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Abstract— The high cost associated with the rollout of 3G
services encourages operators to share network infrastructure.
Network sharing poses a new challenge in devising fair, efficient
and Pareto optimal resource allocation strategies to distribute
system resources among users of different operators in the
network. Cooperative game theory provides a framework for
formulating such strategies. In this paper, we propose two
models (i.e. symmetric and asymmetric) for cooperative resource
bargaining in shared networks based on the concept of preference
functions. The symmetric model assumes that all players have
equal bargaining powers while in the asymmetric case, players
are allowed to submit bids to the network operator to influence
the final bargaining outcome. The bargaining solutions proposed
vary according to a parameter β that considers the tradeoff
between one’s gain and the losses of others. The well-known Nash
and Raiffa-Kalai-Smorodinsky solutions are special instances of
the solutions proposed.

I. I NTRODUCTION

Network infrastructure sharing has become a popular strat-
egy among operators in the rollout of 3G services, especially
in the wake of substantial investments in licensing and slow
3G user growth. Operators are attracted to share network
resources because of the lower capital expenditure (CAPEX)in
infrastructure establishment and reduced operation expenditure
(OPEX) in the long run. For example, a greenfield operator
can save considerable costs by sharing its infrastructure with
an incumbent operator. The acceleration of roll-out of 3G
services, enabled by substantial cost savings, facilitates an
earlier user acceptance of WCDMA and its related services.
Besides, operators can increase coverage by sharing or having
complementary, geographically separated sites, especially in
low-density suburban and rural areas where it is more cost-
effective to share.

Referring to Fig. 1, there are several sharing models avail-
able [1], [2]: site sharing; radio access network (RAN) shar-
ing; RAN sharing with gateway core; and, complete sharing.
Complete sharing can be further categorised into:

• Mobile Virtual Network Operators (MVNOs)– Oper-
ators share a full-scale 3G infrastructure (RAN, Core
network and backbone). This approach is primarily used
by MVNOs who do not have a 3G licence and have
little infrastructure of its own except for their own home
location register (HLR) and billing systems. At least one
operator has a 3G licence.

• Geographical network sharing– Operators have comple-
mentary 3G infrastructure in different areas of a country
and share them via national roaming to extend coverage.
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Fig. 1. Models of network sharing.

Network sharing among competing operators opens up a
whole new range of research opportunities, especially in devis-
ing Radio Resource Management (RRM) strategies in a shared
network. The notion of axiomatic bargaining in cooperative
game theory provides a good analytical framework to derive
a desirable operative point that is fair and Pareto optimal.
Pareto optimality is a condition in which it is impossible
to make any one party better off without making any other
worse off. Cooperative game theory has been applied in a
number of resource allocation problems. In [3], a game-
theoretic framework based on Nash bargaining solution for
bandwidth allocation for elastic traffic in broadband networks
is considered. Similarly in [4], the authors demonstrate that
a noncooperative game leads to a solution that is not Pareto
optimal and in some cases “unfair”. In order to achieve an
optimal operating point, some arbitration, e.g. by the network
operator, is required.

In this paper, we derive a new set of fair, efficient and
Pareto optimal bargaining solutions for the resource allocation
problem in a shared WCDMA network based on the concept
of preference functions developed by Cao for a two-user
problem in [5]. Some very well-known bargaining solutions
are Nash [6], Raiffa-Kalai-Smorodinsky (Raiffa, hereafter) [7],
[8], utilitarian and modified Thomson [5]. Preference functions
quantify the tradeoff between one’s gain and the losses of
others using a weighting factorβ and enable us to find a
range of solutions on the Pareto optimal boundary with Nash,
Raiffa and modified Thomson as special instances.

Our resource bargaining approach is different from conven-
tional allocation schemes such as [9] and [10], which focus
on maximising some throughput or social welfare objectives
and ignore how much each user gains or loses compared to
its requirements. Moreover, the concept of users’ utility or
preferences used in [10] is abstract and only known in some



qualitative sense and such an approach cannot be used to
provide concrete numerical answers [3]. Instead, we focus on
the notion of fairness and resources are allocated according to
the minimum and maximum requirements of the users.

In WCDMA, the resource usage requirements of the users or
players can be measured in terms of their uplink and downlink
load factors. Based on these requirements, we first derive a
class of parameterised resource bargaining solutions thatvaries
according toβ. Next, we explore the case where players are
allowed to submit bids to the network operator in order to
influence the bargaining outcome. This is achieved by relaxing
the axiom of symmetry used in [5]. The class of asymmetric
bargaining solutions will then vary with the bargaining powers
of the players, in addition to their minimum and maximum
resource usage requirements. Our focus is on networks that
are completely-shared, where the operators and MVNOs share
the core network, gateway core, RAN and sites, as in the case
of MVNO and geographical network sharing.

There are very few existing published works that explore
resource allocation strategies for operators in a shared network
environment. A simple admission control strategy with non-
preemptive priority queueing has been proposed in [11], which
sets the call admission priority of an operator according the
ratio of its pre-agreed guaranteed load and its current load.
In [12], the authors discuss a framework to manage radio
resources using Service Level Agreements (SLA) among a
network operator and its MVNOs. The downside of this
proposal is that this SLA needs to be repeatedly renegotiated
when the users traffic characteristics evolve.

In section II, we present our system model and derive the
uplink and downlink load factors. Then, we introduce our
model of resource bargaining and derive the solutions in Sec-
tions III and IV respectively. Result analysis and conclusion
are presented in Sections V and VI.

II. SYSTEM MODEL

We consider a shared network with one operator andM

MVNOs, denoted bym ∈ {1, . . . ,M}. Apart from serving
its users, the operator sells unused resources to its MVNOs.
These MVNOs do not own any resources and only have the
ability to purchase them from the network operator and then
resell them to their users. It is reasonable to assume that there
is a pre-existing SLA between the operator and each MVNO
to guarantee it at leastRmin

m units of resources. We denote the
number of users associated with the operator or any of the
mth MVNO asN0 andNm respectively.

Assume that the services provided by the operator are elastic
and defined by a range of transmission rates bounded by mini-
mum and maximumRmin andRmax. For example, the UMTS
Adaptive Multi-Rates (AMR) codec offers transmission rates
that vary between 4.75 and 12.2 kbps for conversational
voice service [13]. The transmission rate can be dynamically
adjusted every 20 ms. We assume that users can select their
acceptable QoS level by setting their range of transmission
rates. In order to allocateresourcesin a fair, efficient and
Pareto optimal way, we first need to derive the meaning of

a unit of resource. In a WCDMA network, resources can be
expressed in terms of the uplink and downlink load factors
of the users. The load factors are commonly used to make a
semi-analytical prediction of the capacity of a WCDMA cell,
without performing system-level simulations [13].

A. Uplink Load Factor

Consider a single WCDMA cell. In order for a signal to
be received, the ratio of its received power to the sum of
the background noise and interference must be greater than
a given target. The target quality is translated to the following
inequality that must be satisfied for each useri = {1, . . . , N}
[14], [15]:
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whereW is the WCDMA chip rate,νi is the activity factor,xi

is the allocated transmission rate,gi is the path gain between
the base station and useri, pi is transmission power,σ is
the background thermal noise,Ii =

∑N
j 6=i gjpj is interference

received by the base station from all the other users within
the same cell and
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is the target bit-energy-to-noise-

density required to meet predefined bit error rate (BER). In
the case multiple cells, the interference from other cells can
be taken into account by using a coefficientf , i.e. Ii =
(1 + f)

∑N
j 6=i gjpj . Interference coefficientf typically has

values between0.1 and0.6 [13].
Assuming perfect power control and solving the set of

equations in (1), we obtain the following:
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where the load factorηUL
i and total interferenceI are respec-

tively given by
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The number of users that can be supported by the network is
limited by maximum uplink system load factor allowed by the
network, i.e.

N
∑

j=1

ηUL
i ≤ η̄UL < 1. (5)

When the total load factor approaches unity, the system
reaches its pole capacity and the total interference increases to
infinity in (4). If this constraint is violated, the target

(
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for all users will not be satisfied. We say that the uplink is
interference-limited. Users cannot increase their power without
bound because of the increased interference they caused to
other users. The corresponding transmission rate allocated is
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, (6)



which increases according to the load factor allocated.

B. Downlink Load Factor

In the downlink, the target signal quality of useri is [15]
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where Ii = θigi

∑

j 6=i pj and θi is the orthogonality factor
of the codes used in the downlink. Although WCDMA em-
ploys orthogonal codes, users will receive part of the base
station signal due to multipath propagation. In the uplink,
transmission is asynchronous and therefore the signals arenot
orthogonal. Typically, the orthogonality is between 0.4 and
0.9 in multipath channels [13]. The total transmission power
in the downlink is limited by the maximum power that the base
station can transmit, i.e.

∑N
j=1

pj ≤ pmax. Assuming perfect
power control, the transmission power to theith user is

pi =

∑N
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giθi
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Using (8) and (7), the downlink load factor can be derived as
follows

ηDL
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giθipmax

1 + W
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. (9)

Unlike in the uplink, the downlink load factor depends on the
orthogonality factor and path gain between the user and the
base station. Similar to the uplink, the total downlink load
factors must satisfy

N
∑

i=1

ηDL
i ≤ 1. (10)

Using η̂DL
i =

ηDL

i

1+ σ
giθipmax

to express (8) in terms of the

downlink load factor, we have the following:
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Given ηDL
i , the transmission rate allocated to theith user is

then expressed as
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which increases as the allocated downlink load factorηDL
i and

path gaingi increase.

III. R ESOURCEBARGAINING MODEL

In the bargaining framework, the players or bargainers in our
problem are the MVNOs and users of the operators. Therefore,
there are a total number ofN = N0 + M players in the
network. DefineS as the bargaining domain or the feasible
set of all possible outcomes andS is assumed to be convex,

closed and bounded sets ofR
N . The players compete for the

use of resources and each playeri ∈ {1, . . . , N} has a

• utility function ui = ηi, which is represented by the
allocated load factor. Any pointu ∈ S represents an
outcome or solution of the game.

• desired initial performanceumin
i , which is the minimal

performance required by the user without any cooperation
in order to enter the game. It is also known as the
disagreement pointor threat point. Players will not enter
the game if it is not achievable.

The bargaining problem and outcome can be defined as
(S,umin) and F (S,umin) ∈ S respectively. Approaches to
bargaining fall into two divisions:strategic and axiomatic
bargaining. Strategic bargaining, such as the Rubinstein’s
model of bargaining [16], assumes that there is a bargaining
process where the solution is achieved in a series of offers
and counteroffers. The bargaining solution emerges as the
equilibrium of a sequential game. The need for a bargaining
process among the players is time-consuming and therefore
unsuitable for WCDMA network with many users.

Axiomatic bargaining ignores the bargaining process and
assumes some desirable properties about the outcome of
the bargaining process and then identifies process rules or
axioms that guarantee this outcome. The operator serves as
the arbitrator in the cooperative resource bargaining game.
Nash specifies four axioms, which impose properties that a
bargaining solution should satisfy:

A1 Invariance with respect to affine transformation: If u
∗

is the solution to(S,umin) and y is any positive affine
transformation, the solution to(y(S), y(umin)) is y(u∗).

A2 Symmetry: If the bargaining problem is symmetric, in
the sense that (e.g.N = 2) umin

1 = umin
2 and (u1, u2) ∈

S ⇔ (u2, u1) ∈ S, then F1(S,umin) = F2(S,umin).
This means that two players with symmetric utilities get
the same payoff.

A3 Pareto Optimality: The bargaining solution will be on
the Pareto boundary. If(S,umin) is a bargaining problem
and u,u′ ∈ S and u′

j > uj , j = 1, . . . , N , then the
outcomeF (S,umin) 6= u.

A4 Independence of Irrelevant Alternatives: If (S,umin)
and(S ′,umin) are bargaining problems withS ⊆ S ′ and
F (S ′,umin) ∈ S, thenF (S,umin) = F (S ′,umin).

Axiom A4 received a number of criticisms. In particular,
[7], [8] argued that one’s gain should be proportional to its
maximum gain but the Nash solution fails to satisfy this
requirement. They retained A1-A3 and proposed a new axiom:

A5 Monotonicity: If S ⊆ S ′ (N = 2), u1(S
′) = u1(S)

andu2(S
′) ≥ u2(S), F2(S

′,umin) ≥ F2(S,umin).

Cao in [5] explained that the Nash and Raiffa solutions
represent different solution points on the Pareto boundary.
There is no special reasons why they should be chosen and one
might to choose another point on the boundary if one dislikes
the properties of the Nash and Raiffa solutions. Bargaining
solutions can be analysed using players’ preference function.
In the two-user case, with disagreement pointsumin

1 = umin
2 =



0, the players’ preference functions are defined as

v1 = u1 + β(1 − u2) (13)

v2 = u2 + β(1 − u1), (14)

where 0 ≤ u1, u2 ≤ 1 and β is a weighting factor that
measures the trade-off between one’s gain and another’s
loss. The bargaining outcome,u∗ is the solution tou

∗ =
arg maxu(v1v2). The special cases ofβ = 0, 1,−1 correspond
to the Nash, Raiffa and modified Thomson solutions. The Nash
solution only considers individual’s gains and ignores how
much other players may gain or lose. On the other hand, the
Raiffa solution places the same weight on individual gain and
other players’ losses. The modified Thomson solution, also
known as the relative utilitarian outcome, maximises the sum
of all players’ normalised utilities.

For the multi-player case, we define theith player’s prefer-
ence function withumin

i and maximum utilityumax
i as follows:

vi(β) = ui − umin
i +

β

N − 1
(
∑

j 6=i

umax
j − uj). (15)

where β = 0, 1,−(N − 1) corresponds to the Nash, Raiffa
and utilitarian solutions respectively. Our definition does not
requireui to be normalised by its maximum value sinceumax

i

is included and is general enough to include the special case
of normalised utility in [5] and [17]. The bargaining outcome
u
∗(β) is the solution to

u
∗(β) = arg max

N
∏

i=1

vi(β). (16)

The solution depends onβ and we call this the symmetric
parameterisedsolution of the bargaining problem.

IV. RESOURCEBARGAINING IN WCDMA

In our WCDMA resource bargaining problem,ηmin
i and

ηmax
i correspond to the minimum and maximum acceptable

load factors based on the player’s requirement for the min-
imum and maximum transmission ratesxmin

i and xmax
i , as

defined in (3) and (9). If the player is a user of the operator,
Rmin ≤ xmin

i , xmax
i ≤ Rmax, i ∈ {1, . . . , N}. For themth

MVNO, its guaranteed minimum resource allocation isRmin
m ,

which can be in terms of the transmission rate or load factor.
Its maximum requirement will be in terms of the maximum
requirements of all of itsNm users.

A. Symmetric Bargaining

We first derive the symmetric bargaining problem withui =
ηi where all players are assumed to have equal bargaining
power. The symmetric resource bargaining problem is defined
as (P1):

max
η

N
∏

i=1

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)

s.t. ηi ≥ ηmin
i , ηi ≤ ηmax

i ,

N
∑

i=1

ηi ≤ T. (17)

Referring to (5) and (10), the resource constraint parameter
T corresponds tōηUL and 1 respectively for the uplink and
downlink. Note that a similar formulation has been considered
in [3] but the authors only focus on the Nash solution, i.e.
β = 0. We are interested in deriving a range of bargaining
solutions, parameterised byβ, on the Pareto boundary.

Proposition 1: Under the assumption ofηmin
i ≤ ηi ≤ ηmax

i

,
∑N

i=1
ηi ≤ T and

∑N
i=1

ηmin
i < T , the symmetric bargaining

solution, parameterised by weighting factorβ, −(N − 1) <

β ≤ 1, of the problem (P1) is given by

ηi(β) = min{η̃i(β), ηmax
i }, (18)

where η̃i(β) =
T

N
+

(N − 1)(Nηmin
i −

∑N
j=1

ηmin
j )

N(N − 1 + β)

+
β(Nηmax

i −
∑N

j=1
ηmax

j )

N(N − 1 + β)
. (19)

Proof: Let bargaining domainS be a nonempty, convex
and compact set. Taking the logarithm of (P1), the Lagrangian
equation of the problem is given as

L(η,λ,µ, γ) =

N
∑

i=1

ln

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)

−
N
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i=1

λi(η
min
i − ηi) −

N
∑

i=1

µi(ηi − ηmax
i ) − γ(

N
∑
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ηi − T ).

The necessary and sufficient Karush-Kuhn-Tucker conditions
for optimality for i ∈ {1, . . . , N} are

f(ηi) −
β

N − 1

N
∑

j 6=i

f(ηj) = λi − µi + γ (20)

γ(

N
∑

i=1

ηi − T ) = 0 (21)

using f(ηi) =
1

ηi − ηmin
i + β

N−1

∑

j 6=i(η
max
j − ηj)

. (22)

When constraints(
∑N

i=1
ηi−T ) is inactive and(ηmin

i −ηi) and
(ηi − ηmax

i ) are inactive for alli ∈ {1, . . . , N}, λi = µi = 0
and γ ≥ 0. Solving these equations, we havef(ηi) = f(ηj)
for all j 6= i, i, j ∈ [1, N ] or

ηi = ηj +
(N − 1)(ηmin

i − ηmin
j ) + β(ηmax

i − ηmax
j )

N − 1 + β
. (23)

Using (23) and condition
∑N

j=1
ηj = T , the solution to the

bargaining problem (P1) can be derived accordingly. ¥

Proposition 2: When players take into account the utility
loss of other players in their preference function by setting
weighting factor0 < β ≤ 1, the absolute gap between the
new outcome and the Nash solution increases by up to

∆i =
(N − 1)(ηmax

i − ηmin
i ) − (

∑N
j 6=i ηmax

j − ηmin
j )

N2
(24)



whenβ = 1. The utility, measured in terms of the load factor,
of ith player using the Raiffa solution (β = 1) is more than

the Nash solution ifηmax
i − ηmin

i >
∑N

j 6=i

ηmax

j −ηmin

j

N−1
.

Proof: From Proposition 1, the Nash (β = 0) and Raiffa
(β = 1) solutions are respectively given byηi(β) =
min{η̃i(β), ηmax

i } and

η̃i(0) = ηmin
i +

T −
∑N

j=1
ηmin

j

N
(25)

η̃i(1) = η̃i(0) + ∆i (26)

The second part of the proposition is obvious. ¥

The Nash solution in (25) is the tangent point of the
hyperbola

∏N
i=1

(ηi − ηmin
i ) = constant and only takes into

account the individual’s gainηi−ηmin
i . This solution is known

as thesplit-the-differencerule and coincides with the two-
user bargaining outcome derived in [16]. On the other hand,
the Raiffa solution in (26) places the same importance on
one’s gain and the losses of others. On the other hand, asβ

approaches−(N−1), more weight is placed on other players’
gain. Whenβ = −(N − 1), the problem maximises the sum
of utilities of all players. However, there is no trivial solution
for this problem as(N − 1 + β) approaches 0 in (1) whenβ
approaches−(N − 1). When−(N − 1) < β < 0, the weight
on other players’ utility is less than 1.

B. Asymmetric Bargaining

Imposing the Axiom of symmetry A2 in (P1) assumes
that all players have equal bargaining skills. In practice,the
bargaining outcome may be influences by other variables such
as the tactics employed by the bargainers, the negotiation pro-
cedure and the information structure [16]. In our asymmetric
resource bargaining model, we allow the final outcome to
be influenced by the price paid by all players. Suppose that
each playeri ∈ {1, . . . , N} can submit a bidτi ∈ R to the
network operator, which is also the arbitrator. We then define
the asymmetric resource bargaining problem (P2) as follows:

max
η

N
∏

i=1

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)τi

s.t. ηi ≥ ηmin
i , ηi ≤ ηmax

i ,

N
∑

i=1

ηi ≤ T. (27)

Proposition 3: Under the assumption ofηmin
i ≤ ηAS

i ≤
ηmax

i ,
∑N

i=1
ηi ≤ T and

∑N
i=1

ηmin
i < T the asymmetric

bargaining solution, parameterised by weighting factorβ,
−(N − 1) < β ≤ 1, of the problem (P2) is given by

ηAS
i (β) = min{η̃AS

i (β), ηmax
i }, (28)

where η̃AS
i (β) = τ̂iT +

β(1 − Nτ̂i)T

N − 1 + β

+
(N − 1)(ηmin

i − τ̂i

∑N
j=1

ηmin
j )

N − 1 + β

+
β[ηmax

i + ((N − 1)τ̂i − 1)
∑N

j=1
ηmax

j ]

N − 1 + β
. (29)

τ̂i = τi
∑

N
j=1

τj
can be interpreted as thebargaining powerof

the ith player and the sum of all bargaining powers is equal
to one. When the bids submitted by all players are the same,
the asymmetric solution (28) is the same as the symmetric
solution derived in (18).

Proof: The derivation is similar to the one in the previous
section and will therefore be omitted. It is easy to see that the
symmetric solution (18) is a special instance of the asymmetric
solution. The second part of the proof can be obtained using
τ̂i = τi = 1

N
. ¥

Proposition 4: Similar to Proposition 2, when players take
into account the utility loss of other players, i.e.0 < β ≤ 1, the
absolute gap between the new outcome and the Nash solution
increases by up to

∆AS
i =

(1 − Nτ̂i)T − ηmin
i + τ̂i

∑N
j=1

ηmin
j

N

+
τ̂i(N − 1)ηmax

i + [(N − 1)τ̂i − 1]
∑N

j 6=1
ηmax

j

N
(30)

whenβ = 1. When the Raiffa solution is used, the utility of
the ith player will only be greater than the utility derive from
the Nash solution when∆AS

i > 0.
Proof: Using Proposition 3, the Nash and Raiffa solutions

are respectively given by

η̃AS
i (0) = ηmin

i + τ̂i(T −

N
∑

j=1

ηmin
j ) (31)

η̃AS
i (1) = η̃AS

i (0) + ∆AS
i .¥ (32)

The asymmetric Nash and Raiffa solutions derived in (31)
and (32) exhibit the same properties as the symmetric solutions
in the previous section. The Nash solution only varies accord-
ing to the minimum load factor requirements and bargaining
powers of all players. The asymmetric Raiffa solution takes
into account the maximum load factor requirements as well.

Proposition 5: When the bargaining power of theith player
varies byδi, the new load factor̃ηAS

i can be written in terms
of the previous load factor̃ηAS,old

i as

η̃AS
i (β) = (1 + Ki(β))η̃AS,old

i (β) (33)

where

Ki(β) = Nδi[1 −
(N − 1)xmin

i + β(T −
∑N

j 6=i xmax
j )

η
AS,old
i (N − 1 + β)

].

Note that δi = τ̂i − τ̂old
i (β). When the bargaining power

increases, i.eδi > 0 and Ki(β) > 0, ηAS
i (β) > η

AS,old
i (β).

Similarly, using (18),ηAS
i (β) > ηi(β) when τ̂i > 1

N
. ¥

Proof: Omitted.

V. NUMERICAL ANALYSIS AND DISCUSSIONS

In order to achieve the resource allocation outcome in
Proposition 1, the arbitrator, i.e. the operator requires the
knowledge of each player’sxmin

i andxmax
i . This is not difficult

to achieve in real implementation because users can select
their acceptable transmission rate range at the beginning of



a call or even change it during. Moreover, for each service,
the operator can set up several classes with different varying
guaranteed quality for its users to select from. Using (3) and
(9), the operator can calculate the minimum and maximum
load factor requirements of its users for both uplink and
downlink respectively. For the MVNOs,ηmin

i is specified in
their SLA with the operator andηmax

i is a function of the
total maximum load factor requirements of the users supported
by them. The MVNOs can in turn redistribute the resources
allocated in a similar manner using (18).

The Nash and Raiffa solutions derived in Propositions 1 and
2 satisfy different axioms and are both on the Pareto optimal
boundary. The Nash solution maximises the Nash product, i.e.
the product of the gain of all players. The Raiffa solution also
considers the size of the bargaining domain of each player,
i.e. how much other players give up in addition to one’s gain.
To illustrate this, we consider the following simple game with
N = 2. Player 1 is a user and Player 2 is an MVNO, which has
two users with the same maximum load factor0.6. Suppose
that T = 1 and the minimum and maximum requirements of
the players areηmin = (0.1, 0.2), ηmax = (0.5, 1.2).

The bargaining solutions, parameterised byβ ∈ [0, 1], are
depicted in Fig. 2 in solid lines. The Nash and Raiffa solutions
are given byη(0) = (0.45, 0.55) and η(1) = (0.3, 0.7). As
β increases from 0 to 1, the load factor allocated to Player
2, which has a higher maximum rate requirement, increases.
Both solutions are Pareto optimal. However, by axiom A5,
the Raiffa solution is at the point where each player’s gain
is proportional to its maximum gain and therefore “fairer” to
player 2. Also, Player 1 is able to increase her load factor
by increasing her bid,τ1, to the operator. In that case, Player
2’s bargaining power̂τ2 decreases. The asymmetric solutions
for the case of̂τ = (0.6, 0.4) are also depicted in Fig. 2 in
dashed lines. Note that̂τ = (0.5, 0.5) in the symmetric model.
By Proposition 5, the new Nash and Raiffa solutions are given
by ηAS(0) = (0.50, 0.48) and ηAS(1) = (0.37, 0.63). Given
the η, the uplink or downlink transmission rate of the players
can respectively be determined using (6) and (12).

VI. CONCLUSION

We have derived the symmetric and asymmetric resource
bargaining solutions for a WCDMA network. Although our
model is of a shared network, the results can be applied
to other networks with similar resource allocation problem.
Unlike conventional schemes that only aim to maximise some
system objectives, the allocation approaches that we derived
are Pareto optimal and fair according to the minimum and
maximum requirements of each player. In the asymmetric
model, the players, i.e. the users of the network operator and
the MVNOs, can affect the bargaining outcome by submitting
a bid to the network arbitrator. The solutions derived are
parameterised byβ, which quantifies the preference for one’s
gain and the losses of others. Asβ approaches 1, more
weight is placed on how much other players give up and the
bargaining solution favours the player with higher maximum
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Fig. 2. Symmetric and asymmetric bargaining solutions withτ̂ = (0.5, 0.5)
and τ̂ = (0.6, 0.4) respectively.

requirement. When the solutions are all Pareto optimal, the
selection ofβ is arbitrary.
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