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ABSTRACT 
A mathematical model of a synchronization block of 
a DS-CDMA system is developed and then 
investigated using a simulation. For this 
synchronization a pilot sequence has been used that 
can be a pseudorandom sequence or a chaotic 
sequence of a limited length. The theoretical model 
is tested by simulation. It was shown that the system 
can be synchronized using a pilot sequence 
represented by a periodically repeated chaotic 
sequence.  
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1.  Introduction 
 
In ordinary DS-CDMA communication systems all 
the users transmit their information using their own 
basis signals, which are orthogonal to each other. 
These basis signals can be pseudo random 
sequences with good orthogonal characteristics, 
Walsh functions [1], wavelets [2] or chaotic 
sequences [3]. The sequences allow spread 
spectrum characteristics of the transmitted signals 
and enhance the security of the communication 
system as well as jamming protection of the system.  
 
In this paper, a DS-CDMA system, which uses 
chaotic sequences as the carriers of users’ 
messages, is analyzed. The system is supposed to 
achieve the best possible masking of the transmitted 
information contents and the best possible 
protections of the information contents, which 
depends mostly on the characteristics of the chaotic 
signal generated for each user. The system is 
analyzed in the presence of white Gaussian noise 
for the case when the transmitter generates a 
multiuser signal that is composed of N single-user 
chaotic signals. The mathematical model of the 
system is presented in [3]. 
 
The basic problem in such systems is how to 
synchronize the chaotic sequence transmitted and 
its replica generated inside the receiver. Due to the 
lack of sufficiently robust synchronization schemes  

 
[4, 5, 6, 7], the topic of synchronization within chaos 
based DS-CDMA systems is still an active area of 
research.  In this paper we have made a theoretical 
analysis of a synchronization system and conducted 
simulation to confirm that the synchronization can be 
achieved.    
 
2.  CDMA System Description 
 

Due to its wideband nature, a signal mapped by 
chaotic basis functions is more resistant to multipath 
propagation.   A system to be analyzed, shown in 
Fig. 1) is composed of 4 basic parts. First part is a 
transmitter, which includes spreaders, a low-pass 
FIR filter and a modulator that up-converts the 
composite CDMA signal of the carrier frequency �c. 
Second part is the receiver, which demodulates the 
incoming signal, filters high frequency component, 
dispreads the CDMA signal and makes decision 
related to the message bit transmitted. The third part 
is the communication channel, represented by 
additive white Gaussian noise. These three parts, 
excluding the carrier modulation, are theoretically 
analyzed and simulated in [3].  The fourth part, to be 
analyzed in this paper, is the synchronization block.  
 
2.1 Theoretical Model of a Chaotic PSK 
system 

 
The chaotic sequences are denoted by {xt}, the 
encoded message by {�t} and �i

  is the ith transmitted 
bit. Thus, the transmitter signal can be expressed as 
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where the g-th user sequence is expressed as  
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and the pilot chaotic sequence is modulated by all 
ones sequence that gives the pilot sequence 
expressed as 
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ccttit iTTitfortxtxtts ,)1[(),(1)()()( 0000 −∈⋅+==γ .   (2.3)
  
Unlike the users’ chaotic sequences, which are 
theoretically non-periodic sequences to preserve the 
security in message transmission using chaotic 
phase shift keying as explained in [3], the pilot 
chaotic sequence has a finite duration and is 
periodically repeated. The communication system is 
designed in such a way that the spreading and 
transmission of message bits for each user starts at 
the beginning of this pilot sequence. Thus, if the 
received pilot sequence at the receiver is 
successfully synchronized with its replica locally 
generated at the receiver side, then the receiver will 
“know” where to expect the beginning of the user 
chaotic sequence in order to take out the user 
message bits.  
 
Let us generally explain how this received pilot is 
synchronized with a locally generated pilot at the 

receiver for the case when the g-th user is supposed 
to receive the message. The communication system, 
including the synchronization circuits, is shown in 
Fig. 1. Suppose the receiver pilot is )(0 τ−txt , which 

is a time shifted replica of the transmitted pilot )(0 txt . 
The pilot multiplies the received signal as shown in 
Fig. 1. The calculated control variable Z is used to 
reduce the time delay of the receiver pilot using a 
feed-back loop as shown in Fig. 1. When this delay 
is reduced to zero, the pilot synchronization is 
achieved and a control signal Cinitial is generated at 
the output of the Pilot Synchronization block. This 
signal sets the g-th user Chaotic Sequence 
generator at the time instant where the transmitted 
sequence of the g-th user is supposed to start. Thus, 
when the transmitter starts to generate message bits 
for the g-th user, the g-th user chaotic sequence 
generator at the receiver side will be synchronized to 
the incoming sequence. 
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Figure 1 DS-CDMA CPSK system with a synchronization block 
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2.2 Theoretical Model of a Synchronization 
Block 
 
Let us present a theoretical model of sequence 
synchronization based on Fig. 1. For the sake of the 
generality of explanation we assume that there is a 
phase difference � between the carrier at the 
transmitter and the receiver side. For that reason the 
synchronization circuits are presented with two 
branches in Fig. 1. The received signal, assuming 
that a phase shift is �, may be expressed as 
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The first output is 
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which is passed through the LP filter and gives 
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Because the pilot is always one, i.e., 1)(0 +=tiγ  , 
and having in mind notation in (1), we may have 
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0
1 tAtxtr t ξϕ += ,       (2.5) 

 
where the noise term includes the AWGN and the 
inter-user interference. In analog way we can find 
the second output  
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These outputs are multiplied by an m-bit reference 
sequence containing M chips, which is a time shifted 
version of the received pilot sequence, and then 
integrated which results in 
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The correlation procedure takes place at the receiver 
as shown in Fig. 1. The first M chips of the pilot 
sequence are aligned with the reference sequence, 
multiplied and then summed to obtain the first 
correlation value. If this value is less than the 
threshold value this procedure is repeated for the 
next chip intervals until the correlation value 
calculated is greater than the threshold value, when 
we assume that the synchronization is acquired. 
Because the amplitude of the pilot is 

cc TEA /2=  and 

the number of chips in the interval T is M = T/Tc, we 
may have   
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And, derived in the same manner,   
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where N1 and N2 are zero-mean Gaussian random 
with the variance 2/'

0TN , expressed in these forms  
 

( )2/,0 '
01 TNGN �    and  ( )2/,0 '

02 TNGN � .  (2.9) 
 
Therefore, the decision variables Z1 and Z2 are also 
Gaussian random variables expressed as 
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And 
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because M = T/Tc. The decision variable, which 
controls the correlation procedure, and consequently 
the synchronization procedure, is 2

2
2
1 ZZZ += . The 
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new variable Z is 2/'
0

2 TN=σ  times a noncentral 
chi-squared random variable with two degrees of 
freedom. The noncentrality parameter is  
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Thus, the probability density function of Z is 
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2.3 Decision Procedure  
 
Suppose the decision is made on the basis of two 
hypothesis tests: H1 is the hypothesis that the 
received and locally generated sequences are 
aligned within one chip, and H0 is the hypothesis the 
received sequence is not aligned with the local one, 
which can be expressed formally as 
 
  0

'
00 ,0)(||: NNRTH c >≅�> ττ , and 

.,0)(||: 0
'
01 NNRTH c ≅>�≤ ττ    (2.14) 

 
The probability density functions, conditioned on 
these hypotheses, are 
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because the noncentrality parameter is zero in the 
first case and different from zero in the last case. 
Thus, the single attempt (m = 1) false alarm 
probability is  
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and the threshold value is  
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For this threshold value, the single-run acquisition 
detection probability is  
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Transforming z to be 22σxz =  we may have  
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This integral is the Marcum’s Q-function, therefore 
we may have 
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For the hypothesis H1 we have that 0

'
0,0)( NNR ≅>τ  

and 2/0
2 TN=σ , which gives the expression for � in 

this form  
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Thus, inserting this expression and also the 
expression for the threshold value (2.18) into (2.19), 
we may have 
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The upper bound on the acquisition detection 
probability is obtained in the case when system is in 
synchronization, i.e., when this condition is fulfilled 

0
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0,1)0()( NNRR ≅=≅τ , according to the expression 
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Where Q is a Gaussian Q-function that accurately 
approximates the Marcum’s Q-function QM. For a 
particular value of the signal-to-noise ratio we may 
plot the graphs of QM function for M as a parameter. 
Thus, for a worst expected signal-to-noise ratio 
value we can determine the value of the number of 
chips in the reference sequence M at the receiver 
side that allows us to synchronize the receiver with 
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the desired value of both the acquisition detection 
probability and the false alarm probability. 
 
The pilot sequence can also be a pseudo random 
sequence in the case when it is orthogonal to the all 
chaotic sequences used for spreading users’ 
information bits. In that case the synchronization 
procedure will be practically similar to the procedure 
in classical CDMA systems like systems that use 
Walsh functions as orthogonal sequences [1].  
 
 
3.  Simulations and Analysis 
 
A way of obtaining the empirical expressions for the 
probability of false alarm and the probability of 
detection is now presented.  Assume that, at certain 
noise power level in the system, the output of the 
acquisition circuit is as given in Fig. 2. 
 

 
Figure 2  Discrete values of the decision variable  

 
Then, for this noise power level the decision variable 
Zi will exceed the threshold value zT six times.  
However in only one of those six times the incoming 
signal )(tr  and the basis function, )( τ−tx p , at the 

receiver will be in synchronism. Let the circle in Fig. 
2 correspond to the case when the two are indeed in 
synchronism, and the crosses represent cases when 
they are not in synchronism but the threshold is 
exceeded.   
 
Let us apply Baye’s rule, expressed as 
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Which states that the probability of event A given 
that event B has occurred is equal to the probability 
of both A and B occurring divided by the a priori 
probability of event B.  The equation (2.17), which 
represents the probability of false alarm, can 
therefore also be written in the following form 
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The expression for the numerator term 
)( 0HzZP Tmr ∩>  of equation (3.2) may be expressed 

in this form 
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In equation 3.3 k represents the number of crosses 
in Figure 2, that is, the number of times that the 
decision variables Zm exceeds the threshold value 
zT, leading to the wrong decision.  S represents the 
total number of discrete values of the decision 
variables Zm. 
 
The expression for the denominator term )( 0HPr  of 
equation 3.2 is given by equation 3.4. 
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Substituting (3.3) and (3.4) into (3.2) equation 3.5 is 
obtained.  
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Saying that S is unlimited implies that the number of 
synchronization bits is unlimited.  In order to obtain 
an accurate result, when S is limited, the experiment 
must be run a number of times, that is, a large 
number of synchronization bits (periods) must be 
processed.  Processing a large number, i, of bits, 
while keeping S limited, permit an accurate 
estimation of the probabilities, for a limited size of 
the synchronization bit.  Running the experiment i 
number of times, that is, processing i number of bits, 
leads to the expression for the probability of false 
alarm expressed as 
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Also equation 3.7 which represents the probability of 
detection can be written as equation 3.7. 
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The expression for the numerator term 
)( 1HzZP Tmr ∩>  of equation 3.7 has only two 

outcomes, depending on whether the threshold zT 
has been exceeded or not.  These two outcomes are 
given by  
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The expression for the denominator term )( 1HPr  of 
(3.7) is given by  
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Substituting (3.8) and (3.9) into (3.7) we may have.  
 

( )
( )

( ) �
�

�

�
�

�

�

�
�

�

�
�

�

�

=

>=
=∩>==

∞→

∞→

∞→

otherwise
S

zZ
S

S

HP
HzZP

mp

S

Tm

S

S

r

Tmr
D

0
/1lim

0

1
/1lim

/1lim

)(
)(

)1(
1

1
 

                     (3.10) 
 
From (3.10) it is clear that to obtain the expression 
for the probability of detection one must run the 
experiment over more than a single synchronization 
bit, regardless of the length of the synchronization 
bit, that is, the synchronization bit period.  Running 
the experiment i number of times leads to the 
expression for the probability of detection given by  
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where }1,0{)1( ∈= nD mp . 
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Equations (3.6) and (3.11) have been evaluated for 
large i and M = 224.  The results of simulation are 
shown in Fig. 3 where the dependence of pD versus 
pF is plotted. The solid curve is obtained by 
simulation and the dashed curve is obtained from 
the theory using equation (2.22).  The theoretical 
result is somewhat better than the empirical one, as 
demonstrated by Fig. 3.  
 
 
4.  Conclusions 
 
It was shown, by a theoretical analysis and 
simulation that a CDMA system, which is based on 
application of the chaotic sequences as carriers of 
the user information, can be synchronized using a 
pilot sequence. This pilot can be a repeated version 
of a chaotic sequence or a pseudo random 
sequence that is orthogonal to the chaotic 
sequences used in the system.  
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