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Abstract— This paper is a sequel to an earlier study on
scheduling real-time traffic in wireless TDMA channels. In
particular, we develop mathematical analysis to model the system
behavior of the equal-delay scheme and its extension of the
multi-class scheme, both of which were proposed previously.
The main usefulness of the proposed scheduling mechanisms is
the improvement on the worst-case delay, and consequently the
reduction in probability of delay violation or loss. We achieve the
analytical solution by evaluating the corresponding cumulative
distribution of delay. The derivation of the distribution function
is based on a well-known method of solving a set of first-
order differential equations and eliminating all unstable modes.
However, the existence of channel variations generate unique
difficulties which renders the original method unsuitable. To
solve this problem, we devise novel transformation techniques
and an algorithm to recursively estimate the state probabilities
in steady-state, so the original method can be applied in an
alternative manner. Furthermore, we develop a reduced state
model for homogeneous systems to alleviate the requirement
on computational complexity of the full model. On the other
hand, an additional challenge to extend the mathematical model
to support the multi-class system is to overcome the varying
progression rates of individual transmissions. To tackle this
problem, we model the system aggregate delay value and re-
calculate the scaled statistics for each class of flows according
to their pre-assigned weights. Finally, numerical results and
computational complexity analysis are presented.

I. INTRODUCTION

This paper is a continual study on the subject of schedul-
ing real-time traffic in wireless networks from its preceding
investigation [1]. There have been intensive research focus on
developing effective scheduling schemes for wireless networks
in recent years [6][7][8], satisfying a wide range of goals,
such as minimizing delay, maximizing channel utilization,
and maintaining fairness. On the other hand, exchanging
multimedia contents across the wireless medium is an area
with growing research interest. However, the unique service
requirements imposed by real-time traffic are largely over-
looked by most of the existing wireless schedulers, resulting
in a big lag in achievements behind industrial expectations.
The Equal-Delay scheme and its extension to support multiple
traffic classes proposed in [1] aim to narrow this gap by paying
specific attention to this important type of network traffic. In
this paper, we propose mathematical models for evaluating the
scheduling performance of the schemes, and demonstrate the
analytical solutions and their computational complexities.

The main advantages of achieving analytical solution over
simulation analysis are its inherent proven integrity and re-
liability of the obtained results, and the lesser requirement

on computational power, allowing the tasks of admission
control and network planning to be executed more efficiently
and accurately. In the powerful paper published in 1982 [2],
Anick et al. proposed a mathematical model to represent a
data-handling system with multiple sources, and devised an
elegant analytical solution for it in closed form. Although the
system considered in [2] is primitive, the work stimulates the
development of extended mathematical analysis for systems
with other characteristics [3][4][5]. These include multiplexing
more than one type of sources onto one transmission channel,
and multiplexing one type of sources onto a network of
channels.

Like the above antecedent references, the development of
our analytical model is based on the framework established
in [2]. However, the varying progression rates of the two
existing time scales, namely, the source and channel times,
create unique difficulty not presented or studied in any of the
these works before. We develop two mechanisms in order to
convert our system model to a form that can utilize the original
approach. The first procedure is a transformation technique
which combines the two times into a single one by formulating
the relationship between them and expressing one in terms of
the other, whereas the second approach is to obtain the steady-
state distribution of the combined system, which is done via
recursive estimation.

Although a closed-from solution is not achieved in our
paper, the cumulative distribution of delay can be evaluated
by numerical procedures. For systems containing only small
numbers of individual source and channel states, the compu-
tational complexity is relatively low. However, the processing
and memory requirements go up dramatically with increasing
number of states. To lessen the complexity involved, we
propose an improved model for homogeneous sources so that
the number of resulting states, and hence the system size,
are vastly reduced, which in turn enables a more efficient
computation.

The equal-delay scheme has been extended to support flows
with diverse delay requirements in [1], and the resulting
multi-class scheme imposes different delay degradations to
flows belonging to different classes. This unbalanced delay
allocation poses an additional problem to the extension of
the mathematical model from the equal-delay framework,
since it introduces yet another irregularly-varying time scale
to the multi-class system. Inspired by the original idea of
transformation proposed for the equal-delay system, we merge
the three different time scales into one that can be used for
analytical derivation. Instead of evaluating individual delay
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statistics, the aggregate delay statistics are evaluated. Each
individual class result can then be obtained by scaling the
aggregate results with the associated class weight.

Brief introduction of the equal-delay and the multi-class
scheme are given in Section II and IV, whereas the mathe-
matical analysis of the two schemes are presented in Section
III and V. Finally, numerical results are provided in Section
VI.

II. THE EQUAL-DELAY SCHEME

We consider a TDMA transmission system containing F
mobile stations, labeled f = 1, 2, . . . , F . Each station is
equipped with its own sending buffer of infinite size, with
a common base station acting as a central access controller
through polling. In our scheme, the base station schedules
individual traffic flows in cycles, and the objective of the
scheduling scheme is to maintain the same cycle delay across
all flows in the system. We achieve this by allowing every flow
to transmit one cell of traffic, corresponding to the amount of
source generation within the same time interval as any other
flows.

As the quality of a channel degrades, various channel
adaption procedures including the FEC can be carried out to
maintain roughly the same perceived error probability. The
resulting transmission speed of the link thus appears to vary
over time. We assume that the time required to transmit a
certain amount of source traffic in the j th degraded channel
is Cj times longer than in the highest quality channel, and
consequently define Cj as the channel factor for state j. As
a result of the variations in source activity level and channel
quality, the nth cycle duration, denoted by λn, also varies over
time. Let us represent the average source generation rate for
flow f from time (k−1)Λ to kΛ by Sf,k; the average channel
factor for flow f during its transmission interval within the
kth cycle by Cf,k; and the nominal cycle duration by Λ. The
relationship between the nth cycle delay, DnΛ, and its cycle
duration may then be conveniently captured by

0≤DnΛ =
n−1∑

k=0

(λk−Λ)=
n−1∑

k=0




F∑

f=1

Sf,kCf,k
L

Λ


+Gk−Λ (1)

where L represents the highest link rate achievable by any
channel, and Gk represents any portion of the kth cycle which
is not used for real-time traffic.

We consider the limiting behavior of equation (1) in order
to derive analytical expressions for the cumulative delay
probability distribution. As Λ → 0 and n → ∞, such that
nΛ→ τ , the rate of increase in Dτ , for positive Dτ , becomes

∂Dτ

∂τ
=

F∑

f=1

Sf (τ)Cf (tτ )

L
− 1

III. MATHEMATICAL ANALYSIS FOR THE EQUAL-DELAY
SCHEME

A. The Model

For a homogeneous system with F flows, let there be NS

source states and NC channel states for each flow. We consider

a composite process in which each of its states is composed of
the source and channel states of all flows. The ith composite
state, mi, is thus defined as

mi = [(s1,i, c1,i), (s2,i, c2,i), . . . , (sF,i, cF,i)]

where sf and cf are the source and channel states for flow f ,
respectively.

In this paper we model the variations in both source genera-
tion and channel condition by Markov process. For Markovian
individual source and channel processes, the composite pro-
cess is a multi-dimensional Markov process. The idea is to
express the system behavior within a very short time interval
[τ, τ+∆τ ]. By passing ∆τ → 0, all compound transitions are
eliminated because of its Markovian nature. This simplification
allows the steady-state distribution of the delay to be found
by solving a simple first-order differential equation and by
eliminating all unstable modes.

Let Pmν (τ + ∆τ,D) be the joint probability that at source
time (τ + ∆τ), the composite state is mν , and the cumulative
delay is less than or equal to D. Logically both τ and D have
to be non-negative. Furthermore, let us use M(τ) to represent
the composite state at source time τ . Pmν (τ+∆τ,D) is equal
to the sum of the product of all the possible composite states
at τ and their corresponding conditional probabilities. That is,

Pmν (τ + ∆τ,D)

=

NM∑

i=1

[P (M(τ + ∆τ) = mν |M(τ) = mi, D −Di)

Pmi(τ,D −Di)]

(2)

where Di is the amount of delay incurred during the interval
[τ, τ + ∆τ ]. There are NM composite states, where NM =
(NSNC)F .

Now, since the composite process is a continuous-time
Markov Chain, the conditional probabilities are all indepen-
dent of the delay, and are equivalent to the corresponding
Markov transition probabilities. As ∆τ → 0, only single
source / channel transitions originated from one flow remain
significant, the remaining compound events all have zero
probability of occurring. Composite states mi and mj are
called neighboring states in the multi-dimensional Markov
Chain if they are differed by exactly one individual source
or channel state. Let us denote the transition rate matrix of
this composite Markov process by Q, and the transition rate
from mi to neighboring state mj by Qmi→mj , equation (2)
then becomes

Pmν (τ + ∆τ,D) =

NM∑

i=1,i6=ν
[Qmi→mν∆τPmi(τ,D −Di)]

+ (1−
NM∑

i=1,i6=ν
Qmi→mν∆τ)Pmν (τ,D −Dν)

+O(∆τ2)
(3)

where lim∆τ→0
O(∆τ2)

∆τ = 0.
Since the system is described in source-time progression,

but the underlying channel processes change states according
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to the real-time axis, Qmi→mj must include a stretching /
shrinking factor of rmi in such cases. Its value equals the
total flow rate of the composite state mi. That is, with Ssf,i
and Ccf,i representing the source rate and the channel factor
of source state sf,i and channel state cf,i, respectively,

rmi =
F∑

f=1

Ssf,iCcf,i
L

and L is defined as the constant link rate, as before. This
represents the situations where the probability of a channel
state change is higher within a source time interval of ∆τ
when the system is running slow (stretching) than when the
system is running at nominal speed, or when it is catching up
(shrinking). Similarly, the probability of a channel state change
is lower when the system is catching up than when it is running
at nominal speed, or slowing down. Let the transition rate of
the underlying source state change be αmi→mj and channel
state change be βmi→mj . Qmi→mj can be formally expressed
as

Qmi→mj =





αmi→mj for source state change
rmiβmi→mj for channel state change
0 otherwise

Now passing (3) to the limit ∆τ → 0, we get

∂Pmν (τ,D)

∂τ
+ (rmν − 1)

∂Pmν (τ,D)

∂D

=

NM∑

i=1,i6=ν
[Qmi→mνPmi(τ,D)]

− (

NM∑

i=1,i6=ν
Qmi→mν )Pmν (τ,D)

(4)

If existing, the steady-state probability of Pmν (τ,D), de-
noted by P̃mν (D), can be found by setting the rate of change
of Pmν (τ,D), i.e. δPmν (τ,D)

δτ , to 0. Therefore in steady-state,
equation (4) becomes

(rmν − 1)
dP̃mν (D)

dD
=

NM∑

i=1,i6=ν
[Qmi→mν P̃mi(D)]

− (

NM∑

i=1,i6=ν
Qmi→mν )P̃mν (D)

(5)

Defining D as a NM ×NM diagonal matrix with non-zero
entries {rm1

− 1, rm2
− 1, . . . , rmNM − 1}, and M also a

NM ×NM matrix, whose entries are

Mj,i =

{
Qmi→mj ifi 6= j,

−∑NM
k=1,k 6=iQmk→mj otherwise

we can write down an equivalent matrix expression for equa-
tion (5) as

D
dP̃(D)

dD
= MP̃(D) (6)

where P̃(D) is a NM × 1 column vector whose ith entry is
P̃mi(D). The general solution to the differential equation (6)

which gives rise to a stable system is thus

P̃(D) =
∑

Reλi≤0

uiVie
λiD (7)

where λi and Vi are the ith eigenvalue and eigenvector of
D−1M, and ui’s are the set of coefficients to be determined by
the boundary conditions. For D to be invertible, the diagonal
entries must be non-zero, which implies rmi 6= 1, ∀i. On the
other hand, by restricting to only non-positive eigenvalues (i.e.
Reλi ≤ 0), the unstable modes of the system are eliminated.
Otherwise |P̃(D)| will grow without bound as D →∞.

With the inclusion of the ∞ boundary condition, equa-
tion (7) then becomes

P̃(D) = P̃(∞) +
∑

Reλi<0

uiVie
λiD (8)

Further, the zero boundary condition gives the following set
of linear equations

P̃mi(0) = 0, for i = 1, 2, . . . , NM such that rmi > 1 (9)

which reads that in steady-state, the probability of no delay is
zero when the aggregate rate exceeds the nominal link rate.
Therefore the remaining N− constant coefficients of ui can
be solved, since the number of composite states with effective
rate rmi > L equals N−.

The characteristics of the 2F -dimensional Markov process,
and hence the procedure for obtaining the steady-state distribu-
tion, are noticeably different from our antecedent references
using method proposed in [2]. Firstly, the inclusion of the
stretching / shrinking factor in each transition rate makes the
property of it being only dependent on the individual state
change, invalid. As a result, the steady-state distribution of
the composite Markov process cannot be expressed in a simple
product form, that is,

P̃mi(∞) 6=
F∏

f=1

P̃sf,i(∞)P̃cf,i(∞), for i = 1, 2, . . . , NM

where P̃sf,i(∞) and P̃cf,i(∞) are the steady-state probabilities
of flow f ’s individual source and channel being in state
sf,i and cf,i, respectively. Furthermore, the inclusion of the
stretching / shrinking factor in the composite Markov transition
rate matrix is valid only when the delay is strictly positive. On
the other hand, when the delay equals zero, they should not
be included at all. This is because when the system is not
running behind, the real time would not run slower than the
source time, even when there is less to transmit than what
the link can handle. In other words, the scheduling system is
governed by two separate composite Markov processes. When
the delay is positive, it follows the process which includes both
stretching and shrinking factors, which is the same as the one
that governs the dynamics of the system in equation (3). When
the delay reaches zero, on the other hand, it is governed by
the Markov process that excludes the stretching / shrinking
factors. It is thus apparent that obtaining the real steady-state
distribution under such a complicated system dynamics is not
an easy task. In the following section we describe a method
to recursively estimate this distribution.
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B. Estimation of the Steady-State Probabilities

We start with an initial estimate of P̃(∞), denoted by
P̃(∞)0, and the value of which is obtained by solving a
set of NM linear equations from the transition rate matrix
Qdelay = Q. The first estimate of P̃(D), denoted by P̃(D)1,
can be obtained by evaluating (8) and substitute (9) in the
solution. In the following updating procedures, the knowledge
of P̃(0)1 is required. Now the first estimate of the portion of
time spent in any particular composite state, mi, in steady-state
with zero delay, let us represent it by p1

mi , can be obtained by
evaluating

p1
mi =

P̃mi(0)1

P̃mi(∞)0

and the portion of time with positive delay, denoted by q1
mi ,

is thus
q1
mi = 1− p1

mi

Essentially the updating process of P̃(∞), hence P̃(D),
is performed recursively by re-calculating the transition rate
matrix of the combined Markov process, denoted by Ak,
where k represents the recursion step, and re-evaluating (8)
and (9). This abstract random process governs the behavior of
the system as a whole, under both circumstances of with and
without delay. The kth step update of each transition rate in
Ak is given by

Akmi→mj = pkmiQdelay,mi→mj + qkmiQnodelay,mi→mj (10)

where Qdelay,mi→mj is the transition rate from mi to
mj according to transition rate matrix Qdelay. Similarly
Qnodelay,mi→mj is the transition rate from mi to mj ac-
cording to Qnodelay, which corresponds to the composite
Markov process without including the stretching / shrinking
factors. Given Akmi→mj , the next estimate of P̃(∞)k, that
is, P̃(∞)k+1, can be evaluated using the above mentioned
method. Convergence usually occurs within just 5 iterations,
and in each iteration we only need to solve a set of NM

linear equations, therefore the computational requirement for
this updating process is modest.

C. A Reduced Model for Homogeneous Systems

A major problem associated with the mathematical model is
its high computational complexity. Even for a modest case of 4
flows with 2 source and channel states each, a total number of
256 composite states would result. This means that in order to
solve equation (7) numerically, the eigenvalues / eigenvectors
of a 256×256 matrix must be found, which is a non-trivial task
for modern computers equipped with consumer-grade power.

We investigate a reduced model for the case of homoge-
neous flows, in which the number of composite states can
be vastly reduced. This improvement is achieved based on
an important observation that it is unnecessary to maintain
the identities of flows being in certain combinational source
and channel states. For instance, the transition rate from
the composite state [(a1, b1), (a2, b2)] to [(µ, b1), (a2, b2)] is
identical to the transition rate from [(a2, b2), (a1, b1)] to

[(a2, b2), (µ, b1)], which is equal to the single Markov tran-
sition rate from source state a1 to µ. The same also applies
to single channel transitions.

As a result, all states that maintain identities to individual
flows can be combined to ones that only remember the
aggregate number of flows being in certain combinations of
source and channel states. We call such a state a reduced
composite state. Furthermore, the reduced system also sat-
isfies the Markov properties. Let us label the combinational
states (s1, c1) the first, (s1, c2) the second, . . . , (s1, cNC )
the N th

C , (s2, c1) the (NC + 1)th, . . . , and finally (sNS , cNC )
the (NSNC)th, and represent the number of flows being in
combinational state k by ηk. The ith reduced composite state,
denoted by m′i, can be expressed as

m′i = [η1,i, η2,i, . . . , ηNT ,i]

where NT = NSNC . Since only the non-zero values of ηk,i
are significant, removing all zero components in the definition
would result in exactly the same set of states.

The procedures for finding the cumulative delay probabili-
ties are the same as in the previous case. On the other hand,
the elements of the composite transition rate matrix Q and the
value of rmi for each state are different. The aggregate flow
rate for m′i is modified to

rm′i =
η1,iSs1Cc1 + η2,iSs1Cc2 + · · ·+ ηNT ,iSsNSCcNC

L

Additionally, assuming that the only difference in the number
of flows belonging to neighboring reduced composite states i
and j is the kth combinational state, that is,

|ηk,i − ηk,j | = 1

and use ηm′i→m′j to represent this value of ηk,i. The new
transition rates can then be modified to

Qm′i→m′j =





ηm′i→m′jαm′i→m′j for source state change

rm′iηm′i→m′jβm′i→m′j for channel state change

0 otherwise

and the inclusion of the stretching / shrinking factor remains
unchanged.

IV. MULTIPLE-CLASS SCHEME

In order to accommodate multiple delay requirements, dif-
ferent numbers of cells can be transmitted by flows belonging
to different classes in the multi-class scheme. Our multiple-
class scheduling objective is to maintain the relative flow
delays in proportion to a pre-defined set of weights, ρf . That
is, we would like to achieve

Df,nΛ = ρfDnΛ (11)

where Df,nΛ is the delay for flow f at the beginning of the
nth cycle, DnΛ is the aggregate delay of all Df,nΛ’s, with
DnΛ =

∑F
f=1Df,nΛ, and

∑F
f=1 ρf = 1.

To simplify matters, we insist that the total number of cells
transmitted during any cycle is exactly F . That is,

F∑

f=1

Zf,k = F, ∀k (12)
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Let us denote the number of cells flow f is allowed to transmit
during cycle n by Zf,n. The total number of cells transmitted
by flow f prior to cycle n is thus

∑n−1
k=0 Zf,k, and its delay is

0 ≤ Df,nΛ = F



n−1∑

k=0




F∑

f=1

Zf,kSf,kCf,k
L

Λ


+Gk − Λ




(13)

To distribute delay amongst the various flows, the scheduler
first calculates the total number of outstanding un-transmitted
cells amongst all flows, at the beginning of cycle n. We refer
to this as the scheduler’s backlog, Bn, where

Bn =

∑F
f=1Df,nΛ

Λ
=
F

Λ
(tn − nΛ)

The scheduler selects the Zf,n values using a control loop
which aims to distribute the backlog amongst the various flows
according to equation (11). Assuming that the total backlog
to neither grow nor shrink during the next cycle time, the cell
allocation for each flow f can be calculated as

Zf,n = 1−
(
ρfBn −

Df,nΛ

Λ

)

making appropriate adjustments as required to ensure that
Zf,n ≥ 0 and

∑F
f=1 Zf,n = F .

V. MATHEMATICAL ANALYSIS FOR THE MULTI-CLASS
SCHEME

To derive the analytical expressions for the cumulative
delay probability distribution, we again apply the liquid flow
analysis. To find the statistics for each individual flow delay
Df , the idea is to model the aggregate delay value D. Then,
assuming an ideal control loop, the delays of the various flows
can be found according to equation (11).

Since flows are allowed to transmit different unit of cells in
each cycle, as opposed to one cell per cycle in the equal-
delay case, the individual source time τf of each flow no
longer advances at the same pace as the system cycle time, T .
This condition requires the transition rate between neighboring
composite states whose underlying state change is a source
change to include a stretching / shrinking factor as well. The
values of these factors, on the other hand, are different to
those for channel changes. This is because the three time
scales, namely, the source time, cycle time, and real time, all
accelerate / de-accelerate differently from one another in the
multiple-class system. Let the transition rates for the multiple-
class system be represented by Ψmi→mj , ∀i, j ∈ [1, NM ], i 6=
j, the values can be expressed as

Ψmi→mj =





Zf (mi)αmi→mj for source state change
xmiβmi→mj for channel state change
0 otherwise

where

xmi =
F∑

f=1

Zf (mi)Ssf,iCcf,i
L

and Zf (mi) denotes the unit of cells allocated to flow f when
the composite state is mi. Since the flow delays maintain the
weight proportion at all time, we can obtain the condition

(1− ρf)∆Df = ρf

F∑

f=1,f 6=f

∆Df , ∀f ∈ [1, F ] (14)

where ∆Df denotes the change in flow f ’s delay within a short
interval of cycle time, ∆T . Furthermore, the value of each Zf
is independent to the current individual and aggregate delay
and thus depends entirely on the composite state the system is
currently in. We can construct a set of F linear equations to
solve the F unknowns of Z1, Z2, . . . , ZF by expressing ∆Df
in terms of the change in flow f ’s source time, ∆τf,T , and
the change in real time, ∆tT , within the same interval of ∆T ,
that is,

∆Df = ∆tT −∆τf,T = ∆tT − Zf (mi)∆T
and including conditions (12) and (14).

Whenever D > 0, as Λ→ 0 and n→∞, so that nΛ→ T ,
we get, analogous to equation (4),

∂Pmν (T ,D)

∂T + F × (xmi − 1)
∂Pmν (T ,D)

∂D =

NM∑

i=1,i6=ν
[Ψmi→mνPmi(T ,D)]− (

NM∑

i=1,i6=ν
Ψmi→mν )Pmν (T ,D)

This can be solved by following the same procedures as
provided in the equal-delay section.

VI. NUMERICAL RESULTS

In this section, the numerical results are presented. In
particular, the multiplexing power and the implementation
issues of the equal-delay scheme are investigated. We omit the
multi-class results since they extend naturally from the equal-
delay case. We consider a case where the source and channel
characteristics of each flow are captured by two separate
Markov processes, each of which contains two states. The
generation rate of the lower source state is 200 Kbps, with
a mean sojourn time of 10 seconds, while the generation rate
of the higher source state is 500 Kbps, with a mean sojourn
time of 5 seconds. Each of the two channel states has a mean
sojourn time of 20 seconds and the channel factors are 1
and 3 for the lower and higher channel states, respectively.
The transition rate matrices for the individual source, α, and
channel, β process are given by

α =

[
0.6 0.2
0.4 0.8

]
and β =

[
0.7 0.2
0.3 0.8

]

Fig. 1 shows the probability of delay exceeding D, P (d >
D), as a function of D for the cases of 2 to 6 flows. It
is equivalent to find 1 − P (d ≤ D), where P (d ≤ D)
is the cumulative probability of delay. This value can be
obtained from equation (7), with the insertion of the boundary
conditions described in (9), and the inclusion of the steady-
state probabilities that can recursively be re-estimated using
the updating process outlined in Section III. The general trend
of each curve is the decrease of delay violation probability
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Fig. 1. Numerical results on the delay violation probability as a function of
delay threshold, for 2 to 6 flows.

as delay threshold increases. This is because the cumulative
probability of delay approaches 1 at the tail as delay thresh-
old approaches infinity. The figure clearly demonstrates the
statistical multiplexing power of the equal-delay scheme, as
the delay violation probability for all delay threshold values
decrease substantially as the number of multiplexing flows
increases.

In calculating the cumulative probability of delay, obtaining
the eigenvalues and eigenvectors numerically for the ODE
given in equation (6) is a mathematically expensive task. The
cost of the operation shoots up dramatically and its preci-
sion drops with increasing matrix dimensions. Fortunately,
for homogeneous systems, the reduced model provides an
alleviation to the burden created by the expensive mathemat-
ically procedures. We investigate the savings in the resulting
total number of composite states for different number of
simple source generation and channel condition states and
multiplexing flows. Fig.2 shows the ratio, NM′NM

, of the number
of states for the reduced model, NM ′ to our original model,
NM , as a function of the number of multiplexing flows, F . It
can be observed from the figure that NM′NM

drops rapidly as the
number of multiplexing flows increases, indicating a very wide
improvement at that region. In addition, greater savings can
also be observed for higher number of initial source generation
and channel condition states.

On the other hand, the time consumed in finding the com-
posite states and the transitional probability matrix according
to the reduced model would become significantly larger as
either the number of initial source and channel states or the
multiplexing flows increases. This is because the relationship
between these quantities vary as the quantities themselves
vary, resulting in no definite procedure in determining the
composite states. We record the time taken to carry out these
computations for each of the cases and observe the longest
time to be roughly half an hour on a Pentium IV 1.4GHz PC
with 512MB of memory.

VII. CONCLUSION

In this paper, we have proposed mathematical models for
the equal-delay scheme and the multiple-class scheme, and
have devised analytical solution for each of the two cases.
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Fig. 2. The ratio of the number of states resulted from the original model
to the reduced model for multiplexing systems with 2 to 5 initial source and
channel states each.

In particular, we solve the problem caused by the existence
of multiple time-scales variation by transforming all of them
into a single system time scale, and recursively estimating
the steady-state probability distribution for the resulting trans-
formed system. Furthermore, we have shown that an improved
model can be applied to homogeneous systems, so that the
computational complexity for obtaining the system eigenvalues
and eigenvectors can be reduced. Finally, we have presented
numerical results to confirm and demonstrate the strengths of
the scheduling schemes.
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