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Preface

The biennial workshop on Nonmonotonic Reasoning, Ac-
tion and Change (NRAC) has an active and loyal community. 
Since its inception in 1995, the workshop has been held seven 
times in conjunction with IJCAI, and has experienced grow-
ing success. We hope to build on this success again this eighth 
year with an interesting and fruitful day of discussion.

The areas of reasoning about action, non-monotonic rea-
soning and belief revision are among the most active research 
areas in Knowledge Representation, with rich inter-connec-
tions and practical applications including robotics, agent-
systems, commonsense reasoning and the semantic web. 
This workshop provides a unique opportunity for researchers 
from all three fields to be brought together at a single forum 
with the prime objectives of communicating important recent 
advances in each field and the exchange of ideas. As these 
fundamental areas mature it is vital that researchers main-
tain a dialog through which they can cooperatively explore 
common links. The goal of this workshop is to work against 
the natural tendency of such rapidly advancing fields to drift 
apart into isolated islands of specialization.

This year, we have accepted ten papers authored by a di-
verse international community. Each paper has been subject 
to careful peer review on the basis of innovation, significance 
and relevance to NRAC. The high quality selection of work 
could not have been achieved without the invaluable help of 
the international Program Committee.

A highlight of the workshop will be our invited speaker 
Professor Hector Geffner from ICREA and UPF in Barce-
lona, Spain, discussing representation and inference in mod-
ern planning. Hector Geffner is a world leader in planning, 
reasoning, and knowledge representation; in addition to his 
many important publications, he is a Fellow of the AAAI, an 
associate editor of the Journal of Artificial Intelligence Re-
search and won an ACM Distinguished Dissertation Award 
in 1990.

Whether you are part of the loyal community or if this 
is your first time to attend, we hope that you will enjoy the 
scholarship and the fun at NRAC 2009.

Sincerely,

Andreas Herzig and Benjamin Johnston
Workshop Chairs
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Invited Talk:
Representation and Inference in Modern Planning:

From Classical Plans to Finite-State Controllers

Hector Geffner
ICREA and UPF
Barcelona, Spain

Abstract
Planning is concerned with the development of solvers for a 
range of models where actions must be executed to achieve  
goals. In these models, actions may be deterministic or not, 
states may be observable or not, and so on. The challenge in 
all cases is computational: how to scale up to large problems 
even if the models are all intractable. In the last 10–15 years 
significant progress has been made in the area resulting from 
novel inference techniques and transformations. In this talk, 
I’ll review these techniques, as we consider the computation 
of classical and conformant plans for unobservable problems, 
and finite-state controllers for partially observable ones.

This talk describes work performed jointly with Blai Bonet, 
Hector Palacios, colleagues and students.

Biography
Hector Geffner got his Ph.D in UCLA with a dissertation that 
was co-winner of the 1990 Association for Computing Ma-
chinery (ACM) Dissertation Award. Then he worked as Staff 
Research Member at the IBM T.J. Watson Research Center in 
NY, USA and at the Universidad Simon Bolivar, in Caracas, 
Venezuela. He is currently  a researcher at the ICREA and a 
professor at the Universitat Pompeu Fabra. Hector Geffner 
is an Associate Editor of the Journal of Artificial Intelligence 
Research, a Fellow of the AAAI, and author of the book “De-
fault Reasoning: Causal and Conditional Theories” published 
by MIT Press in 1992. He is interested in models of reason-
ing, action, planning, and learning.  
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Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Peter Steinke, Michael Thielscher
Department of Computer Science,
Dresden University of Technology

Nöthnitzer Str. 46, 01187 Dresden, Germany

Abstract
When trying to apply recently developed ap-
proaches for updating Description Logic ABoxes
in the context of an action programming language,
one encounters two problems. First, updates gen-
erate so-called Boolean ABoxes, which cannot be
handled by traditional Description Logic reasoners.
Second, iterated update operations result in very
large Boolean ABoxes, which, however, contain a
huge amount of redundant information. In this pa-
per, we address both issues from a practical point
of view.

1 Introduction
Agent programming languages such as Golog [Levesque et
al., 1997] and Flux [Thielscher, 2005] employ actions whose
effects are defined in a logic-based calculus to describe and
implement the behaviour of intelligent agents. In the so-
called progression approach, the agent starts with a (possibly
incomplete) description of the initial state of the world. When
an action is performed, it updates this description to take into
account the effects of this action. Reasoning about the de-
scription of the current state of the world is then, for example,
used in the control structures of the agent program to decide
which action to apply. The calculi underlying Golog and Flux
(situation calculus and fluent calculus, respectively) employ
full first-order predicate logic, which makes the computation
of exact updates as well as the use of decision procedures for
reasoning about descriptions of the state of the world impos-
sible. To overcome this problem, recent papers [Baader et al.,
2005; Liu et al., 2006] have proposed to employ a decidable
Description Logic (DL) [Baader et al., 2003] in place of full
first-order predicate logic. In particular, states of the world
are then described using a DL ABox. In [Liu et al., 2006],
a method for updating DL ABoxes has been developed, and
in [Drescher and Thielscher, 2007] it was shown that this no-
tion of an update conforms with the semantics employed by
Golog and Flux.
In practice, however, there are two obstacles towards em-

ploying the update approach from [Liu et al., 2006] in the
context of agent programs. First, using the update procedures
in the form described in [Liu et al., 2006] quickly leads to
unmanageably large ABoxes. However, there is quite some

room for optimizations since the updated ABoxes contain a
lot of redundant information. The second problem is that the
updated ABoxes are so-called Boolean ABoxes, which can-
not be directly handled by traditional DL reasoners. The main
contributions of this paper are, on the one hand, that we pro-
pose and evaluate different optimization approaches for com-
puting more concise updated ABoxes. On the other hand,
we compare different approaches for reasoning with Boolean
ABoxes, among them one based on the DPLL(T) approach.
The rest of this paper is organized as follows. In Section 2,

we recall the basic notions for DLs and ABox updates. In
Sections 3 we present optimizations that enable the construc-
tion of more concise updated ABoxes, and in Section 4 we
discuss reasoning with Boolean ABoxes. In Section 5, the
approaches introduced in the previous two sections are em-
pirically evaluated.

2 Preliminaries
In DLs, knowledge is represented with the help of concepts
(unary predicates) and roles (binary predicates). Complex
concepts and roles are inductively defined starting with a set
NC of concept names, a set NR of role names, and a set NI of
individual names. The expressiveness of a DL is determined
by the set of available constructors to build concepts and
roles. The concept and role constructors of the DLs ALCO@

and ALCO+ that form the base of our work on ABox up-
date are shown in Table 1, where C,D are concepts, q, r are
roles, and a, b are individual names. The DL that allows only
for negation, conjunction, disjunction, and universal and ex-
istential restrictions is called ALC. By adding nominals O,
we obtain ALCO, which is extended to ALCO@ by the @-
constructor from hybrid logic [Areces et al., 1999], and to
ALCO+ by the Boolean constructors on roles and the nom-
inal role [Liu et al., 2006]. We will use � (⊥) to denote
arbitrary tautological (unsatisfiable) concepts and roles. By
sub(φ) we denote the set of all subconcepts and subroles of a
concept or role φ, respectively.
The semantics of concepts and roles is defined via inter-

pretations I = (ΔI , ·I). The domain ΔI is a non-empty set
and the interpretation function ·I maps each concept name
A ∈ NC to a subset AI of ΔI , each role name r ∈ NR to a
binary relation rI on ΔI , and each individual name a ∈ NI

to an individual aI ∈ ΔI . The interpretation function ·I is
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Name Syntax Semantics
negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

univ. res. ∀r.C {x | ∀y.((x, y) ∈ rI → y ∈ CI)}

exist. res. ∃r.C {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

nominal {a} {aI}

@ constructor @aC ΔI if aI ∈ CI , and ∅ otherwise
role negation ¬r (ΔI × ΔI) \ rI

role conjunction q � r qI ∩ rI

role disjunction q � r qI ∪ rI

nominal role {(a, b)} {(aI , bI)}

Table 1: Syntax and semantics of ALCO@ and ALCO+.

inductively extended to complex concepts and roles as shown
in Table 1.
An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b)

with r a role, C a concept and a, b individual names. A clas-
sical ABox, or an ABox for short, is a finite conjunction of
ABox assertions. A Boolean ABox is a Boolean combination
of ABox assertions. For convenience we will also sometimes
represent classical and Boolean ABoxes as finite sets of asser-
tions by breaking the toplevel conjunctions. An interpretation
I is a model of an assertion C(a) if aI ∈ CI . I is a model
of an assertion r(a, b) (resp. ¬r(a, b)) if (aI , bI) ∈ rI (resp.
(aI , bI) /∈ rI). A model of a (Boolean) ABox is defined in
the obvious way. We use M(A) to denote the set of models
of a Boolean ABox A. A (Boolean) ABox A is consistent if
M(A) �= ∅. Two (Boolean) ABoxes A and A′ are equiva-
lent, denoted by A ≡ A′, if M(A) = M(A′). An assertion
α is entailed by a Boolean ABox A, written as A |= α, if
M(A) ⊆ M({α}). Classical ALCO@-ABoxes can equiv-
alently be compiled to Boolean ALCO-ABoxes (and vice
versa)— the translation in the first direction is exponential, in
the other direction it is linear [Liu et al., 2006]. Consistency
checking and entailment for classical ABoxes are standard in-
ference problems and supported by all DL reasoners1, while,
to the best of our knowledge, no state of the art reasoner di-
rectly supports these inferences for Boolean ABoxes. Rea-
soning in ALCO+ is NEXPTIME complete [Tobies, 2001];
for ALCO@ it is PSPACE complete [Areces et al., 1999].

ABox Update
An ABox can be used to represent knowledge about the state
of some world. An update contains information on changes
that have taken place in that world.

Definition 2.1 (Update) An update U = {δ(t̄)} contains a
single literal, i.e. δ(t̄) is of the form A(a), ¬A(a), r(a, b),
or ¬r(a, b) with A a concept name, r a role name, and a, b
individual names.2 	

1A list of DL reasoners is available at http://www.cs.man.
ac.uk/˜sattler/reasoners.html.

2In [Liu et al., 2006], an update is defined as a consistent set of
literals, not as a single literal. Updating an ABox A with a set of
literals can in our setting be achieved by iteratively updatingA with
the individual literals.

Intuitively, an update literal δ(t̄) says that this literal holds
after the change of the world state. The formal semantics of
updates given in [Liu et al., 2006] defines, for every interpre-
tation I, a successor interpretation IU obtained by changing
this model according to the update. This is the Winslett se-
mantics first introduced in [Winslett, 1988]. Given an ABox
A, all its models are considered to be possible current states
of the world. The goals is then to find an updated ABoxA∗U
that has exactly the successor of the models of A as its mod-
els, i.e., A ∗ U must be such that M(A ∗ U) = {IU | I ∈
M(A)}.3 In general, such an updated ABox need not exists.
The minimal DLs that contain both the basic DL ALC and

are closed under ABox updates are ALCO@ and Boolean
ALCO. ForALCO@, updated ABoxes are exponential in the
size of the original ABox and the update. The DL ALCO+

admits updated ABoxes that are exponential in the size of the
update, but polynomial in the size of the original ABox. This
is the reason why, in this work, we focus on ALCO+ and
ALCO@. The following two propositions, which are simpli-
fied and streamlined versions of the ones given in [Liu et al.,
2006], tell us how updated ABoxes can be computed for these
two DLs:

Proposition 2.2 (Updated ABox for ALCO+) Let αU be
the concept (role) obtained by the construction defined in Fig-
ure 1. Let the ABox A′ be defined as

A′ =
∧

(A ∪ U) ∨
∧

(AU ∪ U), (1)

where the ABox AU is defined as AU = {αU (t̄) | α(t̄) ∈ A}.
Then A ∗ U ≡ A′.
For the DL ALCO@, the part of the construction of up-

dated concepts CU that differs from the construction for
ALCO+ is depicted in Figure 2. Here Obj(U) denotes all
the individuals that occur in the update U .

Proposition 2.3 (Updated ABox for ALCO@) For
ALCO@ the ABox AD is defined as

AD ={CD(a) | C(a) ∈ A}∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ D}∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ D}.

Let A′ be as defined in (1). Then A ∗ U ≡ A′.
To see how the construction of updated ABoxes works con-
sider the following example:

Example 2.4 (Updated ABox) Let the ABox A = {A(a)}
be updated with U = {¬A(a)}. Following Propositions 2.2
and 2.3 we obtain the (highly redundant) updated ABox

{(A(a) ∧ ¬A(a)) ∨ ((A � {a})(a) ∧ ¬A(a))},

which can be simplified to {¬A(a)}. The first disjunct is for
the case that the update was already true, whereas the second
disjunct is for the case that it wasn’t.

3It should be noted that for deterministic updates the Winslett
semantics is uncontroversial, even though it does not extend to non-
deterministic effects or ramifications.
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AU = (A � �
¬A(a)∈U

{a}) � ¬( �
A(a)∈U

{a})

rU = (r � �
¬r(a,b)∈U

{(a, b)}) � ¬( �
r(a,b)∈U

{(a, b)})

{a}U = {a} {(a, b)}U = {(a, b)}
(¬C)U = ¬CU (¬r)U = ¬rU

(C � D)U = CU � DU (r � q)U = rU � qU

(C � D)U = CU � DU (r � q)U = rU � qU

(∃r.C)U = ∃rU .CU (∀r.C)U = ∀rU .CU

Figure 1: Constructing CU and rU for ALCO+

(@iC)U = @iC
U

(∃r.C)U = ( �
a∈Obj(U)

¬{a} � ∃r.CU ) � ∃r.( �
a∈Obj(U)

¬{a} � CU )

� �
a,b∈Obj(U),r(a,b) �∈U

({a} � ∃r.({b} � CU )) � �
¬r(a,b)∈U

({a} � @bC
U )

(∀r.C)U = ( �
a∈Obj(U)

¬{a} → ∀r.CU ) � ∀r.( �
a∈Obj(U)

¬{a} → CU )

� �
a,b∈Obj(U),r(a,b) �∈U

({a} → ∀r.({b} → CU )) � �
¬r(a,b)∈U

({a} → @bC
U )

Figure 2: Constructing CU for ALCO@

3 Optimizations for ABox Updates
It turns out that a naive implementation of the update algo-
rithms based on Proposition 2.2 or 2.3 is not practical. Even
for very simple update problems — where simple means e.g.
small initial ABoxes containing only literals — after only a
few updates we obtain ABoxes so huge and redundant that
the reasoners cannot handle them anymore. In this section
we propose a range of techniques for obtaining less redun-
dant updated ABoxes.
In particular we are looking for ABoxes that are smaller

than, but equivalent to, the updated ABoxes. In principle
this could be done by enumerating ever bigger ABoxes, and
checking for equivalence to the updated ABox. This is not
likely to be practical, though. Instead we focus on logi-
cal transformations for obtaining smaller updated ABoxes.
Since these transformations can be computationally expen-
sive themselves, we also identify fragments of the transfor-
mations that we expect to be relatively cheap. The proposed
techniques are each motivated by avoidable redundancy that
we observed in practical examples. We present the various
techniques for obtaining smaller updated ABoxes individu-
ally; they can be combined in a modular fashion.

Updating Boolean ABoxes
Updating an ABox according to Proposition 2.2 or 2.3 results
in a Boolean ABox. In [Liu et al., 2006] this updated ABox is
transformed to a non-Boolean ABox using the@-constructor,
before it is updated again. The following observation shows
that Boolean ABoxes can directly be updated again by updat-
ing the individual assertions, avoiding the transformation.

Observation 3.1 (Distributivity of Update) Update dis-
tributes over conjunction and disjunction in Boolean ABoxes;
i.e.

(A1 � A2) ∗ U ≡ (A1 ∗ U) � (A2 ∗ U),

where� denotes either ∧ or ∨ (negation can be pushed inside
the assertions).

By updating a Boolean ABox directly we also obtain a
slightly more compact representation than the original one —
the update U is no longer contained in two disjuncts:
Observation 3.2 (Updating Boolean ABoxes) For a
Boolean ABox A (we assume negation has been pushed
inside the assertions), let the updated ABox A′ be defined as

A′ = (A � U) ∧
∧

U .

Here A � U is defined recursively as
α � U = α ∨ αU

(α � B) � U = (α � U) � (B � U)

where � denotes ∧ or ∨, α is an assertion, and {α}D is
defined as in Proposition 2.2 (or 2.3) for ALCO+ (or for
ALCO@, respectively). Then A ∗ U ≡ A′.

Determinate Updates
Looking at the construction of updated ABoxes, we see that
from an ABox A by an update we get a disjunction A ∨AU .
This causes a rapid growth of the updated ABox. If, however,
either the update or its negation is entailed by the ABox A,
then one of the disjuncts is inconsistent and can be removed:
Observation 3.3 (Determinate Updates) For (Boolean)
ABox A, update U = {δ}, and updated ABox A′ we have
that A′ ≡ A if A � δ; and A′ ≡ U ∪ AU if A � ¬δ.4
Otherwise, if neither A |= δ nor A |= ¬δ, both A∅ and AU
are consistent with U .
Detecting this type of situation requires up to two reasoning
steps: A |= δ and A |= ¬δ, resulting in a tradeoff between
time and space efficiency.

Exploiting the Unique Name Assumption
The common unique name assumption (UNA) means that no
two individual names may denote the same object. The con-
structions depicted in Figure 1 and 2 do not take the UNA

4The latter of these two observations is from [Liu et al., 2006].
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into account; but we can construct simpler updated ABoxes
by keeping track of the individuals s̄ and t̄ that an assertion
γ(s̄) refers to when updating it with δ(t̄):
Observation 3.4 (Updated Assertion with UNA) Let A be
an ABox, U an update, and A′ the updated ABox. Further,
let the ABox B be obtained by re-defining the ABox AU as
AU = {CU,a(a) | C(a) ∈ A}∪{rU,a−b(a, b) | r(a, b) ∈ A}
for ALCO+,
where CU,i and rU,i−j are given in Figure 3.5 For

ALCO@ ABoxes we only use the modified construction of
concept assertions. Then A′ ≡ B.
This UNA-based construction is not costly at all. It can-

not identify all cases where the UNA admits a more concise
updated ABox, though. The next example illustrates both its
strength and limitations:
Example 3.5 (Exploiting UNA) If we update the ABoxA =
{C(i)} with U = {¬C(j)}, using CU,i we obtain C(i),
instead of C � {j}(i) using CU . Next consider the ABox
A = {∀r.({j} �C)}(i), updated by U = {C(k)}. As part of
the update construction we obtain ∀r.({j} � (C � ¬{k}))(i)
which can be simplified using UNA to ∀r.({j} � C)(i). Our
method for exploiting UNA cannot detect this latter case.

Omitting Subsuming Disjuncts and Entailed Assertions
Intuitively, in a disjunction we can omit the “stronger” of two
disjuncts:
Observation 3.6 (Omitting Subsuming Disjuncts) Let the
disjunction (A∨AU ) be part of an updated ABox. IfA � AU

(or AU � A) then (A ∨AU ) ≡ AU (or (A ∨AU ) ≡ A).
Detecting subsuming disjuncts in general requires reasoning.
But by a simple, syntactic check we can detect beforehand
some cases where one of the disjuncts AU and A will sub-
sume the other. Then the computation of subsuming disjuncts
can be avoided. We say that an occurrence of a concept or
role name δ in an assertion is positive, if it is in the scope
of an even number of negation signs, and negative otherwise;
δ occurs only positively (negatively) in an assertion if every
occurrence of δ is positive (negative).
Observation 3.7 (Detecting Subsuming Disjuncts) If for
an ABox A, updated with update U = {(¬)δ(t̄)}, we have
that:
(1) if the update is positive (i.e. δ(t̄)) then

– if δ occurs only positively in A then AU � A; and
– if δ occurs only negatively in A then A � AU .

(2) if the update is negative (i.e. ¬δ(t̄)) then
– if δ occurs only positively in A then A � AU ; and
– if δ occurs only negatively in A then AU � A.

Conversely, we can also avoid updating entailed assertions:
Observation 3.8 (Omitting Entailed Assertions) Let A be
an ABox and U an update. If U |= α or A \ {α} |= α for
some assertion α ∈ A, then A ∗ U ≡ (A \ {α}) ∗ U .

5We omit the Boolean constructors.

Removing all entailed assertions might be too expensive in
practice; one might try doing this periodically.

Propositional ABoxes
Sometimes we do not need the full power of DL reasoning,
but propositional reasoning is enough:

Definition 3.9 (Propositional ABox) We call a Boolean
ABoxA propositional if it does not contain quantifiers. 	

For propositional ABoxes we could in principle use pro-
gression algorithms for propositional logic [Amir and Rus-
sell, 2003] and efficient SAT-technology, since an updated
propositional ABox is propositional, too.

Independent Assertions
Next we address the question under which conditions an as-
sertion in an ABox is not affected by an update, i.e. indepen-
dent. The more independent assertions we can identify, the
more compact our ABox representation becomes.

Definition 3.10 (Independent Assertion) Assertion α in an
ABox A is independent from update U = {δ} iff A ∗ U ≡
α ∧ (B ∗ U) where B = A \ {α}. 	

Detecting this in all cases requires reasoning steps and thus
is costly. It is easy, though, to syntactically detect some of the
independent assertions:

Observation 3.11 (Independent Assertion) For an ABoxA
in negation normal form and update U = {(¬)δ(t̄1)}, the
assertion α(t̄2) ∈ A is independent if δ /∈ sub(α). It is also
independent if A � t̄1 �= t̄2, δ occurs in α only outside the
scope of a quantifier, and for all subconcepts @iC of α the
assertion C(i) is independent of U .

4 Reasoning with Boolean ABoxes
As we have seen in the previous sections, updated ABoxes
are BooleanALCO@- orALCO+-ABoxes, so that an intelli-
gent agent built on top of ABox update needs Boolean ABox
reasoning. Reasoning with ALC-LTL formulas [Baader et
al., 2008] requires Boolean ABox reasoning, too. However,
Boolean ABox reasoning is not directly supported by DL rea-
soners. In this section, we present four different reasoning
methods that can handle Boolean ABoxes:

• one where a DL reasoner operates on single disjuncts of
a Boolean ABox in DNF;

• one which uses Otter, a first-order theorem prover;
• one which uses a consistency preserving reduction from
a Boolean ABox to a non-Boolean ABox; and

• one which is based on propositional satisfiability testing
modulo theories — the DPLL(T) approach.

Replacing every assertion in a Boolean ABoxAwith a propo-
sitional letter results in a propositional formula FA. The
ABox A is a Boolean ABox in CNF (resp. DNF) if FA is
in CNF (resp. DNF). The first approach works on Boolean
ABoxes in DNF while the other approaches are based on
CNF.
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AU,i = �, if U = {¬A(i)} AU,i = ⊥, if U = {A(i) ∈ U}
AU,i = A, if U �= {¬A(i)} and U �= {A(i)}
rU,i−j = �, if U = {¬r(i, j)} rU,i−j = ⊥, if U = {r(i, j)}
rU,i−j = r, if U �= {¬r(i, j)} and U �= {r(i, j)}
{i}U,i = � {i}U,j = ⊥
{(i, j)}U,i−j = � {(i, j)}U,k−l = ⊥, if k �= i or l �= j

(∃r.C)U,i = ∃r.(CU ), if U �= {q(i, x)} for q ∈ sub(r) (∀r.C)U,i = ∀r.(CU ), if U �= {q(i, x)} for q ∈ sub(r)
(∃r.C)U,i = (∃r.C)U , otherwise (∀r.C)U,i = (∀r.C)U , otherwise
(@jC)U,i = @jC

U,j (@iC)U = @iC
U,i

Figure 3: Constructing CU,i and rU,i−j for ALCO+ and ALCO@

In all approaches we do not use the equivalence-preserving,
exponential transformation from [Liu et al., 2006] for com-
piling the @ constructor away. Instead we simulate the @-
operator by a universal role [Bong, 2007]; this consistency-
preserving transformation is linear.
We use Pellet as a DL reasoner because it supports nomi-

nals, query-answering and pinpointing [Sirin et al., 2007].

The DNF Approach
A Boolean ABox in DNF is consistent iff it contains a con-
sistent disjunct. We can employ a DL reasoner to decide the
consistency of each disjunct. We refer to this approach as
Pellet-DNF. A drawback of this approach is that we will see
that the less redundant updated ABoxes are in CNF, and thus
require a costly translation to DNF (using de Morgan’s laws).

The Theorem Prover Approach
The DL ALCO+ admits smaller updated ABoxes than
ALCO@ [Liu et al., 2006]; however, its role operators are not
supported by current mature DL reasoners. Once we translate
ALCO+ to first order logic [Borgida, 1996], we can use theo-
rem provers that can cope with Boolean role constructors. We
chose to use Otter [McCune, 2003] because it supports query-
answering via answer literals [Green, 1969]; this is useful e.g.
for parametric actions, which are to be instantiated to con-
crete actions. After a few experiments we chose to configure
Otter to use hyperresolution combined with Knuth-Bendix-
rewriting, plus the set-of-support strategy.

The Reduction Approach
We can linearly compile Boolean ALCO@-ABoxes to classi-
cal ALCO@-ABoxes [Liu et al., 2006]. Then, simulating the
@-operator by a universal role, we can directly use a standard
DL reasoner; this approach is henceforth called Pellet-UR.

The DPLL(T) Approach
Most modern SAT-solvers [Een and Sörensson, 2003; de
Moura and Bjørner, 2008] are variants of the Davis-Putnam-
Logemann-Loveland (DPLL) procedure [Davis and Putnam,
1960; Davis et al., 1962]. Such a SAT-solver exhaustively
applies transition rules6 to generate and extend a partial in-
terpretation and thus decides satisfiability of a propositional
formula in CNF. One of the strengths of the DPLL procedures
is that they can efficiently prune the search space by building
and learning backjump clauses [Zhang et al., 2001].
The DPLL(T) approach combines a DPLL procedure with

a theory solver that can handle conjunctions of literals in

6See [Nieuwenhuis et al., 2007] for the details.

the theory to solve the satisfiability problem modulo theo-
ries (SMT) [Nieuwenhuis et al., 2007]. In DPLL(T) a DPLL
procedure works on the propositional formula obtained by re-
placing the theory atoms with propositional letters. Whenever
the DPLL procedure extends the current partial interpretation
by a new element the theory solver is invoked to check con-
sistency of the conjunction of the theory atoms corresponding
to the partial, propositional interpretation. If the theory solver
reports an inconsistency, the DPLL procedure will backjump
and thus the search space is pruned.
The consistency problem of Boolean ABoxes can be

viewed as an instance of SMT where ABox assertions are the
theory atoms and a DL reasoner serves as theory solver.
The non-standard DL inference of pinpointing [Schlobach,

2003; Baader and Peñaloza, 2008] is highly relevant to this
approach. Explaining why an ABox is inconsistent is an in-
stance of the pinpointing problem, where an explanation is a
minimal sub-conjunction of the input ABox, containing only
those assertions that are responsible for the inconsistency.
Based on these explanations in the DPLL(T) approach we can
build better backjump clauses [Nieuwenhuis et al., 2007].
We implemented an algorithm based on the DPLL(T) ap-

proach with the strategy of MINISAT [Een and Sörensson,
2003]. Pellet was chosen as the theory solver because it sup-
ports pinpointing. This approach is called Pellet-DPLL.

Propositional Reasoning
For the case where we can identify propositional ABoxes
we have developed and implemented a simple, specialized
method. Reasoning there is reduced to efficient list opera-
tions. This reasoner is used to supplement the other reasoning
approaches (if possible).

5 Experimental Results
In this section, we evaluate the efficiency of the different up-
date and reasoning mechanisms. The relevant measures are
the time needed for computing the updated ABox together
with its size, and the efficiency of reasoning with it. We will
see that choosing the right update and reasoning algorithms
depends upon a problem’s specifics.
An update algorithm based on Proposition 2.2 or 2.3 gen-

erates Boolean ABoxes in DNF, while an algorithm based
on Proposition 3.2 outputs ABoxes in CNF. Of course, every
Boolean ABox can equivalently be represented in CNF or in
DNF; however, this transformation (using De Morgan’s laws)
is rather expensive. The performance of reasoning with up-
dated ABoxes strongly depends on the choice of underlying
representation. We use several types of testing data:
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• a set of randomly generated Boolean ABoxes in CNF;
• a set of random ABoxes, Updates, and Queries; and
• the Wumpus world [Russell and Norvig, 2003].

We distinguish two main types of update algorithms that we
implemented:

• In one we compute updated ABoxes in DNF;
• alternatively, we compute updated ABoxes in CNF.

Both approaches are further parametrized by using differ-
ent reasoners, and a different combination of optimization
techniques. We have implemented the different ABox update
algorithms in ECLiPSe-Prolog.
The reasoning methods have already been described in

Section 4. We call a reasoning method hybrid if it resorts to
our propositional reasoner whenever possible; for example,
we then speak of hybrid Pellet-UR.

5.1 Representation: DNF or CNF?
We have used both the Wumpus world and the random update
examples to compare DNF and CNF based update algorithms
(with and without optimizations). CNF representation con-
sistently proved to be superior: The DNF approach quickly
drowns in redundant information. This is because to compute
an updated ABox in DNF is to include both the update and
all the non-affected information in both disjuncts. Detecting
subsuming disjuncts and determinate updates alleviates this
problem, but does not eliminate it. By avoiding this redun-
dancy we immediately obtain an updated ABox in CNF. On
DNF-based updated ABoxes Pellet-DNF performs best— the
other methods suffer from the expensive conversion to CNF.
In the following we only consider the CNF-based representa-
tion of updated ABoxes.

5.2 Consistency Checking for Boolean ABoxes in
CNF

We implemented a random generator of Boolean ALC-
ABoxes, which randomly generates a propositional formula
in CNF and then assigns a randomly generated assertion to
each propositional letter. Several parameters are used to con-
trol the shape of the generated Boolean ABoxes (the numbers
in parentheses indicate the upper bound on the parameters we
used): the number n1 of literals in a clause (53), the num-
ber n2 of propositional letters (36), the number n3 of clauses
(83), the number d of nested roles in a concept assertion (23),
the number ncs of the constructors in a concept assertion
(106), the numbers nc, nr, and ni of concept names, role
names, and individual names in an assertion (12 each), and
the probability pr of generating a role assertion (0.2).
In Figure 4, we plot the runtimes of Pellet-DPLL and

Pellet-UR on these testing data against the number of sym-
bols in the Boolean ABox. The points plotted as + indicate
the runtime of Pellet-DPLL while those plotted as × indicate
the runtime of Pellet-UR. We depict the performance on con-
sistent and inconsistent Boolean ABoxes separately — there
were more consistent than inconsistent Boolean ABoxes.
For Pellet-UR, the runtime linearly increases with the size

of the input (the bar from the lower left to the upper right

corner). On inconsistent ABoxes Pellet-DPLL also exhibits
a linear increase in runtime, while on consistent ABoxes the
runtime is less predictable. Pellet-DPLL performs better on
all of the inconsistent Boolean ABoxes. On most of the con-
sistent ABoxes, the Pellet-UR approach does better. This is
due to the fact that in Pellet-DPLL the frequent invocations
of the theory solver Pellet are more likely to pay off if incon-
sistency of the current, partial model can be detected often:
We then can build a back-jump clause that helps to prune the
search space. The runtimes of Pellet-UR are about the same
on both consistent and inconsistent input data.
For Otter the conversion from ABoxes in CNF to full first

order CNF proved to be a big obstacle, as did the conversion
to DNF for Pellet-DNF.

5.3 Random Updates
We have extensively experimented with a set of randomly
generated ABoxes and updates. Initial ABoxes were between
two and thirty assertions in size.We were mostly interested
in runtime and space consumption for iterated updates. We
could make a number of interesting observations:
• The UNA-based concept update construction from Fig-
ure 3 always paid.

• The reasoning needed to identify determinate updates
pays in the long run.

• Syntactically detecting subsuming disjuncts worked,
too. Doing so using a reasoner proved too expensive.

• Identifying all entailed assertions to shrink the ABoxes
proved to be too expensive, too.

• Resorting to our dedicated propositional reasoner when-
ever possible resulted in significantly better perfor-
mance.

• We can keep updated ABoxes much smaller at a low cost
by syntactically identifying independent assertions.

Updating an ABox according to [Liu et al., 2006] is a
purely syntactic procedure. But if we iteratively update
ABoxes, then in the long run we get both a lower space and
time consumption by calling a reasoner to identify determi-
nate updates. Using our propositional reasoner whenever pos-
sible for this resulted in better performance. If identifying
determinate updates required DL reasoning then Pellet-UR
performed slightly better than Pellet-DPLL. This is due to
the fact that less updates were determinate than not, and thus
inconsistency was not detected often. On a subset of the ran-
dom examples where there were more determinate updates
Pellet-DPLL performed better than Pellet-UR. The runtimes
for Otter widely varied: converting CNF-ABoxes to full first
order CNF proved the bottleneck. Pellet-DNF was not com-
petitive because of the expensive conversion to DNF.
We could also identify characteristics of initial ABoxes

that allow to predict performance: If the initial ABox does
not contain nested quantifiers then performance is acceptable;
e.g. we can iteratively apply 300 singleton updates to a fifteen
assertion ABox in 90 seconds, without a significant increase
in size. If the initial ABox contains nested quantifiers space
consumption quickly grows out of bounds. This is because
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Figure 4: Benchmarks for Pellet-DPLL and Pellet-UR
we then cannot cheaply identify independent assertions and
use the UNA-based concept update construction. For nested
quantifiers usingALCO+ instead ofALCO@ helps to reduce
space consumption; but this still does not result in satisfactory
overall performance.

5.4 The Wumpus World
The Wumpus World [Russell and Norvig, 2003] is a well-
known challenge problem in the reasoning about action com-
munity. It consists of a grid-like world: cells may contain
pits, one cell contains gold, and one the fearsome Wumpus.
The agent dies if she enters a cell containing a pit or the
Wumpus. But she carries one arrow so that she can shoot
the Wumpus from an adjacent cell. If the agent is next to a
cell containing a pit (Wumpus), she can detect that one of the
surrounding cells contains a pit (the Wumpus), but doesn’t
know which one. She knows the contents of the visited cells.
Getting the gold without getting killed is the agent’s goal.
At each step, the agent performs sensing to learn whether

one of the adjacent cells contains a pit or the Wumpus. Since
the sensing results are disjunctive, we cannot treat them via
ABox updates. But since the properties sensed are static (i.e.,
cannot change once we know them), we can simply adjoin
the sensing results to the ABox serving as the agent’s current
world model. The effects of the agent’s (non-sensing) actions
(like moving to another cell) are modelled as ABox update.
The Wumpus World can be modelled in different ways. In

the simplest model, the initial ABox contains the connections
between the cells, the agent’s location, and the facts that the
agent carries an arrow, and that the Wumpus is alive (Model
PL1). For this, Boolean combinations of concept/role liter-
als are enough. In Model PL2, we include the fact that the
Wumpus is at exactly one location by enumerating all possi-
ble cases in a big disjunction. We turn PL1 into a DL problem
by including the information ∃at.�(wumpus) (Model DL1).
Model DL2 is obtained from PL2 by adding this same asser-
tion, which here is redundant. Table 2 shows the runtimes,
where n/a stands for unavailable expressivity and * for non-
termination in 15 minutes. For the propositional models we
also used the action language Flux [Thielscher, 2005].
Pellet-DNF, and to a lesser extent also Otter, again had

difficulties with the necessary input conversion. Pellet-UR

Model Prop hybrid Otter hybrid Pellet-UR Flux
4x4 PL1 0.008 s 0.008 s 0.008 s 0.6 s
8x8 PL1 0.26 s 0.26 s 0.26 s 14.9 s
8x8 PL2 16.9 s 16.9 s 16.9 s n/a
4x4 DL1 n/a 36.4 s 5.5 s n/a
4x4 DL2 n/a * 23.93 s n/a

Table 2: Runtimes for the Wumpus World.

proved to be the best DL reasoner in this setting. This is due
to the fact that this domain requires query-answering: The
agent e.g. needs to know for which values of x and y we
have that at(agent, x) ∧ connected(x, y). Pellet-DPLL is the
only reasoner that lacks direct support for query-answering.
Thus, for query C(x), we iteratively check for every individ-
ual name i ∈ NI whether C(i) holds — but this results in bad
performance for Pellet-DPLL.
We also see that the propositional reasoner performs quite

well on the propositional models. Including more informa-
tion wrt. the Wumpus’ location results in worse performance.
We used Model DL2 to see if it pays to identify all en-
tailed assertions: after omitting the entailed ∃at.�(wumpus)
the model is propositional again. In practice this proved too
costly. The other observations from Section 5.3 also hold in
this domain. Sometimes removing assertions entailed by the
update did help, though. In particular, once the Wumpus is
found, we can remove the assertion ∃at.�(wumpus) entailed
by the respective update and then resort to efficient proposi-
tional reasoning.

6 Summary and Future Work
In this work, we have investigated implementation techniques
for ABox update, and for reasoning with (updated) Boolean
ABoxes. We have introduced and evaluated several optimiza-
tions of the ABox update algorithms in [Liu et al., 2006].
The lessons learnt were: Using CNF-representation of up-
dated ABoxes is strongly recommended. The (incomplete)
syntactic techniques for exploiting the unique name assump-
tion, and detecting subsuming disjuncts and independent as-
sertions have also resulted in an improved performance. The
benefit of identifying determinate updates made up for the as-
sociated reasoning costs. Other techniques requiring DL rea-
soning in general proved to be too expensive; but removing
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some entailed assertions helped in the Wumpus world.
Regarding the investigated reasoning methods for Boolean

ABoxes, we have come to the following conclusions. Pellet-
DNF is the best reasoner for Boolean ABoxes in DNF. For
consistency checking of ABoxes in CNF, Pellet-DPLL and
Pellet-UR worked best. Pellet-DPLL did better for detect-
ing an actual inconsistency, while it performed worse than
Pellet-UR on most of the consistent Boolean ABoxes. On
the randomly generated update examples, Pellet-UR also per-
formed slightly better than Pellet-DPLL because inconsis-
tency was not detected often. On a subset where the updates
were mostly determinate, Pellet-DPLL outperformed Pellet-
UR. If query-answering is among the reasoning tasks, then
Pellet-UR is to be preferred over Pellet-DPLL because of Pel-
let’s direct support for this inference.
It would be interesting to develop heuristics for finding

suitable individual names as well as other optimizations for
query-answering in the DPLL(T) approach. The performance
of the DPLL(T) approach also depends on the performance
of the SAT solver and the pinpointing service. Thus Pellet-
DPLL can benefit from more efficient implementation of
these tasks as well.
The tests on the Wumpus world confirmed that resorting

to our dedicated propositional reasoner whenever possible is
useful. In the Wumpus world, removing entailed assertions
helped a lot. In contrast, for the randomly generated update
examples, finding entailed assertions proved to be too costly.
Using Otter as a theorem prover might be considered some-

what unfair (to the theorem proving approach), since it is no
longer actively maintained and optimized. The conversion to
full first order CNF proved to be the biggest obstacle for Otter.
We chose to use Otter because it supports query-answering,
which is not supported by most current provers [Waldinger,
2007], but vital in some domains. If this is to change,7 we
can try to resort to state-of-the art theorem provers for reason-
ing in ALCO+. This may allow us to really exploit the fact
that ALCO+ admits smaller updated ABoxes than ALCO@.
Alternatively, one could also try to use a more dedicated rea-
soning system for ALCO+ [Schmidt and Tishkovsky, 2007].
Acknowledgments: Many thanks to Albert Oliveras for his
help regarding the construction of a backjump clause in the
DPLL(T) approach.
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Abstract
In this paper, we evaluate the expressiveness of
the action language C in modeling multi-agent do-
mains. Our investigation shows that, with minimal
extensions, C can be adapted to model multi-agent
domains in a natural way. We also show that the
language is suitable for answering various types of
queries that are interesting in modeling and analyz-
ing multi-agent domains.

1 Introduction and Motivation
Representing and reasoning in multi-agent domains are two
of the most active research areas in multi-agent system (MAS)
research. The literature in this area is extensive, and it pro-
vides a plethora of logics for representing and reasoning
about various aspects in multi-agent domains. For example,
the authors of [Sauro et al., 2006] combine an action logic
and a cooperation logic to represent and reason about the
capability and the cooperation between agents. [Gerbrandy,
2006] generalizes this framework to consider domains where
an agent may control only a part of a proposition. In [van der
Hoek et al., 2005], an extension of Alternating-time Tempo-
ral Logic (ATL) is developed to facilitate strategic reasoning
in multi-agent domains. The work in [Spaan et al., 2006] sug-
gests that decentralized partially observable Markov decision
processes could be used to represent multi-agent domains and
discusses the usefulness of agent communication in multi-
agent planning. In [Herzig and Troquard, 2006], an exten-
sion of Alternating-time Temporal Epistemic Logic (ATEL)
is proposed for reasoning about choices.

The rich collection of logics proposed in the literature for
formalizing MAS reflects attempts to design solutions to ad-
dress specific issues in modeling MAS, often justified by a
specific application scenario. This makes such logics suitable
to address specific subsets of the general features required
to model real-world MAS domains. The task of generaliz-
ing some of these existing proposals to create a uniform and
comprehensive framework for modeling several different as-
pects of MAS domains is, to the best of our knowledge, still
an open problem. Although we do not dispute the possibility
of extending several of these existing proposals in various di-
rections, the task does not seem easy. It is worth noticing that,
on the other hand, the need for a general language for MAS

domains, with a formal and simple semantics, that allows for
the verification of plan correctness has been extensively mo-
tivated, e.g., [Brenner, 2005].

The state of affairs in formalizing multi-agent systems re-
flects the same trend that occurred in the early nineties, re-
garding the formalization of single agent domains. Between
the discovery of the frame problem [McCarthy and Hayes,
1969] and 1990, several formalisms for representing and rea-
soning in dynamic domains have been proposed. Frequently,
new proposals have appeared to address shortcomings of pre-
vious approaches on specific example domains. For example,
the well-known Yale Shooting problem [Hanks and McDer-
mott, 1987] was invented to show that the early solutions to
the frame problem fail. A simple solution to the Yale Shoot-
ing problem was proposed in [Baker, 1989], yet this solution
was shown to fail in the Stolen Car example [Kautz, 1986],
etc. Action languages [Gelfond and Lifschitz, 1998] were
one of the outcomes of this development, and they have been
proved to be very useful ever since.

Action description languages, first introduced in [Gelfond
and Lifschitz, 1993] and further refined in [Gelfond and Lifs-
chitz, 1998], are formal models used to describe dynamic do-
mains, by focusing on the representation of effects of actions.
Traditional action languages (e.g., A, B, C) have mostly fo-
cused on domains involving a single agent. In spite of differ-
ent features offered by several of these languages (e.g., con-
current actions, sensing actions, non-deterministic behavior),
there is a general consensus on what are the essential com-
ponents of an action description language in single agent do-
mains. In particular, an action specification focuses on the
direct effects of each action on the state of the world; the se-
mantics of the language takes care of all the other aspects
concerning the evolution of the world (e.g., the ramification
problem).

The analogy between the development of several for-
malisms for single agent domains and the development of
several logics for formalizing multi-agent systems indicates
the need for, and the usefulness of a formalism capable of
dealing with multiple desiderata in the specification of MAS.
A natural question that arises is whether single agent action
languages can be adapted to describe MAS. This is the main
question that we explore in this paper.

In this paper, we answer the above question by investigat-
ing whether an action language developed for single agent
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domains can be used, with minimal modifications, to model
MAS domains with several features of interest. Our starting
point is a well-studied and well-understood single agent lan-
guage action language—the language C [Gelfond and Lifs-
chitz, 1998]. This language is chosen as it provides a number
of features that appear necessary to handle multi-agent do-
mains, such as concurrent interacting actions. The language
is employed to formalize examples drawn from the multi-
agent literature, describing different types of problems that
can arise when dealing with multiple agents. Whenever nec-
essary, we identify weaknesses of C and introduce extensions
that are adequate to model the domains. The resulting action
language provides a unifying framework for modeling multi-
agent domains. The language can be used as a foundation
for different forms of reasoning in multi-agent domains (e.g.,
projection, validation of plans), which are formalized in the
form of a query language.

Before we continue, let us discuss the desirable features
MAS and the assumptions we will make in the rest of this
work. In this paper, we consider a multi-agent systems
(MAS) domain as an environment in which multiple agents
can execute actions to change the environment. We assume
that
• Agents can execute actions concurrently;
• Each agent knows its own capabilities;
• Actions executed by different agents can interact;
• Agents can communicate to exchange knowledge; and
• Knowledge can be private to an agent or shared among

groups of agents.
The questions that we are interested to answer in a MAS do-
main involve
• hypothetical reasoning, e.g., what happens if agent A

executes the action a; what happens if A executes a1

and B executes b1 at the same time; etc.
• planning/capability, e.g., can a specified group of agents

achieves a certain goal from a state.
Variations of the above types of questions will also be con-
sidered. For example, what happens if agents do not have
complete information, agents do not cooperate, agents have
preferences, etc.

We would like to note that in the past there have been at-
tempts to use action description languages to formalize multi-
agent domains, e.g., [Boutilier and Brafman, 2001]. On the
other hand, existing proposals address only some of the prop-
erties of the multi-agent scenarios mentioned earlier (e.g.,
concurrency).

To the best of our knowledge, this is the first investiga-
tion of how to adapt a standard singe-agent action language to
meet the needs of MAS domains. It is also important to stress
that the goal of this work is to create a framework for mod-
eling MAS domains, with a query language that enables plan
validation and various types of reasoning. In this work we
do not deal with the issues of distributed plan generation—an
aspect extensively explored in the existing literature. This is
certainly an important research topic and worth pursuing but
it is outside of the scope of this paper.

The paper is organized as follows. In the next section, we
will review the basics of the action language C. Section 3 de-
scribes a straightforwards adaptation of C for multi-agent do-
mains. Each of the following sections (Sections 4–6) shows
how minor additions to C can address several features in rep-
resenting and reasoning about multi-agent domains. Section
7 presents the query language that can be used with the ex-
tended C. Section 8 discusses further aspects of modeling
MAS that the proposed extension of C cannot deal with eas-
ily. We conclude in Section 9.

2 Action Language C
The starting point of our investigation is the action language
C [Gelfond and Lifschitz, 1998]—an action description lan-
guage originally developed to describe single agent domains,
where the agent is capable of performing non-deterministic
and concurrent actions. In this section we revise the basic
definitions of C.

A domain description in C builds on a language signature
〈F ,A〉, where F is a finite collection of fluent names and A
is a finite collection of action names. Both the elements of
F and A are viewed as propositional variables, and they can
be used in formulae constructed using the traditional propo-
sitional operators. A propositional formula over F ∪A is re-
ferred to simply as a formula, while a propositional formula
over F is referred to as a state formula. A fluent literal is of
the form f or ¬f for any f ∈ F .

A domain description D in C is a finite collection of axioms
of the following forms:

caused ` if F static causal law
caused ` if F after G dynamic causa laws

where ` is a fluent literal, F is a state formula, while G is
a formula. The language also allows the ability to declare
properties of fluents; in particular non inertial ` declares
that the fluent literal ` is to be treated as a non-inertial literal
(i.e., ` returns true if no action affects it).

A problem specification is obtained by adding an initial
state description I to a domain D, composed of axioms of
the form initially `, where ` is a fluent literal.

The semantics of the language can be summarized using
the following concepts. An interpretation is described sim-
ply by a set of F-literals, such that I ∩ {f,¬f | f ∈ F} = ∅.
Given an interpretation I and a fluent f (literal ¬f ), we say
that I |= f (I |= ¬f ) if f ∈ I (¬f ∈ I). The entailment re-
lation |= can be easily generalized to arbitrarily propositional
formulae. An interpretation I is complete if, for each f ∈ F ,
we have that f ∈ I or ¬f ∈ I . An interpretation is closed
w.r.t. a set of static causal laws SC if, for each static causal
law caused ` if F , if I |= F then ` ∈ I . Given an inter-
pretation I and a set of static causal laws SC, we denote with
ClSC(I) the smallest set of literals containing I and closed
w.r.t. SC.

A state s is a complete interpretation which is closed w.r.t.
the static causal laws. Given a state s, a set of actions A ⊆ A,
and a collection of dynamic causal laws DC, we define

EffDC(s,A) =
{

`
( caused ` if F after G) ∈ DC,
s ∪A |= G, s |= F

}
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Let us consider a domain D = 〈SC,DC, IN〉, where SC
are the static causal laws,DC are the dynamic causal laws and
IN are the non-inertial axioms. Let us also denote with if
the set if = {f,¬f | f ∈ IN or ¬f ∈ IN}. The semantics
of D is given by a transition system (ND, ED), where ND is
the set of all states and the transitions in ED are of the form
〈s,A, s′〉, where s, s′ are states, A ⊆ A, and s′ satisfies the
property

s′ = ClSC(EffDC(s,A) ∪ ((s \ if) ∩ s′) ∪ (IN ∩ s′)).

The original C language supports a query language (called
P in [Gelfond and Lifschitz, 1998]). This language allows
queries of the form necessarily F after A1, . . . , Ak where
F is a state formula and A1, . . . , Ak are sets of actions (called
a plan). Intuitively, the query asks whether each state s
reached after executing A1, . . . , Ak from the initial state has
the property s |= F .

Let us denote with StateD the set of all possible states for
the domain D. Formally, an initial state s0 w.r.t. an initial
state description I and a domain D is an element of StateD

such that {` | initially ` ∈ I} ⊆ s0. The transition function
ΦD : 2A × StateD → 2StateD is defined as

ΦD(A, s) = {s′ | 〈s,A, s′〉 ∈ ED}
where (ND, ED) is the transition system describing the se-
mantics of D. This function can be extended to define Φ∗D
which considers sequences of sets of actions (i.e., plans),
where Φ∗D([ ], s) = {s} and

Φ∗D([A1, . . . , An], s) =
⋃

s′∈Φ∗
D

([A1,...,An−1],s)

ΦD(An, s′).

Let us consider an action domain D and an initial state
description I. A query necessarily F after A1, . . . , Ak is
entailed by (D, I), denoted by

(D, I) |= necessarily F after A1, . . . , Ak

if for every s0 initial state w.r.t. I, we have
that Φ∗D([A1, . . . , Ak], s0) 6= ∅, and for each s ∈
Φ∗D([A1, . . . , Ak], s0) we have that s |= F .

3 C for Multi-agent Domains
In this section, we will discuss a number of small modifica-
tions of C necessary to enable modeling MAS domains. We
will describe each domain from the perspective of someone
(the modeler) who has knowledge of everything, including
the capabilities and knowledge of each agent. Note that this
is only a modeling perspective—it does not mean that we ex-
pect agents to have knowledge of everything, we only expect
the modeler to have such knowledge.

We uniquely associate to each agent an element from a set
of agent identifiers, AG. We will describe a MAS domain
over a set of signatures 〈Fi,Ai〉 for each i ∈ AG, with the
assumption thatAi∩Aj = ∅ for i 6= j. Observe that

⋂
i∈S Fi

could be not empty for some S ⊆ AG. This represents com-
mon knowledge between the agents in the group S of agents.

The result is a C domain over the signature
〈⋃n

i=1 Fi,
⋃n

i=1Ai〉. We will require the following condition

to be met: if caused ` if F after G is a dynamic law and
a ∈ Ai appears in G, then the literal ` belongs to Fi. This
condition summarizes the fact that agents are aware of the
direct effects of their actions.

We will now illustrate the use of C in modeling various
examples from the literature.

3.1 The Prison Domain
This domain has been originally presented in [Sauro et al.,
2006]. In this example, we have two prison guards, 1 and 2,
who control two gates, the inner gate and the outer gate, by
operating the four buttons a1, b1, a2, and b2. Agent 1 controls
a1 and b1 and agent 2 controls a2 and b2. If either a1 or a2 is
pressed, then the state of the inner gate is toggled. The outer
gate, on the other hand, toggles only if both b1 and b2 are
pressed. In C, this domain can be represented as follows.

The set of agents is AG = {1, 2}. For agent 1, we have
that
F1 = {in open, out open, pressed(a1), pressed(b1)}.

Here, in open and out open represent the fact that the in-
ner gate and outer gate are open, respectively. The fluent
pressed(X) indicates that the button X is pressed, where
X ∈ {a1, b1}. We have A1 = {push(a1), push(b1)}. This
indicates that guard 1 can push buttons a1 and b1. Similarly,
for agent 2, we have that
F2 = {in open, out open, pressed(a2), pressed(b2)}
A2 = {push(a2), push(b2)}

We assume that the buttons do not stay pressed—thus,
pressed(X), for X∈{a1, b1, a2, b2}, is a non-inertial fluent
with the default value false.
The domain specification (Dprison) contains:

non inertial ¬pressed(X)
caused pressed(X) after push(X)
caused in open if pressed(a1),¬in open
caused in open if pressed(a2),¬in open
caused ¬in open if pressed(a1), in open
caused ¬in open if pressed(a2), in open
caused out open if pressed(b1), pressed(b2),¬out open
caused ¬out open if pressed(b1), pressed(b2), out open

where X ∈ {a1, b1, a2, b2}. The first statement declares
that pressed(X) is non-inertial and has false as its default
value. The second statement describes the effect of the action
push(X). The remaining laws are static causal laws describ-
ing relationships between properties of the environment.

Let us now consider the queries that were asked in [Sauro
et al., 2006] and see how they can be answered by using the
domain specification Dprison. In the first situation, both gates
are closed, 1 presses a1 and b1, and 2 presses b2. The question
is whether the gates are open or not after the execution of
these actions

The initial situation is specified by the initial state descrip-
tion I1 containing
I1 = { initially ¬in open, initially ¬out open }

In this situation, there is only one initial state s0 = {¬` | ` ∈
F1 ∪ F2}. We can show that
(Dprison, I1) |= necessarily out open ∧ in open

after {push(a1), push(b1), push(b2)}
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On the other hand, if the outer gate is initially closed, i.e.,
I2 = { initially ¬out open}, then the set of actions
A = {push(b1), push(b2)} is both necessary and sufficient
to open it:

(Dprison, I2) |= necessarily out open after X
(Dprison, I2) |= necessarily ¬out open after Y

where A⊆X and A\Y 6=∅.

3.2 The Credit Rating Domain
We will next consider an example from [Gerbrandy, 2006] in
which an effect on certain properties of the world cannot be
changed by a single agent.

We have two agents, AG = {w, t}, denoting the web-
site and the telephone operator respectively. Both agents
can set/reset the credit of a customer. The credit rating can
only be set to be ok (i.e., the fluent credit ok set to true) if
both agents agree. Whether the customer is a webcustomer
(is web fluent) or not is set only by the website agent w.

The signatures of the two agents are as follows:

Fw = {is web, credit ok}
Aw = {set web, reset web, set credit(w), reset credit(w)}
Ft = {credit ok}
At = {set credit(t), reset credit(t)}
The domain specification Dbank consists of:

caused is web after set web
caused ¬is web after reset web
caused credit ok after set credit(w) ∧ set credit(t)
caused ¬credit ok after reset credit(w)
caused ¬credit ok after reset credit(t)

We can show that

(Dbank, I3) |= necessarily credit ok
after {set credit(w), set credit(t)}

where I3 = { initially ¬` | ` ∈ Fw ∪ Ft}. This entailment
also holds if I3 = ∅.

4 Adding Priority between Actions
The previous examples show that C is sufficiently expressive
to model the basic aspects of agents executing actions within
a MAS, focusing on agents’ capabilities and actions interac-
tion. This is in itself not a big surprise and has been discussed
by [Boutilier and Brafman, 2001]. We will now present a
small extension of C that facilitates strategic reasoning. For
each domain specification D, we assume the presence of a
function PrD : 2A → 2A. Intuitively, PrD(A) denotes the
set of actions whose effects will be accounted for when A is
executed. This function allows, for example, to prioritize cer-
tain sets of actions. The new transition function ΦD,P will be
modified as follows:

ΦD,P (A, s) = ΦD(PrD(A), s)

where ΦD is defined as in the previous section.

4.1 The Rocket Domain
This domain was originally proposed in [van der Hoek et al.,
2005]. We have a rocket, a cargo, and three agents 1, 2, and

3. The rocket or the cargo are either in london or paris. The
rocket can be moved by 1 and 2 between the two locations.
The cargo can be loaded (resp. unloaded) into the rocket by 1
and 3 (resp. 2 and 3). Agent 3 can refill the rocket if the tank
is not full.

We will use the fluents rocket(london) and rocket(paris)
to denote the location of the rocket. Likewise,
cargo(london) and cargo(paris) denote the location
of the cargo. The fluent in rocket says that the cargo is
inside the rocket and tank full states that the tank is full.
We will also have a non-inertial fluent literal, moving,
denoting that the rocket is in the state of moving. The
signatures for the agents can be defined as follows.

F1 =
{

in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}

A1 = { load(1), unload(1),move(1) }
F2 =

{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}

A2 = { unload(2),move(2) }
F3 =

{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris), tank full

}

A3 = { load(3), refill }
This domain has a special feature—there are priorities among
actions. The domain states that load or unload will have no
effect if move is executed. The effects of two load actions
is the same as that of a single load action. Likewise, two
unload actions have the same result as one action.

To account for the priority of actions, we define PrD as
follows:
• PrD(X) = {move(a)} if ∃a. move(a) ∈ X .
• PrD(X) = {load(a)} if move(x) 6∈ X for every x ∈
{1, 2, 3} and load(a) ∈ X .

• PrD(X) = {unload(a)} if move(x) 6∈ X and load(x) 6∈
X for every x ∈ {1, 2, 3} and unload(a) ∈ X .

• PrD(X) = X otherwise.
It is easy to see that PrD defines priorities among the actions:
if the rocket is moving then load/unload are ignored; load has
higher priority than unload; etc. The domain specification
consists of the following laws:

caused in rocket after load(i) (i ∈ {1, 3})
caused ¬in rocket after unload(i) (i ∈ {1, 2})
caused tank full if ¬tank full after refill
caused ¬tank full if tank full

after move(i) (i ∈ {1, 2})
caused rocket(london) if rocket(paris), tank full

after move(i) (i ∈ {1, 2})
caused rocket(paris) if rocket(london), tank full

after move(i) (i ∈ {1, 2})
caused cargo(paris) if rocket(paris), in rocket
caused cargo(london) if rocket(london), in rocket
non inertial ¬moving

Let I4 consist of the following facts:

initially tank full initially rocket(paris)
initially cargo(london) initially ¬in rocket
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We can show the following

(Drocket, I4) |= necessarily cargo(paris)
after {move(1)}, {load(3)}, {refill}, {move(3)}

5 Reasoning with Agent Knowledge
In this section, we will consider some examples from [Spaan
et al., 2006; Herzig and Troquard, 2006] which address an-
other aspect of modeling MAS, i.e., the exchange of knowl-
edge between agents and the reasoning in presence of incom-
plete knowledge. We will show that using C, we can model
this aspect without the introduction of additional features.

5.1 Heaven and Hell Domain
This example has been drawn from [Spaan et al., 2006]. This
example has two agents 1 and 2, a priest p, and three rooms
r1, r2, r3. Each of the two rooms r2 and r3 is either heaven or
hell. If r2 is heaven then r3 is hell and vice versa. The priest
has knowledge of where the heaven and hell are located. Nei-
ther 1 nor 2 know where heaven/hell is, but, by visiting the
priest, they can receive the information that tells them where
heaven is. 1 and 2 want to meet in heaven.

The signatures for the three agents are as follows (k, h ∈
{1, 2, 3}):

F1 = {heaven2
1, heaven3

1, hell21, hell31, atk1}
A1 = {m1(k, h), ask1}
F2 = {heaven2

2, heaven3
2, hell22, hell32, atk2}

A2 = {m2(k, h), ask2}
Fp = {heaven2

p, heaven3
p, hell2p, hell3p}

Ap = ∅
The domain specification Dheav contains the following

laws:

caused heavenj
1 if heavenj

p after ask1 (j ∈ {2, 3})
caused heavenj

2 if heavenj
p after ask2 (j ∈ {2, 3})

caused atj
i if atk

i after mi(k, j)(i ∈ {1, 2, p}, j, k ∈ {1, 2, 3})
caused ¬atj

i if atk
i (i ∈ {1, 2, p}, j, k ∈ {1, 2, 3}, j 6= k)

caused hellji if heavenk
i (i ∈ {1, 2, p}, j, k ∈ {2, 3}, j 6= k)

caused heavenj
i if hellki (i ∈ {1, 2, p}, j, k ∈ {2, 3}, j 6= k)

caused ¬hellji if heavenj
i (i ∈ {1, 2, p}, j ∈ {2, 3})

caused ¬heavenj
i if hellji (i ∈ {1, 2, p}, j ∈ {2, 3})

Let us consider an instance that has initial state described by
I5 (j ∈ {2, 3}):

initially at11 initially at22 initially heaven2
p

initially ¬heavenj
1 initially ¬hellj1 initially ¬heavenj

2

initially ¬hellj2

We can show that

(Dheav, I5) |= necessarily at21∧heaven2
1 after {ask1}, {m1(1, 2)}.

5.2 Blind Agents & Lamp Domain
This next example is drawn from [Herzig and Troquard,
2006]. There are two blind agents and two switches; the light
is on only when both switches are in the same position. Agent
1 can toggle the first switch and agent 2 the second one.

F1 = {switch on1, switch off1, on}
A1 = {t1}
F2 = {switch on2, switch off2, on}
A2 = {t2}

Intuitively, switch oni (resp. switch offi) represents the
fact that i knows that switch i is at the on (resp. off ) position.
The domain Dblind is composed of the laws:

caused ¬switch oni if switch offi

caused ¬switch offi if switch oni

caused on if switch on1 ∧ switch on2

caused on if switch off1 ∧ switch off2

caused switch oni if switch offi after ti
caused switch offi if switch oni after ti

Let I = { initially switch on1, initially switch off2,
initially ¬on}). We can show that

(Dblind, I) |= necessarily on after t2

On the other hand, if I = { initially ¬on}, we can show
that there is no plan α (i.e., a conformant plan) such that

(Dblind, I) 6|= necessarily on after α

6 Adding Reward Strategies
The next example illustrates the need to handle numbers and
optimization to represent reward mechanisms. The extension
of C is simply the introduction of numerical fluents—i.e., flu-
ents that, instead of being simply true or false, have a numeric
value. For this purpose, we introduce a new variant of the ne-
cessity query

necessarily max F for ϕ after A1, . . . , An

where F is a numerical expressions involving only numerical
fluents, ϕ is a state formula, and A1, . . . , An is a plan. Given
a domain specification D and an initial state description I, we
can define for each fluent numerical expression F and plan α:

value(F, α) = max

{
s(F )

s ∈ Φ∗(α, s0),
s0 is an initial state w.r.t. I, D

}

where s(F ) denotes the value of the expression F in state s.
This allows us to define the following notion of entailment of
a query:

(D, I) |= necessarily max F for ϕ after A1, . . . , An

if:
◦ (D, I) |= necessarily ϕ after A1, . . . , An

◦ for every other plan B1, . . . , Bm such that

(D, I) |= necessarily ϕ after B1, . . . , Bm

we have that

value(F, [A1, . . . , An]) ≥ value(F, [B1, . . . , Bm]).
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6.1 Social Laws Domain
The following example has been derived from [Boella and
van der Torre, 2005]. There are three agents. Agent 0 is a
normative system that can play one of two strategies—either
st0 or ¬st0. Agent 1 plays a strategy st1, while agent 2 plays
the strategy st2. The reward system is described in the fol-
lowing tables (the first is for st0 and the second one is for
¬st0).

st0 st1 ¬st1
st2 1, 1 0, 0
¬st2 0, 0 −1,−1

¬st0 st1 ¬st1
st2 1, 1 0, 0
¬st2 0, 0 1, 1

The signatures used by the agents are

F0 = {st0, reward}
A0 = {play 0, play not 0}
F1 = {st1, reward1}
A1 {play 1, play not 1}
F2 = {st2, reward2}
A2 = {play 2, play not 2}

The domain specification Dgam consists of:

caused st0 after play 0
caused ¬st0 after play not 0
caused st1 after play 1
caused ¬st1 after play not 1
caused st2 after play 2
caused ¬st2 after play not 2
caused reward 1 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 2 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 1 = 0 if ¬st0 ∧ st1 ∧ ¬st2
caused reward 2 = 0 if ¬st0 ∧ st1 ∧ ¬st2
. . .
caused reward = a + b if reward1 = a ∧ reward2 = b

Assuming that I = { initially st0} we can show that

(Dgame, I) |= necessarily max reward after {play1, play2}

7 Reasoning and Properties
In this section we discuss various types of reasoning that are
directly enabled by the semantics of C.

7.1 Capability Queries
Let us explore another range of queries, that are aimed at cap-
turing the capabilities of agents. We will use the generic form
can X do ϕ, where ϕ is a state formula and X ⊆ AG.
The intuition is to validate whether the group of agents X
can guarantee that ϕ is satisfied.

If X = AG then the semantics of the capability query
is simply expressed as (D, I) |= can X do ϕ iff
∃k. ∃A1, . . . , Ak such that

(D, I) |= necessarily ϕ after A1, . . . , Ak.

If X 6= AG, then we can envision different variants of this
query.

Capability query with non-interference and complete
knowledge: Intuitively, the goal is to verify whether the
agents X can achieve ϕ when operating in an environment
that includes all the agents, but the agentsAG \X are simply
providing their knowledge and not performing actions or in-
terfering. We will denote this type of queries as cann

g X do ϕ
(n: not interference, g: availability of all knowledge).

The semantics of this type of queries can be formalized as
follows: (D, I) |= cann

g X do ϕ if there is a sequence of
sets of actions A1, . . . , Ak with the following properties:
◦ for each 1 ≤ i ≤ k we have that Ai ⊆

⋃
j∈X Aj (we

perform only actions of agents in X)
◦ (D, I) |= necessarily ϕ after A1, . . . , Ak

Capability query with non-interference and projected
knowledge: Intuitively, the query with projected knowl-
edge assumes that not only the other agents (AG \ X) are
passive, but they also are not willing to provide knowledge
to the active agents. We will denote this type of queries as
cann

l X do ϕ.
Let us refer to the projection of I w.r.t. X (denoted by

proj(I, X)) as the set of all the initially declarations
that build on fluents of

⋃
j∈X Fj . The semantics of cann

l

type of queries can be formalized as follows: (D, I) |=
cann

l X do ϕ if there is a sequence of sets of actions
A1, . . . , Ak such that:
• for each 1 ≤ i ≤ k we have that Ai ⊆

⋃
j∈X Aj

• (D, proj(I, X)) |= necessarily ϕ after A1, . . . , Ak

(i.e., the objective will be reached irrespective of the ini-
tial configuration of the other agents)

Capability query with interference: The final version of
capability query takes into account the possible interference
from other agents in the system. Intuitively, the query with in-
terference, denoted by cani X do ϕ, implies that the agents
X will be able to accomplish X in spite of other actions per-
formed by the other agents.

The semantics is as follows: (D, I) |= cani X do ϕ if
there is a sequence of sets of actions A1, . . . , Ak such that:
• for each 1 ≤ i ≤ k we have that Ai ⊆

⋃
j∈X Aj

• for each sequence of sets of actions B1, . . . , Bk, where⋃k
j=1 Bj ⊆

⋃
j /∈X Aj , we have that

(D, I) |= necessarily ϕ after (A1∪B1), . . . , (Ak∪Bk)

7.2 Inferring Properties of the Theory
The form of queries explored above allows us to investigate
some basic properties of a multi-agent action domain.

Agent Redundancy: agent redundancy is a property of
(D, I) which indicates the ability to remove an agent in ac-
complishing a goal. Formally, agent i is redundant w.r.t. a
state formula ϕ and an initial state I if

(D, I) |= can X \ {i} do ϕ.
The “level” of necessity can be refined, by adopting differ-
ent levels of can (e.g., cann

l implies that the knowledge of
agent i is not required); it is also possible to strengthen it by
enabling the condition to be satisfied for any I.
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Agent Necessity: agent necessity is symmetrical to
redundancy—it denotes the inability to accomplish a prop-
erty ϕ if an agent is excluded. Agent i is necessary w.r.t. ϕ
and (D, I) if, for all sequences of sets of actions A1, . . . , Ak,
such that Aj ∩ Ai = ∅ for all 1 ≤ j ≤ k , we have that it is
not the case that (D, I) |= necessarily ϕ after A1, . . . , Ak.

We can also define different degrees of necessity, depend-
ing on whether the knowledge of i is available (or it should
be removed from I) and whether i is allowed to interfere.

7.3 Compositionality
The formalization of multi-agent systems in C enables explor-
ing the effects of composing domains; this is an important
property, that allows us to model dynamic MAS systems (e.g.,
where new agents can join an existing coalition).

Let D1, D2 be two domains and let us indicate with
〈F1

i ,A1
i 〉i∈AG1 and 〈F2

i ,A2
i 〉i∈AG2 the agent signatures of

D1 and D2. We assume that all actions sets are disjoint, while
we allow (

⋃
i∈AG1

F1
i ) ∩ (

⋃
i∈AG2

F2
i ) 6= ∅.

We define the two instances (D1, I1) and (D2, I2) to
be composable w.r.t. a state formula ϕ if (D1, I1) |=
can AG1 do ϕ or (D2, I2) |= can AG2 do ϕ implies

(D1 ∪D2, I1 ∪ I2) |= canAG1 ∪ AG2 do ϕ

Two instances are composable if they are composable w.r.t.
all state formulae ϕ. Two domains D1, D2 are composable if
all the instances (D1, I1) and (D2, I2) are composable.

8 Discussion
This section discusses an aspect of modeling MAS that can-
not be easily dealt with in C, i.e., representing and reason-
ing about knowledge of agents. In the domains 5.1 and 5.2,
we use two different fluents to model the knowledge of an
agent about properties of the world, similar to the approach
in [Palacios and Geffner, 2007; Son and Baral, 2001]. This
approach is adequate for several situations. Nevertheless, the
same approach could become quite cumbersome if complex
reasoning about knowledge of other agents is involved.
Example 1 (Muddy Children, [Fagin et al., 1995]). Two chil-
dren are playing outside the house. Their father comes and
tells them that at least one of them has mud on his/her fore-
head. He then repeatedly asks “do you know whether your
forehead is muddy or not?”. The first time, both answer “no”
and the second time, both say ’yes’. It is known that the father
and the children can see and hear each other.

The representation of this domain in C is possible, but it
would require a large number of fluents (that describe the
knowledge of each child, the knowledge of each child about
the other child, etc.) as well as a formalization of the axioms
necessary to express how knowledge should be manipulated.

A more effective approach is to introduce explicit knowl-
edge operators (with manipulation axioms implicit in their
semantics—e.g., as operators in a S5 modal logic) and use
them to describe agents state. Let us consider a set of modal
operators Ki, one for each agent. A formula such as Kiϕ
denotes that agent i knows property ϕ. Knowledge operators
can be nested; in particular, K∗

Gψ denotes all formulae with
arbitrary nesting of KG operators (G being a set of agents).

In our example, let us denote the children with 1 and 2. We
use mi as a fluent denoting whether i is muddy or not. The
initial state of the world can then be described as follows:

initially m1 ∧m2 (1)
initially ¬Kimi ∧ ¬Ki¬mi (2)

initially K∗(m1 ∨m2) (3)
initially K∗{1,2}\{i}mi (4)

initially K∗(K∗{1,2}\{i}mi ∨K∗{1,2}\{i}¬mi) (5)

where i ∈ {1, 2}. (1) states that all the children are muddy.
(2) says that i does not know whether he/she is muddy. (3) en-
codes the fact that the children share the common knowledge
that at least one of them is muddy. (4) captures the fact that
each child can see the other child. Finally, (5) represents the
common knowledge that each child knows the muddy status
of the other one.

The actions used in this domain would enable agents to
gain knowledge; e.g., the ’no’ answer of child 1 allows child 2
to learn K1(¬K1m1∧¬K1¬m1). This, together with the ini-
tial knowledge, would be sufficient for 2 to conclude K2m2.

9 Conclusion
In this paper, we presented an investigation of the use of the C
action language to model MAS domains. C, as several other
action languages, is interesting as it provides well studied
foundations for knowledge representation and for performing
several types of reasoning tasks. Furthermore, the literature
provides a rich infrastructure for the implementation of action
languages (e.g., through translational techniques [Son et al.,
2006]). The results presented in this paper identify several in-
teresting features that are necessary for modeling MAS, and
they show how such features can be encoded in C—either di-
rectly or with simple extensions of the action language. We
also report on different forms of reasoning that are naturally
supported by the proposed language.

The natural next steps in this line of work consist of (1)
exploring how more complex domains can be captured, es-
pecially domains requiring complex reasoning about knowl-
edge of other agents (as discussed in Sect. 8); (2) adapting the
more advanced forms of reasoning and implementation pro-
posed for C to the case of MAS domains; (3) investigating the
use of the proposed extension of C in formalizing distributed
systems.
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Abstract
Most belief change operators in the AGM tradition
assume an underlying plausibility ordering over
the possible worlds which is transitive and com-
plete. A unifying structure for these operators,
based on supplementing the plausibility ordering
with a second, guiding, relation over the worlds
was presented in [Booth et al., 2004]. However it
is not always reasonable to assume completeness
of the underlying ordering. In this paper we gener-
alise the structure of [Booth et al., 2004] to allow
incomparabilities between worlds. We axiomatise
the resulting class of belief removal functions, and
show that it includes an important family of re-
moval functions based on finite prioritised belief
bases. We also look at some alternative notions
of epistemic entrenchment which become distin-
guishable once we allow incomparabilities.

1 Introduction
The problem of belief removal [Alchourrón et al., 1985;
Booth et al., 2004; Rott and Pagnucco, 1999], i.e., the prob-
lem of what an agent, hereafterA , should believe after being
directed to remove some sentence from his stock of beliefs,
has been well studied in philosophy and in AI over the last 25
years. During that time many different families of removal
functions have been studied. A great many of them are based
on constructions employing total preorders over the set of
possible worlds which is meant to stand for some notion ≤
of relative plausibility [Katsuno and Mendelzon, 1992]. A
unifying construction for these families was given in [Booth
et al., 2004], in which a general construction was proposed
which involved supplementing the relation ≤ with a second,
guiding, relation � which formed a subset of ≤. By varying
the conditions on � and its interaction with ≤ many of the
different families can be captured as instances.

The construction in [Booth et al., 2004] achieves a high
level of generality, but one can argue it fails to be general
enough in one important respect: the underlying plausibility
order ≤ is always assumed to be a total preorder which by
definition implies it is complete, i.e., for any two worlds x, y,
we have either x ≤ y or y ≤ x. This implies that agent A is
always able to decide which of x, y is more plausible. This is

not always realistic, and so it seems desirable to study belief
removal based on plausibility orderings which allow incom-
parabilities. A little work been done on this [Bochman, 2001;
Cantwell, 2003; Katsuno and Mendelzon, 1992; Rott, 1992]
but not much. This is in contrast to work in nonmono-
tonic reasoning (NMR), the research area which is so of-
ten referred to as the “other side of the coin” to belief
change. In NMR, semantic models based on incomplete or-
derings are the norm, with work dating back to the sem-
inal papers on preferential models of [Kraus et al., 1991;
Shoham, 1987]. Our aim in this paper is to relax the com-
pleteness assumption from [Booth et al., 2004] and to inves-
tigate the resulting, even more general class of removal func-
tions.

The plan of the paper is as follows. In Section 2 we give
our generalised definition of the construction from [Booth et
al., 2004], which we call (semi-modular) contexts. We de-
scribe their associated removal functions, as well as mention
the characterisation from [Booth et al., 2004]. Then in Sec-
tion 3 we present an axiomatic characterisation of the family
of removal functions generated by semi-modular contexts. In
Section 4 we discuss some different notions of epistemic en-
trenchment which collapse into the same notion for the re-
movals from [Booth et al., 2004], but which differ for the
more general family. Then, in Section 5 we mention a couple
of further restrictions on contexts, leading to two correspond-
ing extra postulates. In Section 6 we mention an important
subfamily of the general family, i.e., those removals which
may be generated by a finite prioritised base of defaults, be-
fore moving on to AGM style removal in Section 7. We con-
clude in Section 8.

1.1 Preliminaries
We work in a finitely-generated propositional language L.
The set of non-tautologous sentences in L is denoted by L∗.
The set of propositional worlds/models is W . For any set of
sentences X ⊆ L, the set of worlds which satisfy every sen-
tence in X is denoted by [X]. Classical logical consequence
and equivalence are denoted by ` and ≡ respectively.

As above, we let A denote some agent whose beliefs are
subject to change. A belief set for A is represented by a sin-
gle sentence which is meant to stand for all its logical con-
sequences. A belief removal function (hereafter just removal
function) belonging to A is a unary function > which takes
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any non-tautologous sentence λ ∈ L∗ as input and returns a
new belief set > (λ) for A such that > (λ) 0 λ. For any re-
moval function > we can always derive an associated belief
set. It is just the belief set obtained by removing the contra-
diction, i.e., > (⊥).

1.2 Orderings
The following definitions about orderings will be useful in
what follows. A binary relation R over W is:

• reflexive iff ∀x : xRx

• transitive iff ∀x, y, z : xRy & yRz → xRz

• complete iff ∀x, y : xRy ∨ yRx
• a preorder iff it is reflexive and transitive

• a total preorder iff it is a complete preorder

The above notions are used generally when talking of “weak”
orderings, where xRy is meant to stand for something like “x
is at least as good as y”. However in this paper, following
the lead of [Rott, 1992], we will find it more natural to work
under a strict reading, where xRy denotes “x is strictly better
than y”. In this setting, the following notions will naturally
arise. R is:

• irreflexive iff ∀x : not(xRx)

• modular iff ∀x, y, z : xRy → (xRz ∨ zRy)

• a strict partial order (spo) iff it is both irreflexive and
transitive

• the strict part of another relation R′ iff ∀x, y : xRy ↔
(xR′y & not(yR′x))

• the converse complement of R′ iff ∀x, y : xRy ↔
not (yR′x)

We have that R is a modular spo iff it is the strict part of a
total preorder [Maynard-Zhang and Lehmann, 2003]. So in
terms of strict relations, much of the previous work on belief
removal, including [Booth et al., 2004], assumes an under-
lying strict order which is a modular spo. It is precisely the
modularity condition which we want to relax in this paper.

Given any ordering R and x ∈ W , let ∇R (x) =
{z ∈W | zRx} be the set of all worlds below x in R. Then
we may define a new binary relation vR from R by setting:

x vR y iff∇R (x) ⊆ ∇R (y) .

That is, x vR y iff every element below x inR is also below y
in R. It is easy to check that if R is a modular spo then x vR

y iff not (yRx), i.e., vR is just the converse complement of
R.

2 Contexts, modular contexts and removals
In this section we set up our generalised definition of a con-
text, show how each such context yields a removal function
and vice versa, and recap the main results from [Booth et al.,
2004].

2.1 Contexts
We assume our agent A has in his mind two binary relations
(<,≺) over the set W . The relation < is a strict plausibility
relation which forms the basis for A’s actionable beliefs, i.e.,
x < y means that, to A’s mind, and on the basis of all avail-
able evidence, world x is strictly more plausible than y. We
assume < is a strict partial order. In addition to this there is
a second binary relation ≺. This relation is open to several
different interpretations, but the one we attach is as follows:
x ≺ y means “A has an explicit reason to hold x more plau-
sible than y (or to treat x more favourably than y)”. We will
use � to denote the converse complement of <, i.e.,

x � y iff y ⊀ x.

Thus x � y iff A has no reason to treat y more favourably
than x. Note � and ≺ are interdefinable, and we find it con-
venient to switch between them freely.

What are the properties of ≺? We assume only two things,
at least to begin with: (i) an agent can never possess a reason
to hold a world strictly more plausible than itself, and (ii)
an agent does not hold a world x to be more plausible than
another world y, i.e., x < y, without being in possession of
some reason for doing so. (Note this latter property lends a
certain “foundationalist” flavour to our construction.) All this
is formalised in the following definition:

Definition 2.1. A context C is a pair of binary relations
(<,≺) over W such that:

(C1) < is a strict partial order

(C2) ≺ is irreflexive

(C3) <⊆≺

If < is modular then we call C a modular context.

We will later have grounds for strengthening (C3).
How doesA use his context C to construct a removal func-

tion >C? In terms of models, the set [>C (λ)] of models of
his new belief set, when removing a sentence λ, must include
some ¬λ-worlds. Following the usual practice in belief revi-
sion, he should take the most plausible ones according to <,
i.e., the <-minimal ones. But which, if any, of the λ-worlds
should be included? The following principle was proposed
by [Rott and Pagnucco, 1999]:

Principle of Weak Preference
If one object is held in equal or higher regard than
another, the former should be treated no worse
than the latter.

[Rott and Pagnucco, 1999] use this principle to argue that
the new set of worlds following removal should contain all
worlds x which are not less plausible than a <-minimal ¬λ-
world y, i.e., y ≮ x. We propose to apply a tempered version
of this principle using the second ordering≺. We include x if
there is no explicit reason to believe that y is more plausible
than x, i.e., if y ⊀ x.

Definition 2.2. (> from C) Given a context C we define the
removal function >C by setting, for each λ ∈ L∗, [>C(λ)] =⋃
{∇�(y) | y ∈ min< ([¬λ])}.
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It can be shown that different contexts give rise to different
removal functions, i.e., the mapping C 7→ >C is injective.

The case of modular contexts was the one which was stud-
ied in detail in [Booth et al., 2004], where it was shown
how, by placing various restrictions on the interaction be-
tween < and ≺, this family captures a wide range of removal
operations which have been previously studied, for example
both AGM contraction and AGM revision [Alchourrón et al.,
1985], severe withdrawal [Rott and Pagnucco, 1999], sys-
tematic withdrawal [Meyer et al., 2002] and belief liberation
[Booth et al., 2005]. For the general family in that paper the
following representation result was proved.

Theorem 2.3. [Booth et al., 2004] Let C be a modular con-
text. Then >C satisfies the following rules:1

(>1) >(λ) 0 λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)

(>3) If >(λ ∧ χ) ` χ then >(λ ∧ χ ∧ ψ) ` χ
(>4) If >(λ ∧ χ) ` χ then >(λ ∧ χ) ` >(λ)

(>5) >(λ ∧ χ) ` >(λ) ∨>(χ)

(>6) If >(λ ∧ χ) 0 λ then >(λ) ` >(λ ∧ χ)

Furthermore if> is any removal function satisfying the above
6 rules, there exists a unique modular context C such that
> = >C .

All these rules are familiar from the literature on belief
removal. Rule (>1) is the Success postulate which says the
sentence to be removed is no longer implied by the new belief
set, while (>2) is a syntax-irrelevance property. Rule (>3) is
sometimes known as Conjunctive Trisection [Hansson, 1993;
Rott, 1992]. A slight reformulation of it can be found already
in [Alchourrón et al., 1985] under the name Partial Antitony.
It says if χ is believed after removing the conjunction λ ∧ χ,
then it should also be believed when removing the longer con-
junction λ ∧ χ ∧ ψ. Rule (>4) is closely-related to the rule
Cautious Monotony from the area of non-monotonic reason-
ing [Kraus et al., 1991], while (>5) and (>6) are the two
AGM supplementary postulates for contraction [Alchourrón
et al., 1985].

Note the non-appearance in this list of the AGM con-
traction postulates Vacuity (> (⊥) 0 λ implies > (λ) ≡
> (⊥)),Inclusion (> (⊥) ` > (λ)) and Recovery (> (λ)∧λ `
> (⊥)), none of which are valid in general for removal func-
tions generated from modular contexts. Vacuity has been ar-
gued against as a general principle of belief removal in [Booth
et al., 2004; Booth and Meyer, 2008]. Inclusion has been
questioned in [Booth et al., 2005], while Recovery has long
been regarded as controversial (see, e.g., [Hansson, 1991]).
Nevertheless we will see in Section 7 how each of these three
rules may be captured within our general framework.

The second part of Theorem 2.3 was proved using the fol-
lowing construction.

1The appearance of the rules is changed from [Booth et al., 2004]
due to the fact that we now take removal functions to be unary. Also
one redundant rule from the list in [Booth et al., 2004] is removed
(see [Booth and Meyer, 2008]).

Definition 2.4. (C from >) Given any removal function >
we define the context C(>) = (<,≺) as follows: x < y iff
y 6∈ [>(¬x ∧ ¬y)] and x ≺ y iff y 6∈ [> (¬x)].2

[Booth et al., 2004] showed that if > satisfies (>1)-(>6)
then C (>) is a modular context and > = >C(>).

3 Characterising the general family
Now we want to drop the assumption that < is modular and
assume only it is a strict partial order. How can we charac-
terise the resulting class of removal functions? We focus first
on establishing which of the postulates from Theorem 2.3 are
sound for the general family, modifying our initial construc-
tion as and when necessary. Clearly we cannot expect that all
the rules remain sound. In particular rule (>6) is known to
depend on the modularity of < and so might be expected to
be the first to go. However we might expect to retain weaker
versions of it, for instance:
(>6a) If >(λ ∧ χ) ` χ then >(λ) ` >(λ ∧ χ).
Indeed we have:
Proposition 3.1. If C is a general context then >C satisfies
(>1), (>2), (>4), (>5) and (>6a) but not (>6) in general.

Surprisingly, we lose (>3), as the following counterexam-
ple shows:
Example 3.2. Assume L = {p, q} and let the four valua-
tions of L be represented as W = {00, 11, 01, 10}, where
the first and second numbers denote the truth-values of p, q
respectively. Let <= {(00, 10)} and �= {(10, 01)} (strictly
speaking the reflexive closure of this). We have [>C(p∧q)] =
{00, 10, 01} and [>C(q)] = {00}. Hence 10 ∈ [¬q ∧>C(p∧
q)] but 10 6∈ [>C(q)].

This leaves us with a problem, since whereas (>6) is to
be considered dispensible, (>3) is a very reasonable property
for removal functions. Is there some way we can capture it? It
turns out we can capture it if we strengthen the basic property
(C3) to:
(C3a) �⊆v<

In other words if z < x and x � y then z < y. On a con-
trapositive reading, (C3a) is saying that if there is a world z
which A judges to be more plausible than x but not to y then
Amust have a reason to treat y more favourably than x. Note
that for modular contexts (C3) and (C3a) are equivalent, but
in the general case they are not.
Proposition 3.3. Let C be any context which satisfies (C3a)
then >C satisfies (>3).

Thus (C3a) seems necessary. And in fact without it we
don’t get the following important technical result, which pro-
vides the means to describe <-minimal λ-worlds purely in
terms of the removal function:
Proposition 3.4. Let C be any context which satisfies (C3a).
Then for all λ such that ¬λ ∈ L∗ we have [>C (¬λ) ∧ λ] =
min< ([λ]).

2When a world appears in the scope of a propositional connec-
tive, it should be understood as denoting any sentence which has that
world as its only model.
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Example 3.2 provides a counterexample show-
ing this might not be possible in general, for there
we have [>C (p ∧ q) ∧ ¬ (p ∧ q)] = {00, 10, 01} but
min< ([¬ (p ∧ q)]) = {00, 01}.

Note rule (C3a) may also be interpreted as a restricted
form of modularity for <, since it may be re-written as

∀x, y, z (z < x→ (y ≺ x ∨ z < y)) .

For this reason we make the following definition:
Definition 3.5. A semi-modular context is any context C sat-
isfying (C3a).

In the rest of the paper we will work only with semi-
modular contexts.

3.1 Going the other direction
So far we have a list of sound properties for the removal
functions defined from semi-modular contexts. They are
the same as the rules which characterise modular removal,
but with (>6) replaced by the weaker (>6a). It might be
hoped that this list is complete, i.e., that any removal func-
tion > satisfying these 6 rules is equal to >C for some semi-
modular context C. Indeed we might expect to be able to show
> = >C(>), where C (>) is the context defined via Definition
2.4. The following result gives us a good start.
Proposition 3.6. Let > be any removal function satisfying
(>1)-(>5) and (>6a). Then C (>) is a context, i.e., satisfies
(C1)-(C3).

However to get (C3a) it seems an extra property is needed:
(>C) If >(λ) ∧ ¬λ ` >(χ) ∧ ¬χ then >(λ) ` >(χ)
We can rephrase this using the Levi Identity [Levi, 1991].
Definition 3.7. Given any removal function>we may define
the function >R by setting, for each consistent sentence λ ∈
L, >R(λ) = >(¬λ) ∧ λ.

The function >R is the revision function obtained from >.
Then rule (>C) may be equivalently written as:
(>C′) If >R(¬λ) ` >R(¬χ) then >(λ) ` >(χ)
Thus (>C′) is effectively saying that if revising by ¬λ leads
to a stronger belief set than revising by ¬χ, then removing λ
leads to a stronger belief set than removing χ. The next re-
sult confirms that this rule is sound for the removal functions
generated by semi-modular contexts, and that this property is
enough to show that C (>) satisfies (C3a).
Proposition 3.8. Let C be a semi-modular context. Then >C
satisfies (>C). Furthermore if > is any removal function
satisfying (>C) then the context C(>) satisfies (C3a).

Rule (>C) is actually quite strong. In the presence of
(>3) it implies (>4):
Proposition 3.9. Any removal function which satisfies (>3)
and (>C) also satisfies (>4).

This means that, in the axiomatisation of >C we can re-
place (>4) with (>C).

To show that the list of rules is complete, it remains to
prove > = >C(>). It turns out that here we need one more
additional property which does not seem to follow from the
list we have so far:

(>E) ¬(λ ∧ χ) ∧>(λ) ∧>(χ) ` >(λ ∧ χ)

This rule may be reformulated as “> (λ)∧> (χ) ` (λ ∧ χ)∨
> (λ ∧ χ)”. In this reformulation, the right hand side of the
turnstile may be thought of as standing for all those conse-
quences of the conjunction λ∧ χ which are believed upon its
removal. The rule is saying that any such surviving conse-
quence must be derivable from the combination of > (λ) and
> (χ).

Proposition 3.10. Let C be a semi-modular context. Then
>C satisfies (>E).

Theorem 3.11. Let > be any removal function satisfying
(>1),(>2), (>3),(>C), (>5), (>6a) and (>E). Then
>C(>) = >.

Thus, to summarise, we have arrived at the following rules
which completely chatacterise the family of removal func-
tions defined from semi-modular contexts:

(>1) >(λ) 0 λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)

(>3) If >(λ ∧ χ) ` χ then >(λ ∧ χ ∧ ψ) ` χ
(>C) If >(λ) ∧ ¬λ ` >(χ) ∧ ¬χ then >(λ) ` >(χ)

(>5) >(λ ∧ χ) ` >(λ) ∨>(χ)

(>6a) If >(λ ∧ χ) ` χ then >(λ) ` >(λ ∧ χ)

(>E) ¬(λ ∧ χ) ∧>(λ) ∧>(χ) ` >(λ ∧ χ)

We will later look at a few more reasonable postulates which
are not covered by the above list. But before that we take
a look at some different notions of epistemic entrenchment
which can be defined within this general family.

4 Notions of entrenchment
In this section we want to point out that widening investiga-
tion from modular to semi-modular contexts uncovers differ-
ent notions of the entrenchment of a sentence. These distinc-
tions were hidden in the previous case of modular removal, in
that for modular removals they collapse into the same notion.
Given a removal function > we may define three notions of
strict entrenchment relation as follows:

• λC1 χ iff > (λ ∧ χ) ` χ
This is the usual definition [Gärdenfors, 1988; Rott,
1992]. χ is strictly more entrenched than λ iff, when
faced with a choice of giving up at least one of λ, χ, A
will give up λ and hold on to χ.

• λC2χ iff ∃ψ[> (λ ∧ χ ∧ ψ) 0 λ& >(λ ∧ χ ∧ ψ) ` χ]
In other words χ is strictly more entrenched than λ iff,
there exists some choice situation in which both λ and
χ are up for selection, and in which χ, but not λ is cho-
sen. This is similar to the “revealed preference” relation
introduced in the theory of rational choice in [Arrow,
1959].

• λC3 χ iff ∃ψ [> (λ ∧ ψ) 0 λ & > (χ ∧ ψ) ` χ]
This one says χ is strictly more entrenched iff there is
some ψ such that χ, but not λ is chosen over ψ.
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Note C2 could actually be defined in terms of C1 as follows:

λC2 χ iff ∃ψ [not (χ ∧ ψ C1 λ) & λ ∧ ψ C1 χ] .
while C3 obviously corresponds to:

λC3 χ iff ∃ψ [not (ψ C1 λ) & ψ C1 χ]
For each i we will say Ci is generated by the context C if it is
obtained from the removal function>C . Our first observation
is that, for semi-modular contexts, C2 and C3 coincide.
Proposition 4.1. If C is a semi-modular context and C2,C3

are both generated from C then C2 = C3.
Next, we show how if C1 and C2 are generated by a semi-

modular context, then they may be described directly in terms
of that context.
Proposition 4.2. Let C = (<,≺) be a semi-modular context
and let C1 and C2 be generated from C. Then
(i). λC1 χ iff min< ([¬λ ∨ ¬χ]) ⊆ [χ].
(ii). λC2 χ iff it is not the case that ∀x ∈ min< ([¬λ]) ,∃y ∈
min< ([¬χ]) s.t. y v< x.

Note how both C1 and C2 are independent of ≺. Given
this we can establish the following:
Proposition 4.3. C1 ⊆ C2. The converse is not true in gen-
eral but is true for modular removals.

[Rott, 1992] proposed the following postulates for any
strict entrenchment relation C:3

(GEE1) not(λC λ)
(GEE2↑) If λC χ and χ ` ψ then λC ψ

(GEE2↓) If λC χ and ψ ` λ then ψ C χ

(GEE3↑) If λC χ and λC ψ then λC χ ∧ ψ
(GEE3↓) If λ ∧ χC χ then λC χ

Proposition 4.4. C1 satisfies all the above rules for strict en-
trenchment relations, while C2 satisfies all but (GEE3↑) in
general.
As was shown in [Rott, 1992], any strict entrenchment re-
lation satisfying the above rules is transitive and so forms a
strict partial order. However C2 fails to be transitive. In fact
it fails to be asymmetric, as the next example shows:
Example 4.5. Assume L = {p, q} and let C = (<,≺) be
such that <= {(10, 11) , (01, 00)}. Let λ = ¬ (p ∧ q) and
χ = p ∨ q. Then min< ([¬λ]) = {11} and min< ([¬χ]) =
{00}. We obtain both λ C2 χ and χ C2 λ via Proposition
4.2(ii), using the fact that 11 6v< 00 and 00 6v< 11.

5 Transitivity and Priority
In this section we look at imposing an extra couple of prop-
erties on semi-modular contexts C = (<,≺), both of which
were investigated in the case of modular contexts in [Booth
et al., 2004]. There it was shown how the resulting classes
of removal functions still remain general enough to include
a great many of the classes of removal functions which have
been previously proposed in the context of modular removal.

3Actually Rott’s (GEE1) was “not(> C >)”, which given
(GEE2↑), (GEE2↓) and (GEE3↓) is equivalent to the version here.
We use this version because, unlike Rott, we do not allow removal
of >.

5.1 Transitivity
The first property is the transitivity of �, thus making � a
preorder. (Recall � is the converse complement of ≺.) Ac-
cording to our above interpretation of � this means if there is
no reason to treat y more favourably than x, and no reason
to treat z more favourably than y then there is no reason to
treat z more favourably than x.

Proposition 5.1. (i). If � is transitive then >C satisfies the
following strengthening of (>C):

(>C+) If >(λ) ∧ ¬λ ` >(χ) then >(λ) ` >(χ)

(ii). If > satisfies (>C+) then the relation � in C(>) is tran-
sitive.

Note this property is a great deal simpler than the one
used to characterise transitivity of � in the modular con-
text in [Booth et al., 2004]. It can be re-written as: If
>R(¬λ) ` >(χ) then >(λ) ` >(χ). It says that if the belief
set following removal of χ is contained in the belief set fol-
lowing the revision by ¬λ, then it must be contained also in
the belief set following the removal of λ. This seems like a
reasonable property.

Corollary 5.2. For any removal function>, the following are
equivalent:
(i). > is generated by a semi-modular context C = (<,≺)
such that � is transitive.
(ii). > satisfies the list of rules given at the end of Section 3,
with (>C) replaced by (>C+).

5.2 Priority
Now consider the following property of a context C =
(<,≺):

(CP) If x ≺ y and y ⊀ x then x < y

This, too, looks reasonable: ifA has an explicit reason to hold
x more plausible than y, but not vice versa, then in the final
reckoning he should hold x to be strictly more plausible than
y. Consider the following property of removal functions:

(>P) If >(λ) ` χ and >(χ) 0 λ then >(λ ∧ χ) ` χ
This property is briefly mentioned as Priority in [Bochman,
2001], and is also briefly mentioned right at the end of
[Cantwell, 1999]. It can be read as saying that if λ is ex-
cluded following removal of χ, but not vice versa, then χ is
strictly more entrenched than λ (using the first, usual, notion
of entrenchment from the previous subsection). For the case
of modular removal, we can obtain the following exact cor-
respondence between (CP) and (>P):

Proposition 5.3. (i). If C is a modular context satisfying
(CP) then >C satisfies (>P). (ii). If > satisfies (>P) then
C(>) satisfies (CP).

We remark that in [Booth et al., 2004] the combination of
�-transitivity and (CP) was shown to be equivalent to the
following single property:

(>Conserv) If>(λ) 6` >(χ) then there exists ψ ∈ L∗ such
that λ ` ψ and >(ψ) ∧>(χ) ` λ
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The above results prove that, in the presence of rules (>1)-
(>6) from Theorem 2.3, (>Conserv) is equivalent to the
conjunction of (>C+) and (>P).

The proof of Proposition 5.3(i) makes critical use of the
modularity of <. It turns out that (>P) is not sound for ge-
neral semi-modular contexts, even if we insist on (CP).

Example 5.4. Suppose L = {p, q} and that <= {(01, 11)}
while �= {(01, 11)} (strictly speaking the reflexive closure
of this). One can verify that C is a semi-modular context and
that (CP) is satisfied. Now let λ = p ∨ ¬q and χ = ¬p.
Then [>C(λ)] = {01}, [>C(χ)] = {11, 01, 10} and [>C(λ ∧
χ)] = {01, 10} and we have >C(λ) ` χ, >C(χ) 6` λ, and
>C(λ ∧ χ) 6` χ. Hence (>P) is not satisfied.

The question now is, which postulate corresponds to (CP)
for general semi-modular contexts? Here is the answer:

Proposition 5.5. (i). If C is a semi-modular context which
satisfies (CP), then >C satisfies the following rule:

(>P′) If > (λ) ` χ and > (χ) ` > (λ ∧ χ) then > (χ) ` λ
(ii). If > satisfies (>P′), plus (>C) and (>1), then C (>)
satisfies (CP).

It is straightforward to see (>P′) is weaker than (>P)
given (>1), while it implies (>P) given (>6).

6 Finite Base-Generated Removal
In this section we mention a concrete and important subfam-
ily of our general family of removal functions, the ideas be-
hind which can be seen already throughout the literature on
nonmonotonic reasoning and belief change (see in particular
[Bochman, 2001] for a general treatment in a belief removal
context). Given any, possibly inconsistent, set Σ of sentences,
let cons (Σ) denote the set of all consistent subsets of Σ. We
assume agent A is in possession of a finite set Σ of sentences
which are possible assumptions or defaults, together with a
strict preference ordering D on cons (Σ) (with sets “higher”
in the ordering assumed more preferred). We assume the fol-
lowing two properties of D:

(Σ1) D is a strict partial order

(Σ2) If A ⊂ B then A D B

(Σ2) is a monotonicity requirement stating a given set of de-
faults is strictly preferred to all its proper subsets.

Definition 6.1. If Σ ⊆ L is a finite set of sentences and D
is a binary relation over cons (Σ) satisfying (Σ1) and (Σ2).
Then we call � = 〈Σ,D〉 a prioritised default base. If in
addition D is modular then we call � a modular prioritised
default base.

In practice we might expect the ordering D over cons (Σ)
to itself be generated from some (not necessarily total) pre-
order - over over the individual sentences in Σ (again we
equate “higher” with “more preferred”). Let E1, . . . , Ek be
the equivalence classes of cons (Σ) under such a -, them-
selves ordered in the natural way by -, i.e., E1 - E2 iff
α - β for some α ∈ E1 and β ∈ E2. Then to give but two
prominent examples from the lierature (where ≺ is the strict
part of -):

Inclusion-Based [Brewka, 1989] A Dib B iff ∃i s.t. Ei ∩
A ⊂ Ei ∩B and ∀j s.t. Ei ≺ Ej , Ej ∩B = Ej ∩A

Generalised-Lexicographic [Yahi et al., 2008] A Fgl B iff
∀i, if |Ei ∩ B| < |Ei ∩ A| then ∃j s.t. Ei ≺ Ej and
|Ej ∩A| < |Ej ∩B|. Then Dgl is the strict part of Fgl.

We remark that the inclusion-based preference usually as-
sumes the underlying order - over Σ is total. For
the generalised-lexicographic example, note if the preorder
- over Σ is total then Dgl becomes modular and the
generalised-lexicographic example reduces to the standard
lexicographic case familiar from [Benferhat et al., 1993;
Lehmann, 1995].
Proposition 6.2. Let Σ be a finite set of sentences equipped
with some preorder - over its elements, and let Dib and Dgl

be relations over cons (Σ) defined from - as above. Then
both Dib and Dgl satisfy (Σ1) and (Σ2).

How does the agent use a prioritised default base � =
〈Σ,D〉 to remove beliefs? For Σ ⊆ L and λ ∈ L∗ let
cons (Σ, λ) def= {S ∈ cons (Σ) | S 0 λ}. Then from � we
may define a removal function >� by setting, for each λ ∈
L∗,

>� (λ) =
∨{∧

S | S ∈ max
D

cons (Σ, λ)
}
.

In other words, after removing λ, A will believe precisely
those sentences which are consequences of all maximally pre-
ferred subsets of Σ which do not imply λ.

We will now show how the family of removal functions
generated from prioritised default bases fits into our gen-
eral family. From a given � = 〈Σ,D〉 we may define
a context C (�) = (<,≺) as follows. Let sentΣ (x) def=
{α ∈ Σ | x ∈ [α]}. Then
• x < y iff sentΣ (y) D sentΣ (x)
• x ≺ y iff sentΣ (x) * sentΣ (y)

Thus we define x to be more plausible than y iff the set of
sentences in Σ satisfied by x is more preferred than the set of
sentences in Σ satisfied by y. Meanwhile we have the natural
interpretation for ≺ that A has a reason to hold x to be more
plausible than y precisely when one of the sentences in Σ is
satisfied by x but not y.
Theorem 6.3. (i). C (�) defined above forms a semi-modular
context (which is modular if D is modular).
(ii). � is transitive and the condition (CP) from the previous
section is satisfied.
(iii). >� = >C(�).

Thus we have shown that every removal function gener-
ated by a prioritised default base may always be generated by
a semi-modular context which furthermore satisfies the two
conditions on contexts mentioned in the previous section. By
the results of the previous sections, this means we automat-
ically obtain a list of sound postulates for the default base-
generated removals.
Corollary 6.4. Let � be any prioritised default base. Then
>� satisfies all the rules listed at the end of Section 3, as well
as (>C+) and (>P′) from the last section.
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Note we have shown how every prioritised default base
gives rise to a semi-modular context satisfying �-transitivity
and (CP). An open question is whether every such context
arises in this way.

7 AGM Preferential Removal
Recall that three of the basic AGM postulates for contraction
do not hold in general for the removal functions generated
by semi-modular contexts, namely Inclusion, Recovery and
Vacuity. In this section we show how each of these rules can
be captured. In [Booth et al., 2004] it was shown already how
they may be captured within the class of modular context-
generated removal. It turns out that more or less the same
constructions can be used for the wider class considered here,
although some complications arise regarding Vacuity.

7.1 Inclusion
The Inclusion rule is written in our setting as follows:

(>I) >(⊥) ` >(λ)

To capture (>I) for any removal generated from any semi-
modular context C = (<,≺), we need only to require the
following condition on C:

(CI) min<(W ) ⊆ min≺ (W )

According to our interpretation of ≺, (CI) is stating that, for
any world x, ifA has some explicit reason favour some world
y over x (i.e., y ≺ x) then in the final reckoning A must hold
some world z (not necessarily the same as y) more plausible
than x (i.e., z < x).

Proposition 7.1. (i). If C satisfies (CI) then >C satisfies
(>I). (ii). If > satisfies (>I) then C(>) satisfies (CI).

Given any removal function > we can always obtain a re-
moval function which satisfies (>I) by taking the incarcera-
tion >I of > [Booth et al., 2005].

>I (λ) def= > (⊥) ∨> (λ) .

Or alternatively we can modify a given context C = (<,≺)
into CI =

(
<,≺I

)
, where x �I y iff either x � y or x ∈

min< (W ). It is easy to check CI = C
(
>I
)
.

7.2 Recovery
The Recovery rule is written as follows:

(>R) >(λ) ∧ λ ` >(⊥)

The corresponding property on contexts C = (<,≺) is:

(CR) If y 6/∈ min< (W ) and x 6= y then x ≺ y
Thus the only worlds∇� (x) contains, other than x itself, are
worlds in min< (W ).

Proposition 7.2. (i). If C satisfies (CR) then >C satisfies
(>R). (ii). If > satisfies (>R) then C(>) satisfies (CR).

Note the combination of (CI) and (CR) specifies≺, equiv-
alently �, uniquely in terms of <, viz.

x �agm y iff x = y or x ∈ min
<

(W ) .

and we obtain the removal recipe of AGM contraction, in
which removal of λ boils down to just adding the <-minimal
¬λ-worlds to the <-minimal worlds:

[>agm (λ)] = min
<

(W ) ∪min
<

([¬λ]) .

It is easy to check that the resulting context C satisfies con-
dition (C3a) and thus forms a semi-modular context. It
is also easy to check (CP) is satisfied and that the above-
defined �agm is transitive. Thus the above >agm also satis-
fies (>C+) and (>P′) from Section 5.

7.3 Vacuity
The Vacuity rule is written as follows:
(>V) If >(⊥) 6` λ then >(λ) ≡ >(⊥)
Unlike in the modular case, where Vacuity is known to fol-
low from Inclusion for modular removal functions [Booth et
al., 2004], (>V) does not even hold in general for the above
preferential AGM contraction>agm. This was essentially no-
ticed, in a revision context, in [Benferhat et al., 2005].
Example 7.3. Let L = {p, q} and <= {(11, 01)}. So
[>agm (⊥)] = {00, 11, 10}. Let λ = p. Then we
have >agm (⊥) 0 λ (because 00 ∈ [>agm (⊥)]), but
min< ([¬λ]) = {00, 01}, so [>agm (λ)] = min< (W ) ∪
min< ([¬λ]) = W 6= [>agm (⊥)].

In order to ensure >agm satisfies (>V) it is necessary, as
is done in [Katsuno and Mendelzon, 1992], to enforce the
following property on <.
(< V) ∀x, y ((x ∈ min< (W ) ∧ y /∈ min< (W ))→ x < y) .
In other words all <-minimal worlds can be compared with,
and are below, every world which is not <-minimal. For gen-
eral semi-modular contexts C = (<,≺) we also require the
following condition, which is weaker than (CI):
(CV) If x, y ∈ min<(W ) then x ⊀ y

This property says that for any two of his <-minimal worlds,
A will not have explicit reason to hold one to be more plausi-
ble than the other.
Proposition 7.4. (i). If C satisfies (CV) and (< V) then >C
satisfies (>V). (ii). If > satisfies (>V) then C(>) satisfies
(CV).

8 Conclusion
In this paper we introduced a family of removal functions,
generalising the one given in [Booth et al., 2004] to allow for
incomparabilities in the plausibility relation < between pos-
sible worlds. Removal is carried out using the plausibility
relation in combination with a second relation ≺ which can
be thought of as indicating “reasons” for holding one world
to be more plausible than another. We axiomatically charac-
terised this general family as well as certain subclasses, and
we showed how this family includes some important and nat-
ural families of belief removal, specifically those which may
be generated from prioritised default bases and the preferen-
tial counterpart of AGM contraction. Our results show the
central construct used in this paper, i.e., semi-modular con-
texts, to be a very useful tool in the study of belief removal
functions.
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For future work we would like to locate further subclasses
of interest, for example the counterparts in this setting of
systematic withdrawal [Meyer et al., 2002] and severe with-
drawal [Rott and Pagnucco, 1999]. We would also like to
employ semi-modular contexts in the setting of social belief
removal [Booth and Meyer, 2008], in which there are several
agents, each assumed to have their own removal function, and
in which all agents must remove some belief to become con-
sistent with each other. [Booth and Meyer, 2008] showed that,
under the assumption that each agent uses a removal function
generated from a modular context, certain equilibrium points
in the social removal process are guaranteed to exist. An in-
teresting question would be whether these results generalise
to the semi-modular case. Since semi-modular contexts are
built from strict partial orders, this question should also be of
some relevance to the problem of aggregating strict partial
orders [Pini et al., 2005].
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Abstract

Representing preferences and reasoning about them
are important issues for many real-life applica-
tions. Several monotonic and non-monotonic quali-
tative formalisms have been developed for this pur-
pose. Most of them are based on comparative
preferences, for e.g. “I prefer red wine to white
wine”. However this simple and natural way to ex-
press preferences comes also with many difficul-
ties regarding their interpretation. Several (more
or less strong) semantics have been proposed lead-
ing to different (pre)orders on outcomes. So far re-
searchers have argued for each semantics and com-
pared them from purely theoretical standpoint. In
this paper, we report results of the first empirical
comparison of existing non-monotonic semantics
(strong, optimistic, pessimistic and ceteris paribus)
based on psychological data. Thirty participants
were asked to rank 8 menus according to their pref-
erences and to compare 31 pairs of menus. The
recorded preferences allowed to compute compact
preferences and ranking menus for each participant
according to the four semantics under study, and
to compare these ranks to participant’s ones. Re-
sults show that non-monotonic optimistic and pes-
simistic preferences are the semantics that better fit
human data, strong and ceteris paribus semantics
being less psychologically plausible given our task.

1 Introduction
Preferences are very useful in many real-life problems.
They are inherently a multi-disciplinary topic, of interest
to economists, computer scientists, operations researchers,
mathematicians, logicians, philosophers and psychologists.
Preferences are a relatively new topic in Artificial Intelli-
gence and are becoming of greater interest in many areas such
as non-monotonic reasoning, multi-agent systems, constraint
satisfaction, decision making, social choice theory, decision-
theoretic planning, etc.

It has been early recognized that value functions/orderings
cannot be explicitly defined because of a great number of
outcomes or simply because the user is not willing to state

her/his preferences on each pair of outcomes. Indeed prefer-
ences should be handled in a compact (or succint) way, start-
ing from non completely explicit preferences expressed by a
user. Compact representation languages allow a simple read-
ability of user’s preferences. Therefore, a good compact lan-
guage should be as close as possible to user’s specification of
preferences on possible outcomes.

The compact languages for preference representation have
been extensively developed in Artificial Intelligence in the
last decade [Boutilier et al., 2004; Wilson, 2004; Brewka et
al., 2004]. In particular, (conditional) comparative statements
are often used for describing preferences in a local, contex-
tualized manner for e.g., “I prefer fish to meat”, “if meat is
served then I prefer red wine to white wine”, etc. Indeed, it is
easier and more natural to express such qualitative compara-
tive statements than to say that I prefer fish with the weight
.8 and prefer meat with the weight .2. Some generic princi-
ples are often used for completing the qualitative compara-
tive preference statements1 [Hansson, 1996; Boutilier, 1994;
Benferhat et al., 2002; Wilson, 2004]. Although comparative
preference statements allow for a simple and natural way to
express preferences, they come however with many difficul-
ties regarding their interpretation.

Comparative preferences are often interpreted following
the well known ceteris paribus semantics [Hansson, 1996].
This is due to the CP-net approach [Boutilier et al., 1999]
which has emerged in the last decade as the preeminent and
prominent method for processing preferences in Artificial In-
telligence, thanks to its intuitive appeal. Following this pin-
ciple, the statement “I prefer fish to meat” is interpreted as,
given two meals that differ only in the main dish, the meal
with fish is preferred to the meal with meat. However, CP-
nets behave monotonically and do not allow for the handling
of preferences with defaults. For example, we can prefer
fish to meat, but when available fish is red tuna and meat
is poultry, we can prefer the reverse. As such, CP-nets are
not appropriate when a vegetarian expresses her/his prefer-
ence about meat-based meals and fish-based meals. More-
over, in CP-nets, ceteris paribus semantics states that the two
meals fish-cake and meat-ice cream are incomparable w.r.t.
the preference statement “I prefer fish to meat” while a veg-

1From now on, we simply speak about comparative preference
statements.
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etarian would prefer any fish-based meal to any meat-based
meal. Fortunately, ceteris paribus is not the only possible
reading of comparative preference statements and other intu-
itively non-monotonic meaningful semantics may also be en-
countered, and researchers have also argued for other seman-
tics [Boutilier, 1994; Benferhat et al., 2002] based on insights
from non-monotonic reasoning such as system Z [Pearl,
1990]. Note also that ceteris paribus semantics can also be
non-monotonic outside CP-net framework. For example, the
menu fish−red is preferred to the menu fish−white w.r.t.
the preference statement “red is preferred to ¬red” following
ceteris paribus semantics. However the additional preference
statement “fish ∧ white is preferred to fish ∧ ¬white” in-
duces the reverse preference, namely fish − white is pre-
ferred to fish− red.

So far researchers have argued for a semantics or an-
other from purely theoretical standpoint or for modeling
a specific application. In this paper, we provide the first
empirical comparison of existing non-monotonic semantics
(including ceteris paribus) based on psychological data. This
psychological inquiry is founded by previous work on the
non-monotonic nature of human reasoning. For example,
it has been shown that human inference is consistent with
System P [Kraus et al., 1990] (see [Neves et al., 2002;
Benferhat et al., 2004; 2005]) and that System P constitutes
a psychologically sound base of rationality postulates for
the evaluation of non-monotonic reasoning systems. In our
study, participants were asked to rank 8 menus according
to their preferences and to compare 31 pairs of menus.
The recorded preferences were compared to those provided
by the considered semantics. Results show that optimistic
and pessimistic preferences are the semantics that better fit
human data, strong, ceteris paribus semantics being less
psychologically plausible given our task.

The remainder of this paper is organized as follows. Af-
ter providing notations and necessary definitions, we recall in
Section 3 the different semantics of comparatives preferences
proposed in literature. Opportunistic semantics is introduced
at the theoretical level but is not studied empirically because
a unique complete preorder does not exist w.r.t. this principle.
In Section 4 we recall algorithms to rank-order outcomes for
each semantics. In Section 5 we provide empirical compar-
ison of the different semantics based on psychological data.
Lastly we conclude.

2 Notations
Let V = {X1, · · · , Xh} be a set of h variables. Each vari-
able Xi takes its values in a domain Dom(Xi) which is a set
of uninterpreted constants D or rational numbers Q. A pos-
sible outcome, denoted t, is the result of assigning a value in
Dom(Xi) to each variable Xi in V . Ω is the set of all pos-
sible outcomes. We suppose that this set is fixed and finite.
Asst(V ′), with V ′ ⊆ V , is the set of all possible assignments
to variables in V ′. Therefore Ω = Asst(V ).
Let L be a language based on V . Mod(ϕ) denotes the set of
outcomes that make the formula ϕ (built on L) true. We write
t |= ϕ when t ∈ Mod(ϕ) and say that t satisfies ϕ.

An ordering relation � on X = {x, y, z, · · · } is a reflexive
binary relation such that x � y stands for x is at least as
preferred as y. x ≈ y means that both x � y and y � x hold,
i.e., x and y are equally preferred. Lastly x ∼ y means that
neither x � y nor y � x holds, i.e., x and y are incomparable.
A strict ordering relation onX is an irreflexive binary relation
such that x � y means that x is strictly preferred to y. We
also say that x dominates y. A strict ordering relation � can
be defined from an ordering relation � as x � y if x � y
holds but y � x does not.
When neither x � y nor y � x holds, we also write x ∼ y.
� (resp. �) is a preorder (resp. order) on X if and only if �
(resp. �) is transitive, i.e., if x � y and y � z then x � z (if
x � y and y � z then x � z).
� (resp. �) is a complete preorder (resp. order) if and only
if ∀x, y ∈ X , we have either x � y or y � x (resp. either
x � y or y � x).
The set of the best (or undominated) elements of A ⊆ X w.r.t.
�, denoted max(A,�), is defined by max(A,�) = {x|x ∈
A, @y ∈ A, y � x}. The set of the worst elements of A ⊆ X
w.r.t. �, denoted min(A,� ), is defined by min(A,� ) =
{x|x ∈ A, @y ∈ A, x � y}.
The best (resp. worst) elements of A w.r.t. � is max(A,�
) (resp. min(A,�)) where � is the strict ordering relation
associated to �.

A complete preorder � can also be represented by a well
ordered partition of Ω. This is an equivalent representation,
in the sense that each preorder corresponds to one ordered
partition and vice versa.

Definition 1 (Partition) A sequence of sets of outcomes of
the form (E1, . . . , En) is a partition of Ω if and only if

(i) ∀i, Ei 6= ∅,

(ii) E1 ∪ · · · ∪ En = Ω, and

(iii) ∀i, j, Ei ∩ Ej = ∅ for i 6= j.

A partition of Ω is ordered if and only if it is associated with
a preorder � on Ω such that (∀t, t′ ∈ Ω with t ∈ Ei, t

′ ∈ Ej

we have i ≤ j if and only if t � t′).

3 Comparative preference statements
We denote comparative statements of the form “I prefer p to
q” as p > q and denote conditional (called also contextual)
comparative statements of the form “if r is true then I prefer
p to q” as r : p > q, where p, q and r are any propositional
formulas. Note that r : p > q is equivalent to r ∧ p > r ∧ q.
Indeed we will simply focus on statements of the form p > q.

Comparative statements, apparently very simple, come
with difficulties regarding their interpretation. How should
we interpret such statements? For example, given the prefer-
ence statement “I prefer fish to meat”, how do we rank-order
meals based on fish and those based on meat? Five semantics
have been proposed in literature:

• ceteris paribus preferences: [Hansson, 1996]
any fish-based meal is preferred to any meat-based meal
if the two meals are exactly the same elsewhere (for ex-
ample wine and dessert).
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• strong preferences: [Boutilier, 1994; Chomicki, 2003;
Wilson, 2004]
any fish-based meal is preferred to any meat-based meal.

• optimistic preferences: [Benferhat et al., 1992;
Boutilier, 1994; Pearl, 1990]
at least one fish-based meal is preferred to all meat-based
meals.

• pessimistic preferences: [Benferhat et al., 2002]
at least one meat-based meal is less preferred to all fish-
based meals.

• opportunistic preferences: [van der Torre and Weydert,
2001]
at least one fish-based meal is preferred to at least one
meat-based meal.

We define preference of the formula p over the formula q as
preference of p∧¬q over ¬p∧ q. This is standard and known
as von Wright’s expansion principle [von Wright, 1963]. Ad-
ditional clauses may be added for the cases in which sets of
outcomes are nonempty, to prevent the satisfiability of pref-
erences like p > > and p > ⊥. We do not consider this
borderline condition to keep the formal machinery as simple
as possible.

We denote the preference of p over q following strong se-
mantics (resp. ceteris paribus, optimistic, pessimistic, op-
portunistic) by p >st q (resp. p >cp q, p >opt q, p >pes q,
p >opp q).
Definition 2 Let p and q be two propositional formulas and
� be a preorder on Ω.
• � satisfies p >st q, denoted �|= p >st q, iff
∀t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′.

• � satisfies p >cp q, denoted �|= p >cp q, iff
∀t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′, where
t and t′ have the same assignment on variables that do
not appear in p and q.

• � satisfies p >opt q, denoted �|= p >opt q, iff
∃t |= p ∧ ¬q, ∀t′ |= ¬p ∧ q we have t � t′.

• � satisfies p >pes q, denoted �|= p >pes q, iff
∃t′ |= ¬p ∧ q, ∀t |= p ∧ ¬q we have t � t′.

• � satisfies p >opp q, denoted �|= p >opp q, iff
∃t |= p ∧ ¬q, ∃t′ |= ¬p ∧ q we have t � t′.

The following lemma gives the mathematical description of
Definition 2:
Lemma 1 Let p and q be two propositional formulas and �
be a preorder on Ω.
• � satisfies p >st q iff ∀t ∈ min(p ∧ ¬q,�),
∀t′ ∈ max(¬p ∧ q,�) we have t � t′.

• � satisfies p >cp q iff ∀t ∈ min(p ∧ ¬q,�),
∀t′ ∈ max(¬p ∧ q,�) we have t � t′, where t and
t′ have the same assignment on variables that do not
appear in p and q.

• � satisfies p >opt q iff ∀t ∈ max(p ∧ ¬q,�),
∀t′ ∈ max(¬p ∧ q,�) we have t � t′.

• � satisfies p >pes q iff ∀t ∈ min(p ∧ ¬q,�),
∀t′ ∈ min(¬p ∧ q,�) we have t � t′.

• � satisfies p >opp q iff ∀t ∈ max(p ∧ ¬q,�),
∀t′ ∈ min(¬p ∧ q,�) we have t � t′.

A preference set is a set of preferences of the same type.

Definition 3 (Preference set) A preference set of type �, de-
noted P�, is a set of preferences of the form {pi � qi|i =
1, · · · , n}, where � ∈ { >st , >cp , >opt , >pes , >opp }.
A complete preorder � is a model of P� if and only if �
satisfies each preference pi � qi in P�.

A set P� is consistent if it has a model.

4 From comparative preference statements to
preorders on outcomes

Generally we have to deal with several comparative pref-
erence statements expressed by a user. Once the semantics
is fixed, the problem to tackle is how to deal with such
statements? Several types of queries can be asked about
preferences: what are the preferred outcomes? Is one
outcome better than the other? In many applications (for
e.g. database queries), users are more concerned with the
preferred outcomes. However preferred outcomes are not
always feasible. For example the best menus w.r.t. a user’s
preferences may be no longer available so we have to look
for menus that are immediately less preferred w.r.t. user’s
preferences. In such a case a complete preorders on menus
is needed to answer user’s preferences. Indeed we restrict
ourselves to semantic models that derive complete preorders
on outcomes. In the following, we recall algorithms which
derive a unique complete preorder given a set of preferences
of the same type w.r.t. specificity principle [Yager, 1983]. A
unique complete preorder for opportunistic preferences does
not exist w.r.t. this principle. Indeed we do not consider such
preferences in the remainder of the paper.

Let P� = {si : pi � qi|i = 1, · · · , n} be a preference
set with � ∈ { >st , >cp , >opt , >pes }. Given P�, we
define a set of pairs on Ω as follows:

L(P�) = {Ci = (L(si), R(si))|i = 1, · · · , n},

where L(si) = {t|t ∈ Ω, t |= pi ∧ ¬qi} and
R(si) = {t|t ∈ Ω, t |= ¬pi ∧ qi}.

Example 1 Let dish, wine and dessert be three variables
such that Dom(dish) = {fish,meat}, Dom(wine) =
{white, red} and Dom(dessert) = {cake, ice−cream}.
We have Ω = {t0 = fish− white− ice−cream,
t1 = fish−white− cake, t2 = fish− red− ice−cream,
t3 = fish− red− cake, t4 = meat−white− ice−cream,
t5 = meat−white− cake, t6 = meat− red− ice−cream,
t7 = meat− red− cake}.
Let P� = {s1 : fish � meat, s2 : red ∧ cake � white ∧
ice−cream, s3 : fish ∧ white � fish ∧ red}. We have
L(P�) = {C1 = ({t0, t1, t2, t3}, {t4, t5, t6, t7}),
C2 = ({t3, t7}, {t0, t4}), C3 = ({t0, t1}, {t2, t3})}.

4.1 Optimistic preferences
Several complete preorders may satisfy a set of optimistic
preferences. It is however possible to characterize a unique
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preorder among them under certain assumption. The seman-
tics of optimistic preferences is close to the one of condition-
als. Indeed system Z [Pearl, 1990] has been used [Benferhat
et al., 1992; Boutilier, 1994]. It rank-orders outcomes under
the assumption that outcomes are preferred unless the con-
trary is stated. Indeed outcomes are put in the highest possible
rank in the preorder while being consistent with preferences
at hand. This principle ensures that the complete preorder is
unique and the most compact one among preorders satisfying
the set of preferences2. Algorithm 1 gives the way this pre-
order is computed. At each step of the algorithm, we put in
Ei outcomes that are not dominated by any other outcomes.
These outcomes are those which do not appear in the right-
hand side of any pair (L(si), R(si)) of L(P >opt ).

Algorithm 1: A complete preorder associated with P >opt .

Data: A preference set P >opt .

Result: A complete preorder � on Ω.
begin

l = 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >opt ), t ∈
R(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

/** remove satisfied preferences **/
- remove (L(si), R(si)) where L(si) ∩ El 6= ∅

return �= (E1, · · · , El).
end

Example 2 (Example 1 con’d)
We have E1 = {t1}. We remove C1 and C3 since s1 =
fish >opt meat and s3 : fish∧white >opt fish∧ red are
satisfied. We get L(P >opt ) = {C2 = ({t3, t7}, {t0, t4})}.
Now E2 = {t2, t3, t5, t6, t7}. We remove C2 since s2 :
red ∧ cake >opt white ∧ ice−cream is satisfied. So
L(P >opt ) = ∅. Lastly, E3 = {t0, t4}. Indeed �=
({t1}, {t2, t3, t5, t6, t7}, {t0, t4}). We can check that each
outcome has been put in the highest possible rank in �.
Therefore, if we push an outcome to a higher rank then
the preorder does not satisfy the preference set. For exam-
ple, �′= ({t1, t5}, {t2, t3, t6, t7}, {t0, t4}) does not satisfy
s1 = fish >opt meat.

4.2 Pessimistic preferences
The converse reasoning is drawn when dealing with pes-
simistic preferences [Benferhat et al., 2002]. The basic prin-
ciple is that outcomes are not preferred unless the contrary
is stated. Indeed outcomes are put in the lowest possible
rank in the preorder while being consistent with preferences
at hand. This principle also ensures that the complete pre-
order is unique and the most compact one among preorders

2Technically speaking, this preorder can be obtained by max-
based aggregation operator of all preorders satisfying the set of pref-
erences

satisfying the set of preferences3. Algorithm 2 gives the way
this preorder is computed.

Algorithm 2: A complete preorder associated with P >pes .

Data: A preference set P >pes .

Result: A complete preorder � on Ω.
begin

l = 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >pes ), t ∈
L(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

/** remove satisfied preferences **/
- remove (L(si), R(si)) where R(si) ∩ El 6= ∅

return �= (E′
1, · · · , E′

l) s.t. 0 ≤ h ≤ l, E′
h = El−h+1

end

Example 3 (Example 1 con’d)
We have E1 = {t4, t5, t6}. We remove C1 and C2 since
s1 : fish >pes meat and s2 : red ∧ cake >pes white ∧
ice−cream are satisfied. We repeat the same reasoning
and get E2 = {t2, t3, t7} and E3 = {t0, t1}. So �=
({t0, t1}, {t2, t3, t7}, {t4, t5, t6}). We can check that each
outcome has been put in the lowest possible rank in the pre-
order.

4.3 Strong preferences
Strong preferences induce a unique partial order on outcomes.
We can use both construction principles used in optimistic
and pessimistic preferences to linearize the partial order and
compute a unique complete preorder. Algorithms 1 and 2 can
be adapted to deal with strong preferences. For brevity, we
only give the algorithm adapting Algorithm 1.

Similarly, the adaptation of Algorithm 2 consists in the fol-
lowing modification:
replace “remove (L(si), R(si)) where R(si) ∩ El 6= ∅” by

[“replace (L(si), R(si)) by (L(si), R(si)\El)” and
“remove (L(si), R(si)) with empty R(si)”)].

Example 4 (Example 1 con’d)
There is no complete preorder which satisfies P >st so
P >st is inconsistent. This is due to s1 and s2. Following
s1, t0 is preferred to t7 while t7 is preferred to t0 following
s2.

Example 5 (Consistent strong preferences)
Let P >st = {fish ∧ white >st fish ∧ red, red ∧
cake >st red ∧ ice−cream,meat ∧ red >st meat ∧
white}. Then following Algorithm 3, we have
�= ({t0, t1, t7}, {t3}, {t2, t6}, {t4, t5}). Now following the
adaptation of Algorithm 2 to deal with strong preferences,
we have �= ({t0, t1}, {t3, t7}, {t6}, {t2, t4, t5}).

3Technically speaking, this preorder can be obtained by min-
based aggregation operator of all preorders satisfying the set of pref-
erences.

28



Algorithm 3: A complete preorder associated with P >st .

Data: A preference set P >st .
Result: A complete preorder � on Ω.
begin

l← 0
while Ω 6= ∅ do

l = l + 1
El = {t|t ∈ Ω, @(L(si), R(si)) ∈ L(P >st ), t ∈
R(si)}
if El = ∅ then

stop (inconsistent preferences), l = l − 1

- Ω = Ω\El

- replace (L(si), R(si)) by (L(si)\El, R(si))
/** remove satisfied preferences **/
- remove (L(si), R(si)) where L(si) = ∅

return �= (E1, · · · , El).
end

Notice that optimistic (resp. pessimistic) preferences are a
right hand (resp. left hand) side weakening of strong prefer-
ences in the sense that “any outcome satisfying p∧¬q” (resp.
all outcomes satisfying ¬p ∧ q) for the preference p > q is
weakened to “at least one outcome satisfying p ∧ ¬q” (resp.
at least one outcome satisfying ¬p ∧ q).

4.4 Ceteris paribus preferences
These preferences are similar to strong preferences. They
also induce a unique partial order on outcomes. We can also
use both construction principles used in optimistic and pes-
simistic semantics to compute a unique complete preorder.

Example 6 (Example 1 con’d)
Following the gravitation towards the ideal we have
�= ({t1}, {t3, t5}, {t0, t7}, {t2, t4}, {t6}) while follow-
ing the gravitation towards the worst we have �=
({t1}, {t3}, {t0}, {t2, t7}, {t4, t5, t6}).
Note that the pairs associated to ceteris paribus preferences
need to be pre-processed. In fact, these preferences ex-
press that any outcome in the left hand side of the pair
(L(si), R(si)) is preferred to any outcome in the right hand
side of the pair following ceteris paribus semantics. Indeed
when an outcome in the left (resp. right) hand side of a pair
does not have its associated outcome in the right (resp. left)
hand side of the pair following ceteris paribus semantics then
it should be removed from the pair. This situation occurs
when the set of outcomes is incomplete.

Example 7 Let dish, wine and dessert be three propositional
variables taking their values in {fish,meat}, {white, red}
and {cake, ice−cream} respectively. Let Ω = {t0, t1, t2}
with t0 = fish − white − ice−cream, t1 = fish − red −
ice−cream and t2 = fish − red − cake. Let P >cp =
{s1 : fish >cp meat, s2 : fish ∧ white >cp fish ∧
red}. Then L(P >cp ) = {C1 = ({t0, t1, t2}, {}), C2 =
({t0}, {t1, t2})}. C1 is irrelevant and should be removed.
Regarding C2, t2 has not its associated outcome in L(s2) fol-
lowing ceteris paribus semantics and should be removed. In-
deed we have L(P >cp ) = {C2 = ({t0}, {t1})}.

5 Experimental Study
Our main objective in this section is to evaluate the psycho-
logical plausibility of strong, optimistic, pessimistic and ce-
teris paribus semantics. In order to reach this objective, we
have conducted a psychological experiment devoted to collect
sets of comparative preferences formulated by participants to
this experiment, and the associated models (a (pre)order on
the set of outcomes). The adopted methodology and main
results are presented in the next subsections.

5.1 Method
Participants
Thirty first-year psychology students at the University of
Toulouse-Le Mirail, all native French speakers, contributed to
this study. None of them had previously received any formal
logical training or any course on preferences. Note that our
objective is not to study participant’s real preferred menus.
Such an objective would necessitate a much more large num-
ber of participants, like in opinion studies. Rather, our objec-
tive is to compare statistically the fit of the semantics under
study with human preference’s judgments. For such an ob-
jective, our sample size is sufficient according to scientific
standards.

Material and procedure
Comparative preference judgments were collected via a
booklet where subjects were asked to suppose that they are at
the restaurant and they must compose their menu. In the first
page of the booklet, they were asked to compare and to rank-
order the following objects (unranked objects where skipped
from analyses):

t0: fish-white-ice-cream

t1: fish-white-cake

t2: fish-red-ice-cream

t3: fish-red-cake

t4: meat-white-ice-cream

t5: meat-white-cake

t6: meat-red-ice-cream

t7: meat-red-cake.

Next, they were asked to compare the 31 pairs of menus given
in Table 1. An object o1 can be preferred to an object o2 or
o2 preferred to o1, or be both equally preferred, or be incom-
parable. Answers of the kinds ”equally preferred” or ”incom-
parable” have been discarded from analysis.

Rationale
Given participant’s comparative preference judgments, for
each participant, we computed the set of compact preferences
consistent with participant’s preferences. The set of possible
comparative preferences is given in Table 2. For a given par-
ticipant, a comparative preference is retained as compact if it
is consistent with all her/his preferred menus (see Table 1).

Next, given these compact preferences and the algorithms
provided in the paper, for each participant, four preorders
have been inferred according to the principles underling the
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(white, red)
(meat, fish)
(ice− cream, cake)
(meat− white− ice− cream,meat− white− cake)
(meat− white− ice− cream,meat− red− ice− cream)
(meat− white− ice− cream,meat− red− cake)
(meat− white− ice− cream, fish− white− ice− cream)
(meat− white− ice− cream, fish− white− cake)
(meat− white− ice− cream, fish− red− ice− cream)
(meat− white− ice− cream, fish− red− cake)
(meat− white− cake,meat− red− ice− cream)
(meat− white− cake,meat− red− cake)
(meat− white− cake, fish− white− ice− cream)
(meat− white− cake, fish− white− cake)
(meat− white− cake, fish− red− ice− cream)
(meat− white− cake, fish− red− cake)
(meat− red− ice− cream,meat− red− cake)
(meat− red− ice− cream, fish− white− ice− cream)
(meat− red− ice− cream, fish− white− cake)
(meat− red− ice− cream, fish− red− ice− cream)
(meat− red− ice− cream, fish− red− cake)
(meat− red− cake, fish− white− ice− cream)
(meat− red− cake, fish− white− cake)
(meat− red− cake, fish− red− ice− cream)
(meat− red− cake, fish− red− cake)
(fish− white− ice− cream, fish− white− cake)
(fish− white− ice− cream, fish− red− ice− cream)
(fish− white− ice− cream, fish− red− cake)
(fish− white− cake, fish− red− ice− cream)
(fish− white− cake, fish− red− cake)
(fish− red− ice− cream, fish− red− cake)

Table 1: Pairs of menus participants have to compare.

white > red
red > white
meat > fish
fish > meat
ice− cream > cake
cake > ice− cream
white ∧meat > white ∧ fish
white ∧ fish > white ∧meat
white ∧ ice− cream > white ∧ cake
white ∧ cake > white ∧ ice− cream
red ∧meat > red ∧ fish
red ∧ fish > red ∧meat
red ∧ ice− cream > red ∧ cake
red ∧ cake > red ∧ ice− cream
meat ∧ ice− cream > meat ∧ cake
meat ∧ cake > meat ∧ ice− cream
fish ∧ ice− cream > fish ∧ cake
fish ∧ cake > fish ∧ ice− cream

Table 2: Set of a priori possible compact preferences.

inferential machinery of the four studied semantics. For eval-
uating the psychological relevance of the semantics under
study, the key comparison is between participant’s (pre)order
on the 8 menus {t0, · · · , t7} and (pre)orders computed ac-
cording to the four semantics given participant’s compact
preferences. Two cues have been used for ordering semantics
according to their psychological relevance: The percentages
of cases where the semantics provide an inconsistent set of
models; and the distance and mean distance between ranks
allowed by participants and models to the 8 menus.

• Percentages of inconsistency: For each semantics, we
computed the number of cases where it produces an
inconsistent set of models given inferred participant’s
compact preferences. The percentage is then computed
by the classical division of this number by the number
(30) of participants (×100). A semantics better fits psy-
chological data if it allows producing a consistent set of
models from participant’s compact preferences.

• Mean Distances: Two distances based on participants
and semantics orders have been computed. In both
cases, distances are computed from the ranks attributed
to each of the 8 menus by participants and semantics.
Several menus can have the same rank. Suppose partic-
ipant 1 prefers the menu “meat, red wine, ice-cream”, if
this menu is also the preferred one for a given semantics,
then the distance is zero. If only one menu is more pre-
ferred, then the rank is 1, and so on. A semantics better
fits psychological data if the rank it attributes is closer to
the menu preferred by participants. At the sample level,
a semantics better fits psychological data if the mean dis-
tance between participants’s preferred models and the
rank (or level) attribute by the semantics is smaller. This
methodology can be generalized, and the same calcu-
lus can be made for each menu involved in participant’s
ranking (note that this order doesn’t necessarily involve
the 8 proposed menus). So, for each participant, it is
possible to compute the mean of the distance between
each menu and ranks predicted by semantics. Next, the
mean of these means is computed. As before, a small
mean means a better fit.

In order to conclude at the inferential level (and not only at
the descriptive level), cognitive psychology, exactly as other
experimental sciences, makes use of statistical tools for hy-
pothesis testing. The student’s t-test is a well known para-
metrical statistical test that allows testing the null hypothesis
that two means are not different. The probability p provided
by the test express the risk (called alpha) that we reject by
error the null hypothesis. In social and human sciences, it is
usual to consider that this risk is acceptable at the level .05,
that is, if p is greater than .05, we cannot reject the null hy-
pothesis without a significant risk. Under .05, we reject the
null hypothesis, and so accept the hypothesis of the difference
between the two means. In our analyses, when a difference
between means is significant (p =< .05), it is interpreted as:
the semantics exhibiting the less mean distance significantly
fits better human data than the other semantics.
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cp str. pess. opt.
% inconsistency 36.6 10 0 0
Distance between 1.5 .83 .62 .55
participants and
models′ levels (.81) (.93) (.71) (.65)
for participant
preferred outcome. n = n = n = n =
(standard deviation) 26 29 30 30
Means of the 2.44 2.46 2.54 2.53
mean distance
between participants (.63) (.65) (.71) (.66)
and models′

outcome levels
(standard deviation)
n = 19

Table 3: Cues for evaluation of the fit of semantics with par-
ticipant’s preference judgment. “cp”, “str”, “pess.” and “opt.”
stand respectively for ceteris paribus, strong, pessimistic and
optimistic.

5.2 Results

Participant’s answers allowed to compute a set of compact
preferences containing between 3 and 7 compact preferences
out of 18 a priori ones. Table 3 shows that the ceteris paribus
semantics doesn’t fit participant’s orders in 36% of the cases
and that the strong semantics failed in 10% of the cases, while
optimistic and pessimistic semantics provide always a consis-
tent set of preferences. This order is confirmed by compar-
isons of distances between participants and semantics’ levels
for participant preferred outcome in Table 3. Table 3 also
shows that the optimistic semantics has a better fit than the
pessimistic one (however mean’s comparison by Student’s t-
test is not significant at the .05 level: t = −1.43, df = 29,
p = .16) while the latter has a better fit than the strong seman-
tics (t = 2.7, df = 28, p = .01, significant) which better fits
participant’s data than ceteris paribus semantics (t = −5.7,
df = 24, p < .001, significant). These results are broadly
confirmed by the comparison of the means of the mean dis-
tance between participants and semantics (pre)orders. Table 3
confirms previous results. Indeed, statistical comparisons by
Student’s t-test shows a significant difference between strong
and pessimistic semantics (t = −2.37, df = 18, p = .036)
but not between ceteris paribus and strong, and pessimistic
and optimistic semantics. This result confirms that two dis-
tinct sets of semantics can be distinguished from their psy-
chological relevance: Pessimistic and optimistic semantics on
one hand, and strong and ceteris paribus on the other one. Ex-
cept for percentages, more the values are low, better is the fit.

As such, given all the information summarized in table 3,
it appears that optimistic and pessimistic semantics are more
plausible psychologically than strong and ceteris paribus se-
mantics. Note that the latter exhibits a bad fit of participants’
judgments.

6 Conclusion
We focused on comparative preference statements and dis-
tinguished different non-monotonic semantics that have been
studied in literature. So far, researchers have argued for a se-
mantics or another from purely theoretical standpoint (also
philosophical for ceteris paribus semantics) or for modeling
a specific application. In this paper, we explored another di-
mension, namely psychological plausibility, to compare the
semantics.

This work gives an indication about human behavior when
interpreting comparative preferences. Our results suggest that
pessimistic and optimistic semantics better fit human pref-
erences organization and inference than ceteris paribus and
strong semantics. Neverthless, it doesn’t mean that every hu-
man in every situation would ”prefer” according to the prin-
ciples underling these semantics. Rather, it suggests that
in familiar domains, a population (students in psychology)
known as representative of global occidental people, “prefer”
in a manner more closed to pessimistic and optimistic seman-
tics. It doesn’t mean that strict and ceteris paribus semantics
should be rejected. Psychological plausibility is not of course
the sole criterion for evaluating formal models in AI, but it
is a criterion, every time a model could be in cognitive con-
tact with human mind, trough human-machines interactions
and communication, and every time it could have incidences
in human adaptation, including cognitive comfort and effi-
ciency.

This first attempt opens the door to more ambitious and
deeper comparison of preference representations. In a future
work we intend to perform a comparison of the main differ-
ent compact representations of preferences such as CP-nets
[Boutilier et al., 2004], QCL [Brewka et al., 2004], etc.
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Abstract

In answer-set programming (ASP), the main focus
usually is on computing answer sets which corre-
spond to solutions to the problem represented by a
logic program. Simple reasoning over answer sets
is sometimes supported by ASP systems (usually
in the form of computing brave or cautious con-
sequences), but slightly more involved reasoning
problems require external postprocessing. Gener-
ally speaking, it is often desirable to use (a subset
of) brave or cautious consequences of a programP1

as input to another programP2 in order to provide
the desired solutions to the problem to be solved.
So far, the evaluation of the programP1 has to be
decoupled from the evaluation ofP2 using an in-
termediate step which collects the desired conse-
quences ofP1 and provides them as input toP2. In
this work, we present a novel method for represent-
ing such a procedure within asingleprogram, and
thus within the realm of ASP itself. Our technique
relies on rewritingP1 into a so-calledmanifold pro-
gram, which allows for accessing all desired conse-
quences ofP1 within a single answer set. Then, this
manifold program can be evaluated jointly withP2

avoiding any intermediate computation step. For
determining the consequences within the manifold
program we useweak constraints, which is strongly
motivated by complexity considerations. As an ap-
plication, we present an encoding for computing
the ideal extension of an abstract argumentation
framework.

1 Introduction
In the last decade,Answer Set Programming(ASP) [Marek
and Truszczýnski, 1999; Niemel̈a, 1999], also known as
A-Prolog [Baral, 2002; Gelfond, 2002], has emerged as a
declarative programming paradigm which combines tech-
niques stemming from databases, logic programming and
non-monotonic reasoning. ASP is well suited for modelling
and solving problems which involve common sense reason-
ing, and has been fruitfully applied to a wide variety of ap-

∗This work was supported by the Vienna Science and Technol-
ogy Fund (WWTF) under grant ICT08-028 and by M.I.U.R. within
the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche
di ottimizzazione.”.

plications including diagnosis, data integration, configura-
tion, and many others. Moreover, the efficiency of the latest
tools for processing ASP programs (so-called ASP solvers)
reached a state that makes them applicable for problems of
practical importance[Gebseret al., 2007].

The basic idea of ASP is to obtain solutions to a problem
as the answer sets (usually stable models) of a logic program,
which consists of rules and constraints that define necessary
and sufficient properties of the solutions. The program is then
input into an ASP solver, which computes the answer set(s)
of the program, from which the solutions of the problem can
be read.

However, frequently one is interested less in the solutions
per se, but rather in reasoning tasks that have to take some
or even all solutions into account. As an example, consider
the problem of database repair, in which a given database in-
stance does not satisfy some of the constraints imposed in
the database. One can attempt to modify the data in order to
obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can be en-
coded conveniently using ASP (see, e.g.,[Bravo and Bertossi,
2003]). However, usually one is not interested in the repairs
themselves, but in the data which is present inall repairs. For
the ASP encoding, this means that one is interested in the ele-
ments which occur in all answer sets; these are also known as
cautious consequences. Indeed, ASP systems provide special
interfaces for computing cautious consequences by means of
query answering. But sometimes one has to do more, such as
answering a complex query over the cautious consequences
or simply counting them. So far, ASP solvers provide no sup-
port for such tasks, which therefore have to be done outside
ASP systems, which hampers usability and limits the poten-
tial of ASP.

In this work, we tackle this limitation by providing a tech-
nique, which transforms an ASP programP into amanifold
programMP which we use to identify all consequences of
a certain type1 within a singleanswer set. The main advan-
tage of the manifold approach is that the resulting program
can be extended by additional rules representing a query over
the brave (or cautious, definite) consequences of the original
programP , thereby using ASP itself for this additional rea-
soning. In order to identify the consequences, we useweak
constraints[Buccafurriet al., 2000], which are supported by
the ASP-solver DLV[Leoneet al., 2006]. Weak constraints
have been introduced to prefer a certain subset of answer sets

1We consider here the aforementioned concepts of brave and
cautious consequence, and definite consequence[Sacc̀a, 1996].
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via penalization. Their use for computing consequences is
justified by a complexity-theoretic argument: One can show
that computing consequences is complete for the complex-

ity classesFPNP
|| or FP

ΣP

2

|| (depending on the presence of
disjunction), for which also computing answer sets for pro-
grams with weak constraints is complete2, which means that
an equivalent compact ASP program without these extra con-
structs most likely does not exist. In principle, other prefer-
ential constructs similar to weak constraints could be used as
well for our purposes, as long as they meet these complexity
requirements.

We discuss two particular applications of the manifold ap-
proach. First, we specify an encoding which decides the SAT-
relatedunique minimal model problem, which is closely re-
lated to closed-world reasoning[Reiter, 1978]. The second
problem stems from the area of argumentation (cf.[Bench-
Capon and Dunne, 2007] for an overview) and concerns the
computation of the ideal extension[Dunget al., 2007] of an
argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all
models of a CNF-formula for the former application, comput-
ing all admissible extensions of an argumentation framework
for the latter) in order to compute consequences. Extensions
by a few more rules then directly provide the desired solu-
tions, requiring little effort in total.

Organization and Main Results.After introducing the nec-
essary background in the next section, we

• introduce in Section 3 the concept of a manifold program
for rewriting propositional programs in such a way that
all brave (resp. cautious, definite) consequences of the
original program are collected into a single answer set;

• lift the results to the non-ground case (Section 4); and

• present applications for our technique in Section 5. In
particular, we provide an ASP encoding for computing
the ideal extension of an argumentation framework.

The paper concludes with a brief discussion of related and
further work.

2 Preliminaries
In this section, we review the basic syntax and semantics of
ASP with weak constraints, following[Leoneet al., 2006], to
which we refer for a more detailed definition.

An atomis an expressionp(t1, . . .,tn), wherep is apredi-
cateof arity α(p) = n ≥ 0 and eachti is either a variable or
a constant. Aliteral is either an atoma or its negationnot a.
A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

2The first of these results is fairly easy to see, for the second,
Buccafurriet al. [2000] have shown that the related decision prob-
lem is complete for the classΘP

2 or Θ
P

3 , from which theFP
NP

||

andFP
Σ

P

2

|| results can be obtained. Also note that frequently cited

NP, Σ
P

2 , and co-NP,ΠP

2 completeness results hold for brave and
cautious query answering, respectively, but not for computing brave
and cautious consequences.

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where
a1, . . . , an, b1, . . . , bm are atoms.

Theheadof r is the setH(r) = {a1, . . . , an}, and thebody
of r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Further-
more,B+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}.
We will sometimes denote a ruler asH(r) :-B(r).

A weak constraint[Buccafurriet al., 2000] is an expression
wc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where m ≥ k ≥ 0 and b1, . . . , bm are literals, while
weight(wc) = w (the weight) and l (the level) are positive
integer constants or variables. For convenience,w and/orl
may be omitted and are set to 1 in this case. The setsB(wc),
B+(wc), andB−(wc) are defined as for rules. We will some-
times denote a weak constraintwc as:∼ B(wc).

A programP is a finite set of rules and weak constraints.
Rules(P ) denotes the set of rules andWC(P ) the set of
weak constraints inP . wP

max andlPmax denote the maximum
weight and maximum level overWC(P ), respectively. A
program (rule, atom) ispropositionalor groundif it does not
contain variables. A program is calledstrongif WC(P ) = ∅,
andweakotherwise.

For any programP , let UP be the set of all constants ap-
pearing inP (if no constant appears inP , an arbitrary con-
stant is added toUP ); let BP be the set of all ground literals
constructible from the predicate symbols appearing inP and
the constants ofUP ; and letGround(P ) be the set of rules
and weak constraints obtained by applying, to each rule and
weak constraintr ∈ P , all possible substitutions from the
variables inP to elements ofUP . UP is usually called the
Herbrand Universeof P andBP theHerbrand Baseof P .

A ground ruler is satisfiedby a setI of ground atoms iff
H(r) ∩ I 6= ∅ wheneverB+(r) ⊆ I andB−(r) ∩ I = ∅.
I satisfies a ground programP , if each r ∈ P is satis-
fied by I. For non-groundP , I satisfiesP iff I satisfies
Rules(Ground(P )). A ground weak constraintwc is vio-
lated by I, iff B+(wc) ⊆ I and B−(wc) ∩ I = ∅; it is
satisfied otherwise.

Following [Gelfond and Lifschitz, 1991], a setI ⊆ BP

of atoms is ananswer setfor a strong programP with
WC(P ) = ∅ iff it is a subset-minimal set that satisfies the
reduct

P I = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Ground(P )}.

A set of atomsI ⊆ BP is ananswer setfor a weak pro-
gramP with WC(P ) 6= ∅ iff I is an answer set ofRules(P )
andHGround(P )(I) is minimal among all the answer sets of
Rules(P ), where the penalization functionHP (I) for weak
constraint violation of a ground programP is defined as fol-
lows:

HP (I) =
∑lP

max

i=1

(
fP (i) ·

∑
w∈NP

i
(I) weight(w)

)

fP (1) = 1, and
fP (n) = fP (n − 1) · |WC(P )| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of weak constraints ofP in level

i violated byI. For any programP , we denote the set of
its answer sets byAS(P ). In this paper, we use only weak
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constraints with weight and level 1, for whichHGround(P )(I)
amounts to the number of weak constraints violated inI.

A ground atoma is a brave (sometimes also called cred-
ulous or possible) consequence of a programP , denoted
P |=b a, if a ∈ A holds for at least oneA ∈ AS(P ). A
ground atoma is acautious(sometimes also called skeptical
or certain) consequence of a programP , denotedP |=c a, if
a ∈ A holds for allA ∈ AS(P ). A ground atoma is adefinite
consequence[Sacc̀a, 1996] of a programP , denotedP |=d a,
if AS(P ) 6= ∅ anda ∈ A holds for allA ∈ AS(P ). The sets
of all brave, cautious, definite consequences of a programP
are denoted asBC(P ), CC(P ), DC(P ), respectively.

3 Propositional Manifold Programs
In this section, we present a translation which essentially cre-
ates a copy of a given strong propositional program for each
of (resp. for a subset of) its atoms. Thus, we require several
copies of the alphabet used by the given program.

Definition 3.1 Given a setI of literals, a collectionI of sets
of literals, and an atoma, defineIa = {pa | atomp ∈ I} ∪
{not pa | not p ∈ I} andIa = {Ia | I ∈ I}.

The actual transformation to a manifold is given in the next
definition. We copy a given programP for each atoma in a
given setS, whereby the transformation guarantees the exis-
tence of an answer set by enabling the copies conditionally.

Definition 3.2 For a strong propositional programP and a
setS ⊆ BP , define itsmanifoldas

P tr
S =

⋃

r∈P

rtr
S ∪ {c :- not i ; i :- not c}

where

rtr
S = {H(r)a :- {c} ∪ B(r)a | a ∈ S}

and without loss of generalityBP ∩BP tr

S

= ∅, so all symbols
in P tr

S are assumed to be fresh.

Example 3.3 ConsiderΦ = {p∨ q :- ; r :- p ; r :- q} for
which AS(Φ) = {{p, r}, {q, r}}, BC(Φ) = {p, q, r} and
CC(Φ) = DC(Φ) = {r}. When forming the manifold for
BΦ = {p, q, r}, we obtain

Φtr
BΦ

=






pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp

pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq

pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

c :- not i ; i :-not c






Note that given a strong programP and setS ⊆ BP , the
construction ofP tr

S can be done in polynomial time (w.r.t.
the size ofP ). The answer sets of the transformed program
consist of all combinations (of size|S|) of answer sets of the
original program (augmented byc) plus the special answer
set{i} which we shall use to indicate inconsistency ofP .

Proposition 3.4 For a strong propositional programP and
a setS ⊆ BP , AS(P tr

S ) = A ∪ {{i}}, where

A = {

|S|⋃

i=1

Ai ∪ {c} | 〈A1, . . . , A|S|〉 ∈
∏

a∈S

AS(P )a}.

Note that
∏

denotes the Cartesian product in Proposi-
tion 3.4.

Example 3.5 For Φ of Example 3.3, we obtain that
AS(Φtr

BΦ
) consists of{i} plus

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, pq, rq, pr, rr},
{c, pp, rp, qq, rq, pr, rr}, {c, pp, rp, pq, rq, qr, rr},
{c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

The underlined parts are used to highlight the copies of the
original answer sets{q, r} compared to the copies of the
other original answer sets{p, r}.

Using this transformation, each answer set encodes an as-
sociation of an atom with some answer set of the original pro-
gram. If an atoma is a brave consequence of the original
program, then a witnessing answer set exists, which contains
the atomaa. The idea is now to prefer those atom-answer
set associations where the answer set is a witness. We do
this by means of weak constraints and penalize each asso-
ciation where the atom is not in the associated answer set,
that is, whereaa is not in the answer set of the transformed
program. Doing this for each atom means that an optimal an-
swer set will not containaa only if there is no answer set of
the original program that containsa, so eachaa contained in
an optimal answer set is a brave consequence of the original
program.

Definition 3.6 Given a strong propositional programP and
a setS ⊆ BP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special
answer set{i}, while in the answer set{c} (which occurs if
the original program has an empty answer set) all but:∼ i are
violated. The following result would also hold without:∼ i
being included.

Proposition 3.7 Given a strong propositional programP
and a setS ⊆ BP , we have, for anyA ∈ AS(P bc

S ),
{a | aa ∈ A} = BC(P ) ∩ S.

Example 3.8 For the programΦ as given Example 3.3,Φbc
BΦ

is given by

Φtr
BΦ

∪ {:∼ not pp ; :∼ not qq ; :∼ not rr ; :∼ i}.

We obtain thatAS(Φbc
BΦ

) = {A1, A2}, where

A1 = {c, pp, rp, qq, rq, pr, rr};

A2 = {c, pp, rp, qq, rq, qr, rr},

as these two answer sets are the only ones that violate no
weak constraint. We can observe that{a | aa ∈ A1} = {a |
aa ∈ A2} = {p, q, r} = BC(Φ).

Concerning cautious consequences, we first observe that if
a program is inconsistent (in the sense that it does not have
any answer set), each atom is a cautious consequence. But if
P is inconsistent, thenP tr

S will have only{i} as an answer
set, so we will need to find a suitable modification in order to
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deal with this in the correct way. In fact, we can use a sim-
ilar approach as for brave consequences, but penalize those
associations where an atom is contained in its associated an-
swer set. Any optimal answer set will thus containaa for an
atom only ifa is contained in each answer set. If an answer
set containingi exists, it is augmented by all atomsaa, which
also causes all weak constraints to be violated.

Definition 3.9 Given a strong propositional programP and
a setS ⊆ BP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

As for P bc
S , the following result also holds without includ-

ing :∼ i.

Proposition 3.10 Given a strong propositional programP
and a setS ⊆ BP , we have, for anyA ∈ AS(P cc

S ),
{a | aa ∈ A} = CC(P ) ∩ S.

Example 3.11 Recall programΦ from Example 3.3. We have

Φcc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼ qq ; :∼ rr ;

pp :- i ; qq :- i ; rr :- i ; :∼ i}.

We obtain thatAS(Φcc
BΦ

) = {A3, A4}, where

A3 = {c, qp, rp, pq, rq, pr, rr};

A4 = {c, qp, rp, pq, rq, qr, rr},

as these two answer sets are the only ones that violate only
one weak constraint, namely:∼ rr. We observe that{a |
aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

We next consider the notion of definite consequences. Dif-
ferent to cautious consequences, we do not add the annotated
atoms to the answer set containingi. However, this answer set
should never be among the optimal ones unless it is the only
one. Therefore we inflate it by new atomsia, all of which
incur a penalty, as doesi itself. This guarantees that this an-
swer set will incur a higher penalty (|BP |+ 1) than any other
(≤ |BP |).

Definition 3.12 Given a strong propositional programP and
a setS ⊆ BP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Proposition 3.13 Given a strong propositional programP
and a setS ⊆ BP , we have, for anyA ∈ AS(P dc

S ),
{a | aa ∈ A} = DC(P ) ∩ S.

Example 3.14 Recall programΦ from Example 3.3. We have

Φdc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼ qq ; :∼ rr ;

ip :- i ; iq :- i ; ir :- i

:∼ ip ; :∼ iq ; :∼ ir ; :∼ i}.

We obtain thatAS(Φdc
BΦ

) = {A3, A4}, where as in Exam-
ple 3.11

A3 = {c, qp, rp, pq, rq, pr, rr};

A4 = {c, qp, rp, pq, rq, qr, rr},

as these two answer sets are the only ones that violate only
one weak constraint, namely:∼ rr. We observe that{a |
aa ∈ A3} = {a | aa ∈ A4} = {r} = DC(Φ).

Obviously, one can compute all brave, cautious, or defi-
nite consequences of a program by choosingS = BP . We
also note that the programs from Definitions 3.6, 3.9 and 3.12
yield multiple answer sets. However each of these yields the
same atomsaa, so it is sufficient to compute one of these. The
programs could be extended in order to admit only one an-
swer set by suitably penalizing all atomsab (a 6= b). To avoid
interference with the weak constraints already used, these ad-
ditional weak constraints would have to pertain to a different
level.

4 Non-Ground Manifold Programs
We will now generalize the techniques introduced in Sec-
tion 3 to non-ground strong programs. In principle, one
could annotate each predicate (rather than atom as in
Section 3) with ground atoms of a subset of the Her-
brand Base. However, one can also move the annota-
tions to the non-ground level: For example, instead of
annotating a rulep(X,Y ) :- q(X,Y ) by a set of ground
atoms{r(a), r(b)} to yield pr(a)(X,Y ) :- qr(a)(X,Y ) and
pr(b)(X,Y ) :- qr(b)(X,Y ) we will annotate using only the
predicater and extend the arguments ofp, yielding the com-
pact ruledr

p(X,Y, Z) :- dr
q(X,Y, Z) (we use predicate sym-

bolsdr
p anddr

q rather thanpr andqr just for pointing out the
difference between annotation by predicates versus annota-
tion by ground atoms). In this particular example we have
assumed that the program is to be annotated by all ground
instances ofr(Z); we will use this assumption also in the
following for simplifying the presentation. In practice, one
can clearly add atoms to the rule body for restricting the in-
stances of the predicate by which we annotate, in the example
this would yieldpr(X,Y, Z) :- qr(X,Y, Z), dom(Z) where
the predicatedom should be defined appropriately. In the
following definition, recall thatα(p) denotes the arity of a
predicatep.

Definition 4.1 Given an atoma = p(t1, . . . , tn) and a
predicateq, let atr

q be dq
p(t1, . . . , tn, X1, . . . , Xα(q)) where

X1, . . . , Xα(q) are fresh variables anddq
p is a new predicate

symbol withα(dq
p) = α(p) + α(q).

Furthermore, given a setL of literals, and a predicateq,
letLtr

q be{atr
q | atoma ∈ L} ∪ {not atr

q | not a ∈ L}.

Note that we assume that even though the variables
X1, . . . , Xα(q) are fresh, they will be the same for eachatr

q .
One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection of
defining rules, from which we refrain here for the ease of
presentation. We define the manifold program in analogy to
Definition 3.2, the only difference being the different way of
annotating.

Definition 4.2 Given a strong programP and a setS of
predicates, define itsmanifoldas

P tr
S =

⋃

r∈P

rtr
S ∪ {c :- not i ; i :- not c}

where

rtr
S = {H(r)tr

q :- {c} ∪ B(r)tr
q | q ∈ S}

and w.l.o.g.BP ∩ BP tr

S

= ∅.
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Example 4.3 Consider

Ψ = {p(X) ∨ q(X) :- r(X) ; r(a) :- ; r(b) :- }

for which

AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)},

{q(a), p(b), r(a), r(b)}, {q(a), q(b), r(a), r(b)}}

BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)} andCC(Ψ) =
DC(Ψ) = {r(a), r(b)}. When forming the manifold forS =
{p}, we obtain

Ψtr
S =






dp
p(X,X1) ∨ dp

q(X,X1) :-dp
r(X,X1)

dp
r(a,X1) :- ; dp

r(b,X1) :-
c :- not i ; i :-not c






AS(Ψtr
S ) consists of{i} plus 16 answer sets, corresponding

to all combinations of the 4 answer sets inAS(Ψ).

Now we can generalize the encodings for brave, cau-
tious, and definite consequences. These definitions are
direct extensions of Definitions 3.6, 3.9, and 3.12, the
differences are only due to the non-ground annotations.
In particular, the diagonalization atomsaa should now be
written as dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) which rep-
resent the set of ground instances ofp(X1, . . . , Xα(p)),
each annotated by itself. So a weak constraint
:∼ dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to
{:∼ dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U}
whereU is the Herbrand base of the program in question, that
is one weak constraint for each ground instance annotated by
itself.

Definition 4.4 Given a strong programP and a setS of
predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}

P cc
S = P tr

S ∪ {:∼ ∆q; ∆q :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ ∆q; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where∆q = dq
q(X1, . . . , Xα(q), X1, . . . , Xα(q)) and Iq =

iq(X1, . . . , Xα(q)).

Proposition 4.5 Given a strong programP and a setS of
predicates, for an arbitraryA ∈ AS(P bc

S ), (resp., A ∈
AS(P cc

S ), A ∈ AS(P dc
S )), the set

{p(c1, . . . , cα(p)) | dp
p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A}

is the set of brave (resp., cautious, definite) consequences of
P with a predicate inS.

Example 4.6 Consider againΨ and S = {p} from Exam-
ple 4.3. We obtain

Ψbc
S = Ψtr

S ∪ {:∼ not dp
p(X1, X1) ; :∼ i}

and we can check that

AS(Ψbc
S ) = {R ∪ {dp

p(a, a),dp
p(b, b),d

p
q(a, b),dp

q(b, a)},

R ∪ {dp
p(a, a),dp

p(b, b),d
p
p(a, b),dp

q(b, a)},

R ∪ {dp
p(a, a),dp

p(b, b),d
p
q(a, b),dp

p(b, a)},

R ∪ {dp
p(a, a),dp

p(b, b),d
p
p(b, a),dp

p(b, a)}}

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For each
A of these answer sets we obtain

{p(t) | dp
p(t, t) ∈ A} = {p(a), p(b)}

which corresponds exactly to the brave consequences ofΨ
with a predicate ofS = {p}.

For cautious consequences,

Ψcc
S = Ψtr

S ∪ {:∼ dp
p(X1, X1) ;

dp
p(X1, X1) :- i ; :∼ i}

and we can check that

AS(Ψcc
S ) = {R ∪ {dp

q(a, a),dp
q(b, b),d

p
q(a, b),dp

q(b, a)},

R ∪ {dp
q(a, a),dp

q(b, b),d
p
p(a, b),dp

q(b, a)},

R ∪ {dp
q(a, a),dp

q(b, b),d
p
q(a, b),dp

p(b, a)},

R ∪ {dp
q(a, a),dp

q(b, b),d
p
p(b, a),dp

p(b, a)}}

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For each
A of these answer sets we obtain

{p(t) | dp
p(t, t) ∈ A} = ∅

and indeed there are no cautious consequences ofΨ with a
predicate ofS = {p}.

Finally, for definite consequences,

Ψdc
S = Ψtr

S ∪ {:∼ dp
p(X1, X1) ; ip(X1) :- i ;

:∼ ip(X1) ; :∼ i}

It is easy to see thatAS(Ψdc
S ) = AS(Ψcc

S ) and so

{p(t) | dp
p(t, t) ∈ A} = ∅

for each answer setA of Ψdc
S , and indeed there is also no

definite consequence ofΨ with a predicate ofS = {p}.

These definitions exploit the fact that the semantics of non-
ground programs is defined via their grounding with respect
to their Herbrand Universe. So the fresh variables introduced
in the manifold will give rise to one copy of a rule for each
ground atom in question.

In practice, ASP systems usually require rules to be safe,
that is, that each variable occurs (also) in the positive body.
The manifold for a set of predicates may therefore contain un-
safe rules (because of the fresh variables). But this can be re-
paired by adding adomain atomdomq(X1, . . . , Xm) to a rule
which is to be annotated withq. This predicate can in turn be
defined by a ruledomq(X1, . . . , Xm) :-u(X1), . . . , u(Xm)
whereu is defined using{u(c) | c ∈ UP }. One can also pro-
vide smarter definitions fordomq by using a relaxation of the
definition forq.

We also observe that ground atoms that are contained in
all answer sets of a program need not be annotated in the
manifold. Note that these are essentially the cautious conse-
quences of a program and therefore determining all of those
before rewriting does not make sense. But for some atoms
this property can be determined only by the structure of the
program. For instance, facts will be in all answer sets. In the
sequel we will not annotate extensional atoms (those defined
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only by facts) in order to obtain more concise programs. One
could also go further and omit the annotation of atoms which
are defined using stratified programs.

As an example, we present an ASP encoding for boolean
satisfiability and then create its manifold program for resolv-
ing the following problem: Given a propositional formula in
CNFϕ, compute all atoms which are true in all models ofϕ.
We provide a fixed program which takes a representation ofϕ
as facts as input. To apply our method we first require a pro-
gram whose answer sets are in a one-to-one correspondence
to the models ofϕ. To start with, we fix the representation of
CNFs. Letϕ (over atomsA) be of the form

∧n
i=1 ci. Then,

Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪

{pos(a, i) | atoma occurs positively inci} ∪

{neg(a, i) | atoma occurs negatively inci}.

We construct programSAT as set of the following rules

true(X) :- not false(X), at(X)

false(X) :- not true(X), at(X)

ok(C) :- true(X),pos(C,X)

ok(C) :- false(X),neg(C,X)

:- not ok(C), cl(C).

It can be checked that the answer sets ofSAT ∪ Dϕ are in a
one-to-one correspondence to the models (overA) of ϕ. In
particular, for any modelI ⊆ A of ϕ there exists an answer
setM of SAT ∪ Dϕ such thatI = {a | true(a) ∈ M}.
We now considerSATcc

{true} which consists of the following
rules.

c :- not i

i :- not c

dtrue
true(X,Y ) :- c,not dtrue

false(X,Y ), at(X)

dtrue
false(X,Y ) :- c,not dtrue

true(X,Y ), at(X)

dtrue
ok (C, Y ) :- c,dtrue

true(X,Y ),pos(C,X)

dtrue
ok (C, Y ) :- c,dtrue

false(X,Y ),neg(C,X)

:- c,not dtrue
ok (C, Y ), cl(C)

:∼ dtrue
true(X,X)

dtrue
true(X,X) :- i

:∼ i

Given Proposition 4.5, it is easy to see that, given some
answer setA of SATcc

{true} ∪ Dϕ, {a | dtrue
true(a, a) ∈ A} is

precisely the set of atoms which are true in all models ofϕ.

5 Applications

In this section, we put our technique to work and show how
to use meta-reasoning over answer sets for two application
scenarios. The first one is a well-known problem from propo-
sitional logic, and we will reuse the example from above. The
second example takes a bit more background, but presents a
novel method to compute ideal extensions for argumentation
frameworks.

5.1 The Unique Minimal Model Problem
As a first example, we show how to encode the problem of de-
ciding whether a given propositional formulaϕ has a unique
minimal model. This problem is known to be inΘP

2 and to be
co-NP-hard (the exact complexity is an open problem). The
following relation is quite obvious. LetI be the intersection
of all models ofϕ. Thenϕ has a unique minimal model iffI
is also a model ofϕ. We thus use our example from the pre-
vious section, and defineUNIQUE asSATcc

{true} augmented
by the following rules:

ok(C) :- dtrue
true(X,X),pos(C,X)

ok(C) :- not dtrue
true(X,X),neg(C,X)

:- not ok(C), cl(C)

We immediately obtain the following result

Theorem 5.1 For any CNF formulaϕ, it holds thatϕ has a
unique minimal model, if and only if programUNIQUE∪Dϕ

has at least one answer set.

A slight adaption of this encoding allows us to formalize
CWA-reasoning[Reiter, 1978] over a propositional knowl-
edge baseϕ, since the atomsa in ϕ, for which the corre-
sponding atomsdtrue

true(a, a) are not contained in an answer
set ofSATcc

{true} ∪ Dϕ, are exactly those which are added
negated toϕ for CWA-reasoning.

5.2 Computing the Ideal Extension
Our second example is from the area of argumentation, where
the problem of computing the ideal extension[Dung et al.,
2007] of an abstract argumentation framework was recently
shown to be complete forFPNP

|| by Dunne[2008]. Thus,
this task cannot be compactly encoded via normal programs
(under usual complexity theoretic assumptions). On the other
hand, the complexity shows that employing disjunction is not
necessary, if one instead uses weak constraints.

We first give the basic definitions for argumentation frame-
works following Dung[1995].

Definition 5.2 An argumentation framework (AF)is a pair
F = (A,R) whereA ⊆ U is a set of arguments andR ⊆
A × A. (a, b) ∈ R means thata attacksb. An argument
a ∈ A is defendedby S ⊆ A (in F ) if, for eachb ∈ A such
that (b, a) ∈ R, there exists ac ∈ S, such that(c, b) ∈ R.
An argumenta is admissible (inF ) w.r.t. a setS ⊆ A if each
b ∈ A which attacksa is defended byS.

Semantics for argumentation frameworks are given in
terms of so-called extensions. The next definitions introduces
two such notions which also underly the concept of an ideal
extension.

Definition 5.3 Let F = (A,R) be an AF. A setS ⊆ A is
said to beconflict-free (inF ), if there are noa, b ∈ S, such
that (a, b) ∈ R. A setS is an admissible extensionof F , if
S is conflict-free inF and eacha ∈ S is admissible inF
w.r.t.S. The collection of admissible extensions is denoted by
adm(F ). An admissible extensionS of F is a preferred ex-
tensionof F , if for eachT ∈ adm(F ), S 6⊂ T . The collection
of preferred extensions ofF is denoted bypref (F ).
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The original definition of ideal extensions is as fol-
lows[Dunget al., 2007].

Definition 5.4 LetF be an AF. A setS is calledideal for F ,
if S ∈ adm(F ) and S ⊆

⋂
T∈pref (F ) T . A maximal (w.r.t.

set-inclusion) ideal set ofF is called anideal extensionof F .

It was shown that for each AFF , a unique ideal exten-
sion exists. Dunne[2008] gave the following algorithm to
compute the ideal extension of an AFF = (A,R). Let
X−

F = A \
⋃

S∈adm(F ) S and X+
F = {a ∈ A | ∀b, c :

(b, a), (a, c) ∈ R ⇒ b, c ∈ X−
F } \ X−

F , and define an AF

F ∗ = (X+
F ∪ X−

F , R∗), where

R∗ = R ∩ {(a, b), (b, a) | a ∈ X+
F , b ∈ X−

F }.

F ∗ is a bipartite AF in the sense thatR∗ is a bipartite graph.

Proposition 5.5 The ideal extension of an AFF is given by⋃
S∈adm(F∗)(S ∩ X+

F ).

The set of all admissible atoms for a bipartite AFF can be
computed in polynomial time using Algorithm 1 of[Dunne,
2007]. This is basically a fixpoint iteration identifying argu-
ments inX+

F that cannot be in an admissible extension: First,
arguments inX0 = X+

F are excluded, which are attacked by
unattacked arguments (which are necessarily inX−

F ), yield-
ing X1. Now, arguments inX−

F may be unattacked byX1,
and all arguments inX1 attacked by such newly unattacked
arguments should be excluded. This process is iterated until
either no arguments are left or no more argument can be ex-
cluded. There may be at most|X+

F | iterations in this process.
We exploit this technique to formulate an ASP-encoding

IDEAL. We first report a program the answer sets of which
characterize admissible extensions. Then, we use the brave
manifold of this program in order to determine all arguments
contained in some admissible extension. Finally, we extend
this manifold program in order to identifyF ∗ and to simulate
Algorithm 1 of [Dunne, 2007].

The argumentation frameworks will be given toIDEAL as
sets of input facts. Given an AFF = (A,R), let

DF = {a(x) | x ∈ A} ∪ {r(x, y) | (x, y) ∈ R}.

ProgramADM, given by the rules below, computes admis-
sible extensions (cf.[Osorioet al., 2005; Eglyet al., 2008]):

in(X) :- not out(X), a(X)

out(X) :- not in(X), a(X)

:- in(X), in(Y ), r(X,Y )

def(X) :- in(Y ), r(Y,X)

:- in(X), r(Y,X),not def(Y )

Indeed one can show that, given an AFF the answer sets
of ADM ∪ DF are in a one-to-one correspondence to the ad-
missible extensions ofF via the in(·) predicate. In order
to determine the brave consequences ofADM for predicate
in, we formADMbc

{in}, and extend it by collecting all brave
consequences ofADM ∪ DF (for a given AFF = (A,R))
in predicatein(·), from which we can determineX−

F (repre-
sented byin−(·)), X+

F (represented byin+(·), using auxiliary
predicatenot in+(·)), andR∗ (represented byq(·, ·)).

in(X) :- din
in(X,X)

in−(X) :- a(X),not in(X)

not in+(X) :- in(Y ), r(X,Y )

not in+(X) :- in(Y ), r(Y,X)

in+(X) :- in(X),not not in+(X)

q(X,Y ) :- r(X,Y ), in+(X), in−(Y )

q(X,Y ) :- r(X,Y ), in−(X), in+(Y )

In order to simulate Algorithm 1 of[Dunne, 2007], we use
the elements inX+

F for marking the iteration steps. To this
end, we use an arbitrary order< on ASP constants (all ASP
systems provide such a predefined order) and define succes-
sor, infimum and supremum among the constants represent-
ing X+

F w.r.t. the order<.

nsucc(X,Z) :- in+(X), in+(Y ), in+(Z), X<Y, Y <Z

succ(X,Y ) :- in+(X), in+(Y ), X<Y,not nsucc(X,Y )

ninf(Y ) :- in+(X), in+(Y ), X<Y

inf(X) :- in+(X),not ninf(X)

nsup(X) :- in+(X), in+(Y ), X<Y

sup(X) :- in+(X),not nsup(X)

We now use this to iteratively determine arguments that are
not in the ideal extension, usingnideal(·, ·), where the first ar-
gument is the iteration step. In the first iteration (identified by
the infimum) all arguments inX+

F which are attacked by an
unattacked argument are collected. In subsequent iterations,
all arguments from the previous steps are included and aug-
mented by arguments that are attacked by an argument not at-
tacked by arguments inX+

F that were not yet excluded in the
previous iteration. Finally, arguments in the ideal extension
are those that are not excluded fromX+

F in the final iteration
(identified by the supremum).

att0(X) :- q(Y ,X)

nideal(I,Y ) :- inf(I), q(Z,Y ), in+(Y ),not att0(Z)

nideal(I,Y ) :- succ(J,I),nideal(J,Y )

nideal(I,Y ) :- succ(J,I), q(Z,Y ), in+(Y ),not atti(J,Z)

atti(J,Z) :- q(Y ,Z), in+(Y ),not nideal(J,Y ), in+(J)

ideal(X) :- in+(X), sup(I),not nideal(I,X)

If we put ADMbc
{in} and all of these additional rules to-

gether to form the programIDEAL, we obtain the following
result:

Theorem 5.6 LetF be an AF andA ∈ AS(IDEAL ∪ DF ).
Then, the ideal extension ofF is given by{a | ideal(a) ∈ A}.

6 Conclusion
In this paper, we provided a novel method to rewrite ASP-
programs in such a way that reasoning over all answer sets of
the original program can be formulated within the same pro-
gram. Our method exploits the well-known concept of weak
constraints. We illustrated the impact of our method by en-
coding the problems of (i) deciding whether a propositional
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formula in CNF has a unique minimal model, and (ii) com-
puting the ideal extension of an argumentation framework.
Known complexity results witness that our encodings are ad-
equate in the sense that efficient ASP encodings without weak
constraints or similar constructs are assumed to be infeasible.

The manifold program for cautious consequences is also
closely related to the concept of data disjunctions[Eiter and
Veith, 2002] (this paper also contains a detailed discussion
about the complexity classΘP

2 and related classes for func-
tional problems). Related work has also been done in the
area of default logic, where Delgrande and Schaub[2002]
proposed a method for reasoning within a single extension.
Their method uses set-variables which characterize the set of
generating defaults of the original extensions. Thus, their ap-
proach differs considerably from ours as it encodes certain
aspects of the semantics (which ours does not), which puts it
closer to meta-programming (cf.[Eiteret al., 2003]).

Future work includes studying how alternative preferen-
tial constructs can be used in place of weak constraints for
obtaining manifold programs. Another issue is to general-
ize the presented methodology in such a way that different
manifold programs are combined within a single program.
Note that this would amount to an ASP programming lan-
guage which allows to call several oracles (which compute
brave/skeptical/definite consequences of different modules)
either in parallel or one after each other. We believe that (be-
sides a more careful renaming technique) such a generaliza-
tion is, in principle, rather straightforward. The main issue is
to devise a suitable extension of ASP syntax for denoting the
interfaces among different manifold programs in an intuitive
and succinct manner. A frontend would then compile such a
specification into a standard program with weak constraints.
Using such an advanced framework, we would like to employ
manifold programs for encoding various further problems in

complexity classesΘP
2 , ΘP

3 , FPNP
|| , andFP

ΣP

2

|| .
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Abstract
We present a qualitative approach to represent and
reason upon transport reactions in metabolic net-
works. Our approach is built on action descrip-
tion languages for representing the dynamics of
metabolic networks. To begin with, we introduce
the transport reaction language T that is a cus-
tomized sub-language of action language C. We
illustrate the modelling capacities by authentic bi-
ological examples. Moreover, we describe the sys-
tem architecture of our system and detail its current
major application.

1 Introduction
Molecular biology has seen a technological revolution with
the establishment of high-throughput methods over the last
years. This has resulted in a rapid growth of biological knowl-
edge, gathered in web databases such as KEGG[12], Biomod-
els [14], Reactome [11], or MetaCyc[5]. Although the diverse
biological networks are expressed in a computer-readable for-
mat, namely the System Biology Markup Language (SBML),
the encompassing knowledge bases do not provide any gen-
eral form of reasoning or query-answering.

We address this problem by proposing a reaction descrip-
tion language whose domain descriptions can be generated
from networks expressed in SBML. A particular feature of
our language is that it takes the location of molecules into ac-
count and thus allows for describing the transport of species
through compartments. To provide the aforementioned rea-
soning capacities in a well understood framework, we em-
bed our language into action language C. Apart from clear
semantic underpinnings, this approach allows us to benefit
from the high performance of modern Answer Set Program-
ming (ASP; [1]) systems via well known mappings of C into
ASP. We illustrate the modelling capacities of our language
by authentic biological examples. Moreover, we describe the
system architecture of our system and detail its current major
application.

2 Background
Action languages use fluents to describe the states of a dy-
namical system and actions influence the values of fluents. In

C, static laws describe properties between fluents that need to
be satisfied in every state of the system. Dynamic laws de-
scribe the effects of actions, that is, how the system evolves
when actions are executed.

More formally, we consider action language C [9] over a
Boolean action signature 〈B,F,A〉, where B is the set {f, t}
of truth values, F is a set of fluent names, and A is a set of
action names. In C, an action descriptionDC over a signature
〈B,F,A〉 consists of static and dynamic laws:

(caused ϕ if ψ) (1)
(caused ϕ if ψ after ω) (2)

where ϕ and ψ are propositional combinations of fluent
names and ω is a propositional combination of fluent and ac-
tion names. Every action description DC induces a unique
transition system TC(DC) = 〈S, V,R〉, where S is a set of
states, V is a function determining fluents values in state s,
andR is a relation containing all possible transitions between
states. A trajectory s0, A1, s1, . . . , sn−1, An, sn in a transi-
tion system 〈S, V,R〉 is a sequence of sets of actions Ai ⊆ A
and states si ∈ S where (si−1, Ai, si) ∈ R for 0 ≤ i ≤ n. In-
tuitively, a trajectory represents one possible history (or sim-
ply path) within a transition system.

In [9], several syntactic extensions are defined. For in-
stance, the rule (ω may cause ϕ if ψ) is a shorthand for
(caused ϕ if ϕ after ψ ∧ ω). Similarly, (inertial ϕ) is a
shorthand for (caused ϕ if ϕ after ϕ). We refer to [9] for
more detailed definitions.
C has an associated query language,Q [9], defined in terms

of axioms and queries. The semantics of a query language is
defined in terms of trajectories. The language Q defines two
types of propositions.
• A proposition of form (A occurs at ti) is satisfied by

a trajectory s0, A1, s1, . . . , sn−1, An, sn, if A ∈ Ai+1,
where A is an elementary action name and i < n.
• A proposition of form (F holds at ti) is satisfied by

a trajectory s0, A1, s1, . . . , sn−1, An, sn, if si |= F ,
where F a fluent name and i ≤ n.

An axiom is a proposition possibly preceded by ¬. A query is
a propositional combination of propositions. A query Q is a
consequence of a set Φ of axioms, written Φ |=T Q, if every
trajectory of a transition system T satisfying all axioms in Φ
also satisfies Q.
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3 Language T
A reaction is a process transforming some species, called re-
actants of the reaction, into some other species called prod-
ucts of the reaction. In our setting, a species is a molecule
associated with a compartment, indicating the presence of
the molecule in the compartment. Often reactions rely on
species, called enzymes of the reaction whose presence is
mandatory although they are not subject to any transforma-
tions. When a reaction deals with species in different com-
partments, the reaction is called a transport.

Language T . We begin with three disjoints nonempty sets
of symbols, viz. molecule names M , compartment names C,
and reaction names R.

Our language T for specifying biological transport net-
works consists of the following expressions:

m in c (3)
r consumes s1, . . . , sn (4)
r produces s1, . . . , sn (5)

r needs s1, . . . , sn (6)
r1 overtakes r2 (7)

A species is written as in (3) wherem ∈M is a molecule and
c ∈ C is a compartment name. In the remainder, r ∈ R is a
reaction name and si are species for 1 ≤ i ≤ n.

A consume proposition is an expression of form (4).
This means that reaction r needs the presence of reactants
s1, . . . , sn and consumes them during its process.

A produce proposition is an expression of form (5), mean-
ing that reaction r produces the species s1, . . . , sn.

A need proposition is an expression of form (6). This
means that reaction r requires the presence of enzymes
s1, . . . , sn without consuming them.

An overtake proposition is an expression of form (7),
meaning that reaction r1 takes priority over reaction r2.

Example 1 (Detoxification) Consider a simplistic
metabolic pathway dealing with a cell facing hydrogen
peroxide (H2O2) [16]. The oxidizing capacity of hydrogen
peroxide is so strong that the chemical is considered a highly
reactive oxygen species, corroding many materials, including
human skin as well as DNA, RNA, and proteins.

We distinguish two compartments, cytosol and outside,
and four molecules, viz. hydrogen peroxide H2O2 along with
the product of detoxification, viz. H2O, catalase1 (written
CAT ), and some critical resource (abstracted as the generic
molecule R − OOH). The presence of H2O2 implies some
response of the cell, depending on its state:

1. If catalase has been secreted and becomes available out-
side the cell, H2O2 is transformed in H2O extracellu-
larly.

2. If not, H2O2 enters the cell and if catalase is present,
H2O2 is transformed in H2O in the cytosol.

1Enzyme found in most plant and animal cells that functions as
an oxidative catalyst; decomposes hydrogen peroxide into oxygen
and water.

3. If H2O2 enters the cell and if catalase is not present,
then H2O2 reacts with R − OOH , which is then de-
graded into R−OH , and the cell dies.

This network contains two transport reactions. One to enter
the H2O2 in the cytosol (r1) and one to export the enzyme
(r2). In T , those two reactions are written as follows:

r1 consumes H2O2 in outside
r1 produces H2O2 in cytosol
r2 consumes CAT in cytosol
r2 produces CAT in outside

Our network contains also some reactions to transform
H2O2. Catalase is involved in two reactions transforming
H2O2; one outside the cell (r3) and another in the cytosol
(r4). Finally, there is a reaction transforming hydrogen per-
oxide into its inactive variant within the cytosol, but consum-
ing the critical resource (r5).

r3 consumes H2O2 in outside
r3 produces H2O in outside

r3 needs CAT in outside
r4 consumes H2O2 in cytosol
r4 produces H2O in cytosol

r4 needs CAT in cytosol
r5 consumes H2O2 in cytosol , R−OH in cytosol

r5 produces R−OOH in cytosol

Furthermore, this pathway contains one priority relation
between r4 and r5. Indeed, whenever catalase is present in
the cell, it transforms H2O2 into water before H2O2 can re-
act with R − OOH . Usually, this last reaction never occurs
because of the presence of catalase. However, in some cases,
catalase is not fast enough and the cell dies (generally the
concentration of H2O2 becomes too high).

In T , this relation is expressed as follows:

r4 overtakes r5

Example 2 (Glycolysis) Glycolysis is a metabolic pathway
converting glucose into pyruvate, while generating high en-
ergy compounds (ATP and NADH). In the early stage, glucose
is imported inside the cytosol. Then, a series of reactions
transform glucose into pyruvate molecules. Pyruvate is then
transformed into ethanol which can be transported outside
the cell. In the middle of the pathway, an intermediary com-
pound (dihydroxyacetone-phosphate) can be used and lead to
the formation of glycerol. This is detailed in Figure 1.

As the complete glycolysis pathway contains too many re-
actions, we focus on two reactions that allow for illustrating
two kind of reactions. The first reaction of this pathway is a
transport reaction which takes some glucose outside the cell
and imports it inside the cell. In T , this reaction is written as
follows:

r6 consumes glucose in outside
r6 produces glucose in cell
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Figure 1: Map of the glycolysis

Another reaction of interest is the transformation of 1,3-
Biphosphoglycerate into phosphoenolpyruvate because it
needs three enzymes. In T , this reaction is written as follows:

r7 consumes 1, 3−Biphosphoglycerate in cell,
ADP in cell

r7 produces phosphoenolpyruvate in cell,
ATP in cell

r7 needs 2.7.2.3 in cell,
5.4.2.1 in cell,
4.2.1.11 in cell

Translation into C. The meaning of a transport network
described in T is fixed through a translation into action lan-
guage C. Apart from providing a formal semantics, this al-
lows us to draw upon the greatly elaborated framework of C,
offering query and observation languages, extensions such as
additive fluents, needed for expressing resources, and finally
an efficient implementation through off-the-shelf C solvers.

To this end, we map a transport network NT in T over sig-
nature (M,C,R) into a (definite) action description T(NT )
in C over a Boolean signature (B,F,A), where B = {t, f},
A = R and F = {present(m, c) | (m, c) ∈M×C}∪{⊥}∪
{possible(r) | r ∈ R} where ⊥ is interpreted by f . In what
follows, we detail our translation T by giving the translation
of each expression in T into propositions of C .

For each reactant (m in c) occurring in a consume propo-
sition as in (4), we define one dynamic law.

caused ¬present(m, c) if ¬present(m, c) after r (8)

It expresses that the reactant may but must not be consumed.
For each product (m in c) in a product proposition of

form (5), we define a dynamic law expressing that the species
is produced by the reaction.

caused present(m, c) after r (9)

For each enzyme (ei in ci) in a need proposition in (6)
of each reaction, plus each reactant (rj in cj) in a con-
sume proposition as in (4) of the same reaction we define a
static law and a dynamic law to express that those species are
mandatory for the reaction.

possible(r) if
∧

i present(ei, ci)
∧

j present(rj , cj) (10)

caused ⊥ after r ∧ ¬possible(r) (11)

For each overtakes expression of the form (7), we define a
static law expressing that the less prior reaction cannot occur
alone when both reaction can occur.

caused ⊥ after r2 ∧ ¬ r1 ∧ possible(r1) (12)

Action query language QT We adapt and extend action
query language Q in order to use it with action language T
by defining a new axiom dealing with species instead of flu-
ents and another one providing confidence levels. As with
Q, the semantics of query language QT is given in terms of
trajectories.
QT is build from three types of propositions:

• A proposition of form

(m in c is present at ti) (13)

is satisfied by a trajectory s0, A1, s1, . . . , sn−1, An, sn

if present(m, c) ∈ si where (m in c) is a species and
i ≤ n.

• A proposition of form

(r occurs at ti) (14)

is satisfied by a trajectory s0, A1, s1, . . . , sn−1, An, sn

if r ∈ Ai+1 where r is a reaction name and i < n.

• A proposition of form

(r has confidence level l) (15)

where r is a reaction name and l is an integer. Every tra-
jectory satisfies this proposition. If no confidence level
is given for a reaction, we give it the highest among
all reactions. We denote by L(r) the confidence level
attributed to r. The confidence level of a trajectory
T = s0, A1, s1, . . . , sn−1, An, sn, written L(T ), is de-
fined as the minimal confidence level of the reaction in
T . In symbols:

L(T ) = min{L(r) | r ∈ Ai, 1 ≤ i ≤ n}
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An axiom is a proposition of form (13) or (14) possibly
preceded by ¬. A query is a propositional combination of
propositions of form (13) or (14).

Confidence propositions induce an order on trajectories via
the confidence, L(T ), associated with each trajectory, T , in a
given transition system. Given two trajectories T and T ′, we
say T ′ is more confident than T , written T ≤ T ′, if

L(T ) ≤ L(T ′)

A query Q is a confident consequence of a set Φ of axioms,
written Φ |=c

T Q, if every ≤-maximal trajectory of a transi-
tion system T satisfying all axioms in Φ also satisfies Q.

4 Toolbox
We have implemented our approach as a modular toolbox,
comprising the off-the-shelf ASP grounder gringo2 and ASP
solver clasp2 as reasoning engines.

The initial input of the system is a set of metabolic path-
way given in SBML (or directly in our language T ). SBML
files are usually downloaded from internet databases, like
Biomodels [14] or Reactome [11]. To begin with, a pathway
expressed in SBML is translated into our reaction language
T (using the libsbml library [4]). A pathway in T can then be
queried via query language QT . To this end, both the query
and the pathway are translated into logic programs and given
to the ASP grounder and solver, respectively. The resulting
answer sets represent maximal trajectories satisfying the ax-
ioms and the query.

For displaying trajectories, we developed a parser to trans-
late the answer sets into the language dot [7], providing an
easy and human readable way to specify graphs and be-
ing readable by various software packages. Among them,
we have chose rtgraph3d [3] to display trajectories in a 3-
dimensional view. When clicking on a state, the set of species
present in the state is displayed (as shown in Figure 2).

For the sake of readability, the states of the system are dis-
played as spheres and colored depending upon whether they
are initial (in red), final (in blue), both (in turquoise) or none
(in black). The transitions are displayed as links between
these spheres.

Finally, as our approach produces many trajectories which
can be equivalent from a biologist’s point of view, we more-
over provide the following additional features:

• minimize the set of species present in the initial state (in
order to remove species being irrelevant to the query);

• fix the maximum number of reactions in each transition
(to avoid displaying many equivalent paths);

• fix whether or not the reactant may disappear (instead of
the non-deterministic approach in (8));

• fix a set of relevant species to be shown in the answer
set; the trajectories are then projected onto this set of
relevant species, which provide a more abstract view.3

2http://potassco.sourceforge.net
3For the reader interested in ASP, we mention that this is

accomplished with clasp’s projective enumeration, invoked with
--project.

Figure 2: Detoxification pathway of Sinorhizobium Meliloti
1021.: Two initial situations (in red) can lead to the detoxifi-
cation of O−2 .

Example 3 (Detoxification of O−2 ) We now complete the
detoxification pathway given in Example 1 by taking the
whole detoxification pathway of a real bacteria, Sinorhizo-
bium Meliloti 1021 [16]. Instead of facing hydrogen per-
oxide, the cell faces superoxide (viz. O−2 ). Superoxide is so
toxic that intracellular levels above 1nM are lethal. This com-
pound is one of the main causes of oxidative stress.

To survive, the cell must have a superoxide dismutases
(SOD) to transform superoxide into hydrogen peroxide and
then some catalase (CAT) to transform hydrogen peroxide
into water and oxygen. This is the case with almost all aer-
obic organisms, and thus applies to Sinorhizobium Meliloti
1021 which has multiple isoforms of these enzymes.

In Figure 2, we give a screenshot of our toolbox for this
detoxification problem. We have taken the full detoxification
network given in OxyGen [16] and the confidence levels given
by OxyGen. The axioms specify that initially the superoxide
is present in the cell and no oxidant is present in the final
state (and the query is empty). Here, we show all maximal
trajectories (in term of confidence levels) and then minimize
the number of enzymes present initially.4 Furthermore, we
restrict the trajectories to contain only one reaction per tran-
sition.

Sinorhizobium Meliloti 1021 contains one SOD and two
isoforms of CAT that have been experimentally proved. In
fact, it contains further isoforms of these enzyme (but not ex-
perimentally proved) and other enzyme of less interest. Since
the proved enzyme are sufficient, we refrained from using the
other ones and thus obtain only two possibilities (as shown in
the figure).

In this example, the trajectories are of length 2. Also, we
have minimized the number of initial species. Figure 2 shows
two initial states (in red), one state per catalase. For each
initial state, there are two trajectories, one where the super-
oxide disappears after the first transition and the other where
it disappears after the second step.

Example 4 (Glycolysis) Next, we further elaborate on the
glycolysis pathway, already described in Example 2. Recall
that glycolysis takes glucose as input and after a first series
of reactions, glycolysis has the choice to produce glycerol or
not. Both cases result in the production of ethanol.

4This is done with #maximize and #minimize statements
provided by ASP systems.
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Figure 3: Glycolysis: The initial condition (where the glu-
cose is outside, in red) can lead to two distinct cases (where
glycerol is produced (left) or not (right)).

Figure 3 shows the output of our toolbox with this pathway.
The axioms specify that initially glucose is present outside the
cell along with each useful enzyme. The axioms also spec-
ify that ethanol is present outside the cell in the final state.
Again, the query is empty.

For the sake of clarity, we have restricted trajectories to
contain only one reaction per transition and every reactant
of a reaction disappears after the corresponding reaction oc-
curred. After a first series of reactions (in the bottom of Fig-
ure 3), the cell chooses to produce either only ethanol (in the
left part) or to produce both ethanol and glycerol.

5 Application
We have used our method for identifying biological exper-
iments in view of gathering new biological knowledge. As
the networks are often incomplete or contain automatically
generated reactions (which have not been proved), we aim at
finding easy experiments that can prove parts of the network.

For this, we have used the whole detoxification networks of
655 bacteria given in OxyGen [16]. In OxyGen, each reaction
(of each bacteria) is given a confidence level that expresses
the accuracy of the annotation of the enzyme. There are three
confidence levels in OxyGen:

• Enzymes that have been experimentally demonstrated,
that is, found by comparison with a database of experi-
mentally validated proteins (in this case, the confidence
level is 3);

• Enzymes without biological evidence but for which the
signature of the corresponding gene was found in the
genome (in this case, the confidence level is 2);

• Enzymes from disrupted regions, like frameshifts5 or
pseudogenes6 (in this case, the confidence level is 1).

5Two separate motifs of the same signature are found in two dif-
ferent frames of the same strand.

6One or two stops in frame.

Oxidant 3 2 1 0
O−2 4.7 % 86.5 % 0.3 % (2) 8.3 %

H2O2 12.8 % 84.8 % 0.1 % (1) 2.1 %
R−OOH 7.1 % 87.4 % 0 % 5.3 %
ONOOH 4.8 % 73.1 % 0.1 % (1) 21.8 %

NO 2.7 % 58.1 % 0 % 39.1 %

Table 1: For each oxidant, the bacteria are grouped by the
confidence level needed to detoxify the oxidant.

We have used our method to find reactions of confidence
level 1 which are mandatory to detoxify an arbitrary oxidant.
Indeed, there is not so much knowledge gained in proving re-
actions of confidence level 2 because they are likely to exist.
More interesting knowledge is obtained by asking whether
reactions of level 1 exist. However, for those reaction, there
often exist reactions of a higher confidence level that accom-
plish the same function. Proving them experimentally im-
plies to knock-out a gene for all those reaction, or inhibit
their effects and make the experiment more expensive. We
thus search for reactions of level 1 which are mandatory, that
is, there is no other reaction (or set of reactions) that accom-
plishes the same function.

To find them, we computed for each (network of each) bac-
teria and each oxidant, the maximal confidence level of the
maximal trajectories that detoxifies the oxidant. This max-
imal level tells us the confidence level one can put on the
detoxification of the oxidant for the given bacteria. For each
oxidant, we have grouped the bacteria depending on this con-
fidence level, and give this result in Table 1. For instance,
for detoxifying H2O2, we noticed 12.8 % bacterias with con-
fidence level 3, 84.8 % bacterias with confidence level 2, a
single bacterium with confidence level 1, and 2.1 % bacterias
that were unable to detoxify the oxidant at hand (relative to
the knowledge comprised in OxyGen).

For a lot of bacteria, an enzyme of confidence level 2 is
needed to detoxify the oxidant. For those bacteria, doing an
experiment which shows that the detoxification occurs will
only show that the annotation was accurate.

But we actually discovered four cases (two with O−2 , one
withH2O2, and one withONOOH , indicated in parentheses
in Table 1) where a reaction having a confidence level 1 is
mandatory to detoxify an oxidant. For these bacteria, doing a
simple experiment showing that the detoxification occurs will
point out an unlikely yet existing reaction.

6 Related Work
Modeling methods for biological system fall into two cate-
gories, quantitative ones, focusing on measurable informa-
tion, like concentration of molecules, and qualitative ones,
focusing on the mere presence or absence of molecules.

The two major quantitative methods are Ordinary Differen-
tial Equations (ODEs) [6] and Flux Balance Analysis (FBA)
[13]. In the former, the concentration of a metabolite is given
by an ODE summarizing all reactions in which the metabo-
lite is consumed or produced. FBA relies on the steady
state assumption and models reactions by two matrices, one
for stoichiometry and another for fluxes. In large scale net-
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works, however, numerous parameters (in ODEs) and fluxes
(in FBA) are unknown and thus estimated, so that despite the
partly fine-grained input data the final results are prone to in-
accuracy.

Among the qualitative approaches, we find petri nets. For
modeling metabolic networks [15], compounds are modeled
by places and quantities by tokens; reactions are transitions
from reactants’ places to products’ places. Hybrid petri nets
have been developed to use petri nets with differential equa-
tions. Along with petri nets, one can compute the ”elementary
modes”, i.e. vectors of transition which forms the base of the
petri net. Those vectors provide information on the topology
of the network.

Biocham is a framework dedicated to biochemical reason-
ing [8]. Reactions are modeled by transformation rules which
form a Kripke structure. Queries can be made in CTL and a
symbolic model checker is used to solved them.

Action languages have already been used to model biolog-
ical networks. Action languageA [9] has been extended with
triggers and inhibitions to model signaling networks [2]. This
language is referred as A0

T and has been further extended
in [10] to form Language CTAID featuring allowance state-
ments and defaults.

In [17], the authors used an abductive logic programming
system to revise metabolic pathways. Their method allows re-
moving or adding new reactions, enzymes, or inhibition rules
from a network and given observational data but they do not
define any abstract language to express network and queries.

Between all those method, the Systems Biology Markup
Language (SBML) is an attempt to model biological net-
works in a machine-readable format. It’s applicable to mod-
els of metabolism, cell-signaling, and many others. Reac-
tions are modeled as relations between chemical compound
in compartments. Those relations can contain information on
stoichiometry and differential equations. BioModels [14] is a
database referencing all SBML models from the literature.

7 Discussion

We have presented a new action language dedicated to
metabolic networks. This language handles chemical com-
pounds in compartments and chemical reactions along with
essential features as priorities and confidence level. We have
applied our method to the detoxification pathway of 655 bac-
teria and found 4 reactions of interest.

With confidence level, our method facilitates the comple-
tion of networks. By giving a high confidence level to pub-
lished reactions and a low one to non-validated reactions, our
toolbox finds out essential non-validated reaction to accom-
plish some function. It shows where biological experiments
can bring new knowledge.

As a next step, we plan to use more genericity in queries
and compartments. The static time step in expression of our
query language could be improved by the use of modal logic
and allow more expressiveness. We also want to allow for the
definition of types of compartments. Those types will allow
for more general observations of the system.
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Abstract
In this paper, we propose a coherence-driven ap-
proach to action selection in agents. The mecha-
nism is inspired by the cognitive theory of coher-
ence as proposed by Thagard . Based on a proposal
to extend BDI agents with coherence, we interpret,
how action selection can be viewed as a coherence-
maximising problem. Contrasted against the classi-
cal BDI approach to action selection where actions
are selected against a pre-determined set of beliefs
and desires, this method offers a dynamic view of
the cognitions of an agent, where a set of beliefs de-
sires and intentions are selected together to keep the
coherence of the agent. We illustrate the approach
by simulating how a coherence-driven robot selects
its next action to pursue.

1 Introduction
A BDI-based reasoning process consists of a deliberative cy-
cle in which an agent decides what state of affairs it wants
to achieve from among all those desirable states of affairs [4;
15; 14]. The output of the deliberation process is a set of in-
tentions (desires that the agent wants to pursue paired with a
‘top-level’ plan of action) [1]. Once the intentions are created
and their associated preconditions (in the form of a set of be-
liefs) are met, then it is immediate that these intentions are
realised.

As it should be apparent, there are a few major difficulties
with this kind of reasoning. Among the many alternatives, it
is not clear how a particular desire or a set of desires are cho-
sen to be pursued further. In a graded cognitive agent, this
could be done simply by selecting the desire that has the high-
est degree [3]. However, such a selection will not guarantee
that the chosen desire is the best to be satisfied. To qualify for
it, a desire should be consistent with most of the fundamental
beliefs of the agent, and it should not conflict with other de-
sires which are already in pursuit. Finally, this desire should
be realisable. The last point is taken into account in the BDI
deliberation cycle, however, not during the selection of the
desire, rather at the point where intentions are generated [4;
15]. At this point, conflicts with other intentions may be dis-
covered. In such cases, the plan is aborted and another plan
or another desire itself has to be chosen. However, this is a

very ad-hoc procedure, and unlikely to result in an optimised
or coherent agent.

Alternatively, our intuition says that among the many al-
ternatives, a desire should be selected that is not only most
desired, but also most coherent with the agent’s set of beliefs,
other desires, and plans. The same is true to incorporate a
new perception (belief). A new perception is incorporated
only when it is coherent within the set of cognitions. The
same happens when adopting a plan. That is, the model is
essentially dynamic, where beliefs, desires and intentions are
subject to the criterion of coherence maximisation. Here we
propose to incorporate such a reasoning to artificial agents.
We do so over the basic BDI architecture, but the process
of deliberation and action selection is inspired by coherence
maximisation inspired from Thagard’s theory of coherence.

Seen in a broader context, the theory of coherence can draw
parallels with other established theories. The philosophers of
science have long argued about what “claims” in a theory can
be supported. Popper’s view on the progress of knowledge [9]
sees falsifiability as the main driving force, and knowledge as
an evolving body that follows a process in which a number of
theories ‘compete’ to account for a problem situation. When
a set of theories is set, falsification is then the process that
makes some theories fail, while allowing others to survive. In
his view survival does not mean truth but ‘fitness’ to the sit-
uation. The notion of truthlikeness is for Popper a notion of
verosimilitude (V (a) = T (a) − F (a)) that accounts for the
comparison between the truth content of theory a and the fal-
sity content of a, which permits to rank theories. As we will
see later in this paper this concept is similar to the notion of
’strength’ of a partition in a coherence graph. Falsification of
a theory can be associated to the introduction of a highly in-
coherent fact that will make certain statements to be removed
from the accepted set of claims. Although Popper would re-
ject a complete theory as soon as empirical evidence would
go against it, Kuhn [10] would consider that scientists toler-
ate a certain level of anomalies (in our context a certain level
of incoherence) for a long time until a revolution happens in
which a complete new theory is accepted and an old one re-
jected. This latter phenomenon may be reproduced in our
context, as we will see, by the fact that partitions in graphs
can change abruptly when two theories are similarly coherent
and a new experimental result is added leading to a swap in
the set of accepted claims. The reconciliation point made by
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Lakatos [11] would be that scientific theories contain a hard
core that contains the most crucial claims of the theory plus
a protective belt of auxiliary hypothesis that in case of con-
tradiction with the facts will be modified or removed while
keeping the central core, of course until a major difficulty is
found that leads to a drastic change of the core. The use of
degrees in claims and the algorithmic introduced in the pa-
per will show that we might implement a similar mechanism
by eliminating first the auxiliary hypothesis (those with lower
degrees of belief) before removing the hard core ones (with
higher probability degrees).

In the remaining of the paper, we introduce Thagard’s the-
ory of coherence, and the coherence framework used to ex-
plain action selection in Section 2. In Section 3 we ex-
plain the architecture of a coherence-driven agent and explain
coherence-driven action selection. With the help of an exam-
ple, we illustrate the theory in Section 4 and conclusion and
future works are in Section 5.

2 Thagard’s Theory of Coherence
In this section, we discuss the intuitions behind Thagard’s
Theory of Coherence and introduce a coherence framework
based on this theory.

Paul Thagard is one of the philosophers who have at-
tempted to introduce a computational interpretation of co-
herence. Thagard postulates that the theory of coherence
is a cognitive theory with foundations in philosophy that
approaches problems in terms of the satisfaction of multi-
ple constraints within networks of highly interconnected el-
ements [16; 17]. At the interpretation level, Thagard’s the-
ory of coherence is the study of associations, that is, how
a piece of information influences another and how best dif-
ferent pieces of information can fit together. Each piece of
information imposes constraints on others, the constraints
being positive or negative. Positive constraints strengthen
pieces of information, thereby increasing coherence, while
negative constraints weaken them, thereby increasing inco-
herence. Hence, a coherence problem is to put together those
pieces of information that have a positive constraint between
them, while separating those having a negative constraint.
Coherence is maximised if we obtain such a partition of infor-
mation where a maximum number of constraints is satisfied.

Thagard’s Formalisation
Thagard formalises coherence as follows [16]: The basic no-
tions are that of a set of pieces of information which are rep-
resented as nodes in a graph V = {vi} and weighted links
or constraints E = {{v, w}} between these nodes. Further,
some of these constraints are positive (C+) and others neg-
ative (C−) and associated with each constraint a number ζ
which indicate the weight of the constraint. Given these, max-
imising coherence is formulated as the problem of partition-
ing V into two sets, A (accepted) and R (rejected), in a way
that maximises compliance with the following two coherence
conditions:

1. if (v, w) ∈ C+ then v ∈ A if and only if w ∈ A.

2. if (v, w) ∈ C−, then v ∈ A if and only if w ∈ R.

If {v, w} complies with one of the above conditions, then,
Thagard defines it as a satisfied constraint. Then the coher-
ence problem is to maximise the sum of the weights of the
satisfied constraints.

Thagard further proposes six main kinds of coherence: ex-
planatory, deductive, conceptual, analogical, perceptual, and
deliberative, each with its own array of elements and con-
straints. Once these elements and constraints are specified,
then the algorithms that solve the general coherence problem
can be used to compute coherence in ways that apply to spe-
cific domain problems.

2.1 Comparison with Other Decision Theories
Keeping Thagard’s approach to coherence as maximising
constraint satisfaction, we try to understand the main con-
cept behind this theory. We associate coherence with an ever-
changing system where coherence is the only property that is
preserved, while everything around it changes. In cognitive
terms, this would mean that, there are no beliefs nor other
cognitions that are taken for granted or fixed forever. Every-
thing can be changed and may be changed to keep coherence.
We humans tend to revise or re-evaluate adherence to social
norms, our plans, goals and even beliefs when we are faced
with incoherence. We do not suppose that taking decisions
based on coherence imply an unstable system. Our claim is
based on the fact that some beliefs are more fundamental than
others, in line with Lakatos. Revision of such fundamental
belief is less frequent compared to other beliefs. In coher-
ence terms, these beliefs are fundamental because they sup-
port and get support from most other cognitions and hence
are in positive coherence with them. Hence, such beliefs will
almost always be part of the chosen set while maximising co-
herence. The same is the case with other cognitions while
the process of coherence maximisation further helps resolve
conflicts by selecting among the best alternatives.

When applied to decision making, this means that we may
not only select the set of actions to be performed to achieve
certain fixed goals, but also look for the best set of goals to
be pursued. Further, since coherence affects everything from
beliefs to goals and actions, it may happen that beliefs contra-
dicting a decision made are discarded. There are psychologi-
cal theories such as cognitive dissonance [5] that explains this
phenomenon as an attempt to justify the action chosen. Thus,
with coherence we are looking at a more dynamic model of
cognitions where one picks and choses goals, actions and
even beliefs to fit a grand plan of maximising coherence. In
concrete terms, a highly desired state of the world (preferred
in a classical sense) may get discarded in front of a less de-
sired state of the world because it is incoherent with the rest
of the beliefs, desires or intentions.

As discussed in [16], this view of decision making is very
different from those of classical decision making theories
where the notion of preference is atomic and there is no con-
ceptual understanding of how preferences can be formed. In
contrast, coherence based decision making tries to understand
and evaluate these preferences from the available complex
network of constraints. The assumption here is more basic
because the only knowledge available to us are the various
interacting constraints between pieces of information.
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2.2 Coherence framework
Since we consider coherence-driven agents, in this section
we summarise a generic coherence framework that will al-
low us to build coherence-driven agents. The framework is
introduced in the work of Joseph et al [8; 7] based on Tha-
gard’s theory. It differs from other coherence-based frame-
works in extending agent theories [2; 13] as in this frame-
work coherence is treated as a fundamental property of the
cognitions of an agent. Further, it is generic and fully com-
putational. In the following we briefly introduce the neces-
sary definitions of this framework to understand the formu-
lation of coherence-driven action selection. The intuition be-
hind these definitions and a few examples are given in [8;
7]. The core notion is that of a coherence graph whose nodes
represent pieces of information and whose weighted edges
represent the degree of coherence or incoherence between
nodes.

Definition 2.1 A coherence graph is an edge-weighted undi-
rected graph g = 〈V,E, ζ〉, where

1. V is a finite set of nodes representing pieces of informa-
tion.

2. E ⊆ {{v, w}|v, w ∈ V } is a finite set of edges repre-
senting the coherence or incoherence between pieces of
information, and which we shall call constraints.

3. ζ : E → [−1, 1] \ 0 is an edge-weighted function that
assigns a negative or positive value to the coherence be-
tween pieces of information, and which we shall call co-
herence function.

Every coherence graph is associated with a number called
the coherence of the graph. Based on Thagard’s formalism,
this can be calculated by partitioning the set of nodes V of the
graph in two sets,A and V \A, whereA contains the accepted
elements of V , and V \A contains the rejected ones. The aim
is to partition V such that a maximum number of constraints
is satisfied, taking their values into account. A constraint is
satisfied only if it is positive and both the end nodes are in the
same set, or negative and the end nodes are in complementary
sets. The following definitions help clarify this idea.

Definition 2.2 Given a coherence graph g = 〈V,E, ζ〉, and
a partition (A, V \ A) of V , the set of satisfied constraints
CA ⊆ E is given by

CA =


{v, w} ∈ E

˛̨̨̨
v ∈ A iff w ∈ A when ζ({v, w}) > 0
v ∈ A iff w 6∈ A when ζ({v, w}) < 0

ff
All other constraints (in E \ CA) are said to be unsatisfied.

Definition 2.3 Given a coherence graph g = 〈V,E, ζ〉, the
strength of a partition (A, V \ A) of V is given by

σ(g,A) =

∑
{v,w}∈CA

| ζ({v, w}) |

| E |

Notice that, by Definitions 2.2 and 2.3,

σ(g,A) = σ(g, V \ A) (1)

¬α

¬βα➝β β

α

1

-1

-1

1

1∈ V

partition

∈ E

ζ({α, α➝β})

Figure 1: A typical coherence graph with a coherence max-
imising partition

Definition 2.4 Given a coherence graph g = 〈V,E, ζ〉 and
given the strength σ(g,A), for all subsets A of V , the coher-
ence of g is given by

κ(g) = max
A⊆V

σ(g,A)

If for some partition (A, V \ A) of V , the strength of the
partition is maximal (i.e., κ(g) = σ(g,A) then the set A
is called the accepted set and V \ A the rejected set of the
partition. A typical coherence graph is as shown in Figure 1.

Due to Equation 1, the accepted set A is never unique for
a coherence graph. Moreover, there could be other partitions
that generate the same value for κ(g). Here we mention a few
criterias to select an accepted set among the alternatives. If
A1,A2, · · · ,An are sets from all those partitions that max-
imise coherence of the graph g, based on one of Thagard’s
principles (which we will formalise in the next definition) on
deductive coherence[16] that intuitively obvious propositions
have an acceptability on their own, we say an accepted set is
the one in which the intuitively obvious propositions belong.
Further, the coherence of the sub-graphs (g|Ai

, i ∈ [1, n])
gives us an indication of how strongly connected they are.
The higher the coherence,the more preferred the correspond-
ing accepted set. And lastly, an accepted set with more num-
ber of elements should be preferred to another with less.

We now need a way in which the coherence graphs just de-
fined can be constructed. That is, we need to define function
ζ. As the nature of relationship between two pieces of in-
formation (corresponding to the different types of coherence
as mentioned in the introduction) can vary greatly, we do not
have one unique coherence function. That is, in an explana-
tory coherence, two pieces of information are coherent when
they are related by an explanation. Thagard proposes certain
principles to characterise coherence in each of the different
types. Here we define one such coherence function which is
inspired from Thagard’s principles of deductive coherence.

Thagard’s principle mainly states that a proposition co-
heres with propositions that are deducible from it, proposi-
tions that are used together to deduce something cohere with
each other, the more hypotheses it takes to deduce something,
the less the degree of coherence, contradictory propositions
are incoherent with each other1. Since some of these princi-
ples make sense only in the context of a theory presentation,

1here we do not formalise the principle that intuitively obvious
propositions have a degree of acceptability on their own. This we
keep it as a disambiguation criteria to select among accepted sets.
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we assume a theory presentation T in a multi-valued propo-
sitional logic while formalising these principles. We use a
multi-valued logic to model uncertainty in agents, though
Thagard’s principles, we assume, are based on a boolean
world. We formalise Thagard’s principles in terms of a sup-
port function ηT which extract a coherence value between
two nodes if either one implies the other, or together they are
used to imply a third node (assuming some sort of deduction
theorem such as T , α ` β implies T ` α → β). We also
normalise the values between [−1, 1].
Definition 2.5 Let L be the set of all propositional sentences
of a multi-valued propositional logic. Let T ⊆ L be a fi-
nite theory presentation and Γ ⊆ T and γ ∈ L. A support
function ηT : L× L→ [−1, 1] with respect to T is given by

ηT ({α, β}) =

8>>>>>>>>><>>>>>>>>>:
max

8>>>>><>>>>>:

max
n

2·F→(ρ(α),ρ(β))−1
|Γ| |

∃Γ ⊆ T : Γ, α ` β ; α 6` β} ,

max
n

2·F→(ρ(α),F→(ρ(β),ρ(γ)))−1
|Γ|+1

|
∃Γ ⊆ T : Γ, α, β ` γ ; α, β 6` γ}

9>>>>>=>>>>>;
undefined otherwise

where F→ is the truth connective defined for L and ρ(α) gives the
truth value of α.

Thagard in his principles emphases the fact that, though a
coherence value can be derived from the underlying implica-
tion relation, coherence functions are always symmetric. Due
to this, even if there may only be a deductive relation in one
direction, there will be a deductive coherence in both direc-
tions. Hence, we define the deductive coherence between two
propositions as the value of the stronger ηT values.
Definition 2.6 Let L be the set of all propositional sentences
of a multi-valued propositional logic. Let T ⊆ L be a finite
theory presentation and let ηT : L×L→ [−1, 1] be a support
function. A deductive coherence function ζT : L × L →
[−1, 1] \ {0} with respect to T is a partial function given by:

For any pair (α, β) of formulas in L,

ζT ({α, β}) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

max(ηT (α, β), ηT (β, α))
if ηT (α, β) and ηT (β, α) defined, 6= 0

ηT (α, β)
if ηT (α, β) defined and 6= 0
and ηT (β, α) undefined or = 0

ηT (β, α)
if ηT (β, α) defined and 6= 0
and ηT (α, β) undefined or = 0

undefined
if ηT (α, β) and ηT (β, α) are undefined
or = 0

Note that both the support function and the deductive co-
herence function are partial functions. This is because we in-
terpret zero coherence as the propositions not being related.

3 Coherence-driven Agent Architecture
A coherence-driven agent is an agent which always takes an
action based on maximisation of coherence of its cognitions,

norms and other social commitments. Further, these are cog-
nitive agents based on BDI theory [14] and are modeled as
a multi-context architecture (developed by Casali et al. [3]),
which consists of a set of contexts and a set of bridge rules
between contexts. Each context has its own language, logic
and theory expressed as coherence graphs. Bridge rules turn
formulae derivable in one or more contexts into premises for
derivations for another context. We assume that each agent
has its beliefs, desires, and intentions stored in its belief con-
text CB , desire context CD, and intention context CI .

3.1 Cognitive Contexts
Here we briefly describe how a belief context CB is defined
while desire CD and intention CI contexts are similar [8; 3].
CB consists of a belief logic and a theory TB of the logic
expressed as a coherence graph.

A belief logic KB consists of a belief language, a set of
axioms and a deductive relation defined on the belief logic
〈LB , AB ,`B〉. The belief language LB is defined by ex-
tending the classical propositional language L defined upon a
countable set of propositional variables PV and connectives
(¬,→). L is extended with a fuzzy unary modal operator B.
The modal language LB is built from the elementary modal
formulae Bϕ where ϕ is propositional, and truth constants
r, for each rational r ∈ Q ∩ [0, 1], using the connectives
of Łukasiewicz many-valued logic. If ϕ is a proposition in
L, the intended meaning of Bϕ is that “ϕ is believable”. A
modal many-valued logic based on Łukasiewicz logic is used
to formalise KB2.
Definition 3.1 [3] Given a propositional language L, a be-
lief language LB is given by:
• If ϕ ∈ L then Bϕ ∈ LB
• If r ∈ Q ∩ [0, 1] then r ∈ LB
• If Φ,Ψ ∈ LB then Φ →L Ψ ∈ LB and Φ&Ψ ∈ LB

(where & and →L correspond to the conjunction and
implication of Łukasiewicz logic)

We call TB a theory in the language LB .
Other Łukasiewicz logic connectives for the modal formulae
can be defined from &,→L and 0: ¬LΦ (defined as Φ →L 0).
Formulae of the type r →L Ψ (the probability of ϕ is at least
r) will be denoted as (Ψ, r).
The axioms AB of KB are:

1. All axioms of propositional logic.
2. Axioms of Łukasiewicz logic for modal formulas (for

instance, axioms of Hájek’s Basic Logic (BL) [6] plus
the axiom: ¬¬Φ → Φ.)

3. Probabilistic axioms, given ϕ,ψ ∈ L :
• B(ϕ→ ψ) →L (Bϕ→ Bψ)
• Bϕ ≡ ¬LB(ϕ ∧ ¬ψ) →L B(ϕ ∧ ψ)

The deduction rules defining `B of KB are Modus ponens
and Necessitation for B (from ϕ derive Bϕ).

Note that the truth function ρ : LB → [0, 1] is defined
by means of the truth-functions of Łukasiewicz logic and the
probabilistic interpretation of beliefs as follows:

2We could use other logics as well by replacing the axioms.
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• ρ((Bϕ, r))3 = r for all r ∈ Q ∩ [0, 1]

• ρ(ϕ & ψ) = max(ρ(ϕ) + ρ(ψ)− 1, 0) for all ϕ,ψ ∈ LB

• ρ(ϕ→L ψ) = min(1− ρ(ϕ) + ρ(ψ), 1) for all ϕ,ψ ∈ LB

Then a coherence graph over beliefs is defined over the belief
logic KB as follows:

Definition 3.2 Given a belief logic KB = 〈LB , AB ,`B〉
where LB is a belief language, AB are a set of axioms and
`B are a set of deduction rules, a belief coherence graph
gB = 〈VB , EB , ζB〉 is a coherence graph defined over `B
and a finite theory TB of LB such that:

• VB ⊆ TB
• E is a set of subsets of 2 elements of VB
• ζTB

is defined over `B and TB .

A belief coherence graph exclusively represents the graded
beliefs of an agent and the associations among them. A desire
coherence graph (gD), and an intention coherence graph (gI )
over logics LD, and LI are similar.

3.2 Bridge Rules
Bridge rules are inference rules of the form b = C1:ψ,C2:ψ

C3:ψ

whose premises and conclusion are labelled formulas where
the labels denote the contexts they are taken from. They carry
inferences between theories of different logics. Since our the-
ories become coherence graphs, we need two functions to em-
ulate the execution of bridge rules over coherence graphs. If
G denote the set of all coherence graphs, then a graph node
extension function (ε : Gn → Gn) takes into account the in-
fluence of graphs (theories) on each other. An edge extension
function ( ι : Gn → G) joins a set of graphs by adding edges
between the nodes participating in the inference. Since we
treat bridge rules similar to any other implication relations,
we use Definition 2.6 itself to calculate the coherence values
on these edges. We now illustrate the concept of bridge rules
when the contexts are coherence graphs (the formal defini-
tions can be found in [8]).

Example 3.1 Let’s assume, for instance, that an agent
wants it to be the case that whenever it has an intention
(Iϕ, r) in the intention graph (a formula in the theory TI ),
then the corresponding belief (Bϕ, r) is inferred in the
belief graph (added to the theory TB). i.e., Given a bridge
rule b = CB :(Bψ,r),CD:(Dψ,s)

CI :(Iψ,min(r,s)) where contexts CB , CD,
and CI have the coherence graphs gB , gD and gI associ-
ated with them respectively and given (Bψ, 0.95) ∈ gB ,
(Dψ, 0.95) ∈ gD function ε adds a node (Iψ, 0.95) to gI .

Let’s further assume that our agent further wants it to be
the case that, the belief and the intention nodes are related
and have a positive coherence between them. The edge ex-
tension function ι joins the graphs gB , gD and gI associated
with the contexts in the bridge rule by adding the edges
{{(Iψ, 0.95), (Bψ, 0.95)}, {(Iψ, 0.95), (Dψ, 0.95)}} with
coherence values equal to 2·ρ((Iψ,0.95))−1

1 = 0.9 from Def-
inition 2.5.

3(Bϕ, r) ≡ r̄ → Bϕ

3.3 Architecture
Figure 2 shows the architecture of a coherence-driven agent.
At any time, it can either perceive the environment (updates
beliefs) or make a decision about a future action. In the
event of a new information, an agent re-evaluates its theory,
hence recomputes both the coherence graphs and the coher-
ence maximising partition. If the new information falls in
the accepted set then it reinforces the theory and the theory
becomes more coherent. However, if it falls in the rejected
set, then it contradicts some of the elements of the accepted
theory to make the theory more coherent again in line with
Lakatos. In the process, some of the existing elements may
move from accepted to rejected or vice versa. An agent al-
ways bases its decisions on the accepted theory.

External Environment

Observations
Action

∈ ∪ ∪∈

Theory 
Revision

Figure 2: A coherence-driven agent architecture

3.4 Coherence-driven Action Selection
As discussed in the introduction, the philosophy behind a
coherence-driven action selection is substantially different
from other typical goal-driven approaches to action selection.
A BDI-based agent, at anytime selects a goal to pursue, and
looks for what actions would satisfy that goal. It is argued
that, this would reduce the attention problem of the agent,
giving it a stable behaviour. However, as argued in the intro-
duction, this has many difficulties such as incorporating new
perceptions, analysing conflicts between goals, and analysing
feasibility of actions to achieve goals. This is due to the philo-
sophical grounding of the theory for which the basis for an
action is the expectation of a desired outcome.

As suggested in the introduction, coherence-driven reason-
ing offers a more holistic view on action selection. The philo-
sophical theories of action suggest that an agent is influenced
by a reason, and his action is consequently performed for that
reason, when he is influenced by a representation of the action
that makes it intelligible to him. Naturally, this representation
may make the action intelligible precisely by setting it in the
context of his desires and expectations, but his reason for ac-
tion consists in this cognitively attractive representation of it
rather than in the desires and expectations to which it alludes.
A reason is a rationale, in the light of which an action makes
sense to an agent, and promoting a desired outcome is one
such rationale [18]. The coherence-driven approach we pro-
pose here attempts to capture this representation, which gives
the agent the necessary rationale for action.
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At any time a coherence-driven agent selects the most pre-
ferred action from its current accepted set of a coherence
maximising partition. Any external stimuli interrupts the ac-
tion selection process and forces the representation of the
cognitions to go through a re-evaluation of coherence, result-
ing in some of the currently accepted cognitions to be rejected
and vice versa. A procedure that a typical coherence-driven
agent follows is outlined in the following.
Given the current coherence graphs gB , gD, and gI and
their composition ςg and an external stimuli (Kϕ, r) where
K ∈ {B,D, I}

1: if (Kϕ, r) then
2: v := (Kϕ, r)
3: VK := VK ∪ {v}
4: for all w ∈ VK do
5: compute ζ({v, w}) using Definition 2.6.
6: if ζ({v, w}) is defined then
7: EK := EK ∪ {{v, w}}
8: end if
9: end for

10: compute a composite coherence graph ςg as in [8] and
Example 3.1.

11: for all (Ai, V \ Ai), Ai ⊆ V do
12: calculate σ(ςg,Ai) using Equation 2.3
13: end for
14: κ := κ(ςg) using Equation 2.4
15: A := Ai|max(σ(ςg,Ai))
16: end if
17: current action := max

r
{(Iϕ, r)|(Iϕ, r) ∈ A}

Line 1 checks for external stimuli. If there are any, then,
lines from 2 to 9 updates the graphs by incorporating the stim-
uli and its influences on existing elements of the observed
cognition. Line 10 builds up the reasoning across contexts
by composing the coherence graphs. Lines from 11 to 14 de-
termines the coherence maximising partition. This is done
by first computing the strength of each partition using the
function σ and choosing the partition (A, V \ A) for which
σ(g,A) is maximal. This part of the algorithm only gives the
simplest solution, however, finding a maximising partition of
a weighted graph is known to be an NP-complete problem.
There are approximation algorithms exist to find the solution
to this problem such as max-cut, neural network based algo-
rithms. Line 17 determines the current action by selecting the
action from A which has the highest preference.

4 Example
We consider a simple example to show how action selection
works in our architecture. A coherence-driven robotic agent
wants to choose between a set of possible actions(intentions)
corresponding to a set of desires (goals) it has. The scenario is
modelled like a grid in which at each cell the robot can chose
between two possible actions: “plug” to restore its energy or
“move” to earn points. It is further assumed that at every cell
in the grid, it is possible to perform both actions. With every
move the robot gains a point. Finally, the robot is equipped
with an energy sensor, which measures the remaining energy
at every time point, which influences the choices of the robot.
The results are based on an implementation of a heuristic-

based polynomial-time approximation algorithm to compute
partitions and their corresponding coherences.

Since coherence maximisation dynamically choses the
most coherent partition, the robot at any instant choses the set
of beliefs, desires and intentions (actions) that it wants to pur-
sue. There is one single persistent desire for the robot, which
is to earn points. It has certain domain knowledge which indi-
cates how to get its desire satisfied. This domain knowledge
is encoded as a belief (B(move → points), 1) says that a
move will fetch a point with a confidence degree 1. A bridge
rule b1 is used to reason with the beliefs and desires.

b1 =
CB : (B(p→ q), α), CD : (Dq, β)

CD : (Dp,min(α, β))

b1 injects a new desire p given the desire of q and a belief
that p facilitates q with appropriate degrees. Further, us-
ing b1 and the belief that having energy enables move, i.e.,
(B(energy → move), 1), a new desire to have “energy”
is generated. A third desire to “plug” is generated using
the bridge rule and the belief that plugging gives energy, i.e,
(B(plug → energy), 1). The chain of desires and their co-
herence links are illustrated in Figure 3.

(B plug 
→energy, 1)

(B energy 
→move,1)

(B move 
→points,1)

(D points, 
0.95)

(D move, 
0.95)

(D energy, 
0.95)

(D plug, 
0.95)

1 1

1

11

1 1

1 1

Chain of reasoning

Figure 3: How one desire triggers another

The robot uses a second bridge rule b2 that states that every
desire with a corresponding belief that the desire is achiev-
able, generates a corresponding intention (realistic agent).

b2 =
CB : (Bp, α), CD : (Dp, β)

CI : (Ip,min(α, β))

Using this rule, it has the intention to move, intention to have
energy and intention to plug. Further, as in the case of desires,
the intention to move is connected to the intention to have
energy using another bridge rule b3 which is used to reason
across beliefs and intentions.

b3 =
CB : (B(p→ q), α), CI : (Dq, β)

CI : (Dp,min(α, β))

Note that bridge rules b1 and b3 are very similar and moti-
vated from the well known practical syllogism, “If I want q
and p realises q, then I should intend to do p”. Using b3, we
have that the belief (B(energy → move), 1), (Ienergy, x)
and (Imove, x) are coherently related. The same is true of
(Ienergy, x) and (Iplug, x). Hence, similar to desires, a
chain of intentions and their coherence links are generated
(Figure 4).

As the only sensor for the robot (other essential sen-
sors ignored) relevant to the problem is the energy sensor
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a= 2.min(0.95-x + min(x,0.95),1)-1
b= 2.min(1-min(1-x,0.95)+ min(x,0.95),1)-1

Figure 4: Desires and intentions trigger other intentions

(es), at every time point a few of the cognitions gets af-
fected due to the changes in sensor readings. That is, we
take that the grade on the belief that the quantity of en-
ergy needed changes inversely to the value of es . Further,
the belief that move is possible changes proportionally with
the value of es, using the modes ponens as (B(energy →
move), 1), (Benergy, x) → (Bmove, 1 − x). Finally, as it
is assumed that the robot can perform only one action at a
time, the essential conflict between intentions to “move” and
“plug” are expressed as (Imove, x) ⇔ (I¬plug, x).

4.1 Action Selection
Given our robotic agent as described, we now pose the prob-
lem of action selection. That is, the robot has to decide what
action to perform at every time point. We say an “energy-
cycle” is the time between two consecutive “plug” actions.
We take different energy levels and determine both the co-
herence of the robot and the coherence-driven choice of ac-
tion. To understand how the coherence graph would look like,
we show the graph with the partition when the x = 0 (just
plugged) in Figure 5 and when x = 1 (there is no energy
left) in Figure 6. In the case x = 0, there is a clear partition
with the only intention selected is (Imove, 0.95). Hence it
is absolutely certain that, the robot should chose to move and
earn points. The coherence of the graph for this partition is
0.6533.
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Figure 5: x=0 (Robot has maximum energy)

In the case x = 1 (Figure 6), there are no incoherence re-
lations in the graph. However, it is due to the fact that, we are
deriving the belief about move from the belief about energy
needs. Though every node is part of the accepted set, notice
that the node with the highest grade will be pursued. In this
case the choice to plug will be pursued. The coherence of the
graph for this partition is 0.97777. The increase in coherence
is due to the fact that, there are no incoherence experienced
by the robot and hence all nodes are accepted. Most of the in-
dividual coherence values are equal to the maximum possible
(= 1).
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Figure 6: x=1 (Robot has no energy)

These are the two extreme cases, and now we plot the be-
haviour of the robot in terms of the choice of action, and the
variation in coherence values at different energy levels in two
energy-cycles. As seen in the coherence graphs in Figures 5
and 6, when the energy requirement is 0 or close to 0, the
robot has some incoherences and selects only few of the cog-
nitions as accepted. However, as the energy requirement in-
crease, these incoherences disappear (due to the decreasing
intention for action “move”) and hence the robot becomes in-
creasingly coherent with the action to plug.

Another graph which is interesting is the energy levels ver-
sus the choice of action as in Figure 8. This shows the ex-
pected actions of the robot at different energy levels. When
the energy need is in the range [0, 0.5] the robot choses to
move. However, if the energy need is in the range [0.6, 1],
then the robot choses to plug and restore the energy. Then,
its clear that as soon as the energy need raises to 0.6, the
robot take the action to plug. Thus, the energy need never
raises to a point beyond 0.6 (conservative behavior). Hence,
the actual behavior of the robot will be a repeating sequence
of {Move, Move, Move, · · · ,Plug, Move, Move, · · · }, as the
intuition would make us expect.

5 Discussion and Futurework
In this paper, we have introduced an alternative approach to
action selection based on coherence maximisation. The in-
teresting aspects of this approach over more traditional BDI
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approaches are that it takes a dynamic view of agent cogni-
tions, can detect and resolve conflicts among cognitions, can
perform uncertainty reasoning and can reason at a global level
while also fully integrated into the BDI representation. Since
we have discussed related work in the course of presenting
the paper, we here make a brief comment on one related
work, which is the only work known to us that uses coherence
for agent reasoning. While the work of Pasquier et. al [13;
12], introduced coherence based reasoning in agents, there
are significant differences with our proposal. In their work,
coherence is like a utility maximising function, which is used
to prioritise the intentions (dialogue moves), whereas reason-
ing about beliefs and desires are using the traditional BDI
approach. This we imagine will retain all the difficulties we
mentioned in the introduction. Another important difference
is that, while we show how coherence can be computed us-
ing Thagard’s principles, such mechanisms are missing from
their approach.

In the future work, we plan to incorporate the represen-
tation of plans and study how plans can be included in the
coherence maximising process. Further, we plan to explore
the possibilities of evaluating our framework using empirical
and mathematical proof.
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Abstract

For logical artificial intelligence to be truly useful,
its methods must scale to problems of realistic size.
An interruptible algorithm enables a logical agent
to act in a timely manner to the best of its knowl-
edge, given its reasoning so far. This seems nec-
essary to avoid analysis paralysis, trying to think
of every potentiality, however unlikely, beforehand.
These considerations prompt us to look for alterna-
tive reasoning mechanisms for filtered circumscrip-
tion, a nonmonotonic reasoning formalism used
e.g. by Temporal Action Logic and Event Calcu-
lus. We generalize Ginsberg’s circumscriptive the-
orem prover and describe an interruptible theorem
prover based on abduction that has been used to
unify planning and reasoning in a logical agent ar-
chitecture.

1 Introduction
The world around us is uncertain. In fact, we have to
cope with “pervasive ignorance”[Pollock, 2008] about most
things. This is possible by reasoning defeasibly rather than
purely deductively. But the world is also dynamic. Even
when wedo have all the relevant knowledge, we may not
have time to think through all its consequences before the
changing circumstances make our conclusions obsolete. This
is most evident when planning our actions. Unless there is
great risk involved, we most often carry out our plans after
considering only a small subset of their consequences.

If we want to build logical agents that act autonomously to
solve real world problems, we have to equip them with sim-
ilar mechanisms to cope. Moving from simple benchmark
problems to problems of realistic size has proven difficult due
to the intractability of logical reasoning. An interruptible al-
gorithm enables an agent to act in a timely manner, to the
best of its knowledge given its reasoning so far. This seems a
necessary feature of any nonmonotonic reasoning mechanism

∗This work is supported in part by the Swedish Foundation for
Strategic Research (SSF) Strategic Research Center MOVIII, the
Swedish Research Council Linnaeus Center CADICS, VR project
(50405001, 50405002), and CENIIT, the Center for Industrial Infor-
mation Technology.

aimed to scale towards solving real world problems involving
very large knowledge bases.

These considerations prompt us to look for alternative
reasoning mechanisms for filtered circumscription, a non-
monotonic logic formalism for reasoning about action and
change used e.g. by Temporal Action Logic (TAL). Regular
theorem provers are not directly applicable to TAL’s second-
order circumscription axiom. This hinder has usually been
overcome by applying predicate completion[Doherty and
Kvarnstr̈om, 2007] to produce a first-order equivalent the-
ory. But predicate completion involves a potentially costly
computation applied to the entire knowledge base before any
reasoning can begin. Moreover, the transformation must be
recomputed whenever the agent’s beliefs change, even e.g.
when considering the effects of an action while planning. Fi-
nally, the reasoning involved is not interruptible. Predicate
completion works by turning defeasible reasoning into de-
ductive proof. These proofs must consider all potential ob-
jections to a defeasible conclusion before any answer can be
given.

We extend Ginsberg’s circumscriptive theorem prover
[1989] to filteredcircumscription. This forms the basis for an
interruptible theorem prover based on abduction that operates
on the Temporal Action Logic formulas directly, without any
compilation step. We show how the same reasoning mecha-
nism can be used to perform abductive planning, providing a
unified planning and reasoning framework in a logical agent
architecture. Such an agent could act in an any-time man-
ner, using tentative answers based on defeasible assumptions
if forced to act quickly, while still considering all potential
objections given sufficient time for deliberation.

2 Preliminaries
While the results in this paper should be interesting for other
logics of action and change, such as the Event Calculus, we
focus on Temporal Action Logic and hence give a brief intro-
duction to it. Similarly, while different proof systems could
be used, our work implements the natural deduction system
introduced below.

2.1 Temporal Action Logic
Temporal Action Logic is a highly expressive logic for rea-
soning about action and change. The origins of TAL are
found in Sandewall’s Features and Fluents framework[1994].
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Sandewall classified different variants of non-monotonic rea-
soning according to the types of reasoning problems for
which they are applicable. TAL is a stand-alone logic based
on one of the most general variant of these.

A central concept in TAL isocclusion. It is introduced
as a flexible way to deal with the frame problem and re-
lated problems. The basic idea is to make fluent values,
given byHolds(time, f luent,value), persist over time by min-
imizing their opportunities for change. A predicateOc-
clude(time,fluent)represents the possibility of a fluent chang-
ing its value. This is a key difference from earlier attempts
to use circumscription to minimizechangerather thanpoten-
tial for change. Negated occlusion is then the property of a
fluent not being able to change its value from the previous
time point, i.e. persistence. A fluentf ’s default persistence
at all time points (assuming unbound variables are implicitly
universally quantified) is then axiomatized by:

¬Occlude(t +1, f ) → (Holds(t, f ,v)↔ Holds(t +1, f ,v))

Detailed control over fluent persistency can be exercised
by adding similar persistence formulas, collectively denoted
by Tper.

Situations that are known to cause a fluent’s value to
change must also occlude that fluent. E.g., actions must
explicitly occlude affected fluents. We do not wish, how-
ever, to enumerate all situations in which a fluent isnot oc-
cluded. The assumption is that, by default, things do not
change without a reason. The Features and Fluents frame-
work usedpreferential entailmentto enforce this. Logical
consequence is defined only w.r.t. models in which the exten-
sion ofOccludeis minimal. Action occurrences, specified by
the Occurs(timestart, timeend,action)predicate, must also be
minimized to prevent occlusion by spurious actions. But the
question of how to compute the intended consequences was
left open.

TAL provides asyntacticcharacterization using a form
of circumscription calledfiltered circumscription[Doherty
and Lukaszewicz, 1994], also referred to asforced separa-
tion [Shanahan, 1997]. Circumscription is used to minimize
OccludeandOccurs, while fixingHolds, butTper is forcedly
separated from the rest of the theoryT, outside the scope of
the circumscription:

Circ(T;Occlude,Occurs)∧Tper

If the persistence formulasTper had been included in the
circumscription, then the extensions ofOccludehad not been
made any smaller. To see this, note e.g. that the contra-
positives of formulas inTper would have said that fluent
change isby itself a reason for occlusion. Removing these
formulas from the circumscription leaves only occlusion with
someexplicitcause, such as being occluded by an action’s ef-
fects. The filtering occurs when we addTper to the minimized
theory, removing all models in which a fluent changes despite
not being occluded.

This short introduction to TAL is intended to aid under-
standing of the rest of this paper. A more detailed presenta-
tion with a complete list of TAL’s features is available else-
where[Doherty and Kvarnstr̈om, 2007].

2.2 Natural Deduction
Example proofs will be presented in Suppes’ style natural
deduction[Pelletier, 1999]. Each proof row consists of a
premise set, a row number, the formula, and a list of row
numbers identifying the previous proof rows used by the cur-
rent inference step (or empty for given input formulas). The
premise set is a convenient bookkeeping device that keeps
track of the assumptions that a formula depends on. This is
important, not only for natural deduction’s ability to construct
proofs using temporary assumptions, but also during abduc-
tive proofs to label formulas by the set of ground instances
of abducibles required. An assumption depends only on itself
and thus its premise set only contains its own row number.
Inference rules then combine their premises’ dependency sets
to form the conclusion’s premise set, usually by taking the set
union.

Another useful device is an explicit notation for proof
goals. We writeShow Pwhen we adopt an interest in proving
P, either because it is given as the overall proof goal, or as the
result of reasoning backwards from the proof goal. Both de-
vices are illustrated by the following simple abductive proof,
where the conclusion is allowed to depend on a consistent set
of ground instances of the abducible¬Ab(x):

{1} 1 Bird(x)∧¬Ab(x) → Flies(x)
{2} 2 Bird(tweety)
{} 3 Show Flies(tweety)
{} 4 Show¬Ab(tweety) 1,2,3
{5} 5 ¬Ab(tweety) 4
{1,2,5} 6 Flies(tweety) 1,2,5

3 Predicate Completion
TAL’s syntactic characterization in terms of filtered circum-
scription produces a second-order theory to which regular
theorem provers are not applicable. Fortunately, by placing
certain syntactic restrictions on the TAL formulas one can
ensure that the second-order circumscription formula can be
compiled into an equivalent first-order characterization[Do-
herty, 1996]. The transformation is equivalent to Clarke’s
predicate completion[1978].

To see how it works, consider the Yale Shooting Problem
formulated in TAL. There is an action for loading the gun, an
action for firing the gun and killing Fred the turkey just in case
the gun was loaded, the observation that Fred is initially alive,
and a narrative consisting of the load and fire actions with a
small wait in between. Note how the actions explicitly release
the affected fluents from persistence by occluding them:

Occurs(t1, t2, load) →
Occlude(t2, loaded)∧Holds(t2, loaded, true)

Occurs(t1, t2, f ire) →
Holds(t1, loaded, true)→

Occlude(t2, loaded)∧Holds(t2, loaded, f alse)∧
Occlude(t2,alive)∧Holds(t2,alive, f alse)

Holds(0,alive, true)
Occurs(1,2,load)
Occurs(3,4, f ire)

Without saying anything about when fluents arenot oc-
cluded, the above formulas do not predict the value ofalive
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at time points other than 0, even if we add the persistence for-
mulasTper. We must first perform the predicate completion
transformation step, minimizing fluent change by extending
the above theory with additional formulas that correspond to
the circumscription ofOccludeandOccurs:

Occlude(t, f ) ↔
f = loaded∧
∃t1[Occurs(t1, t, load)∨

Occurs(t1, t, f ire)∧Holds(t1, loaded, true)]∨
f = alive∧
∃t1[Occurs(t1, t, f ire)∧Holds(t1, loaded, true)]

Occurs(t1, t2,action)↔
t1 = 1∧ t2 = 2∧a = load∨
t1 = 3∧ t2 = 4∧a = f ire

The new theory makes it possible to derive non-occlusion
deductively. Adding theTper filter results in the intended con-
sequences, e.g.¬Holds(4,alive, f alse).

This transformation works well for research benchmark
problems. But the methodology has undesirable properties
from the point of view of scalability. The transformation is
applied to most of the entire knowledge base and is invali-
dated whenever some parts of the knowledge base change. A
logical agent in a dynamic environment could have even sim-
ple queries stymied by potentially expensive computations.

Moreover, while the theorem prover can be used to rea-
son about the consequences ofgivenactions, it is not directly
applicable to the more fundamental problem of reasoning
about which actions to do in the first place. Even consider-
ing whether to do an action would require adding that action
occurrence to the theory and repeating the transformation.

TALplanner [Kvarnstr̈om, 2005] avoids this problem by
using special purpose planning algorithms to generate action
occurrences. TAL is still used as a semantics for the finished
plans, but the planningprocessis metatheoretical. In contrast,
the next section will introduce an alternative abductive infer-
ence mechanism that naturally extends to planning, resulting
in a unified planning and reasoning system without the need
for a special purpose planning algorithm.

4 Abduction and Filtered Circumscription
Ginsberg[1989] presents acircumscriptive theorem prover
(CTP) with properties conducive to scalability. The algorithm
makes it possible to compute the logical consequences of a
circumscribed theory without constructing the second-order
circumscription axiom or compiling the theory beforehand.
Of course, since circumscription is not even semi-decidable
in the general case, some restrictions apply:

1. All formulas are universal, i.e. all its axioms can be writ-
ten in the form∀~x P(~x) whereP is quantifier free.

2. The theory includes unique names and domain closure
axioms.

3. The circumscription policy does not fix predicates.

4. The entire theory is circumscribed.

In the rest of the paper we assume that the theories we are
interested in satisfy Restrictions 1 and 2, including only fi-
nitely many objects and time points.

Restriction 3 is not satisfied by TAL’s circumscription pol-
icy as defined in Section 2.1. This, however, is not as trou-
blesome as it might seem. As de Kleer and Konolige have
shown[1989], any predicateP can be fixed by simultaneously
minimizing bothP and¬P. Along with their proof they pro-
vide the intuition that this works since any attempt to make
P smaller will automatically make¬P larger, and vice versa.
In the end, therefore, the extension ofP remains fixed. Using
this equivalence we can eliminate the fixation of theHolds
predicate from TAL’s circumscription policy:

Circ(T;Occlude,Occurs,Holds,¬Holds)∧Tper

Unfortunately, Restriction 4 is not as easily remedied. The
formulas belonging toTper were kept outside the scope of the
circumscription for a reason. They were not to affect the min-
imization ofOccludeandOccurs, while still acting as a filter
to remove models in which fluents change without being oc-
cluded.

4.1 Filtered Circumscription
In order to extend Ginsberg’s method to a filtered circum-
scriptive theorem prover (FCTP) we first note that we can
simplify the formulas to which it is applied.

Lemma 1. Regular theorem proving can be used to reserve
the FCTP for proving negative literals of minimized predi-
cates, without loss of generality.

Proof. Let T denote a theory andM the set of predicates to
be minimized. According to Restriction 1 above, any proof
goalG must be universal. If the theory is first put in negation
normal form, the following serves as an example of a set of
logical equivalences that can be used to reduce the filtered
circumscriptive proof goalG to a literal:

F,Circ(T;M) � ∀xP(x) ⇔ F,Circ(T;M) � P(c)

Where c does not occur in P(x) nor
any premise that P(c) depends on.

F,Circ(T;M) � P↔ Q ⇔

{

F,Circ(T;M) � P→ Q
F,Circ(T;M) � Q→ P

F,Circ(T;M) � P∧Q ⇔

{

F,Circ(T;M) � P
F,Circ(T;M) � Q

F,Circ(T;M) � P∨Q ⇔ F,Circ(T;M) � ¬P → Q

F,Circ(T;M) � P→ Q ⇔ F,Circ(T;M),P � Q

The only remaining case is whenG is a literal(¬)P. Propo-
sition 12 in [Lifschitz, 1994] tells us that if(¬)P is pos-
itive w.r.t. M (or is not one of the predicates inM), then
Circ(T;M) � (¬)P iff T � (¬)P, in which case we can con-
tinue using regular first-order theorem proving. Thus we need
only resort to the FCTP when trying to prove literals that are
negations of minimized predicates.

While Ginsberg’s implementation is based on an
assumption-based truth maintenance system[de Kleer,
1986], the CTP algorithm can now be formulated in terms of
abduction. LetT denote our theory,M be the set of predicates
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to be minimized, and the goal formulaG be the negation of
a predicate in M. The CTP then corresponds to the following
algorithm[Brewkaet al., 1997]:

1. Let the set of abducibles be negations of predicates inM.

2. Abduce an explanationE for the goalG.

3. Check that there is no counter-explanation ofE, i.e. that
there is no explanationCE for ¬E.

This can be reformulated in terms of an inference rule. Ex-
planationsE and counter-explanationsCEare conjunctions of
ground abducible literals from Step 1 of the abductive algo-
rithm. (Since they are the result of abductive proof, we always
require them to be consistent with the theoryT.) Step 2 of the
algorithm is represented by the rule’s premise, Step 3 by the
rule’s qualification, and the fact that the algorithm computes
circumscription is stated by the rule’s conclusion:

T,E � G
CTP

Circ(T;M) � G

Where there is no CE consistent
with T such that T,CE� ¬E.

Ginsberg[1989] shows this sound and complete for cir-
cumscription. Furthermore, as we prove next, the only expla-
nation we need is the goal itself.

Lemma 2. When G is the negation of a predicate in M, the
CTP can use E= G without loss of generality.

Proof. Constraining the set of explanationsE does not affect
soundness. Let us consider completeness. Using a stronger
explanation thanE = G would gain us nothing since it can
only decrease the applicability of the CTP. Assume a weaker
explanationT,E′

� G. ThenT � E′ → G and (becauseG = E)
T � E′ → E. SinceE′ is weaker thanE, we knowE→ E′, and
consequentlyT � E↔ E′.

We want to extend this to filtered circumscription, which
adds afilter formula F. Since the filter is outside the scope
of circumscription, it should not invalidate any conclusion
drawn from the original theory by the inference rule above.
However, it might allow us to draw new conclusions. As
an intermediate step, we reformulate the CTP so that any
counter-explanations consistent withT are listed explicitly in
the conclusion.

Lemma 3. The following inference rule is sound and com-
plete for circumscription:

T,E � G
T,CE1 � ¬E
...
T,CEn � ¬E

Circ(T;M) � ¬CE1∧·· ·∧¬CEn → G

Where CE1, . . . ,CEn are all minimal
counter-explanations consistent with T.

Proof. Completeness follows since if the CTP can be used to
proveG, there are no consistent counter-explanations, and the
implication antecedent collapses to true. To prove soundness,
assume that we can use the above rule to proveG. It must
be the case thatCirc(T;M) � ¬CE1∧ ·· ·∧¬CEn. Since each
¬CEi is a disjunction of minimized predicates, and circum-
scription never makes the extension of a minimized predicate
larger, we haveT � ¬CEi . But the rule assumes everyCEi
consistent withT. This is only possible ifn = 0, in which
caseG follows from the original CTP.

Note that it suffices to consider minimal counter-
explanations. Suppose thatCEi ⊂CE′

i . If we can prove¬CEi ,
then we can also prove the weaker condition¬CE′

i .

The new rule makes it clear that when thereare counter-
explanations consistent withT, these could become inconsis-
tent after adding the filterF, and the implication used to con-
cludeG after all. A näıve implementation could simply add
all (finitely many) implications produced by the above proof
rule toT, creating a first-order equivalent1 of Circ(T;M), and
appendF. By running a sound and complete theorem prover
one could deriveG using Modus Ponens on the implications
whose antecedent counter-explanations are inconsistent with
this new filtered circumscriptionF,Circ(T;M):

Circ(T;M) � ¬CE1∧·· ·∧¬CEn → G

F,Circ(T;M) � ¬CE1∧·· ·∧¬CEn
MP

F,Circ(T;M) � G

It would, however, be very inefficient to add all implica-
tions when we only care about those implications that are rel-
evant in a proof ofG. Instead, we can get exactly the same
result by adding an FCTP inference rule that allows us to con-
clude G directly, whenever all counter-explanations consis-
tent withT are inconsistent with the filtered circumscription
F,Circ(T;M):

T,E � G
T,CE1 � ¬E
...
T,CEn � ¬E
F,Circ(T;M) � ¬CE1
...
F,Circ(T;M) � ¬CEn

FCTP
F,Circ(T;M) � G

Where CE1, . . . ,CEn are all minimal
counter-explanations consistent with T.

Theorem 1. The FCTP inference rule is sound and complete
for filtered circumscription.

1It is always possible to construct a first-order equivalent of
Circ(T;M) given Ginsberg’s assumption of universal theories with
unique names and domain closure axioms.
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Proof. Each proof produced by the naı̈ve algorithm corre-
sponds to a proof using the FCTP rule, obtained by replacing
applications of Modus Ponens on one of the added implica-
tions by an application of the FCTP rule. Likewise, any ap-
plication of the FCTP rule can be replaced by an implication
and an application of Modus Ponens of the naı̈ve algorithm.

5 Examples
Let us use some TAL reasoning problems to illustrate the use
of the FCTP. The proofs are abbreviated compared to the
output of the implementation described in Section 6. E.g.,
we use the same (incremental and interruptible) consistency
checking mechanism as Poole’s THEORIST[1991] but do
not display these steps below. All of the examples refer to the
following filter formula asF :

¬Occlude(t +1, f ) → (Holds(t, f ,v)↔ Holds(t +1, f ,v))

Consider first the simplest case of fluent persistency
throughF . The fluentaliveshould persist from 0 to 1:

{1} 1 Holds(0,alive, true)
{} 2 Show Holds(1,alive, true)

The only way to show this is to use the filterF’s persistence
axiom:

{} 3 Show¬Occlude(1,alive) F,1,2

While none of the given formulas entail non-occlusion, we
can apply the FCTP. First,¬Occlude(1,alive)can be used as
its own explanation:

{4} 4 ¬Occlude(1,alive) 3

Next, we must find all counter-explanations consistent with
T, i.e. all abductive explanations ofOcclude(1,alive)usingT:

{} 5 Show Occlude(1,alive) 3

Given the theoryT consisting of Row 1, it is impossible to
proveOcclude(1,alive). Consequently there are no counter-
explanations and the proof succeeds:

{1,4} 6 Holds(1,alive, true) F,1,4

The following example illustrates how the simultaneous
minimization of Holds and ¬Holds can provide counter-
examples that prevent credulous conclusions in the case of
incomplete information ofloadedin the initial state:

{1} 1 Holds(0,alive, true)
{2} 2 Holds(0,loaded, true)→

Occlude(1,alive)
{} 3 Show Holds(1,alive, true)
{} 4 Show¬Occlude(1,alive) F,1,3
{5} 5 ¬Occlude(1,alive) 4
{} 6 Show Occlude(1,alive) 4
{} 7 Show Holds(0,loaded, true) 2,6
{8} 8 Holds(0,loaded, true) 7
{2,8} 9 Occlude(1,alive) 2,8

Since any attempt to apply FCTP recursively to prove
Holds(0,loaded, f alse)fails, we have a consistent Row 8 that

counter-explains Row 5, and the proof fails. In other words,
since it is possible that the gun is loaded, it is not safe to rely
on the persistence of alive.

Here is an example in which Ginsberg’s CTP does not give
the expected result due to TAL’s filtered circumscription:

{1} 1 Holds(0,alive, true)
{2} 2 Holds(0,loaded, f alse)
{3} 3 Holds(1,loaded, true)→ Occlude(2,alive)
{} 4 Show Holds(2,alive, true)

The goal follows if alive is not occluded. The first
invocation of FCTP comes up with the explanation for
¬Occlude(2,alive) in Row 6, but also a potential counter-
explanation forOcclude(2,alive)consistent withT in Row 9:

{} 5 Show¬Occlude(2,alive) F,1,4
{6} 6 ¬Occlude(2,alive) 5
{} 7 Show Occlude(2,alive) 5
{} 8 Show Holds(1,loaded, true) 3,7
{9} 9 Holds(1,loaded, true) 8

A recursive invocation of FCTP attempts to disprove
the counter-explanation by showing that its negation
(where¬Holds(t, f , true)↔ Holds(t, f , f alse)) follows from
F,Circ(T;M):

{} 10 Show Holds(1,loaded, f alse) 8
{} 11 Show¬Occlude(1,loaded) F,2,9
{12} 12 ¬Occlude(1,loaded) 11
{} 13 Show Occlude(1,loaded) 11
{2,12} 14 Holds(1,loaded, f alse) F,2,12

This proof succeeds in Row 14 since the explanation in
Row 12 is not counter-explained. Row 9 is thus not consistent
with the filtered circumscription and the original conclusion
follows after all:

{} 15 Show¬Occlude(1,alive) F,1,4
{16} 16 ¬Occlude(1,alive) 15
{} 17 Show Occlude(1,alive) 15
{1,16} 18 Holds(1,alive, true) F,1,16
{1,2,6,12,16} 19 Holds(2,alive, true) F,6,18

Finally, let us consider a disjunctive example. Suppose that
activating a lamp either causes a change to the bulb’s lit state
or its broken state:

{1} 1 Occurs(t1, t2,activate)→
Occlude(t2, lit )∨Occlude(t2,broken)

{2} 2 Occurs(0,1,activate)

Predicate completion requires that the theory can be put in
the formΦ(t, f )→Occlude(t, f ) whereΦ(t, f ) does not con-
tain occurrences ofOcclude. But this is not possible given the
above disjunctive action effect. TAL’s predicate completion
has been applied to actions with non-deterministic effects,
but never when the occlusion itself is non-deterministic. The
FCTP, however, has no problems proving e.g. that one of the
fluents will not be occluded:
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{} 3 Show¬Occlude(1,lit )∨
¬Occlude(1,broken)

{4} 4 Occlude(1,lit ) 3
{4} 5 Show¬Occlude(1,broken) 3
{4,6} 6 ¬Occlude(1,broken) 5
{4} 7 Show Occlude(1,broken) 5

The equivalences in Section 4.1 reduce the problem using
the assumption in Row 4 and the new goal in Row 5, which
has an explanation in Row 6.

From the action and its occurrence in Row 1 and 2 we know
that one of the fluents are occluded. A counter-explanation to
Row 6 is therefore¬Occlude(1,lit ):

{1,2} 8 Occlude(1,lit )∨Occlude(1,broken) 1,2,7
{4} 9 Show¬Occlude(1,lit ) 7,8

However, the assumption in Row 4 is not part of the abduc-
tive explanation. It was introduced by the previous goal re-
duction and is still in force when trying to prove the counter-
explanation. Consequently, assuming¬Occlude(1,lit ) would
be inconsistent, the only counter-explanation fails, and the
conclusion follows:

{1,6} 10 ¬Occlude(1,lit )∨¬Occlude(1,broken) 3,6

Given the same action specification and action occurrence,
one of the fluents has to be occluded at time 1. Attempting to
prove both not occluded fails:

{} 3 Show¬Occlude(1,lit )∧
¬Occlude(1,broken)

{} 4 Show¬Occlude(1,lit ) 3
{5} 5 ¬Occlude(1,lit ) 4
{} 6 Show Occlude(1,lit ) 4
{1,2} 7 Occlude(1,lit )∨Occlude(1,broken) 1,2,6
{} 8 Show¬Occlude(1,broken) 6,7
{9} 9 ¬Occlude(1,broken) 8
{1,2,9} 10 Occlude(1,lit ) 7,9

This time ¬Occlude(1,broken) is a consistent counter-
explanation to Row 5 since there is no way to prove that its
negation follows. The proof of the conjunction fails since the
proof of the first conjunct fails. The failure would repeat if
trying to prove the second conjunct first.

6 Unified Planning and Reasoning
Let us turn now to the task of implementing a planning and
reasoning system based on the theory presented above. A
commonly used implementation tool is logic programming.
Indeed, earlier work with TAL made planning and reason-
ing possible through a compilation of TAL formulas into
Prolog programs[Magnusson, 2007]. Proofs werededuc-
tive and instantiated a plan variable, similarly to the instan-
tiation of the situation term in deductive Situation Calculus
planning. Other work extends Prolog’s inference mechanism
to abductionby means of a meta-interpreter. This has been
the de facto standard in work on abductive planning in Event
Calculus, e.g. in[Shanahan, 2000; Deneckeret al., 1992;
Missiaenet al., 1995].

6.1 Pattern-Directed Inference System
We have explored a different avenue with a theorem prover
based onnatural deduction, inspired by similar systems by
Rips[1994], Pelletier[1998], and Pollock[2000]. This is an
interesting alternative to the more common resolution method
used by most theorem provers, including Prolog. A nat-
ural deduction prover works with the formulas of an agent’s
knowledge base in their “natural form” directly, rather than
first compiling them into clause form. This fits perfectly with
the algorithm in Section 4 that has already eliminated the
need for a compilation step for nonmonotonic reasoning.

The system uses pattern-directed inference similar to For-
bus and de Kleer’s fast tiny rule engine[1993]. To see how
this works let us look at the inference rules. Applicable rules
are added to a queue. By controlling which rule applica-
tion the prover selects next we can implement e.g. depth-first,
breadth-first, or best-first search.

Rules are divided into forward and backward rules. For-
ward rules are triggered whenever possible. They are there-
fore designed to be convergent, so as not to generate new
inferences forever. An example is the modus ponens rule,
which concludesQ whenever bothP andP→ Q are present
in the knowledge base. The results in this paper general-
izes our previous work that relied on forward rules to im-
plement an incomplete consistency check[Magnusson, 2007;
Magnusson and Doherty, 2008a; 2008b]. By explicitly trying
to counter-explain abductive assumptions we no longer have
to rely on forward rules being strong enough to detect incon-
sistent assumptions.

Backward rules, in contrast, are used to search backwards
from the current proof goal and thus exhibit goal direction.
An example is the goal chaining rule, which addsShow Pas
a new goal whenever bothShow QandP→ Q are present in
the knowledge base.

Combining forward and backward rules results in a bidi-
rectional search for proofs that is pattern-directed since the
prover’s current goals are explicitly represented (byShowfor-
mula “patterns”) in the knowledge base. This further con-
tributes to the incremental nature of the reasoner. Inference
can be interrupted at any time and later resumed since the
knowledge base keeps track of what the prover was about to
do.

6.2 Abductive Planning
The same reasoning mechanism can be used for abductive
planning. Instead of reasoning about the effects of a given
narrative, we reason about what narrative would have the de-
sired effects.

Given a domain, we define a planning goalG as a conjunc-
tion of groundHolds literals. A plan forG is then a setTocc
of ground atomicOccursformulas such that:

Tper∧Circ(T ∧Tocc;Occlude,Occurs,Holds,¬Holds)� G

where the left hand side is consistent.
To generateTocc we simply addOccursto the set of ab-

ducibles for the proof goal. (Note however that we do not
add Occurs as an abducible to explanations and counter-
explanations. Doing so would amount to planning to thwart
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Figure 1: A logical agent architecture.

our own plans!) The soundness of this planning method fol-
lows directly from the soundness of the FCTP. Its imple-
mentation is already implicit in the theorem prover described
above.

6.3 Logical Agents
Using the same reasoning mechanisms for many problems
faced by autonomous agents results in a particularly sim-
ple agent architecture, as illustrated by Figure 1. The agent
is equipped with a knowledge base containing formulas en-
coding knowledge about actions, world laws, and memory
of recent events and percepts. The knowledge is used by
the pattern-directed inference system (PDIS), with the help
of natural deduction (ND) and the abductive algorithm from
Section 4, to plan its actions.

But when plans meet the World they often fail. Executing
a plan will achieve the goal only if the plan’s assumptions
hold up. The agent can detect some failures early through
execution monitoring. In particular, persistence assumptions
are represented in the plan by non-occlusion assumptions and
can be continually evaluated. When a failure is perceived,
that percept constitutes a counter-explanation to the assump-
tion. Neither the assumption nor the planning goal derived
from it are justified conclusions given the new percept. This
immediately makes the pattern-directed goal-chaining infer-
ence rules applicable in trying to find an alternative proof of
the goal. The result is an automatic plan revision and fail-
ure recovery process as the agent uses abductive planning to
reestablish goals that lost their justification and execute an
alternative plan.

7 Discussion
Predicate completion and the filtered circumscriptive theorem
prover (FCTP) are two methods for automated reasoning in
logics that use filtered circumscription. E.g., they both sat-
isfy the circumscriptive characterization of TAL and produce
the same end result, given the restrictions in Section 4. But
in practical problem solving we believe the FCTP to have a
number of desirable properties and advantages.

7.1 Abductive Planning and Reasoning
The FCTP uses abductive proof methods to reason with the
original TAL formulas directly. As noted by Brewka, Dix,
and Konolige[1997]:

Abduction offers several benefits from a knowl-
edge representation viewpoint. It does not require
the assumption of complete knowledge of causa-
tion, and it is not necessary to assert the explanatory

closures (which can lead to inconsistency and is
computationally discouraging since it is performed
globally on the theory).

Since the method does not presume complete knowledge
of action occurrences, applications in planning open up. We
exemplified this by using the reasoner for abductive planning.
Furthermore, this unification of planning and reasoning forms
the basis of a logical agent architecture that is highly capable
despite its simplicity.

7.2 Reasoning Without Compilation
Predicate completion works by compiling the theory into a
first-order equivalent with which reasoning proceeds. Lif-
schitz[1994] comments:

But it should be observed that this approach to the
automation of circumscription is not the only one
possible. In fact, it may be unattractive, in view of
the fact that it requires preprocessing the circum-
scription in a manner that is not related in any way
to the goal formula.

The FCTP reasons with the TAL formulas directly, with-
out first transforming the theory. Its efforts are spent only
on those formulas of the knowledge base that are potentially
relevant to the goal. The resulting proofs are also easier to
comprehend since they refer directly to the formulas that were
given to the system as input. Comprehension is also improved
by the mechanism’s similarity to argumentation and thereby
to human reasoning. It would be interesting to further investi-
gate the relation between FCTP and argumentation-theoretic
systems.

7.3 Doubly Defeasible Reasoning
Finally, let us adopt a long term view and consider logical
agents with commonsense knowledge. With the manual de-
velopment or automated learning of very large knowledge
bases, which are presumably needed for commonsense rea-
soning, it will be impractical or even impossible to search
through all conceivable counter-explanations to a defeasible
inference before taking action. It becomes necessary to con-
sider what Pollock[2008] refers to as “doubly defeasible”
reasoning. Not only can the reasoner change its mind with
new information, it can also change its mind with more time
to reason with its current information.

Predicate completion forces the agent to prove conclusions
deductively in a first-order equivalent to the circumscribed
theory. There is no way to interrupt the reasoning and act to
the best of one’s current knowledge. The incremental nature
of the FCTP makes this possible. If counter-explanations are
tested in the order of their likelyhood, it implements, in effect,
an any-time algorithm that is always able to respond with the
current best answer.

8 Conclusion
We are interested in building logical agents that use knowl-
edge and reasoning to achieve goals. Observing that the
world is both uncertain and dynamic motivates our choice of
reasoning mechanisms that are incremental in nature. The
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computational effort of pondering a question should be re-
lated to the extent of relevant knowledge and the time avail-
able, not the total size of the knowledge base nor a potentially
unbounded time requirement. Only then will the technology
have the potential to scale up to very large knowledge bases.

One step in this direction is reported here in our inves-
tigation of Temporal Action Logic and its application in a
logical agent architecture. By extending Ginsberg’s circum-
scriptive theorem prover we have made it applicable to logics
defined in terms of filtered circumscription. The abduction-
based filtered circumscriptive theorem prover reasons directly
with the input formulas, removing the need for a compilation
step involving the entire knowledge base. Its interruptible na-
ture enables an agent to act to the best of its knowledge given
only limited time for reasoning. Finally, its double duty as an
abductive planner makes possible a particularly simple agent
architecture.

An agent architecture based exclusively on logical reason-
ing will necessarily suffer somewhat in efficiency compared
to less general methods, despite being designed with scalabil-
ity in mind. But achieving satisfactory performance in certain
domains is already possible. E.g., we have applied the archi-
tecture to the control of computer game characters that re-
quire real-time interaction[Magnusson and Doherty, 2008b].
We believe computer games to be an excellent domain for em-
pirical studies of logical agents on the road from tiny bench-
mark problems towards larger real world applications.
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Linköping University, 2005.

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In
Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 3, pages 298–352. Oxford Univer-
sity Press, New York, NY, USA, 1994.

[Magnusson and Doherty, 2008a] Martin Magnusson and
Patrick Doherty. Deductive planning with inductive loops.
In Proc. of KR 2008, pages 528–534, 2008.

[Magnusson and Doherty, 2008b] Martin Magnusson and
Patrick Doherty. Logical agents for language and action.
In Proc. of AIIDE-08, 2008.

[Magnusson, 2007] Martin Magnusson.Deductive Planning
and Composite Actions in Temporal Action Logic. Licen-
tiate thesis, Link̈oping University, 2007.

[Missiaenet al., 1995] Lode Missiaen, Maurice
Bruynooghe, and Marc Denecker. CHICA, an ab-
ductive planning system based on event calculus.Journal
of Logic and Computation, 5(5):579–602, 1995.

[Pelletier, 1998] Francis Jeffry Pelletier. Natural deduction
theorem proving in THINKER.Studia Logica, 60:3–43,
1998.

[Pelletier, 1999] Francis Jeffry Pelletier. A brief history of
natural deduction.History and Philosophy of Logic, 20:1–
31, 1999.

[Pollock, 2000] John Pollock. Rational cognition in OS-
CAR. In Intelligent Agents VI: Agent Theories, Architec-
tures, and Languages, volume 1757 ofLecture Notes in
AI, pages 71–90. Springer Verlag, 2000.

[Pollock, 2008] John L. Pollock. OSCAR: An architecture
for generally intelligent agents. InProc. of AGI 2008,
pages 275–286. IOS Press, 2008.

[Poole, 1991] David Poole. Compiling a default reasoning
system into prolog.New Generation Computing, 9(1):3–
38, 1991.

[Rips, 1994] Lance J. Rips.The psychology of proof: deduc-
tive reasoning in human thinking. MIT Press, 1994.

[Sandewall, 1994] Erik Sandewall. Features and Fluents:
The Representation of Knowledge about Dynamical Sys-
tems, volume 1. Oxford University Press, 1994.

[Shanahan, 1997] Murray Shanahan. Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press, 1997.

[Shanahan, 2000] Murray Shanahan. An abductive event
calculus planner. The Journal of Logic Programming,
44:207–239, 2000.

62



A Belief Revision Approach to Inconsistency Handling in Multi-Agent Systems
Luciano H. Tamargo Alejandro J. Garcı́a
Marcelo A. Falappa Guillermo R. Simari

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

Artificial Intelligence Research and Development Laboratory,

Department of Computer Science and Engineering - Universidad Nacional del Sur (UNS),

Bahı́a Blanca, ARGENTINA,

e-mail: {lt, ajg, maf, grs}@cs.uns.edu.ar

Abstract
In this paper, two methods that follow different at-
titudes when facing inconsistent knowledge will be
analyzed. One is to use a revision operator over
the knowledge base in order to preserve its consis-
tency, the other is to cope with inconsistency. For
the first case we will present a formalism for knowl-
edge representation and consistency maintenance
in a multi-agent system where deliberative agents
can receive new information from others through
communication. For the latter, an argumentative
consequence in layered knowledge bases will be
presented. Furthermore, we will compare these
methods and we will show that they have several
differences. However, we will show that they are
equivalent under certain restrictions.

1 Introduction
One of the emerging important problems in the management
of knowledge based systems is inconsistency handling. In-
consistency may be present for instance when there are ex-
ceptions to general rules, or there are several possibly dis-
agreeing sources feeding the knowledge base. There are two
attitudes that an agent can adopt when facing inconsistent
knowledge. One is to revise the knowledge base with the
main goal of preserving consistency, and the other is to cope
with the inconsistency. In the first approach, the problem is
that part of the information has to be thrown away and we no
longer have access to it. Coping with inconsistency bypasses
this difficulty.

As mentioned in [Benferhat et al., 1993], the use of pri-
orities among formulas is very important to appropriately re-
vise inconsistent knowledge bases. In [Gärdenfors, 1988] it is
shown that any revision process that satisfies natural require-
ments is implicitly based on such a set of priorities. Handling
priorities has been shown to be completely in agreement with
possibilistic logic (see [Dubois et al., 1992] and [Benferhat et
al., 1992]).

In [Tamargo et al., 2008], we have defined a revision op-
erator which is based on a credibility ordering among agents.
There, we address the problem of knowledge representation
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in a collaborative multi-agent system (MAS) where agents
can obtain new information from others through communica-
tion. Informant agents are ranked by their credibility. This
credibility order is used when new incoming information is
contradictory with the current agent’s belief base. We pro-
posed a method for analyzing the information received; if
inconsistency arises, the credibility order is used to decide
which information prevails. The proposed operator satisfies
the minimal change principle, and incoming information can
be rejected when the agent has more credible beliefs that con-
tradict the new information.

In [Benferhat et al., 1993] several methods for coping with
inconsistency are investigated by suitably defining notions
of consequence capable of inferring non trivial conclusions
from an inconsistent knowledge base. These consequence re-
lations coincide with the classical definition when the knowl-
edge base is consistent.

In this paper, the methods proposed in [Tamargo et al.,
2008] and in [Benferhat et al., 1993] will be analyzed. It is
clear that both methods follow different attitudes when facing
inconsistent knowledge. The main difference between these
approaches is that in [Benferhat et al., 1993] inconsistency-
tolerant consequence relations in layered knowledge bases
are proposed, whereas in [Tamargo et al., 2008] a revision
operator is defined. In this work, we will show that the sys-
tems used in both approaches are equivalent under certain re-
strictions. That is, in [Tamargo et al., 2008] a plausibility
function is used to calculate the plausibility of a sentence,
and in [Benferhat et al., 1993] a procedure is proposed to de-
termine if a sentence is an argumentative consequence of a
knowledge base. We will show that the plausibility function
and the procedure are equivalent.

As we will show in the next section, in [Tamargo et al.,
2008] agents’ epistemic states will be represented by belief
bases [Fuhrmann, 1991; Hansson, 1992]. The most widely
studied method of changing a belief state is partial meet
contraction-revision, also known as the AGM model [Al-
chourrón et al., 1985]. The AGM model represents epis-
temic states by means of belief sets, that is, sets of sen-
tences closed under logical consequence. However, our epis-
temic model uses belief bases, that is, sets of sentences
not necessarily closed. As it will be explained below, we
will adapt the notion of kernel contraction [Hansson, 1994;
1999] to our epistemic model, in which the beliefs are pro-
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vided by agents.
It is important to note that the revision operator proposed

in [Tamargo et al., 2008] is similar to the revision operator
proposed in [Benferhat et al., 2002]. However, these opera-
tors are built in a different way. In [Benferhat et al., 2002]
the epistemic state is represented by a possibility distribution
which is a mapping from the set of classical interpretations or
worlds to the [0,1] interval. This distribution represents the
degree of compatibility of the interpretations with the avail-
able information. In [Benferhat et al., 2002] the revision is
done over the possibility distribution. This revision modifies
the ranking of interpretations so as to give priority to the input
information. The input must be incorporated in the epistemic
state; in other words, it takes priority over information in the
epistemic state. They discuss the revision with respect to un-
certain information; the input is of the form (φ, a), which
means that the classical formula φ should be believed to a
degree of certainty of exactly a.

Both approaches differ in some interesting ways. A first
difference occurs in the way they handle the epistemic state.
In [Benferhat et al., 2002] the authors use belief sets, whereas
in [Tamargo et al., 2008] they use belief bases. The use of
belief bases makes the representation of the agent’s cogni-
tive state more natural and computationally tractable. That is,
following [Hansson, 1999], we consider that agents’ beliefs
could be represented by a limited number of sentences that
correspond to the explicit beliefs of the agent. Another im-
portant difference, related to the intention of using the opera-
tor in a MAS environment, is the additional information that
is added to each belief. Here, as in [Tamargo et al., 2008],
to decide whether to reject or accept a new belief, a com-
parison criterion among beliefs was defined. This criterion
(called plausibility) is based on the credibility order among
agents. We have assumed that this order is fixed; however,
this order can be changed without affecting the behavior of
the operator. This characteristic is one of the motivations for
using agent identifiers instead of representing the plausibility
of a sentence as a number as in [Benferhat et al., 2002]. Fur-
thermore, since in [Tamargo et al., 2008] the revision process
is based on the credibility order among agents, it is possible
to define an operator to revise the credibility order. This will
allow to represent changes over the credibility order. More-
over, in [Tamargo et al., 2008] a total order among agents is
necessary, but this assumption can be relaxed considering a
partial order among agents.

A variety of notations have been adopted in the literature
of Belief Revision (BR) in Multi-Agent Systems. In [Liu and
Williams, 1999] an exhaustive analysis of these approaches is
presented and a very interesting hierarchy is introduced (see
Figure 1). Observe that in the hierarchy, Multi-Agent Belief
Revision (MABR) and Belief Revision using information from
Multiple Sources (MSBR) are distinguished.

As stated in [Liu and Williams, 1999], BR could be consid-
ered as part of the agent’s skills to maintain the consistency
of its own epistemic state. In this case, an individual BR pro-
cess is carried out in a multi-agent environment, where the
new information may come from multiple sources and maybe
conflict. BR in this sense is called MSBR by [Dragoni et al.,
1994]. Cantwell [Cantwell, 1998] tries to resolve conflicting

information by ordering the information sources on the basis
of their trustworthiness. This could be served as a rational
way of generating the new information credibility based on
the source reliability using the terms of MSBR.

On the other hand, as discussed in [Liu and Williams,
1999], BR could also be used to achieve a society’s or team’s
mutual belief goals (e. g., reaching consensus before carry-
ing out plans). In this setting, more than one agent takes
part in the process. In order to pursue the mutual goal, the
agents involved need to communicate, cooperate, coordinate,
and negotiate with one another. A MABR system is a MAS
whose mutual goal involves BR. Different formalisms have
been presented to deal with MABR [Liu and Williams, 1999;
2001; Kfir-Dahav and Tennenholz, 1996].

MSBR studies individual agent revision behaviors, i.e.,
when an agent receives information from multiple agents to-
wards whom it has social opinions. MABR investigates the
overall BR behavior of agent teams or a society. MSBR is
one of the essential components of MABR. In our approach,
as in [Tamargo et al., 2008], we focus on MSBR.

The AGM paradigm [Alchourrón et al., 1985] has been
widely accepted as a standard framework for BR. But it is
only capable of prescribing revision behaviors of a single
agent. The BR process is more complex in the multi-agent
case. Besides the principle of minimal change, there exist
other requirements due to the sophisticated agent interactions.

An agent is capable of carrying out Individual Belief Re-
vision (IBR), while an agent society or team is capable of
MABR. IBR in a single agent environment (Single Belief Re-
vision, SBR) could be achieved using classical BR satisfying
or adapting AGM postulates. IBR in a multiple agent envi-
ronment is MSBR, i.e., a single agent will have to process
information coming from more than one source.

Figure 1: Belief Revision Hierarchy

The paper is organized as follows. The next section is a
summary of plausible belief bases based on agent credibil-
ity. Section 3 contains a summary of argumentative inference
in layered knowledge bases where layers express degrees of
certainty as in possibilistic logic [Dubois et al., 1992]. Then,
in Section 4 we will show the equivalence between the sys-
tems proposed in [Benferhat et al., 1993] and [Tamargo et
al., 2008]. In Section 5 a non-prioritized revision operator
that uses the plausibility order is introduced. A discussion
follows, and finally we offer some interesting conclusions.

2 Plausible Belief Bases Based on Agent
Credibility

In this section we will show the epistemic model used
in [Tamargo et al., 2008]. Furthermore, we will describe
the plausibility function (Definition 8) which uses a system
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that is equivalent to the one based on argumentative infer-
ence as defined in [Benferhat et al., 1993]. Throughout the
rest of this paper, a propositional language L with a com-
plete set of boolean connectives will be adopted, namely {¬,
∧, ∨, →, ↔}. Also, we assume the existence of an op-
erator Cn that satisfies inclusion (B ⊆ Cn(B)), iteration
(Cn(B) = Cn(Cn(B))), and monotonicity (if B ⊆ C then
Cn(B) ⊆ Cn(C)) and includes the classical consequence
operator. In general, we will write α ∈ Cn(B) as B ` α.

2.1 Epistemic Model
We consider a finite set of agent identifiers that is denoted
as Agents . Since agents can obtain information from other
agents, agents’ beliefs are represented as tuples (φ,A), where
φ is a sentence of a propositional language L and A ∈
Agents . Let K = 2L×Agents , each agent A ∈ Agents has a
consistent belief base KA ∈ K. As stated above, informant
agents will be ranked by their credibilities. Hence, a Credi-
bility Order over the set Agents is introduced:
Definition 1 A credibility order among agents, denoted by
‘≤Co’, is a total order over Agents , where A1 ≤Co A2

means that A2 is at least as credible as A1. The strict re-
lation A1 <Co A2, denoting that A2 is strictly more credible
than A1, is defined as A1 ≤Co A2 and A2 6≤Co A1. More-
over, A1 =Co A2 means that A1 is as credible as A2, and it
holds when A1 ≤Co A2 and A2 ≤Co A1.
Since this order is assumed to be total, the following proper-
ties hold for all A1, A2, A3 ∈ Agents:
− Totality or Completeness: A1 ≤Co A2 or A2 ≤Co A1.
− Transitivity: if A1 ≤Co A2 and A2 ≤Co A3 then A1 ≤Co

A3.
− Antisymmetry: if A1 ≤Co A2 and A2 ≤Co A1 then
A1 =Co A2 .
Example 1 Consider a set Agents = {A1, A2, A3, A4}
where the credibility order is A1 ≤Co A2, A2 =Co

A3, A3 ≤Co A4. The belief base KA1 = {(ψ, A3),
(φ,A2), (ω, A3), (φ → ψ, A2), (φ → ψ, A1), (ω → ψ, A1),
(φ → ϕ,A2), (ϕ → ψ, A3), (ρ,A1), (ω → ρ,A2)}. Ob-
serve that KA1 has two tuples with the sentence φ → ψ.

Next, two auxiliary functions are introduced in order to ob-
tain the set of sentences and the set of agents that belong to a
belief base K ∈ K.
Definition 2 The sentence function, Sen : K → 2L, is a
function such that for a given belief base K ∈ K, Sen(K) =
{φ : (φ,A) ∈ K for any A ∈ Agents}.

Definition 3 The agent identifier function, Ag : K →
2Agents , is a function such that for a given belief base K ∈ K,
Ag(K) = {A : (φ,A) ∈ K for any φ ∈ L}.

We say that a belief base K is consistent if Sen(K) is a
consistent set. As stated above, agents can receive new beliefs
from other informants. This new information can be contra-
dictory with their current beliefs. For instance, consider again
the belief base (KA1) of Example 1, where Sen(KA1) ` ψ
(observe that there are several derivations for ψ). Suppose
now that agent A1 receives the input (¬ψ, A4). It is clear that
adding (¬ψ, A4) to KA1 will produce an inconsistent belief
base. Therefore, the agent has to revise its beliefs and decide

whether it rejects (¬ψ,A4) or it withdraws ψ. The credibil-
ity order will be used to decide which information prevails.
However, since there can be several derivations of ψ, then we
have to “cut” all of them. For doing that, all the minimal sub-
sets of KA1 that entail ψ will be obtained, using an extension
of Kernel contractions [Hansson, 1994]. These are based on
a selection among the sentences that are relevant to derive the
sentence to be retracted. In order to perform a contraction,
kernel contractions use incision functions which cut into the
minimal subsets that entail the information to be given up.
We will adapt the notion of kernel contraction to our epis-
temic model. First, we will define kernel set and then we will
present incision functions that cut beliefs according to their
plausibility.
Definition 4 Let K ∈ K and φ ∈ L. Then H is a φ-kernel
of K if and only if 1) H ⊆ K; 2) Sen(H) ` φ; 3) if H ′ ⊂ H ,
then Sen(H ′) 6` φ.

Note that a φ-kernel is a minimal set of tuples from K that
entails φ. The set of φ-kernels of K is denoted K⊥⊥φ and is
called kernel set.

The information (φ,Ap) that an agent Ai receives from Ap

is consistent with its current belief base KAi if Sen(KAi) 6`¬φ. If Sen(KAi) 6` ¬φ, then it is clear that (φ,Ap) is added
to KAi . If Sen(KAi) ` φ then (φ, Ap) is also added to KAi

because the plausibility of φ may be increased (see Section
“Sentence Plausibility” below). Therefore, a belief base K ∈
K may contain the same belief in two tuples with different
agent identifiers. For instance, in Example 1 the sentence
φ → ψ is in two tuples. From the tuples point of view there
is no redundancy, due to the fact that each tuple represents a
different informant.

In the next section we will show how our operator uses
the additional information (agent identifiers) in order to guide
the revision process. The plausibility of the sentences will be
defined by using the agent identifiers stored in the belief bases
of the agents and the credibility order among agents.

2.2 Sentence Plausibility
We will use the agent identifier to compute the plausibility of
the beliefs, i.e., each of the agent’s beliefs will have an asso-
ciated plausibility that will depend on the agent identifier and
the credibility order among agents. The behavior of the plau-
sibility is similar to that of epistemic entrenchment defined
in [Gärdenfors and Makinson, 1988]. That is, if φ and ψ are
sentences in L, the notation φ ¹KA

ψ means “ψ is at least as
plausible as φ relative to the belief base K of agent A”.

A belief base K ∈ K may support either explicit or en-
tailed sentences. The explicit sentences are those contained
in Sen(K), while the entailed sentences are those that are not
in Sen(K) but they are entailed by sentences in Sen(K). In
order to obtain the entailed sentences from a belief base K
we will use the following function:
Definition 5 The belief function, Bel : K → 2L, is a func-
tion such that for a given belief base K ∈ K, Bel(K) = {φ :
φ ∈ L and Sen(K) ` φ}.

In general, there may be several proofs for ψ from K.
Therefore, to calculate the plausibility of a sentence (ψ) we
must analyze all its proofs. In order to do this, the kernel

65



sets are used. We consider that this calculation should be
cautious, that is, from each ψ-kernel, we want to obtain the
lesser-plausibility tuples. This gives us the plausibility of
each proof. Then, the plausibility of a derived sentence ψ
will be the greater plausibility among those of each ψ-kernel.
In order to define this, two functions will be given next.
Definition 6 The lesser-credibility sources function, min :
K → 2K, is a function such that for a given belief base K ∈
K, min(K) = {(φ,Ai) : (φ,Ai) ∈ K and for all (ϕ,Aj) ∈
K, Ai ≤Co Aj}.
Definition 7 The greater-credibility sources function,
max : K → 2K, is a function such that for a given belief
base K ∈ K, max(K) = {(φ,Ai) : (φ,Ai) ∈ K and for all
(ϕ,Aj) ∈ K,Aj ≤Co Ai}.

Example 2 Consider Agents = {A1, A2, A3} where
A1 ≤Co A2 ≤Co A3. Let KA1 = {(φ,A1), (φ,A2),
(ψ, A1), (ρ,A1), (φ → ρ,A3)} be the belief base of
A1. Then, Bel(KA1) will contain the sentences from
Sen(KA1) plus the sentences derived by “`”. For in-
stance, φ, ψ, ρ, φ ∨ ψ, φ ∨ ψ ∨ ρ, . . . , and so on. Then,
min(KA1) = {(φ,A1), (ψ, A1), (ρ,A1)} and max(KA1) =
{(φ → ρ,A3)}.

Next, we will introduce a function that returns the plau-
sibility of a sentence that can be explicitly in K or entailed
from K.
Definition 8 The Plausibility function, Pl : L × K →
Agents , is a function such that for a φ ∈ L and a belief
base K ∈ K, Pl(φ,K) = Ag(max(

⋃
X∈K⊥⊥φ min(X))).

Note that if (ρ,A1) ∈ KA1 then Pl(ρ,KA1) could
be different from A1. For instance, considering Exam-
ple 2, we have Pl(φ,KA1) = A2, Pl(ψ, KA1) = A1 and
Pl(ρ,KA1) = A2. In Example 4 we will describe (step by
step) how the plausibility function returns an agent identifier.
Definition 9 (Plausibility Criterion) Let KA ∈ K be the
belief base of agent A and let {φ, ψ} ⊆ Bel(KA), then
φ ¹KA

ψ if and only if Pl(φ,KA) ≤Co Pl(ψ, KA).
The strict relation φ ≺KA ψ, representing “ψ is more plau-

sible than φ”, is defined as “φ ¹KA
ψ and ψ �KA

φ”. More-
over, φ 'KA ψ means that φ is as plausible as ψ, and it holds
when φ ¹KA

ψ and ψ ¹KA
φ. From the previous definition

we can observe that the plausibility of the sentences inherits
the properties of the credibility order among agents (‘¹KA ’ is
a total order on L). Furthermore, note that the relation ‘¹KA

’
is only defined with respect to a given KA (different belief
bases may be associated with different orderings of plausibil-
ity as shown in Example 3).
Example 3 Consider a set Agents = {A1, A2, A3} where
the credibility order is A1 ≤Co A2, A2 ≤Co A3. Sup-
pose that agent A2 has the following belief base KA2 =
{(φ,A1), (ψ, A2), (ρ, A3)}, and suppose that agent A3 has
the following belief base KA3 = {(φ,A1), (ψ, A3), (ρ,A2)}.
Then, for both agents, ψ is more plausible than φ (i.e.,
φ ¹KA2

ψ and φ ¹KA3
ψ). However, for A2, ρ is more

plausible than ψ (ψ ¹KA2
ρ) whereas for A3, ψ is more

plausible than ρ (ρ ¹KA3
ψ).

Example 4 Consider a set Agents = {A1, A2, A3} where
the credibility order is A3 ≤Co A2, A2 ≤Co A1. The

belief base of agent A1 is KA1 = {(ψ,A3), (φ,A2),
(φ → ψ, A2), (φ → ψ, A1), (ω, A3), (ω → ψ, A1), (φ →
ϕ,A2), (ϕ → ψ,A3), (ρ,A1), (ω → ρ,A2)}. Suppose that
agent A1 needs to calculate the plausibility of ψ. In order to
do so, A1 will perform the following steps.
• Step 1. Obtain the minimal subsets that derive ψ from belief
base KA1 .
K⊥⊥

A1
ψ = {Ha,Hb,Hc,Hd,He} where

Ha = {(ψ,A3)}, Hb = {(φ,A2), (φ → ψ, A2)}, Hc =
{(φ,A2), (φ → ψ, A1)}, Hd = {(ω,A3), (ω → ψ,A1)}
and He = {(φ,A2), (φ → ϕ,A2), (ϕ → ψ,A3)}.
• Step 2. Obtain from each ψ-kernel ∈ K⊥⊥

A1
ψ the set con-

taining the lesser plausibility tuples determined by the lesser-
credibility sources function:
min(Ha) = {(ψ, A3)}, min(Hb) = {(φ, A2), (φ →
ψ,A2)}, min(Hc) = {(φ,A2)}, min(Hd) = {(ω, A3)} and
min(He) = {(ϕ → ψ,A3)}.
• Step 3. Obtain from the tuples of the previous step
the set containing the greater plausibility tuples determined
by the greater-credibility sources function: max({(ψ, A3),
(φ,A2), (φ → ψ, A2), (ω, A3), (ϕ → ψ, A3)}) =
{(φ,A2), (φ → ψ, A2)}.
• Step 4. Obtain from the tuples of the previous step the set
containing the identifiers determined by the get agent identi-
fier function: Ag({(φ, A2), (φ → ψ, A2)}) = {A2}.

Therefore, Pl(ψ, KA1) = A2. Hence, when ψ is compared
with other beliefs, A2 will be used as the informant of ψ (the
plausibility of ψ will be given by A2).

3 Arguments in Prioritized Knowledge Bases
In this section we will summarize an argumentative conse-
quence relation proposed in [Benferhat et al., 1993]. Further-
more, we will show the procedure which is used to determine
if a sentence is an argumentative consequence of a knowledge
base. Next, in Section 4 we will show that this procedure is
equivalent to the one discussed in the previous section.

In the prioritized case proposed in [Benferhat et al., 1993],
a knowledge base can be viewed as a layered knowledge base
Σ = B1 ∪ . . . ∪ Bn, such that formulas in Bi have the same
level of priority or certainty and are more reliable than the
ones in Bj where j > i. This stratification is modeled by
attaching a weight α ∈ [0, 1] to each formula with the con-
vention that (φ αi) ∈ Bi, ∀i and α1 = 1 > α2 > αn > 0.

A sub-base Σi = E1∪. . .∪En of Σ = B1∪. . .∪Bn where
Ej ⊆ Bj , j = 1, . . . , n, is said to be consistent if Σi 0⊥,
and is said to be maximally consistent if adding any formula
from (Σ−Σi) to Σi produces an inconsistent knowledge base.
Before introducing the notion of argumentation in prioritized
knowledge bases, the notion of entailment in a layered base
is defined.
Definition 10 Let Σ = B1∪. . .∪Bn be a layered knowledge
base. A formula φ is said to be a π-consequence of Σ with
weight αi, denoted by Σ `π (φ αi), if and only if B1∪. . .∪Bi

is consistent, B1∪. . .∪Bi ` φ, and ∀j < i, B1∪. . .∪Bj 0 φ.
In a stratified base, a consistent sub-base of Σ (in general

not maximal), denoted by π(Σ), is induced by the levels of
priority and defined in this way: π(Σ) = B1 ∪ . . .∪Bi, such
that π(Σ) is consistent and B1 ∪ . . . ∪ Bi+1 is inconsistent.
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The remaining sub-base Σ− π(Σ) is simply inhibited. Then,
in [Benferhat et al., 1993] an extension of the argumentative
inference to layered knowledge bases is proposed.
Definition 11 A sub-base Σi of Σ is said to be an argument
for a formula φ with a weight α if it satisfies the following
conditions: 1) Σi 0⊥, 2) Σi `π (φ α), and 3) ∀(ψ β) ∈ Σi,
Σi − {(ψ β)} 0π (φ α).

Definition 12 A formula φ is said to be an argumentative
consequence of Σ, denoted by Σ `A (φ α), if and only if
there exists an argument for (φ α) in Σ, and for each argu-
ment of (¬φ β) in Σ, we have β < α.

Then, in [Benferhat et al., 1993] a procedure is given which
determines if φ is an argumentative consequence of a strati-
fied knowledge base Σ = B1 ∪ . . . ∪ Bn. The procedure
assumes the existence of an algorithm which checks if there
exists an argument for a given formula in some base.

The procedure is based on the construction of the maximal
argument of φ and its contradiction. First the procedure starts
with the sub-base B1, and it checks if there is a consistent
sub-base of B1 which entails φ or ¬φ. If the response is re-
spectively Yes-No then φ is an argumentative consequence of
Σ with a weight α1 = 1; by symmetry, if the response is No-
Yes then ¬φ is in this case the argumentative consequence of
Σ. Now, if the response is Yes-Yes, then we have a conflict.
If the answer corresponds to one of the answers given above
then the algorithm stops.

In the last case, if the response is No-No we repeat the
same cycle described above with B1 ∪ B2, and so on. The
algorithm stops when all the base Σ is checked.
Example 5 Let Σ be the following knowledge base: Σ =
{(ψ 0.4), (φ 0.7), (φ→ψ 0.7), (φ→ ψ 0.9), (ω 0.4), (ω→ψ
0.9), (φ→ϕ 0.7), (ϕ→ψ 0.4), (γ 0.9), (ω→ γ 0.7)}. In the
stratified fashion, the knowledge base Σ can be viewed as fol-
lows: Σ = B1 ∪B2 ∪B3 where, B1 = {(φ → ψ, 0.9), (ω →
ψ, 0.9), (γ, 0.9)}, B2 = {(φ, 0.7), (φ → ψ, 0.7), (φ →
ϕ, 0.7), (ω → γ, 0.7)} and B3 = {(ψ, 0.4), (ω, 0.4), (ϕ →
ψ, 0.4)}. Since B1 6` ψ and B1 ∪B2 ` ψ then, the weight of
ψ is 0.7.

4 Equivalence Between the Two Methods
In [Tamargo et al., 2008] we have presented a formalism for
knowledge representation and consistency maintenance in a
MAS where deliberative agents can receive new information
from other agents, i.e., we adopt Multi-Source Belief Revi-
sion (MSBR). Recall that since agents can obtain informa-
tion from other agents, agents’ beliefs are represented as tu-
ples (φ,Ai), where φ is a sentence of a propositional lan-
guage L and Ai is an agent identifier from Agents . Each
agent A ∈ Agents will have a belief base ΣMS

A ∈ 2L×Agents .
For instance, ΣMS

A1
= {(φ, A1), (ψ, A2), (ϕ,A3)}. Informant

agents will be ranked and this rank represents the credibil-
ity of agents. Observe that an agent belief base ΣMS

A can be
viewed as a layered knowledge base ΣMS

A = B1 ∪ . . . ∪ Bn,
such that formulas in Bi are attached with agent identifiers to
the same level of credibility and are more plausible than the
ones in Bj where j > i.

In [Benferhat et al., 1993], a knowledge base can be
viewed as a layered knowledge base Σ = B1 ∪ . . . ∪ Bn,

such that formulas in Bi have the same level of priority or cer-
tainty and are more reliable than the ones in Bj where j > i.
This stratification is modeled by attaching a weight α ∈ [0, 1]
to each formula with the convention that (φ αi) ∈ Bi, ∀i and
α1 = 1 > α2 > αn > 0. There, a formula φ is said to be an
argumentative consequence of Σ, denoted by Σ `A (φ α),
if and only if there exists an argument for (φ α) in Σ, and for
each argument of (¬φ β) in Σ, we have β < α.

Then, in [Benferhat et al., 1993], a procedure which de-
termines if φ is an argumentative consequence of a stratified
knowledge base Σ = B1 ∪ . . . ∪ Bn is proposed. From this
procedure, if Σ is consistent, it is clear that Σ `A (φ αi) if
and only if B1∪ . . .∪Bi ` φ and B1∪ . . .∪Bi−1 6` φ, where
αi is the weight of all formulas that belong to Bi. Note that
only consistent belief bases are considered because in our ap-
proach a revision operator was defined, and therefore we do
not allow inconsistency.

Considering the assumptions stated below, we will prove
that: given a belief base ΣMS

A such that ΣMS
A = B1 ∪ . . .∪Bn,

and a formula φ, the agent identifier returned by Pl(φ, ΣMS
A )

is Ai whenever B1 ∪ . . . ∪Bi ` φ and B1 ∪ . . . ∪Bi−1 6` φ.
Assumption 1: The formulas’ weights are represented by
agent identifiers.
Assumption 2: ΣMS

A is consistent (in our approach we do not
allow inconsistency).
Assumption 3: There is no pair of agents Ai and Aj such
that Ai =Co Aj .
Assumption 4: ∀ω(ω ∈ Sen(Bi) if and only if (ω, Ai) ∈
Bi). Hence, by the stratification of the knowledge base on
MAS, ∀i Ai+1 ≤Co Ai.
Assumption 5: ΣMS

i = E1∪ . . .∪En is said to be a sub-base
of ΣMS = B1 ∪ . . .∪Bn if Ej ⊆ Bj , j = 1, . . . , n. Note that
Ej may be ∅.
Theorem: Let ΣMS

Ap
= B1∪ . . .∪Bn be a layered knowledge

base on a MAS. Then, Pl(φ,ΣMS
Ap

) = Ai if and only if B1 ∪
. . . ∪Bi ` φ and B1 ∪ . . . ∪Bi−1 6` φ.
Proof: For simplicity we will use K to represent ΣMS

Ap
.

To prove the statement of the theorem we must show the fol-
lowing:
(a) If Pl(φ,K) = Ai ⇒ B1 ∪ . . . ∪ Bi ` φ and B1 ∪ . . . ∪
Bi−1 6` φ
(b) If B1 ∪ . . . ∪ Bi ` φ and B1 ∪ . . . ∪ Bi−1 6` φ ⇒
Pl(φ,K) = Ai

a) Let K = ΣMS
Ap

= B1 ∪ . . . ∪ Bn. If Pl(φ,K) = Ai, then
by Definition 8, Ai = Ag(max(

⋃
X∈K⊥⊥φ min(X))) and by

Definition 3 it holds that ∃ ω ∈ Sen(K) such that (ω,Ai) ∈
max(

⋃
X∈K⊥⊥φ min(X)). Thus, by Definition 7, we note

that (ω,Ai) ∈
⋃

X∈K⊥⊥φ min(X). Therefore, there exists
Xq ∈ K⊥⊥φ such that (ω,Ai) ∈ Xq and Ag(min(Xq)) =
Ai. Since Xq ⊆ K, it follows by assumption 5 that Xq =
E1 ∪ . . . ∪ Ei such that ∀j, 1 ≤ j ≤ i, Ej ⊆ Bj . Note that
Ei is the stratum less reliable by Definition 6. Furthermore,
since Xq is a kernel, then E1 ∪ . . . ∪ Ei ` φ. It is for that
reason and by assumption 2, that B1 ∪ . . . ∪ Bi ` φ. In
addition, since (ω, Ai) ∈ Bi it follows from assumption 4
and the fact that Sen(Xq\{(ω, Ai)}) 6` φ (Xq is a φ-kernel),
that B1 ∪ . . . ∪ Bi−1 6` φ. Hence, B1 ∪ . . . ∪ Bi ` φ and
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B1 ∪ . . . ∪Bi−1 6` φ. ¤
b) Let ΣMS

Ap
= B1 ∪ . . . ∪ Bn. If B1 ∪ . . . ∪ Bi ` φ and

B1 ∪ . . . ∪ Bi−1 6` φ, then there exists X ⊆ B1 ∪ . . . ∪ Bi

such that Sen(X) ` φ and let ω ∈ Sen(X), Sen(X)\{ω} 6`
φ. By the definition of kernel, X ∈ K⊥⊥φ. Then since
B1∪ . . .∪Bi ` φ and B1∪ . . .∪Bi−1 6` φ it follows by Def-
inition 3 and Definition 6 that Ag(min(X)) = Ai. Suppose
that Z ∈ K⊥⊥φ such that Z 6= X , then we can note that Z 6⊆
B1∪ . . .∪Bi−1. Hence, Z ⊆ B1∪ . . .∪Bj where i ≤ j ≤ n
and Ag(min(Z)) = Aj . Then, by assumption 4 and since
i ≤ j ≤ n, it holds Aj ≤Co Ai. Hence, Ag(min(Z)) ≤co

Ag(min(X)), so Ag(max(min(X) ∪ min(Z))) = Ai.
Therefore, Ag(max(

⋃
X∈K⊥⊥φ min(X))) = Ai that is the

same Pl(φ,K) = Ai. ¤
Example 6 Let us consider again Example 4. As stated
above, we can see KA1 in a stratified fashion. That is, KA1 =
ΣMS

A1
can be viewed as a layered knowledge base ΣMS

A1
= B1∪

B2 ∪ B3, s. t. B1 = {(φ → ψ, A1), (ω → ψ, A1), (ρ,A1)},
B2 = {(φ, A2), (φ → ψ, A2), (φ → ϕ,A2), (ω → ρ,A2)}
and B3 = {(ψ, A3), (ω,A3), (ϕ → ψ, A3)}.

Suppose that agent A1 needs to calculate the plausibility
of ψ. Following the procedure proposed in [Benferhat et al.,
1993], we can note that Sen(B1) 6` ψ and Sen(B1 ∪ B2) `
ψ. Hence, the weight of ψ is based on agent identifier A2.
This result is the same returned in Example 4 when our system
was used.

5 Non Prioritized Revision Using Plausibility
In this section, the behavior of a new revision operator based
on sentence plausibility will be shown. When a belief base
K ∈ K is revised by a tuple (φ, Ai) we will have two cases:
− φ is consistent with Bel(K). This is the most simple case
to characterize from the logical point of view because it con-
sists only in the addition of new tuples. In the limit case in
which φ ∈ Bel(K) then this operation could increase the
plausibility of φ.
− φ is inconsistent with Bel(K), that is ¬φ ∈ Bel(K). This
case requires a deeper analysis because: a) it is necessary to
determine whether the sentence will be accepted; and b) if
the input is accepted then it is necessary to erase some tuples
from K. For the second case we need to define an incision
function on each φ-kernel.

We will adapt the incision function definition proposed
by [Hansson, 1994] to our framework.
Definition 13 An incision function σ for K ∈ K is a func-
tion such that for all φ: 1) σ(K⊥⊥φ) ⊆ ∪(K⊥⊥φ), and 2) if
X ∈ K⊥⊥φ,X 6= ∅, then X ∩ σ(K⊥⊥φ) 6= ∅.

The incision function selects the sentences to be discarded
from K. Therefore, the subset of K that is not affected by
the incision should equal the outcome of the contraction of
K by φ. In the definition of incision function in Hansson’s
work it is not specified how the function selects the sentences
that will be discarded from each φ-kernel. This can be solved
with the sentence plausibility that we defined above. The in-
cision function σ will select the lesser plausibility sentences
from each φ-kernel. Hence, the new operator differs from the
kernel revision operator defined by Hansson in the following
issues:

1. The new operator makes an analysis to determine if the
revision is necessary.
2. The sentence selection for the incision function is defined.

According to 1, the new operator permits two options:
completely accept all the input, or completely reject all
the input. For this reason the new operator is non priori-
tized. An example of non prioritized operators of the lit-
erature that completely accept or reject the input is Semi-
Revision [Hansson, 1997]. Other operators may partially
accept the new information, for instance Revision by a Set
of Sentences [Falappa et al., 2002] and Selective Revi-
sion [Fermé and Hansson, 1999].

Next we will define a specific incision function, based on
belief plausibility, that will select the lesser plausibility sen-
tences of each φ-kernel (following the principle of minimal
change).
Definition 14 σ↓ is a bottom incision function for K if σ↓
is an incision function such that, σ↓(K⊥⊥φ) = {(ϕ,Ai) :
(ϕ,Ai) ∈ X ∈ K⊥⊥φ and for all (ψ, Aj) ∈ X it holds that
Ai ≤Co Aj}.

Example 7 Consider a set Agents = {A1, A2, A3} where
the credibility order is A1 ≤Co A2, A2 ≤Co A3.
Suppose that agent A2 has the following belief base
KA2 = {(φ,A3), (ψ, A2), (ψ → φ,A1), (ω, A1), (ω →
φ,A3), (ϕ, A1)}. Then, K⊥⊥

A2
φ = {Ha,Hb,Hc} where Ha =

{(φ,A3)}, Hb = {(ψ, A2), (ψ → φ,A1)}, Hc = {(ω,A1),
(ω → φ,A3)}. Then, σ↓(K⊥⊥

A2
φ) = {(φ,A3), (ψ →

φ,A1), (ω, A1)}.
Now that we have given the necessary background on the

behavior of the new operator, Non-Prioritized Revision Using
Plausibility will be defined.
Definition 15 Let K ∈ K, φ ∈ L, and K⊥⊥φ be the set
of φ-kernels of K. Let σ↓ be a bottom incision function 1 for
K. The operator “◦”, called Non-Prioritized Revision Using
Plausibility, is defined as follows:

K ◦(φ, Ai)=





K ∪ {(φ, Ai)} if ¬φ 6∈ Bel(K)
K if ¬φ ∈ Bel(K)

and Ai ≤Co Pl(¬φ, K)
(K\X) ∪ {(φ, Ai)} if ¬φ ∈ Bel(K)

and Pl(¬φ, K) <Co Ai

where: X = {(ω, Aj) : ω ∈ Sen(σ↓(K⊥⊥¬φ)) and
(ω, Aj) ∈ K}.

Example 8 Consider a set Agents = {A1, A2, A3, A4}
where the credibility order is A4 ≤Co A3, A3 ≤Co A2,
A2 ≤Co A1. Suppose that agent A4 has the following be-
lief base KA4 = {(ψ, A4), (φ,A3), (φ → ψ,A3), (φ →
ψ,A2), (ω → ψ, A2), (ω, A4), (φ → ϕ, A3), (ϕ → ψ, A4),
(ρ,A2), (ω → ρ,A3)}. Furthermore, suppose A4 receives
the tuple (¬ψ, A1). Then, A4 should revise KA4 by (¬ψ,A1).
Next we will describe the behavior of the new operator step
by step.
• Step 1. Obtain the minimal subsets that derive ψ from belief
base KA4 .

1Observe that the outcome of a bottom incision function would
be similar to that of a “safe contraction” [Alchourrón and Makinson,
1985].
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K⊥⊥
A4

ψ = {Ha,Hb,Hc,Hd,He}, where Ha = {(ψ, A4)},
Hb = {(φ,A3), (φ → ψ, A3)}, Hc = {(φ,A3), (φ →
ψ, A2)}, Hd = {(ω,A4), (ω → ψ, A2)} and He =
{(φ,A3), (φ → ϕ,A3), (ϕ → ψ, A4)}.
• Step 2. Apply the bottom incision function “σ↓” to K⊥⊥

A4
ψ

to obtain the set containing the lesser plausibility tuples from
each ψ-kernel.
σ↓(K⊥⊥

A4
ψ) = {(ψ, A4), (φ,A3), (φ → ψ, A3), (ω, A4),

(ϕ → ψ, A4)}.
• Step 3. Obtain from the tuples of the previous step
the set containing the greater plausibility tuples determined
by the greater-credibility sources function: max({(ψ, A4),
(φ,A3), (φ → ψ, A3), (ω,A4), (ϕ → ψ, A4)}) = {(φ,A3),
(φ → ψ, A3)}.
• Step 4. Compare the agent identifier of the input tuple
with the agent identifier of any tuple obtained in the previ-
ous step. Since A3 ≤Co A1, then KA4 ◦ (¬ψ, A1) = {(ω →
ψ, A2), (φ → ϕ,A3), (ρ,A2), (ω → ρ, A3), (¬ψ, A1)}. If
the input is (ψ, A4) rather than (ψ, A1), then the revision
will not have effect because A4 ≤Co A3.

Note that, since the belief base may be redundant, in Step
4 of Example 8 if the revision gives rise to a contraction then
we will discard from K all those tuples whose sentences were
selected by the bottom incision function without regarding the
respective informants. Besides, note that our operator will
never discard more plausible sentences than the input. This
control can be seen in Step 4 of Example 8.

In this approach, we have assumed that the credibility or-
der among agents is fixed. However, this order may be re-
placed and this will not affect the behavior of the opera-
tor. If the credibility order among agents changes, then the
plausibility of all sentences may also change without chang-
ing the belief bases of the agents. This feature was one of
the motivations for using agent identifiers instead of repre-
senting explicitly the plausibility of sentences as a number.
For instance, consider a set Agents = {A1, A2} where the
credibility order is A2 ≤Co A1, KA1 = {(φ,A2), (ψ, A1)}
and KA2 = {(ω, A1), (ρ, A2)}. Hence, φ ¹KA1

ψ and
ρ ¹KA2

ω. If the credibility order changes to A1 ≤Co A2

then ψ ¹KA1
φ and ω ¹KA2

ρ. Note that the tuples in K1

and K2 remain unchanged.
If the behavior of the new operator follows Definition 15

then the operator follows the principles stated below. These
are:
− Maintenance of Consistency [Dalal, 1988]: If a belief base
K and a belief α are both consistent, then K revised by α is
consistent.
− Minimal changes: As much old knowledge as possible
should be retained in the revised knowledge. Namely, in this
work, if the revision gives rise to a contraction, then the revi-
sion should discard those beliefs that are less plausible.
− Non-Prioritization: If a belief base K is revised by a belief
α, the new belief is not necessarily accepted in the revised
belief base. In other words, in this paper the revision could
have no effect if some beliefs, that will be possibly discarded,
are more plausible than the input.
Lemma 1 The non-prioritized revision using plausibility fol-
lows the principle of Maintenance of Consistency.

Proof: Let K ∈ K be a belief base and let φ ∈ L. Sup-
pose that K and φ are consistent. By Definition 15 (Non-
Prioritized Revision Using Plausibility) we have three cases:
− If ¬φ 6∈ Bel(K) then K ◦ (φ,Ai) = K ∪ {(φ,Ai)}.
φ and K are consistent, hence since ¬φ 6∈ Bel(K) then
K ∪ {(φ, Ai)} is consistent.
− If ¬φ ∈ Bel(K) and Ai ≤Co Pl(¬φ,K), then K ◦
(φ,Ai) = K and we are done.
− If ¬φ ∈ Bel(K) and Pl(¬φ,K) <Co Ai then K ◦
(φ,Ai) = (K \ X) ∪ {(φ,Ai)} where X = {(ω, Aj) :
ω ∈ Sen(σ↓(K⊥⊥¬φ)) and (ω, Aj) ∈ K}.
We must show that ¬φ 6∈ Bel(K \X).
Suppose that ¬φ ∈ Bel(K \X). Then the ¬φ-kernels were
not cut by the bottom incision function. That is, no sen-
tences from ¬φ-kernels were removed. However, this is ab-
surd by Definition 14 (bottom incision function.) The con-
tradiction comes from supposing ¬φ ∈ Bel(K \ X). Then
¬φ 6∈ Bel(K \X).

Hence, the non-prioritized revision using plausibility fol-
lows the principle of Maintenance of Consistency. ¤

The following two lemmas are straightforward from Defi-
nitions 14 and 15.
Lemma 2 The new operator follows the principle of Minimal
Change.
Lemma 3 The new operator follows the principle of Non-
Prioritization.

6 Discussion and Conclusions
In this paper we have analyzed and compared two meth-
ods that follow different attitudes when facing inconsistent
knowledge. One attitude is to revise the knowledge base in
order to preserve its consistency, while the other is to cope
with the inconsistency. In this work we have presented an
approach proposed in [Tamargo et al., 2008] that follows the
first attitude. Furthermore, we have shown an approach pro-
posed in [Benferhat et al., 1993] that follows the second at-
titude. The work in [Tamargo et al., 2008] presents a for-
malism for knowledge representation and consistency main-
tenance in a MAS where deliberative agents can receive new
information from others through communication. This type
of Belief Revision is called Belief Revision using information
from Multiple Sources (MSBR). Similarly to Dragoni [Drag-
oni et al., 1994] and Cantwell [Cantwell, 1998], informant
agents can have different levels of credibility and these levels
are used to decide which information prevails when a contra-
diction arises. However, our work has differences with that
of these authors as was discussed in [Tamargo et al., 2008].

We have also analyzed the argumentative consequence pro-
posed in [Benferhat et al., 1993]. Furthermore, we have
shown a procedure that can be used to determine if a sentence
is an argumentative consequence of a knowledge base. Our
proposal, which is based on the definition of a revision oper-
ator, differs from the one proposed in [Benferhat et al., 1993]
which is based on the definition of inconsistency-tolerant con-
sequence relations in inconsistent stratified knowledge bases.
This difference lies in the posture adopted when facing incon-
sistent knowledge. In [Benferhat et al., 1993], inconsistency
is accepted obtaining argumentative consequences, whereas
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in our approach we start from consistent knowledge bases and
through a revision operator based on the kernel contraction
defined in [Hansson, 1994] we preserve consistency.

Furthermore, in [Benferhat et al., 1993] the stratification
(Σ = B1 ∪ . . . ∪ Bn) is modeled by attaching a weight
α ∈ [0, 1] to each formula with the convention that (φαi) ∈
Bi, i = 1, . . . , n, and α1 = 1 > α2 > . . . > αn > 0.
Here tuples are stored in a similar way to [Benferhat et al.,
1993]. However, in [Tamargo et al., 2008] an agent identi-
fier is attached to each formula (the source). When the agent
identifiers are totally ordered, it is equivalent to use weights
(as in possibilistic logic) or agent identifiers. However, in our
framework it is possible to define a partial order among agent
identifiers and this is part of our future work.

Here, as in [Tamargo et al., 2008], we have assumed that
the credibility order among agents is fixed, as stated in Sec-
tion 5. This ordering can be changed without affecting the
behavior of the operator. If the credibility order among agents
changes, then the plausibility of all sentences will also change
without having to modify the belief bases of the agents. This
characteristic is one of the motivations for using agent identi-
fiers instead of representing the plausibility of sentences as a
number. As future work we propose to define a revision oper-
ator capable of revising the credibility order. This will allow
us to represent changes over the credibility order.

The revision operator presented in this article could use
stratified bases as in [Benferhat et al., 1993] and a new revi-
sion operator could be defined based on the procedure pro-
posed in the mentioned article. This operator would have a
similar behavior to the partial meet revision defined in [Al-
chourrón et al., 1985], due to the fact that in the procedure for
argumentative consequence as well as in partial meet, maxi-
mal subsets are obtained. As future work we will propose a
revision operator with these features.

As we can see there exist several differences between [Ben-
ferhat et al., 1993] and the work presented here. However, in
this article we showed, in Section 4, that the systems used in
each approach are equivalent under certain reasonable restric-
tions.
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Abstract
Domain descriptions in reasoning about actions are
logical theories and as such they may also evolve.
Given that, knowledge engineers also need revision
tools to incorporate new incoming laws about the
dynamic environment. Here we fill this gap by pro-
viding an algorithmic approach for revision of ac-
tion laws. We give a well defined semantics that
ensures minimal change w.r.t. the original models,
and show correctness of our algorithms w.r.t. the
semantic constructions.

1 Introduction
Like any logical theory, action theories in reasoning about
actions may evolve, and thus need revision methods to ade-
quately accommodate new information about the behavior of
actions. Recently, update and contraction-based methods for
action theory change have been defined [Eiter et al., 2005;
Herzig et al., 2006; Varzinczak, 2008]. Here we continue
this important though quite new thread of investigation and
develop a minimal change approach for revising laws of an
action domain description.
The motivation is as follows. Consider an agent designed

to interact with a coffee machine (Figure 1).

Figure 1: The coffee deliverer agent.

Among her beliefs, the agent may know that a coffee is a
hot drink, that after buying she gets a coffee, and that with
a token it is possible to buy. We can see the agent’s beliefs

about the behavior of actions in this scenario as a transition
system (Figure 2).

t, c, h

¬t, c, h

t,¬c, h

t,¬c,¬h

b b

b
b

b

b

Figure 2: A transition system depicting the agent’s knowl-
edge about the dynamics of the coffee machine. b, t, c, and h
stand for, respectively, buy, token, coffee, and hot.

Now, it may be the case that the agent learns that coffee is
the only hot drink available at the machine, or that even with-
out a token she can still buy, or that all possible executions of
buy should lead to states where ¬token is the case. These are
examples of revisionwith new laws about the dynamics of the
environment under consideration. And here we are interested
in exactly these kinds of theory modification.
The contributions of the present work are as follows:
• What is the semantics of revising an action theory by a
law? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?

• How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

2 Logical Preliminaries
Our base formalism is multimodal logicKn [Popkorn, 1994].

2.1 Action Theories in Multimodal K
Let A = {a1, a2, . . . , an} be the set of atomic actions of a
domain. To each action a there is associated a modal operator
[a]. P = {p1, p2, . . . , pn} denotes the set of propositions, or
atoms. L = {p,¬p : p ∈ P} is the set of literals. ! denotes
a literal and |!| the atom in !.
We use ϕ, ψ, . . . to denote Boolean formulas. F is the set

of all Boolean formulas. A propositional valuation v is amax-
imally consistent set of literals. We denote by v ! ϕ the fact
that v satisfies ϕ. By val(ϕ) we denote the set of all valua-
tions satisfying ϕ. |=

CPL
is the classical consequence relation.

Cn(ϕ) denotes all logical consequences of ϕ.
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With IP(ϕ) we denote the set of prime implicants [Quine,
1952] of ϕ. By π we denote a prime implicant, and atm(π)
is the set of atoms occurring in π. Given ! and π, ! ∈ π
abbreviates ‘! is a literal of π’. For a given set A, Ā denotes
its complement. Hence atm(π) denotesP \ atm(π).
We use Φ, Ψ, . . . to denote complex formulas (possibly

with modal operators). 〈a〉 is the dual operator of [a]
(〈a〉Φ =def ¬[a]¬Φ).
A Kn-model is a tuple M = 〈W,R〉 where W is a set of

valuations, and R maps action constants a to accessibility re-
lations Ra ⊆ W × W. Given M , |=M

w
p (p is true at world w

of model M ) if w ! p; |=M
w

[a]Φ if |=M
w′

Φ for every w′ s.t.
(w, w′) ∈ Ra; truth conditions for the other connectives are
as usual. ByM we will denote a set of Kn-models.

M is a model of Φ (noted |=M Φ) if and only if |=M
w

Φ for all
w ∈ W. M is a model of a set of formulas Σ (noted |=M Σ)
if and only if |=M Φ for every Φ ∈ Σ. Φ is a consequence of
the global axioms Σ in all Kn-models (noted Σ |=

Kn
Φ) if and

only if for everyM , if |=M Σ, then |=M Φ.
In Kn we can state laws describing the behavior of actions.

Here we distinguish three types of them.
Static Laws A static law is a formula ϕ ∈ F that char-
acterizes the possible states of the world. An example is
coffee → hot: if the agent holds a coffee, then she holds a
hot drink. The set of static laws of a domain is denoted by S .
Effect Laws An effect law for a has the form ϕ → [a]ψ, with
ϕ,ψ ∈ F. Effect laws relate an action to its effects, which can
be conditional. The consequent ψ is the effect that always
obtains when a is executed in a state where the antecedent
ϕ holds. An example is token → [buy]hot: whenever the
agent has a token, after buying, she has a hot drink. If ψ is
inconsistent we have a special kind of effect law that we call
an inexecutability law. For example, ¬token → [buy]⊥ says
that buy cannot be executed if the agent has no token. The set
of effect laws of a domain is denoted by E .
Executability Laws An executability law for a has the form
ϕ → 〈a〉(, with ϕ ∈ F. It stipulates the context in which a
is guaranteed to be executable. (In Kn 〈a〉( reads “a’s exe-
cution is possible”.) For instance, token → 〈buy〉( says that
buying can be executed whenever the agent has a token. The
set of executability laws of a domain is denoted by X .
Given a, Ea (resp. Xa) will denote the set of only those

effect (resp. executability) laws about a.
Action Theories T = S ∪ E ∪X is an action theory.

2.2 The Frame, Ramification and Qualification
Problems

To make the presentation more clear to the reader, we here as-
sume that the agent’s theory contains all frame axioms. How-
ever, all we shall say here can be defined within a formalism
with a solution to the frame and ramification problems like
done by Herzig et al. [2006].
Given the acknowledged difficulty of the qualification

problem, we do not assume here any a priori solution to it. In-
stead, we suppose the knowledge engineer may want to state

some (not necessarily fully specified) executability laws for
some actions. These may be incorrect at the starting point,
but revising wrong executability laws is an approach towards
its solution and one of the aims of this work. With further
information the knowledge engineer will have the chance to
change them so that eventually they will correspond to the
intuition (cf. Section 3).
The action theory of our running example will thus be:

T =

{ coffee→ hot, token→ 〈buy〉(,
¬coffee→ [buy]coffee,¬token→ [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot

}

Figure 2 above shows a Kn-model for the theory T.

2.3 Supra-models
Sometimes it will be useful to consider models whose possi-
ble worlds are all the possible states allowed by S :
Definition 1 M = 〈W,R〉 is a big frame of T if and only if:
• W = val(S ); and
• R =

⋃

a∈A
Ra, where

Ra = {(w, w′) : ∀.ϕ → [a]ψ ∈ Ea, if |=
M

w
ϕ then |=

M

w′
ψ}

Big frames of T are not unique and not always models of T.

Definition 2 M is a supra-model of T iff |=M T and M is a
big frame of T.
Figure 3 depicts a supra-model of our example T.

M : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t, ¬c, ht,¬c,¬h

b b

b
b

b

b

Figure 3: Supra-model for the coffee machine scenario.

2.4 Prime Valuations
An atom p is essential to ϕ if and only if p ∈ atm(ϕ′) for
all ϕ′ such that |=

CPL
ϕ ↔ ϕ′. For instance, p1 is essential to

¬p1 ∧ (¬p1 ∨ p2). atm!(ϕ) will denote the essential atoms of
ϕ. (If ϕ is a tautology or a contradiction, then atm!(ϕ) = ∅.)
For ϕ ∈ F, ϕ∗ is the set of all ϕ′ ∈ F such that ϕ |=

CPL

ϕ′ and atm(ϕ′) ⊆ atm!(ϕ). For instance, p1 ∨ p2 /∈ p1∗,
as p1 |=

CPL
p1 ∨ p2 but atm(p1 ∨ p2) 0⊆ atm!(p1). Clearly,

atm(
∧

ϕ∗) = atm!(
∧

ϕ∗). Moreover, whenever |=
CPL

ϕ ↔
ϕ′, then atm!(ϕ) = atm!(ϕ′) and also ϕ∗ = ϕ′∗.
Theorem 1 ([Parikh, 1999]) |=

CPL
ϕ ↔

∧

ϕ∗, and
atm(ϕ∗) ⊆ atm(ϕ′) for every ϕ′ s.t. |=

CPL
ϕ ↔ ϕ′.

Thus for every ϕ ∈ F there is a unique least set of elemen-
tary atoms such that ϕ may equivalently be expressed using
only atoms from that set. Hence, Cn(ϕ) = Cn(ϕ∗).
Given a valuation v, v′ ⊆ v is a subvaluation. ForW a set of

valuations, a subvaluation v′ satisfies ϕ ∈ FmoduloW (noted
v′ !W ϕ) if and only if v ! ϕ for all v ∈ W such that v′ ⊆ v.
A subvaluation v essentially satisfies ϕ moduloW (v !

!

W
ϕ) if

and only if v !W ϕ and {|!| : ! ∈ v} ⊆ atm!(ϕ).
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Definition 3 Let ϕ ∈ F and W be a set of valuations. A
subvaluation v is a prime subvaluation of ϕ (modulo W) if
and only if v !

!

W
ϕ and there is no v′ ⊆ v s.t. v′ !

!

W
ϕ.

A prime subvaluation of a formula ϕ is one of the weakest
states of truth in which ϕ is true. (Notice the similarity with
the syntactical notion of prime implicant [Quine, 1952].) We
denote all prime subvaluations ofϕmoduloW by base(ϕ,W).
Theorem 2 Let ϕ ∈ F and W be a set of valuations. Then
for all w ∈ W, w ! ϕ if and only if w !

∨

v∈base(ϕ,W)

∧

"∈v !.

2.5 Closeness Between Models
When revising a model, we perform a change in its structure.
Because there can be several ways of modifying a model (not
all of them minimal), we need a notion of distance between
models to identify those that are closest to the original one.
As we are going to see in more depth in the sequel, chang-

ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance between two
Kn-models will depend upon the distance between their sets
of worlds and accessibility relations. These here will be
based on the symmetric difference between sets, defined as
X−̇Y = (X \ Y ) ∪ (Y \ X).
Definition 4 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 is at least as
close toM as M ′′ = 〈W′′,R′′〉, notedM ′ 2M M ′′, iff
• either W−̇W′ ⊆ W−̇W′′

• or W−̇W′ = W−̇W′′ and R−̇R′ ⊆ R−̇R′′

This is an extension of Burger and Heidema’s [2002] relation
to our modal case. Note that other distance notions are also
possible, like e.g. the cardinality of symmetric differences or
Hamming distance. (See Section 7 for an explanation on why
we have chosen this particular distance notion here.)

3 Semantics of Revision
Contrary to contraction, where we want the negation of a law
to be satisfiable, in revision we want a new law to be valid.
Thus we must eliminate all cases satisfying its negation.
The idea in our semantics is as follows: we initially have a

set of modelsM in which a given formula Φ is (potentially)
not valid, i.e., Φ is (possibly) not true in every model inM.
In the result we want to have only models of Φ. Adding Φ-
models toM is of no help. Moreover, adding models makes
us lose laws: the resulting theory would be more liberal.
One solution amounts to deleting from M those models

that are not Φ-models. Of course removing only some of
them does not solve the problem, we must delete every such a
model. By doing that, all resulting models will be models of
Φ. (This corresponds to theory expansion, when the resulting
theory is satisfiable.) However, if M contains no model of
Φ, we will end up with ∅. Consequence: the resulting theory
is inconsistent. (This is the main revision problem.) In this
case the solution is to substitute each model M inM by its
nearest modifications M #

Φ that makes Φ true. This lets us to
keep as close as possible to the original models we had.
Before defining revision of sets of models, we present what

modifications of (individual) models are.

3.1 Revising a Model by a Static Law
Suppose that our agent discovers that the only hot drink that is
served on the machine is coffee. In this case, we might want
to revise her beliefs with the new static law coffee↔ hot.
Considering the model in Figure 3, we see that ¬coffee ∧

hot is satisfiable. As we do not want this, the first step is to
remove all worlds in which ¬coffee ∧ hot is true. The second
step is to guarantee all the remaining worlds satisfy the new
law. This issue has been largely addressed in the literature on
belief revision and update [Gärdenfors, 1988; Winslett, 1988;
Katsuno and Mendelzon, 1992; Herzig and Rifi, 1999]. Here
we can achieve that with a semantics similar to that of clas-
sical revision operators: basically one can change the set of
possible valuations, by removing or adding worlds.
In our example, removing the possible worlds {t,¬c, h}

and {¬t,¬c, h} would do the job (there is no need to add new
valuations since the new static law is satisfied in at least one
world of the original model).
The delicate point in removing worlds is that it may result

in the loss of some executability laws: in the example, if there
were only one arrow leaving some world w and pointing to
{¬t,¬c, h}, then removing the latter from the model would
make the action under concern no longer executable in w.
Here we claim that this is intuitive: if the state of the world
to which we could move is no longer possible, then we do
not have a transition to that state anymore. Hence, if that
transition was the only one we had, it is natural to lose it.
One could also ask what to do with the accessibility rela-

tion if new worlds must be added (revision case). We claim
that it is reckless to blindly add new elements to R. Instead,
we shall postpone correction of executability laws, if needed.
This approach is debatable, but with the information we have
at hand, it is the safest way of changing static laws.
The semantics for revision of one model by a static law is

as follows:
Definition 5 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ iff
W′ = (W \ val(¬ϕ)) ∪ val(ϕ) and R′ ⊆ R.

Clearly |=M
′

ϕ for all M ′ ∈ M #
ϕ . The minimal models of

the revision ofM by ϕ are those closest toM w.r.t. 2M :
Definition 6 rev(M , ϕ) =

⋃

min{M #
ϕ ,2M}.

In the example of Figure 3, rev(M , coffee ↔ hot) is the
singleton {M ′}, withM ′ as shown in Figure 4.

M ′ : t, c, h

¬t, c, h

¬t,¬c, ¬h t,¬c,¬h

b

b
b

b

Figure 4: Revising modelM in Figure 3 with coffee↔ hot.

3.2 Revising a Model by an Effect Law
Let’s suppose now that our agent eventually discovers that
after buying coffee she does not keep her token. This means
that her theory should now be revised by the new effect law

73



token → [buy]¬token. Looking at modelM in Figure 3, this
amounts to guaranteeing that token∧〈buy〉token is satisfiable
in none of its worlds. To do that, we have to look at all the
worlds satisfying this formula (if any) and
• either make token false in each of these worlds,
• or make 〈buy〉token false in all of them.
If we chose the first option, we will essentially flip the truth

value of literal token in the respective worlds, which changes
the set of valuations of the model. If we chose the latter,
we will basically remove buy-arrows leading to token-worlds,
which amounts to changing the accessibility relation.
In our example, the worlds w1 = {token, coffee, hot},

w2 = {token,¬coffee, hot} and w3 = {token,¬coffee,¬hot}
satisfy token ∧ 〈buy〉token. Flipping token in all of them to
¬tokenwould do the job, but would also have as consequence
the introduction of a new static law: ¬token would now be
valid, i.e., the agent never has a token! Do we want this?
We claim that changing action laws should not have as side

effect a change in the static laws. These have a special status,
and should change only if required (see Section 3.1). Hence
each world satisfying token ∧ 〈buy〉token has to be changed
so that 〈buy〉token becomes untrue in it. In the example, we
thus should remove (w1, w1), (w2, w1) and (w3, w1) from R.
The semantics of one model revision for the case of a new

effect law is:
Definition 7 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→[a]ψ iff:

• W′ = W, R′ ⊆ R, |=M
′

ϕ → [a]ψ, and

• If (w, w′) ∈ R \ R′, then |=M
w

ϕ

The minimal models resulting from the revision of a model
M by a new effect law are those closest toM w.r.t. 2M :
Definition 8 rev(M , ϕ → [a]ψ) =

⋃

min{M #
ϕ→[a]ψ,2M}.

Taking M as in Figure 3, rev(M , token → [buy]¬token)
will be the singleton {M ′} depicted in Figure 5.

M ′ : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t, ¬c, ht,¬c,¬h

b b

b

Figure 5: RevisingM in Figure 3 with token→ [buy]¬token.

Note that adding effect laws will never require new arrows.
This is the job of executability-revision.

3.3 Revising a Model by an Executability Law
Let us now suppose that at some stage it has been decided to
grant free coffee to everybody. Faced with this information,
we have to revise the agent’s laws to reflect the fact that buy
can also be executed in ¬token-contexts: ¬token → 〈buy〉(
is a new executability law (and hence we will have 〈buy〉( in
all new models of the agent’s beliefs).
Considering model M in Figure 3, we observe that

¬token∧[buy]⊥ is satisfiable. Hence we must throw¬token∧
[buy]⊥ away to ensure the new law becomes true.

To remove ¬token ∧ [buy]⊥ we have to look at all worlds
satisfying it and modifyM so that they no longer satisfy that
formula. Given worlds w4 = {¬token,¬coffee,¬hot} and
w5 = {¬token,¬coffee, hot}, we have two options: change
the interpretation of token in both or add new arrows leaving
these worlds. A question that arises is ‘what choice is more
drastic: change a world or an arrow’? Again, here we claim
that changing the world’s content (the valuation) is more dras-
tic, as the existence of such a world is foreseen by some static
law and is hence assumed to be as it is, unless we have enough
information supporting the contrary, in which case we explic-
itly change the static laws (see Section 3.1). Thus we shall
add a new buy-arrow from each of w4 and w5.
Having agreed on that, the issue now is: which worlds

should the new arrows point to? In order to comply with min-
imal change, the new arrows shall point to worlds that are
relevant targets of each of the ¬token-worlds in question.
Definition 9 Let M = 〈W,R〉, w, w′ ∈ W, andM be a set
of models s.t. M ∈ M. Then w′ is a relevant target world of
w w.r.t. ϕ → 〈a〉( for M inM iff |=M

w
ϕ and

• If there is M ′ = 〈W′,R′〉 ∈M such that R′
a(w) 0= ∅:

– for all ! ∈ w′ \ w, there is ψ′ ∈ F s.t. there is
v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=Mi

w
[a]ψ′

for every Mi ∈ M
– for all ! ∈ w∩w′, either there is ψ′ ∈ F s.t. there is
v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′, ! ∈ v′, and |=Mi

w
[a]ψ′

for allMi ∈ M; or there isMi ∈ M s.t. 0|=Mi

w
[a]¬!

• If R′
a(w) = ∅ for every M ′ = 〈W′,R′〉 ∈M :
– for all ! ∈ w′ \w, there isMi = 〈Wi,Ri〉 ∈M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ v \ u

– for all ! ∈ w∩w′, there isMi = 〈Wi,Ri〉 ∈M s.t.
there is u, v ∈ Wi s.t. (u, v) ∈ Ria and ! ∈ u∩v, or
for all Mi = 〈Wi,Ri〉 ∈M , if (u, v) ∈ Ria, then
¬! /∈ v \ u

By rt(w,ϕ → 〈a〉(, M ,M) we denote the set of all relevant
target worlds of w w.r.t. ϕ → 〈a〉( for M inM.
In our example, w6 = {¬token, coffee, hot} is the only rel-

evant target world here: the two other ¬token-worlds violate
the direct effect coffee of action buy, while the three token-
worlds would make us violate the frame axiom ¬token →
[buy]¬token.
The semantics for one model revision by a new executabil-

ity law is as follows:
Definition 10 Let M = 〈W,R〉. M ′ = 〈W′,R′〉 ∈ M #

ϕ→〈a〉& iff:

• W′ = W, R ⊆ R′, |=M
′

ϕ → 〈a〉(, and
• If (w, w′) ∈ R′ \ R, then w′ ∈ rt(w,ϕ → [a]⊥, M ,M)

The minimal models resulting from revising a model M
by a new executability law are those closest toM w.r.t.2M :
Definition 11 rev(M , ϕ → 〈a〉() =

⋃

min{M #
ϕ→〈a〉&,2M}.

In our running example, rev(M ,¬token → 〈buy〉() is the
singleton {M ′}, whereM ′ is as shown in Figure 6.
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M ′ :
t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t, ¬c, ht,¬c,¬h

b b

b

b

b

b

b b

b

Figure 6: The result of revising modelM in Figure 3 by the
new executability law ¬token→ 〈buy〉(.

3.4 Revising Sets of Models
Up until now we have seen what the revision of single models
means. Now we are ready for a unified definition of revision
of a set of modelsM by a new law Φ (cf. Section 5):

Definition 12 LetM be a set of models and Φ a law. Then

M#
Φ = (M\ {M :0|=

M
Φ}) ∪

⋃

M∈M

rev(M , Φ)

Definition 12 comprises both expansion and revision: in the
former, addition of the new law gives a satisfiable theory; in
the latter a deeper change is needed to get rid of inconsistency.

4 Algorithms for Revision of Laws
We now turn our attention to the syntactical counterpart of
revision. Our endeavor here is to perform minimal change
also at the syntactical level. By T#

Φ we denote the result of
revising an action theory T with a new law Φ.

4.1 Revising a Theory by a Static Law
Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law may
conflict with the executability laws: some of themmay be lost
and thus have to be changed as well.
The approach here is to preserve as many executability

laws as we can in the old possible states. To do that, we
look at each possible valuation that is common to the new
S and the old one. Every time an executability used to
hold in that state and no inexecutability holds there now,
we make the action executable in such a context. For those
contexts not allowed by the old S , we make a inexecutable
(cf. Section 3.1). Algorithm 1 deals with that (here S ' ϕ
denotes the classical revision of S by ϕ built upon some
well established method from the literature [Winslett, 1988;
Katsuno and Mendelzon, 1992; Herzig and Rifi, 1999]. The
choice of a particular operator for classical revision/update
is not the main matter here, but rather whether it gives us a
modified set of static laws entailing the new one).
In our example, revising the action theory T with a new

static law coffee↔ hot will give us

T#
coffee↔hot =



















coffee↔ hot,
(token ∧ coffee ∧ hot) → 〈buy〉(,

(token ∧ ¬coffee ∧ ¬hot) → 〈buy〉(,
¬coffee→ [buy]coffee,¬token→ [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot



















Algorithm 1 Revision by a Static Law
input: T, ϕ
output: T!

ϕ

S ′:= S " ϕ /* classically revise S */
E ′:= E /* effect laws remain unchanged */
X ′:= ∅ /* executability laws will be ‘recovered’ from old T */
for all π ∈ IP(S ′) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

/* by extending π with ϕA we get a valuation */
if S ′ %|=

CPL
(π ∧ ϕA) → ⊥ /* context not removed */ then

if S%| =
CPL

(π ∧ ϕA) → ⊥ then
if T |=

Kn
(π∧ϕA) → 〈a〉* and S ′, E ′,X%| =

Kn
¬(π∧ϕA)

then
Xa

′:= {(ϕi ∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈X a}
/* preserve executability law in state not removed */

else
E ′:= E ′ ∪ {(π ∧ ϕA) → [a]⊥}

T!
ϕ:= S ′ ∪ E ′ ∪ X ′

4.2 Revising a Theory by an Effect Law

When revising a theory by a new effect law ϕ → [a]ψ, we
want to eliminate all possible executions of a leading to ¬ψ-
states. To achieve that, we look at all ϕ-contexts and every
time a transition to some ¬ψ-context is not always the case,
i.e., T0|=

Kn
ϕ → 〈a〉¬ψ, we can safely force [a]ψ for that con-

text. On the other hand, if in such a context there is always
an execution of a to ¬ψ, then we should strengthen the exe-
cutability laws to make room for the new effect in that context
we want to add. Algorithm 2 below does the job.

Algorithm 2 Revision by an Effect Law
input: T, ϕ → [a]ψ
output: T!

ϕ→[a]ψ
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

/* by extending π with ϕA we get a valuation */
if S%| =

CPL
(π ∧ ϕA) → ⊥ /* is an allowed context */ then

for all π′ ∈ IP(S ∧¬ ψ) do
if T ′ |=

Kn
(π ∧ ϕA) → 〈a〉π′ /* ¬ψ is achievable */

then

T ′:= (T ′ \ X ′
a) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉* :

ϕi → 〈a〉* ∈X ′
a}

/* weaken executability laws */
T ′:= T ′ ∪ {(π ∧ ϕA) → [a]ψ} /* safely add the law */
if T ′ %|=

Kn
(π ∧ ϕA) → [a]⊥ then

T ′:= T ′∪{(ϕi∧π∧ϕA) → 〈a〉* : ϕi → 〈a〉* ∈ T}
/* preserve other previous transitions */

T!
ϕ→[a]ψ:= T ′

In our running example, revision of the action theory T
with the new effect law token → [buy]¬token would give us
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T#
token→[buy]¬token =























































coffee→ hot,
(token ∧ ¬(token ∧ coffee ∧ hot)) → 〈buy〉(,

(token ∧ coffee ∧ hot) → 〈buy〉(,
(token ∧ ¬(token ∧ ¬coffee ∧ hot)) → 〈buy〉(,

(token ∧ ¬coffee ∧ hot) → 〈buy〉(,
(token ∧ ¬(token ∧ ¬coffee ∧ ¬hot)) → 〈buy〉(,

(token ∧ ¬coffee ∧ ¬hot) → 〈buy〉(,
¬coffee→ [buy]coffee,¬token → [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot,

token→ [buy]¬token























































Regarding the bunch of new executability laws introduced in
the resulting theory, observe that they can be easily simplified
to the single one token→ 〈buy〉(.

4.3 Revising a Theory by an Executability Law

Revision of a theory by a new executability law has as conse-
quence a change in the effect laws: all those laws preventing
the execution of a shall be weakened. Moreover, to comply
with minimal change, we must ensure that in all models of
the resulting theory there will be at most one transition by a
from those worlds in which T precluded a’s execution.

Let (Eϕ,⊥
a )1, . . . , (Eϕ,⊥

a )n denote minimum subsets (w.r.t.
set inclusion) of Ea such that S , (Eϕ,⊥

a )i |=
Kn

ϕ → [a]⊥.
(According to Herzig and Varzinczak [2007], one can en-
sure at least one such a set always exists.) Let E−

a =
⋃

1≤i≤n(Eϕ,⊥
a )i. The effect laws in E−

a will serve as guide-
lines to get rid of [a]⊥ in each ϕ-world allowed by T: they
are the laws to be weakened to allow for 〈a〉( in ϕ-contexts.
Our algorithm works as follows. To force ϕ → 〈a〉( to

be true in all models of the resulting theory, we visit every
possible ϕ-context allowed by it and make the following op-
erations to ensure 〈a〉( is the case for that context: Given aϕ-
context, if T does not always preclude a from being executed
in it, we can safely force 〈a〉( without modifying other laws.
On the other hand, if a is always inexecutable in that context,
then we should weaken the laws in E−

a . The first thing we
must do is to preserve all old effects in all other ϕ-worlds.
To achieve that we specialize the above laws to each possible
valuation (maximal conjunction of literals) satisfying ϕ but
the actual one. Then, in the current ϕ-valuation, we must en-
sure that action a may have any effect, i.e., from this ϕ-world
we can reach any other possible world. We achieve that by
weakening the consequent of the laws in E−

a to the exclusive
disjunction of all possible contexts in T. Finally, to get mini-
mal change, we must ensure that all literals in thisϕ-valuation
that are not forced to change are preserved. We do this by stat-
ing a conditional frame axiom of the form (ϕk ∧ !) → [a]!,
where ϕk is the above-mentionedϕ-valuation.
Algorithm 3 gives the pseudo-code for that.
In our example, revising the action theory T with the exe-

Algorithm 3 Revision by an Executability Law
input: T, ϕ → 〈a〉*
output: T!

ϕ→〈a〉%
T ′:= T
for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do

ϕA:=
V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

/* by extending π with ϕA we get a valuation */
if S%| =

CPL
(π ∧ ϕA) → ⊥ /* is an allowed context */ then

if T ′ |=
Kn

(π ∧ ϕA) → [a]⊥ then

T ′:=

(T ′ \ E ′−
a ) ∪ {(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi :

ϕi → [a]ψi ∈ E ′−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a]
L

π′∈IP(S )

A′⊆atm(π′)

(π′ ∧ ϕA′) :

ϕi → [a]ψi ∈ E ′−
a }

/* weaken the effect laws */
for all L ⊆ L do
if S |=

CPL
(π ∧ ϕA) →

V

$∈L % then
for all % ∈ L do
if T |=

Kn
% → [a]⊥ or (T%,

Kn
% → [a]¬% and

T |=
Kn

% → [a]%) then
T ′:= T ′ ∪ {(π ∧ ϕA ∧ %) → [a]%}

/* preserve non-affected literals */
T ′:= T ′ ∪ {(π ∧ ϕA) → 〈a〉*} /* safely add the law */

T!
ϕ→〈a〉%:= T ′

cutability law ¬token→ 〈buy〉( gives us T#
¬token→〈buy〉& =























































coffee→ hot, token→ 〈buy〉(,
¬coffee→ [buy]coffee,

(¬token ∧ ¬(¬token ∧ coffee ∧ hot)∧
¬(¬token ∧ ¬coffee ∧ hot)∧

¬(¬token ∧ ¬coffee ∧ ¬hot)) → [buy]⊥,
coffee→ [buy]coffee, hot→ [buy]hot,

(¬token ∧ coffee ∧ hot) → [buy]¬token,
(¬token ∧ ¬coffee ∧ hot) → [buy]¬token,
(¬token ∧ ¬coffee ∧ ¬hot) → [buy]¬token,

¬token→ 〈buy〉(























































Again, the resulting theory can be post-processed to give us a
much more compact representation of the new laws that have
been added.

4.4 Complexity Issues
Algorithms 1–3 terminate. However, they come with a con-
siderable computational cost: the Kn-entailment test with
global axioms is known to be EXPTIME-complete. Comput-
ing all possible contexts allowed by the theory is clearly ex-
ponential. Moreover, the computation of IP(.)might result in
exponential growth [Marquis, 2000].
Given that theory change can be done offline, from the

knowledge engineer’s perspective what is more important is
the size of the computed contracted theories. In that matter,
our results are positive:

Theorem 3 Let T be an action theory, and Φ be a law. Then
the size (number of formulas) of T#

Φ is linear in that of T.
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5 Correctness of the Algorithms
Suppose we have two atoms p1 and p2, and one action a. Let
T1 = {¬p2, p1 → [a]p2, 〈a〉(}. The only model of T1 is M

in Figure 7. Revising such a model by p1 ∨ p2 gives us the
models M ′

i , 1 ≤ i ≤ 3, in Figure 7. Now, revising T1 by
p1 ∨ p2 will give us T1

#
p1∨p2 = {p1 ∧ ¬p2, p1 → [a]p2}. The

only model of T1
#
p1∨p2 isM ′

1 in Figure 7. This means that the
semantic revision may produce models (viz. M ′

2 and M ′
3 in

Figure 7) that are not models of the revised theories.

M : ¬p1,¬p2

a

M ′
1 : p1,¬p2

M ′
2 : ¬p1, p2 M ′

3 : p1, p2

Figure 7: ModelM of T1 and revision ofM by p1 ∨ p2.

The other way round the algorithms may give theories
whose models do not result from revision of models of the
initial theory: let T2 = {(p1 ∨ p2) → [a]⊥, 〈a〉(}. Its only
model isM (Figure 7). Revising M by p1 ∨ p2 is as above.
But T2

#
p1∨p2 = {p1 ∨ p2, (p1 ∨ p2) → [a]⊥} has a model

M ′′ = 〈{{p1, p2}, {p1,¬p2}, {¬p1, p2}}, ∅〉 not inM #
p1∨p2 .

All this happens because the possible states are not com-
pletely characterized by the static laws. Fortunately, concen-
trating on supra-models of T, we get the right result.
Theorem 4 If M = {M : M is a supra-model of T} and
there is M ′ ∈ M s.t. |=M

′

Φ, then
⋃

M∈M rev(M , Φ) ⊆ M.
Then, revision of models of T by a law Φ in the semantics

produces models of the output of the algorithms T#
Φ:

Theorem 5 If M = {M : M is a supra-model of T}0 = ∅,
then for every M ′ ∈ M#

Φ, |=
M

′

T#
Φ.

Also, models of T#
Φ result from revision of models of T by Φ:

Theorem 6 If M = {M : M is a supra-model of T}0 = ∅,
then for every M ′, if |=M

′

T#
Φ, thenM ′ ∈ M#

Φ.

Sticking to supra-models of T is not a big deal. We can use
existent algorithms in the literature [Herzig and Varzinczak,
2007] to ensure that T is characterized by its supra-models
and thatM 0= ∅.

6 Related Work
The problem of action theory change has only recently
received attention in the literature, both in action lan-
guages [Baral and Lobo, 1997; Eiter et al., 2005] and in
modal logic [Herzig et al., 2006; Varzinczak, 2008].
Baral and Lobo [1997] introduce extensions of action lan-

guages that allow for some causal laws to be stated as defea-
sible. Their work is similar to ours in that they also allow for
weakening of laws: in their setting, effect propositions can be
replaced by what they call defeasible (weakened versions of)
effect propositions. Our approach is different from theirs in
the way executability laws are dealt with. Here executability
laws are explicit and we are also able to change them. This

feature is important when the qualification problem is consid-
ered (cf. the Introduction).
The work by Eiter et al. [2005; 2006] is similar to ours in

that they also propose a framework that is oriented to updat-
ing action laws. They mainly investigate the case where e.g.
a new effect law is added to the description (and then has to
be true in all models of the modified theory).
In Eiter et al.’s framework, action theories are described

in a variant of a narrative-based action description language.
Like in the present work, the semantics is also in terms of
transition systems: directed graphs having arrows (action oc-
currences) linking nodes (configurations of the world). Con-
trary to us, however, the minimality condition on the outcome
of the update is in terms of inclusion of sets of laws, which
means the approach is more syntax oriented.
In their setting, during an update an action theory T is seen

as composed of two pieces, Tu and Tm, where Tu stands for
the part of T that is not supposed to change and Tm contains
the laws that may be modified. In our terms, when revising
by a static law we would have Tm = S ∪X a, when revising
by an effect law Tm = Ea ∪ Xa, and when revising with exe-
cutability laws Tm = E−

a ∪ Xa. The difference here is that in
our approach it is always clear what laws should not change
in a given type of revision, and Tu and Tm do not need to be
explicitly specified prior to the update.
Their approach and ours can both be described as

constraint-based update, in that the theory change is carried
out relative to some restrictions (a set of laws that we want to
hold in the result). In our framework, for example, all changes
in the action laws are relative to the set of static laws S (and
that is why we concentrate on supra-models: models of T
having val(S ) as worlds). When changing a law, we want to
keep the same set of states. The difference w.r.t. Eiter et al.’s
approach is that there it is also possible to update a theory
relatively to e.g. executability laws: when expandingT with a
new effect law, one may want to constrain the change so that
the action under concern is guaranteed to be executable in the
result.1 As shown in the referred work, this may require the
withdrawal of some static law. Hence, in Eiter et al.’s frame-
work, static laws do not have the same status as in ours.

7 Discussion and Perspectives
Here we have studied what revising action theories by a law
means, both in the semantics and at the syntactical (algorith-
mic) level. We have defined a semantics based on distances
between models that also captures minimal change w.r.t. the
preservation of effects of actions. With our algorithms and
the correctness results we have established the link between
the semantics and the syntax for theories with supra-models.
(Due to page limits, proofs have been omitted here.)
For the sake of presentation, here we have abstracted from

the frame and ramification problems. However our definitions
could have been stated in a formalism with a suitable solution
to them, like e.g. Castilho et al.’s approach [1999]. With re-
gards to the qualification problem, this is not ignored here:

1We can emulate that in our approach with two modifications
of T: first adding the effect law and then an executability law.
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revising wrong executability laws is an approach towards its
solution. Indeed, given the difficulty of stating all sufficient
conditions for executability of an action, the knowledge en-
gineer writes down some of them and lets the theory ‘evolve’
via subsequent revisions.
The reason why we have chosen such a simple notion of

distance between models is that with other distances one may
not always get the intended result. This is better illustrated
with the contraction counterpart of our operators [Varz-
inczak, 2008]. Suppose one wants to remove an executability
law ϕ → 〈a〉(. Then we do that by removing a-arrows from
ϕ-worlds. Suppose we have a model with two ϕ-worlds, w1

with one leaving a-arrow and w2 with two a-arrows. Then
with e.g. Dalal’s distance [1988], the associated contraction
operator would always exclude the resulting model in which
w2 loses its two arrows, simply because deleting 1 arrow
is Dalal-better than deleting 2. This problem doesn’t hap-
pen with our distance, which gives us a version of maxi-
choice [Hansson, 1999].
One criticism to the approach here developed concerns the

precedence of static laws in the revision process, which could
make the revision operators to be interpreted as incoherent.
As agreed in the literature, however, given that static laws are
much easier to state, they are more likely to be correct, and
then it makes sense to give them precedence. Supporting this
is the fact that most of the attention in the reasoning about
actions area has been paid to effect laws and executability
laws, which are much more difficult to completely specify.
Our approach is in line with that.
Our next step is to analyze the behavior of our opera-

tors w.r.t. AGM-like postulates [Alchourrón et al., 1985]
for modal theories and the relationship between our revision
method and contraction. What is known is that Levi iden-
tity [Levi, 1977], T#

Φ = T−
¬Φ ∪ {Φ}, in general does not hold

for action laws. The reason is that up to now there is no con-
traction operator for ¬Φ where Φ is an action law. Indeed this
is the general contraction problem for action theories: con-
traction of a theory T by a general formula (like ¬Φ above) is
still an open problem in the area. The definition of a general
method will mostly benefit from the semantic modifications
we studied here (addition/removal of arrows and worlds).
Given the relationship between modal logics and descrip-

tion logics, a revision method for DL TBoxes [Baader et al.,
2003] would also benefit from the constructions that we have
defined here.
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