoption) (a) D |= PGoal(φ, n,do(adopt(φ,n), s)),
(b) D |= ¬CGoal(¬∃p′. Starts(p, s′) ∧

Suffix(p′, p,do(adopt(φ,n), s′)) ∧ φ(p′), s)
⊃ PrimCGoal(φ,do(adopt(φ,n), s)).

Also, after dropping the p-goal thatφ at n in s, an agent
does not have the p-goal (and thus the primary c-goal) that
the progression ofφ at n, i.e. φ′, provided thatφ′ is not
inevitable indo(drop(φ), s).
Prop. 4 (Drop) D |= PGoal(φ,n, s)

∧ [(∀p, p′. Starts(p, s′) ∧ SameHist(s′, s) ∧
Suffix(p′, p,do(drop(φ), s′))) ⊃ (φ(p) ≡ φ′(p′))]

∧ ¬Inevitable(φ′,do(drop(φ), s))
⊃ ¬PGoal(φ′,n,do(drop(φ), s)).

Note that, this does not hold for CGoal, asφ could still be a
consequence of her remaining primary c-goals.

The next few properties concern the persistence of these
motivational attitudes. First we have a persistence property
for achievement realistic p-goals:
Prop. 5 (Persistence of Achievement RPGoals)
D |= RPGoal(^Φ,n, s)∧ Know(¬Φ, s) ∧ ∀ψ. a , drop(ψ)

⊃ ∃n′. RPGoal(^Φ,n′,do(a, s)).
This says that if an agent has a realistic p-goal that^Φ in s,
then she will retain this realistic p-goal after some actiona
has been performed ins, provided that she knows thatΦ has
not yet been achieved, anda is not the action of dropping
a p-goal. Note that, we do not need to ensure that^Φ is
consistent with higher priority active p-goals, since the SSA
for G does not automatically drop such incompatible p-goals
from the goal hierarchy. Also, the leveln whereΦ is a p-goal
may change, e.g. if the action performed is an adopt action
with priority higher than or equal ton.

For achievement chosen goals we have the following:
Prop. 6 (Persistence of Achievement Chosen Goals)
D |= OPGoal(^Φ∧ ∃s′. Starts(s′) ∧ SameHist(s′),n, s)
∧ CGoal(Φ̂, s) ∧ Know(¬Φ, s)∧ ∀ψ. a , drop(ψ)
∧ ∀ψ,m. ¬(a = adopt(ψ,m)∧m≤ n)
∧ ¬CGoal(¬^Φ,n− 1,do(a,s))

⊃ CGoal(^Φ,n,do(a,s)).

89

Thus,in situations, if an agent has the only p-goal at leveln
that^Φ and that the correct history of actions ins has been
performed, and if̂ Φ is also a chosen goal ins (and thus
she has the primary c-goal that̂Φ), then she will retain
the c-goal that̂ Φ at leveln after some actiona has been
performed ins, provided that: she knows thatΦ has not yet
been achieved, thata is not the action of dropping a p-goal,
thata is not the action of adopting a p-goal at some higher
priority level thann or atn, and that at leveln− 1 the agent
does not have the c-goal that¬^Φ, i.e.^Φ is consistent with
higher priority c-goals.

Note that, this property also follows if we replace the con-
sequent with CGoal(^Φ,do(a,s)), and thus it deals with the
persistence of c-goals. Note however that, it does not hold
if we replace the OPGoal in the antecedent with PGoal; the
reason for this is that the agent might have a p-goal at level
n in s thatφ and the c-goal ins thatφ, but not haveφ as a
primary c-goal ins, e.g.n might be an inactive level because
another p-goal atn has become impossible, andφ could be
a c-goal ins because it is a consequence of two other pri-
mary c-goals. Thus even if¬φ is not a c-goal aftera has
been performed ins, there is no guarantee that the leveln
will be active indo(a, s) or that all the active p-goals that
contributed toφ in sare still active.

Discussion and Future Work
While in our account chosen goals are closed under logical
consequence, primary c-goals are not. Thus, our formaliza-
tion of primary c-goals is related to the non-normal modal
formalizations of intentions found in the literature (Kono-
lige and Pollack 1993), and as such it does not suffer from
the side-effect problem (Cohen and Levesque 1990).

Our framework can be extended to model subgoal adop-
tion and the dependencies between goals and the subgoals
and plans adopted to achieve them. The later is impor-
tant since subgoals and plans adopted to bring about a goal
should be dropped when the parent goal becomes impossi-
ble, is achieved, or is dropped. One way of handling this
is to ensure that the adoption of a subgoalψ w.r.t. a par-
ent goalφ adds a new p-goal that containsboth this subgoal
and this parent goal, i.e.ψ ∧ φ. This ensures that when the
parent goal is dropped, the subgoal is also dropped, since
when we drop the parent goalφ, we drop all the p-goals at
all G-accessibility levels that implyφ includingψ ∧ φ.

Also, since we are using the situation calculus, we can
easily represent procedural goals/plans, e.g. the goal to
do a1 and thena2 can be written as: PGoal(Starts(p, s1) ∧
OnPath(p, s)∧ s = do(a2,do(a1, s1)),0,S0). Golog (Reiter
2001) can be used to represent complex plans/programs. So
we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal with
goal change. Shapiroet al. (2007) present a situation cal-
culus based framework where an agent adopts a goal when
she is requested to do so, and remains committed to this goal
unless the requester cancels this request; a goal is retained
even if the agent learns that it has become impossible, and
in this case the agent’s goals become inconsistent. Shapiro
and Brewka (2007) modify this framework to ensure that
goals are dropped when they are believed to be impossible
or when they are achieved. Their account is similar to ours
in the sense that they also assume a priority ordering over
the set of (in their case, requested) goals, and in every sit-

uation they compute chosen goals by computing a maximal
consistent goal set that is also compatible with the agent’s
beliefs. However, their model has some unintuitive proper-
ties: the agent’s chosen set of goals indo(a,s) may be quite
different from her goals ins, althougha did not make any of
her goals ins impossible or inconsistent with higher prior-
ity goals, because inconsistencies between goals at the same
priority level are resolved differently (this can happen be-
cause goals are only partially ordered). Also, we provide
a more expressive formalization of prioritized goals – we
model goals using infinite paths, and thus can model many
types of goals that they cannot. Finally they model priori-
tized goals by treating the agent’s p-goals as an arbitrary set
of temporal formulas, and then defining the set of c-goals as
a subset of the p-goals. But our possible world semantics
has some advantages over this: it clearly defines when goals
are consistent with each other and with what is known. One
can easily specify how goals change when an actiona oc-
curs, e.g. the goal to doa next and then dob becomes the
goal to dob next, the goal that̂ Φ ∨ ^Ψ becomes the goal
that^Ψ if a makes achievingΦ impossible, etc.

Most approaches to agent programming languages with
declarative goals are not based on a formal theory of agency,
and to the best of our knowledge none deals with tempo-
rally extended goals or maintain the consistency of (chosen)
goals.

One limitation of our account is that one could argue that
our agent wastes resources trying to optimize her c-goals at
every step. In the future, we would like to develop an ac-
count where the agent is strongly committed to her chosen
goals, and where the filter override mechanism is only trig-
gered under specific conditions.

References
M. Bratman. Intentions, Plans, and Practical Reason. Harvard
University Press, Cambridge, 1987.
P. Cohen and H. Levesque. Intention is Choice with Commitment.
Artificial Intelligence, 42(2–3):213–361, 1990.
K. Konolige and M. Pollack. A Representationalist Theory of
Intention. InThirteenth Intl. J. Conf. on Artificial Intelligence
(IJCAI-93), pp. 390–395, Chambéry, France, 1993.
H. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus
of Situations.Electronic Transactions of AI (ETAI), 2(3–4):159–
178, 1998.
A. Rao and M. Georgeff. Modeling Rational Agents with a BDI-
Architecture. In R. Fikes and E. Sandewall, editors,Second Intl.
Conf. on Principles of Knowledge Rep. and Reasoning, pp. 473–
484, 1991.
R. Reiter. Knowledge in Action. Logical Foundations for Spec-
ifying and Implementing Dynamical Systems. MIT Press, Cam-
bridge, MA, 2001.
R. Scherl and H. Levesque. Knowledge, Action, and the Frame
Problem.Artificial Intelligence, 144(1–2), 2003.
S. Shapiro and G. Brewka. Dynamic Interactions Between Goals
and Beliefs. InTwentieth Intl. J. Conf. on Artificial Intelligence
(IJCAI-07), pp. 2625–2630, India, 2007.
S. Shapiro, Y. Lesṕerance, and H. Levesque. Goals and Ratio-
nal Action in the Situation Calculus - A Preliminary Report. In
Working Notes of the AAAI Fall Symp. on Rational Agency, pp.
117–122, 1995.
S. Shapiro, Y. Lesṕerance, and H. Levesque. Goal Change in
the Situation Calculus.J. of Logic and Computation, 17(5):983–
1018, 2007.

90

A Semantical Account of Progression in the Presence of Defaults

Gerhard Lakemeyer
Dept. of Computer Science

RWTH Aachen
52056 Aachen

Germany
gerhard@cs.rwth-aachen.de

Hector J. Levesque
Dept. of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 3A6

hector@cs.toronto.edu

Abstract

In previous work, we proposed a modal fragment of the sit-
uation calculus calledES , which fully captures Reiter’s ba-
sic action theories.ES also has epistemic features, includ-
ing only-knowing, which refers to all that an agent knows in
the sense of having a knowledge base. While our model of
only-knowing has appealing properties in the static case, it
appears to be problematic when actions come into play. First
of all, its utility seems to be restricted to an agent’s initial
knowledge base. Second, while it has been shown that only-
knowing correctly captures default inferences, this was only
in the static case, and undesirable properties appear to arise
in the presence of actions. In this paper, we remedy both of
these shortcomings and propose a new dynamic semantics of
only-knowing, which is closely related to Lin and Reiter’s
notion of progression when actions are performed and where
defaults behave properly.

Introduction
In previous work, Lakemeyer and Levesque (2004; 2005)
proposed a modal fragment of the situation calculus called
ES, which fully captures Reiter’s basic action theories
and regression-based reasoning, including reasoning about
knowledge. So, for example, the language allows us to for-
mulate Reiter-style successor state axioms such as this one:

∀a, x.�([a]Broken(x) ≡
(a = drop(x) ∧ Fragile(x)) ∨
(Broken(x) ∧ a 6= repair(x)))

In English: after any sequence of actions (�), an objectx
will be broken after doing actiona ([a]Broken(x)) iff a is
the dropping ofx whenx is fragile, orx was already broken
anda is not the action of repairing it. Here we assume that
Fragile is a predicate which is not affected by any action so
that its successor state axiom would be

∀a, x.�([a]Fragile(x) ≡ Fragile(x)).

Let us call the conjunction of these two axiomsSSABF .
In addition to action and change, the languageES also ad-
dresses what an agent knows and only-knows. The latter is
intended to capture all an agent knows in the sense of having
a knowledge base. For illustration, consider the following
sentence, which is logically valid inES:

O(Fragile(o) ∧ ¬Broken(o) ∧ SSABF) ⊃

[drop(o)] (K(Broken(o)) ∧ ¬K(Glass(o))) .

In English: if all the agent knows is thato is fragile and not
broken and that the successor state axioms forBrokenand
Fragile hold, then after droppingo, the agent knows thato
is broken, but does not know thato is made of glass.

Let us now consider what the agent should only-know
after the drop action has occurred. Intuitively, the agent’s
knowledge should change in that it now believes thato is
broken, with everything else remaining the same. Formally,

[drop(o)] O(Fragile(o) ∧ Broken(o) ∧ SSABF).

In fact this view corresponds essentially to what Lin and Re-
iter (LR) [1997] call theprogressionof a database wrt an
action. It turns out, however, that the semantics of only-
knowing as proposed in (Lakemeyer and Levesque 2004)
differs from this in that the last formula above isnot en-
tailed. The reason is that their version, unlike progression,
does not forget what was true initially (like whether or noto
was already broken), and so more ends up being known.

The LR notion of progression allows for efficient imple-
mentations under certain restrictions (Lin and Reiter 1997;
Liu and Levesque 2005; Vassos and Levesque 2007), and be-
ing able to forget the past seems essential for this. Hence the
previous semantics of only-knowing may not be very useful,
except perhaps in the initial state. In this paper, we present
a new semantics of only-knowing which avoids this pitfall
and is fully compatible with LR’s idea of progression.

Levesque (1990) showed that only-knowing in the static
case also accounts for default reasoning in the sense of au-
toepistemic logic (Moore 1985). For example, the default
that objects are fragile unless known otherwise can be writ-
ten as

∀x¬K¬Fragile(x) ⊃ Fragile(x).

If the agent uses this default instead of the fact thato is
fragile then it would still conclude, this time by default, that
o is fragile and hence believe that it is broken after dropping
it. But suppose thato is actuallynot fragile. What should
the agent believe aftersensingthe status ofo’s fragility?
Clearly, it should then believe thato is indeed not fragile
and it should not believe that droppingo will break it. That
is, the default should no longer apply. Unfortunately, the
previous definition of only-knowing does not do this. The
problem, roughly, is that the initial default conclusion thato
is fragile cannot be distinguished from a hard fact. Subse-
quently sensing the opposite then leads to an inconsistency.

91

In this paper we will fix this problem by proposing a se-
mantics which separates conclusions based on facts from
those based on defaults. To this end, we will distinguish
between what is known for sure (using the modalityK)
and what is believed after applying defaults (using another
modality B). In fact, defaults themselves will be formu-
lated usingB instead ofK. All this will be integrated with
progression in the sense that defaults will be applied to the
progressed knowledge base.

For space reasons, the paper, which also appears in (Lake-
meyer and Levesque 2009a) in almost identical form, con-
tains no proofs. These and a comparison between the old
and new semantics of only-knowing and between our notion
of progression and that of LR can be found in (Lakemeyer
and Levesque 2009b).

The rest of the paper is organized as follows. In the next
section, we introduce the logicESO, which is like the old
ES except for the new semantics of only-knowing and de-
faults. This semantics agrees with the previous one in the
static case. After that, we consider only-knowing in the con-
text of basic action theories. In particular, we show that what
is only-known after an action extends LR’s original idea of
progression, and how reasoning about defaults fits into the
picture. We then address related work and conclude.

The Logic ESO

The language is a second-order modal dialect with equality
and sorts of type object and action. Before presenting the
formal details, here are the main features:

• rigid terms: The ground terms of the language are taken
to be isomorphic to the domain of discourse. This al-
lows first-order quantification to be understood substitu-
tionally. Equality can also be given a very simple treat-
ment: two ground terms are equal only if they are identi-
cal.

• knowledge and truth: The language includes modal oper-
atorsK andB for knowledge and belief. TheK operator
allows us to distinguish between sentences that are true
and sentences that are known (by some implicit agent).
TheB operator allows an agent to have false beliefs about
its world or how its world changes. For example, we can
model situations where an object is not fragile but the
agent does not know it, yet may believe that it is fragile
by default.

• sensing: The connection between knowledge and truth
is made with sensing. Every action is assumed to have
a binary sensing result and after performing the action,
the agent learns that the action was possible (as indicated
by thePosspredicate) and whether the sensing result for
the action was 1 or 0 (as indicated by theSFpredicate).1

Just as an action theory may contain precondition axioms
characterizing the conditions under whichPossholds, it

1For convenience, we assume that every action returns a (per-
haps trivial) sensing result. Here, we restrict ourselves to binary
values. See (Scherl and Levesque 2003) for how to handle arbi-
trary sensing results.

can contain axioms characterizing the conditions under
whichSFholds.

The language

The symbols ofESO consist of first-order variables, second-
order predicate variables of every arity, rigid functions of
every arity, fluent predicate symbols of every arity, as well
as these connectives and other symbols:=, ∧, ¬, ∀, K,
B, O, Ω, �, round and square parentheses, period, comma.
We assume two special fluent predicatesPossandSF (for
sensing).K, B, O, andΩare called epistemic operators.

The termsof the language are formed in the usual way
from first-order variable and rigid functions.

We letR denote the set of all rigid terms (here, all ground
terms). For simplicity, instead of having variables of the
action sort distinct from those of theobjectsort as in the
situation calculus, we lump both of these together and allow
ourselves to use any term as an action or as an object.2

Thewell-formed formulasof the language form the least set
such that

1. If t1, . . . , tk are terms,F is ak-ary predicate symbol, and
V is ak-ary second-order variable, thenF (t1, . . . , tk) and
V (t1, . . . , tk) are (atomic) formulas;

2. If t1 andt2 are terms, then(t1 = t2) is a formula;

3. If α andβ are formulas,v is a first-order variable,V is a
second-order variable, andt is a term, then the following
are also formulas:(α∧ β), ¬α, ∀v. α, ∀V. α, [t]α, �α,
Kα, Bα, Oα, andΩα, where the formulas followingO
andΩare restricted further below.

We read[t]α as “α holds after actiont”, and �α as “α
holds after any sequence of actions,” andKα (Bα) as “the
agent knows (believes)α.” Oα may be read as “the agent
only-knowsα” and is intended to capture all the agent knows
about what the world is like now and how it evolves as a re-
sult of actions. Here no defaults are taken into account, just
facts which, as we will see later, come in the form of a basic
action theory similar to those proposed by Reiter (2001a).
Therefore, we restrictO to apply to so-calledobjective for-
mulasonly, which are those mentioning no epistemic opera-
tors. Finally,Ωα is meant to capture all and only the defaults
believed by the agent. For that,α is restricted to what we call
static belief formulas, which mention neither� nor [t] nor
any epistemic operator exceptB.

As usual, we treat(α ∨ β), (α ⊃ β), (α ≡ β), ∃v. α,
and∃V. α as abbreviations. We useαx

t to mean formulaα
with all free occurrences of variablex replaced by termt.
We call a formula without free variables asentence.

We will also sometimes refer tostatic objective formulas,
which are the objective formulas among the static belief for-
mulas, andfluent formulas, which are formulas with noK,
O, B, Ω, �, [t], Poss, or SF.3

2Equivalently, the version in this paper can be thought of as
having action terms but no object terms.

3In the situation calculus, these correspond to formulas that are
uniform in some situation term.

92

The semantics
The main purpose of the semantics we are about to present is
to be precise about how we handle fluents, which may vary
as the result of actions and whose values may be unknown.
Intuitively, to determine whether or not a sentenceα is true
after a sequence of actionsz has been performed, we need
to specify two things: a worldw and an epistemic statee.
A world determines truth values for the ground atoms after
any sequence of actions. An epistemic state is defined by a
set of worlds, as in possible-world semantics.

More precisely, letZ be the set of all finite sequences of
elements ofR including〈 〉, the empty sequence.Z should
be understood as the set of all finite sequences of actions.
Then

• a worldw ∈ W is any function fromG (the set of ground
atoms) andZ to {0, 1}.

• an epistemic statee ⊆W is any set of worlds.

To interpret formulas with free variables, we proceed as
follows. First-order variables are handled substitutionally
using the rigid termsR. To handle the quantification over
second-order variables, we use second-ordervariable maps
defined as follows:

The second-order ground atomsare formulas of the
form V (t1, . . . , tk) whereV is a second-order variable
and all of theti are inR. A variable mapu is a function
from second-order ground atoms to{0, 1}.

Let u andu′ be variable maps, and letV be a second-order
variable; we writeu′ ∼V u to mean thatu andu′ agree
except perhaps on the assignments involvingV .

Finally, to interpret what is known after a sequence of ac-
tions has taken place, we definew′ ≃z w (read:w′ agrees
with w on the sensing throughout action sequencez) induc-
tively by the following:

1. w′ ≃〈 〉 w for all w′;

2. w′ ≃z·t w iff w′ ≃z w,
w′[Poss(t), z] = 1 andw′[SF(t), z] = w[SF(t), z].

Note that≃z is not quite an equivalence relation because of
the use ofPosshere. This is because we are insisting that the
agent comes to believe thatPosswas true after performing an
action, even in those “non-legal” situations where the action
was not possible in reality.4

Putting all these together, we now turn to the semantic
definitions for sentences ofESO. Given an epistemic state
e ⊆ W , a worldw ∈ W , an action sequencez ∈ Z, and a
second-order variable mapu, we have:

1. e, w, z, u |= F (t1, . . . , tk) iff w[F (t1, . . . , tk), z] = 1;

2. e, w, z, u |= V (t1, . . . , tk) iff u[V (t1, . . . , tk)] = 1;

3. e, w, z, u |= (t1 = t2) iff t1 andt2 are identical;

4. e, w, z, u |= [t]α iff e, w, z · t, u |= α;

5. e, w, z, u |= (α ∧ β) iff
e, w, z, u |= α ande, w, z, u |= β;

4An alternate account that would state that the agent learns the
true value ofPoss(analogous toSF) is a bit more cumbersome, but
would allow≃z to be a full equivalence relation.

6. e, w, z, u |= ¬α iff e, w, z, u 6|= α;

7. e, w, z, u |= ∀x. α iff e, w, z, u |= αx
t , for all t ∈ R;

8. e, w, z, u |= ∀V. α iff
e, w, z, u′ |= α, for all u′ ∼V u;

9. e, w, z, u |= �α iff e, w, z · z′, u |= α, for all z′ ∈ Z;

To define the meaning of the epistemic operators, we need
the following definition:

Definition 1 Letw be a world ande a set of worlds, andz
a sequence of actions. Then

1. wz is a world such thatwz [p, z
′] = w[p, z · z′] for all

ground atomsp and action sequencesz′;
2. ew

z = {w′

z |w
′ ∈ e and w′ ≃z w}.

Note thatwz is exactly likew after the actionsz have oc-
curred. So in a sense,wz can be thought of as the pro-
gression ofw wrt z. ew

z then contains all those worlds of
e which are progressed wrtz and which are compatible with
(the real) worldw in terms of the sensing results and where
all the actions inz are executable. Note that whenz is empty,
ew

z = e.

10. e, w, z, u |= Kα iff
for all w′ ∈ ew

z , ew
z , w

′, 〈〉, u |= α;

11. e, w, z, u |= Oα iff
for all w′, w′ ∈ ew

z iff ew
z , w

′, 〈〉, u |= α.

In other words, knowingα in e andw after actionsz
means thatα is true in all the progressed worlds ofe which
are compatible withw. Oα is quite similar except for the
“iff,” whose effect is thatew

z must contain every world which
satisfiesα.

B andΩ are meant to capture what the agent believes in
addition by applying defaults. Having more beliefs (as a
result of defaults) is modeled by considering a subset of the
worlds in ew

z . For that purpose, we introduce a functionδ
which maps each set of worlds into a subset. In particular,
we require thatδ(ew

z) ⊆ ew
z . As δ is now part of the model

(just likew ande) we add it to the L.H.S. of the satisfaction
relation with the understanding that the previous rules are
retrofitted withδ as well. Then we have:

12. e, w, z, u, δ |= Bα iff
for all w′ ∈ δ(ew

z), ew
z , w

′, 〈〉, u, δ |= α;

13. e, w, z, u, δ |= Ωα iff
for all w′ ∈ ew

z , w′ ∈ δ(ew
z) iff ew

z , w
′, 〈〉, u, δ |= α.

Note that the only difference betweenK andB is that the
latter considersδ(ew

z) instead ofew
z . Likewise, the definition

of Ω is similar to that ofO. The role ofΩ is to constrainδ
to produce a special subset ofew

z . Roughly, the effect of
the definition ofΩα is that one starts with whatever facts
are believed (represented byew

z) and then settles on a largest
subset ofew

z such thatα (representing the defaults) is also
believed.

We say that a sentence inESO is true at a givene, w, and
δ (written e, w, δ |= α) if e, w, 〈 〉, u, δ |= α for any second-
order variable mapu. If Σ is a set of sentences andα is a
sentence, we writeΣ |= α (read: Σ logically entailsα) to
mean that for everye, w, andδ, if e, w, δ |= α′ for every

93

α′ ∈ Σ, thene, w, δ |= α. Finally, we write|= α (read:α is
valid) to mean{} |= α.

For reasons of space we cannot go into details about the
general logical properties of the epistemic operators. To
demonstrate that the operators are well-behaved, we only list
some properties, which all have simple semantic proofs:
|= �(Kα ⊃ Bα)
|= �(Oα ⊃ Kα)
|= �(Ωα ⊃ Bα)

Moreover,K and B satisfy the usualK45 axioms of
modal logic (Hughes and Cresswell 1968) and they are mu-
tually introspective, e.g.|= �(Bα ⊃ KBα).

The Semantics of Progression and Defaults

Basic action theories

Let us now consider the equivalent of basic action theories of
the situation calculus. Since in our logic there is no explicit
notion of situations, our basic action theories do not require
foundational axioms like Reiter’s (2001a) second-order in-
duction axiom for situations. The treatment of defaults is
deferred to Section .

Definition 2 Given a set of fluentsF , a setΣ ⊆ ESO of
sentences is called a basic action theory overF iff
Σ = Σ0 ∪ Σpre∪ Σpost∪ Σsensewhere

1. Σ0 is any set of fluent sentences;

2. Σpre is a singleton sentence of the form�Poss(a) ≡ π,
whereπ is a fluent formula;5

3. Σpost is a set of sentences of the form�[a]F (~v) ≡ γF , one
for each relational fluentF in F , respectively, and where
theγF are fluent formulas.6

4. Σsenseis a sentence exactly parallel to the one for Poss of
the form�SF(a) ≡ ϕ, whereϕ is a fluent formula.

The idea here is thatΣ0 expresses what is true initially (in
the initial situation),Σpre is one large precondition axiom,
andΣpost is a set of successor state axioms, one per fluent
in F , which incorporate the solution to the frame problem
proposed by Reiter (1991).Σsensecharacterizes the sensing
results of actions. For actions likedrop(o), which do not
return any useful sensing information,SFcan be defined to
be vacuously true (see below for an example).

We will usually require thatΣpre, Σpost, andΣsensebe first-
order. However,Σ0 may contain second-order sentences.
As we will see, this is inescapable if we want to capture
progression correctly. In the following, we assume thatΣ
(and henceF) is finite and we will freely useΣ or its subsets
as part of sentences with the understanding that we mean the
conjunction of the sentences contained in the set.

5We assume that all free variables are implicitly universally
quantified and that� has lower syntactic precedence than the log-
ical connectives, so that�Poss(a) ≡ π stands for the sentence
∀a.�(Poss(a) ≡ π).

6The [t] construct has higher precedence than the logical
connectives. So�[a]F (~x) ≡ γF abbreviates the sentence
∀a, ~x.�([a]F (~x) ≡ γF).

Progression = Only-knowing after an action
Let us now turn to the first main result of this paper. The
question we want to answer is this: suppose an agent is given
a basic action theory as its initial knowledge base; how do
we characterize the agent’s knowledge after an action is per-
formed? As hinted in the introduction, only-knowing will
give us the answer.

In the following, for a given basic action theoryΣ, we
sometimes writeφ for Σ0 and�β for the rest of the action
theoryΣpre ∪ Σpost ∪ Σsense. We assume thatπ andϕ refer
to the right-hand sides of the definitions ofPossandSF in
Σ, andγF is the right-hand side of the successor state ax-
iom for fluentF . Also, let ~F consist of all the fluent predi-
cate symbols inΣ, and let~P be corresponding second-order
variables, where eachPi has the same arity asFi. Thenα~F

~P
denotes the formulaα with every occurrence ofFi replaced
byPi.

The following result characterizes in general terms all that
is known after performing an action:

Theorem 1 LetΣ = φ∧�β be a basic action theory andt
an action term. Then

|= O(φ ∧ �β) ⊃
(SF(t) ⊃ [t]O(Ψ ∧ �β)) ∧
(¬SF(t) ⊃ [t]O(Ψ′ ∧ �β)),

whereΨ = ∃~P [(φ∧πa
t ∧ϕ

a
t)

~F
~P
∧

∧
∀~x.F (~x) ≡ γF

a
t

~F
~P
] and

Ψ′ = ∃~P [(φ ∧ πa
t ∧ ¬ϕa

t)
~F
~P
∧

∧
∀~x.F (~x) ≡ γF

a
t

~F
~P
].

What the theorem says is that if all the agent knows initially
is a basic action theory, then after doing actiont all the agent
knows is another basic action theory, where the dynamic part
(�β) remains the same and the initial databaseφ is replaced
by Ψ or Ψ′, depending on the outcome of the sensing. Note
that the two sentences differ only in one place,ϕa

t vs. ¬ϕa
t .

Roughly,Ψ andΨ′ specify how the truth value of each flu-
entF in F is determined by what was true previously (φ),
taking into account that the action was possible (πa

t) and that
the sensing result was either true (ϕa

t) or false (¬ϕa
t). Since

after performing an action, the agent again only-knows a ba-
sic action theory, we can take this as its new initial theory
and the process can iterate. We remark that our notion of
progression is very closely related to progression as defined
by (Lin and Reiter 1997), but extends it to handle sensing
actions. Note that, while Lin and Reiter need to include the
unique names axioms for actions in the progression, we do
not, as these are built into the logic.

We mentioned above that after an action, the resulting
knowledge base can be taken as the new initial knowledge
base, and the progression can iterate. The following theo-
rem shows that this view is justified in that the entailments
about the future remain the same when we substitute what is
known about the world initially by its progression. Here we
only consider the case whereSF(t) is true.

Theorem 2 |= O(φ ∧ �β) ∧ SF(t) ⊃ [t]K(α) iff
|= O(Ψ ∧ �β) ⊃ K(α).

In English (roughly): It follows from your initial knowledge
base that you will knowα after doing actiont iff knowing α
follows from your progressed knowledge base.

94

Defaults for basic action theories
Here we restrict ourselves to static defaults like “birds
normally fly.” In an autoepistemic setting (Moore 1985;
Levesque 1990), these have the following form:

∀~x.Bα ∧ ¬B¬β ⊃ γ,

which can be read as “ifα is believed andβ is consistent
with what is believed then assumeγ.” Here the assumption
is thatα, β, andγ are static objective formulas.

Let Σdef be the conjunction of all defaults of the above
form held by an agent. For a given basic action theoryΣ,
as defined in Section , the idea is to apply the same de-
faults to what is known about the current situation after any
number of actions have occurred, that is, for the purpose of
default reasoning, we assume that�ΩΣdef holds. The fol-
lowing theorem relates what is then believed after one ac-
tion has occurred (whereSFreturns true) with stable expan-
sions (Moore 1985).7

Theorem 3 Let t be a ground action andΣ = φ ∧ �β a
basic action theory such that|= OΣ∧SF(t) ⊃ [t]O(ψ∧�β)
andψ is first order. Then for any static belief sentenceγ,

|= OΣ ∧ SF(t) ∧ �ΩΣdef ⊃ [t]Bγ iff
γ is in every stable expansion ofψ ∧ Σdef.

An example
To illustrate progression, let us consider the example of the
introduction with two fluentsBrokenand Fragile, actions
drop(x), repair(x), andsenseF(x) (for sensing whetherx is
fragile). First, we let the basic action theoryΣ consist of the
following axioms:

• Σ0 = {Fragile(o),¬Broken(o)};

• Σpre = {�Poss(a) ≡ true} (for simplicity);

• Σpost = {SSABF} (from the introduction);

• Σsense= {�SF(a) ≡ ∃x.a = drop(x) ∧ true ∨
a = repair(x) ∧ true ∨ a = senseF(x) ∧ Fragile(x)}.

As before, let�β beΣpre∪ Σpost∪ Σsense. Then we have

|= Σ ∧ O(Σ0 ∧ �β) ⊃ [drop(o)]O(Ψ ∧ �β),

whereΨ = ∃P, P ′.[¬P (o) ∧ P ′(o)∧
∃x.drop(o) = drop(x) ∧ true∨

drop(o) = repair(x) ∧ true∨
drop(o) = senseF(x) ∧ P ′(x) ∧

∀x.Broken(x) ≡ drop(o) = drop(x) ∧ P ′(x) ∨
P (x) ∧ drop(o) 6= repair(x)∧

∀x.Fragile(x) ≡ P ′(x)].
Using the fact that all actions are distinct, it is not difficult
to see thatΨ can be simplified to

(Fragile(o) ∧ Broken(o)).

In other words, after droppingo, the agent’s knowledge base
is as before, except thato is now known to be broken.

To see how defaults work, we now letΣ be as be-
fore except thatΣ0 = {¬Broken(o)} and let Σ′ =

7Roughly,E is a stable expansion ofα iff for all γ, γ ∈ E iff γ
is a first-order consequence of{α}∪{Bβ |β ∈ E}∪{¬Bβ |β 6∈
E}.

Σ ∪ {¬Fragile(o)}. Let Σdef = {∀x.¬B¬Fragile(x) ⊃
Fragile(x)}. Then the following are logical consequences
of

Σ′ ∧ O(Σ0 ∧ �β) ∧ �ΩΣdef :

1. BFragile(o);

2. [drop(o)]BBroken(o);

3. [senseF(o)]K¬Fragile(o);

4. [senseF(o)][drop(o)]K¬Broken(o).

(1) holds because of the default, sinceo’s non-fragility is not
yet known. Notice, in particular, the role ofΩΣdef: while the
semantics ofESO puts no restrictions onδ other thanδ(e) ⊆
e,8 it is ΩΣdef which forcesδ(e) to be the largest subset ofe
which is compatible with the default, that is,δ selects only
worlds frome whereo is fragile. (2) holds because the de-
fault also applies afterdrop(o). In particular, Theorem 3 ap-
plies as[drop(o)]O(Broken(o) ≡ Fragile(o) ∧ �β) follows
as well. Finally, in (3) and (4) the agent has found out thato
is not fragile, blocking the default since|= �(Kα ⊃ Bα).

As one of the reviewers remarked, from a commonsense
point of view, it is also or perhaps more plausible to have a
sensing action for broken instead of fragility. In other words,
after dropping an object one would sense whether it is bro-
ken, and if not conclude that it must not be fragile. This can
be modeled in our framework as well. In particular, in all
situations which are compatible with sensing that the object
o is not broken after dropping it the fluentFragile(o) is false.

Related Work
While the situation calculus has received a lot of attention in
the reasoning about action community, there are, of course, a
number of alternative formalisms, including close relatives
like the fluent calculus (Thielscher 1999) and more distant
cousins such as (Kowalski and Sergot 1986; Gelfond and
Lifschitz 1993).

While ESO is intended to capture a fragment of the situ-
ation calculus, it is also related to the work formalizing ac-
tion and change in the framework of dynamic logic (Harel
1984). Examples are (De Giacomo and Lenzerini 1995)
and later (Herziget al 2000), who also deal with be-
lief. While these approaches remain propositional, there
are also first-order treatments such as (Demolombe 2003;
Demolombe, Herzig, and Varzinczak 2003; Blackburnet al
2001), which, likeESO, are inspired by the desire to cap-
ture fragments of the situation calculus in modal logic. De-
molombe (2003) even considers a form of only-knowing,
which is related to the version of only-knowing in (Lake-
meyer and Levesque 2004), which in turn derives from the
logicOL (Levesque and Lakemeyer 2001).

The idea of progression is not new and lies at the heart
of most planning systems, starting with STRIPS (Fikes and
Nilsson 1971), but also in implemented agent programming
languages like 3APL (Hindrikset al 1999). Lin and Re-
iter (1997) so far gave the most general account. Restricted
forms of LR-progression, which are first-order definable, are

8Heree is the (unique) set of worlds which satisfiesO(Σ0 ∧
�β).

95

discussed in (Lin and Reiter 1997; Liu and Levesque 2005;
Claßenet al2007; Vassos and Levesque 2007).

Default reasoning has been applied to actions mostly to
solve the frame problem (Shanahan 1993). Here, how-
ever, we use Reiter’s monotonic solution to the frame prob-
lem (Reiter 1991) and we are concerned with the static
“Tweety-flies” variety of defaults. Kakas et al. (2008) re-
cently made a proposal that deals with these in the presence
of actions, but only in a propositional setting of a language
related toA (Gelfond and Lifschitz 1993).

Conclusion
The paper introduced a new semantics for the concept of
only-knowing within a modal fragment of the situation cal-
culus. In particular, we showed that, provided an agent starts
with a basic action theory as its initial knowledge base, then
all the agent knows after an action is again a basic action
theory. The result is closely related to Lin and Reiter’s no-
tion of progression and generalizes it to allow for actions
which return sensing results. We also showed how to han-
dle static defaults in the sense that these are applied every
time after an action has been performed. Because of the way
only-knowing is modelled, defaults behave as in autoepis-
temic logic. In previous work we showed that by modify-
ing the semantics of only-knowing in the static case, other
forms of default reasoning like Reiter’s default logic can be
captured (Lakemeyer and Levesque 2006). We believe that
these results will carry over to our dynamic setting as well.

References
P. Blackburn, J. Kamps, and M. Marx, Situation calculus as hy-
brid logic: First steps. In P. Brazdil and A. Jorge (Eds.)Progress
in Artificial Intelligence,Lecture Notes in Artificial Intelligence
2258, Springer Verlag, 253-260, 2001.

Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an integration of Golog and planning. In Veloso, M. M.,
ed.,Proc. of IJCAI-07, 1846–1851.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving.Artificial
Intelligence2:189–208.

G. De Giacomo and M. Lenzerini, PDL-based framework for rea-
soning about actions,Proc. of AI*IA’95, LNAI 992, 103–114,
1995.

R. Demolombe, Belief change: from Situation Calculus to Modal
Logic. IJCAI Workshop on Nonmonotonic Reasoning, Action, and
Change (NRAC’03),Acapulco, Mexico, 2003.

R. Demolombe, A. Herzig, and I.J. Varzinczak, Regression in
modal logic,J. of Applied Non-Classical Logics, 13(2):165-185,
2003.

H. Enderton,A Mathematical Introduction to Logic, Academic
Press, New York, 1972.

Michael Gelfond and Vladimir Lifschitz. Representing action
and change by logic programs.Journal of Logic Programming,
17:301–321, 1993.

D. Harel, Dynamic Logic, in D. Gabbay and F. Guenther (Eds.),
Handbook of Philosophical Logic, Vol. 2, D. Reidel Publishing
Company, 497–604, 1984.

A. Herzig, J. Lang, D. Longin, and T. Polacsek, A logic for
planning under partial observability. InProc. AAAI-2000, AAAI
Press.

Hindriks, K. V.; De Boer, F. S.; Van der Hoek, W.; and Meyer,
J.-J. C. 1999. Agent programming in 3APL.Autonomous Agents
and Multi-Agent Systems2(4):357–401.

G. Hughes, and M. Cresswell,An Introduction to Modal Logic,
Methuen and Co., London, 1968.

A. Kakas, L. Michael, and R. Miller, Fred meets Tweety. InProc.
ECAI, IOS Press, 747–748, 2008.

R. Kowalski and M. Sergot. A logic based calculus of events.
New Generation Computing, 4:67–95, 1986.

G. Lakemeyer and H. J. Levesque, Situations, si! Situation Terms,
no!. In Ninth Conf. on Principles of Knowledge Representation
and Reasoning, AAAI Press, 2004.

G. Lakemeyer and H. J. Levesque, A useful fragment of the situ-
ation calculus. IJCAI-05, AAAI Press, 490–496, 2005.

G. Lakemeyer and H. J. Levesque, Towards an axiom system for
default logic. InProc. of AAAI-06, AAAI Press, 2006.

G. Lakemeyer and H. J. Levesque, A Semantical Account of Pro-
gression in the Presence of Defaults. inProc. IJCAI-09,2009.

G. Lakemeyer and H. J. Levesque, A Semantical Account of Pro-
gression in the Presence of Defaults (extended version). inCon-
ceptual Modeling: Foundations and Applications,A. Borgida, V.
Chaudhri, P. Giorgini, E. Yu (Eds.), Springer LNCS, 2009.

H. J. Levesque, All I Know: A Study in Autoepistemic Logic.
Artificial Intelligence, 42, 263–309, 1990.

H. J. Levesque and G. Lakemeyer,The Logic of Knowledge Bases,
MIT Press, 2001.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.,
Golog: A logic programming language for dynamic domains.
Journal of Logic Programming,31, 59–84, 1997.

F. Lin and R. Reiter, How to progress a database,Artificial Intel-
ligence, Elsevier, 92, 131-167, 1997.

Y. Liu and H. J.Levesque, 2005. Tractable reasoning with in-
complete first-order knowledge in dynamic systems with context-
dependent actions. InProc. of IJCAI-05.

J. McCarthy and P. J. Hayes, Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer, D. Mitchie
and M. Swann (Eds.)Machine Intelligence 4,Edinburgh Univer-
sity Press, 463–502, 1969.

R. C. Moore, Semantical considerations on nonmonotonic logic.
Artificial Intelligence25, 75–94, 1985.

R. Reiter, The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regres-
sion. In V. Lifschitz, editor,Artificial Intelligence and Mathemat-
ical Theory of Computation, 359–380. Academic Press, 1991.

R. Reiter, Knowledge in Action: Logical Foundations for De-
scribing and Implementing Dynamical Systems. MIT Press, 2001.

M. Shanahan.Solving the Frame Problem.MIT Press, 1997.

R. B. Scherl and H. J. Levesque, Knowledge, action, and the
frame problem.Artificial Intelligence144(1-2), 1-39, 2003.

M. Thielscher. From situation calculus to fluent calculus: State
update axioms as a solution to the inferential frame problem.Ar-
tificial Intelligence, 111(1–2):277–299, 1999.

S. Vassos and H. J. Levesque, 2007. Progression of situation
calculus action theories with incomplete information. InProc.
IJCAI-07.

96

Parthood Simpliciter vs. Temporary Parthood

Claudio Masolo
Laboratory for Applied Ontology, ISTC-CNR

email: masolo@loa-cnr.it

Abstract

Starting from the formal characterization of four-
dimensionalism (perdurantism) provided by Theodore
Sider, I study the interconnections between the theories of
parthood simpliciter (classical mereologies) and the theories
of temporary parthood (parthood at a time). On the basis
of this formal analysis, I propose a definition of temporary
parthood in terms of parthood simpliciter that does not
commit to the existence of temporal parts. In this way, I hope
this definition can be accepted by endurantists.

Introduction
According to Sally Haslanger (Haslanger 2003, pp. 316–
317), most of the puzzles about change through time rely on
general conditions that, when integrally accepted, generate
a contradiction. She individuates five general conditions:

1. Objects persist through change.

2. The properties involved in a change are incompatible.

3. Nothing can have incompatible properties.

4. The object before the change is one and the same object
after the change.

5. The object undergoing the change is itself the proper sub-
ject of the properties involved in the change.

Let us consider, for example, a rose r that persists through
the change from ‘red’ (R) to ‘brown’ (B), two incompatible
properties, i.e., ¬∃x(R(x) ∧B(x)). Accepting the previous
conditions, R(r) ∧ B(r) holds, leading to a contradiction,
that, to be solved, requires the rejection of (at least) one of
the conditions (1)–(5).

In this paper I will focus on two positions on persistence
through time, perdurantism and endurantism1, that avoid the
previous contradiction by rejecting, respectively, condition
(5) and (2).

Perdurantism assumes that all the objects persist by per-
during, i.e., similarly to the extension through space, objects
are extended in time by having different (temporal) parts at

1I prefer to use the terms ‘endurantim’ and ‘perdurantism’ in-
stead of three- and four-dimensionalism, because I will concentrate
on persistence through time ignoring the spatial dimension. All the
results are valid in any n-dimensional space-time (with n ≥ 2).

different times. At each time, only a part of a persisting ob-
ject is present, i.e. at one time persisting objects are only
partially present. The subjects of temporal properties are
temporal parts. In the previous example, ‘r is P at t’ must
be read as ‘r-at-t is P ’ where ‘r-at-t’ is the temporal part of
r at t. Because r-at-t and r-at-t′ are two different temporal
parts of r (if t 6= t′), the contradiction disappears.

Endurantism assumes that some objects undergoing the
change endure2, i.e. they are wholly present at any time at
which they exist, they maintain their identity through change
and they are the subjects of properties, but these properties
need to be temporally qualified. Red and brown are incom-
patible only if stated at the same time (about the same ob-
ject), the fact that r is red-at-t and brown-at-t′ does not lead
to any contradiction. Different readings of ‘P -at-t’ are ac-
cepted by endurantists (e.g. modal or relational readings are
considered, see (Varzi 2003)) that however refuse the appli-
cability of the perdurantist view to all kinds of objects.

While the notion of being partially present has been quite
precisely stated (Sider 1997; 2001), the notion of being
wholly present is still quite obscure, even though some at-
tempts to characterize it exist (Crisp and Smith 2005). This
complicates the formal comparison between perdurantism
and endurantism that often reduces to different positions on
parthood: endurantists claim that, for enduring objects, a
temporally qualified parthood (called here temporary part-
hood) is required, while perdurantists often refer to an atem-
poral parthood (called here parthood simpliciter or simply
parthood) that is enough (together with a predicate of exis-
tence in time) to define temporal parts (see next section for
the details).

To overcome this ‘deadlock’, Theodore Sider introduced
a formal characterization of perdurantism based on tempo-
rary parthood (Sider 1997; 2001). On one side, perdurantists
are able to accept his formulation simply analyzing ‘x is part
of y at t’ as ‘the temporal part of x at t is part of the temporal
part of y at t’. On the other side, he hopes that the formal-
ization of perdurantism in terms of temporary parthood can
be ‘intelligible’ by endurantists.

In this paper, I don’t provide a characterization of en-
durantism, I will just show that endurantists do not neces-

2Usually endurantists also accept perduring objects, e.g. pro-
cesses or events, as opposed to endurants, e.g. persons or cars.

97

sarily need to consider temporary parthood as primitive. I
will prove that the axioms for temporary parthood can be
‘recovered’ in a theory based on parthood simpliciter with-
out assuming the existence of temporal parts. This requires
a new definition of temporary parthood (see (d9)) in terms
of parthood simpliciter (and existence in time) that does not
rely on temporal parts. Endurantists could accept this for-
mulation analyzing ‘x is part (simpliciter) of y’ just as con-
stant parthood, i.e. ‘at every time at which x exists, x is part
of y’. I think that this analysis prevents an a priori refuta-
tion of having parthood simpliciter as primitive and it offers
an alternative to the usual tensed interpretation that reduces
‘part-of’ to ‘part-of, now’. In addition to that, I formally an-
alyze the interconnections between theories of parthood and
theories of temporary parthood and how these interconnec-
tions depend on existential conditions (about the entities in
the domain), a particularly important aspect to uncover the
ontological commitment of perdurantism and endurantism.

One may wonder if a deeper understanding of perduran-
tism and endurantism is relevant for representing common-
sense knowledge. I do not have a definite answer, but only
few considerations. First, perdurantism is not incompat-
ible with commonsense. Commonsense and natural lan-
guage are deeply related and perdurantism offers an alterna-
tive ontological foundation to the semantics of natural lan-
guage that can handle a number of well-known semantic
phenomena (Muller 2007). Second, Patrick Hayes, in his
seminal work (Hayes 1985), already encountered the prob-
lem of understanding temporal parts: the ontological status
of the couples 〈objects, time〉 he uses has not been clari-
fied. Third, my analysis is quite general and can be helpful
in formalizing different domains. For example some qual-
itative theories of space-time and movement are based on
four-dimensional entities (Muller 1998). Fourth, perduran-
tism has recently been adopted in some applications not only
to overcome some technical difficulties (as in the case of
the representation of n-ary relations in description logics
(Welty and Fikes 2006)) but also advocating its adequate-
ness, conceptual simplicity and practical advantages for
representing dynamic environments (Stell and West 2004;
West 2004).

Formal characterization of perdurantism
Following Sider, temporal existence is represented by the
primitive EXxt whose informal reading is “at time t, x ex-
ists”. I’m concerned here with persistence through time,
therefore I focus only on objects that are in time, objects
that exist at some times:

a1 ∃t(EXxt)

EX has to be intended just as a representational surro-
gate that does not necessarily commit neither on the exis-
tence/nature of times nor on the fact that existence is an
extrinsic relation between objects and times. Times could
be constructed from events like in (Kamp 1979) or just be
the reification of the worlds of a (modal) temporal logic.
Existence in time can be reduced to ‘being simultaneous
with’ others entities (Simons 1991) or, assuming a Newto-

nian view in which time is an independent container, to a lo-
cation relation. Times can be punctual or extended and dif-
ferent structures (discrete vs. continuous, linear vs. branch-
ing, etc.) can be imposed on them. For the purpose of this
paper, time can just be considered as a set of indexes, i.e. a
set of atomic entities that are related only by identity.

The notion of parthood simpliciter is represented by the
predicate Pxy that can be read as “x is part of y”.

On the basis of parthood simpliter and existence in time,
the (perdurantist) notion of temporal part (also called tem-
poral slice) can be defined. x is a temporal part of y at t,
formally TPxyt, if x is a maximal part of y that exists only
at t. Formally (using the relation Oxy defined in (d1) that
stands for “x overlaps y”):

d1 Oxy , ∃z(Pzx ∧ Pzy)

d2 TPxyt , EXxt ∧ EXyt ∧ ¬∃t′(EXxt′ ∧ t′ 6= t) ∧
Pxy ∧ ∀z(Pzy ∧ EXzt → Ozx)

Following the schema adopted by perdurantists for all
the temporary properties and relations, temporary parthood
(tPxyt stands for “x is part of y at t”) can be defined as:

d3 tPxyt , ∃zw(TPzxt ∧ TPwyt ∧ Pzw)

Because endurantists accept objects that do not necessarily
have temporal parts at every time at which they exist, they
refuse (d3) as a general definition of temporary parthood.
For enduring objects temporary parthood has to be taken as
primitive, or an alternative to (d3) that does not rely on tem-
poral parts needs to be provided.

Sider’s formulation
In (Sider 1997; 2001), Sider proposes a formulation of per-
durantism based on the primitive of temporary parthood in-
stead of parthood simpliciter. He hopes that this move can
lead to a theory ‘intelligible’ both to perdurantists and en-
durantists, allowing for a formal comparison of the two po-
sitions.

The axioms and definitions considered by Sider are re-
ported below (see (Sider 2001, pp. 58–59)) where tOxyt
stands for “x overlaps y at t”, and tTPxyt stands for “x is a
temporal part of y at t”3:

d4 tOxyt , ∃z(tPzxt ∧ tPzyt)

d5 tTPxyt ,¬∃t′(EXxt′ ∧ t′ 6= t) ∧ tPxyt ∧
∀z(tPzyt → tOzxt)

a2 tPxyt → EXxt ∧ EXyt

a3 EXxt → tPxxt

a4 tPxyt ∧ tPyzt → tPxzt

a5 EXxt ∧ EXyt ∧ ¬tPxyt → ∃z(tPzxt ∧ ¬tOzyt)

Sider characterizes perdurantism (four-dimensionalism in
his vocabulary) as:

3I use different symbols to represent the temporal part relation
defined in terms of temporary parthood (d5) from the one defined
in terms of parthood simpliciter (d2).

98

“[N]ecessarily, each spatiotemporal object has a tem-
poral part at every moment at which it exists.” (Sider
2001, p. 59)4

This claim seems a restriction of the one given in (Sider
1997, p. 206) where Sider refers to objects in time in-
stead of in space-time. In the original work of Lesniewski
(Lesniewski 1991) mereology is not intended as a theory
necessarily related to space or space-time but as a pure
formal theory (that applies to all kinds of entities) aimed
at avoiding some (ontological) assumptions of set-theory,
namely, the existence of the empty set and the distinction
between urelements and sets. In this sense mereology does
not commit to existence in space or time. Even though a
theory of persistence must consider entities in time, I do not
see any reason to exclude entities that (according to some
researchers) do not have a clear spatial location, e.g. mental
attitudes, concepts, mathematical theories, societies. I thus
prefer the following characterization:

“Each object that exists in time has a temporal part at
every time at which it exists.”, i.e. formally:

pd EXxt → ∃y(tTPyxt)

TtP = {(a1)–(a5), (pd)} denotes Sider’s theory where tO
and tTP are respectively defined by (d4) and (d5).

Theorem (t1) shows that at a given time, the tempo-
ral parts are not necessarily unique. A counterexample is
provided by a model with two different elements a and b,
both existing only at t, such that 〈a, a, t〉, 〈b, b, t〉, 〈a, b, t〉,
〈b, a, t〉 ∈ tPI . In this case, it is easy to verify that 〈a, a, t〉,
〈b, a, t〉 ∈ tTPI .

(t2) shows that different entities can coincide (they are
part one of the other) during their whole life. The previous
model is a counterexample because both a and b exist only
at t and 〈a, b, t〉, 〈b, a, t〉 ∈ tPI , but a 6= b by hypothesis.

t1 TtP 0 tTPxyt ∧ tTPzyt → x = z

t2 TtP 0 ∀t(EXxt → tPxyt)∧∀t(EXyt → tPyxt) → x=y

Formulation based on parthood simpliciter
Sider shows that P and EX allow to define the notions of
temporal part and temporary parthood (respectively by (d2)
and (d3)) and to characterize perdurantism by an axiom sim-
ilar to (pd). However, Sider does not clarify what axioms on
P and EX are necessary to have a theory equivalent to TtP.
I intend equivalence in the following way: (i) all the ax-
ioms in TtP can be proved in this new theory by assuming
the ‘same’ EX and the definition (d3) for tP; (ii) the new
theory does not add new properties on tP and EX.

According to (Simons 1987) and (Casati and Varzi 1999),
parthood is minimally characterized as a partial order, i.e., a
reflexive, antisymmetric, and transitive binary relation (ax-
ioms (a6), (a7), and (a8)). The inclusion of the extensional-
ity (axiom (a9)) guarantees the identity of objects that have
the same parts (t3) or that overlap the same objects (t4). The
theory ME = {(a6)–(a9)} is called extensional mereology.

4Sider does not explicitly introduce a modal operator in his for-
mulation. However note that in a classical first order logic all the
formula can be considered as ‘necessary’.

c[t′]

a[t]

??����
b[t]

__>>>
c[t,t′]

a[t]

77ooooooo
b[t]

>>~~~~
a′[t′]

aaBBBB

b′[t′]

hhPPPPPPPP

(a) (b)

Figure 1: (pdn) is independent from (a10).

a6 Pxx

a7 Pxy ∧ Pyx → x = y

a8 Pxy ∧ Pyz → Pxz

a9 ¬Pxy → ∃z(Pzx ∧ ¬Ozy)
t3 ME ` ∀z(Pzx ↔ Pzy) → x = y

t4 ME ` ∀z(Ozx ↔ Ozy) → x = y

It is possible to characterize perdurantism by introducing
an axiom analogous to (pd):

pdn EXxt → ∃y(TPyxt)

Because, as already observed, P can in general apply to all
kinds of objects, standard mereologies do not analyze how
P and EX are related. (pdn) is a weak link between P and
EX that does not rule out models like the one in figure 1.a
where some of the parts of c (namely, a and b) have temporal
extensions disjoint from the one of c.5

(a10) rules out these models by ensuring that the tempo-
ral extension of the part is included in the one of the whole.
First of all note that (a10) and (pdn) are independent: the
model in figure 1.a satisfies (pdn) but not (a10) and vice
versa for the model in figure 1.b. Secondly, and more im-
portantly, by defining parthood simpliciter as constant part-
hood (d6), (t5) shows that, in TtP, (a10) holds. Therefore,
assuming (d6), the lack of (a10) prevents any equivalence
between TtP and the theory based on parthood simpliciter
we are building.

a10 Pxy ∧ EXxt → EXyt

d6 Pxy , ∀t(EXxt → tPxyt)
t5 TtP `(d6) {(a10)}

Let TP = {(a1),(a6)–(a10),(pdn)}, where O, TP, and tP
are defined by (d1)–(d3).

(t6) shows that TP is at least as strong as TtP, i.e., all the
axioms in TtP can be proved in TP by assuming the same EX
and the definition (d3) for tP.

(t7) and (t8) show that TP is strictly stronger than TtP,
because in TtP temporal parts (at a specific time) are not
unique and different entities can coincide (see (t1) and (t2)).

5The graphical notation adopted follows four conventions: (i)
the times at which an entity exists are subscribed between square
brackets; (ii) an arc from a to b without labels stands for part-
hood, i.e., 〈a, b〉 ∈ PI ; (iii) an arc from a to b with label t
stands for temporary parthood at t, i.e., 〈a, b, t〉 ∈ tPI ; (iv) all
the arcs due to reflexivity and transitivity closure of parthood are
omitted. For example the graph in figure 1.a depicts the follow-
ing model: D = {a, b, c, t, t′}, EXI = {〈a, t〉, 〈b, t〉, 〈c, t′〉}, and
PI = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈a, c〉, 〈b, c〉}.

99

c[t]

b[t]

OO

b′[t]

^^>>>

a[t]

OO×

DD

a′[t]

]];;;

b[t] c[t]

a[t]

OO

d[t]

OO^^===

a′[t]

OO @@���
b′[t]

OO^^<<<

a[t,t1] b[t] c[t,t2]

d[t1]

OO

e[t]

OO

f[t]

OO

g[t2]

bbFFFF

h[t3]

<<yyy
i[t]

OO

YY22222222

l[t]

OO

YY22222222
m[t4]

bbFFFF

n[t5]

;;xxxx
o[t6]

OO <<xxxx
p[t7]

OO

(a) (b) (c)

Figure 2: Counterexamples to the transitivity of the tempo-
rary parthood.

t6 TP `(d3) TtP

t7 TP `(d3) tTPyxt ∧ tTPyzt → y = z

t8 TP `(d3)∀t(EXxt→ tPxyt)∧∀t(EXyt→ tPyxt)→x=y

To find a theory based on P equivalent to TtP it is then
necessary to weaken TP.

t9 TPr{(a8)}0(d3) (a4)
t10 TPr{(a9)}0(d3) (a4)
t11 TPr{(a10)}0(d3) (a4)
t12 TPr{(a7)} `(d3) TtP

t13 TPr{(a7)}0 TPyxt ∧ TPzxt → y = z

t14 TPr{(a7)}0(d3) tTPyxt ∧ tTPzxt → y = z

t15 TPr{(a7)}0(d3)∀t(EXxt→ tPxyt)∧∀t(EXyt→ tPyxt)
→ x = y

t16 TtP `(d6) TPr{(a7)}

(t9), (t10), and (t11) show that weakening TP by respec-
tively dropping the transitivity, the extensionality or the
‘temporal monotonicity’ of P lead to a too weak theory in
which the transitivity of the temporary parthood (defined via
(d3)) does not hold: figures 2.a, 2.b, and 2.c respectively il-
lustrate a model of TPr{(a8)}, TPr{(a9)}, and TPr{(a10)}
in which 〈a, b, t〉, 〈b, c, t〉 ∈ tPI but 〈a, c, t〉 /∈ tPI (in fig-
ure 2.a, the curved arrow on the left makes explicit that in
this case the transitivity closure is not valid, i.e. we have
〈a, c〉 /∈ PI).

(t12)–(t15) show that, dropping the antisymmetry of part-
hood, the embedding is maintained but the uniqueness of TP
and tTP does not holds and it is possible to have different
coincident objects. As a counterexample, let us consider:
EXI = {〈a, t〉, 〈b, t〉}, PI = {〈a, a〉, 〈b, b〉, 〈a, b〉, 〈b, a〉}.

(t16) shows that TtP can be embedded in TPr{(a7)} via
(d6). In addition, it is possible to prove that expanding the
definition of P in terms of the vocabulary of TtP, and, succes-
sively expanding the formula obtained using the definition of
tP given in TP, we re-obtain P; similarly starting from the
expansion of the definition of tP in terms of the vocabulary
of TP. Therefore TPr{(a7)} and TtP are equivalent.

It is also possible to strengthen TtP via (a11) (an axiom
that directly corresponds to the antisymmetry of P) to prove
the equivalence between TP and TtP ∪ {(a11)}.

a11 ∀t(EXxt → tPxyt) ∧ ∀t(EXyt → tPyxt) → x = y

The two equivalences and the theorems (t1) and (t2) show
that the main difference between TtP and TP concerns the
uniqueness of the temporal parts and the acceptance of the
coincidence of different objects (different objects that are
one part the other during their whole life).

These topics have been deeply discussed in the literature
on (material) constitution (see (Rea 1997) for a good re-
view). According to (a11), if, for example, the clay that con-
stitutes a statue and the statue itself are different, they cannot
coincide during their whole life (even though the distinction
is based on a difference in modal behavior).6 From my point
of view, this represents a genuine difference between perdu-
rantism and endurantism. While perdurantists, identifying
coincidence with identity, tend to reduce differences among
objects to mereological ones (in particular spatio-temporal
ones), endurantists tend to accept coincidence between dif-
ferent objects motivating this distinction by, not necessar-
ily mereological, different temporary property. While per-
durantists have a multiplicative approach towards parts, en-
durantists have a multiplicative approach towards coincident
objects.

Avoiding temporal parts
In this section, I introduce an alternative definition of tem-
porary parthood in terms of parthood and I show which ex-
istential conditions are necessary to embed the theory based
on parthood in the one based on temporary parthood.

Let us start observing that, as showed by (t17) and (t18),
the equivalence between TPr{(a7)} and TtP and the one be-
tween TP and TtP ∪ {(a11)} both rely on the existence of
temporal parts.

t17 TPr{(pdn)} 0(d3) (a3)
t18 TtP ∪ {(a11)}r{(pd)} 0(d6) (a9)

The situation in figure 1.b is a model of TP r{(pdn)} in
which 〈c, t〉 ∈ EXI and 〈c, c, t〉 /∈ tPI (because c has no
temporal parts).

EXI={〈a, t〉,〈b, t〉,〈b, t′〉}, tPI={〈a, a, t〉,〈b, b, t〉,〈a, b, t〉,
〈b, a, t〉} is a model of TtP ∪ {(a11)} r {(pd)} in which
〈b, a〉 /∈PI but, because a is part of itself and it is also part
of b, both a and b overlap a, i.e.〈a, a〉, 〈a, b〉∈OI . This situ-
ation fails to satisfy (a9) because the only part (simpliciter)
of b different from b (a proper part of b) is a that does not ex-
ists at t′. Therefore (a5) does not introduce any new object
because it applies neither at t (a and b coincide at t) nor at t′

(only b exists at t′). (pd) allows to prove (a9) by introducing
the temporal part of b at t′.

According to (t17), by refusing (pdn), endurantists cannot
accept (d3) as a general definition of tP in terms of P. In the
following, I propose an alternative definition that commits
to existential conditions weaker than (pdn). More specif-
ically, I consider an extensional closure mereology (Casati
and Varzi 1999) extended just with (a10), i.e. the theory

T c
P = {(a1), (a6)–(a10), (a12), (a13)},

6Interpreting parthood as spatio-temporal inclusion, (a11) ex-
cludes the possibility of having spatio-temporally co-located enti-
ties.

100

where SUM (SUMsxy stands for “s is a sum of x and y”)
and DIF (DIFdxy stands for “d is a difference between x
and y”) are defined by (d7)–(d8). Note that to avoid ‘empty
objects’, according to (a13), the difference between x and y
exists only in case x is not part of y.

d7 SUMsxy , ∀z(Ozs ↔ Ozx ∨ Ozy)
d8 DIFdxy , ∀z(Pzd ↔ Pzx ∧ ¬Ozy)
a12 ∃s(SUMsxy)
a13 ¬Pxy → ∃d(DIFdxy)

(d9) is my alternative to (d3). Informally, (d9) may be
explained in the following way: let us suppose that both x
and y exist at t, then x is part of y at t if and only if (i) x
is part of y at every time at which it exists (and therefore, in
particular, at t); or (ii) if x is part of y only during a part of
its life (the life of x), then this part of life includes t. The
condition (ii) can be restated: if x is not part of y at t (and
x exists at t), then the difference between x and y exists at t
because some parts of x that exist at t are not part of y.

(t19) allows for interpreting parthood as constant part.

d9 tPxyt , EXxt∧EXyt∧(Pxy∨∃d(DIFdxy∧¬EXdt))7

t19 T c
P `(d9) Pxy ↔ ∀t(EXxt → tPxyt)

t20 T c
P 0(d9) (a4)

(t20) shows that T c
P is too weak. Figure 3 depicts8 a

situation in which 〈A, B〉, 〈B, C〉 ∈ tPI but 〈A, C〉 /∈ tPI .
To understand why, let us note that 〈a, A,B〉, 〈b, B,C〉,
〈A, A,C〉 ∈ DIFI , but only A (that is the only difference
between A and C) exists at t and this fact prevents the pos-
sibility of having 〈A, C, t〉 ∈ tPI . Notice that A exists at t
even though all its proper parts (a and b) exist only at t′.

Therefore to embed T c
P in TtP∪{(a11)}r{(pd)} we need

to strengthen T c
P . (t22), (t23) and (t24) show that (a14) (from

which (t21) follows directly) does the job without commit-
ting to the existence of temporal parts. A situation with only
one object that exists at two different times is a simple coun-
terexample to both (pdn) and (pd), but it is possible also to
build complex counterexamples following the situations in
figure 4.

a14 DIFdxy ∧ EXxt ∧ ¬EXyt → EXdt

t21 SUMsxy ∧ EXst → (EXxt ∨ EXyt)
t22 T c

P ∪ {(a14)} `(d9) TtP ∪ {(a11)}r{(pd)}
t23 T c

P ∪ {(a14)} 0 (pdn)
t24 T c

P ∪ {(a14)} 0(d9) (pd)

Without committing to temporal parts, T c
P ∪ {(a14)}

and the definition (d9) offers endurantists the possibility to
choose parthood simpliciter as primitive, informally reading

7In an extensional closure mereology, if x is not part of y then
the difference exists and it is unique, therefore (d9) is equivalent to
tPxyt , EXxt ∧ EXyt ∧ (¬Pxy → ∀d(DIFdxy → ¬EXdt)).

8For the sake of conciseness, in the figure are reported only the
sums of couples of atomic objects. The graph needs to be com-
pleted with the sums of three and four atomic objects that however
are not relevant for the proof of (t20).

e[t,t′] f[t,t′] A[t,t′] B[t,t′] C[t,t′] g[t,t′]

a[t′]

>>}}}}}

__??????
OO

b[t′]

OO >>|||||

44iiiiiiiiiiiiiiiii c[t′]

jjUUUUUUUUUUUUUUUU

>>|||||

OO

d[t′]

OOjjUUUUUUUUUUUUUUUUU

>>}}}}}

Figure 3: Counterexample to the transitivity of tP.

b[t,t′]OO
t

��
c[t′]

t′
@@�����
a[t] d[t′]

t′
^^=====

b[t,t′,t′′]

a[t]

��
t

OO

c[t′,t′′]

##
t′,t′′

ccFFFFF

(a) (b)

Figure 4: Counterexamples to (pd).

this relation as ‘constant parthood’ which, in my understand-
ing, does not violate any endurantist principle.

It is clear that the equivalence between T c
P ∪ {(a14)} and

TtP ∪ {(a11)}r {(pd)} cannot be proved. Strongly, (t18)
shows that TtP ∪ {(a11)}r{(pd)} is too weak to prove the
extensionality of P via (d6).

This last problem can be solved by substituting {(pd),
(a5)} with (a15): T n

tP ={(a1)–(a4), (a15)}. (t25), (t26), and
(t27) show T n

tP ∪ {(a11)} does not commit to temporal parts
but it is strong enough to ‘recover’ the extensionality of P.
In addition, (t28) shows that T n

tP ∪ {(a11)} is not too strong
with respect to T c

P ∪ {(a14)}.

a15 EXxt ∧ ¬tPxyt → ∃z(tPzxt ∧ ∀t′(¬tOzyt′))
t25 T n

tP ` (a5)
t26 T n

tP ∪ {(a11)} 0 (pd)
t27 T n

tP ∪ {(a11)} `(d6) TPr{(pdn)}
t28 T c

P ∪ {(a14)} `(d9) T n
tP ∪ {(a11)}

Figure 4 depicts two counterexamples to (pd) in T n
tP ∪

{(a11)}. The example in figure 4.a does not satisfy the ‘max-
imality’ imposed to temporal parts, while in the example in
figure 4.b the fact that objects need to have a temporal part
at any time at which they exist does not hold. However,
the existential commitment imposed by (a15) is inevitably
stronger than the one imposed by (a5).

However, the embedding of T n
tP ∪{(a11)} in T c

P ∪{(a14)}
does not hold, i.e. T c

P ∪ {(a14)} is strictly stronger than
T n

tP ∪ {(a11)}. In particular, the existential commitment pro-
vided by (a15) is too weak to guarantee the existence of the
difference (a13). Informally, (a13) requires that (i) the dif-
ference between x and y is a part of x and (ii) that all the
objects that are part of x and do not overlap y are part of
the difference. These conditions are not imposed by (a15).
The example in figure 5 does not satisfy the above condi-
tion (ii) but it satisfies (a15) (and all the other axioms of
T n

tP ∪ {(a11)}): at t, a is not part of b, but c satisfies the
constraint in (a15). At t, a is not part of c, but b satisfies the
constraint in (a15). At t′, a is neither part of b nor c, but d
satisfies the constraint in (a15) in both cases. Because a is
present at t but, at this time, a is not part of b, then by (d6),
a is not part simpliciter of b, then the hypothesis of (a13) is

101

a[t,t′]

b[t]

t
@@�����
c[t]

t

OO

d[t′]

��
t′

__?????

Figure 5: Counterexample to (a13).

satisfied and the existence of the difference between a and b
must be proved. The only candidates for the difference are c
and d. c cannot be the difference because d is part of a at t′,
d does not overlap b at any time, but d is not part of c at any
time. d cannot be the difference because c is part of a at t,
c does not overlap b at any time, but c is not part of d at any
time.

In addition to that, in T n
tP ∪ {(a11)} nothing guarantees

the existence of sums, for example models with two objects,
one existing only at t, the other one existing only at t′ are
not ruled out.

Conclusions and further work
In this work I studied some interconnections between theo-
ries based on parthood simpliter and theories based on tem-
porary parthood. I showed that, to build a theory based on
parthood simpliciter equivalent to the theory of Sider, the
antisymmetry of parthood cannot be included. I analyzed
how this result can explain some divergences between en-
durantism and perdurantism. In addition to that, theorem
(t19) and theorems (t22)–(t24), together with (d9), make ex-
plicit the possibility to have a characterization of temporary
parthood in terms of parthood simpliciter that, without com-
mitting to the existence of temporal parts, may be accepted
by endurantists (at least from my point of view).

Some formal results are still lacking. In particular I do not
know how the theory T n

tP ∪ {(a11)} can be extended in or-
der to prove the equivalence with T c

P ∪ {(a14)}. A straight-
forward possibility consists in adding to T n

tP ∪ {(a11)} the
analogue of axioms (a12) and (a13), but the proof of equiv-
alence with T c

P ∪ {(a14)} is not trivial. Another open prob-
lem concerns the independence of the existence of differ-
ences from (a15) plus the existence of sums: in presence
of (a15), is the existence of sums enough to guarantee the
existence of differences?

Finally, I think that, at least in the case of applications,
one of the main motivations to follow a perdurantist ap-
proach concerns the possibility to reduce the predication of
a property an object has at t, to the predication on the tem-
poral part of the object at t. By avoiding temporal parts,
my analysis does not provide any alternative to this reduc-
tion. I think that a possible alternative compatible with the
endurantist view is offered by trope theory (see (Daly 1997)
for a good survey) that conceives change as trope substitu-
tion. But this theory, that in any case commits to a new kind
of objects called tropes, requires other basic primitives no-
tions as inherence and resemblance that cannot be grasped
only in terms of parthood.
Acknowledgments. I’m very grateful to Laure Vieu and to
the anonymous reviewers for their really helpful comments.

References
Casati, R., and Varzi, A. 1999. Parts and Places. The
Structure of Spatial Representation. Cambridge, MA: MIT
Press.
Crisp, T. M., and Smith, D. P. 2005. Wholly present
defined. Philosophy and Phenomenological Research
71:318–344.
Daly, C. 1997. Tropes. In Mellor, D., and Oliver, A., eds.,
Properties. Oxford: Oxford University Press. 140–159.
Haslanger, S. 2003. Persistence through time. In Loux,
M. J., and Zimmerman, D. W., eds., The Oxford Handbook
of Metaphysics. Oxford: Oxford University Press. 315–
354.
Hayes, P. 1985. Naive physics 1: Ontology for liquids.
In Hobbs, J., and Moore, R., eds., Formal Theories of the
Commonsense World. Norwood: Ablex. 71–108.
Kamp, H. 1979. Events, istants and temporal reference. In
Baüerle, R.; Egli, U.; and Stechow, A. v., eds., Semantics
from Different Points of View. Berlin: Springer. 376–417.
Lesniewski, S. 1991. Collected Works. Dordrecht: Kluwer.
Muller, P. 1998. A qualitative theory of motion based on
spatio-temporal primitives. In Cohn, A. G.; Schubert, L.;
and Shapiro, S. C., eds., International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR
98), 131–141. Trento, Italy: Morgan Kaufmann.
Muller, P. 2007. The temporal essence of spatial objects. In
Aurnague, M.; Hickmann, M.; and Vieu, L., eds., The Cat-
egorization pf Spatial Entities in Language and Cognition.
John Benjamins Publishing Co. 285–306.
Rea, M., ed. 1997. Material Constitution. A Reader. Row-
man and Littlefield: Lanham, MD.
Sider, T. 1997. Four-dimensionalism. The Philosophical
Review 106(197-231).
Sider, T. 2001. Four-Dimensionalism. An Ontology of Per-
sistence and Time. Oxford: Clarendon Press.
Simons, P. 1987. Parts: a Study in Ontology. Oxford:
Clarendon Press.
Simons, P. 1991. On being spread out in time: temporal
parts and the problem of change. In Spohn, W. e. a., ed.,
Existence and Explanation. Kuwer Achademic Publishers.
131–147.
Stell, J. G., and West, M. 2004. A 4-dimensionalist
mereotopology. In Varzi, A., and Vieu, L., eds., Formal On-
tology in Information Systems (FOIS04), 261–272. Turin:
IOS Press.
Varzi, A. C. 2003. Riferimento, predicazione, e cambia-
mento. In Bianchi, C., and Bottani, A., eds., Significato e
ontologia. Milano: Franco Angeli. 221–249.
Welty, C., and Fikes, R. 2006. A reusable ontology for flu-
ents in owl. In Varzi, A. C., and Vieu, L., eds., Proceedings
of FOIS-06. Baltimore, USA., 226–236. IOS Press.
West, M. 2004. Some industrial experiences in the devel-
opment and use of ontologies. In EKAW04, Workshop on
Core Ontologies.

102

Evaluation of EPILOG: a Reasoner for Episodic Logic

Fabrizio Morbini and Lenhart Schubert
University of Rochester

Abstract

It can be quite hard to objectively evaluate a reasoner geared
towards commonsense problems and natural language appli-
cations if it uses a nonstandard logical language for which
there exist no publicly available datasets. We describe here
the evaluation of our recent improvements of the EPILOG

system, a reasoner for Episodic Logic, a superset of first-
order logic geared towards natural language applications. We
used both a sample of interesting commonsense questions ob-
tained from the ResearchCyc knowledge base and the stan-
dard TPTP library to provide an evaluation that tests the
unique features of Episodic Logic and also puts the perfor-
mance of EPILOG into perspective with respect to the state of
the art in first-order logic theorem provers. The results show
the extent of recent improvements to EPILOG, and that very
expressive commonsense reasoners need not be grossly inef-
ficient.

Introduction

We present here the evaluation of the progress made in the
development of the EPILOG system ((Schubert et al. 1993)
and (Schaeffer et al. 1993)), motivated by the recent effort
towards building a self-aware agent (Morbini and Schubert
2008). EPILOG is an inference engine for Episodic Logic
(EL) ((Schubert and Hwang 2000) and (Hwang and Schubert
1993)) that has been under development since 1990 ((Schu-
bert et al. 1993) and (Schaeffer et al. 1993)).

The EPILOG system and EL are designed with natural lan-
guage (NL) understanding in mind. The natural way to test
its capabilities (both on the reasoning front and on the repre-
sentation front) is by using a publicly available set of com-
monsense problems.

Among several collections that are available, we opted for
the set of problems contained in the ResearchCyc knowledge
base. They comprise more than 1600 problems that provide
both the English formulation of a question and its transla-
tion into CycL1. In addition to the abundance of interest-
ing and challenging questions, another advantage of using
this dataset is that it allows the comparison between our and
Cyc’s interpretation of each question.

The last point highlights the problem of comparison for
systems that use for their evaluation a dataset based on En-

1http://www.cyc.com/cycdoc/ref/cycl-syntax.html

Set

Episode
Color

Meta Number

Part

Hier

Time

Type Equality Other

String

Specialist

interface

Response

generator

EPILOG
core

KB

Figure 1: The high level structure of EPILOG1.

glish. Because a question expressed in English can be for-
malized in many ways and at various levels of detail, it is
very difficult to use the results obtained to compare different
systems. This lack of a dataset expressed in logic to facilitate
comparisons is not easily solved given the lack of agreement
on a single logical language well-suited for NL; and even if
such a language existed each English sentence can still be
interpreted in many ways and at different levels of detail.

Therefore, to give a more complete picture of the perfor-
mance of the EPILOG system and to facilitate comparisons
with other systems, we decided to evaluate it as well against
the widely used TPTP dataset for FOL theorem provers.
This puts the basic performance of the reasoner in perspec-
tive with respect to the state of the art in FOL theorem
provers. The evaluation on Cyc’s commonsense test cases
instead tests the features that distinguish EPILOG from a tra-
ditional FOL theorem prover.

In the paper if we need to distinguish between the legacy
EPILOG system and the new version we will refer to the for-
mer as EPILOG1 and to the latter as EPILOG2.

This paper is organized as follows: first we briefly de-
scribe the high-level structure of the EPILOG system, and
then highlight the major improvements made to EPILOG in
the EPILOG2 system. Then we describe in detail the evalua-
tion of the system and state our conclusions.

EPILOG

In this section we briefly describe EPILOG and EL. Figure
1 represents the building blocks of the EPILOG1 system and

103

how they are connected together. EPILOG1’s core contains
the inference routines, the parser, the normalizer and the
storage and access schemas to retrieve and add knowledge
from/to the knowledge base. A set of specialists, connected
to the core inference engine through an interface module,
help the general inference routines to carry out special in-
ferences quickly (e.g., type inference to conclude whether
[Car1 Artifact] is true given that Car1 is a coupe and coupes
are a type of car, cars are vehicles, and vehicles are artifacts).
The specialist interface consists of a series of flags associ-
ated with some key predicates/functions that automatically
activate predefined functions in a particular specialist.

EPILOG is a reasoner for EL. EL is a highly expressive
natural logic with unique features, including modifiers, rei-
fiers, substitutional and generalized quantifiers and episodic
operators, making EL particularly suited for (NL) applica-
tions. Briefly, the major differences with respect to FOL are
the following.

To represent events and their relations, three episodic op-
erators are introduced: *, ** and @. These operators take
a well-formed formula (wff) and a term (an event) as argu-
ments. For example, the EL formula [[D1 lose-control-of
V1] ** e1] expresses that e1 is the event characterized by
D1 losing control of V1. (Note that predicates are preceded
by their “subject” argument in wffs.) Substitutional quan-
tification over predicative expressions, wffs, and other syn-
tactic entities is required to express meaning postulates and
introspective knowledge. It is also important for interfacing
the general inference engine with specialists (as described
later). EL modifiers correspond to the modifiers used in NL,
e.g., “very”, “almost” or “by sheer luck”, and reification op-
erators are used to represent generics and attitudes. Quan-
tifiers allow for the use of a restrictor. For example, in the
sentence “Most dogs are friendly”, “dogs” is the restrictor
of the quantifier “most”. For the quantifiers ∀ and ∃ the re-
strictor can be incorporated into the remainder of the quan-
tified sentence, but for many generalized quantifiers this is
not possible.

EPILOG2
In this section we mention the major changes made to EPI-
LOG1. The interface to knowledge bases (KB) has been re-
designed to facilitate 1) temporary modifications to a KB
(introduced for example by the assumption-making used
during inference) and 2) the development and testing of
new access schemas (i.e. mechanisms to retrieve knowledge
from a KB). The result is a KB system based on inheritance
of KBs (similar to what Cyc uses for inheritance of micro-
theories) in which each KB is associated with a particular
access schema that can be easily changed.

The parser was changed from an if-then based mechanism
to a system based on a standard chart parser. This allows for
easy debugging and modifications to the ever-evolving EL
grammar.

The interface to specialists is now based on explicit meta-
knowledge stored like any other knowledge. This knowl-
edge specifies under what conditions a particular specialist
functionality can be called. For example the formula (∀wff

w [’w without-free-vars] [[(apply ’apply-fn-knownbyme?

’w) = ’yes] ⇒ [(that w) knownbyme]]) describes when the
introspective specialist can be called to answer whether EPI-
LOG knows a particular formula w. The interface is based on
this Apply function, which is known to the inference engine
as having a special meaning.

An automatic system to extract type information has been
added to EPILOG. Currently this system is used 1) to build
type hierachies, 2) to keep track of the return type of func-
tions based on the type of the arguments and 3) to build a hi-
erarchy for the arguments of transitive predicates (also tran-
sitive predicates are automatically detected by looking for
formulas like (∀ x (∀ y (∀ z (([x P y] and [y P z]) ⇒ [x P
z])))), expressing transitivity).

The question-answering (QA) framework has been totally
redesigned to allow for QA inside QA (used in introspec-
tion and called recursive QA). In addition subgoals are now
selected using a hierachical agenda that sorts the subgoals
based on 1) the size of the formula associated with subgoal
g relative to the size of the biggest formula among the sib-
lings of g; 2) the % of times a descendant of g or g itself was
selected for inference but no improvement was obtained2; 3)
the % of g that is solved (this is greater than 0 only for a sub-
goal that at some point can be split, e.g., a conjunction); 4)
the % difference between the size of g’s formula and the size
of the smallest formula among the descendants of g whose
solution would imply a solution of g; for conjunction of sub-
goals, their average size is considered.

Evaluation

To evaluate the progress of our effort to build a self-aware
agent based on EPILOG2, we used two methods: 1) test-
ing on a selected small set of examples from the common-
sense test cases contained in Research Cyc; 2) the scalability
test included in the TPTP library of problems for theorem
provers; this scalability test was constructed from the Open-
Cyc knowledge base. With the first type of evaluation we are
testing the adequacy of EL for directly expressing English
questions and background knowledge, and the reasoning ca-
pabilities of EPILOG2. With the second type of evaluation
we are testing how EPILOG2 fares in relation to the state of
the art of FOL theorem provers.

First we will describe the set of questions used to test
EPILOG2’s commonsense reasoning capabilities. Most of
the questions have been manually encoded in EL because
the general-purpose English to EL translator is not yet ro-
bust enough to handle these questions. However care has
been taken not to simplify the EL form of those questions to
make the job of the reasoner easier; instead we made an ef-
fort to produce EL versions that would likely be produced by
an automatic, compositional English-to-EL translator. This
is why some questions may appear more complex than one
might expect, based on traditional “intuited” formalizations
of English sentences.

In the formulas used in the following examples, we use
Epi2Me as the internal constant that refers to the system it-
self.

2An improvement is measured either by a decrease in size of
the resulting subgoal, or solution of the subgoal.

104

Question 1 is “How old are you?”, which in EL becomes:

(whterm x (∃term y [’x rounds-down ’y]
(∃ z [’y expresses z (K (plur year))]

(∃ e [e at-about Now]
[[z age-of Epi2Me] ** e]))))

K is a reification operator that maps a predicate (here,
(plur year), a predicate true of any collection of years) to
a kind (here, the kind whose realizations are collections of
years).

We have assumed that the representation of the question
would be expanded pragmatically to include conventional
restrictions on the form of the answer expected, i.e., an an-
swer in rounded-down years rather than, say, seconds. These
pragmatic constraints depend on the question itself; for ex-
ample they would be different for a question like “How old
is this bagel/star/rock/etc.?”. In the future we would like to
automatically include such constraints by means of “cooper-
ative conversation axioms”. We might have an axiom saying
something like: If X informs Y about a quantitative attribute
F (such as weight, age, temperature, etc.) of some entity Z,
then X is conversationally obligated to express F(Z) in units
that are conventional for entities of the type(s) instantiated
by Z. In addition we would need various axioms about the
conventional units for expressing weight, age, etc., of vari-
ous types of entities. These axioms would then be used to
refine the raw logical form of a question to include the prag-
matic constraints. However, here we just focused on solving
the question, manually adding the necessary pragmatic con-
straints.

Some of the key knowledge used to answer this question
is the following:

This axiom defines the age of an entity during a particular event,
when the entity’s birth date is known:

(∀ y (∀ x [x (be (birth-date-of y))]
(∀ e [[(time-elapsed-between (date-of e) x) age-of y] @ e])))

Axiom defining the relation between the ** and @ operators:

(∀wff w (∀ e ([w @ e] ⇔
(∃ e1 [e1 same-time e] [w ** e1]))))

Axiom that describes which specialist function to call to express
the function time-elapsed-between in a particular type of unit:

(∀ x (x is-date) (∀ y (y is-date)
(∀pred type (’type el-time-pred)

(∀ r (’r = (Apply ’diff-in-dates? ’x ’y ’type))
(’r expresses (time-elapsed-between x y)

(K (plur type)))))))

The most interesting part of this example is the use of a set
of axioms based on the Apply function to make the reasoning
system “aware” of a set of procedures useful in computing
mathematical operations and in doing type conversions. In
this way EPILOG2 is able to return the answer to the question
expressed as an integer that is the floor of the amount of time
in years that has elapsed between the date of birth of EPILOG

and now (the moment of speech). In EL the unifier found
for the variable x of the initial question is: (amt 18 (K (plur
year))).
Question 2 is “What’s your name?”, which expressed in EL
is:

(∃ e [e at-about now0]
[(wh z ([z name] and [Epi2Me have z])

(∃ y [y thing] [y (BE (L x (x = z)))])) ** e])

Some of the key knowledge used to answer this question
is the following:

The event now0 is during the event e2:

[now0 during e2]

The event e2 is characterized by EPILOG having the name ’epilog-
name’:

[[Epi2Me have ’epilog-name] ** e2]

If one event is characterized by something possessing something
else, then that will also be true for any event during the first event:

(∀ x (∀ y (∀ z [[x have y] ** z]
(∀ zz [zz during z] [[x have y] @ zz]))))

Of interest here is the last axiom because it ascribes “in-
ward persistence” (homogeneity) to predicate have, a prop-
erty it shares with other atelic predicates. The two other
formulas are hand-additions to the current knowledge base,
but they should be automatically inserted, the first by the En-
glish to EL generator, the second by a self-awareness demon
that is in charge of maintaining basic information about the
agent, for instance, its name, its state (e.g. sleeping, awake,
etc.) and its “state of health” (e.g., cpu consumption, free
memory, garbage collection status, etc.).

To correctly answer this question the reasoner also uses
lexical knowledge that states which predicates are atemporal
and therefore can be moved out of the scope of the ** op-
erator. This knowledge is expressed in EL and it is used by
the normalizer. An example is (’thing EL-type-pred), stating
that ’thing’ is a type predicate and therefore atemporal.
Question 3 shows how EPILOG could answer questions
about its own knowledge. The question is “What do you
know about the appearance of pigs?”, which in EL we ex-
pressed as:

(wh x [x appearance-fact-about (K (plur pig))])

Some of the relevant knowledge involved in this example
is:

Pigs are thick-bodied:

[(K (plur pig)) thick-bodied]

The predicate ‘thick-bodied’ is an appearance predicate:

[’thick-bodied appearance-pred]

Every wff that uses an appearance predicate is a fact about the ap-
pearance of its subject:

(∀pred p [’p appearance-pred]
(∀ x [x p] [(that [x p]) appearance-fact-about x]))

One could construct much more complex formulas per-
taining to the appearance of something, e.g., that the appear-
ance of a person’s hair – say, color and style – constitutes
appearance information about the person.

The remaining questions are taken from the ResearchCyc
1.0 collection of commonsense test cases. About 81% of
these test cases have been axiomatized to become solvable

105

by Cyc; among those presented here, the last two have a
solution in Cyc. An important difference between our and
Cyc’s approach to these problems is in the style of formal-
ization: Cyc’s representations are in a simplified form that
1) is geared towards the CycL style (e.g., using many con-
catenated names for complex expressions instead of compo-
sitionally combining the parts), which is far from NL-based
representations; and 2) omits important details (e.g. tempo-
ral relations) and pragmatic constraints.
Question 4 is “Can gasoline be used to put out a
fire?”. In Cyc this is the test case named #$CST-Can-

YouUseGasToPutOutAFire, and the question is
expressed as: ((TypeCapableFn behavior-

Capable) GasolineFuel ExtinguishingA-

Fire instrument-Generic). (TypeCapableFn

behaviorCapable) returns a predicate that describes
the capacity for a certain behavior of a certain type of
thing in a certain role position. In effect the question
becomes, “Is gasoline-fuel behaviorally-capable of being a
generic-instrument in fire-extinguishing?”

We also interpret the question generically, but we adhere
more closely to a possible English phrasing, asking whether
there could be an instance where a person uses gasoline to
put out a fire:

(∃ e [e during (extended-present-rel-to Now)]
(∃ x [x person]

(∃ y [y ((nn gasoline) fuel)]
(∃ z [z fire]

[[x (able-to ((in-order-to (put-out z)) (use y)))]
@ e]))))

Some of the knowledge relevant to this question is:

If some person is able to use some stuff to put-out a fire then s/he
must be at the same location as the fire, must have at hand that stuff
and that stuff must be flame-suppressant:

(∀ e [e during (extended-present-rel-to Now)]
(∀ x [x person] (∀ y [y stuff] (∀ z [z fire]

([[x (able-to ((in-order-to (put-out z)) (use y)))] @ e]
⇒ ([[x has-at-hand y] @ e] ∧ [[x loc-at z] @ e]

[y flame-suppressant]))))))

Gasoline is flammable stuff:

(∀ x [x ((nn gasoline) fuel)] ([x flammable] ∧ [x stuff]))

Flammable things are not flame-suppressant:

(∀ x [x flammable] (not [x flame-suppressant]))

The question is answered negatively by using the knowl-
edge that to be able to put-put a fire one must use a flame-
suppressant material, and gasoline is not a flame-suppressant
material.
Question 5 is Cyc’s question named #$CST-DoesCyc-

HaveABiologicalFather, which in English is “Do
you (Cyc) have a biological father?”. In Cyc the question
is represented as (thereExists ?F (biological-

Father Cyc ?F)).
We expressed the question in EL as follows:

(∃ e [e at-about Now]
(∃ y [[Epi2Me (have-as ((attr biological) father)) y]

** e]))

In this question, have-as is a so-called “subject-adding
operator” that takes a unary predicate as argument and re-
turns a binary predicate. In this case ((attr biological) fa-
ther) is the monadic predicate true for all individuals that
are biological fathers. (have-as ((attr biological) father)) is
the binary predicate that is true for all pairs of individuals in
which the object of the predicate is the father of its subject.

The relevant knowledge for this example is:

EPILOG is an artifact:

[Epi2Me artifact]

No artifact is a natural object:

(∀ x [x artifact] (not [x natural-obj]))

A creature is a natural object:

(∀ x [x creature] [x natural-obj])

All creatures have a biological father:

(∀ x ([x creature] ⇔
(∃ y (∃ e

[[x (have-as ((attr biological) father)) y] ** e]))))

The question is answered negatively by using the knowl-
edge that EPILOG is an artificial thing and therefore not a
natural object. Further it is known that only creatures can
have a biological father and that creatures are a subtype of
natural objects.
Question 6 corresponds to Cyc’s question named
#$CST-AnimalsDontHaveFruitAsAnatomical-

Parts-HypothesizedQueryTest In Cyc the
question is expressed as (implies (isa ?ANIMAL

Animal) (not (relationInstanceExists

anatomicalParts ?ANIMAL Fruit))).
In EL we express the question (more naturally, we claim)

as:

(∀ e [e during (extended-present-rel-to Now)]
(No x [x animal]

[[x (have-as anatomical-part) (K fruit)] ** e]))

The function extended-present-rel-to applied to an event
e returns the event that started long ago and continues long
pass the end of the event e. The extent of the event returned
should be context-dependent. However, for this question this
is irrelevant given that the knowledge used is presumed true
for any event. The relevant knowledge for this example is:

Plant stuff is not animal stuff:

(∀ x [x plant-stuff] (not [x animal-stuff]))

Fruits are made of plant stuff:

[(K fruit) made-of (K plant-stuff)]

Animals are made of animal stuff:

[(K animal) made-of (K animal-stuff)]

If an individual x is made of (kind of stuff) p and if (kind of stuff)
q is a subtype of p then x is made of q:

(∀ x (∀pred p [x made-of (k p)]
(∀pred q (∀ y [y p] [y q])

[x made-of (k q)])))

If an individual x is made of (kind of stuff) p and if (kind of stuff)
q is disjoint from p then x is not made of q:

106

(∀ x (∀pred p [x made-of (k p)]
(∀pred q (∀ y [y p] (not [y q]))

(not [x made-of (k q)]))))

If a type p is made of (kind of stuff) q then all individuals of type p
are made of q:

(∀pred p (∀pred q ([(k p) made-of (k q)] ⇔
(∀ y [y p] [y made-of (k q)]))))

Every part is made of the material of the whole:

(∀ w (∀ e (∀ p
([[w (have-as anatomical-part) p] ** e] ⇒
(∀ wm [w made-of wm] [p made-of wm])))))

We decided to answer the question by saying that all parts
are made of the same substance of which the whole is made.
However the case of artificial parts/organs is not captured
by this knowledge. One could improve on it by saying that
organic parts must be made of biologically compatible mate-
rials, while any artificial parts must be made of durable inert
materials that are compatible with the organic parts they are
in contact with.
Question 7 corresponds to Cyc’s question named #$CST--
DoAgentsBelieveWhatTheyKnow. The English ver-
sion of the question reads “If you know that something is the
case, do you believe that it is the case?”. In Cyc the question
is represented as: (implies (knows ?AGT ?PROP)
(beliefs ?AGT ?PROP)). In EL we provide the fol-
lowing representation as a direct reflection of English sur-
face form3:

(∀ e0 [e0 at-about Now]
(∀ x [x thing]
([[Epi2Me know (that (∃ e1 [e1 at-about e0]

[[x (be the-case)] ** e1]))
] ** e0] ⇒

(∃ e2 ([e2 at-about Now] and [e0 same-time e2])
[[Epi2Me (believe

(that (∃ e3 [e3 at-about e2]
[[x (be the-case)] ** e3])))

] ** e2]))))

The key knowledge to answer this question is the follow-
ing axiom:

If an event is characterized by some agent knowing something then
it is also characterized by the agent believing it:

(∀ e (∀ x (all p ([[x know p] ** e] ⇒ [[x believe p] ** e]))))

Question 8 (our last example) corresponds to Cyc’s
commonsense test case named #$CST-CanYouAttack-
SomeoneWithAGolfClub. In English the question is
“Can you attack someone with a golf club?”. Cyc expresses
it in the same way as question 4: ((TypeCapableFn

behaviorCapable) GolfClub Physically-

AttackingAnAgent deviceUsedAsWeapon).
In EL we represent the question as:4

3apart from the events and event relations introduced by the
temporal deindexing that follows logical form computation (Schu-
bert and Hwang 2000).

4EPILOG also answers the case in which “you” is interpreted
literally to mean EPILOG itself. In this case, the question is an-

(∃ x [x golf-club] (∃ y [y person] (∃ z [z person]
(∃ e [[y ((adv-a (with-instr x)) (attack z))] ** e]))))

The knowledge relevant to this question is:

If an object can be swung by hand, and is solid, and weighs at least
two pounds, it can be used as a striking weapon:

(∀ x [x phys-obj]
[[(∃ e [[x (pasv ((adv-a (by (k hand))) swing))] ** e]) ∧

[x solid]
(∃ w [[x weighs w] ∧ [w ¿= (k ((num 2) pound))]])]
⇒ (∃ e [[x (pasv (use-as ((nn striking) weapon)))] ** e])])

A golf club can be swung by hand, is solid, and weighs at least two
pounds:

(∀ x [x golf-club]
[(some e [[x (pasv ((adv-a (by (k hand))) swing))] ** e]) ∧
[x solid] [x phys-obj] (∃ w [[x weighs w] ∧

[w ≥ (k ((num 2) pound))]])])

For any striking weapon, one person can attack another with the
weapon, by striking him or her with it:

(∀ x [x ((nn striking) weapon)] (∃ y [y person] (∃ z [z person]
(∃ e [[y ((adv-a (by-means (Ka ((adv-a (with-instr x))

(strike z)))))
((adv-a (with-instr x)) (attack z)))] ** e]))))

There is a golf-club:

(∃ x [x golf-club])

(”by-means” modification is monotone) If an agent does some ac-
tion by means of another action, then he does the first action:

(∀pred p (∀ x (∀ y
(∀ e [[x ((adv-a (by-means y)) p)] ** e] [[x p] ** e]))))

This question is answered positively by using the knowl-
edge that golf-clubs are heavy and solid and can be swung
by a person and that objects with those properties can be
used to attack another person.
FOL scalability tests: the second part of the evaluation put
into perspective the performance of the reasoner with re-
spect to standard FOL theorem provers on the classic TPTP5

dataset. In particular we used the CSR6 problems derived
from the conversion into FOL of the OpenCyc ontology (Ra-
machandran, Reagan, and Goolsbey 2005).

We used the subset of CSR problems that was designed
to test the scalability of a theorem prover. In particular the
problems used were those designated as CSR025 through
CSR074 in segments 1 to 5. Even though the access schema
of EPILOG2 is a simple exhaustive one and therefore not
scalable, the results will provide a good bottom-line com-
parison with future improvements of EPILOG.

Table 1 summarizes the results. The systems compared
are EPILOG17, EPILOG2, and Vampire 9, which is represen-

swered negatively using introspection, a closure axiom that asserts
that EPILOG’s knowledge with respect to major abilities is com-
plete, the fact that physical actions are major ability and that at-
tacking somebody requires the ability to perform physical actions.

5See http://www.cs.miami.edu/̃ tptp/
6See http://www.opencyc.org/doc/tptp challenge problem set

in particular the section The Scaling Challenge Problem Set.
7In particular it is the version of June 22nd2005.

107

Segment Size (min/avg/max) EPILOG1 FI EPILOG1 no FI EPILOG2 Avg depth Vampire 9

1 (22/59/163) 46 46 100 5.9 100

2 (-/1101/-) 46 44 92 5.6 100

3 (-/7294/-) 0 0 54 4.5 82

4 (-/42981/-) 0 0 48 4.3 32

5 (-/534435/-) 0 0 12 1.3 0

Table 1: Summary of the tests carried out between EPILOG1, EPILOG2 and the Vampire theorem prover, version 9. The first
column contains the segment number (1-5) of the segments comprising the scalability subset of the CSR dataset (with 50
problems in each segment). Column 2 lists min, max and average number of formulas contained in the problems in that specific
segment. (If all problems contain the same number of formulas only the average is shown). Columns 3, 4, and 5 show the
percentage of problems for which a solution was found, respectively by EPILOG1 with forward inference enabled, EPILOG1
without forward inference and EPILOG2 (which by default has no forward inference enabled). Column 6 shows the average
depth of the answer found by EPILOG2. Column 7 shows the percentage of problems solved by Vampire. All system have been
limited to a timeout of 120 seconds.

tative of state-of-the-art FOL theorem provers8. All systems
were run under the same conditions and were subjected to a
2 minute limit per problem.

Conclusion and Further Work

In this paper we described how we evaluated the work on the
development of the latest version of the EPILOG system in
a way that we think tests the particular features that charac-
terize EPILOG and that also may allow for comparison with
other commonsense reasoners independently of which logi-
cal language they use.9

The evaluation was divided into 2 parts. In the first we
selected 8 examples, five of which were from ResearchCyc.
These examples were selected to test the features of EL and
of EPILOG such as introspective question answering, quota-
tion and subtitutional quantification, interfacing to special-
ists, etc. The second part was based on a subset of the TPTP
dataset used to test the scalability of a theorem prover. This
part, in addition to providing a baseline for assessing future
enhancements of EPILOG, demonstrates significant perfor-
mance gains achieved here over EPILOG1, and will facilitate
further comparisons with other theorem provers. Moreover,
the results show that a reasoner for a highly expressive logic
doesn’t have to be impractically inefficient compared to a
less expressive one10. It should be kept in mind that in addi-
tion to not lagging far behind state-of-the-art performance in
FOL theorem provers in their domain of competence, EPI-
LOG is capable of additional modes of reasoning and metar-
easoning as shown by the first evaluation.

In future we plan to close the remaining gap between EPI-
LOG and FOL theorem provers, implement a more efficient
access schema for knowledge retrieval, implement proba-
bilistic reasoning, provide for uniform handling of gener-
alized quantifiers, and extend the new approach to specialist
deployment to all specialists.

8Download available at http://www.cs.miami.edu/̃ tptp/CASC/J4/-
Systems.tgz

9Allowing longer times had minimal effect on both systems.
10contrary to the alleged “expressivity/tractability tradeoff”.

Acknowledgements

This work was supported by NSF grant IIS-0535105 and by
a 2007-2008 gift from Bosch Research and Technology Cen-
ter (Palo Alto); the content has benefited significantly from
the very useful comments of the anonymous referees.

References

Hwang, C., and Schubert, L. 1993. Episodic logic: A sit-
uational logic for natural language processing. In P. Aczel,
D. Israel, Y. K., and Peters, S., eds., Situation Theory and
its Applications, volume 3. Stanford, CA: Center for the
Study of Language and Information. 303–338.

Morbini, F., and Schubert, L. K. 2008. Metareasoning as an
integral part of commonsense and autocognitive reasoning.
In Metareasoning 08, 155–162.

Ramachandran, D.; Reagan, P.; and Goolsbey, K. 2005.
First-Orderized ResearchCyc: Expressivity and Efficiency
in a Common-Sense Ontology.

Schaeffer, S.; Hwang, C.; de Haan, J.; and Schubert, L.
1993. EPILOG, the computational system for episodic
logic: User’s guide. Technical report, Dept. of Comput-
ing Science, Univ. of Alberta.

Schubert, L., and Hwang, C. 2000. Episodic Logic meets
Little Red Riding Hood: A comprehensive, natural rep-
resentation for language understanding. In Iwanska, L.,
and Shapiro, S., eds., Natural Language Processing and
Knowledge Representation: Language for Knowledge and
Knowledge for Language. Menlo Park, CA: MIT/AAAI
Press. 111–174.

Schubert, L. K.; Schaeffer, S.; Hwang, C. H.; and de Haan,
J. 1993. EPILOG: The Computational System for Episodic
Logic. USER GUIDE.

108

A BDI Agent Architecture for a POMDP Planner

Gavin Rens1,2

Alexander Ferrein3

Etienne van der Poel1
1 School of Computing, Unisa, Pretoria, South Africa

2 Knowledge Systems Group, Meraka Institute, CSIR, Pretoria, South Africa
3 Robotics and Agents Research Laboratory, University of Cape Town, South Africa

grens@csir.co.za, alexander.ferrein@uct.ac.za, evdpoel@unisa.ac.za

Abstract

Traditionally, agent architectures based on the Belief-
Desire-Intention (BDI) model make use of pre-
compiled plans, or if they do generate plans, the plans
do not involve stochastic actions nor probabilistic ob-
servations. Plans that do involve these kinds of actions
and observations are generated by partially observable
Markov decision process (POMDP) planners. In partic-
ular for POMDP planning, we make use of a POMDP
planner which is implemented in the robot program-
ming and plan language Golog. Golog is very suit-
able for integrating beliefs, as it is based on the situa-
tion calculus and we can draw upon previous research
on this. However, a POMDP planner on its own cannot
cope well with dynamically changing environments and
complicated goals. This is exactly a strength of the BDI
model; the model is for reasoning over goals dynami-
cally. Therefore, in this paper, we propose an architec-
ture that will lay the groundwork for architectures that
combine the advantages of a POMDP planner written in
the situation calculus, and the BDI model of agency. We
show preliminary results which can be seen as a proof
of concept for integrating a POMDP into a BDI archi-
tecture.

Introduction
Traditionally, plan-based agents that include generative
planning (as opposed to utilizing pre-compiled plans) would
generate a complete plan to reach a specific fixed goal, then
execute the plan. If plan execution monitoring is available,
the agent would replan from scratch when the plan becomes
invalid. Due to the time requirements for generating com-
plete plans, the plan may be invalid by the time it is exe-
cuted. This is because the world may change substantially
during plan generation.

Therefore, Belief-Desire-Intention (BDI) architectures
take a different approach. BDI theory is based on the philos-
ophy of practical reasoning (Bratman 1987). It offers flexi-
bility in planning beyond traditional planning for agents, by
reasoning over different goals. That is, an agent based on
BDI theory can adapt to changing situations by focusing on
the pursuit of the most appropriate goal at the time. Typi-
cally, an appropriate plan to achieve an adopted goal is then
selected from a data base of plans. Although a plan that sat-
isfies certain constraints (e.g., does not conflict with other

adopted plans, is executable, etc.) will be adopted, it may
not be the most appropriate plan in existence. A plan that is
generated with the agent’s current knowledge for guidance,
may be more appropriate. BDI agents can also make rational
decisions as to when to replan if a plan becomes invalid, re-
ducing the amount of replanning, thus increasing the agent’s
reactivity. Note that the BDI model is, however, not the only
approach to replanning (cf. (Likhachev et al. 2005)).

In general, BDI architectures do not make use of plan gen-
eration, they rather draw on plan libraries. While with BDI
approaches, an agent can reason over several goals, the agent
lacks some flexibility by not being able to generate suitable
plans on demand. Therefore, in this paper, we aim at inte-
grating a POMDP planner into a BDI architecture to com-
bine its benefits with the ability to generate plans. More-
over, we want to supply models that are as realistic as possi-
ble. We therefore decided on employing partially observable
Markov Decision Processes (POMDPs).

In this paper we describe our approach for combining
BDI theory with a POMDP planner. Combining the two
formalisms can be viewed from two perspectives. One,
to enhance an existing planner for use in real-time dy-
namic domains by incorporating the planner into a BDI
agent architecture so that the management of goal selec-
tion, planning and replanning is handled in a principled
way. Two, to enhance the classical BDI agent architec-
ture by incorporating a POMDP planner into the BDI ar-
chitecture so that the agent can reason (plan) with knowl-
edge about the uncertainty of the results of its actions, and
about the uncertainty of the accuracy of its perceptions.
We employ the POMDP planner described in our previous
work (Rens, Ferrein, and Van der Poel 2008). This plan-
ner is implemented in Golog (Levesque et al. 1997), which
in turn is based on the situation calculus (McCarthy 1963;
Reiter 2001). An advantage of using a Golog implementa-
tion for the planner is that the integration of beliefs into the
situation calculus has previously been done (e.g., (Bacchus,
Halpern, and Levesque 1999)) and this work can be used for
formulating POMDPs. Further, given a background action
theory, an initial state and a goal state (or reward function in
POMDPs), Golog programs essentially constrain and spec-
ify the search space (the space of available actions).

The resulting plan (or policy in POMDPs) is a Golog pro-
gram which can be executed directly by the agent. To the

109

best of our knowledge, till present, no BDI-based agent ar-
chitecture has implemented its planning function so as to
generate plans that take stochastic action and partial obser-
vation into account. Therefore, this work can be seen as a
first proof of this concept.

The rest of the paper is organized as follows. In the next
section we introduce the plan generator used in this study.
Then, we briefly introduce the BDI theory, after which we
explain our hybrid BDI/POMDP-planner architecture in de-
tail. Before we conclude, we show some preliminary results
from an implementation of our architecture, which gives a
first proof of our approach.

The Planning Module
The POMDP Model
In partially observable Markov decision processes
(POMDPs) actions have nondeterministic results, yet
may be predicted with a probability of occurrence. And
observations are uncertain: the world is not directly ob-
servable, therefore the agent infers how likely it is that the
world is in some specific state. The agent thus believes
to some degree—for each possible state—that it is in that
state. Furthermore, a POMDP is a decision process and
thus facilitates making decisions as to which actions to
take, given its previous observations and actions. Formally,
a POMDP is a tuple 〈S,A, T ,R,Ω,O, b0〉 with: S, a
finite set of states of the world; A, a finite set of actions;
T : S × A → Π(S) is the state-transition function, where
Π is a probability distribution; R : S × A → R, the
reward function; Ω, a finite set of observations the agent
can experience; O : S × A → Π(Ω), the observation
function; and b0, the initial probability distribution over
all world states in S (see e.g., (Kaelbling, Littman, and
Cassandra 1998)). In the model, b is a belief state, i.e. a
set of pairs (s, p) where each state s ∈ S is associated with
a probability p. The state estimation function SE (b, a, o)
updates the agent’s beliefs. Now the aim of the agent
deploying a POMDP model is to determine a policy, that
is, the actions or decisions that will maximize its rewards.
Formally, a policy π is a function from a set of belief states
B to the set of actions: π : B → A. That is, actions are
conditioned on beliefs. This means that the agent takes its
next decision not only based on a stochastic action model,
but also on a stochastic observation model. In this sense, a
policy can be represented as a policy tree, with nodes being
actions and branches being observations.

Planning over Degrees of Belief
In this section we describe our POMDP planner, an exten-
sion to the decision-theoretic language, DTGolog (Boutilier
et al. 2000).

DTGolog is based on Reiter’s variant of the situation cal-
culus (McCarthy 1963; Reiter 2001), a second-order lan-
guage for reasoning about actions and their effects. Accord-
ing to this calculus, changes in the world are due only to
actions, so that a situation is completely described by the
history of actions starting in some initial situation—do(a, s)

is the term denoting the situation resulting from doing ac-
tion a in situation s. Properties of the world are described by
fluents, which are situation-dependent predicates and func-
tions. For each fluent the user defines a successor state ax-
iom specifying precisely which value the fluent takes on af-
ter performing an action. These, together with precondition
axioms for each action, axioms for the initial situation, and
foundational and unique names axioms, form a so-called ba-
sic action theory (Reiter 2001).

Decision-theoretic planning in DTGolog works roughly
as follows. Given an input program that leaves open sev-
eral action alternatives for the agent, the DTGolog inter-
preter generates an optimal policy. Formally, the interpreter
solves a Markov Decision Process (MDP, cf. e.g., (Puterman
1994)) using the forward search value iteration method—
searching (to a specified horizon) for the actions that will
maximize the total expected reward. Programs are inter-
preted as follows: All possible outcomes of the intended
nondeterministic, stochastic action are expanded. For each
choice point, the action resulting in the optimal value at the
particular point in the MDP, is determined. These values
are calculated relative to the world situation associated with
the point in the MDP. The policy is calculated with an opti-
mization theory consisting of a reward and a transition func-
tion (cf. also (Boutilier et al. 2000)). The transition func-
tion describing transition probabilities between states of the
Markov chain is given by Reiter’s variant of the basic action
theory formalized in the underlying situation calculus (Mc-
Carthy 1963; Reiter 2001). Formally, the BestDo macro
defines the process described above: it evaluates an input
program and recursively builds an optimal policy.

The POMDP planner we use here is BestDoPO (Rens,
Ferrein, and Van der Poel 2008); an extension of BestDo
(BestDo P artially Observable), which calculates an op-
timal policy for the partially observable case (Rens, Fer-
rein, and Van der Poel 2008). The main difference is that
BestDoPO operates on a belief state rather than on a world
state. BestDoPO(p, b, h, π, v, pr) takes as arguments a
Golog program p, a belief state b and a horizon h, which
determines the solution depth sought by the interpreter. The
policy π as well as its value v and the success probability pr
are returned. After a certain action a is performed and the
associated observation o is perceived, the next belief state is
determined via a belief state transition function (similar in
vein to the state estimation function of the previous subsec-
tion, and the successor-state axiom for likelihood weights as
given in (Bacchus, Halpern, and Levesque 1999)):

bnew = BU(o, a, b) .=

btemp = {(s+, p+) | (∃n, s+, p+).(s+, p+) ∈ btemp :

s+ = do(n, s) ∧ choiceNat(n, a, s) ∧ PossAct(n, s)∧
p+ = p · probObs(o, a, s+) · probNat(n, a, s)}

bnew = normalize(btemp).

choiceNat(n, a, s) specifies the possible outcomes n of the
agent’s intention to perform action a. PossAct(n, s) de-
notes the possibility of performing action n in situation s.
probObs(o, a, s+) and probNat(n, a, s) are functions that

110

return the probability of observing o in the situation s+—
the situation resulting from doing action a, and respectively,
the probability of action n being the outcome of the intention
to execute action a in situation s.

For BestDoPO to be integrated as required for the
present work, two arguments are added to the list:
BestDoPO as defined in (Rens, Ferrein, and Van der Poel
2008) is modified to return δ and to take nom. The input
program may provide information for a sequence of actions
of length greater than the policy horizon. Call the remaining
program δ—the portion of the program that was not used for
policy generation. δ becomes the new program from which
future policies will be generated. nom—the name of the
input program—is used to select the reward function associ-
ated with the input program. Two clauses that are part of the
definition of the modified BestDoPO appear below.

BestDoPO(p, δ, nom, b, h, π, v, pr)
def
=

h = 0 ∧ δ = p ∧
π = stop ∧ ∃v.believedReward(nom, v, b) ∧ pr = 1.

BestDoPO(a : p, δ, nom, b, h, π, v, pr)
def
=

¬actionBelievedPossible(a, b) ∧
δ = p ∧ π = stop ∧ v = 0 ∧ pr = 0 ∨

actionBelievedPossible(a, b) ∧
∃ obs.setofAssocObservations(a, obs) ∧
∃π′, v′, pr.Aux (obs, a, p, δ, nom, b, h, π′, v′, pr) ∧
believedReward(nom, r, b) ∧ π = a;π′ ∧ v = r + v′.

Please refer to (Rens, Ferrein, and Van der Poel 2008) for
more detail.

BDI Theory
A desire is understood as what an agent ideally wants to
achieve, that is, what motivates it. In reality, agents are
resource-bounded, and hence should rationally choose the
desires to pursue whose achievement are most valuable to
the agent and that are achievable according to the agent’s
current situation and capabilities. The desires that have been
committed to pursuing through a rational process of reason-
ing may be called intentions. The Belief-Desire-Intention
(BDI) model of agency takes intentions—in addition to be-
liefs and desires—as first-class mental states. Traditional
agent architectures either simply do not consider intentions,
or do not consider them as explicit operands within the pro-
cesses of an agent’s reasoning system.

The value of taking intentions seriously is that they man-
age the agent’s resources in a rational way. Intentions induce
the agent to act and intentions persist. As such, they fo-
cus the agent’s activity to commit resources and thus pursue
a desire more effectively. Also, because intentions persist,
new intentions are not constantly being adopted: new inten-
tions are constrained by current intentions, and hence, future
deliberation is constrained (Wooldridge 2000).

It is useful to distinguish between deliberation: to decide
on what ends (e.g., reward functions; goal states) to pursue
and means-ends reasoning: how to achieve the ends. Delib-
eration may be further divided into (i) reasoning to generate

options from beliefs, i.e., ‘wishing’ to decide on current de-
sires; (ii) reasoning to select intentions, i.e., ‘focusing’ on
a subset of those desires and committing to achieve them.
Committed-to goals, or plans for achieving them, are inten-
tions.

A BDI agent has at least these seven components
(Wooldridge 1999):
• A knowledge base of beliefs.
• An option generation function (wish), generating the op-

tions the agent would ideally like to pursue (its desires).
• A set of desires Dess returned by the wish function.
• A function (focus) that filters out incompatible, impossi-

ble and less valuable desires, and that focuses on a subset
of the desire set.

• A structure of intentions Ints—the most desireable op-
tions/desires returned by the focus function.

• A belief change function (update): given the agent’s cur-
rent beliefs and the latest percept sensed, the belief change
function returns the updated beliefs of the agent.

• A function (execute) that selects some action(s) from the
plan the agent is currently executing, and executes the ac-
tion(s).
In most of the well known implementations of agents

based on the BDI model (e.g., PRS (Georgeff and In-
grand 1989), IRMA (Bratman, Israel, and Pollack 1988)
and dMARS (Rao and Georgeff 1995)), the plan function
returns plans from a plan library; a set of pre-compiled
plans. An intention structure then structures various plans
into larger hierarchies of plans. An intention in the inten-
tion structure in the classical BDI theory is a partial plan
structured as a hierarchy of subplans. Furthermore, sub-
plans may at some point be abstract, waiting to be ‘filled
in’ (Bratman, Israel, and Pollack 1988). Some BDI archi-
tectures are designed to let the plan function generate plans
from atomic actions (Sardina, De Silva, and Padgham 2006;
Walczak et al. 2007) (or it may possibly use a combination
of pre-compiled and generated plans). However, none of
the architectures that have a generative component employ a
planner that produces plans for a POMDP model.

Combining POMDP Planning with the BDI
Model

In this section we see how an agent controller in the BDI
model can incorporate the BestDoPO POMDP planner into
its practical reasoning processes. We took the prototypical
control loop of the BDI model as a reference and modi-
fied it to accommodate planning with POMDP policies. The
proposed architecture is called BDI-POP (BDI with POmdp
Planner).

First we introduce some terms and their relationships with
the aid of Figure 1 (next page). Implicitly included in the
”BELIEF” data store, is a fixed set of behaviors behs and
a fixed set of reward functions rwds (rwds is considered
globally accessible). behs is the agent’s primitive goals;
its innate drive. The idea is that each behavior refers to a
unique goal that the agent is designed to achieve. Each be-
havior is defined by the set of programs and reward func-
tions that can achieve the behavior. The wish function is

111

omitted from our architecture (for now) because the op-
tions the agent would pursue at any time are its behaviors
behs. The agent also has a fixed set of desires d. Each
des ∈ d is a triple (nom, prog, ach): nom is a reference
to the Golog program prog, and ach is a reference to the
behavior beh ∈ behs that prog can potentially achieve, thus
ach ∈ behs. The reward functions rf ∈ rwds take as ar-
gument a nom that refers to the program that rf is asso-
ciated with. The following holds: ∀beh.[beh ∈ behs →
(∃des).des = (nom, prog, ach) ∧ ach = beh]: for each
behavior, there exists at least one program to achieve it.

To understand the controller, we also need to consider the
agent’s deliberation process. deliberate is the procedure
that calls and controls the focus predicate and that operates
on the intention stack. We write focus(b, d, i, behs, h−) to
be the predicate that selects one des ∈ d for each beh ∈
behs, placing these desires in a stack, in ascending order,
ordered by the desires’ values. The desire selected for a be-
havior is the one that can achieve the behavior (ach = beh)
and that has the highest value. A desire’s value is estimated
as the value v of the policy found, generated to a depth h−:
BestDoPO is called with b, h− and the applicable prog as
arguments; v is used and the policy is discarded. We keep
h− < h to save on time spent deliberating. focus ’returns’
the stack i of selected desires.

deliberate(b, d, i, behs, ai , i′, h−)
def
=

(isEmpty(i) ∧ ∃i′.focus(b, d, i, behs, h−) ∨
¬isEmpty(i) ∧ ∃i′.i′ = i) ∧
∃ai , i′′.popIntentionStack(i′, ai , i′′).

BDI-POP tests whether a usable policy could be gener-
ated, that is, whether the planner returns the stop policy:
When every outcome of an intended action (according to the
input program) is illegal (according to the background action
theory), BestDoPO returns stop, and we say that the input
program is impossible. An intention i = (nom, prog, ach)
with prog being impossible is thus defined as an impossible
intention.

The strategy used in deliberate to deal with an impossi-
ble intention is extremely simple: it is dropped and the next
intention on the stack is popped. This is a reasonable strat-
egy because the next intention on the stack has the highest
value, and should thus be pursued next. Calling focus to re-
fill the intention stack at this time would defeat the principle
of commitment to intentions. Other strategies are possible,
for example, replacing the impossible intention with another
intention that achieves the same behavior, if one exists.

A logical high-level specification of BDI-POP follows, af-
ter which, it is explained in words.

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π 6= stop ∧ p 6= nil ∧
∃π′′.π = a;π′′ ∧ execute(a) ∧
∃sv.getPercep(a, sv) ∧ ∃o.recognize(a, o) ∧
∃π′′′.getSubPolicy(π′′, o, π′′′) ∧
∃b′.b′ = BU(o, a, b)) ∧
Agent(b′, d, i, behs, ai , π′′′, h, h−).

Figure 1: Schematic diagram of a sketch of the BDI archi-
tecture with the POMDP planner.

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π = stop ∧ p = nil ∧
deliberate(b, d, i, behs, ai ′, i′, h−) ∧
Agent(b, d, i′, behs, ai ′, π, h, h−).

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π = stop ∧ p 6= nil ∧
∃δ, π′, v, pr.BestDoPO(p, δ, nom, b, h, π′, v, pr) ∧
ai ′ = (nom, δ, ach) ∧
(π′ = stop ∧
∃ai ′′, i′.deliberate(b, d, i, behs, ai ′′, i′, h−) ∧
Agent(b, d, i′, behs, ai ′′, π′, h, h−) ∨

π′ 6= stop ∧
∃π′′.π′ = a;π′′ ∧ execute(a) ∧
∃sv.getPercep(a, sv) ∧ ∃o.recognize(a, o) ∧
∃π′′′.getSubPolicy(π′′, o, π′′′) ∧
∃b′.b′ = BU(o, a, b)) ∧
Agent(b′, d, i, behs, ai ′, π′′′, h, h−)).

The agent follows the intention with the highest value—
the intention popped from the stack. Call this the active in-
tention. Initially, the intention stack is empty, so deliberate
is called and the active intention is instantiated. Whenever
the controller needs a new plan to execute, BestDoPO is

112

called to generate a policy with horizon h using the program
specified by the active intention. The agent executes the pol-
icy until the end of the policy is reached, then BestDoPO is
called again for the rest of the program. If there is no rest of
program (the program is empty), deliberate is called. If the
program has become impossible, deliberate is called.
getPercept returns a sensor value, given the action exe-

cuted / sensor activated. The agent processes the sensor data
and decides what it observed—the agent recognizes the sen-
sor reading via the recognize predicate, which outputs an
observation. With this observation, the correct subpolicy is
extracted from the current policy, and this (possibly empty)
subpolicy becomes the new current policy.

After the action recommended by the policy is executed,
the agent’s beliefs must be updated according to what it
‘knows’ about the effects of its actions. The same belief
update function used during planning by BestDoPO is used
to update the agent’s beliefs. The current belief state of the
agent will be the ‘initial’ belief state required as argument to
BestDoPO the next time the planner is called.

Given our present definition of deliberate and given that
we shall allow only finite programs for achieving intentions,
the agent is guaranteed to deliberate at regular intervals.
However, this interval period is fixed (to the degree that in-
tentions become impossible). Adding a reconsider predi-
cate that tells the agent once every control cycle whether to
deliberate, is a more sophisticated method. reconsider is
described by, for example, Wooldridge (2000) and “was ex-
amined by David Kinny and Michael Georgeff, in a number
of experiments,” (Wooldridge 1999, p. 57). Because we are
investigating the feasibility of the basic idea of the hybrid
architecture in this paper, we have left out the reconsider
predicate from the present investigation.

A somewhat significant difference of our hybrid archi-
tecture from the perspective of control via POMDP policy
generation, is that—as stand-alone controller—the POMDP
planner takes a single plan with a single associated reward
function, to generate a policy. The new hybrid architec-
ture takes several programs, each with an associated reward
function. This aspect of the agent being able to reason
over multiple behaviors has the advantage that the agent de-
signer can separately specify behaviors that should—at least
intuitively—be considered separately.

BestDoPO expands Golog programs into hierarchically
structured plans (policies), and only programs that have been
selected as intentions are expanded into policies. Each pro-
gram can generate a policy—or several policies if the pro-
gram is expanded piece-wise. Viewing a policy tree as an
intention structure in the sense of traditional BDI architec-
tures, each program in the intention stack represents (at least
one) intention structure. BDI-POP, therefore, maintains sev-
eral unexpanded intention structures, only expanded when
popped from the intention stack.

Implementation and First Experiments
To validate the BDI-POP architecture and to gain a sense
for its performance potential, we observe one agent based
on the architecture, in a simulation. The simulation en-
vironment is inspired by Tileworld (Pollack and Ringuette

1990), a testbed for agents. We designed and implemented
the FireEater world, a dynamically changing grid world (a
5 × 5, two dimensional grid of cells) in which our agent is
situated. There are obstacles that change position and fires
that can be ‘eaten’. Space prohibits a detailed explanation of
FireEater world.

The agent gets one ‘fire-point’ for eating one fire. It can
only eat a fire if it is in the same cell as the fire. There are two
agent behaviors: findFood,eat ∈ behs. findFood
may be realized by two available programs, and eat is
forced to be achieved by one (other) program. The agent
can go left, right, up or down—locomotive actions which
are stochastically nondeterministic; it can sense its location
(probabilistically) and it can eat fire (deterministically).

In order to have a base-line against which the performance
of the new hybrid architecture can be compared, a simple or
‘naive’ architecture (called Naive-POP) was implemented.
It has no explicit intentions or desires as defined for the
BDI model. The agent is provided with a single Golog pro-
gram and associated reward function. In this implementa-
tion, the program loops continuously over a nondeterminis-
tic action—nondeterministic between all available actions.
If there is no rest of program, that is, the agent has executed
the whole program, the agent will stop its activity.

BDI-POP, in contrast, does not employ programs that loop
infinitely (in the experiments): programs were designed so
that they become empty as soon as a policy is generated
from the program. Hence an intention will be regarded as
‘achieved’ as soon as its policy becomes empty. Then the
next intention will be popped from the stack. Because the
size of the stack equals |behs| and because all programs are
finite, it is guaranteed that periodically all intentions will be
achieved, that is, the stack is empty, and the agent is forced
to deliberate to fill the intention stack with a fresh set of in-
tentions.

The two agents as implemented by the two architectures,
have identical knowledge bases, except for their programs
and reward functions. That is, they believe the same actions
are possible, with the same effects and associated probabili-
ties. They both employ the exact same planner: BestDoPO .
The graph in Figure 2 compares the performance of the two

Figure 2: Performance of the two architectures.

architectures. Given the restrictions inherent in their respec-
tive architectures, each agent was roughly optimized to give
them equal advantage.

Both architectures generate policies of horizon depth 3
(h = 3). In BDI-POP, we set h− = 1—the search hori-

113

zon that focus uses to determine program values. Through-
out the experiments, the strategy for the time allowed to the
agent was the same. There are 6 obstacles and initially 9 fires
in each trial. We allow the agent to perform 3 actions each
time before the obstacle positions change. The parameter for
the number of obstacle changes per simulation cycle is the
only parameter varied during experiments. Fourty trials per
setting of this parameter were performed. Effectiveness is
the total fire-points collected for the 40 trials. Dynamism is
defined as ‘number of obstacle changes per number of agent
actions.

Conclusion
Compared to Naive-POP, the performance of BDI-POP in
our experiments is not that impressive. This does not show
that a BDI agent architecture should not be imbued with a
POMDP planner; several enhancements to the simple BDI
architecture used here are still possible: In particular, to
build on this groundwork, we want to add the reconsider
predicate to deal with cases where intentions have become
inappropriate to some degree, and utilizing partial/abstract
plan structures.

Moreover, the relative sophistication of BDI-POP may not
be applicable in very simple worlds such as FireEater. We
would thus like to deploy our agents in a larger world, per-
haps with more complicated tasks for the agent to perform.
This will also give more scope for the variety of programs
that would be applicable, and the real power of the BDI
model could come into play.

What has been shown is that the proposed architecture is
implementable; there is no obvious fundamental conflict in
synthesizing our POMDP planner and the BDI model for
agent control. The groundwork has thus been laid for the
development of more sophisticated planning processes in the
BDI-POP framework.

What remains unclear is how practical this approach
might be in realistically complex domains. With probabilis-
tic outcomes and events in the world, the policy searches
blow up very quickly with depth. For complete and op-
timal policies, POMDP solvers can deal with just a mod-
est number of easily enumerated states. Policy trees of
a fixed depth (as generated by BestDoPO) are not com-
plete policies and thus less costly to generate. Realisti-
cally though, due to belief states being extremely numer-
ous and the equivalence problem for states in the situation
calculus, BestDoPO seems to be intractable if not unde-
cidable. Furthermore, the situation calculus, in principle,
provides a good deal of expressivity (including quantified
reasoning), which brings its own computational complexity
issues. For a hybrid BDI/POMDP architecture to scale up
to a domain more meaningful than a microdomain, the inte-
gration of more ‘common sense’ reasoning techniques into
the architecture may have benefits. And the latest advances
in POMDP solvers (e.g., (Toussaint, Charlin, and Poupart
2008)) should be investigated for ideas to improve the effi-
ciency of BestDoPO .

References
Bacchus, F.; Halpern, J.; and Levesque, H. 1999. Rea-
soning about noisy sensors and effectors in the situation

calculus. Artificial Intelligence 1-2(111):171–208.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In Proc. AAAI-00. AAAI Press.
355–362.
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and
resource-bounded practical reasoning. Computational In-
telligence 4:349–355.
Bratman, M. 1987. Intention, Plans, and Practical Reason.
Massachusetts/England: Harvard University Press.
Georgeff, M., and Ingrand, F. 1989. Decision-making in
an embedded reasoning systems. In Proc. IJCAI-89. San
Fransisco, CA: Morgan Kaufmann. 972–978.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 1-2(101):99–134.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. of Log. Progr. 31(1-3).
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic A*: An anytime, replan-
ning algorithm. In Proc. Intl. Conf. on Automated Planning
and Scheduling (ICAPS).
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University.
Pollack, M., and Ringuette, M. 1990. Introducing the Tile-
world: Experimentally evaluating agent architectures. In
Proc. AAAI-90. AAAI Press. 183–189.
Puterman, M. 1994. Markov Decision Processes: Discrete
Dynamic Programming. New York, USA: Wiley.
Rao, A., and Georgeff, M. 1995. BDI agents: From theory
to practice. In Proc. ICMAS-95. AAAI Press. 312–319.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Rens, G.; Ferrein, A.; and Van der Poel, E. 2008. Extend-
ing DTGolog to deal with POMDPs. In Proc. PRASA-08.
PRASA. 49–54.
Sardina, S.; De Silva, L.; and Padgham, L. 2006. Hierar-
chical planning in BDI agent programming languages: A
formal approach. In Proc. AAMAS-06. ACM Press. 1001–
1008.
Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hi-
erarchical POMDP controller optimization by likelihood
maximization. In Workshop on Advancements in POMDP
Solvers, Tech. Report WS-08-01, AAAI-08. AAAI Press.
url:http://www.aaai.org/Library/Workshops/ws08-01.php.
Walczak, A.; Braubach, L.; Pokahr, A.; and Lambersdorf.,
W. 2007. Augmenting BDI agents with deliberative plan-
ning techniques. In Proc. ProMAS-06. Springer. 113–127.
Wooldridge, M. 1999. Intelligent agents. In Weiss, G., ed.,
Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Massachusetts/England: MIT Press.
chapter 1.
Wooldridge, M. 2000. Reasoning About Rational Agents.
Massachusetts/England: MIT Press.

114

HTN Planning with Preferences∗

Shirin Sohrabi Jorge A. Baier Sheila A. McIlraith
Department of Computer Science

University of Toronto
{shirin, jabaier, sheila}@cs.toronto.edu

Abstract

In this paper we address the problem of generat-
ing preferred plans by combining the procedural
control knowledge specified by Hierarchical Task
Networks (HTNs) with rich user preferences. To
this end, we extend the popular Planning Domain
Definition Language, PDDL3, to support specifica-
tion of simple and temporally extended preferences
over HTN constructs. To compute preferred HTN
plans, we propose a branch-and-bound algorithm,
together with a set of heuristics that, leveraging
HTN structure, measure progress towards satisfac-
tion of preferences. Our preference-based planner,
HTNPLAN -P, is implemented as an extension of
theSHOP2 planner. We compared our planner with
SGPlan5 and HPLAN -P– the top performers in
the 2006 International Planning Competition pref-
erence tracks.HTNPLAN -Pgenerated plans that in
all but a few cases equalled or exceeded the qual-
ity of plans returned byHPLAN -P andSGPlan5.
While our implementation builds onSHOP2, the
language and techniques proposed here are relevant
to a broad range of HTN planners.

1 Introduction
Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g.,SHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) [Ghallabet al., 2004]. In HTN planning, the
planner is provided with a set of tasks to be performed, pos-
sibly together with constraints on those tasks. A plan is then
formulated by repeatedly decomposing tasks into smaller and
smaller subtasks until primitive, executable tasks are reached.
A primary reason behind HTN’s success is that its task net-
works capture useful procedural control knowledge—advice
on how to perform a task—described in terms of a decompo-
sition of subtasks. Such control knowledge can significantly
reduce the search space for a plan while also ensuring that
plans follow one of the stipulated courses of action.

While HTNs specify a family of satisfactory plans, they
are, for the most part, unable to distinguish between suc-

∗This paper will also appear in the Proceedings of IJCAI-09.

cessful plans of differing quality. Preference-based planning
(PBP) augments a planning problem with a specification of
properties that constitute a high-quality plan. For example,
if one were generating an air travel plan, a high-quality plan
might be one that minimizes cost, uses only direct flights,
and flies with a preferred carrier. PBP attempts to optimize
the satisfaction of these preferences while achieving the stip-
ulated goals of the plan. To develop a preference-based HTN
planner, we must develop a specification language that refer-
ences HTN constructs, and a planning algorithm that com-
putes a preferred plan while respecting the HTN planning
problem specification.

In this paper we extend the Planning Domain Definition
Language, PDDL3[Gereviniet al., 2009], with HTN-specific
preference constructs. This work builds on our recent work
on the development ofLPH [Sohrabi and McIlraith, 2008],
a qualitative preference specification language designed to
capture HTN-specific preferences. PDDL3 preferences are
highly expressive, however they are solelystate centric, iden-
tifying preferred states along the plan trajectory. To develop
a preference language for HTN we addaction-centriccon-
structs to PDDL3 that can express preferences over the occur-
rence of primitive actions (operators) within the plan trajec-
tory, as well as expressing preferences over complex actions
(tasks) and how they decompose into primitive actions. For
example, we are able to express preferences over which sets
of subtasks are preferred in realizing a task (e.g.,When book-
ing inter-city transportation, I prefer to book a flight) and
preferred parameters to use when choosing a set of subtasks
to realize a task (e.g.,I prefer to book a flight with United).
To compute preferred HTN plans, we propose a branch-and-
bound algorithm, together with a set of heuristics that lever-
age HTN structure.

The main contributions of this paper are: (1) a language
that supports the specification of temporally extended pref-
erences over complex action- and state-centric properties
of a plan, and (2) heuristics and an algorithm that exploit
HTN procedural preferences and control to generate preferred
plans that under some circumstances are guaranteed optimal.
The notion of adding advice to an HTN planner regarding
how to decompose a task network was first proposed by My-
ers (e.g.,[Myers, 2000]). Recently, there was another attempt
to integrate preferences into HTN planningwithoutthe provi-
sion of action-centric language constructs[Lin et al., 2008].

115

We discuss these and other related works in Section 7. PBP
has been the topic of much research in recent years, and there
has been a resurgence of interest in HTN planning. Experi-
mental evaluation of our planner shows that HTN PBP gen-
erates plans that, in all but a few cases, equal or exceed the
best PBP planners in plan quality. As such, it argues for HTN
PBP as a viable and promising approach to PBP.

2 Background
2.1 HTN Planning
Informally, an HTN planning problem can be viewed as a
generalization of the classical planning paradigm. An HTN
domain contains, besides regular primitive actions, a set of
tasksor high-level actions. Tasks can be successively re-
fined ordecomposedby the application of so-calledmethods.
When this happens, the task is replaced by a new, intuitively
more specifictask network. In short, a task network is a set of
tasks plus a set of restrictions (often ordering constraints) that
its tasks should satisfy. The HTN planning problem consists
of finding a primitive decomposition of a given (initial) task
network.
Example 1 (Travel Example) Consider the planning prob-
lem of arranging travel in which one has to arrange accom-
modation and various forms of transportation. This prob-
lem can be viewed as a simple HTN planning problem, in
which there is a single task, “arrange travel”, which can be
decomposed into arranging transportation, accommodations,
and local transportation. Each of these more specific tasks
can successively be decomposed based on alternative modes
of transportation and accommodations, eventually reducing
to primitive actions that can be executed in the world. Further
constraints can be imposed to restrict decompositions.

A formal definition of HTN planning with preferences
follows. Most of the basic definitions follow Ghallabet
al. [2004].
Definition 1 (HTN Planning Problem) An HTN planning
problem is a 3-tupleP = (s0, w0, D) wheres0 is the ini-
tial state,w0 is a task network called the initial task network,
andD is the HTN planning domain which consists of a set of
operators and methods.

A domain is a pairD = (O, M) whereO is a set of oper-
ators andM is a set of methods. An operator is a primitive
action, described by a tripleo =(name(o), pre(o), eff(o)), cor-
responding to the operator’s name, preconditions and effects.
In our example, ignoring the parameters, operators might in-
clude:book-train, book-hotel,andbook-flight.

A taskconsists of a task symbol and a list of arguments. A
task is primitive if its task symbol is an operator name and its
parameters match, otherwise it isnonprimitive. In our exam-
ple, arrange-transand arrange-accare nonprimitive tasks,
while book-flightandbook-carare primitive tasks.

A method,m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprimi-
tive task and the method’s task network, comprising subtasks
and constraints. Methodm is relevant for a taskt if there
is a substitutionσ such thatσ(t) =task(m). Several methods
can be relevant to a particular nonprimitive taskt, leading to
different decompositions oft. In our example, the method

with name by-flight-transcan be used to decompose thetask
arrange-transinto thesubtasksof booking a flight and pay-
ing, with the constraint (constr) that the booking precede pay-
ment. An operatoro may also accomplish a ground primitive
taskt if their names match.
Definition 2 (Task Network) A task network is a pair
w=(U, C) where U is a set of task nodes and C is a set of
constraints. Each task node u∈ U contains a tasktu. If all of
the tasks are primitive, then w is called primitive; otherwise
it is called nonprimitive.

In our example, we could have a task network(U,C)
whereU = {u1, u2}, u1 =book-car, andu2= pay, andC
is a precedence constraint such thatu1 must occur beforeu2

and a before-constraint such that at least one car is available
for rent beforeu1.
Definition 3 (Plan) π = o1o2 . . . ok is a plan for HTN plan-
ning programP = (s0, w0, D) if there is a primitive decom-
position,w, of w0 of whichπ is an instance.

Finally, to define the notion ofpreference-basedplanning
we assume the existence of a reflexive and transitive relation
� between plans. Ifπ1 andπ2 are plans forP andπ1 � π2

we say thatπ1 is at least as preferred asπ2. We useπ1 ≺ π2

as an abbreviation forπ1 � π2 andπ2 6� π1.
Definition 4 (Preference-based HTN Planning)An HTN
planning problem with user preferences is described as a
4-tupleP = (s0, w0, D,�) where� is a preorder between
plans. A planπ is a solution toP if and only if: π is a plan
for P ′ = (s0, w0, D) and there does not exists a planπ′ for
P ′ such thatπ′ ≺ π.

The� relation can be defined in many ways. Below we
describe PDDL3, which defines� quantitatively through a
metric function.

2.2 Brief Description of PDDL3
The Planning Domain Definition Language (PDDL) is the
de facto standard input language for many planning systems.
PDDL3 [Gerevini et al., 2009] extends PDDL2.2 to sup-
port the specification of preferences and hard constraints over
stateproperties of a trajectory. These preferences form the
building blocks for definition of a PDDL3metric functionthat
defines the quality of a plan. In this context PBP necessitates
maximization (or minimization) of the metric function. In
what follows, we describe those elements of PDDL3 that are
most relevant to our work.
Temporally extended preferences/constraints PDDL3
specifies temporally extended preferences (TEPs) and tempo-
rally extended hard constraints in a subset of linear temporal
logic (LTL). Preferences are given names in their declaration,
to allow for later reference. The following PDDL3 code il-
lustrates one preference and one hard constraint.

(forall (?l - light)
(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive)
(not (holding ?x)))

Thep-light preference suggests that the agent eventually
turn all the lights off. The (unnamed) hard constraint estab-
lishes that an explosive object cannot be held by the agent at
any point in a valid plan.

116

When a preference isexternally universally quantified, it
defines a family of preferences, comprising an individual
preference for each binding of the variables in the quantifier.
Therefore, preferencep-light defines an individual pref-
erence for each object of typelight in the domain.

Temporal operators cannot be nested in PDDL3. Our ap-
proach can however handle the more general case of nested
temporal operators.
Precondition Preferences Precondition preferences are
atemporal formulae expressing conditions that should ideally
hold in the state in which the action is performed. They are
defined as part of the action’s precondition.
Simple Preferences Simple preferences are atemporal for-
mulae that express a preference for certain conditions to hold
in the final state of the plan. They are declared as part of the
goal. For example, the following PDDL3 code:
(:goal

(and (delivered pkg1 depot1)
(preference p-truck (at truck depot1))))

specifies both a hard goal (pkg1must be delivered at
depot1) and a simple preference (thattruck is at
depot1). Simple preferences can also be quantified.
Metric Function The metric function defines the quality of
a plan, generally depending on the preferences that have been
achieved by the plan. To this end, the PDDL3 expression
(is-violated name), returns the number of individual
preferences in thename family of preferences that have been
violated by the plan.

Finally, it is also possible to define whether we want to
maximize or minimize the metric, and how we want to weigh
its different components. For example, the PDDL3 metric
function:
(:metric minimize (+

(* 40 (is-violated p-light))
(* 20 (is-violated p-truck))))

specifies that it is twice as important to satisfy preference
p-light as to satisfy preferencep-truck.

Since it is always possible to transform a metric that re-
quires maximization into one that requires minimization, we
will assume that the metric is always beingminimized.

Finally, we now complete the formal definition for HTN
planning with PDDL3 preferences. Given a PDDL3 metric
functionM theHTN preference-based planning problem with
PDDL3 preferencesis defined by Definition 4, where the re-
lation� is such thatπ1 � π2 iff M(π1) ≤ M(π2).

3 PDDL3 Extended to HTN
In this section, we extend PDDL3 with the ability to ex-
press preferences over HTN constructs. As argued in Section
1, supporting preferences over how tasks are decomposed,
their preferred parameterizations, and the conditions under-
which these preferences hold, is compelling. It goes beyond
the traditional specification of preferences over the properties
of states within plan trajectories to provide preferences over
non-functional properties of the planning problem including
howsome planning objective is accomplished. This is partic-
ularly useful when HTN methods are realized using web ser-
vice software components, because these services have many

non-functional properties that distinguish them (e.g., credit
cards accepted, country of origin, trustworthiness, etc.) and
that influence user preferences.

In designing a preference specification language for HTN
planning, we made a number of strategic design decisions.
We first considered adding our preference specifications di-
rectly to the definitions of HTN methods. This seemed like
a natural extension to the hard constraints that are already
part of method definitions. Unfortunately, this precludes easy
contextualization of methods relative to the task the method
is realizing. For example, in the travel domain, many meth-
ods may eventually involve the primitive operation ofpay-
ing, but a user may prefer different methods of payment de-
pendent upon the high-level task being realized (e.g.,When
booking a car, pay with amex to exploit amex’s free collision
coverage, when booking a flight, pay with my Aeroplan-visa
to collect travel bonus points, etc.). We also found the op-
tion of including preferences in method definitions unappeal-
ing because we wished to separate domain-specific, but user-
independent knowledge, such as method definitions, from
user-specific preferences. Separating the two, enables users
to share method definitions but individualize preferences. We
also wished to leverage the popularity of PDDL3 as a lan-
guage for preference specifications.

Here, we extend PDDL3 to incorporate complex action-
centric preferences over HTN tasks. This gives users the
ability to express preferences over certain parameterization
of a task (e.g., preferring one task grounding to another) and
over certain decompositions of nonprimitive tasks (i.e., pre-
fer to apply a certain method over another). To support pref-
erences over task occurrences (primitive and nonprimitive)
and task decompositions, we added three new constructs to
PDDL3: occ(a), initiate(x) and terminate(x), wherea is
a primitive task (i.e., an action), andx is either a task or a
name of method.occ(a) states that the primitive taska oc-
curs in the present state. On the other handinitiate(t) and
terminate(t) state, respectively, that the taskt is initiated or
terminated in the current state. Similarlyinitiate(n) (resp.
terminate(n)) states that the application of method namedn
is initiated (resp. terminated) in the current state. These new
constructs can be used within simple and temporally extended
preferences and constraints, but not within precondition pref-
erences.

The following are a few temporally extended preferences
from our travel domain1 that use the above extension.

(preference p1
(always (not (occ (pay MasterCard)))))

(preference p2 (sometime (occ
(book-flight SA Eco Direct WindowSeat))))

(preference p3 (imply (close origin dest)
(sometime (initiate (by-rail-trans)))))

(preference p4
(sometime-after (terminate (arrange-trans))

(initiate (arrange-acc))))

Thep1 preference states that the user never pays by Mas-
tercard. Thep2 preference states that at some point the user

1For simplicity many parameters have been suppressed.

117

books a direct economy window-seated flight with a Star Al-
liance (SA) carrier. Thep3 preference states that theby-rail-
trans method is applied when origin is close to destination.
Finally p4 states thatarrange-transtask is terminated before
the arrange-acctask begins (for example: finish arranging
your transportation before booking a hotel).

Semantics: The semantics of the preference language com-
prises two parts: (1) a formal definition of the satisfaction of
individual preference formulae, and (2) a formal definition of
the aggregation of preferences through an objective function.
The satisfaction of individual preference formulae is defined
by mapping HTN decompositions and LTL formulae into the
situation calculus[Reiter, 2001]. In so doing, satisfaction of
a preference formula is reduced to entailment of the formula
in a logical theory. A sketch of the situation calculus encod-
ing is found in Appendix A. Preference formulae are com-
posed into a metric function. The semantics of the metric
function, including the aggregation of quantified preferences
via theis-violated function, is defined in the same way
as in PDDL3, following Gereviniet al. [2009].

4 Preprocessing HTN problems
Before searching for a most preferred plan, we preprocess the
original problem. This is needed in order to make the plan-
ning problem more easily manageable by standard planning
techniques. We accomplish this objective by removing all of
the modal operators appearing in the preferences. The result-
ing domain, has only final-state preferences, and all prefer-
ences refer to state properties.

By converting TEPs into final-state preferences, our heuris-
tic functions are only defined in terms of domain predicates,
rather than being based on non-standard evaluations of an
LTL formula, such as the ones used by other approaches
[e.g. Bienvenuet al., 2006]. Nor do we need to implement
specialized algorithms to reason about LTL formulae such as
the progression algorithm used byTLPLAN [Bacchus and Ka-
banza, 1998].

Further, by removing the modal operatorsocc,initiate, and
terminate we provide a way to refer to these operators via
state predicates. This allows us to use standard HTN planning
software as modules of our planner, without needing special
modifications such as a mechanism to keep track of the tasks
that have been decomposed or the methods that have been
applied.
Preprocessing Tasks and MethodsOur preferences can re-
fer to the occurrence of tasks and the application of methods.
In order to reason about task occurrences and method applica-
tions, we preprocess the methods of our HTN problem. In the
compiled problem, for each non-primitive taskt that occurs
in some preference of the original problem, there are two new
predicates:executing-t andterminated-t. If a0a1 · · · an is
a plan for the problem, andai andaj are respectively the first
and last primitive actions that resulted from decomposingt,
thenexecuting-t is true in all the states in between the ap-
plication ofai andaj , andterminated-t is true in all states
afteraj . This is accomplished by adding new actions at the
beginning and end of each task network in the methods that
decomposet. Further, for each primitive task (i.e., operator)

t occurring in the preferences, we extend the compiled prob-
lem with a newocc-t predicate, such thatocc-t is true iff t has
just been performed.

Finally, we modify each methodm whose namen (i.e.,
n = name(m)) that occurs in some preference. We use
two predicatesexecuting-n and terminated-n, whose up-
dates are realized analogously to their task versions described
above.
Preprocessing the Modal Operators We replace each
occurrence ofocc(t), initiate(t), andterminate(t) by occ-t
whent is primitive. We replace the occurrence ofinitiate(t)
by executing-t, andterminate(t) by terminated-t whent
is non-primitive. Occurrences ofinitiate(n) are replaced by
executing-n, andterminate(n) by terminated-n.

Up to this point all our preferences exclusively reference
predicates of the HTN problem, enabling us to apply standard
techniques to simplify the problem further.
Temporally Extended and Precondition Preferences We
use an existing compilation technique[Baieret al., 2009] to
encode the satisfaction of temporally extended preferences
into predicates of the domain. For each LTL preferenceϕ
in the original problem, we generate additional predicates for
the compiled domain that encode the various ways in whichϕ
can become true. Indeed, the additional predicates represent a
finite-state automaton forϕ, where the accepting state of the
automaton represents satisfaction of the preference. In our re-
sulting domains, we axiomatically define anaccepting pred-
icate forϕ, which represents the accepting condition ofϕ’s
automaton. The accepting predicate is true at a states if and
only if ϕ is satisfied ats. Quantified preferences are compiled
into parametric automata for efficiency. Finally, precondition
preferences, preferences that should ideally hold in the state
in which the action is performed, are compiled away as con-
ditional action costs, as is done in theHPLAN -P planner. For
more details refer to the original paper[Baieret al., 2009].

5 Preference-based Planning with HTNs
We address the problem of finding a most preferred decom-
position of an HTN by performing a best-first, incremental
search in the plan search space induced by the initial task net-
work. The search is performed in a series ofepisodes, each of
which returns a sequence of ground primitive operators (i.e.,
a plan that satisfies the initial task network). During each
episode, the search performs branch-and-bound pruning—a
search node is pruned from the search space, if we can prove
that it will not lead to a plan that is better than the one found
in the previous episode. In the first episode no pruning is per-
formed. In each episode, search is guided byinadmissible
heuristics, designed specifically to guide the search quickly
to a good decomposition. The remainder of this section de-
scribes the heuristics we use, and the planning algorithm.

5.1 Algorithm
Our HTN PBP algorithm outlined in Figure 1, performs a
best-first, incremental search in the space of decompositions
of a given initial task network. It takes as input a planning
problem (s0, w0, D), a metric function METRICFN, and a
heuristic function HEURISTICFN.

118

1: function HTNPBP(s0, w0,D, METRICFN,HEURISTICFN)
2: frontier ← 〈s0, w0, ∅〉 ⊲ initialize frontier
3: bestMetric ← worst case upper bound
4: while frontier is not emptydo
5: current ← Extract best element fromfrontier
6: 〈s, w, partialP 〉 ← current
7: lbound ← METRICBOUNDFN(s)
8: if lbound < bestMetric then ⊲ pruning by bounding
9: if w = ∅ andcurrent ’s metric< bestMetric then

10: Output planpartialP
11: bestMetric ← METRICFN(s)

12: succ← successors ofcurrent
13: frontier ←mergesucc into frontier

Figure 1: A sketch of our HTN PBP algorithm.

The main variables kept by the algorithm arefrontier and
bestMetric. frontier contains the nodes in the search fron-
tier. Each of these nodes is of the form〈s, w, partialP 〉,
wheres is a plan state,w is a task network, andpartialP
is a partial plan. Intuitively, a search node〈s, w, partialP 〉
represents the fact that task networkw remains to be decom-
posed in states, and that states is reached from the initial
state of the planning problems0 by performing the sequence
of actionspartialP . frontier is initialized with a single node
〈s0, w0, ∅〉, where∅ represents the empty plan. Its elements
are always sorted according to the function HEURISTICFN.
On the other hand,bestMetric is a variable that stores the
metric value of the best plan found so far, and it is initialized
to a high value representing a worst case upper bound.

Search is carried out in the mainwhile loop. In each
iteration, HTNPLAN -P extracts the best element from the
frontier and places it incurrent . Then, an estimation of
a lowerbound of the metric value that can be achieved by
decomposingw – current ’s task network – is computed
(Line 7) using the function METRICBOUNDFN. Function
METRICBOUNDFN will be computed using theoptimistic
metricfunction described in the next subsection.

The algorithmprunescurrent from the search space if
lbound is greater than or equal tobestMetric. Otherwise,
HTNPLAN -P checks whether or notcurrent corresponds
to a plan (this happens when its task network is empty). If
current corresponds to a plan, the sequence of actions in its
tuple is returned and the value ofbestMetric is updated.

Finally, all successors tocurrent are computed using
the Partial-order Forward Decomposition procedure (PFD)
[Ghallabet al., 2004], and merged into the frontier. The al-
gorithm terminates whenfrontier is empty.

5.2 Heuristics
Our algorithm searches for a plan in the space of all possible
decompositions of the initial task network. HTNs that have
been designed specifically to be customizable by user prefer-
ences may contain tasks that could be decomposed by a fairly
large number of methods. In this scenario, it is essential for
the algorithm to be able to evaluate which methods to use to
decompose a task in order to get to a reasonably good solu-
tion quickly. The heuristics we propose in this section are
specifically designed to address this problem. All heuristics
are evaluated in a search node〈s, w, partialP 〉.
Optimistic Metric Function (OM) This function is an es-

timate of the best metric value achievable by any plan that can
result from the decomposition of the current task networkw.
Its value is computed by evaluating the metric function ins
but assuming that (1) no further precondition preferences will
be violated in the future, (2) temporally extended preference
that are violated and that can be proved to be unachievable
from s are regarded as false, (3) all remaining preferences
are regarded as satisfied. To prove that a temporally extended
preferencep is unachievable froms, OM uses a sufficient
condition: it checks whether or not the automaton forp is
currently in a state from which there is no path to an accept-
ing state. Recall that an accepting state is reached when the
preference formula is satisfied.

OM provides a lower bound on the best plan extending
the partial planpartialP assuming that the metric function is
non-decreasing in the number of violated preferences. This is
the function used as METRICBOUNDFN in our planner.OM
is a variant of “optimistic weight”[Bienvenuet al., 2006].
Pessimistic Metric Function (PM) This function is the
dual ofOM . While OM regards anything that is not prov-
ably violated (regardless of future actions) as satisfied,PM
regards anything that is not provably satisfied (regardless of
future actions) as violated. Its value is computed by evaluat-
ing the metric function ins but assuming that (1) no further
precondition preferences will be violated in the future, (2)
temporally extended preferences that are satisfied and that can
be proved to be true in any successor ofs are regarded as sat-
isfied, (3) all remaining preferences are regarded as violated.
To prove that a temporally extended preferencep is true in
any successor ofs, we check whether in the current state of
the world the automaton forp would be in an accepting state
that is also a sink state, i.e., from which it is not possible to
escape, regardless of the actions performed in the future.

For reasonable metric functions (e.g., those non-decreasing
in the number of violated preferences),PM is monotoni-
cally decreasing as more actions are added topartialP . PM
provides good guidance because it is a measure of assured
progress towards the satisfaction of the preferences.
Lookahead Metric Function (LA) This function is an es-
timate of the metric of thebest successorto the current node.
It is computed by conducting a two-phase search. In the first
phase, a search for all possible decompositions ofw is per-
formed, up to a certain depthk. In the second phase, for
each of the resulting nodes, a single primitive decomposition
is computed, using depth-first search. The result ofLA is
the best metric value among all the fully decomposed nodes.
Intuitively, LA estimates the metric value of a node by first
performing an exhaustive search for decompositions of the
current node, and then by approximating the metric value of
the resulting nodes by the metric value of the the first primi-
tive decomposition that can be found, a form of sampling of
the remainder of the search space.
Depth (D) We use the depth as another heuristic to guide
the search. This heuristic does not take into account the pref-
erences. Rather, it encourages the planner to find a decompo-
sition soon. Since the search is guided by the HTN structure,
guiding the search toward finding a plan using depth is nat-
ural. Other HTN planners such asSHOP2 also use depth or
depth-first search to guide the search to find a plan quickly.

119

Strategy Check whether If tied If tied
No-LA OM1 < OM2 PM1 < PM2 -
LA LA1 < LA2 OM1 < OM2 PM1 < PM2

Figure 2:Strategies to determine whether a noden1 is better than
a noden2. OM is the optimistic-metric,PM is the pessimistic-
metric, andLA is the look-ahead heuristic.

The HEURISTICFN function we use in our algorithm cor-
responds to aprioritized sequenceof the above heuristics, in
which D is always considered first. As such, when compar-
ing two nodes we look at their depths, returning the one that
has a higher depth value. If the depths are equal, we use the
other heuristics in sequence to break ties. Figure 2 outlines
the sequences we have used in our experiments.

5.3 Optimality and Pruning
Since we are using inadmissible heuristics, we cannot guar-
antee that the plans we generate are optimal. The only way to
do this is to run our algorithm until the space is exhausted. In
this case, the final plan returned is guaranteed to be optimal.

Exhaustively searching the search space is not reasonable
in most planning domains, however here we are able to ex-
ploit properties of our planning problem to make this achiev-
able some of the time. Specifically, most HTN specifica-
tions severely restrict the search space so that, relative to a
classical planning problem, the search space is exhaustively
searchable. Further, in the case where our preference metric
function is additive, ourOM heuristic function enables us to
soundly prune partial plans from our search space. Specif-
ically, we say that a pruning strategy is sound if and only
if whenever a node is pruned (line 8) the metric value of
any plan extending this node will exceed the current bound
bestMetric. This means that no state will be incorrectly
pruned from the search space.
Proposition 1 TheOM function provides sounds pruning if
the metric function is non-decreasing in the number of satis-
fied preferences, non-decreasing in plan length, and indepen-
dent of other state properties.
A metric is non-decreasing in plan length if one cannot make
a plan better by increasing its length only (without satisfying
additional preferences).
Theorem 1 If the algorithm performs sound pruning, then
the last plan returned, if any, is optimal.
Proof sketch: Follows the proof of optimality for the
HPLAN -P planner[Baieret al., 2009].

6 Implementation and Evaluation
Our implemented HTN PBP planner,HTNPLAN -P, has two
modules: a preprocessor and a preference-based HTN plan-
ner. The preprocessor reads PDDL3 problems and generates a
SHOP2 planning problem with only simple (final-state) pref-
erences. The planner itself is a modification of the LISP ver-
sion of SHOP2 [Nau et al., 2003] that implements the algo-
rithm and heuristics described above.

We had three objectives in performing our experimental
evaluation: to evaluate the relative effectiveness of our heuris-
tics, to compare our planner with state-of-the-art PBP plan-
ners, and to compare our planner with other HTN PBP plan-
ners. Unfortunately, we were unable to achieve our third ob-

HTNPL AN-P
No-LA LA SGPlan5 HPL AN-P

#Prb #S #Best #S #Best #S #Best #S #Best
travel 41 41 3 41 37 41 1 41 17
rovers 20 20 4 20 19 20 1 11 2
trucks 20 20 6 20 15 20 11 4 2

Figure 3:Comparison between two configurations ofHTNPLAN -
P, HPLAN -P, andSGPlan5 on rovers, trucks, and travel do-
mains. Entries show number of problems in each domain (#Prb),
number of solved instances in each domain (#S) by each planner,
and number of times each planner found a plan of equal or better
quality to those found by all other planners (#Best). All planners
were ran for 60 minutes, and with a limit of 2GB per process.

jective, since we could not obtain a copy ofSCUP, the only
HTN PBP planner we know of[Lin et al., 2008]. (See Section
7 for a qualitative comparison.)

We used three domains for the evaluation: therovers do-
main, thetrucks domain, both standard IPC benchmark do-
mains; and thetravel domain, which is a domain of our own
making. Both therovers and trucks domains comprised
the preferences from IPC-5. Inrovers domain we used the
HTN designed by the developers ofSHOP2 for IPC-2 and in
trucks we created our own HTN. We modified the HTN in
rovers very slightly to reflect the true nondeterminism in our
HTNPLAN -P planner: i.e., if a task could be decomposed us-
ing two different methods, then both methods would be con-
sidered, not just the first applicable one. We also modified the
IPC-5 preferences slightly to ensure fair comparison between
planners. Therovers andtrucks problems sets comprised 20
problems. The number of preferences in these problem sets
ranged in size, with several having over 100 preferences per
problem instance.

The travel domain is a PDDL3 formulation of the domain
introduced in Example 1. Its problem set was designed in or-
der to evaluate the PBP approaches based on two dimensions:
(1) scalability, which we achieved by increasing the branch-
ing factor and grounding options of the domain, and (2) the
complexity of the preferences, which we achieved by inject-
ing inconsistencies (i.e., conflicts) among the preferences. In
particular, we created 41 problems with preferences gener-
ated automatically with increasing complexity. For example
problem 3 has 27 preferences with 8 conflicts in the choice of
transportation while problem 40 has 134 preferences with 54
conflicts in the choice of transportation.

Our experiments evaluated the performance of four
planners: HTNPLAN -P with the No-LA heuristic, and
HTNPLAN -P with the LA heuristic,SGPlan5 [Hsu et al.,
2007], and HPLAN -P– the latter two being the top PBP
performers at IPC-5. Results are summarized in Figure 3,
and show thatHTNPLAN -P generated plans that in all but
a few cases equalled or exceeded the quality of plans re-
turned byHPLAN -P and SGPlan5. The results also show
thatHTNPLAN -P performs better on the three domains with
theLA heuristic.

Conducting the search in a series of episodes does help in
finding better-quality plans. To evaluate this, we calculated
thepercent metric improvement(PMI), i.e., the percent differ-
ence between the metric of the first and the last plan returned
by our planner (relative to the first plan). The average PMI is

120

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 15 30 120 300 900 3600

M
et

ric

Time (sec.)

No-LA

LA

Figure 4:Added metric vs. time for the two strategies in the trucks
domain. Recall that a low metric value means higher quality plan.
When a problem is not solved at timet, we add its worst possible
metric value (i.e. we assume no satisfied preferences).

40% inrovers, 72% intrucks, and 8% intravel.
To compare the relative performance betweenLA andNo-

LA, we averaged the percent metric difference (relative to the
worst plan) in problems in which the configurations found
a different plan. This difference is 45% inrovers, 60% in
trucks, and 3% intravel, all in favour ofLA.

We created 18 instances of thetravel domain where we
tested the performance betweenLA andNo-LA on problems
that have preferences that use our HTN extension of PDDL3.
The average PMI for these problems is 13%, and the relative
performance between the two is 5%.

Finally Figure 4 shows the decrease of the sum of the met-
ric value of all instances of the trucks domain relative to solv-
ing time. We observe a rapid improvement during the first
seconds of search, followed by a marginal one after 900 sec-
onds. Other domains exhibit similar behaviour.

7 Discussion and Related Work
PBP has been the subject of much interest recently, spurred
on by three IPC-5 tracks on this subject. A number of plan-
ners were developed, all based on the competition’s PDDL3
language. Our work is distinguished in that it employs HTN
domain control extending PDDL3 with HTN-inspired con-
structs. The planner itself then employs heuristics and algo-
rithms that exploit HTN-specific preferences and control. Ex-
perimental evaluation of our planner shows thatHTNPLAN -
P generates plans that, in all but a few cases, equal or exceed
the best PBP in plan quality. As such, it argues generally for
HTN PBP as a viable and promising approach to PBP.

With respect to advisable HTN planners, Myers was the
first to advocate augmenting HTN planning with hard con-
straints to capture advice onhow todecompose HTNs, ex-
tending the approach to conflicing advice in[Myers, 2000].
Their work is similar in vision and spirit to our work, but
different with respect to the realization. In their work, pref-
erences are limited to consistent combinations of HTN ad-
vise; they do no include the rich temporally extended state-
centric preferences found in PDDL3, nor do they support the
weighted combination of preferences into a metric function
that defines plan quality. With respect to computing HTN
PBP, Myers’ algorithm does not exploit lookahead heuristics

or sound pruning techniques.
The most notable related work is that of Linet al. [2008]

who developed a prototype HTN PBP planner,SCUP, tai-
lored to the task of web service composition. Unfortunately,
SCUP is not available for experimental comparison, however
there are fundamental differences between the planners, that
limit the value of such a comparison. Most notably, Linet
al. [2008] do not extend PDDL3 with HTN-specific prefer-
ence constructs, a hallmark of our work. Further, their plan-
ning algorithm appears to be unable to handle conflicting user
preferences since they note that such conflict detection is per-
formed manually prior to invocation of their planner. Opti-
mization of conflicting preferences is common in most PBP’s,
including ours. Also, their approach to HTN PBP planning is
quite different from ours. In particular, they translate user
preferences into HTN constraints and preprocess the prefer-
ences to check if additional tasks need to be added tow0. This
is well motivated by the task of web service composition, but
not a practice found in classical HTN planning.

Also related is theASPEN planner[Rabideauet al., 2000],
which performs a simple form of preference-based plan-
ning, focused mainly on preferences over resources. It can
plan with HTN-like task decomposition, but its preference
language is far less expressive than ours. In contrast to
HTNPLAN -P, ASPEN performs local search for a local op-
timum. It does not perform well when preferences are inter-
acting, nested, or not local to a specific activity.

It is interesting and important to note that the HTN plan-
nersSHOP2 [Nauet al., 2003] andENQUIRER [Kuter et al.,
2004] can be seen to handle some simple user preferences.
In particular the order of methods and sorted preconditions in
a domain description specifies a user preference over which
method is more preferred to decompose a task. Hence users
may write different versions of a domain description to spec-
ify simple preferences. However, unlikeHTNPLAN -P the
user constraints are treated as hard constraints and (partial)
plans that do not meet these constraints will be pruned from
the search space.

Finally, observe that we approached HTN PBP by integrat-
ing PBP into HTN planning. An alternative approach would
be to integrate HTN into PBP. Kambhampatiet al. [1998]
hints at how this might be done by integrating HTN into their
plan repair planning paradigm. For the integration of HTN
into PBP to be effective, heuristics would have to be devel-
oped that exploited the special compiled HTN structure. Fur-
ther, such a compilation would not so easily lend itself to
mixed-initiative PBP, a topic for future investigation.

Acknowledgements:We thank our colleague Christian Fritz
for helpful discussion. We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the Ontario Ministry of Innovations
Early Researcher Award (ERA).

References

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza. Plan-
ning for temporally extended goals.Annals of Mathematics and
Artificial Intelligence, 22(1-2):5–27, 1998.

121

[Baieret al., 2009] J. A. Baier, F. Bacchus, and S. A. McIlraith. A
heuristic search approach to planning with temporally extended
preferences.Artificial Intelligence, 173(5-6):593–618, 2009.

[Bienvenuet al., 2006] M. Bienvenu, C. Fritz, and S. A. McIlraith.
Planning with qualitative temporal preferences. InProc. of the
10th Int’l Conference on Knowledge Representation and Reason-
ing (KR), 134–144, 2006.

[Gabaldon, 2002] A. Gabaldon. Programming hierarchical task net-
works in the situation calculus. InAIPS’02 Workshop on On-line
Planning and Scheduling, April 2002.

[Gabaldon, 2004] A. Gabaldon. Precondition control and the pro-
gression algorithm. InProc. of the 9th Int’l Conference on
Knowledge Representation and Reasoning (KR), 634–643. AAAI
Press, 2004.

[Gereviniet al., 2009] A. Gerevini, P. Haslum, D. Long, A. Saetti,
and Y. Dimopoulos. Deterministic planning in the fifth interna-
tional planning competition: PDDL3 and experimental evalua-
tion of the planners.Artificial Intelligence, 173(5-6):619–668,
2009.

[Ghallabet al., 2004] M. Ghallab, D. Nau, and P. Traverso.Hierar-
chical Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

[Hsuet al., 2007] C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. InProc. of the 20th Int’l Joint
Conference on Artificial Intelligence (IJCAI), 1924–1929, 2007.

[Kambhampatiet al., 1998] S. Kambhampati, A. D. Mali, and
B. Srivastava. Hybrid planning for partially hierarchical domains.
In Proc. of the 15th National Conference on Artificial Intelligence
(AAAI), 882–888, 1998.

[Kuteret al., 2004] U. Kuter, E. Sirin, D. S. Nau, B. Parsia, and
J. A. Hendler. Information gathering during planning for web
service composition. InProc. of the 3rd Int’l Semantic Web Con-
ference (ISWC), 335–349, 2004.

[Lin et al., 2008] N. Lin, U. Kuter, and E. Sirin. Web service com-
position with user preferences. InProceedings of the 5th Euro-
pean Semantic Web Conference (ESWC), 629–643, 2008.

[Myers, 2000] K. L. Myers. Planning with conflicting advice. In
Proc. of the 5th Int’l Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS), 355–362, 2000.

[Nauet al., 2003] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. Mur-
dock, D. Wu, and F. Yaman. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20:379–404, 2003.

[Rabideauet al., 2000] G. Rabideau, B. Engelhardt, and S. A.
Chien. Using generic preferences to incrementally improve plan
quality. In Proc. of the 5th Int’l Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS), 236–245, 2000.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.

[Sohrabi and McIlraith, 2008] S. Sohrabi and S. A. McIlraith. On
planning with preferences in HTN. InProc. of the 12th Int’l
Workshop on Non-Monotonic Reasoning (NMR), 241–248, 2008.

A Sketch of the Semantics
The satisfaction of all constraint and preference formulae is defined
by a translation of formulae into the Situation Calculus (SC), a log-
ical language for reasoning about action and change[Reiter, 2001]

Formulae are satified if their translations are entailed by the SC log-
ical theory representing the HTN planning problem and plan. The
translation of our HTN constructs are more complex, so we begin
with the original elements of PDDL3.

In the SC, primitive actionsa are instantaneous. A situations
is ahistoryof primitive actions performed at a distinguished initial
situationS0. The logical functiondo(a, s) returns the situation that
corresponds to performing actiona in s. In the SC, thestateof
the world is expressed in terms of functions and relations (fluents)
relativized to a particular situations, e.g.,F (~x, s).

The translation to SC proceeds as follows. Since we are operating
over finite domains, all universally quantified PDDL3 formulae are
translated into individual grounded instances of the formulae. Sim-
ple preferences (resp. constraints) are translated into corresponding
SC formulae. Temporally extended preferences (resp. constraints)
are translated into SC formulae following the translation of LTL for-
mulae into SC by Gabaldon[2004] and Bienvenuet al. [2006].

To define the semantics of our HTN extension, we appeal to a
translation of HTN planning into SC entailment of a ConGolog pro-
gram that is again credited to Gabaldon[2002]. ConGolog is a logic
programming language built on top of the SC that supports the ex-
pression of complex actions. In short, the translation defines a way
to construct a logical theory and formulaΨ(s) such thatΨ(s) is en-
tailed by the logical theory iff the sequence of actions encoded bys
is a solution to the original HTN planning problem.

More specifically, the initial HTN states0 is encoded as the initial
situation,S0. The HTN domain description maps to a corresponding
SC domain description,D, where for every operatoro there is a
corresponding primitive actiona, such that the preconditions and the
effects ofo are axiomatized inD. Every method and nonprimitive
task together with constraints is encoded as a ConGolog procedure.
R is the set of procedures in the ConGolog domain theory.

In addition to this translation, we need to deal with the new el-
ements of PDDL3 that we introduced:occ(a), initiate(X), and
terminate(X). To this end, following Gabaldon’s translation we
add two new primitive actionsstart(P (~v)), end(P (~v)), to each pro-
cedureP that corrensponds to an HTN task or method. In addi-
tion, we add the fluentsexecuting(P (~v), s) and terminated(X, s),
whereP (~v) is a ConGolog procedure andX is eitherP (~v) or a
primitive actiona. executing(P (~v), s) states thatP (~v) is executing
in situations, terminated(X, s) states thatX has terminated ins.
executing(a, s) wherea is a primitive action, is defined to be false.

occ(a), initiate(X), and terminate(X) are translated into the
situation calculus by building SC formulae that are evaluated when
they appear in a preference formula. Below we define these for-
mulae, using a notation compatible with Gabaldon’s translation, in
which ϕ[s′, s] denotes that the (temporal) expressionϕ holds over
the situation fragments, that starts in situations′.

occ(a) tells us the first action executed isa:
occ(a)[s′, s] = do(a, s′) ⊑ s

initiate(X) andterminate(X) are interpreted as follows:

initiate(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A
do(start(X), s′) ⊑ s if X ∈ R

terminate(X)[s′, s] =

do(X, s′) ⊑ s if X ∈ A
do(end(X), s′) ⊑ s if X ∈ R,

wheres′ ⊑ s denotes that situations′ is a predecessor of situation
s, andA is a set containing all primitive actions.

Space precludes a full exposition of the translation. Details pro-
vided here and in Section 3, together with the details in Gabal-
don[2002] and Bienvenuet al. [2006] provide all the pieces.

122

Defaults in Action: Non-monotonic Reasoning About States in Action Calculi

Hannes Strass and Michael Thielscher
Department of Computer Science
Dresden University of Technology
{hannes.strass, mit}@inf.tu-dresden.de

Abstract

We propose a mechanism for default reasoning in action for-
malisms that allows to make useful assumptions unless infor-
mation to the contrary. The mechanism is shown to behave
properly when actions are performed, in particular we show
that it suffices to apply defaults to the initial state. This allows
for very simple reasoning, since the defaults need only be ap-
plied once and monotonic entailment can thence be used to
solve projection problems. We finally consider two simple,
natural generalizations of the approach and show that they
admit unintuitive conclusions, thereby pointing out directions
for further research.

Introduction
This paper is concerned with the combination of two suc-
cessful approaches to the logical formalization of common-
sense reasoning: logics for actions and non-monotonic log-
ics. The present work is by no means the first to join the
two; non-monotonic logics have already been used by the
reasoning about actions community in the past. After (Mc-
Carthy and Hayes 1969) discovered the fundamental prob-
lem of determining the non-effects of actions, the frame
problem, it was widely believed that non-monotonic reason-
ing were necessary to solve it. Then (Hanks and McDermott
1987) gave a (by now famous) example of how straightfor-
ward use of non-monotonic logics in reasoning about ac-
tions and change can lead to counter-intuitive results. When
monotonic solutions to the frame problem were found (Re-
iter 1991; Thielscher 1999), non-monotonic reasoning again
seemed to be obsolete.

In this paper, we argue that utilizing default logic still is
of use when reasoning about actions. We will not use it to
solve the frame problem, however, the solution to the frame
problem we use here is monotonic and similar to the one of
(Thielscher 1999), but to make useful default assumptions
about states.

The approach we propose uses deterministic actions with-
out conditional effects and a restricted form of default as-
sumptions. The main reasoning task we are interested in is
the projection problem, that is, given an initial situation and
a sequence of actions, the question whether a certain condi-
tion holds in the resulting state. The approach can be used
to draw intuitive conclusions that are not possible to draw in
a monotonic way. As the main result of this paper, we show

that default applications can be restricted to the initial state
without losing any inferences, thus giving way to a simple
reasoning mechanism.

In the second half of the paper, we consider two straight-
forward generalizations of our approach and show how they
permit counterintuitive conclusions, which justifies the re-
strictions made earlier. The first generalization allows for
more general defaults: they are still supernormal, that is,
prerequisite-free and normal, but enable default conclusions
to be “carried back in time.” This clearly disqualifies for
solving projection problems, since we would have to take an
infinite number of future time points into account. The sec-
ond generalization allows for more general effect axioms:
they are still deterministic but permit to express conditional
effects. This again causes conclusions that rely on time
points that are intrinsically irrelevant for the question to be
answered. In both cases, we identify reasons for the unde-
sired inferences and propose how further work can be done
to overcome those shortcomings.

Background
This section introduces the foundations upon which our
work rests. Firstly, a unifying action calculus that we will
use to axiomatize action domains. Secondly, a restricted
version of one of the most prominent non-monotonic logics,
Raymond Reiter’s Default Logic (Reiter 1980).

The Unifying Action Calculus
Recently, (Thielscher 2009) proposed a unifying action cal-
culus (UAC) with the objective of bundling research efforts
in action formalisms. It does not confine to a particular time
structure and can thus be instantiated with situation-based
action calculi, like the Situation Calculus (McCarthy 1963)
or the Fluent Calculus (Thielscher 1999), as well as with
formalisms using a linear time structure, like the Event Cal-
culus (Kowalski and Sergot 1986).

The UAC uses only the sorts FLUENT, ACTION, and TIME
along with the predicates < : TIME × TIME (denoting an
ordering of time points), Holds : FLUENT × TIME (stat-
ing whether a fluent evaluates to true at a given time point),
and Poss : ACTION × TIME × TIME (indicating whether an
action is applicable for particular starting and ending time
points). Uniqueness-of-names is assumed for all (finitely
many) functions into sorts FLUENT and ACTION.

123

The following definition introduces the most important
types of formulas of the unifying action calculus: they allow
to express properties of states and applicability conditions
and effects of actions.

Definition 1. Let ~s be a sequence of variables of sort TIME.

• A state formula Φ[~s] in ~s is a first-order formula with free
variables ~s where
– for each occurrence of Holds(ϕ, s) in Φ[~s] we have s ∈
~s and

– predicate Poss does not occur.

Let s, t be variables of sort TIME and A be a function into
sort ACTION.

• A precondition axiom is of the form

Poss(A(~x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables
among s, t, ~x.
• An effect axiom is of the form

Poss(A(~x), s, t) ⊃
(∀f)((γ+

A ∨ (Holds(f, s) ∧ ¬γ−A)) ≡ Holds(f, t)) (2)

where

γ+
A =

∨
0≤i≤n+

A

f = ϕi and γ−A =
∨

0≤i≤n−A

f = ψi

and the ϕi and ψi are terms of sort FLUENT with free vari-
ables among ~x.

Readers may be curious as to why the predicate Poss car-
ries two time arguments instead of just one: Poss(a, s, t)
is to be read as “action a is possible starting at time s and
ending at time t.” The formulas γ+

A and γ−A enumerate the
positive and negative effects of the action, respectively. This
definition of effect axioms is a restricted version of the orig-
inal definition of (Thielscher 2009)—it only allows for de-
terministic actions with unconditional effects.

A few words on notation and naming conventions: lower-
case letters will denote object-level variables, we usually use
f for sort FLUENT, a for sort ACTION, and s, t for sort TIME.
Capital letters and words will denote object level functions
of all sorts. Lower-case Greek letters will serve as meta-
level variables for fluent and action terms. Capital Greek
letters denote formulas or sets of formulas. As usual, s ≤ t
abbreviates s < t ∨ s = t. Formulas with occurrences of
free variables are assumed universally prenex-quantified.

Next, we formalize the concept of an (action) domain ax-
iomatization with its notion of time and action laws.

Definition 2. A (UAC) domain axiomatization consists of a
finite set of foundational axioms Ω (that define the underly-
ing time structure and do not contain the predicates Holds
and Poss), a set Π of precondition axioms (1), and a set Υ
of effect axioms (2); the latter two for all functions into sort
ACTION.

A domain axiomatization is progressing, if

• Ω |= (∃s : TIME)(∀t : TIME)s ≤ t and

• Ω ∪Π |= Poss(a, s, t) ⊃ s < t .

A domain axiomatization is sequential, if it is progressing
and

Ω ∪Π |= Poss(a, s, t) ∧ Poss(a′, s′, t′) ⊃
(t < t′ ⊃ t ≤ s′) ∧ (t = t′ ⊃ (a = a′ ∧ s = s′))

That is, a domain axiomatization is progressing if there
exists a least time point and time always increases when ap-
plying an action. A sequential domain axiomatization fur-
thermore requires that no two actions overlap.

Lastly, we formalize the intuition of a time point that is
reachable via a finite sequence of actions.

Definition 3. Let Σ be a domain axiomatization. A time
point τ is finitely reachable in Σ iff Σ |= Reach(τ), where
the predicate Reach : TIME is macro-defined by

Reach(r) def= (∀R)((∀s)(Init(s) ⊃ R(s))
∧ (∀a, s, t)(R(s) ∧ Poss(a, s, t) ⊃ R(t)) ⊃ R(r))

Init(t) def= ¬(∃s)s < t

Note that these macros allow us to perform induction on
reachable time points as follows: to show that a certain prop-
erty Ψ[s] holds for all reachable time points, we show that
all minimal time points satisfy the property and that it is pre-
served by action application to reachable time points.

The examples of this paper will employ situations as their
underlying time structure, so we briefly recall the corre-
sponding foundational axioms from (Pirri and Reiter 1999):

¬(s < S0) (3)

s < Do(a, s′) ≡ s ≤ s′ (4)

Do(a, s) = Do(a′, s′) ≡ (a = a′ ∧ s = s′) (5)

(∀P)((P (S0) ∧ (P (s) ⊃ P (Do(a, s)))) ⊃ P (s′)) (6)

The above axioms shall henceforth be referred to as Ωsit.
Whenever we use them as underlying time structure, we
stipulate that for each action function A with right hand
side πA[s] of precondition axiom (1), we have πA[s] ≡
π′A[s] ∧ t = Do(A(~x), s) for some π′A.

Since we are mainly interested in the projection problem,
our domain axiomatizations will usually include a set Σ0 of
state formulas in S0 that characterize the initial situation.

To illustrate the intended usage of the introduced notions,
we make use of a variant of a well-known example already
mentioned earlier: the Yale Shooting scenario (Hanks and
McDermott 1987).

Example 1. Consider the domain axiomatization Σ =
Ωsit ∪ Π ∪ Υ ∪ Σ0. The precondition axioms say that the
action Shoot is possible if the gun is loaded and the actions
Load and Wait are always possible.

Π = {Poss(Shoot, s, t) ≡
(Holds(Loaded, s) ∧ t = Do(Shoot, s)),

Poss(Load, s, t) ≡ t = Do(Load, s),
Poss(Wait, s, t) ≡ t = Do(Wait, s)}

124

With these preconditions and foundational axioms (3)–(6),
the domain axiomatization is sequential. The effect of shoot-
ing is that the turkey ceases to be alive, loading the gun
causes it to be loaded, and waiting does not have any ef-
fect. All effect axioms in Υ are of the form (2), we state
only the γ± different from the empty disjunction.

γ−Shoot = (f = Alive)

γ+
Load = (f = Loaded)

Finally, we state that the turkey is alive in the initial situation
S0.

Σ0 = {Holds(Alive, S0)}

We can now employ logical entailment to answer the
question whether the turkey is still alive after apply-
ing the actions Load, Wait, and Shoot, respectively.
With the notation Do([a1, . . . , an], s) as abbreviation for
Do(an, Do(. . . , Do(a1, s) . . .)), it is easy to see that

Σ |= ¬Holds(Alive, Do([Load,Wait,Shoot], S0).

Default Logic
Introduced in the seminal paper (Reiter 1980), Default Logic
has become one of the most important formalisms for non-
monotonic reasoning. The semantics for supernormal de-
faults used here is taken from (Brewka and Eiter 1999).Here,
a default rule always comes without a prerequisite, and jus-
tification and consequence always coincide. A default rule
can thus also be seen as a hypothesis that we are willing to
assume, but prepared to give up in case of contradiction. A
default theory then adds a set of formulas, the indefeasible
knowledge, that we are not willing to give up for any reason.
Definition 4. A supernormal default rule, or, for short, de-
fault, is a closed first-order formula. Any formulas with oc-
currences of free variables are taken as representatives of
their ground instances.

For a set of closed formulas S, we say the default δ is
active in S if both δ /∈ S and ¬δ /∈ S.

A (supernormal) default theory is a pair (W,D), where
W is a set of sentences and D a set of default rules.

An extension for a default theory can be seen as a way
of assuming as many defaults as possible without creating
inconsistencies. It should be noted that, although the defini-
tion differs, our extensions are extensions in Reiter’s (1980)
sense.
Definition 5. Let (W,D) be a default theory where all de-
fault rules are supernormal and ≺≺ be a total order on D.
Define E0 := Th(W) and for all i > 0,

Ei+1 =

Ei if no default is active in Ei
Th(Ei ∪ {δ}) otherwise, where δ is the ≺≺ -

minimal default active in Ei.

Then the set E :=
⋃
i>0Ei is called the extension gener-

ated by ≺≺. A set of formulas E is a preferred extension for
(W,D) if there exists a total order ≺≺ that generates E. The
set of all preferred extensions for a default theory (W,D) is
denoted by Ex(W,D).

Extensions need not be unique: if there are two contra-
dicting defaults δ and ¬δ, either both or none of them are
active in Th(W). Applying one of them makes the other
inactive, thus they give rise to two different extensions.

Based on extensions, one can define skeptical and credu-
lous conclusions for default theories: skeptical conclusions
are formulas that are contained in every extension, credu-
lous conclusions are those that are contained in at least one
extension.
Definition 6. Let (W,D) be a supernormal default theory
and Ψ be a first-order formula.

W |≈skeptD Ψ
def≡ Ψ ∈

⋂
E∈Ex(W,D)

E

W |≈credD Ψ
def≡ Ψ ∈

⋃
E∈Ex(W,D)

E

In the present work, we will primarily be concerned with
skeptical reasoning.

Action Domains with Static Defaults
We now combine the hitherto introduced concepts into the
notion of a domain axiomatization with defaults. It is essen-
tially a default theory where the set containing the indefeasi-
ble knowledge is a domain axiomatization. The defaults are
of a restricted form since we allow only static defaults about
states.
Definition 7. A domain axiomatization with defaults is
a pair (Σ,D[s]), where Σ is a UAC domain axiomatiza-
tion and D[s] is a set of supernormal defaults of the form
Holds(ϕ, s) or ¬Holds(ϕ, s) for a fluent ϕ.

By D[σ] we denote the set of defaults in D[s] where s has
been instantiated by the term σ.
Example 1 (continued). We add a fluent Broken that indi-
cates if the gun does not function properly. Shooting is now
only possible if the gun is loaded and not broken:

Poss(Shoot, s, t) ≡
(Holds(Loaded, s) ∧ ¬Holds(Broken, s)
∧ t = Do(Shoot, s))

Unless there is information to the contrary, it should be as-
sumed that the gun has no defects. This is expressed by the
following default rule:

D[s] = {¬Holds(Broken, s)}
Without the default assumption, it cannot be concluded that
the action Shoot is possible after performing Load and Wait
since it cannot be inferred that the gun is not broken. Using
the abbreviations S1 = Do(Load, S0), S2 = Do(Wait, S1),
and S3 = Do(Shoot, S2), we illustrate how the non-
monotonic entailment relation defined earlier enables us to
use the default rule to draw the desired conclusion:

Σ |≈skeptD[S0]
¬Holds(Broken, S2),

Σ |≈skeptD[S0]
Poss(Shoot, S2, S3), and

Σ |≈skeptD[S0]
¬Holds(Alive, S3).

125

The default conclusion that the gun works correctly, drawn
in S0, carries over to S2 and allows to conclude applicability
of Shoot in S2 and its effects on S3.

In the example just seen, default reasoning could be re-
stricted to the initial situation. As it turns out, this is suf-
ficient for the type of action domain considered here: ef-
fect axiom (2) never “removes” information about fluents
and thus never makes more defaults active after executing
an action. This observation is formalized by the following
lemma. It essentially says that to reason about a time point
in which an action ends, it makes no difference whether we
apply the defaults to the resulting time point or to the time
point when the action starts. This holds of course only due
to the restricted nature of effect axiom (2).
Lemma 1. Let (Σ,D[s]) be a domain axiomatization with
defaults, α be a ground action such that Σ |= Poss(α, σ, τ)
for some σ, τ : TIME, and let Ψ[τ] be a state formula in τ .
Then

Σ |≈skeptD[σ] Ψ[τ] iff Σ |≈skeptD[τ] Ψ[τ]

Proof. (Sketch.) The proof uses structural induction on Ψ[τ]
with Ψ[τ] = Holds(ϕ, τ) being the only interesting case.
The result is immediate if Σ is inconsistent, so for the fol-
lowing assume that Σ is consistent. If ϕ is amongst the pos-
itive effects of α, then Σ |= Holds(ϕ, τ) and we are done.
If ϕ is no positive effect of α, the conclusion Holds(ϕ, τ)
relies on a default Holds(ϕ, s) ∈ D[s] and ϕ cannot be a
negative effect of α (since the conclusion would be impos-
sible otherwise). Since ϕ is not changed by α, we have that
Holds(ϕ, σ) ∈ E iff Holds(ϕ, τ) ∈ E for any extension E
for (Σ,D[σ]) or (Σ,D[τ]).

We next introduce a helpful regression operator which is
inspired by the one from (Reiter 1991). It uses the structure
of the effect axioms to reduce reasoning about a time point
that is the result of applying an action to reasoning about the
time point in which the action started.
Definition 8. The operator Rα maps, for a given action α,
a state formula in τ into a state formula in σ as follows.

Rα(Holds(ϕ, τ)) def=

(γ+
α {f 7→ ϕ} ∨ (Holds(ϕ, σ) ∧ ¬γ−α {f 7→ ϕ}))

The operator does not change atomic formulas other than
Holds statements, and distributes over the first order con-
nectives in the obvious way.

Now whenever an action α is possible and its effect axiom
is available, a state formula in the resulting time point and
its regression are indeed equivalent.
Proposition 2. Let α be a ground term of sort ACTION and
S be a consistent set of closed formulas that contains an
effect axiom (2) for action α and where S |= Poss(α, σ, τ)
for some σ, τ : TIME and let Ψ[s] be a state formula. Then

S |= Ψ[τ] ≡ Rα(Ψ)[σ]

Proof. By structural induction on Ψ. The only interesting
case is Ψ = Holds(ϕ, τ) for some fluent ϕ. Let I be a
model for S.

I |= Holds(ϕ, τ)
iff I |= (γ+

α {f 7→ ϕ} ∨ (Holds(ϕ, σ) ∧ ¬γ−α {f 7→ ϕ}))
(since I |= Poss(α, σ, τ) and
I is a model for α’s effect axiom)

iff I |=Rα(Holds(ϕ, τ)) (by definition)

The next theorem says that all local conclusions about
a finitely reachable time point σ (that is, all conclusions
about σ using defaults from D[σ]) are exactly the conclu-
sions about σ that we can draw by instantiating the defaults
only with the least time point.
Theorem 3. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, λ its least time point, σ : TIME be
finitely reachable, and Ψ[σ] be a state formula. Then

Σ |≈skeptD[σ] Ψ[σ] iff Σ |≈skeptD[λ] Ψ[σ]

Proof. By induction on σ. The base case is trivial. For the
induction step, assume that Σ |= Poss(α, σ, τ).

Σ |≈skeptD[τ] Ψ[τ]

iff Σ |≈skeptD[σ] Ψ[τ] (Lemma 1)

iff Σ |≈skeptD[σ] Rα(Ψ)[σ] (Proposition 2)

iff Σ |≈skeptD[λ] Rα(Ψ)[σ] (induction hypothesis)

iff Σ |≈skeptD[λ] Ψ[τ] (Proposition 2)

It thus remains to show that local defaults are indeed ex-
haustive with respect to local conclusions. The next lemma
takes a step into this direction: it states that action appli-
cation does not increase default knowledge about past time
points.
Lemma 4. Let (Σ,D[s]) be a domain axiomatization with
defaults, α be a ground action such that Σ |= Poss(α, σ, τ)
for some σ, τ : TIME, and let Ψ[ρ] be a state formula in
ρ : TIME where ρ ≤ σ. Then

Σ |≈skeptD[τ] Ψ[ρ] implies Σ |≈skeptD[σ] Ψ[ρ]

Proof. (Sketch.) We prove the contrapositive. Let Σ 6|≈skeptD[σ]

Ψ[ρ]. Then there is an extension E for (Σ,D[σ]) where
Ψ[ρ] /∈ E. We generate an extension F for (Σ,D[τ]) as
follows. Set the ordering ≺≺ on D[τ]such that defaults from
D[τ] ∩ E get higher priority than the ones from D[τ] \ E.
None of the latter gets applied during generation of F :
roughly, if δ[τ] /∈ E although there is a default δ[s] ∈ D[s],
then ¬δ[τ] ∈ E. This can be due to either (1) a contradicting
action effect or (2) a contradicting default ¬δ[s] ∈ D[s]. In
case (1), ¬δ[τ] ∈ Th(Σ) and δ[τ] is inapplicable. For (2),
α does not affect ¬δ[σ], thus ¬δ[τ] is applicable in Th(Σ)
and by construction applied in F , which makes δ[τ] inap-
plicable. Now there exists an E′ ⊆ D[τ] ∩ E such that
F = Th(Σ ∪ E′), thus any model for E is a model for F .
Hence, Ψ[ρ] /∈ F and Σ 6|≈skeptD[τ] Ψ[ρ].

The converse of the lemma does not hold, since an action
effect might preclude a default conclusion about the past.
The following theorem now says that no sequence of future
actions whatsoever can have an impact on conclusions about
the present.

126

Theorem 5. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, let Ψ[s] be a state formula, σ ≤ τ be
time points, and σ be finitely reachable. Then

Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[σ] Ψ[σ]

Proof. If τ is not finitely reachable, we have Σ |= Ψ[σ]
and the claim is immediate, so let τ be finitely reachable.
We use induction on τ . The base case, τ = σ, is obvious.
For the induction step, Σ |= Poss(α, τ, τ ′) and Σ |≈skeptD[τ ′]

Ψ[σ] imply Σ |≈skeptD[τ] Ψ[σ] by Lemma 4. The induction

hypothesis then yields Σ |≈skeptD[σ] Ψ[σ].

The final theorem, our main result, now combines Theo-
rems 3 and 5. It states the sufficiency of instantiation with
the least time point with respect to conclusions about reach-
able time points.

Theorem 6. Let (Σ,D[s]) be a progressing domain axiom-
atization with defaults, λ be its least time point, Ψ[s] be a
state formula, and σ ≤ τ be terms of sort TIME where σ is
finitely reachable. Then

Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[λ] Ψ[σ]

Proof. Σ |≈skeptD[τ] Ψ[σ] implies Σ |≈skeptD[σ] Ψ[σ] by Theorem

5. By Theorem 3, this is the case iff Σ |≈skeptD[λ] Ψ[σ].

Generalizations with Undesired Side Effects
In this section, we show some generalizations of the thus far
introduced notion of a domain axiomatization with defaults
and show how these generalizations clash with our intuitive
notion of relevance. The first subsection generalizes the de-
fault hypotheses used, and the second subsection generalizes
the effect axioms.

Unrestricted Supernormal Defaults
Concluding atomic propositions about the world is not al-
ways enough. Sometimes we wish to express defaults of
the form “in general, x are y”, for example, “in general, pa-
per airplanes fly1.” Surely, we could instantiate a default
Holds(Flies(x), s) by all objects x which are known to be
paper airplanes. But this is by no means elaboration toler-
ant (McCarthy 1998) and furthermore does not account for
previously unknown paper airplanes. We would much rather
have a default rule

Holds(PaperAirplane(x), s) ⊃ Holds(Flies(x), s) (7)

which is still supernormal and will let us draw the desired
conclusion whenever there is no contradicting information.
But, unfortunately, allowing disjunctive defaults has unintu-
itive side effects:

1Yes, paper airplanes. Birds are not the only objects that should
fly by default.

Example 2. Imagine an action Fold(x) that transforms a
sheet of paper x into a paper airplane:

Poss(Fold(x), s, t) ≡ Holds(SheetOfPaper(x), s)
∧ t = Do(Fold(x), s)

γ+
Fold = (f = PaperAirplane(x))

γ−Fold = (f = SheetOfPaper(x))
Let the domain axiomatization be Σ = Ωsit ∪ Π ∪
Υ ∪ Σ0 where Π contains the precondition axiom above,
Υ contains effect axiom (2) with γ+

Fold and γ−Fold stated
above, and the initial situation is characterized by Σ0 =
{Holds(SheetOfPaper(T), S0)}. The set of defaults D[s]
contains the single default rule (7). Now after folding
T into a paper airplane (using the abbreviation S1 =
Do(Fold(T), S0)), we can indeed make the desired conclu-
sion that it flies:

Σ |≈skeptD[S1]
Holds(Flies(T), S1)

So far, so good. But there is another conclusion that we can
draw in S1 and that refers to the past:

Σ |≈skeptD[S1]
Holds(Flies(T), S0)

Spelled out, the sheet of paper already flew before it was
folded! Moreover, this conclusion about the initial situation
could not be drawn in the initial situation itself without uti-
lizing a future situation:

Σ 6|≈skeptD[S0]
Holds(Flies(T), S0)

This line of argument could be read as: “If I folded the sheet
of paper into a paper airplane, it would fly. Therefore, it
flies.” This is counterfactual reasoning gone awry. So what
happened?

The problem stems from effect axiom (2) and its incor-
porated solution to the frame problem: since Flies(T) holds
after Fold(T) but was not a positive effect of the action, ac-
cording to the effect axiom it must have held beforehand.

A possible remedy for this flaw is the exclusion of certain
fluents from the frame assumption, in particular the exclu-
sion of those fluents that are affected by default conclusions.
It remains to be investigated how those fluents are to be iden-
tified.

Conditional Effects
Let us get back to defaults that are Holds statements or nega-
tions thereof, but instead increase the expressiveness of the
action domain by allowing conditional effects. They are
modelled as a case distinction on the right hand side of the
effect axiom. For each case, the actual formula expressing
the effects is identical to (2).
Definition 9. An effect axiom with conditional effects is of
the form

Poss(A(~x), s, t) ⊃
∨

1≤i≤k

(Φi[s] ∧Υi[s, t]) (8)

where k ≥ 1, and for each 1 ≤ i ≤ k,

Υi[s, t] = (∀f)(Holds(f, t) ≡
(γ+
i ∨ (Holds(f, s) ∧ ¬γ−i))) (9)

127

γ+ =
∨

0≤j≤n+
i

f = ϕij and γ− =
∨

0≤j≤n−i

f = ψij

and the ϕij and ψij are terms of sort FLUENT with free vari-
ables among ~x. The Φi[s] are state formulas in s that define
the conditions for case i to apply. They are mutually exclu-
sive and the disjunction of them is a tautology—the actions
are thus still deterministic.

Conditional effects allow us to further “inspect” a state
and base effects upon state properties. This was not possible
with effect axiom (2) where all effects were unconditional
and the only possibility to inspect the starting state of an
action was by precondition axioms.
Example 3. We slightly modify Example 1: the action
Shoot is now always possible but breaks an unloaded gun
(that works as expected if loaded and not broken).

Poss(Shoot, s, t) ≡ t = Do(Shoot, s)
Poss(Shoot, s, t) ⊃

(¬Holds(Broken, s) ∧Holds(Loaded, s)) ∧
(∀f)(Holds(f, t) ≡ (Holds(f, s) ∧ f 6= Alive))
∨
(Holds(Broken, s) ∨ ¬Holds(Loaded, s)) ∧

(∀f)(Holds(f, t) ≡ (Holds(f, s) ∨ f = Broken))

With the gun still being not broken by default and S1 =
Do(Shoot, S0), we get the following conclusions: by de-
fault, the gun is not broken, even after shooting:

Σ |≈skeptD[S1]
¬Holds(Broken, S1)

But then, it must have been loaded in the initial situation
(otherwise it would be broken, which it is not):

Σ |≈skeptD[S1]
Holds(Loaded, S0),

although this was not known without utilizing a default
about a situation in the future:

Σ 6|≈skeptD[S0]
Holds(Loaded, S0).

The flaw with this inference is that it makes default con-
clusions about a fluent whose value is affected by an action
at the same time. This somewhat contradicts our intended
usage of defaults about states: we originally wanted to ex-
press reasonable assumptions about fluents whose values are
initially unknown. It does however not seem very reasonable
to assume, while not knowing whether the gun is loaded or
not, that the gun is still working after firing it when at the
same time we know that firing an unloaded gun will break
it. Further research will therefore be conducted to incorpo-
rate a notion of causality into our framework.

Conclusions and Future Work
The paper investigated the combination of two successful
approaches to the logical formalization of commonsense
reasoning, logics for actions and non-monotonic logics, and
introduced a framework for default reasoning in action for-
malisms. This is, to the best of our knowledge, the first

work to apply defaults to states in theories of actions and
change. Thanks to a well-defined form of the employed ef-
fect axioms and defaults, the proposed mechanism behaves
in an intuitive way. As our main results show, it is even
enough to apply default assumptions only to a single time
point, namely the least time point, without losing any of the
conclusions. On the other hand, naı̈ve generalizations of our
approach have been shown to bear the risk of undesired be-
havior; it is work in progress to extend the framework in a
manner that does not allow for counter-intuitive conclusions.

In the future, we aim at integrating a suitably expressive
generalization of our approach into the concept of agent
logic programs (ALPs)—definite logic programs with two
special predicates that are evaluated with respect to an un-
derlying domain axiomatization. We intend to augment
ALPs by a negation-as-failure operator and combine the an-
swer set semantics for general logic programs (Gelfond and
Lifschitz 1991) with a background theory of action to pro-
vide a semantics for the augmented language.

References
Brewka, G., and Eiter, T. 1999. Prioritizing Default Logic:
Abridged Report. In Festschrift on the occasion of Prof.
Dr. W. Bibel’s 60th birthday. Kluwer.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Hanks, S., and McDermott, D. 1987. Nonmonotonic Logic
and Temporal Projection. Artificial Intelligence 33(3):379–
412.
Kowalski, R. A., and Sergot, M. J. 1986. A Logic-based
Calculus of Events. New Generation Computing 4(1):67–
95.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophi-
cal Problems from the Standpoint of Artificial Intelligence.
In Machine Intelligence, 463–502. Edinburgh University
Press.
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford Artificial Intelligence Project: Memo 2.
McCarthy, J. 1998. Elaboration Tolerance. In progress.
Pirri, F., and Reiter, R. 1999. Some Contributions to the
Metatheory of the Situation Calculus. Journal of the ACM
46(3):325–361.
Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Intelligence 13:81–132.
Reiter, R. 1991. The Frame Problem in the Situation Cal-
culus: A Simple Solution (Sometimes) and a Completeness
Result for Goal Regression. In Artificial Intelligence and
Mathematical Theory of Computation – Papers in Honor
of John McCarthy, 359–380. Academic Press.
Thielscher, M. 1999. From Situation Calculus to Flu-
ent Calculus: State Update Axioms as a Solution to the
Inferential Frame Problem. Artificial Intelligence 111(1–
2):277–299.
Thielscher, M. 2009. A Unifying Action Calculus. Artifi-
cial Intelligence. To appear.

128

How Do I Revise My Agent’s Action Theory?

Ivan José Varzinczak
Meraka Institute, CSIR
Pretoria, South Africa

ivan.varzinczak@meraka.org.za

Abstract

Logical theories in reasoning about actions may also
evolve, and knowledge engineers need revision tools to
incorporate new incoming laws about the dynamic en-
vironment. We here fill this gap by providing an algo-
rithmic approach for action theory revision. We give
a well defined semantics that ensures minimal change,
and show correctness of our algorithms w.r.t. the seman-
tic constructions.

Introduction
Like any logical theory, action theories in reasoning about
actions may evolve, and thus need revision methods to ade-
quately accommodate new information about the behavior
of actions. In (Eiter et al. 2005; Herzig, Perrussel, and
Varzinczak 2006; Varzinczak 2008) update and contraction-
based methods for action theory repair are defined. Here we
continue this important though quite new thread of investi-
gation and develop a minimal change approach for revising
a domain description.
The motivation is as follows. Consider an agent designed

to interact with a coffee machine. Among her beliefs, the
agent may know that a coffee is a hot drink, that after buying
she gets a coffee, and that with a token it is possible to buy.
We can see the agent’s beliefs about the behavior of actions
in this scenario as a transition system (Figure 1).

t, c, h

¬t, c, h

t,¬c, h

t, ¬c,¬h

b b

b
b

b

b

Figure 1: A transition system depicting the agent’s knowl-
edge about the dynamics of the coffee machine. b, t, c, and
h stand for, respectively, buy, token, coffee, and hot.

Well, at some stage the agent may learn that coffee is the
only hot drink available at the machine, or that even without
a token she can still buy, or that all possible executions of
buy should lead to states where ¬token is the case. These
are examples of revision with new laws about the dynamics
of the environment under consideration. And here we are
interested in exactly these kinds of theory modification.

The contributions of the present work are as follows:
• What is the semantics of revising an action theory by a
law? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?

• How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

Logical Preliminaries
Our base formalism is multimodal logicKn (Popkorn 1994).

Action Theories in Multimodal K
Let A = {a1, a2, . . .} be the set of atomic actions of a do-
main. To each action a there is associated a modal operator
[a]. P = {p1, p2, . . .} denotes the set of propositions, or
atoms. L = {p,¬p : p ∈ P} is the set of literals. ! denotes
a literal and |!| the atom in !.
We use ϕ, ψ, . . . to denote Boolean formulas. F is the set

of all Boolean formulas. A propositional valuation v is a
maximally consistent set of literals. We denote by v ! ϕ
the fact that v satisfies ϕ. By val(ϕ) we denote the set of
all valuations satisfying ϕ. |=

CPL
is the classical consequence

relation. Cn(ϕ) denotes all logical consequences of ϕ.
With IP(ϕ) we denote the set of prime implicants (Quine

1952) of ϕ. By π we denote a prime implicant, and atm(π)
is the set of atoms occurring in π. Given ! and π, ! ∈ π
abbreviates ‘! is a literal of π’.
We use Φ, Ψ, . . . to denote complex formulas (possibly

with modal operators). 〈a〉 is the dual operator of [a]
(〈a〉Φ =def ¬[a]¬Φ).
A Kn-model is a tuple M = 〈W,R〉 where W is a set of

valuations, and R maps action constants a to accessibility
relations Ra ⊆ W × W. Given M , |=M

w
p (p is true at world

w of modelM) if w ! p; |=M
w

[a]Φ if |=M
w′

Φ for every w′ s.t.
(w, w′) ∈ Ra; truth conditions for the other connectives are
as usual. ByM we will denote a set of Kn-models.

M is a model of Φ (noted |=M Φ) if and only if |=M
w

Φ for all
w ∈ W. M is a model of a set of formulas Σ (noted |=M Σ)
if and only if |=M Φ for every Φ ∈ Σ. Φ is a consequence of

129

the global axioms Σ in all Kn-models (noted Σ |=
Kn

Φ) if and

only if for everyM , if |=M Σ, then |=M Φ.
In Kn we can state laws describing the behavior of ac-

tions. Here we distinguish three types of them.
Static Laws A static law is a formula ϕ ∈ F that char-
acterizes the possible states of the world. An example is
coffee → hot: if the agent holds a coffee, then she holds a
hot drink. The set of static laws of a domain is denoted by S .
Effect Laws An effect law for a has the form ϕ → [a]ψ,
with ϕ,ψ ∈ F. Effect laws relate an action to its effects,
which can be conditional. The consequent ψ is the effect
that always obtains when a is executed in a state where
the antecedent ϕ holds. An example is token → [buy]hot:
whenever the agent has a token, after buying, she has a hot
drink. If ψ is inconsistent we have a special kind of ef-
fect law that we call an inexecutability law. For example,
¬token → [buy]⊥ says that buy cannot be executed if the
agent has no token. The set of effect laws is denoted by E .
Executability Laws An executability law for a has the form
ϕ → 〈a〉(, with ϕ ∈ F. It stipulates the context in which
a is guaranteed to be executable. (In Kn 〈a〉(reads “a’s
execution is possible”.) For instance, token → 〈buy〉(says
that buying can be executed whenever the agent has a token.
The set of executability laws of a domain is denoted by X .
Given a, Ea (resp. Xa) will denote the set of only those

effect (resp. executability) laws about a.
Action Theories T = S ∪ E ∪X is an action theory.
To make the presentation more clear to the reader, we here

assume that the agent’s theory contains all frame axioms.
However, all we shall say here can be defined within a for-
malism with a solution to the frame and ramification prob-
lems like (Herzig, Perrussel, and Varzinczak 2006) do. The
action theory of our example will thus be:

T =

{ coffee→ hot, token→ 〈buy〉(,
¬coffee→ [buy]coffee,¬token→ [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot

}

Figure 1 above shows a Kn-model for the theory T.
Sometimes it will be useful to consider models whose

possible worlds are all the possible states allowed by S :
Definition 1 M = 〈W,R〉 is a big frame of T if and only if:
• W = val(S); and

• Ra = {(w, w′) : ∀.ϕ → [a]ψ ∈ Ea, if |=
M

w
ϕ then |=

M

w′
ψ}

Big frames of T are not always models of T.

Definition 2 M is a supra-model of T iff |=M T and M is a
big frame of T.
Figure 2 depicts a supra-model of our example T.

Prime Valuations
An atom p is essential to ϕ if and only if p ∈ atm(ϕ′) for
all ϕ′ such that |=

CPL
ϕ ↔ ϕ′. For instance, p1 is essential to

¬p1∧(¬p1∨p2). atm!(ϕ) will denote the essential atoms of
ϕ. (If ϕ is a tautology or a contradiction, then atm!(ϕ) = ∅.)

M : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b
b

b

b

Figure 2: Supra-model for the coffee machine scenario.

For ϕ ∈ F, ϕ∗ is the set of all ϕ′ ∈ F such that ϕ |=
CPL

ϕ′

and atm(ϕ′) ⊆ atm!(ϕ). For instance, p1 ∨ p2 /∈ p1∗, as
p1 |=

CPL
p1 ∨ p2 but atm(p1 ∨ p2) 0⊆ atm!(p1). Clearly,

atm(
∧

ϕ∗) = atm!(
∧

ϕ∗). Moreover, whenever |=
CPL

ϕ ↔
ϕ′, then atm!(ϕ) = atm!(ϕ′) and also ϕ∗ = ϕ′∗.
Theorem 1 ((Parikh 1999)) |=

CPL
ϕ ↔

∧

ϕ∗, and
atm(ϕ∗) ⊆ atm(ϕ′) for every ϕ′ s.t. |=

CPL
ϕ ↔ ϕ′.

Thus for every ϕ ∈ F there is a unique least set of ele-
mentary atoms such that ϕ may equivalently be expressed
using only atoms from that set. Hence, Cn(ϕ) = Cn(ϕ∗).
Given a valuation v, v′ ⊆ v is a subvaluation. ForW a set

of valuations, a subvaluation v′ satisfies ϕ ∈ F modulo W
(noted v′ !W ϕ) if and only if v ! ϕ for all v ∈ W such that
v′ ⊆ v. A subvaluation v essentially satisfies ϕ modulo W
(v !

!

W
ϕ) if and only if v !W ϕ and {|!| : ! ∈ v} ⊆ atm!(ϕ).

Definition 3 Let ϕ ∈ F and W be a set of valuations. A
subvaluation v is a prime subvaluation of ϕ (modulo W) if
and only if v !

!

W
ϕ and there is no v′ ⊆ v s.t. v′ !

!

W
ϕ.

A prime subvaluation of a formula ϕ is one of the weak-
est states of truth in which ϕ is true. (Notice the similar-
ity with the syntactical notion of prime implicant (Quine
1952).) We denote all prime subvaluations of ϕ modulo W
by base(ϕ,W).
Theorem 2 Let ϕ ∈ F and W be a set of valuations. Then
for allw ∈ W,w ! ϕ if and only ifw !

∨

v∈base(ϕ,W)

∧

"∈v !.

Closeness Between Models
When revising a model, we perform a change in its struc-
ture. Because there can be several ways of modifying a
model (not all minimal), we need a notion of distance be-
tween models to identify those closest to the original one.
As we are going to see in more depth in the sequel, chang-

ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance between two
Kn-models will depend upon the distance between their sets
of worlds and accessibility relations. These here will be
based on the symmetric difference between sets, defined as
X−̇Y = (X \ Y) ∪ (Y \ X).
Definition 4 LetM = 〈W,R〉. M ′ = 〈W′,R′〉 is at least as
close toM as M ′′ = 〈W′′,R′′〉, noted M ′ 2M M ′′, iff
• either W−̇W′ ⊆ W−̇W′′

• or W−̇W′ = W−̇W′′ and R−̇R′ ⊆ R−̇R′′

This is an extension of Burger and Heidema’s rela-
tion (Burger and Heidema 2002) to our modal case. Note
that other distance notions are also possible, like e.g. the
cardinality of symmetric differences or Hamming distance.

130

Semantics of Revision
Contrary to contraction, where we want the negation of a law
to be satisfiable, in revision we want a new law to be valid.
Thus we must eliminate all cases satisfying its negation.
The idea in our semantics is as follows: we initially have a

set of modelsM in which a given formula Φ is (potentially)
not valid, i.e., Φ is (possibly) not true in every model inM.
In the result we want to have only models of Φ. Adding Φ-
models toM is of no help. Moreover, adding models makes
us lose laws: the resulting theory would be more liberal.
One solution amounts to deleting fromM those models

that are not Φ-models. Of course removing only some of
them does not solve the problem, we must delete every such
a model. By doing that, all resulting models will be mod-
els of Φ. (This corresponds to theory expansion, when the
resulting theory is satisfiable.) However, ifM contains no
model of Φ, we will end up with ∅. Consequence: the result-
ing theory is inconsistent. (This is the main revision prob-
lem.) In this case the solution is to substitute each modelM
in M by its nearest modifications M #

Φ that makes Φ true.
This lets us to keep as close as possible to the original mod-
els that we had.
Before defining revision of sets of models, we present

what modifications of (individual) models are.

Revising a Model by a Static Law
Suppose that our coffee deliverer agent discovers that the
only hot drink that is served on the machine is coffee. In this
case, we might want to revise her beliefs with the new static
law coffee↔ hot.
Considering the model in Figure 2, we see that ¬coffee ∧

hot is satisfiable. As we do not want this, the first step is to
remove all worlds in which ¬coffee∧hot is true. The second
step is to guarantee all the remaining worlds satisfy the new
law. This issue has been largely addressed in the literature on
belief revision and update (Gärdenfors 1988; Winslett 1988;
Katsuno and Mendelzon 1992; Herzig and Rifi 1999). Here
we can achieve that with a semantics similar to that of clas-
sical revision operators: basically one can change the set of
possible valuations, by removing or adding worlds.
In our example, removing the possible worlds {t,¬c, h}

and {¬t,¬c, h} would do the job (there is no need to add
new valuations since the new static law is satisfied in at least
one world of the original model).
The delicate point in removing worlds is that it may re-

sult in the loss of some executability laws: in the example, if
there were only one arrow leaving some world w and point-
ing to {¬t,¬c, h}, then removing the latter from the model
would make the action under concern no longer executable
in w. Here we claim that this is intuitive: if the state of the
world to which we could move is no longer possible, then
we do not have a transition to that state anymore. Hence, if
that transition was the only one we had, it is natural to lose it.
One could also ask what to do with the accessibility rela-

tion if new worlds must be added (revision case). We claim
that it is reckless to blindly add new elements to R. In-
stead, we shall postpone correction of executability laws, if
needed. This approach is debatable, but with the information
we have at hand, it is the safest way of changing static laws.

Definition 5 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #
ϕ iff

W′ = (W \ val(¬ϕ)) ∪ val(ϕ) and R′ ⊆ R.

Clearly |=M
′

ϕ for allM ′ ∈ M #
ϕ . The minimal models of

the revision ofM by ϕ are those closest toM w.r.t. 2M :
Definition 6 rev(M , ϕ) =

⋃

min{M #
ϕ ,2M}.

In the example of Figure 2, rev(M , coffee ↔ hot) is the
singleton {M ′}, withM ′ as shown in Figure 3.

M ′ : t, c, h

¬t, c, h

¬t,¬c,¬h t,¬c,¬h

b

b
b

b

Figure 3: Revising modelM in Figure 2 with coffee↔ hot.

Revising a Model by an Effect Law
Let’s suppose now that our agent eventually discovers that
after buying coffee she does not keep her token. This means
that her theory should now be revised by the new effect law
token→ [buy]¬token. Looking at modelM in Figure 2, this
amounts to guaranteeing that token∧〈buy〉token is satisfiable
in none of its worlds. To do that, we have to look at all the
worlds satisfying this formula (if any) and
• either make token false in each of these worlds,
• or make 〈buy〉token false in all of them.
If we chose the first option, we will essentially flip the

truth value of literal token in the respective worlds, which
changes the set of valuations of the model. If we chose
the latter, we will basically remove buy-arrows leading to
token-worlds, which amounts to changing the accessibility
relation.
In our example, worlds w1 = {token, coffee, hot}, w2 =

{token,¬coffee, hot} and w3 = {token,¬coffee,¬hot} sat-
isfy the formula token ∧ 〈buy〉token. Flipping token in all of
them to ¬token would do the job, but this would also have
as consequence the introduction of a new static law: ¬token
would now be valid, i.e., the agent never has a token! Do we
want this?
We claim that changing action laws should not have as

side effect a change in the static laws. These have a spe-
cial status (Shanahan 1997), and should change only if re-
quired. Hence each world satisfying token ∧ 〈buy〉token has
to be changed so that 〈buy〉token becomes untrue in it. In
the example, we thus should remove (w1, w1), (w2, w1) and
(w3, w1) from R.
Definition 7 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→[a]ψ iff:

• W′ = W, R′ ⊆ R, |=M
′

ϕ → [a]ψ, and
• If (w, w′) ∈ R \ R′, then |=M

w
ϕ

The minimal models resulting from revision of a model
M by a new effect law are those closest toM w.r.t.2M :
Definition 8 rev(M , ϕ → [a]ψ) =

⋃

min{M #
ϕ→[a]ψ,2M}.

TakingM as in Figure 2, rev(M , token → [buy]¬token)
will be the singleton {M ′} depicted in Figure 4.

131

M ′ : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

Figure 4: Revising M in Figure 2 with token →
[buy]¬token.

Revising a Model by an Executability Law
Let us now suppose that at some stage it has been decided to
grant free coffee to everybody. Faced with this information,
we have to revise the agent’s laws to reflect the fact that buy
can also be executed in ¬token-contexts: ¬token → 〈buy〉(
is a new executability law.
Considering model M in Figure 2, we observe that

¬token ∧ [buy]⊥ is satisfiable. Hence we must throw
¬token ∧ [buy]⊥ away to ensure the new law becomes true.
To remove ¬token ∧ [buy]⊥ we have to look at all worlds

satisfying it andmodifyM so that they no longer satisfy that
formula. Given worlds w4 = {¬token,¬coffee,¬hot} and
w5 = {¬token,¬coffee, hot}, we have two options: change
the interpretation of token in both or add new arrows leav-
ing these worlds. A question that arises is ‘what choice is
more drastic: change a world or an arrow’? Again, here
we claim that changing the world’s content (the valuation)
is more drastic, as the existence of such a world is foreseen
by some static law and is hence assumed to be as it is, un-
less we have enough information supporting the contrary, in
which case we explicitly change the static laws (see above).
Thus we shall add a new buy-arrow from each of w4 andw5.
Having agreed on that, the issue now is: which worlds

should the new arrows point to? In order to comply with
minimal change, the new arrows shall point to worlds that
are relevant targets of each of the¬token-worlds in question.

Definition 9 Let M = 〈W,R〉, w, w′ ∈ W, andM be a set
of models s.t. M ∈ M. Then w′ is a relevant target world
of w w.r.t. ϕ → 〈a〉(for M inM iff |=M

w
ϕ and

• If there is M ′ = 〈W′,R′〉 ∈M such that R′
a(w) 0= ∅:

– for all ! ∈ w′ \ w, there is ψ′ ∈ F s.t. there is v′ ∈

base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=
Mi

w
[a]ψ′ for

every Mi ∈ M
– for all ! ∈ w ∩ w′, either there is ψ′ ∈ F s.t. there is
v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=Mi

w
[a]ψ′ for

all Mi ∈ M; or there is Mi ∈ M s.t. 0|=Mi

w
[a]¬!

• If R′
a(w) = ∅ for every M ′ = 〈W′,R′〉 ∈M :

– for all ! ∈ w′ \ w, there is Mi = 〈Wi,Ri〉 ∈M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ v \ u

– for all ! ∈ w ∩ w′, there is Mi = 〈Wi,Ri〉 ∈M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ u ∩ v,
or for all Mi = 〈Wi,Ri〉 ∈M , if (u, v) ∈ Ria, then
¬! /∈ v \ u

By rt(w,ϕ → 〈a〉(, M ,M) we denote the set of all rele-
vant target worlds of w w.r.t. ϕ → 〈a〉(for M inM.

In our example, w6 = {¬token, coffee, hot} is the only
relevant target world here: the two other ¬token-worlds
violate the effect coffee of buy, while the three token-
worlds would make us violate the frame axiom ¬token →
[buy]¬token.
Definition 10 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→〈a〉& iff:

• W′ = W, R ⊆ R′, |=M
′

ϕ → 〈a〉(, and
• If (w, w′) ∈ R′ \ R, then w′ ∈ rt(w,ϕ → [a]⊥, M ,M)

The minimal models resulting from revising a model M
by a new executability law are those closest toM w.r.t.2M :
Definition 11 rev(M , ϕ → 〈a〉() =

⋃

min{M #
ϕ→〈a〉&,2M}.

In our running example, rev(M ,¬token → 〈buy〉() is
the singleton {M ′}, whereM ′ is as shown in Figure 5.

M ′ :
t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

b

b

b

b b

b

Figure 5: The result of revising modelM in Figure 2 by the
new executability law ¬token→ 〈buy〉(.

Revising Sets of Models
Up until now we have seen what the revision of single mod-
els means. Now we are ready for a unified definition of re-
vision of a set of modelsM by a new law Φ:
Definition 12 LetM be a set of models and Φ a law. Then

M#
Φ = (M\ {M :0|=

M
Φ}) ∪

⋃

M∈M

rev(M , Φ)

Definition 12 comprises both expansion and revision: in the
former, addition of the new law gives a satisfiable theory;
in the latter a deeper change is required to get rid of the
inconsistency.

Syntactic Operators for Revision
We now turn our attention to the syntactical counterpart of
revision. Our endeavor here is to perform minimal change
also at the syntactical level. By T#

Φ we denote the result of
revising an action theory T with a new law Φ.

Revising a Theory by a Static Law
Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law
may conflict with the executability laws: some of them may
be lost and thus have to be changed as well. The approach
here is to preserve as many executability laws as we can in
the old possible states. To do that, we look at each possi-
ble valuation that is common to the new S and the old one.
Every time an executability used to hold in that state and
no inexecutability holds there now, we make the action exe-
cutable in such a context. For those contexts not allowed by

132

the old S , we make a inexecutable (cf. the semantics). Algo-
rithm 1 deals with that (S ' ϕ denotes the classical revision
of S by ϕ built upon some well established method from
the literature (Winslett 1988; Katsuno and Mendelzon 1992;
Herzig and Rifi 1999)).

Algorithm 1 Revision by a Static Law
input: T, ϕ
output: T!

ϕ

S ′:= S " ϕ, E ′:= E , X ′:= ∅
for all π ∈ IP(S ′) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S ′ %|=
CPL

(π ∧ ϕA) → ⊥ then
if S%| =

CPL
(π ∧ ϕA) → ⊥ then

if T |=
Kn

(π ∧ ϕA) → 〈a〉* and S ′, E ′,X%| =
Kn

¬(π ∧
ϕA) then

Xa
′:= {(ϕi∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈X a}

else
E ′:= E ′ ∪ {(π ∧ ϕA) → [a]⊥}

T!
ϕ:= S ′ ∪ E ′ ∪ X ′

Revising a Theory by an Effect Law
When revising a theory by a new effect law ϕ → [a]ψ, we
want to eliminate all possible executions of a leading to ¬ψ-
states. To achieve that, we look at all ϕ-contexts and every
time a transition to some ¬ψ-context is not always the case,
i.e., T0| =

Kn
ϕ → 〈a〉¬ψ, we can safely force [a]ψ for that

context. On the other hand, if in such a context there is al-
ways an execution of a to ¬ψ, then we should strengthen the
executability laws to make room for the new effect in that
context we want to add. Algorithm 2 below does the job.

Algorithm 2 Revision by an Effect Law
input: T, ϕ → [a]ψ
output: T!

ϕ→[a]ψ
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S%| =
CPL

(π ∧ ϕA) → ⊥ then
for all π′ ∈ IP(S ∧¬ ψ) do
if T ′ |=

Kn
(π ∧ ϕA) → 〈a〉π′ then

T ′:=
(T ′ \ X ′

a) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉* :
ϕi → 〈a〉* ∈X ′

a}

T ′:= T ′ ∪ {(π ∧ ϕA) → [a]ψ}
if T ′ %|=

Kn
(π ∧ ϕA) → [a]⊥ then

T ′:= T ′∪{(ϕi∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈ T}
T!

ϕ→[a]ψ:= T ′

Revising a Theory by an Executability Law
Revision of a theory by a new executability law has as conse-
quence a change in the effect laws: all those laws preventing

the execution of a shall be weakened. Moreover, to comply
with minimal change, we must ensure that in all models of
the resulting theory there will be at most one transition by a
from those worlds in which T precluded a’s execution.
Let (Eϕ,⊥

a)1, . . . , (Eϕ,⊥
a)n denote minimum subsets (w.r.t.

set inclusion) of Ea such that S , (Eϕ,⊥
a)i |=

Kn
ϕ → [a]⊥.

(According to (Herzig and Varzinczak 2007), one can en-
sure at least one such a set always exists.) Let E−

a =
⋃

1≤i≤n(Eϕ,⊥
a)i. The effect laws in E−

a will serve as guide-
lines to get rid of [a]⊥ in each ϕ-world allowed by T: they
are the laws to be weakened to allow for 〈a〉(in ϕ-contexts.
Our algorithm works as follows. To force ϕ → 〈a〉(to

be true in all models of the resulting theory, we visit ev-
ery possible ϕ-context allowed by it and make the follow-
ing operations to ensure 〈a〉(is the case for that context:
Given a ϕ-context, if T does not always preclude a from
being executed in it, we can safely force 〈a〉(without mod-
ifying other laws. On the other hand, if a is always inexe-
cutable in that context, then we should weaken the laws in
E−
a . The first thing we must do is to preserve all old ef-
fects in all other ϕ-worlds. To achieve that we specialize the
above laws to each possible valuation (maximal conjunction
of literals) satisfying ϕ but the actual one. Then, in the cur-
rent ϕ-valuation, we must ensure that action a may have any
effect, i.e., from this ϕ-world we can reach any other pos-
sible world. We achieve that by weakening the consequent
of the laws in E−

a to the exclusive disjunction of all possi-
ble contexts in T. Finally, to get minimal change, we must
ensure that all literals in this ϕ-valuation that are not forced
to change are preserved. We do this by stating a conditional
frame axiom of the form (ϕk ∧ !) → [a]!, where ϕk is the
above-mentionedϕ-valuation.
Algorithm 3 gives the pseudo-code for that.

Correctness of the Algorithms
Suppose we have two atoms p1 and p2, and one action a.
Let T1 = {¬p2, p1 → [a]p2, 〈a〉(}. The only model of T1

is M in Figure 6. Revising such a model by p1 ∨ p2 gives
us the modelsM ′

i , 1 ≤ i ≤ 3, in Figure 6. Now, revising T1

by p1 ∨ p2 will give us T1
#
p1∨p2 = {p1 ∧ ¬p2, p1 → [a]p2}.

The only model of T1
#
p1∨p2 is M ′

1 in Figure 6. This means
that the semantic revision may producemodels (viz.M ′

2 and
M ′

3 in Figure 6) that are not models of the revised theories.

M : ¬p1,¬p2

a

M ′
1 : p1,¬p2

M ′
2 : ¬p1, p2 M ′

3 : p1, p2

Figure 6: ModelM of T1 and revision ofM by p1 ∨ p2.

The other way round the algorithms may give theories
whose models do not result from revision of models of the
initial theory: let T2 = {(p1 ∨ p2) → [a]⊥, 〈a〉(}. Its only
model isM (Figure 6). RevisingM by p1 ∨ p2 is as above.
However T2

#
p1∨p2 = {p1 ∨ p2, (p1 ∨ p2) → [a]⊥} has a

model M ′′ = 〈{{p1, p2}, {p1,¬p2}, {¬p1, p2}}, ∅〉 that is
not inM #

p1∨p2 .

133

Algorithm 3 Revision by an executability law
input: T, ϕ → 〈a〉*
output: T!

ϕ→〈a〉%
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S%| =
CPL

(π ∧ ϕA) → ⊥ then
if T ′ |=

Kn
(π ∧ ϕA) → [a]⊥ then

T ′:=

(T ′ \ E ′−
a) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi :

ϕi → [a]ψi ∈ E ′−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a]
L

π′∈IP(S)

A′⊆atm(π′)

(π′ ∧ ϕA′) :

ϕi → [a]ψi ∈ E ′−
a }

for all L ⊆ L do
if S |=

CPL
(π ∧ ϕA) →

V

$∈L % then
for all % ∈ L do
if T |=

Kn
% → [a]⊥ or (T%,

Kn
% → [a]¬% and

T |=
Kn

% → [a]%) then
T ′:= T ′ ∪ {(π ∧ ϕA ∧ %) → [a]%}

T ′:= T ′ ∪ {(π ∧ ϕA) → 〈a〉*}
T!

ϕ→〈a〉%:= T ′

All this happens because the possible states are not com-
pletely characterized by the static laws. Fortunately, concen-
trating on supra-models of T, we get the right result.

Theorem 3 If M = {M : M is a supra-model of T} and
there isM ′ ∈ M s.t. |=M

′

Φ, then
⋃

M∈M rev(M , Φ) ⊆ M.

Then, revision of models of T by a law Φ in the semantics
produces models of the output of the algorithms T#

Φ:

Theorem 4 IfM = {M : M is a supra-model of T}0 = ∅,
then for every M ′ ∈ M#

Φ, |=
M

′

T#
Φ.

Also, models of T#
Φ result from revision of models of T byΦ:

Theorem 5 IfM = {M : M is a supra-model of T}0 = ∅,
then for every M ′, if |=M

′

T#
Φ, thenM ′ ∈ M#

Φ.

Sticking to supra-models of T is not a big deal. We can use
the algorithms in (Herzig and Varzinczak 2007) to ensure T
is characterized by its supra-models and thatM 0= ∅.

Conclusion and Perspectives
The problem of action theory change has only recently
received attention in the literature, both in action lan-
guages (Baral and Lobo 1997; Eiter et al. 2005) and
in modal logic (Herzig, Perrussel, and Varzinczak 2006;
Varzinczak 2008).
Here we have studied what revising action theories by a

law means, both in the semantics and at the syntactical (al-
gorithmic) level. We have defined a semantics based on dis-
tances between models that also captures minimal change
w.r.t. the preservation of effects of actions. With our algo-
rithms and the correctness results we have established the

link between the semantics and the syntax for theories with
supra-models. (Due to page limits, proofs are omitted here.)
Our next step on the subject is analyze the behavior

of our operators w.r.t. AGM-like postulates (Alchourrón,
Gärdenfors, and Makinson 1985) for modal theories and
the relationship between our revision method and contrac-
tion. What is known is that Levi identity (Levi 1977),
T#

Φ = T−
¬Φ∪{Φ}, in general does not hold for action laws Φ.

The reason is that up to now there is no contraction operator
for ¬Φ where Φ is an action law. Indeed this is the general
contraction problem for action theories: contraction of a the-
ory T by a general formula (like ¬Φ above) is still an open
problem in the area. The definition of a general method will
certainly mostly benefit from the semantic modifications we
studied here (addition/removal of arrows and worlds).
Given the relationship between modal logics and descrip-

tion logics, a revision method for DL TBoxes would also
benefit from the constructions we defined here.

References
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. J. of Symbolic Logic 50:510–530.
Baral, C., and Lobo, J. 1997. Defeasible specifications in
action theories. In Proc. IJCAI, 1441–1446.
Burger, I., and Heidema, J. 2002. Merging inference and
conjecture by information. Synthese 131(2):223–258.
Eiter, T.; Erdem, E.; Fink, M.; and Senko, J. 2005. Updat-
ing action domain descriptions. In Proc. IJCAI, 418–423.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press.
Herzig, A., and Rifi, O. 1999. Propositional belief
base update and minimal change. Artificial Intelligence
115(1):107–138.
Herzig, A., and Varzinczak, I. 2007. Metatheory of actions:
beyond consistency. Artificial Intelligence 171:951–984.
Herzig, A.; Perrussel, L.; and Varzinczak, I. 2006. Elabo-
rating domain descriptions. In Proc. ECAI, 397–401.
Katsuno, H., and Mendelzon, A. 1992. On the difference
between updating a knowledge base and revising it. In Be-
lief revision. Cambridge. 183–203.
Levi, I. 1977. Subjunctives, dispositions and chances. Syn-
these 34:423–455.
Parikh, R. 1999. Beliefs, belief revision, and splitting lan-
guages. In Logic, Language and Computation, 266–278.
Popkorn, S. 1994. First Steps in Modal Logic. Cambridge
University Press.
Quine, W. V. O. 1952. The problem of simplifying truth
functions. American Mathematical Monthly 59:521–531.
Shanahan, M. 1997. Solving the frame problem. Cam-
bridge, MA: MIT Press.
Varzinczak, I. 2008. Action theory contraction and mini-
mal change. In Proc. KR, 651–661.
Winslett, M.-A. 1988. Reasoning about action using a
possible models approach. In Proc. AAAI, 89–93.

134

Progressing Basic Action Theories with Non-Local Effect Actions

Stavros Vassos
Department of Computer Science

University of Toronto
Toronto, Canada

stavros@cs.toronto.edu

Sebastian Sardina
School of Computer Science

RMIT University
Melbourne, Australia

ssardina@cs.rmit.edu.au

Hector Levesque
Department of Computer Science

University of Toronto
Toronto, Canada

hector@cs.toronto.edu

Abstract

In this paper we propose a practical extension to some re-
cent work on the progression of action theories in the situ-
ation calculus. In particular, we argue that the assumption
of local-effect actions is too restrictive for realistic settings.
Based on the notion of safe-range queries from database the-
ory and just-in-time action histories, we present a new type of
action theory, called range-restricted, that allows actions to
have non-local effects with a restricted range. These theories
can represent incomplete information in the initial database in
terms of possible closures for fluents and can be progressed
by directly updating the database in an algorithmic manner.
We prove the correctness of our method and argue for the ap-
plicability of range-restricted theories in realistic settings.

Introduction
One of the requirements for building agents with a pro-
active behavior is the ability to reason about action and
change. The ability to predict how the world will be af-
ter performing a sequence of actions is the basis for offline
automated planning, scheduling, web-service composition,
etc. In the situation calculus (McCarthy & Hayes 1969;
Reiter 2001) such reasoning problems are examined in the
context of the basic action theories (BATs). These are logi-
cal theories that specify the preconditions and effects of ac-
tions, and an initial database (DB) that represents the initial
state of the world before any action has occurred.

A BAT can be used to solve offline problems as well as
to equip a situated agent with the ability to keep track of the
current state of the world. As a BAT is a static entity, in the
sense that the axioms do not change over time, the reasoning
about the current state is typically carried over using tech-
niques based on regression, that transform the queries about
the future into queries about the initial state (Reiter 2001).
This is an effective choice for some applications, but a poor
one for many settings where an agent may act autonomously
for long periods of time. In those cases, it is mandatory that
the BAT be (periodically) updated so that the initial DB be
replaced by a new one reflecting the changes due to the ac-
tions that have already occurred. This is identified as the
problem of progression for BATs (Lin & Reiter 1997).

In general, a DB in a BAT is an unrestricted first-order
logical theory that offers great flexibility and expressiveness.
The price to pay is high: for most realistic scenarios it is

hard to find practical solutions. As far as progression is con-
cerned, it was shown by Lin and Reiter (1997) that the up-
dated DB requires second-order logic in the general case.
For this reason, many restrictions on the BATs have been
proposed so that the updated DB is first-order representable.
It was recently shown that progression is practical provided
actions are limited to have local effects only (Vassos, Ger-
hard, & Levesque 2008).

The restriction on so-called local-effects actions essen-
tially means that all the properties of the world that may be
affected by an action are directly specified by the arguments
of the action. For example, an action that may affect two
boxes box1 and box2 that are located next to the agent needs
to explicitly mention them in the arguments of the action,
e.g., break(box1, box2). In that way, global effects, which
are considered to be one of the reasons why progression may
be second-order, are avoided all-together (e.g., the explosion
of a bomb affecting all the objects in the world).

Clearly, the local-effect assumption is too restrictive for
many realistic scenarios. For instance, the action of moving
a container which causes all objects in it to be moved as
well cannot be represented. Similarly, the effect of objects
being broken when they are near an object that is exploded
cannot be captured with local-effect actions. Such type of
indexical, though not fully global-effect, information arises
naturally in many real domains, e.g., consider the case of a
non-player-character in a video game that needs to reason
about the effects of moving a container object.

In this paper, we extend local-effect BATs to account for
such kind of indexical information. To that end, we present
what we call range-restricted BATs, that allow effects to be
non-local but with a restricted range. For such theories, we
describe a method for progression such that the new DB is
first-order and finite, and we prove that the method is log-
ically correct. To our knowledge, it is the first result on
progression for BATs with an infinite domain, incomplete
information, and sensing that goes beyond local-effect.

Formal preliminaries
The situation calculus (McCarthy & Hayes 1969) is a first-
order logic language with some limited second-order fea-
tures, designed for representing and reasoning about dynam-
ically changing worlds. A situation represents a world his-
tory as a sequence of actions. The constant S0 is used to
denote the initial situation where no action has yet been per-

135

formed; sequences of actions are built using the function do:
do(a, s) denotes the situation resulting from performing ac-
tion a in situation s. Relations whose truth values vary from
situation to situation are called fluents, and are denoted by
predicate symbols taking a situation term as their last argu-
ment (e.g., Holding(x, s)). A special predicate Poss(a, s) is
used to state that action a is executable in situation s; and
special function sr(a, s) denotes the (binary) sensing out-
come of action a when executed in situation s (Scherl &
Levesque 2003).

In this paper, we shall restrict our attention to a language
L with a finite number of relational fluent symbols (i.e., no
functional fluents) that only take arguments of sort object
(apart their last situation argument), an infinite number of
constant symbols of sort object, and a finite number of func-
tion symbols of sort action that take arguments of sort object.
We adopt the following notation with subscripts and super-
scripts: α and a for terms and variables of sort action; σ and
s for terms and variables of sort situation; t and x, y, z, w for
terms and variables of sort object. Also, we use A for action
function symbols, F,G for fluent symbols, and b, c, d, e, o
for constants of sort object.

Often we will focus on sentences that refer to a particular
situation. For this purpose, for any σ, we define the set of
uniform formulas in σ to be all those (first-order or second-
order) formulas in L that do not mention any other situation
terms except for σ, do not mention Poss, and where σ is not
used by any quantifier (Lin & Reiter 1997).

Basic action theories
Within the language, one can formulate action theories that
describe how the world changes as the result of the available
actions. We focus on a variant of the basic action theories
(BAT) (Reiter 2001) of the following form:1

D = Dap ∪ Dss ∪ Duna ∪ Dsr ∪ D0 ∪ Dfnd ∪ E ,where:

1. Dap is the set of action precondition axioms (PAs), one per
action symbol A, of the form Poss(A(~y), s) ≡ ΠA(~y, s),
where ΠA(~y, s) is uniform in s.

2. Dss is the set of successor state axioms (SSAs), one
per fluent symbol F , of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is uniform in s. SSAs cap-
ture the effects, and non-effects, of actions.

3. Dsr is the set of sensing-result axioms (SRAs), one for
each action symbol A, of the form sr(A(~y), s) = r ≡
ΘA(~y, r, s), where ΘA(~y, r, s) is uniform in s. SRAs re-
late sensing outcomes with fluents.

4. Duna is the set of unique-names axioms for actions.
5. D0, the initial database (DB), is a set of sentences uni-

form in S0 that describe the initial situation S0.
6. Dfnd is the set of domain independent axioms of the situ-

ation calculus, formally defining the legal situations.
7. E is a set of unique-names axioms for object constants.

Progression
We follow the definition of the so-called strong progression
of (Vassos, Gerhard, & Levesque 2008); we only extend it
slightly to account for sensing actions.

1For legibility, we typically omit leading universal quantifiers.

Let D be a BAT over relational fluents F1, . . . , Fn, and
let Q1, . . . , Qn be second-order predicate variables. For any
formula φ in L, let φ〈~F : ~Q〉 be the formula that results from
replacing any fluent atom Fi(t1, . . . , tn, σ) in φ, where σ is
a situation term, with atom Qi(t1, . . . , tn).
Definition 1. Let D be a BAT over fluents ~F, α an action of
the form A(~c), and d a sensing result. Then, Pro(D,α,d) is
the following second-order sentence uniform in do(α, S0):

∃ ~Q. D0〈~F : ~Q〉 ∧ΘA(~c, d, do(α, S0)) ∧∧n
i=1∀~x. Fi(~x, do(α, S0)) ≡

(
Φi(~x, α, S0)〈~F : ~Q〉

)
.

We say that a set of formulas Dα uniform in do(α, S0) is a
strong progression of D wrt (α, d) iff Dα is logically equiv-
alent to Pro(D, α, d). �

The important property of strong progression is that Dα ∪
(D −D0) is equivalent to the original theory D wrt answer-
ing unrestricted queries about do(α, S0) and the future sit-
uations after do(α, S0), even queries that quantify over sit-
uations. Although Pro(D, α, e) is defined in second-order
logic we are interested in cases where we can find a Dα that
is first-order representable. In the sequel, we shall present a
restriction on D that is a sufficient condition for doing this
as well as a method for computing a finite Dα.

Range-restricted basic action theories
In this section we present a new type of basic action theo-
ries such that D0 is a database of possible closures and the
axioms in Dap, Dss, and Dsr are built on range-restricted
formulas.

A database of possible closures
Intuitively, we treat each fluent as a multi-valued function,
where the last argument of sort object is considered as the
“output” and the rest of the arguments of sort object as the
“input” of the function.2 This distinction then is important
as we require thatD0 expresses incomplete information only
about the output of fluents.
Definition 2. Let V = {e1, . . . , em} be a set of constants
and τ a fluent atom of the form F (~c, w, S0), where ~c is a
vector of constants and w a variable. We say that τ has the
ground input ~c and the output w. The atomic closure χ of τ
on {e1, . . . , em} is the following sentence:

∀w.F (~c, w, S0) ≡ (w = e1 ∨ · · · ∨ w = em).
The notion generalizes to the vector of atoms ~τ and the vec-
tor of sets of constants ~V, as the conjunction of each of the
atomic closures of τi on Vi. A possible closures axiom
(PCA) for ~τ is a disjunction of closures of ~τ . We say that
each atomic closure mentioned in the PCA is a possible clo-
sure wrt the PCA. �

The following is a straightforward property of closures.
Lemma 1. Let φ be the closure of ~τ and ψ be a closure of
~π on some appropriate vectors. Then φ ∧ ψ is a consistent
closure iff for every i, j such that τi = πj , the atomic closure
of τi in φ and the one of πj in ψ are identical.

2The notion of input-output arguments is similar to that of
modes in logic programming (Apt & Pellegrini 1994). Also, the
results obtained here generalize easily to multiple outputs.

136

A closure of ~τ expresses complete information about
the output of ~τ while a PCA for ~τ expresses disjunc-
tive information it. For example, let Near(x, y, s) rep-
resent that y is lying near the object x, and χ1 be
∀w.Near(bomb, w, S0) ≡ (w = agent ∨ w = box1). Then,
χ1 is the atomic closure of Near(bomb, w, S0) on
{agent, box1} which states that there are exactly two objects
near the bomb, namely agent and box1. Similarly, let χ2 be
the closure of Near(bomb, w, S0) on {agent, box2}. Then,
χ1 ∨ χ2 is a PCA for Near(bomb, w, S0) expressing that
there are exactly two objects near the bomb, one being the
agent and the other being either box1 or box2.

Next, let us define the form of the initial database D0.

Definition 3. A database of possible closures (DBPC) is a
finite set of PCAs such that there is no fluent atom with a
ground input that appears in more than one PCA. �

This implies that for every fluent atom τ with a ground input,
either the output of τ is completely unknown in S0 or there
is a finite list of possible closures for τ that are explicitly
listed in exactly one PCA.

Going back to the bomb example, let Status(x, y, s) rep-
resent that the object x has the status y and let D0 be
the following DBPC: {χ1 ∨ χ2, χ3, χ4, χ5}, where χ3 is
the closure of Status(agent, w, S0) on {ready}, χ4 the clo-
sure of Status(box1, w, S0) on {closed}, χ5 the closure of
Status(box2, w, S0) on {closed, broken}, and χ1, χ2 as be-
fore. Each sentence in D0 is a PCA: χ1 ∨ χ2 lists two pos-
sible closures for Near(bomb, w, S0), while χ3, χ4, χ5 list
one possible closure and express complete information.

We now turn our attention to the so-called possible an-
swers to a query γ(~x) wrt a DBPC D0.

Definition 4. Let D0 be a DBPC, and γ(~x) a first-order for-
mula uniform in S0 whose only free variables are in ~x. The
possible answers to γ wrtD0, denoted as pans(γ,D0), is the
smallest set of pairs (~c, χ) such that:

• χ is a closure of some vector ~τ s.t. E ∪ {χ} |= γ(~c);
• χ is consistent with D0 and minimal in the sense that ev-

ery atomic closure in χ is necessary. �

Intuitively, pans(γ,D0) is a way to characterize all the cases
where the query formula γ(~x) is satisfied in a model of
D0 for some instantiation of ~x. For example, let γ(x) be
the query Near(bomb, x, S0). Then, pans(γ,D0) is the set
{(agent, χ1), (box1, χ1), (agent, χ2), (box2, χ2)}.

It is important to observe that the possible answers
to a query may be infinite. For instance, let γ1(x) be
Near(agent, x, S0). Since nothing is said about the ob-
jects near the agent in D0, for every constant c in L,
(c, χc) ∈ pans(γ1(x),D0), where χc is the closure of
Near(agent, w, S0) on {c}, i.e., there is always a model
in which Near(agent, c) would indeed hold. Similarly, let
γ2(x) be ¬Near(bomb, x, S0). Then, pans(γ2(x),D0) in-
cludes the infinite set {(c, χ1) | c 6= agent, c 6= box1}, since
everything but agent or box1 is far when χ1 is assumed.

Formulas with finite possible answers
We distinguish two ways that the set of possible answers can
be infinite. In the query γ1 above, this happens because what
is being queried is completely unknown inD0. In the second

query though, fluent atom Near(bomb, w) is mentioned in
some PCA and the infinite number of instantiations c for x
are in fact due to the possible closure χ4 of the PCA.

Our objective is to useD0 to answer queries for which the
possible answers depend on the information that is explicitly
expressed in the PCAs. This is captured with the following
just-in-time assumption for formulas.
Definition 5. Let D0 be a DBPC and γ(~x) a first-order for-
mula uniform in S0 whose only free variables are in ~x. Then
γ(~x) is just-in-time (JIT) wrt D0 iff for every vector of con-
stants ~c, γ(~c) is consistent with D0 ∪ E iff there exists a
closure χ such that {χ} ∪ E |= γ(~c), where χ is a conjunc-
tion of closures such that each conjunct is a possible closure
wrt a PCA in D0. �

Assuming that a formula is JIT is not enough to avoid an
infinite set of possible answers. We need also to ensure that
it is range-restricted in the following sense.
Definition 6. The situation-suppressed formula γ in L is
safe-range wrt a set of variables X according to the rules:

1. let ~c,~c1,~c2 be a vectors of constants, c, d constants, and
x, y distinct variables, then:
• x = c is safe-range wrt {x};
• F (~c, d, S0), F (~c1, x,~c2, d, S0) are safe-rage wrt {};
• F (~c, y, S0), F (~c1, x,~c2, y, S0) are safe-range wrt {y};

2. if φ is safe-range wrt Xφ, ψ is safe-range wrt Xψ then,
• φ ∨ ψ is safe-range wrt Xφ ∩Xψ;
• φ ∧ ψ is safe-range wrt Xφ ∪Xψ;
• ¬φ is safe-range wrt {};
• ∃xφ is safe-range wrt X/{x} provided that x ∈ X;

3. no other formula is safe-range.
A formula is said to be range-restricted iff it is safe-range
wrt the set of its free variables. �

For example, the formula Near(x, y, S0) is safe-range wrt
{y}, but not range-restricted and not JIT wrt the D0

of our example. The formulas Near(bomb, y, S0) and
Near(bomb, y, S0) ∧ Status(y, z, S0) are range-restricted as
well as JIT wrt D0.

We now state the main result of this section.
Theorem 1. Let D0 be a DBPC and γ(~x) a first-
order formula uniform in S0 that is range-restricted and
just-in-time wrt D0. Then, pans(γ,D0) is a finite set
{(~c1, χ1), . . . , (~cn, χn)} such that the following holds:

D0 ∪ E |= ∀~x.γ(~x) ≡
n∨
i=1

(~x = ~ci ∧ χi).

Proof sketch. It suffices to prove a stronger lemma about
the safe-range formulas as follows. Let γ(~x, ~y) be a first-
order formula that is just-in-time wrt D0, safe-range wrt
the variables in ~x, and does not mention any free vari-
able other than ~x, ~y. Then for every constant vector ~d that
has the same size as ~y, pans(γ(~x, ~d),D0) is a finite set
{(~e1, χ1), . . . , (~en, χn)} such that the following holds:

D0 ∪ E |= ∀~x.γ(~x, ~d) ≡
n∨
i=1

(~x = ~ei ∧ χi).

137

We prove this lemma by induction on the construction of
the formulas γ. Since γ is safe-range wrt the variables in
~x we only need to consider the cases of the Definition 6.
Due to space limitations we only show the case that γ(x, y)
is F (~c1, y,~c2, x). Let d be an arbitrary constant of the lan-
guage. Then γ(x, d) is the formula F (~c1, d,~c2, x). By the
fact that γ(x, y) is JIT wrt D0 it is not difficult to show
that there is a PCA φ in D0 that mentions F (~c1, d,~c2, w).
Without loss of generality we assume that φ is a PCA for
F (~c1, d,~c2, w). We will show how to rewrite φ in the form
that the lemma requires. The axiom φ has the form

∨n
i=1 χi,

where each χi is an atomic closure of F (~c1, d,~c2, w) on
some set of constants {e1, . . . , em}, i.e, a sentence of the
form ∀w.F (~c1, d,~c2, w) ≡ w = e1 ∨ . . . ∨ w = em. For
each χi of this form let χ′i be the formula

∨m
j=1(x = ej∧χi),

and let φ′ be ∀x.F (~c1, d,~c2, x) ≡
∨n
i=1 χ

′
i. It suffices to

show that D0 ∪ E |= φ′. Let M be an arbitrary model
of D0 ∪ E . Since φ is a sentence in D0 it follows that
M |= φ. By the definition of a possible closures axiom and
the Lemma 1 it follows that there is exactly k, 1 ≤ k ≤ n,
such that M |= χk. Observe that if we simplify χk to true
and all the other χi to false in φ′ we obtain the sentence χk.
Therefore, M |= φ′ and since M was an arbitrary model
of D0 ∪ E , it follows that D0 ∪ E |= φ′. Also, by the
Definition 4 and the structure of φ′ it follows that the set
pans(γ(x, d),D0) is the set that the lemma requires. �

In other words, the range-restricted and the JIT assump-
tions on queries are sufficient conditions to guarantee finitely
many possible answers. The idea then is to build action the-
ories from range-restricted formulas and allow progression
to take place only when the JIT assumption also holds. In
this case we shall show in the next session that we are able
to effectively progress D0 in a logically correct way.

First, we assume that the formulas ΦF (~x, a, s) of SSAs
have the usual general form (Reiter 2001):

γ+
F(~x, a, s) ∨ (F (~x, s) ∧ ¬γ−F(~x, a, s)),

where γ+
F and γ−F characterize the positive and negative ef-

fects of actions. A range-restricted BAT is built on formulas
such that when instantiated with any action argument α and
any sensing result e, they become range-restricted.
Definition 7. An SSA for F is range-restricted iff
γ+
F(~x, a, s) and γ−F(~x, a, s) are disjunctions of formulas of

the form:
∃~z(a = A(~y) ∧ φ(~y, ~w, s)),

where ~z corresponds to the variables in ~y but not in ~x, ~w
to the ones in ~x but not in ~y, and φ(~x, ~w, s), called a context
formula, is such that φ(~c, ~w, S0) is range-restricted for any~c.
Similarly, an SRA for A is range-restricted iff ΘA(~c, d, S0)
is range-restricted for any ~c and d. A range-restricted basic
action theory (RR-BAT) is a BAT such that all axioms in
Dss,Dsr are range-restricted and D0 is a DBPC. �

For example, consider an SSA for Status(x1, x2, s). The
context formula in γ+

Status that refers to the action of the bomb
exploding may be as follows:

a = expl ∧ Near(bomb, x1, s) ∧ x2 = broken,
This has the effect of setting the “broken” status to all ob-
jects near the bomb. Note that the action expl has no argu-
ments, and that the context formula is range-restricted. It is

easy to verify that the formula is JIT wrt D0 as well. The
same holds for a context formula in γ+

Status that removes any
other status for all the affected objects:

a= expl∧Near(bomb, x1, s)∧Status(x1, x2, s)∧x26=broken.

Just-in-time progression
The RR-BATs are defined so that the axioms in Dss,Dsr are
built on range-restricted formulas. We now show that under
a just-in-time assumption there is a finite set of ground flu-
ent atoms that may be affected. The intuition is that in this
case we can progress D0 by appealing to the techniques in
(Vassos, Gerhard, & Levesque 2008) that work when the set
of fluents that may be affected is fixed by the action.

The progression method for the general case
The next definition captures the condition under which our
method for progression is logically correct.
Definition 8. An RR-BAT D is just-in-time (JIT) wrt the
ground action α and the sensing result d iff for all fluent
symbols F , γ+

F(~x, α, S0) and γ−F(~x, α, S0) are JIT wrt D0,
and ΘA(~c, d, S0) is JIT wrt D0, where α is A(~c). �

We introduce the following notation.
Definition 9. LetD be an RR-BAT that is JIT wrt the ground
action α and the sensing result d. The context set of (α, d)
wrt D, denoted as J , is the set of all the fluent atoms
F (~e, w, S0) such that one of the following is true:3

1. for some b, χ, the pair (〈~e, b〉, χ) is a possible answer to
γ∗F(〈~x,w〉, α, S0) wrt D0;

2. for some ~o, b, χ, the pair (〈~o, b〉, χ) is a possible answer to
γ∗F(〈~x, y〉, α, S0) wrt D0 and F (~e, w, S0) appears in χ;

3. for some χ, the pair (∅, χ) is a possible answer to
ΘA(~c, d, S0) wrt D0, where α is the term A(~c) and ∅ the
empty vector and F (~e, w, S0) appears in χ. �

Intuitively, the context set J specifies all those atomic clo-
sures that need to be updated after the action is performed
(case 1) as well as those on which the change is conditioned
on (case 2), and the atomic closures for which some condi-
tion is sensed to be true (case 3). The important property of
J , which follows from Theorem 1, is that it is a finite set.
Lemma 2. Let D be an RR-BAT that is JIT wrt the ground
action α and the sensing result d. Then the context set of
(α, d) wrt D is a finite set.

We now define the J -models which provide a way of sep-
arating D0 into two parts: one that remains unaffected after
the action is performed and one that needs to be updated.
Definition 10. Let J = {τ1, . . . , τn} be the context set of
(α, d) wrt a RR-BAT D. A J -model χ is a closure of the
vector 〈τ1, . . . , τn〉 such that for every i, 1 ≤ i ≤ n, the
atomic closure of τi in χ is a possible closure wrt some PCA
in D0. �

Note that there are finitely many J -models. The disjunc-
tion φ then of all the J -models is a larger PCA that corre-
sponds to the “cross-product” of the PCAs inD0 that capture
the same information about ~τ . Observe that φ corresponds to

3Whenever the notation γ∗ is used, γ∗ can be either γ+ or γ−.

138

the part of D0 that needs updating. The intuition then is that
we can progress D0 by progressing each of the J -models.
Definition 11. Let D be an RR-BAT that is JIT wrt the
ground action α and sensing result d, J the context set
of (α, d), and χ a J -model, where χ is the closure of
〈F1(~c1, w, S0), . . . , Fn(~cn, w, S0)〉 on 〈V1, . . . , Vn〉. The
progression of χ wrt (α, d) is the closure ψ1 ∧ · · · ∧ ψn,
where ψi is the closure of Fi(~ci, w, S0) on (Vi ∪ Γ+

i)/Γ−i
and Γ∗i is the following set of constants:

{e | (〈~ci, e〉, ω) ∈ pans(γ∗Fi
(〈~x,w〉, α, S0)), ω ∧ χ 6|= ⊥}.

The J -model χ is filtered iff for all possible answers (~o, φ)
to ΘA(~c, d, S0) wrt D0, where α = A(~c), χ ∧ φ is inconsis-
tent. �

Each of the J -models χ is updated based on the possible
answers of the formulas γ∗F in Dss. For every possible an-
swer (~o, ω) of the instantiated γ∗F , the atom F (~o) is either re-
moved or added to the closure provided that the condition ω
for the change is consistent with the J -model χ in question.
Moreover, a J -model may be filtered if it is not consistent
with the conditions that are implied by the sensing result d.

We now state the main result of this section that illustrates
how the new database is constructed from D0.
Theorem 2. Let D be an RR-BAT that is consistent and
JIT wrt the ground action α and the sensing result d, J the
context set of (α, d) wrt D, {χ1, . . . , χn} the set of all the
J -models that are not filtered, and {φ1, . . . , φm} the set of
all PCAs in D0 that do not have any atoms in common with
any J -model. Let Dα be the following set:{ n∨

i=1

ψi, φ1, . . . , φm
}
,

where ψi is the progression of χi wrt (α, d). Then, the set
Dα(S0/do(α, S0)) is a strong progression of D wrt (α, d),
whereDα(σ/σ′) denotes the result of replacing every occur-
rence of σ in every sentence in Dα by σ′.
Observe that the progression of D0 is again a DBPC.

A practical case
Our method of progression is based on the ability to com-
pute possible answers. The time complexity of the method,
as well as the size of Dα, is dominated by the size of the
sentence

∨
i φi in Theorem 2. Roughly speaking, we do two

things that have a high computational cost: first, we compute
pans(γ,D0) for formulas γ inDss,Dsr, and second, we com-
bine the answers in a way that is similar to a cross-product.

In order to give some insight on the practicality of our
method, we examine the case that the formulas γ that need to
be evaluated are similar to the so-called conjunctive queries
(Abiteboul, Hull, & Vianu 1994), in particular, formulas of
the form ∃~x(φ1 ∧ · · · ∧ φn), where φi is a possibly non-
ground fluent atom with variables that may not be in ~x.

Given a conjunctive query γ as input and a DBPCD0, Al-
gorithm 1 checks whether γ is range-restricted and JIT wrt
D0, and if so, computes the set pans(γ,D0). The algorithm
works by selecting a fluent atom for which a finite-range as-
sumption can be made (line 4 & 8), simplifying γ wrt this

Algorithm 1 pans(γ,D0)
1: if γ is the empty conjunction then
2: return {(∅,>)} // query reduced to >
3: end if
4: ∆={F (~c, t, S0) ∈ γ |F (~c, w, S0) is mentioned in D0}
5: if ∆ = ∅ then
6: return failure // no fluent to continue
7: else
8: Pick F (~c, t, S0) ∈ ∆ // arbitrary selection
9: X:= ∅ // init answer set

10: for all χF = F (~c, w, S0) ≡ w = d1 ∨ . . .∨ dn ∈ D0

do
11: if t is a variable then
12: Γ = {d1, . . . , dn}
13: else
14: Γ = {d1, . . . , dn} ∩ {t}
15: end if
16: for all constants e ∈ Γ do
17: θ′:= {t/e | t is variable}
18: Y := pans(γθ′ \ {F (~c, e, S0)},D0)
19: if Y = failure then
20: return failure // propagate failure
21: else
22: W := {(θθ′, χ∧χF) | (θ, χ)∈ Y, D0 ∪ {χ∧

χF } 6|= ⊥} // merge results
23: X:= X ∪W // update current set
24: end if
25: end for
26: end for
27: X:={(θ|~x, χ)|(θ, χ)∈X,~x are the free variables in γ}
28: return X
29: end if

atom, and recursively finding the possible answers for the
simplified formula (line 18) until all atoms in γ have been
selected (line 1). Instead of working with vectors of terms,
the algorithm computes bindings for all variables.

It turns out that the algorithm is a sound and complete way
for computing the possible answers of range-restricted and
JIT formulas, when these are conjunctive queries.
Theorem 3. Let D0 be a DBPC and γ a first-order con-
junctive query uniform in S0. Then, Algorithm 1 always ter-
minates with inputs γ and D0, and moreover, if γ is range-
restricted and JIT wrt D0, it returns the set pans(γ,D0).

The conjunctive queries are expressive enough to repre-
sent basic features of practical domains. For example, the
context formula of γ+

Status that we examined earlier, namely
Near(bomb, x1, s) ∧ x2 = broken, is a simple conjunctive
query. As another example consider an agent living in a
grid-world, typical of many video games. The agent may
reason about its next location Loc(z, do(a, s)) after doing
action a by using an SSA whose positive effect γ+

Loc(z, a, s)
contains the following disjunct:

a = moveFwd ∧
∃x∃y(Dir(y, s) ∧ Loc(x, s) ∧ Adj(x, y, z, s) ∧ Clear(z, s)).

That is, when moving forward, the agent is in location z if z
is the adjacent cell to its current location x towards its cur-
rent direction y (e.g., north, east), and z is not blocked with

139

an obstacle. Clearly, this positive effect relies on multiple in-
dexical information and action moveFwd is not local-effect.

Algorithm 1 can easily be extended to handle equalities
as well as negated atoms. The first case can be easily ad-
dressed via standard unification procedures. For negative lit-
erals the idea is to collect also the set ∆− of ground literals
of the form ¬F (~c, d, S0) such that F (~c, w, S0) is mentioned
in D0. When a negative literal is selected, the algorithm
works in the same way as for the ground positive literal ex-
cept that it iterates over the possible closures of F (~c, w, S0)
for which F (~c, d, S0) is not true. (Observe that this is similar
to the way logic-programming implementation techniques
for negation as failure (Apt & Pellegrini 1994).)

Finally, a comment about the complexity of Algorithm 1
and progression. Let ` be the size of the largest closure in
D0 and k the maximum number of possible closures in a
PCA in D0. Then, Algorithm 1 runs in time O(|γ|k`): there
are k` value-closure pairs to be tested for each atom in γ.
With respect to progression, this implies that, in the worst
case, the size of the new database Dα may be exponential
to the size of D0. Nevertheless, we expect the size of Dα
to be manageable in practical scenarios like the previous ex-
ample, where the expressiveness of γ and D0 is mostly used
to answer queries that require indexical reasoning.

Related and future work
The notion of progression for BATs was first introduced by
Lin and Reiter (1997). The version we use here is due to
Vassos et al (2008) which we extended slightly to account
for sensing. Lin and Reiter (1997) suggested some strong
syntactic restrictions on the BATs that allow for a first-order
progression, while Vassos and Levesque (2008) suggested
a restriction on the queries. Liu and Levesque (2005) in-
troduced the local-effect assumption for actions when they
proposed a weaker version of progression that is logically
incomplete, but remains practical. Vassos et al. (2008) later
showed that under this assumption a correct first-order pro-
gression can be computed by updating a finite D0. Our re-
striction of Definition 7 is similar. The main difference is
that we do not require that the arguments ~x of the fluent F
are included in the arguments ~y of the action, thus handling
cases like the moveFwd example. To stay practical though
we had to restrict the structure of D0. Finally, similar to
the notion of progression, Shirazi and Amir (2005) proposed
logical filtering as a way to progressD0 and proved that their
method is correct for answering uniform queries.

The notion of possible closures is a generalization of the
possible values of Vassos and Levesque (2007). The notions
of the safe-range and range-restricted queries come from the
database theory where this form of “safe” queries has been
extensively studied (Abiteboul, Hull, & Vianu 1994). The
notion of just-in-time formulas was introduced for a differ-
ent setting in (De Giacomo, Levesque, & Sardina 2001) and,
in our case, is also related to the active domain of a database
(Abiteboul, Hull, & Vianu 1994). Outside of the situation
calculus, Thielscher (1999) defined a dual representation for
BATs based on state update axioms that explicitly define the
direct effects of each action, and investigated progression in
this setting. Unlike our work where the sentences in D0 are
replaced with an updated version, there, the update relies on

expressing the changes using constraints.

Conclusions
In this paper, we proposed a new type of basic action the-
ories, where the initial description is a set of possible clo-
sures and the effects of actions have a restricted range.
For these theories, called range-restricted, we presented a
method that computes a finite first-order progression by di-
rectly updating the initial database, and proved its correct-
ness. To the best of our knowledge, it is the first result on
the progression of basic action theories with an infinite do-
main, incomplete information, and sensing that goes beyond
the local-effect assumption. We argue that the type of in-
dexical information that our theories can handle arises nat-
urally in real domains, e.g., when an agent needs to reason
about the effects of moving a container. We considered also
a practical restriction that is typical in logic-programming,
and presented an algorithm for the task that our progres-
sion method relies on, namely computing possible answers.
Our next step is to evaluate the approach by relying on
logic-programming frameworks and recent work on incon-
sistent/incomplete databases (e.g., Fuxman et al (2005)).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases : The Logical Level. Addison Wesley.
Apt, K., and Pellegrini, A. 1994. On the occur-check free Prolog
program. ACM Toplas 16(3):687–726.
De Giacomo, G.; Levesque, H. J.; and Sardina, S. 2001. In-
cremental execution of guarded theories. Computational Logic
2(4):495–525.
Fuxman, A.; Fazli, E.; and Miller, R. J. 2005. Conquer: efficient
management of inconsistent databases. In Proc. of SIGMOD-05,
155–166. ACM Press.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92(1-2):131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with in-
complete first-order knowledge in dynamic systems with context-
dependent actions. In Proc. of IJCAI.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Machine Intel-
ligence 4:463–502.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dyn. Sys. MIT Press.
Scherl, R., and Levesque, H. J. 2003. Knowledge, action, and the
frame problem. Artificial Intelligence 144(1–2):1–39.
Shirazi, A., and Amir, E. 2005. First-order logical filtering. In
Proc. of IJCAI-05, 589–595.
Thielscher, M. 1999. From situation calculus to fluent calculus:
State update axioms as a solution to the inferential frame problem.
Artificial Intelligence 111(1-2):277–299.
Vassos, S., and Levesque, H. 2007. Progression of situation calcu-
lus action theories with incomplete information. In Proc. IJCAI,
2024–2029.
Vassos, S., and Levesque, H. J. 2008. On the progression of
situation calculus basic action theories: Resolving a 10-year-old
conjecture. In Proc. of AAAI.
Vassos, S.; Gerhard, L.; and Levesque, H. J. 2008. First-order
strong progression for local-effect basic action theories. In Proc.
of KR, 662–272.

140

	front.pdf
	zbody
	ba
	bb
	bc
	bd
	be
	be2
	bf
	bg
	bh
	bi
	bj
	bk
	bl
	bm
	bn
	bo
	bp
	bq
	br
	bs
	bt
	bu
	bv

