

A Software Phase-Locked Loop from Theory to Practice:

TMS320C6000 DSP Based Implementation and Analysis

Sithamparanathan Kandeepan
Wireless Signal Processing Group
National ICT Australia, Canberra

RSISE, Australian National University
Kandeepan.Sithamparanathan@nicta.com.au

Abstract
The study of phase locked loops (PLL) has been heavily
treated in literature and most of the theoretical and the
analytical results of such are verified using simulations. Here
we provide a real-time implementation of a PLL on a digital
signal processor (DSP) and analyse and verify the theoretical
results associated with it on the implemented system. Such
work takes us one step above from the traditional simulation
and analysis of PLL to real-time implementation and analysis.
The steady state and the acquisition of the PLL are analysed.
Issues such as quantization errors are also discussed.

1. Introduction

The phase locked loop [1-4] is a useful control systems
tool used heavily in communications engineering, radar,
sonar, control engineering and many other applications. In
communications PLLs are used for carrier tracking, frequency
synchronization, phase synchronization and symbol timing
synchronization. Here we design a PLL in software on DSP to
track carrier signals and also to track the fundamental
frequency component of periodical signals. The DSP used is
the Texas Instrument’s C6713 based floating point processors
[11-16]. The implemented software based PLL is used to
analyse the performance and compare it with the theoretical
analysis. The advantage of such software implemented PLL
and analysis is that the loop could be easily modified to
incorporate signal processing components to improve the
performances of the PLL. Generally, with the trade-off
between the acquisition and the tracking performance of PLL,
such signal processing elements may be used to improve
either the acquisition or the tracking performance depending
on the application. In many cases researchers use simulations
to analyse the performances of PLLs, but we go further a step
up and use real-time implementation of PLL to analyse the
performance. Here, apart from the theoretical background,
implementation and experimental results, we also provide
detailed explanation on the hardware platform and design
structures of the PLL on the DSP. Section-2 introduces to the
theoretical background of the PLL and its corresponding loop
designs. In section-3 we provide the hardware details and the

interrupt based DSP implementation with details on the
Analog-to-Digital (ADC) and Digital-to-Analog (DAC)
converters. Sections 5 and 6 provide the experimental results
and comparisons with the theoretical results such as the steady
state phase error, phase jitter and the steady state
instantaneous frequency jitter. We also look at the phase plane
portrait of the loop. Finally we provide some conclusion in
Section-7.

2. Phase Locked Loop

A typical PLL implemented in hardware consists of an error
detector, loop filter and a voltage controlled oscillator (VCO).
For software implemented PLL, the VCO is augmented by a
numerically controlled oscillator (NCO). The NCO is a
software implemented sinusoidal waveform generator that
changes its frequency depending on the numerical input. The
block diagram of software implemented PLL is given in Fig-1.
The error detector is a multiplier based sinusoidal [1-4] phase
detector, which also has a tendency of producing 2nd harmonic
frequency components at the output.

Figure – 1, Digital phase locked loop model

An alternative approach to design the phase detector is to use
the four quadrant arctan function. The four quadrant arctan
based phase detector, which requires the inphase and the
quadrature inputs of the signal, is easily implemented in
software [8,9] and has got several advantages over the
sinusoidal phase detector. In this paper however we consider
the traditional sinusoidal based error detector for our
implementation and analysis. The loop filer plays a major role
on the performance of the loop; a single pole loop filter gives
a second order loop, which is capable of tracking frequency
offsets present in the received signal. The loop filter we use

PD Filter

NCO

I/P signal

here is an imperfect type of integrator with a single pole. The
mathematical model of the NCO is given by,

1
)(

−
=

z
kzV (1)

where, k is the constant that controls the NCO. The output of
equation (1) produces the phase required to generate the
sinusoidal signal, which is the local oscillator signal. The
locally generated signal is given by,

[n]) cos(r[n] θ= (2)

where, θ[n] is the phase produced by equation (1). The
linearised loop for the block diagram in Fig-1 is given by the
closed loop transfer function,

)()(1
)()()(
zVzD

zVzDzH
+

= (3)

where, D(z) is the transfer function of the loop filter. By
ignoring the higher order harmonic components, the error
signal produced at the output of the phase detector is given by,

)esin(ε ϕ= (4)

where, ϕe is the phase error between the received signal and
the locally generated signal. Another loop parameter that
defines the loop performance is the closed loop bandwidth.
The closed loop bandwidth for a discrete loop is given by [2],

∫= −

c
dZZZHZH

j
iB

BL
1)/1()(

2
2

π
 (5)

where, Bi is the noise equivalent input bandwidth to the loop.
Having defined the loop model, in the following sections we
see how we design and implement the loop on the DSP.

3. Hardware Test-bed

The hardware test-bed used here includes two Texas
Instrument’s C6713 based floating point DSPs [11-16]
attached to host PCs. The processor runs at a speed of
225Mhz with two arithmetic and logical units and 8-functional
units each, allowing 1800 million instructions per second
(MIPS). The Development board that contains the processor,
manufactured by ‘Spectrum Digital’ also includes onboard
memory, an audio codec chip, digital interfaces and several
others which we present in this section. The development
board is also supported by a software development tool called
the Code Composer Studio (CCS) [21,22] developed by Texas
Instruments. The CCS allows to target the DSP development
board from the host PC through a USB based Joint Target
Action Group (JTAG) interface, which gives access to the
onboard peripherals and interfaces. The CCS also contains
necessary board support (BSL) and chip support (CSL)
[20,25] libraries to initialize and setup the hardware. Fig-2
shows some of the functional block diagram of the hardware
peripherals on the development board. The AIC23 [23] is the
analog interface to the DSP and the external world, which we

discuss in more detail in the subsequent section. The audio
codec is connected to the DSP through two multi channel
buffered serial ports (McBSP), one of which is used for
controlling the audio codec (McBSP0), and the other is used
for data transfer (McBSP1). The memory onboard the system
is interfaced by the Enhanced Memory Interface or the EMIF
with 256KB of flash memory and 16MB of onboard memory.
Some of the other units on the development board are, the
memory expansion unit, external JTAG interface, four dip-
switches and four light emitting diodes which are controllable
using the CCS from the host PC. The development board is
also capable of running on stand-alone mode without the host
PC. The flash memory is used for such purposes and can be
programmed to perform particular tasks during boot-up mode.

3.1. AIC23 Audio codec

The AIC23 audio codec chip manufactured by Analog
Instruments is the interface to the analog world. Alternatively
the daughter card expansion slot may also be used to have
daughter cards which would by pass the onboard audio codec
(AIC23) and function as the analog interface. The AIC23 has
four 3.5mm audio ports for input and output purposes. The
four ports are, a stereo microphone input, a stereo line-in, a
stereo headphone output and a stereo line-out. The interfaces
can handle a peak to peak voltage of 6v on the analog
interface side of the pins. The codec is clocked by a 12MHz
crystal clock allowing the sampling frequency to change
between 8kHz to 96kHz. The sigma-delta technique is used on
the codec to improve the signal to noise ratio of the received
signal. The received samples are passed through an
interpolation filter, modulator and a decimator before
encoding it using the 2’s complement. Hardware interrupts are
performed by the DSP or the EMIF to transfer data from and
to the audio codec through the McBSP.

4. Software Implementation

The implementation of the loop makes use of the multiple
functional units and the dual arithmetic and logical units in the
DSP. The locally generated signal is produced by a lookup
table method to produce the sine values. The received samples
are stored in the memory location r and multiplied by the
locally generated signal x to produce the error signal e. (MPY
denotes the multiplication operation and, ADD denotes
addition in assembly language)

x , r MPY e

The error signal is then passed through the IIR single pole
loop filter. The filtering operations are done in parallel to
make use of the available resources on the processor. The time
domain difference equation of the IIR filter is given by,

 w[n+1] = ae[n] + (1-a)w[n]

where, a is the filter coefficient. The corresponding assembly
codes with parallel instructions are given by,

Fig-2, Test-bed hardware, DSP development board and its main functional subsystems

|| a , e MPY b1
|| (1-a), w MPY b2

b1, b2 ADD w

Then the output of the filter is input to the NCO, which is
essentially a phase accumulator, to produce the local signal.
 k , w MPY u
 u, teta ADD teta

A single pass in a loop takes up to seven cycles together
with data movement to memory segments to produce the
output. This gives us more operational cycles allowing us to
use additional complex signal processing operations in real-
time within the loop before the next sample is taken in.

5. Linear Analysis

In this section we present some standard linear analysis
conducted on PLL, which are used in the following sections
to verify the real-time software implemented PLL. We look
into the steady state performance of the linear loop in (3).

5.1.Time Series Analysis

The phase error process in the loop shows a transient and a
steady state response as any typical feedback loop. The time
series model of the phase error process for the linear loop is of
great interest to us.

⎥
⎦

⎤
⎢
⎣

⎡

++−

−Ω
+

Ω
−Ω=

))1sin(()sin(2

))1sin((2

)sin(

][

δδ

δ

δ

θ

nnr

nr

ak

nro

k
onon

 (6)

For a frequency error of ∆f in the received signal the time
series expression for the linear loop in (3) is found by solving
the difference equation for the error signal, which is given by
(6) [8,9], where, r = | z |, δ = ∠ z, Ωo = 2π∆fTs and z, z* are

the poles of the under damped imperfect 2nd order loop. The
sampling duration of Ts of the audio codec AIC23 is set to
1/(96 kHz), where the sampling frequency is given by fs =
96kHz. In (6) we assume that the carrier frequency is set to
zero and the loop tracks the frequency error directly. This is
usually used in base-band processors to offset for frequency
errors in the received signal. Equation (6) clearly shows the
dying out transient component together with the steady state
component.

5.2. Steady state phase error

The steady state phase error of the loop is the constant phase
error value after transient. For an imperfect loop the steady
state phase error is useful in determining the lock-in range of
the loop. The steady state phase error may be found by
setting n ∞, in (6), minus the first term. However, in many
situations a direct closed form solution to the time series
model is unobtainable; in such cases we use the final value
theorem in the discrete domain to find the steady state phase
error. For the loop in (3) the steady phase error is given by,

k
fTs

sse
∆

=−
πϕ 2 (7)

From (7) we can see that the loop is dominantly controlled
by the NCO parameter k, which also known as the loop gain.

5.3. Acquisition Time

The acquisition time is the time for the loop to acquire and
lock on to the fundamental frequency of the received signal.
For the noiseless case we define the acquisition time where
the transient of the error dies-out with +/-5 percent of the
final steady state value. For the loop defined in (3) the
acquisition time is given by,

⎥⎦
⎤

⎢⎣
⎡=

]ln[
)]sin(05.0ln[

r
ak

sTacqT
δ (8)

TMS320
C6713
DSP

SDRAM AIC23
Audio Codec

JTAG/USB

I1 I2

I3 I4 I5 I6

C1

C2 C3

I1 – Host PC connection
I2 – DC power connection
I3 – Line-in
I4 – Microphone-in
I5 – Line-out
I6 – Headphone-out

C1 – JTAG interface
C2 – McBSP interface
C3 – EMIF

Power System

5.4. Steady state phase noise

Due to the presence of additive noise in the received signal,
the loop experiences some jitter in the phase error process,
this is known as phase noise or loop noise. The phase noise
depends on the input signal to noise ratio (SNR) and the
closed loop bandwidth BL. For a linear loop with additive
white Gaussian noise at the input signal, Gardner [1] for a
continuous loop and Lindsey [2] for a discrete loop, have
shown that the phase noise is given by,

P
BN L02 =ϕσ (9)

where, P is the input signal power and N0 is the single sided
power spectral density of the noise process.

5.5. Steady state instantaneous frequency jitter

The input noise process causes a jitter in the frequency that
the loop locks onto. This is known as the instantaneous
frequency jitter of the loop. The instantaneous frequency jitter
for the discrete loop is given by [7,9],

2π
ϕσσ

sTf = (10)

The jitter associated with the instantaneous frequency of the
NCO is relatively high with respect to the lock-in frequency.

6. Experimental Results

Two C6713 based hardware development boards were used to
conduct the experiments. The PLL was implemented on one
of the boards and the other was used as a signal source. Two
communication channels were used, one a direct wiring of the
two development boards through a 3.5mm pin based audio
cable, and the other a wireless channel in the FM-band
(88.7MHz). Initially a black box based testing was conducted
to study the additive noise process. The analog components in
the audio codec hardware produce some amount of thermal
noise which we analyse and present here. The noise samples
taken from the analog input were analysed on its statistical
properties. The noise process follows a Gaussian distribution
as shown in Fig-3. The noise is zero mean with a variance of
σ2 = 2.1868 in units sample-amplitude. Although the codec
contains nonlinear devices we treat the entire hardware
module as a black box and assume the noise process is flat
within the frequency range of the discrete system. The single
sided power spectral density of the noise process shown in
Fig-3 is computed to be as N0 = -43.4143 dB/Hz over a
bandwidth of 48kHz. The PLL was tested with the two DSPs
attached with the 3.5mm cable and the loop behaviour was
recorded for post-analysis. Fig-4 shows the recorded phase
error process of the loop with time. The figure also shows the
expected theoretical response for the phase error process and
its corresponding steady state value. The steady state value of
the phase error process reaches 6-deg as seen in the figure,
which can also be calculated from the expression for the
steady state phaser error given in equation (7).

Fig-3, Thermal noise statistics, from DSP-1 to DSP-2

The phase error at steady state experiences some jitter due to
noise. We see in later section that the jitter is not only caused
by the additive Gaussian noise at the receiver but also by the
finite precision representation of the signal samples, or the
quantisation noise in other terms.

Fig-4, Phase error process of the loop, experimental and theoretical

Next, we examine the instantaneous frequency error of the
loop. The instantaneous frequency error of the loop is shown
in Fig-5, both the experimental and theoretical results are
shown. The instantaneous frequency error also experiences
jitter at steady state due to the additive thermal noise and the
quantisation noise. The two figures showing the phase error
process and the frequency error process, matching with the
theoretical and the experimental results, validate our design
and analysis strongly. The noise performance of the loop is
also of great interest to us. We analyse and compare the
phase jitter and the instantaneous frequency jitter of the loop
during steady state operation. Experiments were conducted
to measure the noise performance of the loop. We should
note here that our main aim in the design and
implementation process of the PLL was to bring the error
performance of the loop to the theoretical limit as much as
possible, and to make the loop linear. To measure the jitter
performance of the loop during steady state, we varied the
transmit power at the transmitter hence varying the received
signal to noise ratio, and measured the standard deviation of
the phase noise and the instantaneous frequency error
respectively.

-6 -4 -2 0 2 4 6

0.05

0.1

0.15

0.2

0.25

0.3

n - noise samples

PD
F

theory
experiment

20 40 60 80 100 120 140 160 180 200-80

-60

-40

-20

0

20

40

60

80
Ph

as
e

E
rr

or
 -

de
gr

ee
s

experiment

theory

Time Samples - n

Fig-5, Instantaneous frequency error process of the loop

The experimental results were then analysed with the
theoretical results given in (9) and (10) respectively. Figures 6
and 7 depict the phase and instantaneous frequency jitter
performances of the loop for various loop signal to noise ratio
levels. From the figures we see that the jitter performance of
the loop is very close to the theoretical performance.

Fig-6, Steady state phase jitter performance of the loop

The slight difference between the obtained performance and
the theoretical performance may be verified using the finite
precision representation of the signal samples in the DSP. As
stated before, the audio codec is a 16-bit codec which
produces significant quantisation noise. The quantisation
noise is not considered in the linear theoretical analysis
presented in the previous sections here. Characterisation of
quantisation noise is application specific and depends on the
signal model that is used. The treatment of quantisation noise
in the linear loop analysis is beyond the scope of this paper.
Next we look at the loop dynamics by analysing the phase
plane portrait of the feedback system. The phase-plane
portrait [4] for the PLL is the plot of the trajectories with
phase error on the x-axis and the frequency error on the y-axis
for various initial conditions. This shows the pull-in process
of the loop with the frequency error and the phase error
reaching steady states in a single graph. Fig-8 depicts the
phase-plane portrait of the imperfect 2nd order loop for a
single initial value. From the figure we see how the loop
pulls-in the signal by acquiring the phase and the frequency of
the incoming signal. The phase error and the frequency error

reach the steady state values and wander around it due to
noise.

Fig-7, Instantaneous frequency jitter of the loop

Fig-8, Phase plane portrait of the 2nd order difference system

The PLL was then used to track carrier signals for an indoor
wireless channel operating in the FM-band at 88.7MHz. The
purpose of this experiment was to see how well the PLL
performs under non-ideal situations such as operating in an
indoor wireless channel. The transmit DSP was attached to
an FM transmitter and the receive DSP running the PLL was
attached to an FM receiver. The spectral domain
performance of the synchronisation system for the FM test-
bed is shown in Fig-9. The figure shows the received in-
band signal spectrum transmitted through the indoor wireless
channel with received signal embedded in it. As we see from
the figure, the received signal is hardly distinguishable
within the channel, and the PLL tuned to the carrier signal
pulls-in the carrier signal with high gain as shown in the
same figure. The figure is taken out form the software tool
CCS running on the receiver host computer targeting the
real-time DSP.

7. Conclusion
A software-implemented PLL was presented in this paper.
The PLL was implemented on TI’s C6713 based DSP and
was analysed on its performance in real time with theoretical
analysis. The goal of the design, implementation and
analysis was to bring the PLL performance to the achievable
theoretical limits.

0 20 40 60 80 100 120 140 160 180 200-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 104

Time Samples - n

Fr
eq

ue
nc

y
E

rr
or

 -
H

z

experiment
theor

8 10 12 14 16 18 20 22 24 2610-3

10-2

10-1

100

SNRL - dB

Ph
as

e
Ji

tt
er

 -
ra

d

Experimental

Theory

8 10 12 14 16 18 20 22 24 2610-4

10-3

10-2

10-1

SNRL - dB

In
st

an
ta

ne
ou

s N
or

m
al

is
ed

 F
re

qu
en

cy
 ji

tt
er

Experimental
Theory

-60 -40 -20 0 20 40 60 80 100-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 104

Phase Error - degrees

Fr
eq

ue
nc

y
E

rr
or

 -
H

z

Fig-9, Spectral properties of the FM-band test-bed with software PLL (a) PLL output spectrum (b) FM-band received signal spectrum

It has been seen from the experimental results that this
was achieved with limitations due to finite precision
representation of sampled signal. The key motivation of
the work was that traditionally PLL are designed and
analysed using simulations, but here we go a step forward
and analyse the loop in real-time implemented on DSP.

8. Acknowledgement

The author would like to thank the Wireless Signal Processing
program at the National ICT Australia. National ICT Australia
is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian
Research Council

9. References

[1] F.M.Gardner,“Phase Lock Techniques”,NY,Willey, 1979.
[2] W.C.Lindsey, and C.M.Chie, “A Survey of DPLL“, Proceedings
of the IEEE, pp296-317 April 1981.
[3] H. Meyer, G Ascheid, “Synchronisation in Digital
Communications”,vol-1, John Willey & Sons, 1990
[4] A.J.Viterbi,“Principles of Coherent Comms” McGraw-Hill,
1966
[5] M. P. Fitz and R. J.-M. Cramer, "A Performance Analysis of a
Digital PLL Based MPSK Demodulator," IEEE Trans on Comms,
vol. 43 No.2/3/4, pp. 1192-1201, Feb/Mar/Apr 1995.
[6] R.C.Tausworthe,"A Second/Third-Order Hybrid Phase Locked
receiver for Tracking Doppler Rates”,JPL Tech Rep 32-
1526,vol.1,pp 42-45
[7] S. Kandeepan, S. Reisenfeld, “Frequency Jitter of a Digital
Phase-Locked Loop and Comparison with a Modified CRB”,Comm
Systems, 2002. ICCS 2002. The 8th International Conference on,
pp.96-100, Vol.1, 25-28 Nov 2002, Singapore
[8] S.Kandeepan, S.Reisenfeld, “Frequency Tracking and
Acquisition with a Four-Quadrant arctan-Based Digital Phase-
Locked Loop”, ICICS-PCM 2003 proceedings of,Vol.1,pp 401-
405,15-18 Dec 2003, Singapore.

[9] S.Kandeepan, “Synchronisation Techniques for Digital
Receivers”, PhD Thesis, University of Technology Sydney, 2003
[10] M.C.Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation
of Communication Systems, Modelling, Methodology and
Techniques, 2nd ed: Kluwer Academic/Plenum Publishers, 2000.
[11] R. Chassing, Digital Signal Processing and Applications with
the C6713 and C6416 DSK, John Wiley & Sons, 2005.
[12] R.Chassing, DSP Applications Using C and TMS320C6x DSK:
John Wiley & Sons, 2002.
[13] N. Kehtarnavaz and B. Simsek, C6X-Based Digital Signal
Processing: Prentice Hall, 2000.
[14] N.Dahnoun, DSP implementation using the TMS320C6000
DSP platform/Naim Dahnoun, 1st ed. Harlow, England, New York,
Prentice Hall, 2000
[15] How to Begin Development Today with the TMS320C6713
Floating Point DSP, SPRA809, Texas Instruments, Texas, 2003
[16] TMS320C6713 Floating point Digital Signal Processor,
SPRS186, Texas Instruments, Dallas Texas
[17] TMS320C6000 Programmers Guide, SPRU198G, Texas
Instruments, Dallas, Texas, 2002
[18] TMS320C6000 CPU and Instruction Set Reference Guide,
SPRU189F, Texas Instruments, Dallas, Texas, 2000
[19] TMS320C6000 Peripherals Reference Guide, SPRU190D,
Texas Instruments, Dallas, Texas, 2001
[20] TMS320C6x Peripheral Support Library Programmers
Reference, SPRU273B, Texas Instruments, Dallas, Texas, 1998
[21] Code Composer Studio Users Guide, SPRU328B, Texas
Instruments, Dallas, Texas, 2000
[22] TMS320C6000 Code Composer Studio Tutorial, SPRU301C,
Texas Instruments, Dallas, Texas, 2000
[23] TLV320AIC23 Stereo Audio Codec, 8- to 96-kHz, with
Integrated Headphone Amplifier Data Manual, SLWS106G, Texas
Instruments, Dallas, Texas, 2003
[24] TMS320C6000 DSP/BIOS User Guide, SPRU423, Texas
Instruments, Dallas, Texas, 2002
[25] TMS320C6000 Chip Support Library API User’s Guide,
SPRU401F, Texas Instruments, Dallas, Texas, 2003

Figure (a)

Figure (b)

