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Abstract 
For the 4 wire-loop telephony circuit echo paths [1] , 
mobile radio channels [2]  and other channels, the 
impulse response of the channel has “ sparsely active”  
characteristics. We consider a discrete NLMS 
adaptive IIR equalizer connected in cascade with the 
channel to compensate for the system degradation 
due to Intersymbol Interference (ISI) [3] . The 
conventional NLMS adaptive IIR equalizer adapts 
each and every tap at each sample interval. However, 
this approach suffers from the slow convergence 
problem. Motivated by the sparse channel 
characteristics, we investigate the use of active-
parameter detection technique within the NLMS 
adapted IIR equalizer. The proposed detection 
technique is based on that employed for channel 
estimation applications in [4]  [5] . The aim is to adapt 
only the active (or significant) taps of the equalizer. 
Improved convergence rates are achieved. The 
decision feedback technique is also incorporated in 
the IIR equalizer to cancel ISI [6] . Simulations of this 
newly proposed active-parameter detection guided 
IIR equalizer show the favourable accelerated 
convergence.  

1. Introduction 

For 4 wire-loop telephony circuit echo paths [1], 
mobile radio channels [2], room acoustic echo paths 
[7], echo paths in sonar [8] and geophysical 
applications [9] and other channels, it is relatively 
common that the impulse response of the channel has 
a “small”  number of “active”  (nonzero response) 
regions that are located in amongst relatively large 
inactive (zero response) regions. That is the 
multipaths occur in sparsely separated time delay 
clusters.  To equalize such sparsely active channels, 
we consider a discrete NLMS adaptive IIR equalizer 
connected in cascade with the channel to compensate 
for the system degradation due to the Intersymbol 
Interference (ISI), as illustrated in Fig 1(a) & 
Fig1(b).The standard NLMS IIR equalization 
approach adapts each and every IIR tap )(kwi during 
each sample interval.  However, the standard NLMS 
adapted IIR equalizer suffers from the slow 
convergence problem when the required IIR equalizer 
has a long “ tap”  length. Motivated by the successful 
application of the detection guided channel estimator 
of [4] [5] to sparse channel estimation, we propose 
and investigate an active-parameter detection guided 
NLMS-IIR equalizer. The aim of the equalizer is to 
adapt only the detected active (or significant) taps of 

the equalizer. Convergence rate improvement is 
achieved. 

In this paper we incorporate the active-parameter 
detection technique and decision feed back 
equalization within the NLMS adapted IIR equalizer. 
Simulation results demonstrate the favourable fast 
convergence of this newly proposed IIR equalizer. 

2. System Description 

     The configuration we consider in this paper is 
shown in figure 1.  
 
 
 
 
 
 
 
 
 
 
Figure 1a. System equalization configuration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1b. Structure of IIR equalizer  

 
2.1. Channel configuration 
 

We assume the unknown channel is linear, time 
invariant which is adequately modeled by a discrete-
time FIR filter T

n ]...[ ,1,0 θθθ=Θ with a maximum delay 

of n sample intervals: n
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the signals are sampled. At sampling instant k, 
TnkukukukU )](),...,1(),([)( −−= is the signal input 

vector to the unknown channel; an additive noise, )(kn , 

occurs within the unknown channel; and )(ky is the 

observed output from the unknown channel which is 
given by )()()()( knkkUky T +Θ=  where 

T
n kkkk )](),...(),([)( 10 θθθ=Θ . 

 
2.2. Equalizer configuration 
 

The output of the decision feedback IIR equalizer 
is  
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Where ))(()( kvDecisionkvd = .  

For example, if u(k) is an antipodal binary sequence, 
then ))(()( kvsignkvd =  . 

Equation (1) can be rewritten as 
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The adaptive NLMS equalizer equation to update 
the parameter vector is: 
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where )()()( kvkuke −= ,and where µ  and δ  are small 

positive constants.  
In addition to the above, it is also assumed that  

(i) The elements of the input signal vector are 
samples of zero mean, bounded, wide sense 
stationary processes of variance 2

uσ  

(ii) The noise signal is a zero mean, bounded, wide 
sense stationary white process of variance 2

sσ . 

(iii) The noise signal is uncorrelated with the input 
signal vector.  

Furthermore, we assume the FIR channel 
])[( 1−Θ zk  is sparsely active: 
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where m <<n, and 0 <t2<…tm�n 
The standard NLMS adaptive IIR equalizer adapts 

every coefficient )(kai  [i=0, 1,…, n] at each sample 

interval. However, this approach leads to slow 
convergence rates and poor tracking performance 
when the required IIR equalizer is ‘ long’ . We propose 
to incorporate active-parameter detection within our 
NLMS adapted IIR equalizer, the aim of which is to 
adapt only the taps corresponding to the active or 
significant taps of the FIR channel. 
 
 

2.3. Active tap definition 
 

At sample instant k, an active tap or coefficient is 
defined as a tap corresponding to one of the m indices 
{ }m

aat 1=
of (5). Each of the remaining taps is defined as 

an inactive tap. Note: although not explicitly indicated 
in (5), the active tap indices at ; a = 1, 2,…..m and the 

number of active tap indices m may be time varying.  
 
 
3. Activity detection guided NLMS IIR 
equalization 
 

Based on the active-parameter detection criteria 
proposed in [4] [5] for channel estimation applications, 
we propose the following for our IIR channel 
equalization application.  
The activity criterion within our detection guided IIR 
equalizer is derived from the structurally consistent 
least squares based cost function [11]: 
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those equalizer taps )(ka j for which at sample instant 
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In general, however the covariance matrix C is not 
diagonal, and as a result, coupling occurs between the 
taps within the numerator term� =

N

k
k

jd
Sku

1
)()( . This 

causes )(kjX  to be dependent not only on ja  but 

also on the neighbouring taps. 
 



The following enhanced activity detection criteria 
are proposed to remove the coupling effects: 

Modifications 1: Replace )(kX j by: 
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Coupling effects between the neighbouring taps is 
reduced by the additional term 
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Modification 2:  Replace )(kT by:  
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This is due to the realization that for inactive taps, 
the numerator term of )(

~
kjX is approximately: 
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Combining this with the LS theory on which the 
original activity criterion (8) is based, then suggests 
this modification [4] [5] [11]. 
Modification 3: Apply an exponentially decay 
forgetting operator ik

k iF −−= )1()( γ , 10 <<< γ within 

the summation terms of the activity criterion.  
Modification 2 is theoretically correct only if 
)(ke is stationary. Clearly this is not the case. 

Modification 3 is included to reduce the effect of 
)(ke being non-stationary. Note, the inclusion of 

Modification 3 also improves the applicability of the 
detection guided equalizer to time varying systems. 

Accordingly, the following detection guided 
NLMS adaptive algorithm is proposed for the IIR 
equalizer: 
For each parameter index j;  
1. Label the tap index j to be a member of the active 
parameter set { }m

aat 1=
at sample instant k if 
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And where )(iFk , is the exponentially decaying 

operator: ik
k iF −−= )1()( γ  10 <<< γ  and )(iS jd  is 

the j th element of )(iSd . 

Otherwise, label the parameter index j is as a member 
of the inactive parameter set.  

 
2. Update the NLMS weight for each detected active 
parameter index at : 
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where �
at

= summation over all detected active 

parameter indices. 
3. Reset the NLMS weight to zero for each identified 
inactive parameter index.  
 
4. Simulations 

Simulations were carried out to investigate the 
performance (convergence rate, steady state error) of 
the following two equalizers: 
(A) Standard NLMS decision feedback IIR equalizer 
(B)Active-parameter detection guided NLMS 
Decision feedback IIR equalizer 
 
4.1. Simulation conditions 
 
a. The systems considered were based on a channel 

vector Θ  which has 4 active taps and 12 inactive 
taps�  [1, 0, 0, 0, -0.5, 0, 0, 0, 0.23, 0, 0, 0, -0.015, 
0, 0, 0]. A plot of the vector is shown in figure 3. 

b. All poles of the channel lie inside the unit circle, 
which indicates that the system is stable.  

c. )(ku is the coloured channel input signal  described 
by the model ]8.01/[)()( 1−−= zkgku  , where 

)(kg is a discrete white Gaussian process with zero 
mean and unit variance 

d. Initial weighting vector A(0)=[1, zeros(15)] 
e.  noise signal n(k) = zero mean Gaussian process 

with variance=0.001 
f. Regularisation parameter δ =0.1 
g. Squared channel equalization error 2

W−θ is plotted 

to compare the convergence rate where 
],...,,[ 10 nwwwW = . All plots are the average of 10 

similar simulations. 
 
 

 
 

 
 
 
 
 
 
 
              Figure. 2 Channel impulse response 
 
 
 
 
 
 



5. Results and analysis 
 
5.1. Simulation 1  
 

Simulations between the standard NLMS decision 
feedback IIR equalizer (a) and the active-parameter 
detection guided NLMS decision feedback IIR 
equalizer (b) with different adaptive step size 

03.0=µ & 05.0=µ  
The results of these are shown in Figure 3 & Figure 4 
respectively. 
 
Part a for the smaller step-size 03.0=µ

�
In this case, 

the forgetting parameter γ is chosen to be 0.005 � : 
•  Active-parameter detection guided decision 

feedback IIR equalizer (b) provides significantly 
improved convergence rate than the standard 
NLMS decision feedback IIR equalizer (a). This is 
due to the significant reduction in the number of 
taps involved in the weights adaptation.   

•  From figure.3, we can see that the two IIR 
equalizers almost have essentially the same steady 
state error. This indicates that the fast convergence 
in the active-parameter detection technique is not 
achieved at the cost of poorer steady state error 
performance. 
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(b) 
Figure.3 Simulations for IIR equalizer (a) and 

IIR equalizer (b) with 03.0=µ  
 
Part b for the larger step-size 05.0=µ

�
Again, the 

forgetting parameter γ is chosen to be 0.005 � : 
•  Active-parameter detection guided IIR equalizer 

(b) shows significantly faster convergence than the 
standard NLMS IIR equalizer (a).  

•  As µ  increases, the convergence rate of the 
active-parameter detection guided FIR equalizer (b) 
increases, but on the other hand, the increase in  
µ  leads to higher steady state error. This is due to 
fact that the theoretical unbiased NLMS steady 
state error is being linearly proportional to the µ  

value [12], hence, with an increase in the µ value, 

the steady state error will increase accordingly. 
Note that this increase in steady state error occurs 
for both equalizers. 

 
 
 
 
 
 

 
 
 
                  

 
(a) 
 
 

 
 
 
 
 
 
 
 
 

(b) 
Figure. 4 Simulations for IIR equalizer (a) and 

IIR equalizer (b) with 05.0=µ  
 

5.2. Simulation 2  
 

Simulations of the active-parameter detection 
guided NLMS decision feedback IIR equalizer with 
different forgetting parameter 005.0=γ  & 03.0=γ  
(In this case, the step size µ is chosen to be 
0.03 � .The results are shown in Figure 5 & Figure 6 
respectively. 
•  As γ increases, the detection guided FIR equalizer 

is able to pick up less of the non-active taps, 
which results in faster convergence. 

• With larger γ  value, some of the active taps may 

be failed to be detected, which leads to poorer 
steady state error performance.  

• For the simulation with 005.0=γ , all four of the 

active taps were detected; but for the simulation 
with 03.0=γ the detection guided decision 

feedback IIR equalizer failed to detect the smallest 
of the four active taps, whose amplitude is only 
0.015. The failure to detect the fourth active taps 



leads to an increase of 42 1025.2015.0 −×= in the 
steady state error, which agrees with that of figure 
5 and figure 6. 

 
 
 
 
 
 
 
 
 
 

 
Figure 5. Simulations for active-parameter 

detection guided IIR equalizer (b) with 
005.0=γ  

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Simulations for active-parameter 
detection guided IIR equalizer (b) with 

03.0=γ  
 
6. Conclusion 
 
      For equalization of sparsely active FIR channels, 
we have considered the adaptive NLMS IIR 
equalisation method. In this paper, we propose an 
active (or significant) parameter detection guided 
NLMS-IIR equalizer which has significant 
convergence rate advantage over the standard NLMS- 
IIR equalizer. Simulation results confirmed this 
favourable performance. 
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