

A Fault-recovery Routing Approach for

Loop-based Clustering WSN∗

Ming Xu1, Shengdong Zhang1, Jiannong Cao2, Xiaoxing Guo3
 (1School of Computer, National Univ. of Defense Technology, Changsha, China)

 (2Dept of Computing, Hong Kong Polytechnic University, Hong Kong, China)
(3School of Information Technology and Electrical Engineering, University College,

University of New South Wales, Australia)

∗ The research is supported by Doctoral Foundation Program of China Education Department, No. 20059998022

Abstract
Clustering has been used as an effective approach to

saving energy and providing better scalability for
Wireless Sensor Networks (WSN). Most of the existing
methods for clustering use a star-based topology while
the newly proposed loop-based topology brings some
unusual advantages. In this paper, we present a loop-
based clustering method for WSN with an improved
mechanism. Based on the data flow characteristics of
WSN, we design an algorithm to release the hop
information from the sink node to all nodes in a fully
distributed way, and design the routing protocol based on
the information. Considering failure recovery, the paper
proposes a recovery algorithm to overcome node failure
and communication failure. The simulation results show
that both algorithms have low communication and
storage overhead and meet constraints on low energy
consumption and low bandwidth of WSN while improving
the fault-tolerance capability.

1. Introduction

Continuous advance in processor technology and in

development of wireless communication and digitized
electronics are pushing the research on Wireless Sensor
Networks (WSN) with low-cost, low-power multi-
purpose sensor nodes capable of communicating in short
distance. A number of the micro-nodes constitute a sensor
network by wireless communication that is called sensor
nodes in WSN work in harness with each other to monitor
the disposed area in real-time manner. Meanwhile, the
monitoring data to be collected is determined by real
application problems.

 A WSN node is not of high mobility, so the
introduction of stable clustering structure can save the
energy cost and improve the high expansibility in most
cases. The classical clustering model LEACH was
proposed by W. R. Heinzelman et al. [2]. The model
selects a cluster header randomly and shares the relaying

communication services, while the cluster header is
responsible for data fusion and routing. It also defines the
concept of round that is composed of two stages:
initiation stage and working stage. A cluster head is voted
in every new round to achieve the balance of nodes.
Many works such as TEEN [3], PAGASIS [4], HEED [5]
have been proposed based on LEACH. However, almost
all existing clustering methods for WSN are star-based,
which manifest themselves with the following problems:
(1) The definition of round is vague;
(2) Cluster reconstruction has a high cost and the change

of topology is hard to forecast;
(3) After cluster reconstruction, the local topology

information of former nodes is useless;
(4) The failure of the cluster head would be a disaster;

Recently, a novel clustering model, which employs a
loop-based topology for a cluster, is proposed [6]. The
loop topology has the following advantages:
(1) There is no critical cluster head defined in a loop, so
the loop-based topology never suffers from chain
reactions caused by the changes of the cluster heads;
(2) Within a loop, every node is necessary to have
knowledge of the other nodes on the loop. So. if the
information of the local loop recorded in a node is
corrupted, by querying the neighboring nodes, the loop
knowledge can be recovered, which provides the network
with better robustness;
(3) There exists two paths between every two nodes on
the same loop, providing a backup route for connection
loss during message transmission.

How to employ the loop-based WSN topology for
routing and for failure recovery is the focus of this paper.
The remainder of the paper is organized as follows.
Section 2 introduces the related works on clustering based
on loop topology and K-ary connected (KC) topology.
Section 3 introduces our proposed algorithm of loop-
based cluster construction. Section 4 proposes the
algorithm to distribute the hop information of nodes and
loops in WSN. Section 5 proposes a routing algorithm
while section 6 proposes a loop-recovery algorithm.

Section 7 describes the result of our simulation study for
performance evaluation. Finally section 8 concludes the
paper.

2. Related Works

The data flow characteristic of WSN is different from
traditional ad hoc networks, and the communication
within a WSN is asymmetrical. In many research works,
the control center must send requests to set up a data
routing path which is to be recorded in the nodes along
the path temporarily. An example is the model of directed
diffusion for WSN proposed by D. Estrin et al. [7].

Zhang et al. proposed a KC topology algorithm which
can guarantee K-ary connection of every two nodes in
most situations [1]. The algorithm is based on the
distribution of the communication power. Its motivation
is to delete the links of long distances so as to let a node
save the consumption of communication power.
Moreover, every node only needs to send out the message
with the max power less than three times. It is proved that
each node at most holds 6*k links. The KC topology
control algorithm could adjust the communication power
of nodes, thus save energy and reduce conflict.

Also, in the loop-based clustering model [6], every
node has the complete information about the loop it
belongs to. The node that belongs to several loops is
called the gateway. Because there are two links between
every two nodes in a loop, providing the backup routing
path, the topology can provide better route recovery. The
process of loop construction is that every node broadcasts
its message of request for loop (LREQ) locally; if node u
receives two messages of LREQ that both passed node v,
u discovers a loop, and generates the message of reply for

。。

。

。

。

。

。

L1

L2

L3

Fig. 1 A loop-based cluster

loop, and sends it to the nodes on the path. Fig. 1 shows
the basic structure of a loop-based cluster, and Fig. 2
illustrates the construction of a loop.

a

b c
d

e
f

g

h

Fig. 2 An example for the basic algorithm

3. A Modified Loop-based Clustering Model

This section describes our modified loop-based

clustering model in detail. We introduce a KC topology
control algorithm before describing loop-based cluster
construction.

3.1 KC topology control algorithm

We add some operations when KC algorithm is
executing for getting the nodes that near the sink node. In
our approach, the sink node receives the hello message
from the nodes with the max communication power. And
the sink node would be aware of the distance to the nodes
that send the message according the signal intensity. Let’s
suppose the max communication radius is pmax, the sink
node would choose the nodes within the distance of pmax/t
(here t is a parameter, and its value is consistent with the
nodes density and the application character), and transmit
the reply message to them. The node that receives the
reply message be aware of that it is the neighbor of the
sink node, and it will initiate the dissemination of the hop
information.

In addition, the neighbor nodes table would be reserved
for the loop recovery algorithm.

3.2 Loop-based cluster and its refinement

The formation of a loop is based on the KC topology

control algorithm. The process is similar to the algorithm
in [6]. And the differences are listed as follows.
(1) With KC topology control algorithm, the nodes
broadcast the LREQ with their necessary power gathered
before, not with the max communication power;
(2) For loop building, we choose a range for the number
of nodes in one loop instead of a predefined number. Any
nested loops must be deleted. For example, as shown in
Fig. 3, node a, b, c, d, e, f construct a loop and node b, c,
d, e, f construct another loop, and these two loops are
nested, so the smaller one (contain less nodes) should be
deleted. If node d firstly discovers the case, it generates a

message c-loop (i.e., cancel of the loop), and sends it to
the nodes that belonged to the smaller loop.

Fig. 3 The deletion of the nested loop

a

b
c

d

e

f
g

h

i

j

The sink node

Fig. 4 The distribution of hop information

4. Build an advanced structure for data
routing

 A simple loop-based cluster in WSN is not enough for
data routing. In this section, we propose two algorithms to
get the hops from sensor nodes and loops to the sink node.
With such information gathered, the routing algorithm
would be guided, which means every node knows the
correct path to transmit data to the sink node.

4.1 The distribution of hop information of nodes

According to the KC topology control algorithm, the

nodes which find the sink node are those nodes whose
distance is within pmax/t. These nodes will distribute the
hop information over the whole network. In fact, the hop
of them will be 1, and the neighbors of them within the
same loop will be 2, and so on. Table 1 shows the data
structure designed for the algorithm.

As shown in Fig. 4, node c and d are neighbors of the
sink node, and suppose they initiate the algorithm. When
node b and h receive the hop message from node c, they

Table 1 Data structure of hop information

Data structure Explanation

v.hop The hop of node v

v.hloop.head The node with the smallest hop in
the loop contains node v

v.hloop.hop The hop of v.hloop.head

hinf.head The begin node of a loop in
transmitting the message

hinf.head_hop The hop of hinf.head

hinf.hop
The current accumulative number of
the message according to which the
receive node get its own hop

get their states and transmit the message to the nodes. The
process would continue, as far as all nodes get their states.
 The detail of the whole algorithm can be found in [8].
After the algorithm, every node (e. g. node v) knows its
hop from the sink node, also knows the node with the
smallest hop in the loop contains node v. They are the
data structure v.hop and v.hloop.head. It was proved that
v.hop is the smallest hop from node v to the sink node [8].

4.2 To build the hop of loops

After every node gets to know its hop from the sink

node and other related information, it shares the
information in its loops. Then the hops of loops can be
acquired. There is no dependent among loops, and each
loop can handle the information in parallel. Table 2
shows the explanation of the data structure used in the
algorithm.

Generally, let p1, p2,…, pk be nodes which located
deasil around the loop L. For every i (1≤i≤k), node pi
carries out the operations as follows:

L.hop←pi.hop,
If pi.hop=1, pi.hloop.hop←0.
And transmit the message hloopinf to pi+1(pk to p1), the

data structure like:
{pi, pi.hop, pi.hloop.hop}.

When node pj receives the message hloopinf from node

pi, it follows the steps below:

(1) If pi=pj (which means that the message has
transmitted around the whole loop and with no use), just
discard the message, and then go to step 6.
(2) If L.hop>pi.hop, L.hop←pi.hop
(3) If pi.hloop.hop<L.hop, add {pi.hloop.hop, pi} to

L.preloop
(4) For every member {v, v.hloop.hop} in L.preloop, if

L.hop ≦ v.hloop.hop, delete {v, v.hloop.hop} from
L.preloop
(5) Transmit the message hloopinf to pj+1 without any

modification
(6) End

Table 2 Data structure for loop-hop building

Data
structure

Explanation

u.hop the hop from node u to the sink node

L.hop the hop of loop L, is defined by the smallest
hop of the nodes belong to it

Viz L.hop=min{p1.hop, p2.hop, …, pk.hop}

L.preloop The set of nodes and its hops of loop L that
belong to some loops with smaller hop than
L

Viz.L.preloop={pi.hloop.hop, pi |
pi.hloop.hop<L.hop}

After every node acquires preloop data structure of all

the loops, the node randomly deletes the member of some
loop if it discovers that there are the same two members
in preloop of two different loops. The reason is that these
two members will construct the same path in the routing
algorithm.

Fig. 5 shows the typical execution of the algorithm,
node p1, p2, p3, p4, p5 belong to a loop, and they would
transmit their message clockwise independently. For
example, node p1 would transmit the message to the node
p2, and the message pass through p2, p3, p4, p5, and these
nodes would update their information according to the
message. When the message finally arrives at node p1, it
is discarded.

If there are n nodes in loop L, each node in loop L
would communicate 2n times (including transmitting and
receiving). The algorithm could be explained by:
(1) If node pj receives the message from node pi, and
discovers that L.hop≦pi.hop, pj it knows that the message
isn’t useful for the hop of the loop, and thus will be
discarded. Why pj transmits the message as usual? The

reason is that the pi.hloop.hop information is within the
message, which would be useful for the L.preloop.

p1

p2

p3p4

p5

Fig. 5 An example of the algorithm

a

b c

d

e
fg

L1
L2

 Fig. 6 An example of the routing algorithm

(2) The data pi.hloop.hop isn’t within the loop L, but it is
gathered by the nodes in the loop L in the above
algorithm, so this algorithm can execute in loop.
(3) At the beginning of the algorithm, when node u find
that u.hop=1, then u.hloop.hop←0. Why? If u.hop=1, u is
the neighbor node of the sink node. Suppose loop L
contains node u, we can get L.hop=1, and if
u.hloop.hop=1, L.preloop would be empty! We can’t
process the next routing algorithm! So u.hloop.hop must
be 0.

If we consider that the node u and the sink node
construct a loop (a loop with two nodes!), it is easy to
understand: the smallest hop node which belongs to the
same loop with node u is the sink node, and the hop of the
sink node is 0.

5. Routing

Considering the shortage of mobility, a novel

mechanism is designed to make every node in the
network know the correct routing to the sink node. The
data routing is based on the distribution of the hop
information, stored in the preloop data structure owned
by the nodes that attempt to transfer data. The detail of
the algorithm is explained by three specific cases below:

Case 1:
Node u itself gathers the data and attempts to transmit

to the sink node; (let cont be the content of the data.)
If u.hop=1 (which means that u is the neighbor of the

sink node), u generates message:{u, cont}, and transmits
to the sink node directly.

Otherwise, u lookups its preloop data structure.
Let p1, p2, …, pk be the members in it, and q1, q2, …, qk

be the corresponding hops. Then u chooses pi with the
probability of:

1 2

1 /(1)
1 /(1) 1 /(1) ... 1 /(1)

i

k

q
q q q

+
+ + + + + +

for the transition to the sink node (here we add 1 to the
hop because some hops are equal to zero). If node pi is
chosen, u generates message: {u, cont, pi}. Let L be the
loop that contains node u and pi. Then u chooses a
direction (clockwise or anticlockwise) of L to transmit the
data.

Case 2:
Node v receives a message:{u, cont, v}, which means

that v is the stopover of the message. Then v transmits the
message in the way of case 1, but it doesn’t transmit the
message to the node u, even if u is in the preloop data
structure of node v.

Case 3:
Node t receives a message:{u, cont, v}, also t≠v. Then

t simply transmits the message to the next node nearer to
the node v in the loop L.

Fig. 6 shows the typical execution of the algorithm.
Node c belongs to the loop L1 and L2. When it attempt to
transfer data to the sink node, it lookups its preloop data
structure, and finds that nodes b, g, e are the stopover. It
chooses one node of them with a predefined probability.
For example, node g is chosen, and then c transmits the
message to the node g clockwise or anticlockwise.

6. Loop recovery

In WSN, node failure is quite common because of the

limited energy. So our loop recovery algorithm is
considered mainly to overcome it. We focus on topology
management. As the energy of every node in the network
is limited, and the batteries can’t be replaced timely,
especially in countryside. When the batteries are
exhausted, the node is dead, so we need to guarantee that
the network can still behave normally even though some
nodes are dead. The survivability relies on the data
structure of neighbor nodes table gathered in the KC
topology control algorithm and the loop-based structure.
Our algorithm is described as follows.

When node u discovers that its neighbor in loop L is
invalidated, u lookups the nodes list of loop L, and find
that node v is the another neighbor of the node x. Then
the algorithm goes according to the conditions below:
(1) L.preloop={x, x.hloop.hop}, which means that the
nodes in the loop L must transmit the message to the node
x if they attempt to transfer data to the sink node. So it
executes in the situations below:
(1-a) v is the neighbor of u, then u transmit the neighbor
nodes information to node v directly (except the nodes
that belong to the loop L). When node v receives this
message, it discovers the nodes that are also the neighbor
of itself in the message. Suppose they are p1, p2, …, pk ,
for each pi, add the distances that from pi to u and from pi
to v, and sort them with the sums by decrease order,
transmit this sorted information to the node u. Then u
and v transmit messages to these nodes in turn. For
example, node u to node t, the message is like: {u, L.hop,
t}. When node t receives the message, if
t.hloop.hop<L.hop, t transmits reply message to the node
u, the message is like: {t, t.hloop.hop, t.hop, u};
otherwise it does nothing. If both u and v receive the
reply message from node t, they add the node t to the
loop L, and inform other nodes in the loop L to update
their loop information and hop information. All the
nodes in the loop L transmit the updated information to
their neighbor nodes in the other loops, to update the
information of the whole networks. If u and v can’t
receive the reply message from the same node, for every
two neighbors in the loop L, carry out the operation just
like the u and v did. And if neither neighbor receives the
reply message from the same node, the loop is
invalidated.

(1-b) v is not the neighbor of the node u, which
communicates to node v through another path in the loop,
and does the same operations like (1-a). However if u and
v can’t find a neighbor both, the loop is invalidated.
(2) L.preloop ≠ {x, x.hloop.hop}, the algorithm goes
according to the situations as follows:
(2-a) v is the neighbor of u, then simply delete node x
from loop L, and update the information of nodes of the
loop L.
(2-b) v is not the neighbor of u. Nodes u and v search
their neighbors like (1-a). The result is that the node t
with the smallest sum of distances from t to u and v could
be discovered no matter what the hop information of node
t will be and how the network updated. Also if there is no
neighbor, the loop is invalidated.

With the neighbor nodes information gathered in the
KC topology control algorithm, loop recovery algorithm
can recover the loop even though some nodes are dead.
Because the algorithm uses the original structure of the
loops, it shed small effect on the other parts of the
network. The update message is disseminated only if

needed. When node u and v search their neighbors, the
ones they selected is the one with the lowest cost.

 There are two situations that the algorithm is
invalidated:
(1) Node u and v are not neighbors, and they can’t find
their common neighbor with the max communication
power. Due to this reason, the probability is very small
with the loop topology control.
(2) There is no node with a smaller hop than the loop can
discover by every two neighbors. We have proved that
u.hop is the smallest number of hops from node u to the
sink node, if this happens, it is considered that there are
too many nodes died and the network no longer works.

7. Simulation

Our algorithm is simulated with MATLAB. The

monitoring area is a square with the size of 100*100,
inside the area there are 100 nodes supposed distributed
randomly.

Table 3 The comparison of 4 protocols

The energy
of a node
（J/node）

Protocols
First
node dies

Last
node dies

Direct 55 117

Directed
Diffusion

47 457

LEACH 394 665
0．25

Our approach 231 673

Direct 109 234

Directed
Diffusion

238 573

LEACH 932 1312
0．5

Our approach 641 1231

Direct 217 468

Directed
Diffusion

457 852

LEACH 1848 2608
1

Our approach 1324 2314

The radio model here is similar to LEACH [2]. The

max communication radius is 30. The sink node is located
in the border of the area. Table 3 shows the result of our
algorithm compared with some existing algorithms. It
could be seen that our algorithm is near to LEACH, better
than the other two.

The traditional criteria of WSN are classified as: the
first node dies; the last node dies and the half of the nodes
die. In fact, there are some problems as shown in Fig. 7.
We can see that there are still many nodes working in the
network, but in fact the network can’t monitor the
majority of the area. Thus new criteria are needed. Here,
we propose a new criteria, key area, which is the most
important place for the monitoring tasks. If all key areas
are out of the monitoring, the network is invalidated. Fig.
8 shows the key areas defined in our simulation. Table 4
shows the simulation result under the new criteria. It is
seen that our algorithm is better than other algorithms.
Also, we show the energy consumption on data gathering
simulation results in Fig. 9. It is obvious that the curve
increases much slower than other protocols while
gathering data.

Fig. 7 Some nodes work while the network is invalidated

key2

key1

key3

key4key5

Monitoring area

keyi（0<i<6) is the key
areas

The sink node

Fig. 8 The explanation of key area

Fig. 9 Energy consumption of different protocols

Table 4 Data gathering under different protocols

 (new criteria, radius is 10)

The energy
of a node
（J/node）

Protocols
Half of the key
areas are out of
monitoring

Direct 95

Directed Diffusion 243

LEACH 268
0．25

Our approach 431

Direct 176

Directed Diffusion 379

LEACH 1065
0．5

Our approach 1143

Direct 321

Directed Diffusion 642

LEACH 2034
1

Our approach 2117

8. Conclusion

Till now, few works on clustering in WSN take into
consideration of the loop-based topology in the design of
network protocols, and almost no work addressed the
evaluation of the architecture. In this paper, we
introduced a novel loop-based clustering method,
including algorithms for routing and loop-recovery. The
simulation result shows that our approach performs better,
in terms of energy consumption, than some existing

protocols. Our future research will be focused on two
aspects:
(1) Acquiring more precise evaluation on the analytic
model.
(2) Improving the proposed algorithms to fit some
specific WSN applications.

References

[1] L. Zhang, X Wang, W. H. Dou, “A K-connected
energy-saving topology control algorithm for WSN”,
Proc. of the 2nd International Symposium on Parallel
Distributed Processing and Applications (ISPA’04),
Hong Kong, China, Dec. 2004, pp.178-187.

[2] W. R. Heinzelman, A. Chandrakasan, et al.,
“Energy-efficient communication protocol for wireless
micro-sensor networks”, Proc. of the 33rd Hawaii
International Conference on System Sciences, Jan.
2000, pp. 4-7.

[3] A. Manjeshwar, D. P. Agrawal, “TEEN: A routing
protocol for enhanced efficiency in wireless sensor
networks”, Proc. of the 2nd International Workshop on
Parallel & Distributed Computing Issues in Wireless
Networks and Mobile Computing, 2002, pp. 195b.

[4] L. S. Raghavendra, “PEGASIS: Power efficient
gathering in sensor information systems”,
http://www.cs.wayne.edu/~loren/csc8220-info

[5] O. Younis, S. Fahmy, “Distributed Clustering for
Scalable, Long-Lived Sensor Networks”, Purdue
University, Technical Report CSD TR-03-026, June
2003.

[6] Y. P. Li, X. Wang, F. Baueregger, et al., “Loop-
based Topology Control in Wireless Sensor Networks”,
Proc. of ICCNMC’05, LNCS 3619, Aug. 2005,
pp.1160-1169.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J.
Heidemann, “Directed Diffusion for WSN”, IEEE
Transaction on Networking, Vol. 11, No. 1, Feb. 2003,
pp. 2-16.

[8] Shengdong Zhang, “The Research of Energy-
Saving Routing and its Fault-Tolerance capability for
Loop-based WSN”, MSc Dissertation, National
University of Defense Technology, Dec. 2005.

